11.07.2015 Views

Molecular Dynamics Simulations of Retinal in Rhodopsin: From the ...

Molecular Dynamics Simulations of Retinal in Rhodopsin: From the ...

Molecular Dynamics Simulations of Retinal in Rhodopsin: From the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Biochemistry 2005, 44, 12667-1268012667<strong>Molecular</strong> <strong>Dynamics</strong> <strong>Simulations</strong> <strong>of</strong> <strong>Ret<strong>in</strong>al</strong> <strong>in</strong> Rhodops<strong>in</strong>: <strong>From</strong> <strong>the</strong> Dark-AdaptedState towards Lumirhodops<strong>in</strong> †V<strong>in</strong>cent Lemaître, ‡,§ Philip Yeagle, | and Anthony Watts* ,‡Biomembrane Structure Unit, Department <strong>of</strong> Biochemistry, UniVersity <strong>of</strong> Oxford, South Parks Road,Oxford OX1 3QU, United K<strong>in</strong>gdom, Nestec S.A., BioAnalytical Department, Vers-Chez-Les-Blanc,CH-1000 Lausanne 26, Switzerland, and Department <strong>of</strong> <strong>Molecular</strong> and Cell Biology, UniVersity <strong>of</strong> Connecticut,91 North EagleVille Road, Storrs, Connecticut 06269ReceiVed April 1, 2005; ReVised Manuscript ReceiVed July 22, 2005ABSTRACT: The formation <strong>of</strong> photo<strong>in</strong>termediates and conformational changes observed <strong>in</strong> <strong>the</strong> ret<strong>in</strong>alchromophore <strong>of</strong> bilayer-embedded rhodops<strong>in</strong> dur<strong>in</strong>g <strong>the</strong> early steps <strong>of</strong> <strong>the</strong> prote<strong>in</strong> activation have beenstudied by molecular dynamics (MD) simulation. In particular, <strong>the</strong> lys<strong>in</strong>e-bound ret<strong>in</strong>al has been exam<strong>in</strong>ed,focus<strong>in</strong>g on its conformation <strong>in</strong> <strong>the</strong> dark-adapted state (10 ns) and on <strong>the</strong> early steps after <strong>the</strong> isomerization<strong>of</strong> <strong>the</strong> 11-cis bond to trans (up to 10 ns). The parametrization for <strong>the</strong> chromophore is based on a recentquantum study [Sugihara, M., Buss, V., Entel, P., Elstner, M., and Frauenheim, T. (2002) Biochemistry41, 15259-15266] and shows good conformational agreement with recent experimental results. Theisomerization, <strong>in</strong>duced by switch<strong>in</strong>g <strong>the</strong> function govern<strong>in</strong>g <strong>the</strong> dihedral angle for <strong>the</strong> C11dC12 bond,was repeated with several different start<strong>in</strong>g conformations. <strong>From</strong> <strong>the</strong> repeated simulations, it is shownthat <strong>the</strong> ret<strong>in</strong>al model exhibits a conserved activation pattern. The conformational changes are sequentialand propagate outward from <strong>the</strong> C11dC12 bond, start<strong>in</strong>g with isomerization <strong>of</strong> <strong>the</strong> C11dC12 bond, <strong>the</strong>na rotation <strong>of</strong> methyl group C20, and followed by <strong>in</strong>creased fluctuations at <strong>the</strong> β-ionone r<strong>in</strong>g. The dynamics<strong>of</strong> <strong>the</strong>se changes suggest that <strong>the</strong>y are l<strong>in</strong>ked with photo<strong>in</strong>termediates observed by spectroscopy. Theexact moment when <strong>the</strong>se events occur after <strong>the</strong> isomerization is modulated by <strong>the</strong> start<strong>in</strong>g conformation,suggest<strong>in</strong>g that ret<strong>in</strong>al isomerizes through multiple pathways that are slightly different. The amplitudes <strong>of</strong><strong>the</strong> structural fluctuations observed for <strong>the</strong> prote<strong>in</strong> <strong>in</strong> <strong>the</strong> dark-adapted state and after isomerization <strong>of</strong> <strong>the</strong>ret<strong>in</strong>al are similar, suggest<strong>in</strong>g a subtle mechanism for <strong>the</strong> transmission <strong>of</strong> <strong>in</strong>formation from <strong>the</strong> chromophoreto <strong>the</strong> prote<strong>in</strong>.The rhodops<strong>in</strong>-bound ret<strong>in</strong>al is a molecular device forconvert<strong>in</strong>g light <strong>in</strong>to molecular conformational changes. Theirradiation <strong>of</strong> rhodops<strong>in</strong> at 500 nm isomerizes 11-cis-ret<strong>in</strong>alto all-trans, trigger<strong>in</strong>g a cha<strong>in</strong> <strong>of</strong> conformational changes <strong>in</strong><strong>the</strong> prote<strong>in</strong> that <strong>in</strong>duces signal transduction lead<strong>in</strong>g to vision(1-3). The conformation <strong>of</strong> ret<strong>in</strong>al and its evolution result<strong>in</strong>gfrom light absorption are crucial to an understand<strong>in</strong>g <strong>of</strong> <strong>the</strong>activation mechanism <strong>of</strong> rhodops<strong>in</strong>, which has been <strong>the</strong> subject<strong>of</strong> <strong>in</strong>tense study (4-6). Rhodops<strong>in</strong> is <strong>the</strong> most comprehensivelystudied member <strong>of</strong> <strong>the</strong> family <strong>of</strong> G-prote<strong>in</strong>-coupledreceptors (GPCRs) 1 because it is <strong>the</strong> only GPCR that isnaturally present <strong>in</strong> high abundance <strong>in</strong> biological tissue (7).Rhodops<strong>in</strong> provides an environment <strong>in</strong> which 11-cis-ret<strong>in</strong>alchromophore can undergo a cis to trans isomerization <strong>in</strong>response to absorption <strong>of</strong> a photon with a very high quantumyield <strong>of</strong> 0.67 (8). When light strikes <strong>the</strong> rod cell and is†This work was supported by a BBSRC CASE Award to V.L. (Grantnumber 01/A2/B/07394) and a MRC Programme Grant to A.W. (Grantnumber G000852).* To whom correspondence should be addressed. E-mail:anthony.watts@bioch.ox.ac.uk. Telephone: 44-1865 275268. Fax: 44-1865 275234.‡University <strong>of</strong> Oxford.§Nestec S.A.|University <strong>of</strong> Connecticut.absorbed by <strong>the</strong> photopigment, rhodops<strong>in</strong>, <strong>the</strong> result<strong>in</strong>gstructural changes <strong>in</strong>duced by <strong>the</strong> ret<strong>in</strong>al upon photoactivationproduce a series <strong>of</strong> def<strong>in</strong>ed photo<strong>in</strong>termediates (reviewed<strong>in</strong> refs 3 and 9). Low-temperature and time-resolved UV/vis spectroscopic measurements have shown that photobleach<strong>in</strong>g<strong>of</strong> rhodops<strong>in</strong> <strong>in</strong>volves several <strong>in</strong>termediates andmay follow more than one pathway (10-12).The <strong>in</strong>itial photoproduct, photorhodops<strong>in</strong>, is formed with<strong>in</strong>a very short time (200 fs). This state is transient and cannotbe isolated (13, 14). A model for <strong>the</strong> potential energy surface<strong>of</strong> <strong>the</strong> excited state based on UV/vis femtospectroscopy datashows that <strong>the</strong> torsion angle <strong>of</strong> <strong>the</strong> bound C11dC12 ischanged by 75° with<strong>in</strong> 30 fs, while <strong>the</strong> full isomerizationtakes place <strong>in</strong> 200 fs (15). The <strong>in</strong>itial movements <strong>of</strong> <strong>the</strong>chromophore are thought to be tightly constra<strong>in</strong>ed by <strong>the</strong>surround<strong>in</strong>g prote<strong>in</strong>, because <strong>of</strong> <strong>the</strong> very short time scale <strong>of</strong><strong>the</strong> photoisomerization (16).1Abbreviations: MD, molecular dynamics; GPCR, G-prote<strong>in</strong>coupledreceptor; UV/vis, ultraviolet/visible absorption spectra; NMR,nuclear magnetic resonance; BSI, blue-shifted <strong>in</strong>termediate; PME,particle-mesh Ewald; SPC, s<strong>in</strong>gle-po<strong>in</strong>t charge; POPC, 1-palmitoyl-2-oleoyl-sn-glycerophosphochol<strong>in</strong>e; DFT, Density Function Theory;SMD, steered molecular dynamics; TM, transmembrane; VMD, visualmolecular dynamics; RMSD, root-mean-square deviation; RMSF, rootmean-squarefluctuation; G t, G-prote<strong>in</strong> transduc<strong>in</strong>.10.1021/bi0506019 CCC: $30.25 © 2005 American Chemical SocietyPublished on Web 08/30/2005


12668 Biochemistry, Vol. 44, No. 38, 2005 Lemaître et al.Subsequently, photorhodops<strong>in</strong> <strong>the</strong>rmally relaxes with<strong>in</strong> afew picoseconds to a distorted all-trans configuration,bathorhodops<strong>in</strong> (17). In bathorhodops<strong>in</strong>, <strong>the</strong> chromophoreis expected to reta<strong>in</strong> <strong>the</strong> energy <strong>of</strong> <strong>the</strong> photon, because itdoes not have <strong>the</strong> time to relax. Models for energy storage<strong>in</strong> bathorhodops<strong>in</strong> suggest that absorbed energy can be storedthrough (i) structural changes <strong>in</strong> <strong>the</strong> ret<strong>in</strong>al chromophoreitself, (ii) alterations <strong>in</strong> <strong>the</strong> <strong>in</strong>teractions between <strong>the</strong> ret<strong>in</strong>aland its prote<strong>in</strong> environment, or (iii) a comb<strong>in</strong>ation <strong>of</strong> both.Calorimetric, nuclear magnetic resonance (NMR), <strong>in</strong>frared,and Raman studies <strong>of</strong> bathorhodops<strong>in</strong> at low temperaturesuggest that <strong>the</strong> distortion <strong>in</strong> <strong>the</strong> conformation <strong>of</strong> <strong>the</strong>chromophore accounts for an important part <strong>in</strong> photon-energystorage (17-24). An early NMR study on bathorhodops<strong>in</strong>suggested that <strong>the</strong> energy stored <strong>in</strong> <strong>the</strong> primary photoproductdoes not <strong>in</strong>duce any substantial changes <strong>in</strong> <strong>the</strong> averageelectron density <strong>of</strong> <strong>the</strong> polyene cha<strong>in</strong>, which is similar to<strong>the</strong> dark-adapted state and to isorhodops<strong>in</strong> (24). Vibrationalspectroscopy studies at low and at room temperature confirmthat <strong>the</strong> vibrational modes <strong>in</strong> <strong>the</strong> Schiff-base region <strong>of</strong> <strong>the</strong>ret<strong>in</strong>al chromophore <strong>in</strong> <strong>the</strong> dark-adapted state <strong>of</strong> rhodops<strong>in</strong>are unchanged upon bathorhodops<strong>in</strong> formation (23, 25). Thecharge separation between <strong>the</strong> Schiff base and its counterion,<strong>the</strong>refore, does not make a major contribution to this part <strong>of</strong><strong>the</strong> energy storage/transduction mechanism. Fur<strong>the</strong>rmore,significant changes between <strong>the</strong> dark-adapted state and bathorhodops<strong>in</strong>occur <strong>in</strong> <strong>the</strong> polyene cha<strong>in</strong>, <strong>in</strong>dicat<strong>in</strong>g substantialtwist<strong>in</strong>g <strong>of</strong> <strong>the</strong> ret<strong>in</strong>al backbone at low temperature (T


MD <strong>Simulations</strong> <strong>of</strong> <strong>Ret<strong>in</strong>al</strong> <strong>in</strong> Rhodops<strong>in</strong> Biochemistry, Vol. 44, No. 38, 2005 12669FIGURE 1: (A) Chemical structure <strong>of</strong> 11-cis-ret<strong>in</strong>al and all-transret<strong>in</strong>al.(B) Illustration <strong>of</strong> <strong>the</strong> simulation box (blue, lys<strong>in</strong>e; green,POPC; red, lys<strong>in</strong>e-bound ret<strong>in</strong>al; white, tryptophan; yellow, palmitoylatedcyste<strong>in</strong>e; red and white, water).sible to carry out MD simulations on a physiologically comparabletime scale for <strong>the</strong> isomerization <strong>of</strong> <strong>the</strong> ret<strong>in</strong>al chromophoreand compare <strong>the</strong> simulation with experimental data.MATERIAL AND METHODSMD Calculations. MD simulations were performed with<strong>the</strong> GROMACS version 3.1.5 package, us<strong>in</strong>g gromos43A2,extended to improve <strong>the</strong> simulation <strong>of</strong> <strong>the</strong> lipid componentsfor <strong>the</strong> force field (61). <strong>Simulations</strong> were run at a temperature<strong>of</strong> 300 K and a pressure <strong>of</strong> 1 bar <strong>in</strong> an iso<strong>the</strong>rmal-isobaricensemble (NPT) with periodic boundaries present. BothBerendsen temperature and pressure couplers were chosento keep <strong>the</strong>se parameters constant. The time step for <strong>the</strong>simulations was 1 fs <strong>in</strong> <strong>the</strong> case <strong>of</strong> <strong>the</strong> short 5-ps MDsimulations and 2 fs for <strong>the</strong> o<strong>the</strong>rs. A LINCS algorithm wasused to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> geometry <strong>of</strong> <strong>the</strong> molecules. Long-rangeelectrostatic <strong>in</strong>teractions are calculated with <strong>the</strong> particle-meshEwald (PME) method. PME tends to slow <strong>the</strong> computationbut <strong>in</strong>crease its quality because it removes any cut<strong>of</strong>felectrostatic <strong>in</strong>teractions. Lennard-Jones <strong>in</strong>teractions werecut <strong>of</strong>f at 1.4 nm. The s<strong>in</strong>gle-po<strong>in</strong>t charge (SPC) water model(62) was used to describe <strong>the</strong> water <strong>in</strong> <strong>the</strong> simulation box.Lipids. The bilayer consisted <strong>of</strong> a 1-palmitoyl-2-oleoylsn-glycerophosphochol<strong>in</strong>e(POPC) patch <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>itially288 lipids and 16 337 water molecules. The topology filefor <strong>the</strong> POPC molecule had been previously described andwas available from http://moose.bio.ucalgary.ca/Downloads.Prote<strong>in</strong>. A crystal structure <strong>of</strong> <strong>the</strong> dark-adapted staterhodops<strong>in</strong> (cha<strong>in</strong> A, 1L9H from PDB) was used as a start<strong>in</strong>gpo<strong>in</strong>t for build<strong>in</strong>g <strong>the</strong> molecular model <strong>of</strong> <strong>the</strong> prote<strong>in</strong>.Miss<strong>in</strong>g residues <strong>in</strong> <strong>the</strong> <strong>in</strong>tracellular loops were added us<strong>in</strong>gModeller (63). The simulation <strong>of</strong> rhodops<strong>in</strong> <strong>in</strong>volves tw<strong>of</strong>unctionalized am<strong>in</strong>o acid residues, palmitoylated cyste<strong>in</strong>eand ret<strong>in</strong>al-bound lys<strong>in</strong>e, for which it was necessary to writea molecular description. The parameters used to simulate <strong>the</strong>palmitoyl cha<strong>in</strong>s were based on <strong>the</strong> parameters used tosimulate <strong>the</strong> lipids.<strong>Ret<strong>in</strong>al</strong>. <strong>Ret<strong>in</strong>al</strong> was carefully parametrized to reproduceexperimental data previously ga<strong>the</strong>red for ret<strong>in</strong>al <strong>in</strong> <strong>the</strong> darkadaptedstate (51, 64-66) <strong>in</strong> <strong>the</strong> gromos43a2 force field (seeTables 1S and 2S <strong>in</strong> <strong>the</strong> Support<strong>in</strong>g Information). Theparametrization was based on a previous DFT <strong>the</strong>oreticalstudy on 6-s-cis-ret<strong>in</strong>al (48) and is <strong>in</strong> agreement with a recent0.22 nm resolution crystal structure (39). The bond lengths,bond angles, and dihedral angles from this model have beenused as parameters for <strong>the</strong> ret<strong>in</strong>al topology (Table 1S <strong>in</strong> <strong>the</strong>Support<strong>in</strong>g Information). The partial charges on <strong>the</strong> nucleiwere approximated on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> Mulliken charges <strong>of</strong><strong>the</strong> DFT model (Table 2S <strong>in</strong> <strong>the</strong> Support<strong>in</strong>g Information).The 6-s-cis conformer and dihedral angle equilibrium values(Table 1S <strong>in</strong> <strong>the</strong> Support<strong>in</strong>g Information) proposed bySugihara et al. (48) were used as <strong>the</strong> start<strong>in</strong>g conformationfor ret<strong>in</strong>al <strong>in</strong> rhodops<strong>in</strong> and used to replace <strong>the</strong> chromophorepresent <strong>in</strong> <strong>the</strong> 1L9H crystal structure. This approach encompasses<strong>the</strong> experimental and o<strong>the</strong>r observations <strong>of</strong> extensiveelectron delocalization over <strong>the</strong> ret<strong>in</strong>al polyene cha<strong>in</strong> [Smi<strong>the</strong>t al. (1985) Biophys. J. 47, 653-664; Lee, et al. (2002) J.Chem. Phys. 116, 6549].Insertion <strong>of</strong> <strong>the</strong> Prote<strong>in</strong> <strong>in</strong>to <strong>the</strong> Bilayer and Equilibration.The prote<strong>in</strong> was <strong>in</strong>serted <strong>in</strong> <strong>the</strong> bilayers us<strong>in</strong>g a method thatgenerates a suitable cavity <strong>in</strong> <strong>the</strong> <strong>in</strong>terior <strong>of</strong> <strong>the</strong> lipid bilayer(67) based on <strong>the</strong> solvent-accessible surface <strong>of</strong> <strong>the</strong> prote<strong>in</strong>used as a template dur<strong>in</strong>g <strong>the</strong> course <strong>of</strong> a short steered MDsimulation (SMD) <strong>of</strong> a solvated lipid membrane (500-psSMD run). The prote<strong>in</strong>-lipid equilibration was achievedthrough a three-stage process. First, overlapp<strong>in</strong>g watermolecules were removed, and <strong>the</strong>n lipid molecules whoseheadgroups are located with<strong>in</strong> 0.15 nm from <strong>the</strong> prote<strong>in</strong>surface were removed; <strong>the</strong> prote<strong>in</strong>-lipid <strong>in</strong>terface wasoptimized by apply<strong>in</strong>g repulsive forces perpendicular to <strong>the</strong>prote<strong>in</strong> surface, to <strong>the</strong> rema<strong>in</strong><strong>in</strong>g lipid atoms <strong>in</strong>side <strong>the</strong>volume occupied by <strong>the</strong> prote<strong>in</strong> until it was emptied. Theprote<strong>in</strong> itself was <strong>the</strong>n <strong>in</strong>serted <strong>in</strong>to <strong>the</strong> bilayer. Counterionswere added to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> electroneutrality <strong>of</strong> <strong>the</strong> simulationbox. The system was energy-m<strong>in</strong>imized at each step that<strong>in</strong>volved <strong>the</strong> addition or removal <strong>of</strong> any molecular species(steepest descent algorithm). F<strong>in</strong>ally, <strong>the</strong> system was equilibrated<strong>in</strong> successive short MD simulations (5 runs <strong>of</strong> 200 pseach), where position restra<strong>in</strong>ts were applied to <strong>the</strong> prote<strong>in</strong>and progressively decreased. The m<strong>in</strong>imum distance between<strong>the</strong> prote<strong>in</strong> and its mirror images is at least 2.5 nm at anytime<strong>of</strong> <strong>the</strong> simulations.MD Runs. One 10-ns MD simulation was run for <strong>the</strong> darkadaptedstate, while <strong>the</strong> isomerization <strong>of</strong> <strong>the</strong> chromophorewas studied <strong>in</strong> a series <strong>of</strong> six MD simulations (Figure 2):three 5-ps simulations with a 1-fs time step, where frameswere collected for every time step <strong>of</strong> <strong>the</strong> calculation, directedtoward <strong>the</strong> first picoseconds <strong>of</strong> <strong>the</strong> isomerization, and three10-ns simulations with a 2-fs time step, <strong>in</strong>tended to follow<strong>the</strong> <strong>in</strong>teractions between ret<strong>in</strong>al and its b<strong>in</strong>d<strong>in</strong>g pocket.Photoactivation <strong>of</strong> ret<strong>in</strong>al was simulated us<strong>in</strong>g SMD techniquespreviously described (42, 43), where <strong>the</strong> dihedralparameters for <strong>the</strong> 11-cis bond were switched to describe atrans double bond.


12670 Biochemistry, Vol. 44, No. 38, 2005 Lemaître et al.FIGURE 2: Strategy to study <strong>the</strong> isomerization <strong>of</strong> ret<strong>in</strong>al. A 10-nsMD <strong>of</strong> bov<strong>in</strong>e rhodops<strong>in</strong> is run to generate frames used as <strong>the</strong>start<strong>in</strong>g conformation for <strong>the</strong> isomerization (<strong>in</strong>clud<strong>in</strong>g start<strong>in</strong>gvelocities). Frames after 500, 1000, and 1500 ps were used as seedsfor SMD simulations, where ret<strong>in</strong>al is isomerized from 11-cis toall-trans. The <strong>in</strong>terpretation is based on <strong>the</strong> comparison between<strong>the</strong> SMDs, where ret<strong>in</strong>al is isomerized with <strong>the</strong> MD <strong>of</strong> bov<strong>in</strong>erhodops<strong>in</strong> <strong>in</strong> its dark-adapted state.Computers. MD simulations were run on various computers<strong>in</strong>clud<strong>in</strong>g a PowerBook G4 runn<strong>in</strong>g under Mac OS X(1.25 GHz, 512 MB RAM) for <strong>the</strong> shortest MDs and <strong>the</strong>data analysis or an 8 processor Beowulf-class cluster made<strong>of</strong> 4 dual processor X-serve G4 rack units (2 × 1.25 GHz,1 GB RAM) with GHz switches and UPS, runn<strong>in</strong>g under aMac OS X (10.2.8). MD calculations were run us<strong>in</strong>gsimultaneously several processors (2 or 4) with <strong>the</strong> MPImiddleware distribut<strong>in</strong>g <strong>the</strong> processes over all units.Data Analysis. For <strong>the</strong> analysis (tilt, k<strong>in</strong>k angle, etc.), only<strong>the</strong> core residues <strong>of</strong> <strong>the</strong> transmembrane (TM) helices were<strong>in</strong>cluded: (H1) 35-64, (H2) 72-98, (H3) 109-138, (H4)151-172, (H5) 201-225, (H6) 245-277, and (H7) 286-308. The ret<strong>in</strong>al b<strong>in</strong>d<strong>in</strong>g pocket was def<strong>in</strong>ed as <strong>the</strong> am<strong>in</strong>oacids present with<strong>in</strong> 0.45 nm from <strong>the</strong> ret<strong>in</strong>al as describedby Palczewski et al. (36). All molecular structures weredrawn us<strong>in</strong>g visual molecular dynamics (VMD) (68).RESULTS AND DISCUSSIONData obta<strong>in</strong>ed by vibrational spectroscopy provides <strong>in</strong>formationon <strong>the</strong> chromophore, which is difficult to translate<strong>in</strong>to an accurate molecular description <strong>of</strong> <strong>in</strong>teratomic distances,while structural approaches such as X-ray and NMRprovide a few accurate snapshots on <strong>the</strong> molecular conformation<strong>of</strong> <strong>the</strong> chromophore <strong>in</strong> various states <strong>of</strong> <strong>the</strong>prote<strong>in</strong>-activation pattern. MD simulation is a tool with <strong>the</strong>potential <strong>of</strong> l<strong>in</strong>k<strong>in</strong>g <strong>the</strong>se two important experimental contributions,at least on a short time scale (∼10 ns) and can<strong>the</strong>n be tested.The 10-ns MD simulation <strong>of</strong> bov<strong>in</strong>e rhodops<strong>in</strong> <strong>in</strong> <strong>the</strong> darkadaptedstate shows a distorted ret<strong>in</strong>al <strong>in</strong> a relatively rigidb<strong>in</strong>d<strong>in</strong>g pocket. The isomerization takes place <strong>in</strong> a 100-fsscale (15) and is followed by several conformational changeswith<strong>in</strong> ret<strong>in</strong>al at <strong>the</strong> pico- and nanosecond time scale. At a10-ns time scale, most <strong>of</strong> <strong>the</strong> changes deriv<strong>in</strong>g from <strong>the</strong>isomerization take place <strong>in</strong> <strong>the</strong> ret<strong>in</strong>al itself. A comparison<strong>of</strong> <strong>the</strong> motion <strong>of</strong> <strong>the</strong> prote<strong>in</strong> <strong>in</strong> general and <strong>the</strong> motion <strong>of</strong><strong>the</strong> residues <strong>in</strong>volved <strong>in</strong> <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g pocket on a 10-ns timescale does not show large-amplitude conformational changesthat can be directly l<strong>in</strong>ked with <strong>the</strong> isomerization <strong>of</strong> ret<strong>in</strong>aland <strong>in</strong>terpreted as <strong>the</strong> prote<strong>in</strong> response to <strong>the</strong> ret<strong>in</strong>alisomerization.Rhodops<strong>in</strong> <strong>in</strong> <strong>the</strong> Dark-Adapted State. Dur<strong>in</strong>g <strong>the</strong> 10-nsMD <strong>in</strong> <strong>the</strong> dark-adapted state, <strong>the</strong> root-mean-square deviationFIGURE 3: (A) Backbone RMSD <strong>of</strong> bov<strong>in</strong>e rhodops<strong>in</strong> <strong>in</strong> <strong>the</strong> darkadaptedstate (black) and after isomerization <strong>of</strong> <strong>the</strong> ret<strong>in</strong>al (red,start<strong>in</strong>g po<strong>in</strong>t ) dark-adapted state trajectory, after 500 ps). RMSDcurves <strong>of</strong> <strong>the</strong> residues belong<strong>in</strong>g to <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g pocket are alsodisplayed for <strong>the</strong> dark-adapted state (blue) and after isomerization(orange). (B) RMSF <strong>of</strong> rhodops<strong>in</strong> <strong>in</strong> <strong>the</strong> dark-adapted state. Thesecondary structure is highlighted <strong>in</strong> blue at <strong>the</strong> bottom to show<strong>the</strong> position <strong>of</strong> <strong>the</strong> TM helices; residues <strong>in</strong> ret<strong>in</strong>al b<strong>in</strong>d<strong>in</strong>g pocketare marked (red = negative, yellow = aromatic, and green =positive).(RMSD) <strong>of</strong> rhodops<strong>in</strong> <strong>in</strong>creases quickly to reach an averagevalue <strong>of</strong> about 0.2 nm, around which it oscillates dur<strong>in</strong>g <strong>the</strong>rema<strong>in</strong>der <strong>of</strong> <strong>the</strong> simulation (Figure 3). The RMSD computedfor <strong>the</strong> residues from <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g pocket show a differentvalue, close to 0.15 nm. The comparison between <strong>the</strong> twoRMSD curves <strong>in</strong>dicates that most <strong>of</strong> <strong>the</strong> motion <strong>in</strong> <strong>the</strong> prote<strong>in</strong>takes place <strong>in</strong> <strong>the</strong> loops. This was confirmed by <strong>the</strong> rootmean-squarefluctuations (RMSF values) computed for <strong>the</strong>prote<strong>in</strong> residues (Figure 3), where <strong>the</strong> highest values areobta<strong>in</strong>ed for <strong>the</strong> <strong>in</strong>tracellular loop and <strong>the</strong> C-term<strong>in</strong>al doma<strong>in</strong>.Analogous behavior has been observed experimentally byX-ray crystallography, where high-temperature (B) factorswere reported for <strong>the</strong> loops and as a result some loopstructures are miss<strong>in</strong>g <strong>in</strong> <strong>the</strong> earliest crystal structures (36,40, 59).Model<strong>in</strong>g 11-cis-<strong>Ret<strong>in</strong>al</strong> <strong>in</strong> <strong>the</strong> Dark-Adapted State. Theret<strong>in</strong>al model was parametrized on <strong>the</strong> basis <strong>of</strong> a <strong>the</strong>oreticalcontribution where <strong>the</strong> conformation <strong>of</strong> 11-cis-ret<strong>in</strong>al <strong>in</strong> <strong>the</strong>b<strong>in</strong>d<strong>in</strong>g pocket was determ<strong>in</strong>ed us<strong>in</strong>g DFT for <strong>the</strong> value atequilibrium <strong>of</strong> all parameters and us<strong>in</strong>g standard values from<strong>the</strong> force field (48). The dihedral <strong>in</strong>teractions for all <strong>of</strong> <strong>the</strong>


MD <strong>Simulations</strong> <strong>of</strong> <strong>Ret<strong>in</strong>al</strong> <strong>in</strong> Rhodops<strong>in</strong> Biochemistry, Vol. 44, No. 38, 2005 12671Table 1: Distance Restra<strong>in</strong>ts with<strong>in</strong> <strong>Ret<strong>in</strong>al</strong> for Rhodops<strong>in</strong> <strong>in</strong> <strong>the</strong> Dark-Adapted State Determ<strong>in</strong>ed by MD at 300 K, DFT, and 13 C- 13 CRotational Resonance NMR at 210 Katom pair C10-C20 C11-C20 C8-C16 C8-C17 C8-C18MD distance a (nm) 0.309 ( 0.014 b 0.306 ( 0.001 b 0.442 ( 0.010 b 0.388 ( 0.017 b 0.308 ( 0.013 bDFT distance (nm) 0.307 0.309 0.435 0.398 0.300reference 48 48 48 48 48NMR distance (nm) 0.304 ( 0.015 c 0.293 ( 0.015 c 0.405 ( 0.025 c 0.405 ( 0.025 c 0.295 ( 0.25 creference 64 64 51 51 51X-ray distance (nm) 0.329 ( 0.00 d 0.325 ( 0.00 d 0.448 ( 0.036 d 0.446 ( 0.034 d 0.328 ( 0.008 dreference 39 39 39 39 39aAverages <strong>of</strong> a set <strong>of</strong> three MDs <strong>of</strong> <strong>the</strong> same duration. b Standard deviation <strong>of</strong> <strong>the</strong> fluctuations dur<strong>in</strong>g <strong>the</strong> MD. c Experimental error. d (Standarddeviation on cha<strong>in</strong>s A and B.Table 2: Distance Restra<strong>in</strong>ts with<strong>in</strong> <strong>Ret<strong>in</strong>al</strong> for Rhodops<strong>in</strong> Determ<strong>in</strong>ed by MD with<strong>in</strong> 10 ns after <strong>the</strong> Isomerization <strong>of</strong> <strong>Ret<strong>in</strong>al</strong> at 300 K and13C- 13 C Rotational Resonance NMR for Metarhodops<strong>in</strong> I at 210 Katom pair C10-C20 C11-C20 C8-C16 C8-C17 C8-C18MD distance a (nm) 0.444 ( 0.014 b 0.305 ( 0.009 b 0.439 ( 0.011 b 0.396 ( 0.017 b 0.332 ( 0.017 b0.444 ( 0.011 b 0.304 ( 0.009 b 0.439 ( 0.010 b 0.398 ( 0.017 b 0.315 ( 0.015 b0.448 ( 0.011 b 0.308 ( 0.009 b 0.442 ( 0.012 b 0.390 ( 0.016 b 0.341 ( 0.013 b(0.445 ( 0.013) (0.306 ( 0.009) (0.440 ( 0.011) (0.395 ( 0.017) (0.329 ( 0.015)NMR distance (nm) 0.435 ( 0.015 c 0.283 ( 0.015 c NA 0.405 ( 0.025 c 0.295 ( 0.025 creference 64 64 52 52aAverages <strong>of</strong> a set <strong>of</strong> three MDs <strong>of</strong> <strong>the</strong> same duration. b Standard deviation <strong>of</strong> <strong>the</strong> fluctuations dur<strong>in</strong>g <strong>the</strong> 10-ns MD. c Experimental error.bonds <strong>in</strong> <strong>the</strong> polyene cha<strong>in</strong> were set with <strong>the</strong> standard valuesused for double bonds to give <strong>the</strong> model <strong>the</strong> rigidity requiredto reproduce accurately <strong>in</strong>formation derived from <strong>the</strong> experiment[i.e., <strong>in</strong>teratomic distances measured by solid-stateNMR (51)]. This parametrization gave a model for <strong>the</strong>chromophore that reproduces reasonably well <strong>the</strong> structural<strong>in</strong>formation available (39, 51, 52).Rotational resonance solid-state NMR was used fordistance determ<strong>in</strong>ations with<strong>in</strong> <strong>the</strong> rhodops<strong>in</strong>-bound chromophore<strong>in</strong> membranes for <strong>the</strong> dark-adapted state andmetarhodops<strong>in</strong> I (51, 64) (Tables 1 and 2). <strong>From</strong> <strong>the</strong>sedistances, it was shown that <strong>the</strong> C10-C13 unit is conformationallytwisted (64). Rotational resonance solid-stateNMR was also used to provide distance restra<strong>in</strong>ts regard<strong>in</strong>g<strong>the</strong> relative orientation between <strong>the</strong> β-ionone r<strong>in</strong>g and <strong>the</strong>polyene cha<strong>in</strong> <strong>of</strong> <strong>the</strong> chromophore <strong>in</strong> rhodops<strong>in</strong> (51). Thedistances measured between C8-C16, C8-C17, and C8-C18 show that <strong>the</strong> major portion <strong>of</strong> ret<strong>in</strong>ylidene <strong>in</strong> rhodops<strong>in</strong>has a twisted 6-s-cis conformation (51).One <strong>of</strong> <strong>the</strong> goals <strong>of</strong> this study was to implement anaccurate ret<strong>in</strong>al model to be used for MD simulations <strong>of</strong>bov<strong>in</strong>e rhodops<strong>in</strong> <strong>in</strong> <strong>the</strong> dark-adapted state. For this purpose,<strong>the</strong> distance restra<strong>in</strong>ts def<strong>in</strong>ed by solid-state NMR constitutean important block <strong>of</strong> experimentally derived structural<strong>in</strong>formation. Table 1 <strong>in</strong>clude <strong>the</strong> averages for <strong>the</strong> correspond<strong>in</strong>gdistances as computed from our <strong>the</strong>oretical model,while Figure 4A displays <strong>the</strong> <strong>in</strong>stantaneous distance as afunction <strong>of</strong> <strong>the</strong> simulation time. The comparison shows goodagreement between <strong>the</strong> model and <strong>the</strong> experimental data fromboth NMR and X-ray (Table 1). A fur<strong>the</strong>r comparison withNMR data shows only one distance that is 0.012 nm atvariance with <strong>the</strong> simulation from <strong>the</strong> error range <strong>of</strong> <strong>the</strong> NMRdeterm<strong>in</strong>ation. Table 3 and Figure 5 show an analogouscomparison <strong>of</strong> <strong>the</strong> MD-derived model for selected dihedralangles, show<strong>in</strong>g a close agreement between <strong>the</strong> model andNMR-derived distances (note that <strong>the</strong> temperature between<strong>the</strong> experiment and simulation differs by 70 K). The averageddistances are also fluctuat<strong>in</strong>g and are close to <strong>the</strong> valuesdef<strong>in</strong>ed by <strong>the</strong> DFT-derived 6-s-cis conformer (48).FIGURE 4: Illustration <strong>of</strong> <strong>in</strong>tramolecular distances with<strong>in</strong> ret<strong>in</strong>al,experimentally measured by solid-state NMR <strong>in</strong> <strong>the</strong> dark-adaptedstate and <strong>in</strong> metarhodops<strong>in</strong> I: C10-C20 (black), C11-C20 (red),C8-C16 (blue), C8-C17 (fuchsia), and C8-C18 (green). (A) 10-ns MD <strong>in</strong> <strong>the</strong> dark-adapted state. (B) Example <strong>of</strong> a 10-ns MD, where<strong>the</strong> isomerization <strong>of</strong> ret<strong>in</strong>al is <strong>in</strong>itiated at time ) 0 ps (500-ps MD<strong>in</strong> <strong>the</strong> dark-adapted state was run previously). (C) Same as B witha simulation time <strong>of</strong> 5 ps.While sett<strong>in</strong>g-up a model for ret<strong>in</strong>al permits a moreaccurate description <strong>of</strong> a crucial fragment <strong>of</strong> rhodops<strong>in</strong> for


12672 Biochemistry, Vol. 44, No. 38, 2005 Lemaître et al.Table 3: Dihedral Angles for Selected Bonds for <strong>Ret<strong>in</strong>al</strong> <strong>in</strong> <strong>the</strong> Dark-Adapted State, Determ<strong>in</strong>ed by MD, DFT, and NMR at 210 Kdihedral angle MD average a DFT NMR X-rayC5-C6-C7-C8 -39 ( 9° b -35° -28 ( 7° c,d (51) 38( 3° eC10-C11-C12-C13 -20 ( 11° b -12° (44 ( 10° c,d (64) -31 ( 1° eC8-C9-C10-C11 166 ( 11° b 175° 160 ( 10° c (76) -176 ( 0.3° eC13-C14-C15-NZ 180 ( 15° b 173° 165 ( 5° c (77) 172 ( 10° eaAverages <strong>of</strong> a set <strong>of</strong> three MDs <strong>of</strong> <strong>the</strong> same duration. b Standard deviation <strong>of</strong> <strong>the</strong> fluctuations dur<strong>in</strong>g <strong>the</strong> MD. c Experimental error. d NMRbasedestimations are based on <strong>the</strong> 11-cis-ret<strong>in</strong>al crystal structure for which <strong>the</strong> bond angle was rotated to match 13 C- 13 C rotational resonancedistances. e Average ( standard deviation on cha<strong>in</strong>s A and B.FIGURE 6: RMSF for ret<strong>in</strong>al, illustrat<strong>in</strong>g <strong>the</strong> <strong>in</strong>creased vibrationsat <strong>the</strong> level <strong>of</strong> selected parts <strong>of</strong> ret<strong>in</strong>al after isomerization (black,dark-adapted state; red, after isomerization). Atoms 3-5 from <strong>the</strong>β-ionone r<strong>in</strong>g (<strong>in</strong> contact with helix V) and all methyl groups (atoms16-20) show a visible <strong>in</strong>crease <strong>of</strong> <strong>the</strong>ir correspond<strong>in</strong>g RMSF uponisomerization.FIGURE 5: Dihedral angle C5-C6-C7-C8 (black) and C10-C11-C12-C13 (red) for (A) ret<strong>in</strong>al bound to rhodops<strong>in</strong> <strong>in</strong> <strong>the</strong> darkadaptedstate, (B) 10-ns MD describ<strong>in</strong>g <strong>the</strong> isomerization <strong>of</strong> ret<strong>in</strong>alafter 500-ps MD <strong>in</strong> <strong>the</strong> dark-adapted state, and (C) 5-ps MDdescrib<strong>in</strong>g <strong>the</strong> isomerization <strong>of</strong> ret<strong>in</strong>al after 500-ps MD <strong>in</strong> <strong>the</strong> darkadaptedstate.MD, it also allows a more accurate <strong>in</strong>vestigation <strong>of</strong> <strong>the</strong>dynamics <strong>of</strong> <strong>the</strong> chromophore <strong>in</strong> its b<strong>in</strong>d<strong>in</strong>g-pocket and canbe applied for <strong>the</strong> fur<strong>the</strong>r <strong>in</strong>vestigation <strong>of</strong> rhodops<strong>in</strong> mutants<strong>in</strong> <strong>the</strong> dark-adapted state.Various parameters are useful for characteriz<strong>in</strong>g <strong>the</strong>dynamics <strong>of</strong> <strong>the</strong> ret<strong>in</strong>al model <strong>in</strong> <strong>the</strong> dark-adapted state. TheRMSF is one <strong>of</strong> <strong>the</strong>m (Figure 6), highlight<strong>in</strong>g among o<strong>the</strong>rth<strong>in</strong>gs that <strong>the</strong> methyl groups are <strong>the</strong> most mobile parts <strong>of</strong><strong>the</strong> chromophore and that both C11 and C12 are <strong>the</strong> atomswith<strong>in</strong> <strong>the</strong> polyene cha<strong>in</strong> that fluctuate <strong>the</strong> most around <strong>the</strong>iraverage location. The standard deviations <strong>of</strong> various averaged<strong>in</strong>teratomic distances and dihedral angles are also good <strong>in</strong>dicators<strong>of</strong> <strong>the</strong> ret<strong>in</strong>al dynamics. For <strong>the</strong> model <strong>in</strong> <strong>the</strong> darkadaptedstate, <strong>the</strong> standard deviations for <strong>the</strong> distance betweennondirectly bonded atoms, e.g., C8-C18 (Table 1), werebelow 0.02 nm. At <strong>the</strong> same time, dihedral angles exhibit astandard deviation around 10°, which can significantly affect<strong>the</strong> local geometry <strong>of</strong> <strong>the</strong> molecules. This model sets <strong>the</strong>picture <strong>of</strong> ret<strong>in</strong>al as a ra<strong>the</strong>r twisted and flexible molecule,while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g some <strong>in</strong>teratomic distances relativelyfixed (fluctuations are less than 5% <strong>of</strong> <strong>the</strong> average value,Table 1).The RMSD computed for <strong>the</strong> lys<strong>in</strong>e-bound ret<strong>in</strong>al (Figure7A, black) fluctuates around 0.08 nm, which is even lowerthan <strong>the</strong> average RMSD for <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g pocket (Figure 3A).rmsd computed for various fragments shows that most <strong>of</strong><strong>the</strong> deviation from <strong>the</strong> structure <strong>of</strong> <strong>the</strong> reference [ret<strong>in</strong>alconformer derived by DFT (48)] occurs <strong>in</strong> <strong>the</strong> polyene cha<strong>in</strong>(Figure 7A, blue), while <strong>the</strong> deformation <strong>of</strong> <strong>the</strong> r<strong>in</strong>g geometryis less affected, with <strong>the</strong> exception <strong>of</strong> <strong>the</strong> methyl groupspresent on <strong>the</strong> r<strong>in</strong>g (RMSF, Figure 6, black).Transition from 11-cis to All-trans-ret<strong>in</strong>al. The isomerization<strong>of</strong> ret<strong>in</strong>al has been studied <strong>in</strong> two groups <strong>of</strong> short5-ps MDs and long 10-ns MDs, each conta<strong>in</strong><strong>in</strong>g threesimulations start<strong>in</strong>g from a different start<strong>in</strong>g po<strong>in</strong>t. Thestart<strong>in</strong>g po<strong>in</strong>t for each <strong>of</strong> <strong>the</strong> MDs was taken from <strong>the</strong> 10-nsMD <strong>of</strong> rhodops<strong>in</strong> <strong>in</strong> <strong>the</strong> dark-adapted state respectively attime 500, 1000, and 1500 ps (Figure 2).The choice <strong>of</strong> two time-scales results from a technicalcompromise: to follow accurately <strong>the</strong> isomerization <strong>of</strong> ret<strong>in</strong>alat <strong>the</strong> femto- to picosecond level, <strong>the</strong> output <strong>of</strong> a large


MD <strong>Simulations</strong> <strong>of</strong> <strong>Ret<strong>in</strong>al</strong> <strong>in</strong> Rhodops<strong>in</strong> Biochemistry, Vol. 44, No. 38, 2005 12673Table 4: Dihedral Angles for Selected Bonds for <strong>Ret<strong>in</strong>al</strong> after <strong>the</strong>Isomerization, Determ<strong>in</strong>ed by 10-ns MD with<strong>in</strong> 2 ns after <strong>the</strong>Isomerization <strong>of</strong> <strong>Ret<strong>in</strong>al</strong> at 300 K, and NMR for <strong>Ret<strong>in</strong>al</strong> <strong>in</strong>Metarhodops<strong>in</strong> I at 210 Kdihedral angle MD average a NMRC5-C6-C7-C8 -38 ( 9° b -28 ( 7° c,d-36 ( 9° b-38 ( 9° b(37 ( 9°)C10-C11-C12-C13 -157 ( 12° b NA-162 ( 12° b-159 ( 12° b(159 ( 12°) bC9-C10-C11-C12 176 ( 13° b 180 ( 15° c171 ( 16° b175 ( 11° b(174 ( 14°)aAverages <strong>of</strong> a set <strong>of</strong> three MDs <strong>of</strong> <strong>the</strong> same duration. b Standarddeviation <strong>of</strong> <strong>the</strong> fluctuations dur<strong>in</strong>g <strong>the</strong> MD. c Experimental error.dNMR-based estimations are based on <strong>the</strong> 11-cis-ret<strong>in</strong>al crystal structurefor which <strong>the</strong> bond angle was rotated to match 13 C- 13 C rotationalresonance distances.FIGURE 7: RMSD for <strong>the</strong> lys<strong>in</strong>e-bound ret<strong>in</strong>al (black) and fragments<strong>of</strong> <strong>the</strong> ret<strong>in</strong>al-β-ionone r<strong>in</strong>g (red), β-ionone r<strong>in</strong>g and C7-C8(green), and polyene tail (blue). (A) Dark-adapted state. (B) 10 nsafter isomerization <strong>of</strong> ret<strong>in</strong>al after 500-ps MD <strong>in</strong> <strong>the</strong> dark-adaptedstate. (C) First 5 ps after isomerization <strong>of</strong> ret<strong>in</strong>al, after 500-ps MD<strong>in</strong> <strong>the</strong> dark-adapted state.number <strong>of</strong> frames with a very short time step is required(time step ) 1 fs, frame saved every calculation step). Thisapproach is not practicable for larger simulations, with <strong>the</strong>space for stor<strong>in</strong>g <strong>the</strong> data and <strong>the</strong> RAM memory requiredfor <strong>the</strong> analysis be<strong>in</strong>g prohibitive. As a result, <strong>the</strong>se longtermMDs use a slightly different setup (time step ) 2 fs,frame saved every 500 calculation steps) to explore longersimulation times at <strong>the</strong> expense <strong>of</strong> time resolution.The isomerization was <strong>in</strong>duced by switch<strong>in</strong>g <strong>the</strong> potentialfunction describ<strong>in</strong>g <strong>the</strong> dihedral <strong>in</strong>teraction for <strong>the</strong> 11-cisbond. This approach has been described <strong>in</strong> detail <strong>in</strong> previousreports (43, 69). The force field used can be expected to<strong>in</strong>clude fully <strong>the</strong> essential steric and electrostatic effects.However, it has some limitations. One <strong>of</strong> <strong>the</strong>m is <strong>the</strong> use <strong>of</strong>united pseudoatoms for aliphatic apolar hydrogen atoms,which are not explicitly described. A consequence <strong>of</strong> thisapproach is to attenuate <strong>the</strong> distribution <strong>of</strong> partial chargeson <strong>the</strong> atoms. As previous studies have shown that <strong>the</strong>changes <strong>in</strong> <strong>the</strong> partial charges upon isomerization are ra<strong>the</strong>rsmall, with a maximum <strong>of</strong> 0.1 e between <strong>the</strong> 11-cis to <strong>the</strong>all-trans (43), <strong>the</strong> same partial charges were used to describeret<strong>in</strong>al <strong>in</strong> <strong>the</strong> dark-adapted and photoactivated states.A comparison <strong>of</strong> <strong>the</strong> rmsd curves for rhodops<strong>in</strong> (Figure3A) shows that <strong>the</strong> isomerization <strong>of</strong> ret<strong>in</strong>al leads <strong>the</strong> prote<strong>in</strong>on a different path dur<strong>in</strong>g <strong>the</strong> MD from <strong>the</strong> one followed <strong>in</strong><strong>the</strong> dark-adapted state (note that <strong>the</strong> reference for all rmsdcurves is <strong>the</strong> same: <strong>the</strong> conformation <strong>of</strong> <strong>the</strong> prote<strong>in</strong> at time) 0 <strong>of</strong> <strong>the</strong> MD simulation <strong>in</strong> <strong>the</strong> dark-adapted state). <strong>From</strong><strong>the</strong> RMSF plot, most <strong>of</strong> <strong>the</strong> motions tak<strong>in</strong>g place <strong>in</strong> <strong>the</strong>prote<strong>in</strong> are located near <strong>the</strong> loops (data not shown), <strong>in</strong>particular, <strong>the</strong> <strong>in</strong>tracellular loops and <strong>the</strong> C-term<strong>in</strong>al doma<strong>in</strong><strong>of</strong> <strong>the</strong> prote<strong>in</strong>, <strong>in</strong> a scheme similar to <strong>the</strong> dark-adapted statesimulation.The results presented here illustrate <strong>the</strong> path followed by<strong>the</strong> molecular model <strong>of</strong> ret<strong>in</strong>al upon isomerization. Theresults strongly suggest that <strong>the</strong> followed path depends onboth start<strong>in</strong>g coord<strong>in</strong>ates and velocities <strong>of</strong> <strong>the</strong> ret<strong>in</strong>al. Onlya few <strong>of</strong> <strong>the</strong> many available paths have been followed for arelatively short time; <strong>the</strong>refore, this analysis cannot beexhaustive but should ra<strong>the</strong>r be <strong>in</strong>terpreted semiquantitatively.<strong>Dynamics</strong> <strong>of</strong> <strong>the</strong> Isomerization and Pattern <strong>of</strong> ActiVation.The isomerization <strong>of</strong> <strong>the</strong> model was followed by monitor<strong>in</strong>g<strong>the</strong> dihedral angle <strong>of</strong> <strong>the</strong> C10-C11-C12-C13 bond as afunction <strong>of</strong> time (Figure 5C for a detailed description <strong>of</strong> <strong>the</strong>first 5 ps and Table 4). <strong>From</strong> <strong>the</strong> three 5-ps MDs, <strong>the</strong>isomerization <strong>of</strong> <strong>the</strong> chromophore starts with<strong>in</strong> 50 fs after<strong>the</strong> isomerization is <strong>in</strong>itiated and takes about 150-200 fsdepend<strong>in</strong>g on <strong>the</strong> start<strong>in</strong>g conformation for <strong>the</strong> ret<strong>in</strong>al toisomerize around <strong>the</strong> C11-C12 bond <strong>in</strong> close agreement withspectroscopic experiments (15). In addition, <strong>the</strong> differentconformations generated by each <strong>of</strong> <strong>the</strong> MD simulations wereclustered us<strong>in</strong>g a full l<strong>in</strong>kage algorithm (and a cut<strong>of</strong>f <strong>of</strong> 0.007nm, Figure 8). This type <strong>of</strong> analysis simplifies <strong>the</strong> visualization<strong>of</strong> <strong>the</strong> conformation changes with<strong>in</strong> ret<strong>in</strong>al and identifies<strong>in</strong> all three simulations a short-lived cluster with a lifetime<strong>of</strong> about 50-800 fs (range derived from <strong>the</strong> three MDs),where <strong>the</strong> C11-C12 bond has been isomerized without <strong>the</strong>rest <strong>of</strong> <strong>the</strong> polyene cha<strong>in</strong> hav<strong>in</strong>g <strong>the</strong> time to rearrange. <strong>From</strong><strong>the</strong> time scale and <strong>the</strong> nature <strong>of</strong> <strong>the</strong> conformational change,it is tempt<strong>in</strong>g to associate <strong>the</strong>se clusters with <strong>the</strong> photor-


12676 Biochemistry, Vol. 44, No. 38, 2005 Lemaître et al.FIGURE 11: (A) Illustration <strong>of</strong> <strong>the</strong> stability <strong>of</strong> <strong>the</strong> <strong>in</strong>teraction between<strong>the</strong> protonated Schiff base and <strong>the</strong> counterion (Glu113), both <strong>in</strong><strong>the</strong> dark-adapted state (black; average ) 0.172 ( 0.012 nm) and<strong>in</strong> <strong>the</strong> early stage <strong>of</strong> <strong>the</strong> activation (red; average ) 0.172 ( 0.014nm). (B1) Distance between β-ionone r<strong>in</strong>g and selected residuesfrom <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g pocket (carbon-carbon distance only): M207-r<strong>in</strong>g (green; average ) 0.372 ( 0.024 nm), F208-r<strong>in</strong>g (black;average ) 0.352 ( 0.039 nm), F212-r<strong>in</strong>g (red; average ) 0.336( 0.030 nm), and W265-r<strong>in</strong>g (blue; average ) 0.330 ( 0.027nm). The <strong>in</strong>creased fluctuation <strong>in</strong> <strong>the</strong>se distances upon isomerization(B2) illustrates <strong>the</strong> <strong>in</strong>creased level <strong>of</strong> vibration <strong>of</strong> <strong>the</strong> r<strong>in</strong>g afterisomerization (left, dark-adapted state; right, after isomerization):M207-r<strong>in</strong>g (green; average ) 0.372 ( 0.026 nm), F208-r<strong>in</strong>g(black; average ) 0.373 ( 0.064 nm), F212-r<strong>in</strong>g (red; average )0.322 ( 0.034 nm), and W265-r<strong>in</strong>g (blue; average ) 0.350 (0.040 nm).prote<strong>in</strong> that would arise from photoisomerization <strong>of</strong> ret<strong>in</strong>al.The RMSD and RMSF plots po<strong>in</strong>t at various small alterations<strong>in</strong> <strong>the</strong> conformation <strong>of</strong> <strong>the</strong> prote<strong>in</strong> dur<strong>in</strong>g <strong>the</strong> MD simulationsafter <strong>in</strong>itiation <strong>of</strong> <strong>the</strong> isomerization. Never<strong>the</strong>less, <strong>the</strong>sechanges, which can account for changes <strong>in</strong> <strong>the</strong> tilt angles <strong>of</strong><strong>the</strong> TM helices by a few degrees (data not shown) aredifficult to <strong>in</strong>terpret, because <strong>the</strong>y are not consistentlyobserved along <strong>the</strong> three simulations and not very differentfrom <strong>the</strong> fluctuations observed for MD simulations <strong>in</strong> <strong>the</strong>dark-adapted state. Longer simulation with a time scale <strong>of</strong> afew 100 ns would be required to <strong>in</strong>vestigate <strong>the</strong>se conformationalchanges more thoroughly.Simulat<strong>in</strong>g All-trans-ret<strong>in</strong>al <strong>in</strong> <strong>the</strong> Early Stages <strong>of</strong> <strong>the</strong>ActiVation <strong>of</strong> Rhodops<strong>in</strong>. In <strong>the</strong> metarhodops<strong>in</strong> I state, <strong>the</strong>C10-C20 distance <strong>in</strong>creases by more than 0.13 nm uponactivation, whereas <strong>the</strong> C11-C20 rema<strong>in</strong>s almost unchanged(64). In <strong>the</strong> same photo<strong>in</strong>termediate, <strong>the</strong> distance measuredby rotational resonance (52) and <strong>the</strong> observation <strong>of</strong> 13 Cchemical shift <strong>in</strong>troduced <strong>in</strong>to <strong>the</strong> β-ionone r<strong>in</strong>g (52) (at <strong>the</strong>C16, C17, and C18 methyl groups) and <strong>in</strong>to <strong>the</strong> adjo<strong>in</strong><strong>in</strong>gsegment <strong>of</strong> <strong>the</strong> polyene cha<strong>in</strong> (at C8) suggest that <strong>the</strong>orientation <strong>of</strong> <strong>the</strong> r<strong>in</strong>g rema<strong>in</strong>s unchanged upon isomerization.The only significant chemical-shift change that couldbe detected for <strong>the</strong> r<strong>in</strong>g methyl groups on photoactivationwas <strong>in</strong> <strong>the</strong> C18 resonance, which <strong>in</strong>creased from 22.1 to 22.5ppm (52). The large splitt<strong>in</strong>g between C16 and C17 (-4.3ppm) describes <strong>the</strong> unique orientation <strong>of</strong> <strong>the</strong>se gem<strong>in</strong>almethyl groups <strong>in</strong> rhodops<strong>in</strong> (51), and its retention onphotoactivation is important for <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong>mechanism <strong>of</strong> activation (52).The comparison between computed and measured distanceswas not straightforward because, on average, anevolution <strong>of</strong> a few milliseconds is required for <strong>the</strong> chromophoreto reach metarhodops<strong>in</strong> I after isomerization.However, <strong>the</strong>se values constitute a valuable po<strong>in</strong>t <strong>of</strong> comparisonfor <strong>the</strong> distorted all-trans-ret<strong>in</strong>al simulated <strong>in</strong> <strong>the</strong>early stage after isomerization and highlight two po<strong>in</strong>ts. First,<strong>the</strong> C11-C20 distance is very close to <strong>the</strong> value measured<strong>in</strong> <strong>the</strong> metarhodops<strong>in</strong> I, as a result <strong>of</strong> <strong>the</strong> rotation <strong>of</strong> <strong>the</strong> C20methyl group follow<strong>in</strong>g <strong>the</strong> isomerization. Second, <strong>the</strong>agreement with <strong>the</strong> <strong>in</strong>teratomic distances measured near <strong>the</strong>r<strong>in</strong>g is less strik<strong>in</strong>g, ma<strong>in</strong>ly because <strong>of</strong> <strong>the</strong> 0.02-0.03 nmdeviation from <strong>the</strong> C8-C18 distance as measured by NMR.The fluctuations result directly from <strong>the</strong> isomerization <strong>of</strong> <strong>the</strong>ret<strong>in</strong>al and <strong>the</strong> stress that it <strong>in</strong>duces on <strong>the</strong> chromophore andare likely to persist until <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g pocket has accommodated<strong>the</strong> all-trans-ret<strong>in</strong>al (i.e., lumirhodops<strong>in</strong>).The slight <strong>in</strong>crease <strong>of</strong> <strong>the</strong> C8-C18 distance was alsoaccompanied by r<strong>in</strong>g fluctuations, result<strong>in</strong>g <strong>in</strong> transientreorientation <strong>of</strong> methyl C18 away from Trp265. While <strong>the</strong>r<strong>in</strong>g oscillates between its <strong>in</strong>itial orientation and its neworientation, where methyl C18 is rotated away from Trp265,it cannot be <strong>in</strong>terpreted as <strong>the</strong> β-ionone r<strong>in</strong>g mov<strong>in</strong>g awayfrom <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g pocket, as shown <strong>in</strong> Figure 11, where <strong>the</strong>average distance between <strong>the</strong> r<strong>in</strong>g and <strong>the</strong> aromatic b<strong>in</strong>d<strong>in</strong>gpocket rema<strong>in</strong>s constant. Only <strong>the</strong> standard deviations<strong>in</strong>crease. The amplitude <strong>of</strong> <strong>the</strong> fluctuation seems too smallto prevent <strong>the</strong> r<strong>in</strong>g from recover<strong>in</strong>g its <strong>in</strong>itial orientation lateronce <strong>the</strong> ret<strong>in</strong>al has relaxed.Mechanism <strong>of</strong> ActiVation. In this present <strong>the</strong>oretical study,it is suggested that <strong>the</strong> early stages <strong>of</strong> <strong>the</strong> activation <strong>of</strong>rhodops<strong>in</strong> are localized ma<strong>in</strong>ly on ret<strong>in</strong>al, where a series <strong>of</strong>conformational changes occur <strong>in</strong> a sequential manner,spread<strong>in</strong>g away from <strong>the</strong> isomerized bond (Figure 9B). First,<strong>the</strong> isomerization <strong>of</strong> <strong>the</strong> C11dC12 bond occurs with<strong>in</strong> a fewhundred femtoseconds. A recent hybrid quantum mechanical/molecular mechanical approach revealed significant rmsd<strong>in</strong>creases for <strong>the</strong> polyene cha<strong>in</strong> <strong>in</strong> <strong>the</strong> first 300 fs, with whichour study agrees. However, this study was performed <strong>in</strong> amembrane mimetic (octanol <strong>in</strong> water) ra<strong>the</strong>r than <strong>in</strong> a lipidbilayer (60).The rotation <strong>of</strong> methyl group C20 relative to Trp265 wasobserved with<strong>in</strong> 1-2 ps (Figure 9B). These highly localizedchanges are <strong>the</strong>n followed by <strong>in</strong>creased fluctuations at <strong>the</strong>level <strong>of</strong> <strong>the</strong> whole ret<strong>in</strong>al, ma<strong>in</strong>ly localized on <strong>the</strong> methylgroups and <strong>the</strong> β-ionone r<strong>in</strong>g. These fluctuations, largelylocalized on <strong>the</strong> methyl groups and <strong>the</strong> β-ionone r<strong>in</strong>g, disturb<strong>the</strong> orientation <strong>of</strong> <strong>the</strong> r<strong>in</strong>g and its position relative to helixV and VI (Table 6), as well with <strong>the</strong> surround<strong>in</strong>g aromaticresidues (Figure 11). The amplitude <strong>of</strong> <strong>the</strong>se changes istenuous and <strong>in</strong>volves changes <strong>in</strong> <strong>the</strong> r<strong>in</strong>g that are <strong>in</strong> terms<strong>of</strong> a few hundredths <strong>of</strong> nanometers and cannot be <strong>in</strong>terpretedas <strong>the</strong> r<strong>in</strong>g mov<strong>in</strong>g away from <strong>the</strong> aromatic b<strong>in</strong>d<strong>in</strong>g pocket.The data here suggests that <strong>the</strong> 11-cis bond relaxes quicklyafter isomerization (C11 and C12 are slightly less mobileafter isomerization accord<strong>in</strong>g to RMSF, Figure 6), transferr<strong>in</strong>g<strong>the</strong> mechanical stress to ano<strong>the</strong>r part <strong>of</strong> <strong>the</strong> ret<strong>in</strong>al <strong>in</strong> asequential way, start<strong>in</strong>g at <strong>the</strong> 11-cis bond and spread<strong>in</strong>gaway from <strong>the</strong> epicenter <strong>of</strong> <strong>the</strong> isomerization. The simulationssuggest that <strong>the</strong> β-ionone r<strong>in</strong>g plays an important role <strong>in</strong> <strong>the</strong>


MD <strong>Simulations</strong> <strong>of</strong> <strong>Ret<strong>in</strong>al</strong> <strong>in</strong> Rhodops<strong>in</strong> Biochemistry, Vol. 44, No. 38, 2005 12677Table 6: Distance between <strong>the</strong> β-Ionone R<strong>in</strong>g and NeighborHelices adark-adaptedstateafterisomerization br<strong>in</strong>g-helix V (nm) 0.322 ( 0.026 0.312 ( 0.0280.311 ( 0.0260.317 ( 0.029r<strong>in</strong>g-helix VI (nm) 0.293 ( 0.021 0.308 ( 0.0280.318 ( 0.0320.308 ( 0.029aWith<strong>in</strong> 10 ns after isomerization, <strong>the</strong> β-ionone r<strong>in</strong>g only shows aslight move toward helix V, away from helix VI. b Averages <strong>of</strong> a set<strong>of</strong> three MDs <strong>of</strong> <strong>the</strong> same duration.change <strong>of</strong> <strong>the</strong> prote<strong>in</strong> state through <strong>the</strong> <strong>in</strong>creased fluctuations<strong>in</strong> its orientation compared to <strong>the</strong> dark-adapted state and <strong>the</strong>slight <strong>in</strong>crease <strong>of</strong> <strong>the</strong> contact made with helix V (alignedwith <strong>the</strong> polyene cha<strong>in</strong>). Recently, helix V has been suggestedto play an important role <strong>in</strong> <strong>the</strong> activation <strong>of</strong> rhodops<strong>in</strong> (53).The simulations seem to show <strong>the</strong> <strong>in</strong>creased <strong>in</strong>teractionsbetween ret<strong>in</strong>al and helix V as part <strong>of</strong> a mechanism throughwhich <strong>the</strong> ret<strong>in</strong>al transfers <strong>the</strong> signal to <strong>the</strong> prote<strong>in</strong>. The saltbridge with Glu113 at <strong>the</strong> o<strong>the</strong>r extreme <strong>of</strong> <strong>the</strong> chromophoreanchors <strong>the</strong> r<strong>in</strong>g solidly to helix III, at least dur<strong>in</strong>g <strong>the</strong> first10 ns <strong>of</strong> <strong>the</strong> activation (Figure 11). As a consequence, <strong>the</strong>only part <strong>of</strong> <strong>the</strong> ret<strong>in</strong>al allowed to move is its r<strong>in</strong>g, whichalso reflects a slightly less tight pack<strong>in</strong>g [it is known thatvarious ret<strong>in</strong>al conformers can be docked <strong>in</strong> this part <strong>of</strong> <strong>the</strong>b<strong>in</strong>d<strong>in</strong>g pocket (48, 71)].The 10-ns MDs suggest that <strong>the</strong> small fluctuations <strong>of</strong> <strong>the</strong>r<strong>in</strong>g could play a part <strong>in</strong> <strong>the</strong> process <strong>in</strong>itiat<strong>in</strong>g <strong>the</strong> activation<strong>of</strong> <strong>the</strong> receptor. L<strong>in</strong>ked with <strong>the</strong> fact <strong>the</strong> r<strong>in</strong>g is still be locatedat <strong>the</strong> same location <strong>in</strong> metarhodops<strong>in</strong> I (52), it would suggestthat <strong>the</strong> small oscillations <strong>of</strong> <strong>the</strong> r<strong>in</strong>g, which might berepeated over several hundred nanoseconds, could be enoughto trigger <strong>the</strong> activation <strong>of</strong> <strong>the</strong> prote<strong>in</strong>. This view is basedon recent advances <strong>in</strong> <strong>the</strong> description <strong>of</strong> noncovalent <strong>in</strong>teractions(ma<strong>in</strong>ly driven by atomic-force microscopy), wheresuch <strong>in</strong>teractions are described as hav<strong>in</strong>g limited lifetimesand could fail under any level <strong>of</strong> force if applied for <strong>the</strong>right length <strong>of</strong> time (72). Consequently, <strong>the</strong> role <strong>of</strong> ret<strong>in</strong>alwould be to apply a localized perturbation at <strong>the</strong> rightamplitude and time scale to <strong>in</strong>itiate <strong>the</strong> prote<strong>in</strong> activation.In such a model, ret<strong>in</strong>al does not need to move away fromits b<strong>in</strong>d<strong>in</strong>g pocket to achieve its activat<strong>in</strong>g task. The modelwould be compatible with both <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs that <strong>the</strong> orientation<strong>of</strong> <strong>the</strong> r<strong>in</strong>g is unchanged <strong>in</strong> <strong>the</strong> metarhodops<strong>in</strong> I (52)and <strong>the</strong> motions <strong>of</strong> <strong>the</strong> chromophore with<strong>in</strong> <strong>the</strong> b<strong>in</strong>d<strong>in</strong>gpocket as <strong>in</strong>terpreted from <strong>the</strong> comparison <strong>of</strong> distancerestra<strong>in</strong>ts between <strong>the</strong> chromophore and selectively labeledresidues between <strong>the</strong> dark-adapted state and metarhodops<strong>in</strong>II (53).The recent NMR study <strong>of</strong> metarhodops<strong>in</strong> II (53) suggeststhat <strong>the</strong> ret<strong>in</strong>al isomerization would disrupt helix <strong>in</strong>teractionslock<strong>in</strong>g <strong>the</strong> receptor <strong>of</strong>f <strong>in</strong> <strong>the</strong> dark state and propose amechanism <strong>of</strong> activation for rhodops<strong>in</strong>, highlight<strong>in</strong>g twoessential aspects <strong>of</strong> <strong>the</strong> isomerization trajectory suggestedfrom <strong>the</strong> ret<strong>in</strong>al-prote<strong>in</strong> contacts observed <strong>in</strong> <strong>the</strong> activemetarhodops<strong>in</strong> II <strong>in</strong>termediate. Those aspects <strong>in</strong>clude a largerotation <strong>of</strong> <strong>the</strong> C20 methyl group (g90°) toward extracellularloop 2 and a 0.4-0.5 nm translation <strong>of</strong> <strong>the</strong> ret<strong>in</strong>al chromophoretoward TM helix V. The MD simulations performedhere are compatible with this model and are precise when<strong>the</strong>se changes take place. The results show that C20 movesaway from <strong>the</strong> cytoplasmic face and rotates clockwise whenlook<strong>in</strong>g down <strong>the</strong> polyene from Trp265 toward <strong>the</strong> β-iononer<strong>in</strong>g. <strong>From</strong> <strong>the</strong> MD model, <strong>the</strong> rotation <strong>of</strong> <strong>the</strong> C20 methylgroup would happen <strong>in</strong> <strong>the</strong> first picoseconds, probably adist<strong>in</strong>ctive feature <strong>of</strong> metarhodops<strong>in</strong>, while <strong>the</strong> progressiveextension <strong>of</strong> <strong>the</strong> ret<strong>in</strong>al changes dur<strong>in</strong>g <strong>the</strong> first 10 ns (∼0.13nm) suggests that much more time is required for <strong>the</strong> motion<strong>of</strong> <strong>the</strong> chromophore, <strong>in</strong>terpreted as a 0.4-0.5 nm translationtoward helix V. <strong>From</strong> <strong>the</strong> simulations, fur<strong>the</strong>r extension <strong>of</strong><strong>the</strong> ret<strong>in</strong>al and translation motions <strong>of</strong> <strong>the</strong> polyene tail toward<strong>the</strong> position helix V <strong>in</strong> <strong>the</strong> dark-adapted state requiresmotions <strong>of</strong> helices V and VI (ei<strong>the</strong>r translation or a change<strong>in</strong> <strong>the</strong>ir orientations), to generate space for <strong>the</strong> chromophoreto move.R<strong>in</strong>g Flip. In this MD study, <strong>the</strong> β-ionone r<strong>in</strong>g rema<strong>in</strong>ed<strong>in</strong> <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g-pocket over <strong>the</strong> time scale explored, <strong>in</strong> aconformation very similar to <strong>the</strong> one observed <strong>in</strong> <strong>the</strong> darkadaptedstate <strong>in</strong> agreement with a recent NMR structuralstudy on bov<strong>in</strong>e rhodops<strong>in</strong> [dark-adapted state (51)]. It shouldbe noted that because <strong>of</strong> <strong>the</strong> length <strong>of</strong> <strong>the</strong> simulations, a r<strong>in</strong>gflip at a longer time cannot be ruled out solely on <strong>the</strong> basis<strong>of</strong> <strong>the</strong> MD results.The flip <strong>of</strong> <strong>the</strong> r<strong>in</strong>g upon activation proposed <strong>in</strong> a previousMD simulation study (43) was not observed with <strong>the</strong> modelused here for ret<strong>in</strong>al. The rigidity <strong>of</strong> <strong>the</strong> r<strong>in</strong>g compared tothis previous study (where <strong>the</strong> rotation <strong>of</strong> <strong>the</strong> r<strong>in</strong>g wasobserved) results from two factors: <strong>the</strong> conformation <strong>of</strong> <strong>the</strong>ret<strong>in</strong>al <strong>in</strong> <strong>the</strong> dark-adapted state differs slightly, and <strong>the</strong>treatment <strong>of</strong> <strong>the</strong> dihedral angles is different (i.e., <strong>in</strong>creas<strong>in</strong>g<strong>the</strong> rigidity <strong>of</strong> <strong>the</strong> polyene tail by <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> dihedral<strong>in</strong>teractions on <strong>the</strong>se bonds as if <strong>the</strong>y were as rigid as adouble bond). Clearly, <strong>the</strong> possibility for <strong>the</strong> r<strong>in</strong>g to flip isgoverned by <strong>the</strong> choice <strong>of</strong> one parameter for <strong>the</strong> potentialenergy function describ<strong>in</strong>g <strong>the</strong> C5dC6-C7dC8 (data notshown). For <strong>the</strong> chromophore model to fit experimental<strong>in</strong>formation available for <strong>the</strong> orientation <strong>of</strong> <strong>the</strong> r<strong>in</strong>g result<strong>in</strong>gfrom 13 C- 13 C distance measurement by solid-state NMR (51,52), all <strong>of</strong> <strong>the</strong> dihedral <strong>in</strong>teractions with<strong>in</strong> <strong>the</strong> polyene cha<strong>in</strong><strong>of</strong> ret<strong>in</strong>al were treated as double bonds, thus <strong>in</strong>creas<strong>in</strong>g <strong>the</strong>rigidity <strong>of</strong> <strong>the</strong> molecule and prevent<strong>in</strong>g <strong>the</strong> r<strong>in</strong>g flip. Thischoice is also justified by <strong>the</strong> bond length recently determ<strong>in</strong>edby X-ray (39) and solid-state NMR (65), where deviationsfrom ideal s<strong>in</strong>gle C-C bond and double CdC bond lengthsare observed, suggest<strong>in</strong>g bond order to be larger than 1 forall bonds <strong>in</strong> <strong>the</strong> polyene cha<strong>in</strong> (39, 65). This illustrates <strong>the</strong>difficulties for simulat<strong>in</strong>g a system <strong>in</strong> which <strong>the</strong> electronicdelocalization plays an important role.Limitations. It is recognized that <strong>the</strong>re are limitations tothis computational approach, and simplifications are made<strong>in</strong> <strong>the</strong> build<strong>in</strong>g <strong>of</strong> <strong>the</strong> model (especially when related toelectrostatic <strong>in</strong>teractions). There are <strong>in</strong>tr<strong>in</strong>sic limitations toMD simulations, which <strong>in</strong>clude <strong>the</strong> classical treatment <strong>of</strong> <strong>the</strong>system and a static attribution <strong>of</strong> <strong>the</strong> electronic charges to<strong>the</strong> nuclei. The o<strong>the</strong>r challenge <strong>in</strong>troduced by rhodops<strong>in</strong> forcomputational study is <strong>the</strong> large separation <strong>in</strong> time scalesbetween <strong>the</strong> steps <strong>in</strong> <strong>the</strong> photocycle <strong>of</strong> <strong>the</strong> prote<strong>in</strong> withrespect to <strong>the</strong> current limits <strong>in</strong> computer simulations <strong>of</strong> largeprote<strong>in</strong>s. While it takes a few milliseconds for <strong>the</strong> prote<strong>in</strong>to reach <strong>the</strong> activated state and much more time before <strong>the</strong>ret<strong>in</strong>al is regenerated (70), <strong>the</strong> state-<strong>of</strong>-<strong>the</strong>-art computer


12678 Biochemistry, Vol. 44, No. 38, 2005 Lemaître et al.simulation <strong>of</strong> <strong>the</strong> large prote<strong>in</strong> with an explicit solvent andmembrane description is still limited to 10-100 ns (44).Therefore, MD is not yet able to follow <strong>the</strong> activation <strong>of</strong> <strong>the</strong>receptor from <strong>the</strong> dark-adapted state to <strong>the</strong> active species <strong>of</strong>rhodops<strong>in</strong>, <strong>the</strong> so-called metarhodops<strong>in</strong> II, where <strong>the</strong> b<strong>in</strong>d<strong>in</strong>gand activation <strong>of</strong> <strong>the</strong> G-prote<strong>in</strong> transduc<strong>in</strong> (G t ) occurs (73-75). Ra<strong>the</strong>r, it is limited to <strong>the</strong> first photo<strong>in</strong>termediates, wheremost conformational changes take place on <strong>the</strong> chromophoreor its b<strong>in</strong>d<strong>in</strong>g pocket.CONCLUSIONSThe results presented here provide a cont<strong>in</strong>uation <strong>of</strong> <strong>the</strong>previous MD studies on ret<strong>in</strong>al <strong>in</strong> rhodops<strong>in</strong> (42, 43) <strong>in</strong><strong>the</strong>sense that <strong>the</strong> same method is applied with some ref<strong>in</strong>ement<strong>in</strong> <strong>the</strong> model for <strong>the</strong> chromophore as well as <strong>the</strong> prote<strong>in</strong>conformation (prote<strong>in</strong> model based on ref 38). The conformationand <strong>the</strong> molecular description for <strong>the</strong> chromophoreare based on a recent quantum study that describes most <strong>of</strong><strong>the</strong> structural <strong>in</strong>formation available for <strong>the</strong> dark-adapted state(48). The experimental data regard<strong>in</strong>g <strong>the</strong> conformation <strong>of</strong>ret<strong>in</strong>al were also made available recently. Fur<strong>the</strong>rmore, <strong>the</strong>prote<strong>in</strong> was modeled from a crystal structure with a resolution<strong>of</strong> 0.26 nm (1L9H) <strong>in</strong>clud<strong>in</strong>g functionally important watermolecules and is simulated <strong>in</strong> an explicit lipid bilayer.The ret<strong>in</strong>al model proposed here is based on recent DFTcalculations (48) that describe <strong>the</strong> dynamics <strong>of</strong> <strong>the</strong> boundchromophore and convergences to <strong>the</strong> experimental distanceconstra<strong>in</strong>ts (51, 52, 64). Extrapolation <strong>of</strong> this model to study<strong>the</strong> dynamics and conformation <strong>of</strong> <strong>the</strong> earliest photo<strong>in</strong>termediatesprovides a reasonable model for <strong>the</strong> activation <strong>of</strong>ret<strong>in</strong>al and suggests a possible path for <strong>the</strong> transfer <strong>of</strong> <strong>the</strong>signal to <strong>the</strong> prote<strong>in</strong>. Clear structural features are suggestedfor both photorhodops<strong>in</strong> and bathorhodops<strong>in</strong>. It is also foundthat, although several slightly different routes for structuralrelaxation are available, all <strong>of</strong> <strong>the</strong>m lead to similar conformationalchanges and that <strong>the</strong> order <strong>in</strong> which <strong>the</strong>y take placedef<strong>in</strong>es a fixed pattern. Immediately after isomerization, <strong>the</strong>chromophore is forced <strong>in</strong>to a highly stra<strong>in</strong>ed configurationwhere <strong>the</strong> deformation is localized to <strong>the</strong> isomerized bond,with <strong>the</strong> o<strong>the</strong>r part <strong>of</strong> ret<strong>in</strong>al be<strong>in</strong>g unchanged. The deformationis <strong>the</strong>n transmitted fur<strong>the</strong>r away to methyl group C20,which undergoes a large amplitude rotation, f<strong>in</strong>ally po<strong>in</strong>t<strong>in</strong>gtoward <strong>the</strong> extracellular loops. The perturbation <strong>the</strong>n reaches<strong>the</strong> r<strong>in</strong>g, where <strong>in</strong>creased vibrational fluctuations are observedupon isomerization <strong>of</strong> <strong>the</strong> 11-cis bond. The evolution<strong>of</strong> <strong>the</strong> chromophore <strong>in</strong> <strong>the</strong> multiple 10-ns MD simulationsshows how <strong>the</strong> structurally distorted ret<strong>in</strong>al relaxes towarda more planar geometry and suggests how <strong>the</strong> motion <strong>of</strong>ret<strong>in</strong>al can be coupled to <strong>the</strong> prote<strong>in</strong>, i.e., through slightly<strong>in</strong>creased vibrational activity <strong>of</strong> <strong>the</strong> r<strong>in</strong>g and a slightextension <strong>of</strong> ret<strong>in</strong>al mov<strong>in</strong>g <strong>in</strong>to closer contact with helixV. The geometric stra<strong>in</strong> is ma<strong>in</strong>ly released through asw<strong>in</strong>g<strong>in</strong>g motion <strong>of</strong> a fraction <strong>of</strong> <strong>the</strong> polyene tail, result<strong>in</strong>g<strong>in</strong> <strong>the</strong> rotation <strong>of</strong> methyl group C20. The protonated Schiffbase<strong>in</strong>teraction with Glu113 ma<strong>in</strong>ta<strong>in</strong>s this side <strong>of</strong> <strong>the</strong>chromophore ra<strong>the</strong>r fixed. Therefore, <strong>the</strong> perturbation generatedupon isomerization <strong>of</strong> <strong>the</strong> 11-cis bond seems to betransferred from <strong>the</strong> ret<strong>in</strong>al to <strong>the</strong> prote<strong>in</strong> by a subtlemechanism mediated through <strong>the</strong> β-ionone r<strong>in</strong>g, where itsvibrational activity ra<strong>the</strong>r than perturbation <strong>of</strong> its location.In contrast, <strong>the</strong> repetition <strong>of</strong> <strong>the</strong> isomerization from differentstart<strong>in</strong>g ret<strong>in</strong>al conformations does not allow <strong>the</strong> identification<strong>of</strong> a clear and def<strong>in</strong>ed pattern for <strong>the</strong> activation <strong>of</strong> <strong>the</strong>prote<strong>in</strong>, <strong>in</strong> agreement with <strong>the</strong> time scale required for <strong>the</strong>receptor activation (ms).ACKNOWLEDGMENTDr. M<strong>in</strong>oru Sugihara is thanked for provid<strong>in</strong>g <strong>in</strong>formationdescrib<strong>in</strong>g <strong>the</strong> DFT-derived 11-cis,6-s-cis-ret<strong>in</strong>al conformerpublished <strong>in</strong> 2002, and Dr. Paul Spooner is thanked for manydiscussions. Pr<strong>of</strong>. Peter Tieleman is thanked for mak<strong>in</strong>gavailable pre-equilibrated POPC bilayer. The BionanotechnologyIRC is acknowledged for consumables and comput<strong>in</strong>gsupport (through <strong>the</strong> OSC).SUPPORTING INFORMATION AVAILABLEBy convention, all <strong>of</strong> <strong>the</strong> figures illustrat<strong>in</strong>g <strong>the</strong> isomerization<strong>of</strong> ret<strong>in</strong>al start with <strong>the</strong> arbitrary time 0 ns, correspond<strong>in</strong>gto when <strong>the</strong> illum<strong>in</strong>ation takes place (and where<strong>the</strong> isomerization is started). This means <strong>the</strong> time frame is<strong>in</strong>dependent from <strong>the</strong> amount <strong>of</strong> time <strong>the</strong> prote<strong>in</strong> waspreviously simulated <strong>in</strong> <strong>the</strong> dark-adapted state. The advantage<strong>of</strong> this choice is to allow a direct comparison betweensimulations where ret<strong>in</strong>al is isomerized. Note that thisconvention was not followed for <strong>the</strong> figures <strong>in</strong>tend<strong>in</strong>g toshow a comparison between <strong>the</strong> prote<strong>in</strong> <strong>in</strong> <strong>the</strong> dark-adaptedstate and after isomerization (e.g., Figure 4). For thosefigures, <strong>the</strong> time frame used is <strong>the</strong> one correspond<strong>in</strong>g to <strong>the</strong>simulation <strong>in</strong> <strong>the</strong> dark-adapted state, where <strong>the</strong> start<strong>in</strong>g timefor <strong>the</strong> simulations where ret<strong>in</strong>al is isomerized is 500, 1000,and 1500 ps, respectively. Graphs <strong>of</strong> simulations withalternate start<strong>in</strong>g po<strong>in</strong>ts (ret<strong>in</strong>al isomerization after 1000- or1500-ps MD <strong>in</strong> <strong>the</strong> dark-adapted state), correspond<strong>in</strong>g toFigures 3, 4, 5, 7, 9, 11 <strong>in</strong> <strong>the</strong> paper. This material is availablefree <strong>of</strong> charge via <strong>the</strong> Internet at http://pubs.acs.org.REFERENCES1. Wald, G. (1968) The molecular basis <strong>of</strong> visual excitation, Nature219, 800-807.2. Sakmar, T. P. (1998) Rhodops<strong>in</strong>: A prototypical G prote<strong>in</strong>-coupledreceptor, Prog. Nucleic Acid Res. Mol. Biol. 59, 1-34.3. Okada, T., Ernst, O. P., Palczewski, K., and H<strong>of</strong>mann, K. P. (2001)Activation <strong>of</strong> rhodops<strong>in</strong>: New <strong>in</strong>sights from structural andbiochemical studies, Trends Biochem. Sci. 26, 318-324.4. Sakmar, T. P., Menon, S. T., Mar<strong>in</strong>, E. P., and Awad, E. S. (2002)Rhodops<strong>in</strong>: Insights from recent structural studies, Annu. ReV.Biophys. Biomol. Struct. 31, 443-484.5. Burns, M. E., and Baylor, D. A. (2001) Activation, deactivation,and adaptation <strong>in</strong> vertebrate photoreceptor cells, Annu. ReV.Neurosci. 24, 779-805.6. Hubbell, W. L., Altenbach, C., Hubbell, C. M., and Khorana, H.G. (2003) Rhodops<strong>in</strong> structure, dynamics, and activation: Aperspective from crystallography, site-directed sp<strong>in</strong> label<strong>in</strong>g,sulfhydryl reactivity, and disulfide cross-l<strong>in</strong>k<strong>in</strong>g, AdV. Prote<strong>in</strong>Chem. 63, 243-290.7. Albert, A. D., and Yeagle, P. L. (2002) Structural studies onrhodops<strong>in</strong>, Biochim. Biophys. Acta 1565, 183-195.8. Birge, R. R., E<strong>in</strong>terz, C. M., Knapp, H. M., and Murray, L. P.(1988) The nature <strong>of</strong> <strong>the</strong> primary photochemical events <strong>in</strong>rhodops<strong>in</strong> and isorhodops<strong>in</strong>, Biophys. J. 53, 367-385.9. Shichida, Y., and Imai, H. (1998) Visual pigment: G-prote<strong>in</strong>coupledreceptor for light signals, Cell Mol. Life Sci. 54, 1299-1315.10. Kliger, D. S., and Lewis, J. W. (1995) Spectral and k<strong>in</strong>eticcharacterization <strong>of</strong> visual pigment photo<strong>in</strong>termediates, Isr. J.Chem. 35, 289-307.11. Pan, D., and Mathies, R. A. (2001) Chromophore structure <strong>in</strong>lumirhodops<strong>in</strong> and metarhodops<strong>in</strong> I by time-resolved resonanceRaman microchip spectroscopy, Biochemistry 40, 7929-7936.


MD <strong>Simulations</strong> <strong>of</strong> <strong>Ret<strong>in</strong>al</strong> <strong>in</strong> Rhodops<strong>in</strong> Biochemistry, Vol. 44, No. 38, 2005 1267912. Kandori, H., Shichida, Y., and Yoshizawa, T. (2001) Photoisomerization<strong>in</strong> rhodops<strong>in</strong>, Biochemistry (Moscow) 66, 1197-1209.13. Schoenle<strong>in</strong>, R. W., Peteanu, L. A., Mathies, R. A., and Shank, C.V. (1991) The first step <strong>in</strong> vision: Femtosecond isomerization <strong>of</strong>rhodops<strong>in</strong>, Science 254, 412-415.14. Kandori, H., Shichida, Y., and Yoshizawa, T. (1989) Absoluteabsorption spectra <strong>of</strong> batho- and photorhodops<strong>in</strong>s at room temperature.Picosecond laser photolysis <strong>of</strong> rhodops<strong>in</strong> <strong>in</strong> polyacrylamide,Biophys. J. 56, 453-457.15. Mathies, R. A. (1999) Photons, femtoseconds, and dipolar <strong>in</strong>teractions:A molecular picture <strong>of</strong> <strong>the</strong> primary events <strong>in</strong> vision,NoVartis Found. Symp. 224, 70-84, discussion 84-101.16. Shieh, T., Han, M., Sakmar, T. P., and Smith, S. O. (1997) Thesteric trigger <strong>in</strong> rhodops<strong>in</strong> activation, J. Mol. Biol. 269, 373-384.17. Pal<strong>in</strong>gs, I., van den Berg, E. M., Lugtenburg, J., and Mathies, R.A. (1989) Complete assignment <strong>of</strong> <strong>the</strong> hydrogen out-<strong>of</strong>-planewagg<strong>in</strong>g vibrations <strong>of</strong> bathorhodops<strong>in</strong>: Chromophore structureand energy storage <strong>in</strong> <strong>the</strong> primary photoproduct <strong>of</strong> vision,Biochemistry 28, 1498-1507.18. Cooper, A. (1979) Energy uptake <strong>in</strong> <strong>the</strong> first step <strong>of</strong> visualexcitation, Nature 282, 531-533.19. Honig, B., Ebrey, T., Callender, R. H., D<strong>in</strong>ur, U., and Ottolenghi,M. (1979) Photoisomerization, energy storage, and charge separation:A model for light energy transduction <strong>in</strong> visual pigmentsand bacteriorhodops<strong>in</strong>, Proc. Natl. Acad. Sci. U.S.A. 76, 2503-2507.20. de Grip, W. J., Gray, D., Gillespie, J., Bovee, P. H., van den Berg,E. M., Lugtenburg, J., and Rothschild, K. J. (1988) Photoexcitation<strong>of</strong> rhodops<strong>in</strong>: Conformation changes <strong>in</strong> <strong>the</strong> chromophore, prote<strong>in</strong>,and associated lipids as determ<strong>in</strong>ed by FTIR difference spectroscopy,Photochem. Photobiol. 48, 497-504.21. Eyr<strong>in</strong>g, G., and Mathies, R. (1979) Resonance Raman studies <strong>of</strong>bathorhodops<strong>in</strong>: Evidence for a protonated Schiff base l<strong>in</strong>kage,Proc. Natl. Acad. Sci. U.S.A. 76, 33-37.22. Bagley, K. A., Balogh-Nair, V., Croteau, A. A., Doll<strong>in</strong>ger, G.,Ebrey, T. G., Eisenste<strong>in</strong>, L., Hong, M. K., Nakanishi, K., andVittitow, J. (1985) Fourier transform <strong>in</strong>frared difference spectroscopy<strong>of</strong> rhodops<strong>in</strong> and its photoproducts at low temperature,Biochemistry 24, 6055-6071.23. Deng, H., and Callender, R. H. (1987) A study <strong>of</strong> <strong>the</strong> Schiff basemode <strong>in</strong> bov<strong>in</strong>e rhodops<strong>in</strong> and bathorhodops<strong>in</strong>, Biochemistry 26,7418-7426.24. Smith, S. O., Court<strong>in</strong>, J., de Groot, H., Gebhard, R., andLugtenburg, J. (1991) 13 C magic-angle sp<strong>in</strong>n<strong>in</strong>g NMR studies <strong>of</strong>bathorhodops<strong>in</strong>, <strong>the</strong> primary photoproduct <strong>of</strong> rhodops<strong>in</strong>, Biochemistry30, 7409-7415.25. Popp, A., Ujj, L., and Atk<strong>in</strong>son, G. H. (1996) Bathorhodops<strong>in</strong>structure <strong>in</strong> <strong>the</strong> room-temperature rhodops<strong>in</strong> photosequence:Picosecond time-resolved coherent anti-Stokes Raman scatter<strong>in</strong>g,Proc. Natl. Acad. Sci. U.S.A. 93, 372-376.26. Marcus, M. A., and Lewis, A. (1979) Assign<strong>in</strong>g <strong>the</strong> resonanceRaman spectral features <strong>of</strong> rhodops<strong>in</strong>, isorhodops<strong>in</strong>, and bathorhodops<strong>in</strong><strong>in</strong> bov<strong>in</strong>e photostationary state spectra, Photochem.Photobiol. 29, 699-702.27. Jager, S., Lewis, J. W., Zvyaga, T. A., Szundi, I., Sakmar, T. P.,and Kliger, D. S. (1997) Chromophore structural changes <strong>in</strong>rhodops<strong>in</strong> from nanoseconds to microseconds follow<strong>in</strong>g pigmentphotolysis, Proc. Natl. Acad. Sci. U.S.A. 94, 8557-8562.28. Hug, S. J., Lewis, J. W., E<strong>in</strong>terz, C. M., Thorgeirsson, T. E., andKliger, D. S. (1990) Nanosecond photolysis <strong>of</strong> rhodops<strong>in</strong>: Evidencefor a new, blue-shifted <strong>in</strong>termediate, Biochemistry 29,1475-1485.29. Lewis, J. W., Fan, G. B., Sheves, M., Szundi, I., and Kliger, D.S. (2001) Steric barrier to bathorhodops<strong>in</strong> decay <strong>in</strong> 5-demethyland mesityl analogues <strong>of</strong> rhodops<strong>in</strong>, J. Am. Chem. Soc. 123,10024-10029.30. Lewis, J. W., P<strong>in</strong>kas, M., Sheves, M., Ottolenghi, M., and Kliger,D. S. (1995) Structural changes <strong>in</strong> early photolysis <strong>in</strong>termediates<strong>of</strong> rhodops<strong>in</strong> from time-resolved spectral measurements <strong>of</strong> artificialpigments sterically h<strong>in</strong>dered along <strong>the</strong> chromophores cha<strong>in</strong>, J. Am.Chem. Soc. 117, 918-923.31. Randall, C. E., Lewis, J. W., Hug, S. J., Björl<strong>in</strong>g, S. C., Eisner-Shanas, I., Friedman, I., Ottolenghi, M., Sheves, M., and Kliger,D. S. (1991) A new photolysis <strong>in</strong>termediate <strong>in</strong> artificial and nativevisual pigments, J. Am. Chem. Soc. 113, 3473-3485.32. Cohen, G. B., Oprian, D. D., and Rob<strong>in</strong>son, P. R. (1992)Mechanism <strong>of</strong> activation and <strong>in</strong>activation <strong>of</strong> ops<strong>in</strong>: Role <strong>of</strong>Glu113 and Lys296, Biochemistry 31, 12592-12601.33. Kuwata, O., Yuan, C., Misra, S., Gov<strong>in</strong>djee, R., and Ebrey, T. G.(2001) K<strong>in</strong>etics and pH dependence <strong>of</strong> light-<strong>in</strong>duced deprotonation<strong>of</strong> <strong>the</strong> Schiff base <strong>of</strong> rhodops<strong>in</strong>: Possible coupl<strong>in</strong>g to proton uptakeand formation <strong>of</strong> <strong>the</strong> active form <strong>of</strong> Meta II, Biochemistry(Moscow) 66, 1283-1299.34. Smith, S. O., de Groot, H., Gebhard, R., and Lugtenburg, J. (1992)Magic angle sp<strong>in</strong>n<strong>in</strong>g NMR studies on <strong>the</strong> metarhodops<strong>in</strong> II<strong>in</strong>termediate <strong>of</strong> bov<strong>in</strong>e rhodops<strong>in</strong>: Evidence for an unprotonatedSchiff base, Photochem. Photobiol. 56, 1035-1039.35. Yan, E. C., Kazmi, M. A., Ganim, Z., Hou, J. M., Pan, D., Chang,B. S., Sakmar, T. P., and Mathies, R. A. (2003) <strong>Ret<strong>in</strong>al</strong> counterionswitch <strong>in</strong> <strong>the</strong> photoactivation <strong>of</strong> <strong>the</strong> G prote<strong>in</strong>-coupled receptorrhodops<strong>in</strong>, Proc. Natl. Acad. Sci. U.S.A. 100, 9262-9267.36. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima,H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T.,Stenkamp, R. E., Yamamoto, M., and Miyano, M. (2000) Crystalstructure <strong>of</strong> rhodops<strong>in</strong>: A G prote<strong>in</strong>-coupled receptor, Science277, 687-690.37. Okada, T., and Palczewski, K. (2001) Crystal structure <strong>of</strong>rhodops<strong>in</strong>: Implications for vision and beyond, Curr. Op<strong>in</strong>. Struct.Biol. 11, 420-426.38. Okada, T., Fujiyoshi, Y., Silow, M., Navarro, J., Landau, E. M.,and Shichida, Y. (2002) Functional role <strong>of</strong> <strong>in</strong>ternal watermolecules <strong>in</strong> rhodops<strong>in</strong> revealed by X-ray crystallography, Proc.Natl. Acad. Sci. U.S.A. 99, 5982-5987.39. Okada, T., Sugihara, M., Bondar, A. N., Elstner, M., Entel, P.,and Buss, V. (2004) The ret<strong>in</strong>al conformation and its environment<strong>in</strong> rhodops<strong>in</strong> <strong>in</strong> light <strong>of</strong> a new 2.2 Å crystal structure, J. Mol.Biol. 342, 571-583.40. Li, J., Edwards, P. C., Burghammer, M., Villa, C., and Schertler,G. F. (2004) Structure <strong>of</strong> bov<strong>in</strong>e rhodops<strong>in</strong> <strong>in</strong> a trigonal crystalform, J. Mol. Biol., <strong>in</strong> press.41. Choi, G., Land<strong>in</strong>, J., Galan, J. F., Birge, R. R., Albert, A. D., andYeagle, P. L. (2002) Structural studies <strong>of</strong> metarhodops<strong>in</strong> II, <strong>the</strong>activated form <strong>of</strong> <strong>the</strong> G-prote<strong>in</strong> coupled receptor, rhodops<strong>in</strong>,Biochemistry 41, 7318-7324.42. Röhrig, U. F., Guidoni, L., and Rothlisberger, U. (2002) Earlysteps <strong>of</strong> <strong>the</strong> <strong>in</strong>tramolecular signal transduction <strong>in</strong> rhodops<strong>in</strong>explored by molecular dynamics simulations, Biochemistry 41,10799-10809.43. Saam, J., Tajkhorshid, E., Hayashi, S., and Schulten, K. (2002)<strong>Molecular</strong> dynamics <strong>in</strong>vestigation <strong>of</strong> primary photo<strong>in</strong>duced events<strong>in</strong> <strong>the</strong> activation <strong>of</strong> rhodops<strong>in</strong>, Biophys. J. 83, 3097-3112.44. Crozier, P. S., Stevens, M. J., Forrest, L. R., and Woolf, T. B.(2003) <strong>Molecular</strong> dynamics simulation <strong>of</strong> dark-adapted rhodops<strong>in</strong><strong>in</strong> an explicit membrane bilayer: Coupl<strong>in</strong>g between local ret<strong>in</strong>aland larger scale conformational change, J. Mol. Biol. 333, 493-514.45. Huber, T., Botelho, A. V., Beyer, K., and Brown, M. F. (2004)Membrane model for <strong>the</strong> G-prote<strong>in</strong>-coupled receptor rhodops<strong>in</strong>:Hydrophobic <strong>in</strong>terface and dynamical structure, Biophys. J. 86,2078-2100.46. Yamada, A., Kakitani, T., Yamamoto, S., and Yamamoto, T.(2002) A computational study on <strong>the</strong> stability <strong>of</strong> <strong>the</strong> protonatedSchiff base <strong>of</strong> ret<strong>in</strong>al <strong>in</strong> rhodops<strong>in</strong>, Chem. Phys. Lett. 366, 670-675.47. Buss, V., Sugihara, M., Entel, P., and Hafner, J. (2003) Thr94and Wat2b effect protonation <strong>of</strong> <strong>the</strong> ret<strong>in</strong>al chromophore <strong>in</strong>rhodops<strong>in</strong>, Angew. Chem. Int. Ed. 42, 3245-3247.48. Sugihara, M., Buss, V., Entel, P., Elstner, M., and Frauenheim,T. (2002) 11-cis-ret<strong>in</strong>al protonated Schiff base: Influence <strong>of</strong> <strong>the</strong>prote<strong>in</strong> environment on <strong>the</strong> geometry <strong>of</strong> <strong>the</strong> rhodops<strong>in</strong> chromophore,Biochemistry 41, 15259-15266.49. Sugihara, M., Buss, V., Entel, P., and Hafner, J. (2004) The nature<strong>of</strong> <strong>the</strong> complex counterion <strong>of</strong> <strong>the</strong> chromophore <strong>in</strong> rhodops<strong>in</strong>, J.Phys. Chem. B 108, 3673-3680.50. Verdegem, P. J. E., Helmle, M., Lugtenburg, J., and de Groot, H.J. M. (1997) Internuclear distance measurements up to 0.44 nmfor ret<strong>in</strong>als <strong>in</strong> <strong>the</strong> solid state with 1-D rotational resonance 13 CMAS NMR spectroscopy, J. Am. Chem. Soc. 119, 169-174.51. Spooner, P. J., Sharples, J. M., Verhoeven, M. A., Lugtenburg,J., Glaubitz, C., and Watts, A. (2002) Relative orientation between<strong>the</strong> β-ionone r<strong>in</strong>g and <strong>the</strong> polyene cha<strong>in</strong> for <strong>the</strong> chromophore <strong>of</strong>rhodops<strong>in</strong> <strong>in</strong> native membranes, Biochemistry 41, 7549-7555.52. Spooner, P. J., Sharples, J. M., Goodall, S. C., Seedorf, H.,Verhoeven, M. A., Lugtenburg, J., Bovee-Geurts, P. H., de Grip,W. J., and Watts, A. (2003) Conformational similarities <strong>in</strong> <strong>the</strong>β-ionone r<strong>in</strong>g region <strong>of</strong> <strong>the</strong> rhodops<strong>in</strong> chromophore <strong>in</strong> its ground

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!