11.07.2015 Views

the coding, decoding, transfer, and translation of information in cancer

the coding, decoding, transfer, and translation of information in cancer

the coding, decoding, transfer, and translation of information in cancer

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Physical Sciences-Based Frontiers <strong>in</strong> OncologyThe Cod<strong>in</strong>g, deCod<strong>in</strong>g, Transfer,<strong>and</strong> TranslaTion <strong>of</strong> <strong>in</strong>formaTion<strong>in</strong> CanCerOctober 29-31, 2008Meet<strong>in</strong>g ReportThe Ritz-Carlton • Pentagon City • Arl<strong>in</strong>gton, VAThe Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer


Cover image courtesy <strong>of</strong> NISE Network, Viz Lab, <strong>and</strong> L<strong>in</strong>da Nye.


Physical Sciences-Based Frontiers <strong>in</strong> OncologyThe Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer,<strong>and</strong> Translation <strong>of</strong> Information<strong>in</strong> CancerOctober 29-31, 2008Meet<strong>in</strong>g ReportThe Ritz-Carlton • Pentagon City • Arl<strong>in</strong>gton, VA


ContentsExecutive Summary............................................................................................................................... 1Session Summaries................................................................................................................................ 3Day 1: Wednesday, October 29, 2008.................................................................................................... 3Meet<strong>in</strong>g Background <strong>and</strong> Introductions....................................................................................................................3Welcome <strong>and</strong> Introduction <strong>of</strong> Keynote Presenter...................................................................................................3Keynote Presentation: Is DNA a Molecule? Mus<strong>in</strong>gs on Good Cells Mak<strong>in</strong>g Bad Choices........................4Day 2: Thursday, October 30, 2008........................................................................................................ 5Th<strong>in</strong>k Tank Process <strong>and</strong> Outcomes Overview...........................................................................................................5Welcome <strong>and</strong> Keynote Presentation: State <strong>of</strong> <strong>the</strong> Science <strong>in</strong> Cancer Research............................................6Keynote Presentation: Information Theory <strong>in</strong> Molecular Biology: Key to Underst<strong>and</strong><strong>in</strong>gInformation Transfer, Signal<strong>in</strong>g, <strong>and</strong> Translation <strong>in</strong> Cancer..................................................................................8Keynote Presentation: Read<strong>in</strong>g Information <strong>in</strong> <strong>the</strong> Germl<strong>in</strong>e <strong>and</strong> Cancer Genomes byIts Evolutionary Signature............................................................................................................................................. 10Keynote Presentation: The Rest <strong>of</strong> <strong>the</strong> Story: The Small RNAs <strong>and</strong> Cancer.................................................. 11Group Discussion: Cancer Information..................................................................................................................... 12Small Group Discussions: Information Theory—If It’s So Important <strong>in</strong> Cancer, Why HaveWe Not Made More Progress <strong>in</strong> <strong>the</strong> Field?.............................................................................................................. 13Panel Discussion (Brief Presentations): Contextual Translation <strong>of</strong> Information: So ManySignals, So Many Channels, So Much Translation on So Many Scales........................................................... 13Beyond <strong>the</strong> Genome: Underst<strong>and</strong><strong>in</strong>g <strong>the</strong> Human Somatic Cell Tree, Somatic Cell MolecularClocks, or “Hey Doc, How Did I Get My Tumor?”............................................................................................. 13Signal<strong>in</strong>g Pathways: An Eng<strong>in</strong>eer’s Perspective............................................................................................ 14Multiscale Nature <strong>of</strong> Information Transfer...................................................................................................... 14Dynamics <strong>and</strong> Crosstalk <strong>of</strong> Intracellular Organelles.................................................................................... 15Information Theory <strong>in</strong> Liv<strong>in</strong>g Systems: Contributions <strong>of</strong> <strong>the</strong> Microenvironment............................. 16Small Group Discussions: Underst<strong>and</strong><strong>in</strong>g Signal<strong>in</strong>g <strong>and</strong> Contextual Translation <strong>of</strong>Information at Multiscales: What’s Relevant From <strong>the</strong> Physical Sciences?.................................................. 17Panel Discussion: The Outcomes <strong>and</strong> Consequences <strong>of</strong> Information Transfer <strong>in</strong> CancerAcross Length Scales...................................................................................................................................................... 18How Information Is Used To Build Cells: Design Pr<strong>in</strong>ciples <strong>and</strong> Information Transfer..................... 18Intersection <strong>of</strong> Evolution <strong>and</strong> Information Theory: What Does It Mean for Cancer?....................... 19The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer


The Physics <strong>of</strong> Information Transfer <strong>in</strong> Cancer............................................................................................... 20Information Theory: Could This Approach Enable an Underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> Why/How <strong>of</strong><strong>the</strong> Malignant Phenotype?................................................................................................................................... 20Group Discussion............................................................................................................................................................. 21Panel Discussion: The Future: If We Underst<strong>and</strong> <strong>the</strong> Specifics (Physics, Chemistry, etc.) <strong>of</strong><strong>the</strong> Information, Its Transfer, <strong>and</strong> Contextual Translation at Multiple Length Scales <strong>in</strong> Cancer,Can We Alter Outcomes?............................................................................................................................................... 22Day 3: Friday, October 31, 2008...........................................................................................................25Meet<strong>in</strong>g Review <strong>and</strong> Introductions........................................................................................................................... 25Keynote Presentation: The Failure <strong>and</strong> Repair <strong>of</strong> Emergent Systems: A Systems Eng<strong>in</strong>eer<strong>in</strong>gApproach to Cancer........................................................................................................................................................ 25Bra<strong>in</strong>storm<strong>in</strong>g Session: Elements for Address<strong>in</strong>g <strong>the</strong> Big Questions on Information <strong>and</strong>Communication <strong>in</strong> Cancer............................................................................................................................................ 28Group Discussion: Information <strong>in</strong> Cancer................................................................................................................ 28Group Discussion: Communication <strong>in</strong> Cancer....................................................................................................... 29Breakout Session: A “Tour” <strong>of</strong> <strong>the</strong> Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information<strong>in</strong> Cancer: Def<strong>in</strong><strong>in</strong>g <strong>the</strong> Scope <strong>of</strong> <strong>the</strong> Big Questions (Gr<strong>and</strong> Challenges) <strong>and</strong> How To ApproachAnswer<strong>in</strong>g Them Through Transdiscipl<strong>in</strong>ary Research...................................................................................... 29Breakout 1: Information <strong>in</strong> Cancer.................................................................................................................... 30Breakout 2: Communication <strong>in</strong> Cancer at Multiple Scales........................................................................ 30Breakout 3: Technology, Models, <strong>and</strong> Tools.................................................................................................... 32Breakout 4: Major Overarch<strong>in</strong>g Questions..................................................................................................... 33Summary <strong>and</strong> Next Steps....................................................................................................................34Appendix 1. Meet<strong>in</strong>g Sketches............................................................................................................35Appendix 2. Bibliography....................................................................................................................41Appendix 3. Meet<strong>in</strong>g Agenda..............................................................................................................42Appendix 4. Meet<strong>in</strong>g Participants......................................................................................................48iiMeet<strong>in</strong>g Report


Executive Summary“The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer” is <strong>the</strong> third <strong>in</strong> a series <strong>of</strong>2008 th<strong>in</strong>k tanks convened by <strong>the</strong> National Cancer Institute (NCI) to explore <strong>in</strong>novative ideas, concepts,<strong>and</strong> <strong>the</strong>ories from <strong>the</strong> physical sciences that could <strong>in</strong>form <strong>and</strong> enable a fundamental underst<strong>and</strong><strong>in</strong>g <strong>of</strong><strong>cancer</strong> at all scales. The prior two meet<strong>in</strong>gs, “Integrat<strong>in</strong>g <strong>and</strong> Leverag<strong>in</strong>g <strong>the</strong> Physical Sciences To Opena New Frontier <strong>in</strong> Oncology,” held February 26-28, 2008, <strong>and</strong> “A New Look at Evolution <strong>and</strong> EvolutionaryTheory <strong>in</strong> Cancer,” held July 13-15, 2008, engaged over 200 experts from physics, ma<strong>the</strong>matics,physical chemistry, <strong>and</strong> basic <strong>and</strong> cl<strong>in</strong>ical <strong>cancer</strong> research. Outcomes from <strong>the</strong> first th<strong>in</strong>k tankidentified four convergent <strong>the</strong>mes <strong>of</strong> critical importance to <strong>cancer</strong> research: <strong>the</strong> “physics” <strong>of</strong> <strong>cancer</strong>(<strong>the</strong> forces, <strong>the</strong>rmodynamics, gradients, etc. that govern behavior at all scales); <strong>the</strong> role <strong>of</strong> evolution<strong>and</strong> evolutionary <strong>the</strong>ory <strong>in</strong> <strong>cancer</strong>; <strong><strong>in</strong>formation</strong> flow, <strong>translation</strong>, <strong>and</strong> <strong><strong>in</strong>formation</strong> <strong>the</strong>ory <strong>in</strong> <strong>cancer</strong>; <strong>and</strong>“deconvolut<strong>in</strong>g” <strong>the</strong> complexity <strong>of</strong> <strong>the</strong> disease. The second th<strong>in</strong>k tank explored <strong>the</strong> potential value<strong>of</strong> study<strong>in</strong>g <strong>cancer</strong> from an evolutionary perspective <strong>and</strong> fur<strong>the</strong>r highlighted <strong>the</strong> press<strong>in</strong>g need toconsider questions related to <strong><strong>in</strong>formation</strong> sources, flow, <strong>and</strong> contextual <strong>translation</strong> <strong>in</strong> <strong>cancer</strong> at allscales (molecules, organelles/cells, tissues, organisms). It was <strong>the</strong> consensus <strong>of</strong> <strong>the</strong> first two meet<strong>in</strong>gsthat <strong>the</strong> complex processes that drive <strong>the</strong> emergence <strong>of</strong> <strong>the</strong> malignant phenotype <strong>in</strong> <strong>cancer</strong> were<strong><strong>in</strong>formation</strong> rich, <strong>and</strong>, like evolution, <strong>the</strong>se areas <strong>of</strong> science <strong>of</strong>fered significant opportunities to betterunderst<strong>and</strong> <strong>and</strong> control <strong>cancer</strong>.The current meet<strong>in</strong>g, “The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer,” wasdesigned to discuss <strong>the</strong> wide range <strong>of</strong> topics that constitute <strong>the</strong>se fields. The meet<strong>in</strong>g, a facilitatedth<strong>in</strong>k tank, <strong>in</strong>cluded a few broad keynote presentations to <strong>in</strong>troduce major topic areas; paneldiscussions that pursued specific research areas <strong>and</strong> f<strong>in</strong>d<strong>in</strong>gs; <strong>and</strong> bra<strong>in</strong>storm<strong>in</strong>g sessions that<strong>in</strong>cluded all <strong>of</strong> <strong>the</strong> participants. In addition, smaller work<strong>in</strong>g groups considered a number <strong>of</strong> <strong>the</strong>major questions or “gr<strong>and</strong> challenges” surround<strong>in</strong>g <strong>the</strong> <strong>cod<strong>in</strong>g</strong>, de<strong>cod<strong>in</strong>g</strong>, <strong>transfer</strong>, <strong>and</strong> <strong>translation</strong> <strong>of</strong><strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong> from <strong>the</strong> st<strong>and</strong>po<strong>in</strong>t <strong>of</strong> transdiscipl<strong>in</strong>ary research <strong>and</strong> associated resource needs.Specifically, <strong>the</strong> meet<strong>in</strong>g comprised a conceptual “arc” that began with a “stage sett<strong>in</strong>g” presentationby Dr. Robert Phillips, California Institute <strong>of</strong> Technology (Caltech), which focused on <strong><strong>in</strong>formation</strong>management <strong>and</strong> <strong>the</strong> nature <strong>of</strong> cellular decision-mak<strong>in</strong>g. In <strong>of</strong>fer<strong>in</strong>g his perspectives, Dr. Phillipsemphasized <strong>the</strong> usefulness <strong>of</strong> physical measurements <strong>and</strong> <strong>the</strong> quantitative analysis <strong>of</strong> biologicalsystems as bases to provide context for underst<strong>and</strong><strong>in</strong>g <strong>the</strong> role <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>and</strong> its <strong>translation</strong> <strong>and</strong>measurement <strong>in</strong> <strong>cancer</strong> biology. Dr. John Niederhuber, Director <strong>of</strong> <strong>the</strong> National Cancer Institute,provided context for <strong>the</strong> meet<strong>in</strong>g by giv<strong>in</strong>g a brief overview <strong>of</strong> <strong>the</strong> current state <strong>of</strong> <strong>cancer</strong> research<strong>and</strong> identify<strong>in</strong>g some <strong>of</strong> <strong>the</strong> key knowledge gaps that drove <strong>the</strong> design <strong>of</strong> <strong>the</strong> current meet<strong>in</strong>g.Dr. Christoph Adami, Caltech, gave a keynote presentation on <strong><strong>in</strong>formation</strong> <strong>the</strong>ory <strong>and</strong> its potentialvalue <strong>in</strong> underst<strong>and</strong><strong>in</strong>g <strong><strong>in</strong>formation</strong> flow <strong>in</strong> <strong>cancer</strong>, particularly <strong>the</strong> use <strong>of</strong> sequence <strong><strong>in</strong>formation</strong> <strong>and</strong>implications at <strong>the</strong> level <strong>of</strong> mutated genes. The meet<strong>in</strong>g proceeded to consider <strong>the</strong> nature <strong>of</strong> <strong>the</strong>“<strong><strong>in</strong>formation</strong>” <strong>in</strong> <strong>cancer</strong> with keynote presentations by Dr. David Haussler, University <strong>of</strong> California,Santa Cruz, <strong>and</strong> Dr. Phillip Sharp, Massachusetts Institute <strong>of</strong> Technology. Dr. Haussler discussed ourcurrent underst<strong>and</strong><strong>in</strong>g <strong>of</strong> DNA, genes, transcription, <strong>and</strong> <strong><strong>in</strong>formation</strong> <strong>translation</strong> across time. Dr. Sharpexplored <strong>the</strong> small RNAs <strong>and</strong> <strong>the</strong>ir role <strong>in</strong> regulat<strong>in</strong>g <strong><strong>in</strong>formation</strong> flow <strong>in</strong> <strong>cancer</strong>. Both <strong>of</strong> <strong>the</strong>se speakersemphasized <strong>the</strong> value <strong>of</strong> comparative genomics <strong>and</strong> <strong>the</strong> promise <strong>of</strong> <strong>the</strong> transcriptome to uncoverfunctional elements <strong>in</strong> <strong>cancer</strong>.In a subsequent discussion, panelists considered a range <strong>of</strong> topics related to cell signal<strong>in</strong>g, cellulardecision-mak<strong>in</strong>g, <strong>and</strong> <strong>the</strong> <strong>translation</strong> <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong>—with significant consideration <strong>of</strong><strong>the</strong> spatial <strong>and</strong> microenvironmental contexts. A second panel considered questions <strong>of</strong> contextual<strong>translation</strong> <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong> from <strong>the</strong> st<strong>and</strong>po<strong>in</strong>t <strong>of</strong> how malignant phenotypes evolve, withspecific emphasis on <strong>the</strong> physics <strong>of</strong> <strong>the</strong>se processes. All <strong>of</strong> <strong>the</strong> meet<strong>in</strong>g panels exam<strong>in</strong>ed <strong>the</strong> multiscale,temporal, <strong>and</strong> spatial nature <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>transfer</strong> (from germl<strong>in</strong>e to tissue <strong>and</strong> organism levels),The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer


differences <strong>and</strong> similarities between normal <strong>and</strong> <strong>cancer</strong> <strong><strong>in</strong>formation</strong>, <strong>and</strong> tools be<strong>in</strong>g used to decipher<strong><strong>in</strong>formation</strong> <strong>and</strong> processes.The meet<strong>in</strong>g moved to consider <strong>the</strong> next rational question <strong>in</strong> <strong>the</strong> conceptual “arc”: Is an underst<strong>and</strong><strong>in</strong>g<strong>of</strong> <strong>the</strong> nature <strong>of</strong> <strong>the</strong> <strong><strong>in</strong>formation</strong> per se <strong>and</strong> mechanisms <strong>of</strong> its <strong>transfer</strong> <strong>and</strong> contextual <strong>translation</strong> arational basis for alter<strong>in</strong>g <strong>the</strong> progress <strong>of</strong> <strong>cancer</strong>? This question was explored <strong>in</strong> depth by Dr. DanielHillis, Applied M<strong>in</strong>ds, Inc. He discussed <strong>cancer</strong> as an “emergent complex system” <strong>and</strong> consideredstrategies for control at <strong>the</strong> patient level by explor<strong>in</strong>g what constitutes <strong>and</strong> drives emergent systemsfrom an <strong><strong>in</strong>formation</strong> st<strong>and</strong>po<strong>in</strong>t.Dur<strong>in</strong>g <strong>the</strong> course <strong>of</strong> <strong>the</strong> meet<strong>in</strong>g, barriers (gr<strong>and</strong> challenges) were identified that limit development<strong>of</strong> <strong>the</strong> complex field <strong>of</strong> <strong><strong>in</strong>formation</strong> management at all scales <strong>in</strong> <strong>cancer</strong>. The participants worked <strong>in</strong>four small groups to reach consensus on new directions <strong>and</strong> focus areas for research, needed tools<strong>and</strong> technologies, <strong>and</strong> o<strong>the</strong>r resources needed to address research requirements <strong>and</strong> build a newtransdiscipl<strong>in</strong>ary field <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>cod<strong>in</strong>g</strong>, de<strong>cod<strong>in</strong>g</strong>, <strong>transfer</strong>, <strong>and</strong> <strong>translation</strong> <strong>in</strong> <strong>cancer</strong>. The fourgroups were (1) major overarch<strong>in</strong>g research questions, (2) nature <strong>of</strong> <strong>the</strong> critical <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong>,(3) communication <strong>in</strong> <strong>cancer</strong> at multiple scales, <strong>and</strong> (4) technology, models, <strong>and</strong> tools. The outcomesfrom <strong>the</strong> four groups are presented <strong>in</strong> detail <strong>in</strong> <strong>the</strong> report that follows.In summary, this meet<strong>in</strong>g considered <strong>the</strong> critical topic <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong> <strong>in</strong> <strong>the</strong> context <strong>of</strong>both <strong>the</strong> biological <strong>and</strong> physical sciences—what it is, how it is <strong>transfer</strong>red, <strong>and</strong> how it is translated.Examples <strong>of</strong> several important concepts that emerged from this meet<strong>in</strong>g <strong>in</strong>clude <strong>the</strong> follow<strong>in</strong>g:<strong>the</strong> “gene” can no longer be viewed as a s<strong>in</strong>gle entity but <strong>in</strong>stead as a complex <strong><strong>in</strong>formation</strong> <strong>cod<strong>in</strong>g</strong>construct; go<strong>in</strong>g beyond a genocentric view <strong>of</strong> <strong>cancer</strong> to measure state changes <strong>in</strong> <strong>cancer</strong> will be veryimportant; <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong> is context dependent <strong>and</strong> scale specific (e.g., cells, tissues, wholeorganisms); <strong><strong>in</strong>formation</strong> <strong>and</strong> its management <strong>in</strong> <strong>cancer</strong> must be considered across space <strong>and</strong> time;<strong>and</strong> cellular architecture <strong>and</strong> measur<strong>in</strong>g communications through structural pathways are important<strong>in</strong> underst<strong>and</strong><strong>in</strong>g contextual <strong>translation</strong>. Although <strong>cancer</strong> will be def<strong>in</strong>ed by large amounts <strong>of</strong><strong><strong>in</strong>formation</strong> at different scales, <strong>the</strong>se detailed datasets may not reflect <strong>the</strong> level at which <strong>cancer</strong> is bestcontrolled. From an <strong><strong>in</strong>formation</strong> st<strong>and</strong>po<strong>in</strong>t, <strong>cancer</strong> is an emergent complex system, <strong>and</strong> models <strong>of</strong><strong>the</strong>se types <strong>of</strong> systems suggest that <strong>the</strong>ir control is <strong>of</strong>ten not at <strong>the</strong> level where <strong>the</strong> amounts <strong>and</strong> types<strong>of</strong> <strong><strong>in</strong>formation</strong> seem most compell<strong>in</strong>g.Meet<strong>in</strong>g Report


Session SummariesThe Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> CancerMeet<strong>in</strong>g Background <strong>and</strong> IntroductionsAnna D. Barker, Ph.D., Deputy Director, NCIDay 1: Wednesday, October 29, 2008Dr. Barker greeted <strong>the</strong> attendees <strong>and</strong> presented an overview <strong>of</strong> <strong>the</strong> general objectives <strong>of</strong> this series <strong>of</strong>th<strong>in</strong>k tanks. These meet<strong>in</strong>gs are held to explore various areas <strong>of</strong> <strong>the</strong> physical sciences that are critical <strong>in</strong>develop<strong>in</strong>g both a fundamental underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>cancer</strong> <strong>and</strong> new strategies for <strong>cancer</strong> control.This is <strong>the</strong> third meet<strong>in</strong>g <strong>in</strong> a series focused on apply<strong>in</strong>g new th<strong>in</strong>k<strong>in</strong>g from <strong>the</strong> physical sciences toexam<strong>in</strong>e major questions <strong>in</strong> <strong>cancer</strong>, <strong>of</strong>ten <strong>in</strong> seem<strong>in</strong>gly unorthodox ways. The first exploratory meet<strong>in</strong>g,Integrat<strong>in</strong>g <strong>and</strong> Leverag<strong>in</strong>g <strong>the</strong> Physical Sciences To Open a New Frontier <strong>in</strong> Oncology, was held February26-28, 2008. Four overarch<strong>in</strong>g <strong>the</strong>mes emerged at that meet<strong>in</strong>g for fur<strong>the</strong>r exploration: (1) <strong>the</strong> “physics”<strong>of</strong> <strong>cancer</strong> (forces <strong>and</strong> mechanics, <strong>the</strong>rmodynamics, gradients, etc.); (2) evolution <strong>and</strong> evolutionary<strong>the</strong>ory <strong>in</strong> <strong>cancer</strong>; (3) <strong><strong>in</strong>formation</strong> <strong>cod<strong>in</strong>g</strong>, <strong>transfer</strong>, <strong>translation</strong>, <strong>and</strong> <strong><strong>in</strong>formation</strong> <strong>the</strong>ory <strong>in</strong> <strong>cancer</strong>; <strong>and</strong>(4) <strong>the</strong> complexity <strong>of</strong> <strong>cancer</strong>. The second th<strong>in</strong>k tank, A New Look at Evolution <strong>and</strong> Evolutionary Theory <strong>in</strong>Cancer, July 13-15, 2008, identified major research questions <strong>and</strong> challenges that, if addressed, couldsignificantly improve our underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>cancer</strong>. The major <strong>in</strong>put from this meet<strong>in</strong>g was that valuecould be ga<strong>in</strong>ed by plac<strong>in</strong>g what we know about <strong>cancer</strong> <strong>in</strong>to an evolutionary framework <strong>and</strong> us<strong>in</strong>gthis framework to provide future direction for <strong>cancer</strong> research. The third meet<strong>in</strong>g stemmed from many<strong>of</strong> <strong>the</strong> conversations at <strong>the</strong> first two meet<strong>in</strong>gs, where questions were raised on <strong>the</strong> role <strong>of</strong> all aspects <strong>of</strong><strong>cod<strong>in</strong>g</strong>, de<strong>cod<strong>in</strong>g</strong>, <strong>and</strong> <strong>translation</strong> <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>and</strong> <strong><strong>in</strong>formation</strong> <strong>the</strong>ory <strong>in</strong> underst<strong>and</strong><strong>in</strong>g evolution <strong>of</strong><strong>cancer</strong> as an <strong>in</strong>tegrative, complex, <strong>and</strong> emergent complex system.Dr. Barker <strong>in</strong>troduced Dr. Niederhuber, Director <strong>of</strong> <strong>the</strong> NCI, who <strong>in</strong>troduced <strong>the</strong> first keynote presenter.Welcome <strong>and</strong> Introduction <strong>of</strong> Keynote PresenterJohn E. Niederhuber, M.D., Director, NCIDr. Niederhuber greeted <strong>the</strong> attendees, echo<strong>in</strong>g Dr. Barker’s comments about <strong>the</strong> value <strong>of</strong> this series<strong>of</strong> meet<strong>in</strong>gs to date, <strong>and</strong> <strong>in</strong>troduced Dr. Robert Phillips. Dr. Phillips is Pr<strong>of</strong>essor <strong>of</strong> Applied Physics <strong>and</strong>Mechanical Eng<strong>in</strong>eer<strong>in</strong>g at <strong>the</strong> California Institute <strong>of</strong> Technology <strong>in</strong> Pasadena, California. Dr. Phillips’group works on physical biology <strong>of</strong> <strong>the</strong> cell, physics <strong>of</strong> genome management, <strong>and</strong> use <strong>of</strong> physicalmodels to explore biological phenomena. He is coauthor <strong>of</strong> <strong>the</strong> soon-to-be-published textbookPhysical Biology <strong>of</strong> <strong>the</strong> Cell. Dr. Niederhuber noted that Dr. Phillips is a self-described lifelong student <strong>of</strong><strong>the</strong> scientific approach to underst<strong>and</strong><strong>in</strong>g nature <strong>and</strong> <strong>the</strong> eng<strong>in</strong>eer<strong>in</strong>g basis for controll<strong>in</strong>g it, which, hepo<strong>in</strong>ted out, represented an excellent rationale for all <strong>of</strong> <strong>the</strong>se th<strong>in</strong>k tanks.The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer


understood as a code (<strong><strong>in</strong>formation</strong>), a set <strong>of</strong> b<strong>in</strong>d<strong>in</strong>gsites, a l<strong>in</strong>e charge, an elastic rod, or a r<strong>and</strong>om walk.organization, nucleosome position<strong>in</strong>g, DNApackag<strong>in</strong>g with regard to gene expression <strong>and</strong> state(<strong>in</strong>clud<strong>in</strong>g methylation, etc.), aff<strong>in</strong>ity <strong>of</strong> b<strong>in</strong>d<strong>in</strong>g tosites, <strong>and</strong> dependence on packag<strong>in</strong>g depth. 1-4Cellular decision-mak<strong>in</strong>g also <strong>in</strong>volves signal<strong>in</strong>gpathways or networks. Experimentally <strong>and</strong>quantitatively, <strong>the</strong>re is a need to determ<strong>in</strong>e <strong>the</strong>number <strong>of</strong> components, locations, <strong>and</strong> timeframes.For <strong>in</strong>stance, to dissect a network quantitatively, onecan systematically vary parameters <strong>and</strong> exam<strong>in</strong>e<strong>the</strong> biological outcome. Estimates can also beuseful. Dr. Phillips added that it might be necessary<strong>and</strong> important to f<strong>in</strong>d new technical methods toconduct measurements.Physical manipulations are required for <strong><strong>in</strong>formation</strong>acquisition <strong>and</strong> underst<strong>and</strong><strong>in</strong>g <strong>and</strong> <strong>of</strong>ten for<strong><strong>in</strong>formation</strong> corruption. Experimentation thatelucidates <strong>the</strong> <strong>in</strong>terplay between <strong>the</strong> <strong><strong>in</strong>formation</strong>al<strong>and</strong> physical characteristics <strong>of</strong> genomes hasillustrated <strong>the</strong> importance <strong>of</strong> chromosomal DNADr. Phillips concluded by not<strong>in</strong>g that a newgeneration <strong>of</strong> life scientists is needed that usesquantitative analysis <strong>and</strong> data as part <strong>of</strong> <strong>the</strong> normaltoolkit: “Biological data have forced this issue—ifpeople are go<strong>in</strong>g to go to all <strong>the</strong> trouble <strong>of</strong> mak<strong>in</strong>g<strong>and</strong> present<strong>in</strong>g quantitative measurements, <strong>the</strong><strong>in</strong>tellectual response to those data needs itself to bequantitative.” 6Discussion Highlights: Two major areas <strong>of</strong> discussion followed Dr. Phillip’s presentation. In adiscussion <strong>of</strong> how physics can be used to underst<strong>and</strong> <strong>the</strong> biological processes built through evolution,Dr. Phillips noted that biological systems have to respect <strong>the</strong> laws <strong>of</strong> physics. He also po<strong>in</strong>ted out that<strong>the</strong>re is not a proper appreciation for <strong>the</strong> use <strong>of</strong> <strong>the</strong>ory <strong>in</strong> biology <strong>and</strong> that even wrong models can beuseful.Th<strong>in</strong>k Tank Process <strong>and</strong> Outcomes Overview: Dr. Barker <strong>in</strong>troduced <strong>the</strong> th<strong>in</strong>k tank Facilitator,Mr. Robert Mittman, who has served this role for all <strong>of</strong> <strong>the</strong> meet<strong>in</strong>gs. Mr. Mittman gave an overview <strong>of</strong><strong>the</strong> process for <strong>the</strong> th<strong>in</strong>k tank <strong>and</strong> briefly discussed expected outcomes. He fur<strong>the</strong>r expla<strong>in</strong>ed that <strong>the</strong>process would be described <strong>in</strong> detail on Day 2 <strong>of</strong> <strong>the</strong> th<strong>in</strong>k tank, when all participants would be onh<strong>and</strong>.Day 2: Thursday, October 30, 2008NCI’s Physical Sciences-Based Frontiers <strong>in</strong> Oncology SeriesTh<strong>in</strong>k Tank Process <strong>and</strong> Outcomes OverviewAnna D. Barker, Ph.D., NCI, <strong>and</strong> Robert Mittman, M.S., M.P.P., Chairman, Facilitation, Foresight,StrategyDr. Barker briefly reviewed prior th<strong>in</strong>k tanks for <strong>the</strong> new arrivals <strong>and</strong> <strong>in</strong>troduced <strong>the</strong> facilitator,Mr. Robert Mittman. Mr. Mittman added to Dr. Barker’s <strong>in</strong>troduction by describ<strong>in</strong>g <strong>the</strong> current meet<strong>in</strong>gas organized <strong>in</strong>to four conceptual segments to reflect <strong>the</strong> four central questions posed. The conceptualsegments are also designed to set <strong>the</strong> stage for achiev<strong>in</strong>g NCI’s desired outcomes for <strong>the</strong> meet<strong>in</strong>g,that is, development <strong>of</strong> <strong>in</strong>novative strategies, models, <strong>and</strong> approaches to help build a transdiscipl<strong>in</strong>aryfield <strong>of</strong> <strong>cancer</strong> <strong><strong>in</strong>formation</strong> <strong>cod<strong>in</strong>g</strong>, de<strong>cod<strong>in</strong>g</strong>, <strong>transfer</strong>, <strong>and</strong> <strong>translation</strong> science, as well as a <strong>the</strong>oreticalfoundation for this complex process.The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer


Some central goals that derive from <strong>the</strong> questions presented <strong>in</strong> <strong>the</strong> agenda were posed forconsideration <strong>in</strong> terms <strong>of</strong> <strong>the</strong> conceptual meet<strong>in</strong>g framework, <strong>in</strong>clud<strong>in</strong>g:• Identification <strong>of</strong> <strong>the</strong> range <strong>of</strong> <strong><strong>in</strong>formation</strong> sources <strong>and</strong> processes <strong>in</strong> <strong>cancer</strong> biology at differentlength <strong>and</strong> time scales• Exploration <strong>of</strong> major research questions, future strategies, <strong>and</strong> coherent <strong>the</strong>oretical approachesthat will enable a fundamental underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>cancer</strong> across <strong>the</strong>se scales• Identification <strong>of</strong> <strong>the</strong> barriers that limit timely progress <strong>in</strong> <strong>the</strong> field• Given that progress is achieved <strong>in</strong> <strong>the</strong> first three, provision <strong>of</strong> <strong>in</strong>put <strong>and</strong> guidance <strong>in</strong> structur<strong>in</strong>g<strong>and</strong> prioritiz<strong>in</strong>g research questions for NCI <strong>and</strong> <strong>in</strong>dividual <strong>in</strong>vestigators (e.g., research strategies,data management approaches, <strong>in</strong>frastructure, etc., to support <strong>and</strong> <strong>in</strong>form accomplishment <strong>of</strong>research goals)To beg<strong>in</strong> <strong>the</strong> scientific program, Dr. Barker <strong>in</strong>troduced Dr. John E. Niederhuber. As many <strong>of</strong> <strong>the</strong>scientists on h<strong>and</strong> were not from <strong>the</strong> field <strong>of</strong> <strong>cancer</strong> research, Dr. Niederhuber summarized <strong>the</strong> state<strong>of</strong> <strong>the</strong> science <strong>in</strong> <strong>cancer</strong> research as he did at <strong>the</strong> <strong>in</strong>itial meet<strong>in</strong>g <strong>in</strong> this series; his remarks focused oncurrent trends <strong>and</strong> concepts <strong>in</strong> <strong>cancer</strong> research from his perspective as a surgeon with <strong>in</strong>terests <strong>in</strong>stem cell research <strong>and</strong> crosstalk <strong>in</strong> <strong>the</strong> microenvironment.Welcome <strong>and</strong> Keynote PresentationState <strong>of</strong> <strong>the</strong> Science <strong>in</strong> Cancer ResearchJohn E. Niederhuber, M.D., Director, National Cancer Institute, National Institutes <strong>of</strong> HealthPresentation Highlights (For a full graphical representation <strong>of</strong> this talk, see Figure 2, Appendix 1.)• Enter<strong>in</strong>g an unprecedented era <strong>of</strong> discovery <strong>and</strong> a new era <strong>of</strong> medic<strong>in</strong>e.• The challenge will be <strong>in</strong> underst<strong>and</strong><strong>in</strong>g <strong>the</strong> complexity <strong>of</strong> <strong>the</strong> regulatory systems <strong>and</strong> <strong>the</strong> <strong><strong>in</strong>formation</strong> that drives it– Tumor microenvironment, “niche”—need to control <strong>the</strong> microenvironment.Dynamics <strong>of</strong> cellular communication, chemical gradients.Effect on <strong>cancer</strong> cells <strong>and</strong> receptiveness to <strong>the</strong> process <strong>of</strong> <strong>cancer</strong> spread.– Tumor cell heterogeneity <strong>and</strong> “<strong>cancer</strong> stem cells”—need to underst<strong>and</strong> <strong>the</strong> role <strong>of</strong> <strong>cancer</strong> stem cells.The power <strong>of</strong> self-renewal, travel to o<strong>the</strong>r tissues, capacity as progenitor cells.– Need to underst<strong>and</strong> <strong>the</strong> structural organization <strong>of</strong> <strong><strong>in</strong>formation</strong>—spatial position may be a diagnostic tool.– New levels <strong>of</strong> imag<strong>in</strong>g reveal new dimensions <strong>of</strong> complexity.• Requirement for transdiscipl<strong>in</strong>ary research teams.Dr. Niederhuber’s open<strong>in</strong>g statement reflected<strong>the</strong> overrid<strong>in</strong>g reason to hold <strong>the</strong>se th<strong>in</strong>k tanks. Thesignificant human <strong>and</strong> economic burdens <strong>of</strong> <strong>cancer</strong>create a critical need to address major barriers.Progress has been made, as evidenced by decl<strong>in</strong><strong>in</strong>gdeath rates <strong>in</strong> certa<strong>in</strong> tumors, due primarily to earlydiagnosis, fewer smokers, <strong>and</strong> use <strong>of</strong> vacc<strong>in</strong>es. Hereemphasized that <strong>the</strong> focus for this meet<strong>in</strong>g isto explore what physics, physical chemistry, <strong>and</strong>applied ma<strong>the</strong>matics can br<strong>in</strong>g to <strong>cancer</strong> biology<strong>and</strong> determ<strong>in</strong>e how this group <strong>of</strong> scientists can mosteffectively become <strong>in</strong>volved <strong>in</strong> fur<strong>the</strong>r advanc<strong>in</strong>g<strong>cancer</strong> research.Given that <strong>cancer</strong> is a disease <strong>of</strong> genes <strong>and</strong> alteredgenes, <strong>the</strong> power to sequence <strong>the</strong> human genomehas ushered <strong>in</strong> an unprecedented era <strong>of</strong> discovery<strong>and</strong> transformation <strong>of</strong> medic<strong>in</strong>e. However, it isnot enough to just sequence <strong>the</strong> code. The realchallenge will be to underst<strong>and</strong> <strong>the</strong> complexity<strong>of</strong> <strong>the</strong> regulatory system <strong>and</strong> <strong>the</strong> <strong><strong>in</strong>formation</strong>that drives it (not just epigenetic modificationssuch as methylation but also complexity at <strong>the</strong>structural level). The huge amount <strong>of</strong> <strong><strong>in</strong>formation</strong>that is <strong>the</strong> complex genetic code is translated <strong>in</strong>t<strong>of</strong>unctional changes <strong>in</strong> <strong>the</strong> cell, <strong>and</strong> <strong>the</strong>se complexchanges result <strong>in</strong> cell transformation, with <strong>the</strong>numerous phenotypic changes we see <strong>in</strong> <strong>cancer</strong>.While <strong>the</strong> focus <strong>of</strong> <strong>cancer</strong> research has beenon tumor cells for many years, we <strong>in</strong>creas<strong>in</strong>glyrecognize that <strong>the</strong> tumor is not just disease <strong>of</strong>abnormal genes but also a process by which <strong>cancer</strong>grow<strong>in</strong>g <strong>in</strong> its own microenvironment can <strong>in</strong>vade<strong>and</strong> metastasize. A tumor is a complex “organ,” <strong>and</strong><strong>the</strong> focus <strong>of</strong> <strong>cancer</strong> research is shift<strong>in</strong>g from tumorMeet<strong>in</strong>g Report


cells to underst<strong>and</strong><strong>in</strong>g <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g complexity <strong>of</strong><strong>the</strong> organ system <strong>of</strong> <strong>cancer</strong> growth.The complexity <strong>of</strong> <strong>the</strong> tumor microenvironment<strong>and</strong> <strong>the</strong> tumor cell environmental “niche.” Cellsare not autonomous; <strong>the</strong> microenvironment isimportant. The complexity <strong>of</strong> a tumor <strong>in</strong>cludesdynamic communication processes that drivechemical gradients <strong>and</strong> o<strong>the</strong>r effector mechanismsthat occur among heterogeneous cell types thatpopulate <strong>the</strong> tumor microenvironment. Factorsproduced by <strong>the</strong>se aberrant cells—for example,growth factors, chemok<strong>in</strong>es <strong>and</strong> chemotacticfactors, <strong>and</strong> proteases—can alter aspects <strong>of</strong>tumor cell behavior <strong>and</strong> are part <strong>of</strong> <strong>the</strong> process<strong>of</strong> metastasis <strong>and</strong> <strong>in</strong>vasion. What comes first,changes/abnormalities <strong>in</strong> <strong>the</strong> microenvironmentor <strong>in</strong> <strong>the</strong> cells? The environment may have to be setfor genetic changes <strong>in</strong> cells to be recognized <strong>and</strong>implemented.Increas<strong>in</strong>gly, it is clear that cell migration doesnot occur by chance but that it is a complexprocess. Know<strong>in</strong>g <strong>the</strong> cell’s environmental niche isimportant. Investigations <strong>in</strong>to creation <strong>of</strong> a receptive,premetastatic environment <strong>in</strong>clude consideration<strong>of</strong> fibronect<strong>in</strong> deposition, migration <strong>of</strong> endo<strong>the</strong>lialprogenitor cells, vascular organization, <strong>and</strong> o<strong>the</strong>rfactors. 7 In experimental models, a tumor cellmigrat<strong>in</strong>g <strong>in</strong>to a normal microenvironment growsnormally, but if <strong>the</strong> cell migrates <strong>in</strong>to a supportiveabnormal niche, it displays <strong>cancer</strong>ous properties.Dr. Niederhuber predicted that to control <strong>cancer</strong> asa disease, it will be necessary not only to operateat <strong>the</strong> <strong>cancer</strong> cell level; <strong>the</strong>re also will be a realneed to control <strong>the</strong> microenvironment.develop<strong>in</strong>g a complete picture <strong>of</strong> <strong>cancer</strong>. It isunclear what mechanism allows <strong>cancer</strong> to returnas metastatic disease after a patient has been freefrom <strong>cancer</strong> for many years. What if <strong>the</strong>rapies (bothchemo<strong>the</strong>rapy <strong>and</strong> radiation) effectively treatmost tumor cells but are not effective at treat<strong>in</strong>g<strong>the</strong> small percentage <strong>of</strong> differently programmedcells, ultimately result<strong>in</strong>g <strong>in</strong> recurrence? If tumortreatments target stem cells, can more differentiatedcells, which are programmed to die, <strong>the</strong>n be moreeasily elim<strong>in</strong>ated? Ano<strong>the</strong>r key question is whe<strong>the</strong>r<strong>the</strong> process <strong>of</strong> <strong>cancer</strong> <strong>in</strong>itiation takes place <strong>in</strong> <strong>the</strong>stem cell or <strong>in</strong> a progenitor cell. For example, geneticchanges could occur <strong>in</strong> a progenitor cell thatreprograms a cell to be more like a stem cell.The complexity <strong>of</strong> <strong>the</strong> structural organization<strong>of</strong> <strong>the</strong> <strong><strong>in</strong>formation</strong>. Mitochondrial <strong>and</strong> nuclearstructural organization are critical areas forfuture research. NCI imag<strong>in</strong>g studies <strong>of</strong> genomeorganization <strong>in</strong> three-dimensional (3D) spacedemonstrate that chromosomes are not r<strong>and</strong>omlypositioned. Def<strong>in</strong>itive patterns have been measured<strong>in</strong> normal vs. breast <strong>cancer</strong> cells. This work illustratesthat regulatory processes are <strong>in</strong>volved <strong>in</strong> structuralorganization <strong>of</strong> <strong>the</strong> chromosomes <strong>and</strong> that <strong>the</strong>gene position is not r<strong>and</strong>om. In fact, spatialposition may be useful as a diagnostic tool todifferentiate normal from premetastatic <strong>and</strong>malignant cells <strong>and</strong> tumor types.In conclusion, <strong>cancer</strong> is a complex disease, <strong>and</strong><strong>the</strong>re may not be a more complex problem thanmetastatic <strong>cancer</strong>. The levels <strong>of</strong> complexity <strong>in</strong>cludeprote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractions, chemical gradients,energy-time <strong>in</strong>teractions at <strong>the</strong> target, <strong>and</strong> as-yetunexplored physical forces that are important tounderst<strong>and</strong><strong>in</strong>g migration <strong>of</strong> cells, cell changes,<strong>and</strong> forces <strong>in</strong>volved <strong>in</strong> chang<strong>in</strong>g <strong>the</strong> environment.There has never been a more excit<strong>in</strong>g time to work<strong>in</strong> science. The rapidly develop<strong>in</strong>g technologiesthat drive complex research require that science <strong>of</strong><strong>the</strong> future <strong>in</strong>volve teams com<strong>in</strong>g toge<strong>the</strong>r to solveproblems. Dr. Niederhuber added that what we learn<strong>in</strong> study<strong>in</strong>g <strong>cancer</strong> will <strong>in</strong>form <strong>the</strong> diagnosis <strong>and</strong>treatment <strong>of</strong> o<strong>the</strong>r diseases.Tumor cell heterogeneity <strong>and</strong> “<strong>cancer</strong> stem cells.”The complexity <strong>of</strong> a tumor is also characterized by<strong>the</strong> heterogeneity <strong>of</strong> <strong>the</strong> tumor cell population.With<strong>in</strong> tumors, a small number <strong>of</strong> cells demonstrateunusual characteristics, <strong>in</strong>clud<strong>in</strong>g self-renewalcapacity or stem-cell-like properties, <strong>and</strong> are referredto by some as “<strong>cancer</strong> stem cells.” Underst<strong>and</strong><strong>in</strong>g<strong>the</strong> role <strong>of</strong> <strong>cancer</strong> stem cells will be critical toThe Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer


Keynote PresentationInformation Theory <strong>in</strong> Molecular Biology: Key to Underst<strong>and</strong><strong>in</strong>gInformation Transfer, Signal<strong>in</strong>g, <strong>and</strong> Translation <strong>in</strong> CancerChristoph C. Adami, Ph.D., Pr<strong>of</strong>essor, California Institute <strong>of</strong> TechnologyPresentation Highlights (For a full graphical representation <strong>of</strong> this talk, see Figure 3, Appendix 1.)• Predictions can be made about a system with accuracy better than chance.– Quantifies <strong>the</strong> amount <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>in</strong> messages.– Quantifies <strong>the</strong> capacity <strong>of</strong> channels to transmit <strong><strong>in</strong>formation</strong> (given noise).• Information is essentially contextual. Changes <strong>in</strong> <strong>the</strong> environment (niche) result <strong>in</strong> changes <strong>in</strong> <strong>the</strong> <strong><strong>in</strong>formation</strong>.• Fitness depends on <strong><strong>in</strong>formation</strong> about <strong>the</strong> environment.– Cells <strong>and</strong> organisms use <strong><strong>in</strong>formation</strong> <strong>in</strong> genes for survival.– Fitness changes imply changes <strong>in</strong> <strong><strong>in</strong>formation</strong> content.• Shannon’s entropy: mechanism to quantify <strong>the</strong> probability <strong>of</strong> correctly predict<strong>in</strong>g <strong>the</strong> state <strong>of</strong> X.– The <strong><strong>in</strong>formation</strong> stored <strong>in</strong> a gene is <strong>the</strong> difference between <strong>the</strong> maximal <strong>and</strong> actual entropy.Dr. Adami presented an overview <strong>of</strong> <strong><strong>in</strong>formation</strong><strong>the</strong>ory, emphasiz<strong>in</strong>g characteristics <strong>of</strong> <strong>the</strong> <strong>the</strong>orythat are potentially useful <strong>in</strong> <strong>cancer</strong> research.Information <strong>the</strong>ory was developed at least 50 yearsago, pioneered by Claude Shannon; because it canbe used to simplify complicated problems, it hasbeen established as a generally applicable tool forunderst<strong>and</strong><strong>in</strong>g complex systems.Information <strong>the</strong>ory can be viewed as a form <strong>of</strong>nonequilibrium statistical physics. More generally,<strong><strong>in</strong>formation</strong> <strong>the</strong>ory exam<strong>in</strong>es <strong>the</strong> relative state <strong>of</strong><strong>the</strong> detectors.• Information <strong>the</strong>ory allows <strong>the</strong> <strong><strong>in</strong>formation</strong>keeper to make predictions about a systemwith better-than-chance accuracy. For example,<strong><strong>in</strong>formation</strong> <strong>the</strong>ory can predict residue at aspecific site us<strong>in</strong>g sequence <strong><strong>in</strong>formation</strong>.• The <strong>the</strong>ory makes <strong><strong>in</strong>formation</strong> by its veryessence a contextual quantity, a key concept.• The system is important. The <strong><strong>in</strong>formation</strong>is dependent on <strong>the</strong> system; if <strong>the</strong> systemchanges, it is no longer <strong><strong>in</strong>formation</strong>. In <strong>the</strong>example above, <strong>the</strong> sequence stored <strong>in</strong> agenome is <strong>in</strong> <strong>the</strong> context <strong>of</strong> <strong>the</strong> environment <strong>in</strong>which <strong>the</strong> organism lives. The organism similarlymakes predictions about its environment; thisenvironment (i.e., <strong>the</strong> niche) is very important <strong>in</strong>determ<strong>in</strong><strong>in</strong>g what <strong>the</strong> <strong><strong>in</strong>formation</strong> essentially is.• There is a connection between fitness<strong>and</strong> <strong><strong>in</strong>formation</strong>, ano<strong>the</strong>r key concept. As <strong>in</strong>evolution, fitness permits an organism to live.The more <strong><strong>in</strong>formation</strong> available about <strong>the</strong>environment, <strong>the</strong> better <strong>the</strong> chance for survival<strong>in</strong> <strong>the</strong> environment. Fitness is a long-termpredictor about <strong>the</strong> success <strong>of</strong> a gene.• The <strong>the</strong>ory quantifies <strong>the</strong> amount <strong>of</strong><strong><strong>in</strong>formation</strong> <strong>in</strong> messages <strong>and</strong> provides <strong>the</strong>means to quantify <strong>the</strong> capacity <strong>of</strong> channelsto transmit <strong>the</strong> <strong><strong>in</strong>formation</strong>. Note that<strong><strong>in</strong>formation</strong> can be distributed among manyagents.Shannon’s formula def<strong>in</strong>es <strong>the</strong> entropy, H, <strong>of</strong> ar<strong>and</strong>om variable or molecule, X, as a sum over <strong>the</strong>set <strong>of</strong> probabilities, p 1…..p N, <strong>of</strong> <strong>the</strong> possible states <strong>of</strong>X, x i.NH(X) = - Ʃ p ilog p ii = 1Shannon’s entropy provides a means to quantify<strong>the</strong> probability <strong>of</strong> correctly predict<strong>in</strong>g <strong>the</strong> state <strong>of</strong>X. If <strong>the</strong> entropy or uncerta<strong>in</strong>ty is very large, <strong>the</strong>probabilities will be very small. (The uncerta<strong>in</strong>ty ishow much is not known about someth<strong>in</strong>g.). If <strong>the</strong>entropy is 0 (i.e., everyth<strong>in</strong>g is known about it), <strong>the</strong>probability will be 1.For x imolecules <strong>in</strong> pools that are functionally <strong>the</strong>same, <strong>the</strong> actual entropy <strong>of</strong> <strong>the</strong> pool is much lessthan <strong>the</strong> maximal entropy, <strong>and</strong> <strong>the</strong> differencebetween <strong>the</strong> actual entropy <strong>and</strong> <strong>the</strong> maximalentropy is <strong>the</strong> <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>the</strong> genes. Theactual measured entropy is conditional, as it isdependent on <strong>the</strong> environment. For example,one can measure <strong>the</strong> <strong><strong>in</strong>formation</strong> stored <strong>in</strong> genesby exam<strong>in</strong><strong>in</strong>g <strong>the</strong> difference between maximalentropy stored <strong>in</strong> genes by a set <strong>of</strong> molecules <strong>and</strong><strong>the</strong> actual measured conditional entropy with<strong>in</strong> <strong>the</strong>environment <strong>of</strong> <strong>the</strong> molecule. Thus, for a 100-am<strong>in</strong>oacid prote<strong>in</strong>, <strong>the</strong> maximal entropy per site is 1, <strong>and</strong><strong>the</strong> maximal entropy is 100. The actual measuredentropy will be smaller. (The entropy <strong>of</strong> our DNAis very, very small. Our DNA is very similar, with <strong>the</strong>exception <strong>of</strong> <strong>the</strong> s<strong>in</strong>gle nucleotide polymorphisms.)Meet<strong>in</strong>g Report


Dr. Adami proposed that fitness <strong>and</strong> <strong><strong>in</strong>formation</strong>are l<strong>in</strong>early related; if w is fitness, I ≈ k log w. Anexample is <strong>the</strong> study <strong>of</strong> <strong>the</strong> evolution <strong>of</strong> drugresistance <strong>in</strong> HIV. Due to a rapid mutation rate, <strong>the</strong>HIV virus can adapt quickly to a new environment.In general, a loss <strong>of</strong> <strong><strong>in</strong>formation</strong> is observed with<strong>the</strong> development <strong>of</strong> drug resistance, due to <strong>the</strong>accumulat<strong>in</strong>g mutations, some <strong>of</strong> which arecompensatory. To test this, <strong>the</strong> (loss or ga<strong>in</strong> <strong>of</strong> )<strong><strong>in</strong>formation</strong> content <strong>of</strong> <strong>the</strong> HIV-1 protease (a 99mer) can be calculated by us<strong>in</strong>g <strong>the</strong> mutation/substitution probabilities at each residue. Ifmutations between residues are not correlated, <strong>the</strong>entropy <strong>of</strong> <strong>the</strong> protease can be found from <strong>the</strong> sum<strong>of</strong> <strong>the</strong> entropies <strong>of</strong> each residue, us<strong>in</strong>g substitutionprobability at each residue. Us<strong>in</strong>g sequence<strong><strong>in</strong>formation</strong> from <strong>the</strong> Stanford HIV drug-resistancedatabase, substitution probabilities per site werecalculated, <strong>and</strong> changes per site over time wereused to obta<strong>in</strong> a pr<strong>of</strong>ile <strong>of</strong> <strong>the</strong> entropy. (Us<strong>in</strong>g <strong>the</strong>database, changes over time can also be exam<strong>in</strong>ed.)Us<strong>in</strong>g normalized entropies <strong>of</strong> 0−1, 0 is <strong>the</strong> entropyif only one am<strong>in</strong>o acid is found per site. A value <strong>of</strong> 1represents a case <strong>of</strong> <strong>the</strong> same probability for each <strong>of</strong><strong>the</strong> am<strong>in</strong>o acids (1/20). Thus, <strong>the</strong> total <strong><strong>in</strong>formation</strong>,or entropy per site, is 1 entropy per site, <strong>and</strong> if notcorrelated, <strong>the</strong> entropy would be <strong>the</strong> sum <strong>of</strong> <strong>the</strong><strong><strong>in</strong>formation</strong> per site. Results showed that four areas<strong>in</strong> <strong>the</strong> 99 mer were found to have low entropy (high<strong><strong>in</strong>formation</strong>). These areas <strong>of</strong> <strong>the</strong> sequence are wheremost <strong>of</strong> <strong>the</strong> <strong><strong>in</strong>formation</strong> is coded. When analysis iscorrected for correlated mutations between sites,<strong>the</strong> corrected analysis <strong>in</strong>dicates that as time goeson <strong>and</strong> <strong>the</strong> environment becomes more complex,treatment with multiple drugs actually creates more<strong><strong>in</strong>formation</strong>-rich viruses ra<strong>the</strong>r than fewer.Shannon’s <strong>the</strong>ory also quantifies <strong>the</strong> amount <strong>of</strong><strong><strong>in</strong>formation</strong> that can be sent across a channel with<strong>the</strong> accuracy <strong>of</strong> <strong>the</strong> channel (given noise) <strong>and</strong> adecoder.There are two ways <strong>of</strong> look<strong>in</strong>g at <strong><strong>in</strong>formation</strong>transmission across channels <strong>in</strong> molecularbiology. The first is transmission <strong>of</strong> <strong><strong>in</strong>formation</strong>across generations <strong>in</strong> evolution. The secondis <strong>the</strong> transmission <strong>of</strong> <strong><strong>in</strong>formation</strong> from <strong>the</strong>environment to <strong>the</strong> cell mach<strong>in</strong>ery (i.e., <strong>the</strong><strong><strong>in</strong>formation</strong> process<strong>in</strong>g capacity <strong>of</strong> a cell). Thechannel view monitors <strong><strong>in</strong>formation</strong> process<strong>in</strong>g at<strong>the</strong> s<strong>in</strong>gle-cell level. As one example, an artificialcell model developed <strong>in</strong> Dr. Adami’s laboratoryis be<strong>in</strong>g used to study <strong><strong>in</strong>formation</strong> transmissionpathways. Enzymes, chromosomes, transcriptionfactors, membrane prote<strong>in</strong>s, etc. are all examples<strong>of</strong> <strong><strong>in</strong>formation</strong> transmission channels. It may bepossible to measure <strong>the</strong> capacity <strong>of</strong> <strong>the</strong>se channels.For example, if a network view <strong>of</strong> <strong>in</strong>teract<strong>in</strong>gprote<strong>in</strong>s is used, <strong>the</strong> relationship between a pair<strong>of</strong> prote<strong>in</strong>s can be determ<strong>in</strong>ed by measur<strong>in</strong>g <strong>the</strong>output from prote<strong>in</strong> 2 after modify<strong>in</strong>g <strong>the</strong> <strong>in</strong>putto prote<strong>in</strong> 1. If <strong>the</strong>re is no change <strong>in</strong> prote<strong>in</strong> 2due to a change <strong>in</strong> 1, <strong>the</strong>n <strong>the</strong>re is no correlationbetween <strong>the</strong> prote<strong>in</strong>s <strong>and</strong> <strong>the</strong> capacity is 0 for bothcases. Measurements are repeated for <strong>the</strong> rest <strong>of</strong><strong>the</strong> prote<strong>in</strong> pairs <strong>in</strong> <strong>the</strong> network; some pairs willdemonstrate a clear correlation. Measurement <strong>of</strong> <strong>the</strong>correlation across <strong>the</strong> pairs develops <strong>the</strong> channelrelationships’ network picture <strong>and</strong> capacity.In conclusion, Dr. Adami po<strong>in</strong>ted out that most <strong>of</strong>what he discussed <strong>in</strong> relation to <strong>cancer</strong> is basedon <strong>the</strong> assumption that if <strong>cancer</strong> is a disease <strong>in</strong>which s<strong>in</strong>gle cells with a mutated genome ga<strong>in</strong>a replicative advantage over o<strong>the</strong>r cells, <strong>the</strong>n<strong><strong>in</strong>formation</strong> <strong>the</strong>ory is a general tool to study <strong>cancer</strong>genes—because fitness changes imply changes<strong>in</strong> <strong><strong>in</strong>formation</strong> content. It may not be possible tomeasure <strong>the</strong> fitness change <strong>of</strong> a particular gene, butif sequence data are available, it might be possibleto measure changes <strong>in</strong> <strong>the</strong> <strong><strong>in</strong>formation</strong> content.Because <strong><strong>in</strong>formation</strong> may be used as a proxy forfitness, it can be used to reveal <strong>the</strong> associationbetween oncogenes <strong>and</strong> tumor suppressorgenes. One can also use <strong>the</strong> <strong>the</strong>ory to characterize<strong><strong>in</strong>formation</strong> transmission channels that can leadto a better underst<strong>and</strong><strong>in</strong>g <strong>of</strong> changes <strong>in</strong> signaltransduction.Discussion Highlights: A key discussion po<strong>in</strong>t was how to quantify transmission <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>in</strong> anoisy channel, for example, collections <strong>of</strong> cells. Dr. Adami po<strong>in</strong>ted out that noise <strong>in</strong> <strong>the</strong> channel canbe obta<strong>in</strong>ed from measur<strong>in</strong>g <strong>the</strong> relationship between <strong>in</strong>put <strong>and</strong> output. Imag<strong>in</strong>e <strong>the</strong> relationshipbetween <strong>in</strong>put <strong>and</strong> output signals, for example, <strong>the</strong> lac operon. Gene activity is dependent on lactose<strong>in</strong> <strong>the</strong> environment—high lactose: gene on; low lactose: gene <strong>of</strong>f. A plot can be used to calculate <strong>the</strong>channel capacity (1 bit). Any signal with lactose absent is <strong>the</strong> noise (<strong>the</strong> low-level activity).The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer


Keynote PresentationRead<strong>in</strong>g Information <strong>in</strong> <strong>the</strong> Germl<strong>in</strong>e <strong>and</strong> Cancer Genomes by Its Evolutionary SignatureDavid Haussler, Ph.D., M.S., Pr<strong>of</strong>essor, University <strong>of</strong> California, Santa CruzPresentation Highlights (For a full graphical representation <strong>of</strong> this talk, see Figure 4, Appendix 1.)• The germl<strong>in</strong>e genome is structured by evolution; similar structural changes occur <strong>in</strong> <strong>the</strong> <strong>cancer</strong> genome (chromosomalrearrangements, duplications, deletions, mutations).• Sequence alignments, us<strong>in</strong>g comparative genomics, lead to identification <strong>of</strong> selection coefficients used to identifypatterns <strong>of</strong> <strong>cod<strong>in</strong>g</strong> <strong>and</strong> non<strong>cod<strong>in</strong>g</strong> regions across evolution.• Comparative genomics is be<strong>in</strong>g used to identify critical changes <strong>and</strong> important functional elements <strong>in</strong> <strong>cancer</strong> (geneexpression <strong>and</strong> pathways).The germl<strong>in</strong>e genome changes that occur dur<strong>in</strong>gevolution due to chromosomal rearrangements,deletions, additions, <strong>and</strong> s<strong>in</strong>gle po<strong>in</strong>t mutationsare also present <strong>in</strong> <strong>the</strong> <strong>cancer</strong> genome. In hispresentation, Dr. Haussler discussed parallelsbetween genomic physical changes that driveevolution on a population basis <strong>and</strong> those thatgive rise to <strong>cancer</strong> <strong>and</strong> drive its progression. Hefur<strong>the</strong>r po<strong>in</strong>ted out that <strong>the</strong> power <strong>of</strong> comparativegenomics can be used to identify critical changes<strong>and</strong> important functional elements <strong>in</strong> <strong>cancer</strong>.Deletions, amplifications, <strong>and</strong> s<strong>in</strong>gle base changesresult <strong>in</strong> structural changes that not only give riseto ei<strong>the</strong>r <strong>the</strong> creation or loss <strong>of</strong> germl<strong>in</strong>e genes<strong>in</strong> evolution but also change gene expression,<strong>in</strong>activate genes, <strong>and</strong> disrupt <strong>in</strong>teract<strong>in</strong>g pathways<strong>in</strong> <strong>cancer</strong>. S<strong>in</strong>gle base changes that result <strong>in</strong><strong>in</strong>activation <strong>of</strong> <strong>the</strong> p53 gene (21,588 somaticmutations cataloged; 15,387, or 71%, are missensemutations) are located <strong>in</strong> <strong>the</strong> core doma<strong>in</strong> for DNAb<strong>in</strong>d<strong>in</strong>g. For example, consistent tissue-specificpatterns <strong>of</strong> amplifications <strong>and</strong> deletions werereported <strong>in</strong> breast <strong>and</strong> bra<strong>in</strong> tumors <strong>in</strong> relation tonormal tissue. 9 In addition, somatic <strong>and</strong> germl<strong>in</strong>enonsilent mutations, amplifications, <strong>and</strong> deletionshave been found <strong>in</strong> bra<strong>in</strong> tumor signal<strong>in</strong>g pathways(elevations <strong>in</strong> p53, RB <strong>and</strong> receptor tyros<strong>in</strong>e k<strong>in</strong>ase/Ras/phospho<strong>in</strong>ositide-3-k<strong>in</strong>ase pathways comparedwith control tissue).Comparative genomics is currently employed tomap out <strong>the</strong> evolutionary history <strong>of</strong> <strong>the</strong> genome.This <strong><strong>in</strong>formation</strong> <strong>the</strong>n can be used to identifyregions <strong>of</strong> <strong>the</strong> genome that could be critical foradaptive events. In reconstruct<strong>in</strong>g <strong>the</strong> past 100million years <strong>of</strong> evolution, key events or sequencesthat gave rise to mammals were identified <strong>in</strong>regions where many changes occurred as well as<strong>in</strong> regions with highly conserved <strong>cod<strong>in</strong>g</strong> exons,po<strong>in</strong>ts <strong>of</strong> <strong>in</strong>troduction <strong>of</strong> new <strong>in</strong>trons, etc. Whensequences are aligned, selection coefficients, orentropy, can be measured. Interest<strong>in</strong>g patterns <strong>of</strong>selection coefficients are be<strong>in</strong>g uncovered where<strong>the</strong> patterns dist<strong>in</strong>guish sequences that do or do notfunction as <strong>cod<strong>in</strong>g</strong> regions. Similarly, comparativegenomics can be used to better underst<strong>and</strong> <strong>cancer</strong>s.While mutations <strong>and</strong> changes <strong>in</strong> gene expressionhave been demonstrated between normal <strong>and</strong>tumor cells, <strong>the</strong> <strong><strong>in</strong>formation</strong> can be amplified byexam<strong>in</strong><strong>in</strong>g pathways. Comb<strong>in</strong><strong>in</strong>g <strong>the</strong> <strong><strong>in</strong>formation</strong>about changes <strong>in</strong> copy number <strong>in</strong> somatic cells <strong>and</strong>germl<strong>in</strong>e cells provides <strong>the</strong> statistical power neededto determ<strong>in</strong>e whe<strong>the</strong>r a pathway is important <strong>in</strong> <strong>the</strong>development <strong>of</strong> a <strong>cancer</strong>.Some <strong>of</strong> <strong>the</strong> lessons learned from patterns <strong>of</strong>molecular evolution for a typical gene:• Ma<strong>in</strong> <strong>cod<strong>in</strong>g</strong> exons are highly conserved,while only isl<strong>and</strong>s <strong>of</strong> conservation occur <strong>in</strong><strong>in</strong>trons <strong>and</strong> between genes.• Neutral drift is def<strong>in</strong>ed as a genetic changethat does not affect <strong>the</strong> organism. Mutationsfrequently occur <strong>in</strong> prote<strong>in</strong>-<strong>cod<strong>in</strong>g</strong> regions;some do not alter <strong>the</strong> prote<strong>in</strong> <strong>and</strong> thus do notaffect <strong>the</strong> fitness <strong>of</strong> <strong>the</strong> organism—for <strong>in</strong>stance,a change <strong>in</strong> <strong>the</strong> third DNA base <strong>in</strong> a codon.• Negative selection is rejection <strong>of</strong> a changethat decreases fitness. Mutations that wouldchange <strong>the</strong> prote<strong>in</strong>, <strong>the</strong>reby reduc<strong>in</strong>g fitness,are rejected by natural selection, <strong>and</strong> <strong>the</strong> DNA isconserved. This results <strong>in</strong> a pattern <strong>of</strong> selectionthat identifies <strong>cod<strong>in</strong>g</strong> DNA.• Positive selection is a genetic change, ormutation, that <strong>in</strong>creases fitness.• There are ~500,000 conserved non<strong>cod<strong>in</strong>g</strong>regions <strong>in</strong> <strong>the</strong> human genome, some moreconserved than o<strong>the</strong>rs; <strong>the</strong>se regions extendover hundreds <strong>of</strong> bases <strong>and</strong> cluster with<strong>in</strong>10 Meet<strong>in</strong>g Report


~1 mb <strong>of</strong> developmental genes. Sites <strong>in</strong> <strong>the</strong>seregions exhibit strong selective pressure, withselection coefficients three times higher than<strong>cod<strong>in</strong>g</strong> regions. Fur<strong>the</strong>rmore, some non<strong>cod<strong>in</strong>g</strong>regions have switched from negative to positiveselection.• The evolution <strong>of</strong> vertebrates was greatlyfacilitated by transposons derived from viruses.Most <strong>of</strong> <strong>the</strong> genome consists <strong>of</strong> molecular“fossils” <strong>of</strong> transposons, mobile DNA fromdefective viruses, <strong>and</strong> turnover <strong>of</strong> non<strong>cod<strong>in</strong>g</strong>DNA, largely from <strong>the</strong> activity <strong>of</strong> transposons.Many conserved non<strong>cod<strong>in</strong>g</strong> elements derivefrom ancient transposons. Comparative analysiswith <strong>the</strong> opossum genome showed that at least15% <strong>of</strong> <strong>the</strong> conserved non<strong>cod<strong>in</strong>g</strong> elementsspecific to placental mammals came fromknown transposons. Interest<strong>in</strong>gly, ChIP data onb<strong>in</strong>d<strong>in</strong>g sites for human p53 <strong>in</strong>dicate that onethirdare primate specific <strong>and</strong> derived from tw<strong>of</strong>amilies <strong>of</strong> endogenous retroviruses.In conclusion, research to date demonstrates thatwhile much <strong>of</strong> <strong>the</strong> <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>the</strong> genome isnon<strong>cod<strong>in</strong>g</strong> regulatory <strong><strong>in</strong>formation</strong>, <strong>the</strong>re is limited<strong><strong>in</strong>formation</strong> on <strong>the</strong> <strong>cod<strong>in</strong>g</strong> <strong><strong>in</strong>formation</strong>. However,with enough data <strong>and</strong> comparative genomics, <strong>the</strong>important functional elements can be recognizedby <strong>the</strong>ir patterns <strong>of</strong> selection, <strong>in</strong> both germl<strong>in</strong>e <strong>and</strong>tumors. F<strong>in</strong>ally, Dr. Haussler cautioned that weshould expect <strong>the</strong> unexpected when look<strong>in</strong>g for <strong>the</strong>orig<strong>in</strong>s <strong>of</strong> functional elements <strong>in</strong> <strong>the</strong> genome.Keynote PresentationThe Rest <strong>of</strong> <strong>the</strong> Story: The Small RNAs <strong>and</strong> CancerPhillip A. Sharp, Ph.D., Pr<strong>of</strong>essor, Massachusetts Institute <strong>of</strong> TechnologyPresentation Highlights (For a full graphical representation <strong>of</strong> this talk, see Figure 5, Appendix 1.)• Importance <strong>of</strong> microRNAs (miRNA) <strong>in</strong> regulation <strong>of</strong> biological pathways:– Target-specific mRNA regulates prote<strong>in</strong> expression <strong>of</strong> up to 50% <strong>of</strong> all genes <strong>in</strong> vertebrates.– mRNA sequences enriched <strong>in</strong> complementary sequences to miRNAs; 87 evolutionarily conserved seed families <strong>of</strong>miRNAs.• Loss <strong>of</strong> miRNA regulation has been correlated with <strong>cancer</strong> progression.– Changes <strong>in</strong> specific mRNA molecules have been identified <strong>in</strong> <strong>cancer</strong>s.• An estimated 94% <strong>of</strong> human genes (multiexon genes) undergo alternative splic<strong>in</strong>g, some tissue- <strong>and</strong> context-specific.• Evidence <strong>of</strong> coregulation <strong>of</strong> splic<strong>in</strong>g <strong>and</strong> polyA cleavage—a mechanism to coord<strong>in</strong>ate <strong>the</strong> ORFeome with <strong>the</strong> UTRome?Dr. Sharp <strong>in</strong>troduced his presentation by po<strong>in</strong>t<strong>in</strong>gout that <strong>the</strong>re is still much to discover regard<strong>in</strong>gmolecular systems <strong>and</strong> <strong>the</strong> role <strong>of</strong> <strong>the</strong> RNAs. Thisis particularly true <strong>of</strong> microRNAs (miRNAs), whichregulate prote<strong>in</strong> expression by target<strong>in</strong>g specificmRNAs. An underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> full transcriptomewill be important <strong>in</strong> order to answer questionsrelated to cell states <strong>and</strong> tissue-specific prote<strong>in</strong>expression <strong>in</strong> normal <strong>and</strong> tumor cells. The nextgeneration <strong>of</strong> massively parallel sequenc<strong>in</strong>gtechniques will soon make this evaluationeconomically as well as technically feasible. 10The importance <strong>of</strong> miRNA regulation <strong>of</strong>biological pathways. Bio<strong>in</strong>formatics studieshave found 250 to 1,000 genes that encodemiRNAs; <strong>the</strong>se miRNAs probably regulate upto 50% <strong>of</strong> all genes <strong>in</strong> vertebrates. 11-15 miRNAsregulate biological pathways by b<strong>in</strong>d<strong>in</strong>g mRNA<strong>and</strong> regulat<strong>in</strong>g <strong>translation</strong>; 25%-50% <strong>of</strong> all mRNAs<strong>in</strong>teract with miRNAs. mRNA sequences enriched<strong>in</strong> complementary sequences to miRNAs havealso been found, <strong>and</strong> <strong>the</strong>re are 87 evolutionarilyconserved seed families <strong>of</strong> miRNAs. The distribution<strong>of</strong> preferentially conserved target sites <strong>in</strong> <strong>the</strong> 3’ UTR<strong>in</strong>cludes 55% <strong>of</strong> genes with one or more target sites,while 45% <strong>of</strong> genes do not have sites.Studies us<strong>in</strong>g DNA expressed sequence tags havedemonstrated several methods for variation <strong>of</strong>transcripts com<strong>in</strong>g from a s<strong>in</strong>gle locus. These <strong>in</strong>cludest<strong>and</strong>ard transcriptional activation, alternativepromoter usage, exon <strong>in</strong>clusion/exclusion, <strong>and</strong> 3’UTR utilization. Us<strong>in</strong>g high-throughput sequenc<strong>in</strong>gdata, approximately 94% <strong>of</strong> human genes, oressentially all multiexon genes, are estimated toundergo alternative splic<strong>in</strong>g. Of <strong>the</strong>se, more than90% undergo alternative splic<strong>in</strong>g with a m<strong>in</strong>oris<strong>of</strong>orm fraction <strong>of</strong> at least 15%. More specifically,<strong>the</strong>re is evidence for tissue-specific regulation <strong>of</strong>splic<strong>in</strong>g. Of <strong>the</strong> eight common types <strong>of</strong> alternativesplic<strong>in</strong>g that make up 70% <strong>of</strong> regulated expression,sequence conservation is associated with switchlikeexon expression. Context- <strong>and</strong> tissue-specificactivity can be <strong>in</strong>ferred from <strong>the</strong> patterns <strong>of</strong> motifconservation flank<strong>in</strong>g tissue-regulated exons.The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 11


miRNAS are found at chromosomal region 13q14,which is frequently deleted <strong>in</strong> <strong>cancer</strong>. Their tumorsuppressor role is suggested by observ<strong>in</strong>g that <strong>the</strong>irexpression <strong>in</strong> primary prostate <strong>cancer</strong> cell culturesis <strong>in</strong>versely correlated with expression <strong>of</strong> prote<strong>in</strong>sassociated with cell survival (BCL2), proliferation(CCND1), <strong>and</strong> <strong>in</strong>vasion (WNT3a). 16The role <strong>of</strong> miRNA <strong>in</strong> <strong>cancer</strong>. Loss <strong>of</strong> miRNAregulation has been correlated with <strong>cancer</strong>progression. Fur<strong>the</strong>rmore, changes <strong>in</strong> specificmiRNA molecules have been identified <strong>in</strong> <strong>cancer</strong>s.For example, miR-15a <strong>and</strong> miR-16 downregulationis seen <strong>in</strong> Stages 2 <strong>and</strong> 3 prostate <strong>cancer</strong>s. TheseIn summary, a large percentage <strong>of</strong> human genesundergo alternative splic<strong>in</strong>g, a majority <strong>of</strong> whichare tissue regulated with a substantial amount <strong>of</strong><strong>in</strong>dividual-specific variation, lead<strong>in</strong>g to <strong>the</strong> question:Is this a mechanism to coord<strong>in</strong>ate <strong>the</strong> open read<strong>in</strong>gframe (ORFeome) with <strong>the</strong> untranslated regions(UTRome)? The switch-like exons have dist<strong>in</strong>ct prote<strong>in</strong><strong>cod<strong>in</strong>g</strong> <strong>and</strong> conservation properties, suggest<strong>in</strong>gimportant functions. There is also evidence forcoregulation <strong>of</strong> splic<strong>in</strong>g <strong>and</strong> cleavage/polyA events.Group Discussion: Cancer InformationChristoph C. Adami, Ph.D., David Haussler, Ph.D., M.S., Phillip A. Sharp, Ph.D., <strong>and</strong> GroupWith reference to <strong>the</strong> presentations <strong>of</strong> Drs. Adami, Haussler, <strong>and</strong> Sharp that focused on molecular<strong><strong>in</strong>formation</strong>, <strong>the</strong> group explored <strong>the</strong> context <strong>in</strong> which this <strong><strong>in</strong>formation</strong> should be used to study <strong>cancer</strong>.Key concepts raised were as follows:Are we miss<strong>in</strong>g <strong>the</strong> forest for <strong>the</strong> trees <strong>in</strong> look<strong>in</strong>g at all small changes? Is this approach usefulfor develop<strong>in</strong>g treatments? How does knowledge <strong>of</strong> small changes <strong>in</strong>form development <strong>of</strong> new<strong>in</strong>terventions for <strong>cancer</strong> treatment? It was argued by some participants that this level <strong>of</strong> granularityis needed to get useful treatments. We also need to consider o<strong>the</strong>r molecular factors, such asepigenetic <strong>and</strong> post<strong>translation</strong>al modifications, <strong>and</strong> <strong>in</strong>corporate new approaches to <strong>in</strong>tegrate <strong>the</strong>huge amounts <strong>of</strong> data com<strong>in</strong>g from new high-throughput analysis systems. It was po<strong>in</strong>ted out thatevolution f<strong>in</strong>ds modular solutions (e.g., multiple pathways); <strong>the</strong> study <strong>of</strong> <strong>the</strong>se modules would yieldsome <strong>in</strong>sights. Pathway analyses may <strong>of</strong>fer new approaches to develop<strong>in</strong>g better <strong>the</strong>rapies. As tumorcells are selected, <strong>the</strong>y become <strong><strong>in</strong>formation</strong> rich <strong>and</strong> pathway dependent; identify<strong>in</strong>g <strong>the</strong>se pathwaydependencies is important. To <strong>in</strong>corporate <strong><strong>in</strong>formation</strong> <strong>the</strong>ory <strong>in</strong>to this l<strong>in</strong>e <strong>of</strong> research, stochasticmodel<strong>in</strong>g <strong>of</strong> pathways could be developed—perturb <strong>the</strong>m <strong>and</strong> measure outcomes. We also need to<strong>in</strong>corporate time <strong>in</strong>to <strong>the</strong> analysis.The discussion turned to <strong>the</strong> potential “normalization” <strong>of</strong> <strong>cancer</strong> cells, viewed as an <strong>in</strong>terest<strong>in</strong>g <strong>and</strong>challeng<strong>in</strong>g concept. If we knew how to regulate transcription factors (<strong>and</strong> it was agreed that we donot have this knowledge yet), a cell could <strong>in</strong> <strong>the</strong>ory be normalized. The major factor to consider <strong>in</strong>attack<strong>in</strong>g <strong>cancer</strong> from this st<strong>and</strong>po<strong>in</strong>t is determ<strong>in</strong><strong>in</strong>g how much <strong><strong>in</strong>formation</strong> comes externally from<strong>the</strong> niche <strong>and</strong> how much <strong>in</strong>ternally from <strong>the</strong> cell.The group discussed <strong>the</strong> concept that evolution <strong>in</strong> <strong>cancer</strong> is different from evolution <strong>of</strong> a species. Theexcit<strong>in</strong>g difference is that species evolution occurs over thous<strong>and</strong>s <strong>of</strong> years <strong>and</strong> cannot be “redone”<strong>in</strong> order to study it. Conversely, we can watch <strong>cancer</strong> evolution <strong>in</strong> <strong>the</strong> body. We can repeatedlyobserve how changes happen <strong>and</strong> see <strong>the</strong> same changes over <strong>and</strong> over aga<strong>in</strong>. For example, all <strong>the</strong>p53 mutations (adaptive mutations) are repeated adaptations <strong>of</strong> a similar type. This is analogous toconvergent evolution. In this context, it was po<strong>in</strong>ted out that age is <strong>the</strong> most carc<strong>in</strong>ogenic event, <strong>and</strong>perhaps system decay could be an <strong>in</strong>terest<strong>in</strong>g model <strong>in</strong> which to study <strong>cancer</strong> development.12 Meet<strong>in</strong>g Report


Small Group Discussions:Information Theory—If It’s So Important <strong>in</strong> Cancer, Why Have We Not Made MoreProgress <strong>in</strong> <strong>the</strong> Field? (Robert Mittman <strong>and</strong> Group)For a full graphical representation <strong>of</strong> this discussion, see Figure 6, Appendix 1.In this first bra<strong>in</strong>storm<strong>in</strong>g session, <strong>the</strong> participants were <strong>in</strong>vited to work with<strong>in</strong> small <strong>in</strong>terdiscipl<strong>in</strong>arygroups to identify research questions that might be addressed us<strong>in</strong>g <strong>the</strong> concepts discussed: <strong>the</strong>nature <strong>of</strong> biological <strong><strong>in</strong>formation</strong>, <strong><strong>in</strong>formation</strong> flow, <strong>translation</strong>, <strong>and</strong> <strong><strong>in</strong>formation</strong> <strong>the</strong>ory. The groupsgenerated a large number <strong>of</strong> research questions, summarized as follows:• Are <strong>the</strong>re patterns <strong>in</strong> sequence <strong>and</strong>expression data that represent <strong>the</strong> <strong>cancer</strong>state?• What is <strong>the</strong> number <strong>of</strong> mean<strong>in</strong>gful states <strong>in</strong>cells? What is <strong>the</strong> mean<strong>in</strong>gful level at whichto characterize <strong>the</strong>m?• What are <strong>the</strong> <strong><strong>in</strong>formation</strong> channels necessaryfor <strong>cancer</strong> progression (does <strong>cancer</strong>proliferation occur through channels)? Whereis <strong><strong>in</strong>formation</strong> stored <strong>in</strong> cells <strong>and</strong> tissues, <strong>and</strong>what is <strong>the</strong> relevant time <strong><strong>in</strong>formation</strong> about<strong>cancer</strong> progression? What is <strong>the</strong> important vs.unimportant <strong><strong>in</strong>formation</strong> to ga<strong>the</strong>r at levels?• How can we use <strong><strong>in</strong>formation</strong> <strong>the</strong>ory todiagnose or predict <strong>cancer</strong>? How do weextend <strong><strong>in</strong>formation</strong> <strong>the</strong>ory to encompasssurvivability (fitness) <strong>of</strong> tumor vs. normalcells? Is <strong>cancer</strong> an <strong>in</strong>crease or decrease <strong>of</strong><strong><strong>in</strong>formation</strong> or entropy?• How do we <strong>in</strong>corporate function <strong>in</strong>to<strong><strong>in</strong>formation</strong> <strong>the</strong>ory? How does one develop aprecise notion <strong>of</strong> context (cell niche)? Is <strong>the</strong>rean <strong><strong>in</strong>formation</strong> characterization for “stem-likecells”?• How do we design mean<strong>in</strong>gful experimentalmodel systems to capture <strong>in</strong>teractionsbetween tumor <strong>and</strong> normal cells?• What are <strong>the</strong> right tools to measurespecificity <strong>and</strong> sensitivity <strong>of</strong> cells to a timedependentenvironment? Is it possible tophenotype a <strong>cancer</strong> through distal molecularmeasurements? Can we use computers<strong>of</strong>tware <strong>and</strong> hardware verification methodsto probe cells?• How do we <strong>in</strong>tegrate <strong><strong>in</strong>formation</strong> <strong>the</strong>ory withprecise measurements?Panel Discussion (Brief Presentations)Contextual Translation <strong>of</strong> Information: So Many Signals, So Many Channels,So Much Translation on So Many ScalesFor a full graphical representation <strong>of</strong> this discussion, see Figure 7, Appendix 1.In this session, participants heard four short presentations represent<strong>in</strong>g different perspectives on <strong>the</strong>uses <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>the</strong>ory <strong>in</strong> study<strong>in</strong>g <strong>cancer</strong>. These presentations moved <strong>the</strong> focus <strong>of</strong> <strong>the</strong> discussionfrom <strong>the</strong> molecule to <strong>the</strong> larger scales <strong>of</strong> organelle, cell, tissue, <strong>and</strong> organism.Beyond <strong>the</strong> Genome: Underst<strong>and</strong><strong>in</strong>g <strong>the</strong> Human Somatic Cell Tree, Somatic Cell MolecularClocks, or “Hey Doc, How Did I Get My Tumor?”Darryl K. Shibata, M.D., Pr<strong>of</strong>essor, University <strong>of</strong> Sou<strong>the</strong>rn CaliforniaDr. Shibata started <strong>the</strong> panel by describ<strong>in</strong>g how <strong>the</strong> <strong><strong>in</strong>formation</strong> <strong>translation</strong> at <strong>the</strong> molecular leveldur<strong>in</strong>g somatic division, <strong>the</strong> fidelity <strong>in</strong> <strong>the</strong> epigenetic DNA methylation replication patterns, or noisecan be used as molecular clocks.The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 13


DNA can be viewed as an <strong><strong>in</strong>formation</strong> molecule conta<strong>in</strong><strong>in</strong>g a set <strong>of</strong> <strong>in</strong>structions <strong>and</strong> historical<strong><strong>in</strong>formation</strong>. If <strong>the</strong> <strong><strong>in</strong>formation</strong> source is <strong>the</strong> zygote, stem cells are both <strong>the</strong> transmitters <strong>and</strong> receivers,<strong>and</strong> <strong>the</strong> current cells are <strong>the</strong> dest<strong>in</strong>ation. As transmitters, <strong>the</strong> stem cells make copies—daughter stemcells—as well as differentiated cells that eventually die. At <strong>the</strong> stage where <strong>the</strong> new cells becomeei<strong>the</strong>r stem cells or differentiated cells, replication error, or noise, can occur. The “molecular clockhypo<strong>the</strong>sis” is that cell copies conta<strong>in</strong> replication errors proportional to <strong>the</strong>ir mitotic age.As a tumor becomes more diverse, <strong>the</strong> analysis <strong>of</strong> cells across <strong>the</strong> tumor should provide more knowledgeabout <strong>the</strong> history <strong>of</strong> <strong>the</strong> tumor; diversity = antiquity. Epigenetic methylation clocks or measurement<strong>of</strong> age-related <strong>in</strong>creases <strong>in</strong> CpG DNA methylation can be used to underst<strong>and</strong> <strong>the</strong> history <strong>of</strong> <strong>the</strong> tumor.Count<strong>in</strong>g <strong>the</strong> difference <strong>in</strong> cells on different sides <strong>of</strong> a tumor reflects <strong>the</strong> number <strong>of</strong> replications <strong>and</strong> thus<strong>the</strong> age <strong>of</strong> <strong>the</strong> tumor. While methylation is removed early <strong>in</strong> development <strong>in</strong> some tissue, age-related<strong>in</strong>creases <strong>in</strong> DNA methylation occur <strong>in</strong> mitotic human tissue, such as <strong>the</strong> colon, <strong>and</strong> can be polymorphic.Thus, methylation pattern diversity may represent replication errors <strong>of</strong> drift.Analysis <strong>of</strong> methylation patterns may represent an approach to test <strong>the</strong> hypo<strong>the</strong>sis that chemo<strong>the</strong>rapyfailure is due to preexist<strong>in</strong>g resistant cells. Dr. Shibata also raised <strong>the</strong> possibility that a younger <strong>cancer</strong>might be less diverse <strong>and</strong> more responsive to chemo<strong>the</strong>rapy <strong>and</strong> an older <strong>cancer</strong> more diverse <strong>and</strong>less responsive.F<strong>in</strong>ally, he stated that somatic cell histories are likely recorded by replication errors <strong>in</strong> <strong>the</strong>ir genomes. Itshould be possible to translate modern molecular phylogeny approaches to somatic cell “evolution.”While many practical problems rema<strong>in</strong> with implementation, <strong>the</strong> approach would be cl<strong>in</strong>ically useful.Signal<strong>in</strong>g Pathways: An Eng<strong>in</strong>eer’s PerspectivePhilip R. LeDuc, Ph.D., Associate Pr<strong>of</strong>essor, Carnegie Mellon UniversityMov<strong>in</strong>g up to <strong>the</strong> cellular level, Dr. LeDuc spoke on <strong>the</strong> usefulness <strong>of</strong> model<strong>in</strong>g <strong>translation</strong> <strong>of</strong> <strong>in</strong>put<strong>and</strong> output signal<strong>in</strong>g <strong><strong>in</strong>formation</strong> at <strong>the</strong> cellular level, which he studies from a mechanical eng<strong>in</strong>eer’sperspective, as systems. He discussed <strong>the</strong> value <strong>of</strong> build<strong>in</strong>g models to underst<strong>and</strong> biological systems,po<strong>in</strong>t<strong>in</strong>g out <strong>the</strong> similarities <strong>and</strong> differences between cells <strong>and</strong> robotic systems.The cell processes environmental cues from a wide variety <strong>and</strong> large number <strong>of</strong> <strong>in</strong>puts <strong>and</strong> usescontrol <strong>and</strong> feedback loops to produce outputs (such as apoptosis, motility, quiescence, etc.).Fur<strong>the</strong>rmore, cell process<strong>in</strong>g <strong>and</strong> signal<strong>in</strong>g <strong>in</strong>volve spatial <strong>and</strong> time dynamics <strong>and</strong> a huge number <strong>of</strong>molecules. The robustness <strong>of</strong> <strong>the</strong> system is a key factor, as well as signal <strong>in</strong>tegration <strong>and</strong> noise. Noise <strong>in</strong>biological systems can stabilize a system <strong>in</strong> <strong>the</strong> context <strong>of</strong> many <strong>in</strong>com<strong>in</strong>g signals.Thus, it is important <strong>in</strong> model<strong>in</strong>g <strong>cancer</strong> cells to def<strong>in</strong>e <strong>in</strong>puts <strong>and</strong> outputs. Important related areas<strong>in</strong>clude feedback, feed-forward, <strong>and</strong> <strong>in</strong>tegral control. Dr. LeDuc’s experimental approach is to buildspatiotemporal control <strong>in</strong>to models with <strong>the</strong> use <strong>of</strong> micr<strong>of</strong>luidics. He also is <strong>in</strong>terested <strong>in</strong> model<strong>in</strong>g cellcrowd<strong>in</strong>g <strong>and</strong> tissue implants.Multiscale Nature <strong>of</strong> Information TransferMauro Ferrari, Ph.D., M.S., Pr<strong>of</strong>essor, University <strong>of</strong> Texas Health Science Center at HoustonAt <strong>the</strong> patient level, Dr. Ferrari discussed use <strong>and</strong> <strong>translation</strong> <strong>of</strong> <strong>the</strong> <strong><strong>in</strong>formation</strong> imbedded <strong>in</strong> <strong>the</strong>biological properties <strong>of</strong> <strong>the</strong> body’s transportation systems to optimize a new generation <strong>of</strong> drug<strong>the</strong>rapies. Dr. Ferrari’s <strong>in</strong>terest is <strong>in</strong> <strong><strong>in</strong>formation</strong> <strong>transfer</strong> <strong>in</strong> biological systems from <strong>the</strong> health careperspective, <strong>in</strong> particular, <strong><strong>in</strong>formation</strong> <strong>transfer</strong> from <strong>the</strong> physician to <strong>the</strong> <strong>cancer</strong> <strong>and</strong> back.14 Meet<strong>in</strong>g Report


The recent <strong><strong>in</strong>formation</strong> revolution <strong>in</strong> <strong>the</strong> human world has been triggered through communicationat <strong>the</strong> chip (electronic) level, which is spatially directed, with built-<strong>in</strong> time sequences. Conversely,recent work <strong>in</strong> biological systems demonstrates that communication with<strong>in</strong> biological systems (cells,organelles, etc.) is not as spatially directed but is based on biological specificity. This is also applicableto <strong>the</strong> communication between <strong>the</strong> physician <strong>and</strong> <strong>the</strong> patient’s <strong>cancer</strong> <strong>and</strong> how <strong>the</strong> <strong><strong>in</strong>formation</strong> ismanaged. For example, if one starts with an <strong>in</strong>jection <strong>of</strong> a drug somewhere <strong>in</strong> <strong>the</strong> body, <strong>the</strong> drug hasto somehow travel to <strong>the</strong> target (<strong>in</strong>jection to location, po<strong>in</strong>t A to po<strong>in</strong>t B). The term “drug delivery” isoversimplified. Although <strong>the</strong> drug may have high specificity for <strong>the</strong> target, <strong>the</strong> transport process iscomplex, conta<strong>in</strong><strong>in</strong>g <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>the</strong> steps between po<strong>in</strong>t A <strong>and</strong> po<strong>in</strong>t B. For example, <strong>the</strong> transportmay <strong>in</strong>clude avoidance <strong>of</strong> undesirable uptake, metaboliz<strong>in</strong>g, <strong>and</strong> clearance mechanisms, as well asnavigation through normal circulatory pathways <strong>and</strong> tumor vasculature. Thus, <strong>the</strong> drug transportpathway uses many forms <strong>of</strong> communication <strong>in</strong>volv<strong>in</strong>g biophysical transport (active transport,diffusion) across biological barriers. These transport modalities are part <strong>of</strong> a transportation code. Thenext stage <strong>in</strong> development <strong>of</strong> drug <strong>the</strong>rapies will make use <strong>of</strong> biological properties/transportationsystems to optimize specificity <strong>and</strong> transport modalities (e.g., P-glycoprote<strong>in</strong>-mediated transport).Thus, <strong>the</strong> sequence <strong>of</strong> code used to manage transport through biological systems across biologicalbarriers is <strong>of</strong> significant <strong>in</strong>terest for future research.In addition, from <strong>the</strong> perspective <strong>of</strong> <strong>the</strong> physician/<strong>cancer</strong> communication pathway, it is clear from use<strong>of</strong> tools like ultrasound that signature differences across normal tissue <strong>and</strong> <strong>cancer</strong>s are architectural.Improved diagnostics are needed to explore <strong>the</strong> different architectural signatures with drug response.In particular, development <strong>of</strong> 3D multiscale (macroscopic <strong>and</strong> molecular) ma<strong>the</strong>matical model<strong>in</strong>g toolsgenerat<strong>in</strong>g models that are consistent across <strong>the</strong>se scales would aid <strong>cancer</strong> treatment <strong>in</strong>vestigations.Dynamics <strong>and</strong> Crosstalk <strong>of</strong> Intracellular OrganellesJennifer Lipp<strong>in</strong>cott-Schwartz, Ph.D., M.S., Senior Investigator, National Institute <strong>of</strong> Child Health <strong>and</strong>Human DevelopmentAt <strong>the</strong> subcellular, organelle level, Dr. Lipp<strong>in</strong>cott-Schwartz discussed implications for <strong>cancer</strong> <strong>in</strong>mechanisms <strong>of</strong> nongenomic cell cycle regulation.Dr. Lipp<strong>in</strong>cott-Schwartz described her studies on mitochondrial regulation <strong>of</strong> cell cycle control,<strong>in</strong>clud<strong>in</strong>g p53 <strong>in</strong>volvement <strong>and</strong> <strong>the</strong> implications for <strong>cancer</strong> <strong>the</strong>rapy. Her work also illustrates <strong>the</strong> value<strong>of</strong> exam<strong>in</strong><strong>in</strong>g not only <strong>the</strong> genomic code but also <strong>the</strong> use <strong>of</strong> traditional cell biological approaches tounderst<strong>and</strong><strong>in</strong>g <strong>the</strong> role <strong>of</strong> nongenomic cellular processes <strong>and</strong> cell organization <strong>in</strong> <strong>cancer</strong>.She has experimentally demonstrated that mitochondria change morphology with cell cycle.The organelles take on a hyperfused morphology at G1–S (similar to Dynan mutants that preventfission). Additional properties are an <strong>in</strong>creased matrix cont<strong>in</strong>uity, electrical connectivity, <strong>and</strong> maximaladenos<strong>in</strong>e triphosphatase production vs. o<strong>the</strong>r times <strong>in</strong> <strong>the</strong> cell cycle. Depolarization preventsmitochondria from reach<strong>in</strong>g <strong>the</strong> hyperfused state, which results <strong>in</strong> prevent<strong>in</strong>g cells from go<strong>in</strong>g <strong>in</strong>toS-phase. This is <strong>the</strong> only time <strong>in</strong> <strong>the</strong> cycle that cells are sensitive to mitochondrial depolarization.There is also evidence that <strong>the</strong> fused mitochondrial state leads to a buildup <strong>of</strong> cycl<strong>in</strong> E, without o<strong>the</strong>rcycl<strong>in</strong>s accumulat<strong>in</strong>g. p53 may play at least two different roles <strong>in</strong> <strong>the</strong> system. If <strong>the</strong> mitochondriaare depolarized, a p53/p21 block occurs, but p53 may also <strong>in</strong>dependently control genes <strong>in</strong>volved <strong>in</strong>mitochondrial respiration.Mitochondria, with p53, may regulate a restriction po<strong>in</strong>t <strong>in</strong> <strong>the</strong> cell cycle at G1–S progression;<strong>in</strong>vestigation <strong>of</strong> this may be an opportunity for <strong>cancer</strong> <strong>the</strong>rapy.The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 15


Information Theory <strong>in</strong> Liv<strong>in</strong>g Systems: Contributions <strong>of</strong> <strong>the</strong> MicroenvironmentRobert Gatenby, M.D., Division Chief, M<strong>of</strong>fitt Cancer Center <strong>and</strong> Research InstituteAt <strong>the</strong> cellular level, Dr. Gatenby discussed <strong>the</strong> dynamics <strong>and</strong> cont<strong>in</strong>u<strong>in</strong>g optimization <strong>of</strong> <strong><strong>in</strong>formation</strong>flow <strong>in</strong> nongenomic structures <strong>and</strong> <strong>the</strong> revaluation <strong>of</strong> that <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>the</strong> <strong>cancer</strong>ous state.Dr. Gatenby described <strong>the</strong> application <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>the</strong>ory to underst<strong>and</strong><strong>in</strong>g cellular stores <strong>of</strong><strong><strong>in</strong>formation</strong> <strong>and</strong> <strong>the</strong>ir relationships to <strong>cancer</strong>. He noted that <strong><strong>in</strong>formation</strong> <strong>the</strong>ory is limited by context;thus, key issues are <strong>the</strong> value (or fitness), reception, <strong>and</strong> cost <strong>of</strong> <strong>the</strong> <strong><strong>in</strong>formation</strong>. In terms <strong>of</strong>context <strong>and</strong> reception, biological <strong><strong>in</strong>formation</strong> requires both order <strong>and</strong> mean<strong>in</strong>g as <strong>the</strong> flow <strong>of</strong><strong><strong>in</strong>formation</strong> is from a sender to a receiver. As such, optimization dynamics are cont<strong>in</strong>uously occurr<strong>in</strong>g,ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g only enough <strong><strong>in</strong>formation</strong> for <strong>the</strong> cell to function.In <strong>the</strong> study <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong>, <strong>the</strong>re is a balance <strong>of</strong> context <strong>and</strong> cost. For example, seem<strong>in</strong>glysimilar k<strong>in</strong>ds <strong>of</strong> <strong><strong>in</strong>formation</strong> may have more value than o<strong>the</strong>rs. Differentiated functions <strong>of</strong> cells (high<strong><strong>in</strong>formation</strong> <strong>and</strong> energy) come at a high cost but create high value <strong>in</strong> terms <strong>of</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> viability<strong>of</strong> <strong>the</strong> organism. However, for <strong>the</strong> transformed cell, a differentiated function has high cost but lowvalue <strong>in</strong> that it does not contribute to cellular proliferation. Therefore, <strong>cancer</strong> cells will tend to losedifferentiated functions but ga<strong>in</strong> <strong><strong>in</strong>formation</strong> that promotes proliferation <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual cell.The <strong>in</strong>tegration <strong>of</strong> <strong>the</strong>rmodynamic buffer<strong>in</strong>g <strong>of</strong> <strong>the</strong> cell <strong>in</strong>to control mechanisms is important. How acell ma<strong>in</strong>ta<strong>in</strong>s constant entropy may be due to <strong>the</strong> varied mix <strong>of</strong> <strong><strong>in</strong>formation</strong> that cells ma<strong>in</strong>ta<strong>in</strong>. Onecomponent <strong>of</strong> cellular <strong><strong>in</strong>formation</strong> is <strong>the</strong> DNA-RNA prote<strong>in</strong> system that encodes heritable <strong><strong>in</strong>formation</strong>.In addition, critical <strong>and</strong> important <strong><strong>in</strong>formation</strong> may be encoded <strong>in</strong> some <strong>of</strong> <strong>the</strong> nongenomic centers,such as membrane content, membrane gradients, all highly nonr<strong>and</strong>om structures, <strong>and</strong> cytoplasmic<strong><strong>in</strong>formation</strong> sources. Cells ma<strong>in</strong>ta<strong>in</strong> an ensemble <strong>of</strong> <strong>in</strong>tegrated <strong><strong>in</strong>formation</strong> units that constantly assess<strong>the</strong> state <strong>of</strong> <strong>the</strong> cell, <strong>in</strong>clud<strong>in</strong>g regional <strong>and</strong> temporal environmental <strong>and</strong> cytosolic functions.Thus, <strong>in</strong> <strong>cancer</strong>, <strong>the</strong> fundamental dynamics are flow <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>in</strong>to <strong>and</strong> out <strong>of</strong> <strong>the</strong> <strong>cancer</strong> cell;critical <strong><strong>in</strong>formation</strong> may be encoded <strong>in</strong> nongenomic structures <strong>of</strong> <strong>the</strong> cell. There is <strong>the</strong>n a cont<strong>in</strong>uousoptimization process <strong>of</strong> <strong>the</strong> cost <strong>and</strong> fitness benefit <strong>of</strong> each <strong><strong>in</strong>formation</strong> bit. Carc<strong>in</strong>ogenesis isfundamentally a process <strong>in</strong> which <strong><strong>in</strong>formation</strong> is revalued.Discussion Highlights: The panelists <strong>and</strong> o<strong>the</strong>r participants discussed several questions posed tostimulate th<strong>in</strong>k<strong>in</strong>g on cross-scale application <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>the</strong>ory to underst<strong>and</strong><strong>in</strong>g <strong>cancer</strong>. Follow<strong>in</strong>gare questions <strong>and</strong> some <strong>of</strong> <strong>the</strong> highlights that emerged from this session:• Can <strong>cancer</strong> be reversed <strong>and</strong>/or <strong>the</strong> cells “normalized”? Cells could be shifted back if control<strong>of</strong> <strong>the</strong> cell cycle could be rega<strong>in</strong>ed (e.g., as suggested by Dr. Lipp<strong>in</strong>cott-Schwartz’s work onmitochondria). In vitro experiments have also sought to reverse <strong>the</strong> neoplastic process by plac<strong>in</strong>gtumor cells <strong>in</strong> nontumor environments. All <strong>of</strong> <strong>the</strong>se studies suggest that <strong>the</strong> context <strong>in</strong> which <strong>the</strong>cell exists is important.• How does one def<strong>in</strong>e <strong><strong>in</strong>formation</strong> flow, <strong>and</strong> how can <strong><strong>in</strong>formation</strong> <strong>the</strong>ory be employed tounderst<strong>and</strong> <strong>the</strong> <strong>in</strong>tercellular signal<strong>in</strong>g that exists <strong>in</strong> microenvironment (<strong>in</strong>clud<strong>in</strong>g stromacells, etc.)? Tumors require maximal <strong><strong>in</strong>formation</strong> <strong>and</strong> unique flows <strong>of</strong> <strong><strong>in</strong>formation</strong>; communicationbetween cells is critical for cells to proliferate.• In tumors <strong>of</strong> different types, some cells are full <strong>of</strong> mitochondria, so do we need to know howcells control mitochondrial proliferation? Cellular syn<strong>the</strong>sis <strong>of</strong> precursors was suggested as onepo<strong>in</strong>t <strong>of</strong> control <strong>and</strong> a logical area <strong>of</strong> <strong>in</strong>vestigation.16 Meet<strong>in</strong>g Report


Small Group Discussions:Underst<strong>and</strong><strong>in</strong>g Signal<strong>in</strong>g <strong>and</strong> Contextual Translation <strong>of</strong> Information at Multiscales:What’s Relevant From <strong>the</strong> Physical Sciences?For a full graphical representation <strong>of</strong> this discussion, see Figure 8, Appendix 1.In this second bra<strong>in</strong>storm<strong>in</strong>g session, small <strong>in</strong>terdiscipl<strong>in</strong>ary groups were asked to consider<strong><strong>in</strong>formation</strong> received from prior sessions along with potential physical mechanisms to revisit<strong>the</strong> earlier question <strong>of</strong> <strong>the</strong> most relevant research questions to unravel <strong>the</strong> complex <strong><strong>in</strong>formation</strong>associated with <strong>cod<strong>in</strong>g</strong>, de<strong>cod<strong>in</strong>g</strong>, <strong>transfer</strong>, <strong>and</strong> <strong>translation</strong> <strong>in</strong> <strong>cancer</strong>. The output from <strong>the</strong> groups<strong>in</strong>creased to <strong>in</strong>clude o<strong>the</strong>r questions as follows:• What are Shannon’s channel <strong>and</strong> noise <strong>in</strong>terms <strong>of</strong> DNA <strong>and</strong> its actions?• How much <strong>in</strong>heritable <strong><strong>in</strong>formation</strong> isencoded solely <strong>in</strong> <strong>the</strong> <strong>in</strong>tracellular structures<strong>of</strong> normal <strong>and</strong> <strong>cancer</strong> cells?• To what extent do <strong>the</strong> miRNAs have paracr<strong>in</strong>esignal<strong>in</strong>g functions, <strong>and</strong> what are <strong>the</strong>ir rolesacross scale (DNA/prote<strong>in</strong>/cell)?• What are <strong>the</strong> mechanisms by which <strong>the</strong>signals are modified out <strong>of</strong> <strong>the</strong> <strong>cancer</strong> cell?What is <strong>the</strong> m<strong>in</strong>imal set <strong>of</strong> <strong><strong>in</strong>formation</strong>required for cell-cell <strong>and</strong> cell-matrixcommunication <strong>in</strong> <strong>cancer</strong>?• What tools do we need to predict <strong>and</strong> controlmultiscale communications? Can we developtools to measure spatial <strong>and</strong> temporalvariation <strong>and</strong> <strong>in</strong>tercellular <strong>and</strong> <strong>in</strong>tracellulargradients?• How can we make predictions about<strong>in</strong>creas<strong>in</strong>gly complex cell behaviors <strong>and</strong> build<strong>in</strong>creas<strong>in</strong>gly complex models <strong>of</strong> cell behaviorto underst<strong>and</strong> <strong>cancer</strong> (e.g., such as for cellmovement)? What are all <strong>the</strong> factors thataffect <strong>the</strong> cell cycle <strong>in</strong> <strong>cancer</strong>?• How is <strong>cancer</strong> <strong>in</strong>itiated: at <strong>the</strong> cell level (s<strong>in</strong>gleabnormal cell) or by a change <strong>in</strong> niche attissue level? What are <strong>the</strong> phylogeny <strong>and</strong>phenotypes <strong>of</strong> premetastatic-metastatictumors?• How do we characterize tissue niches(elasticity, etc.)? How do we measure <strong>the</strong>physical forces that def<strong>in</strong>e <strong>the</strong>se niches?• Precisely how is <strong>the</strong> <strong><strong>in</strong>formation</strong> energyburden <strong>in</strong> <strong>cancer</strong> calculated?• Consider<strong>in</strong>g <strong>the</strong> tumor as an ecosystem,<strong>the</strong>re are key dependencies between cells. Do<strong>the</strong>se differ <strong>in</strong> low-grade, well-differentiatedtumors vs. high-grade tumors with poordifferentiation? How do we underst<strong>and</strong><strong>in</strong>terdependencies <strong>of</strong> tumors at <strong>the</strong> tissuelevel? If we can analytically def<strong>in</strong>e cells (geneexpression, tissue organization <strong>in</strong> organismssuch as C. elegans, can it be done for a mousetumor?• Why do patients with <strong>cancer</strong> die? Is this aspecific aspect <strong>of</strong> <strong><strong>in</strong>formation</strong> precipitatedby or controlled by <strong>cancer</strong> cells? Are <strong>the</strong>resystematic ways to extract predictions fromhigher level (tissues, organs) descriptions <strong>of</strong><strong>cancer</strong>?The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 17


Panel DiscussionThe Outcomes <strong>and</strong> Consequences <strong>of</strong>Information Transfer <strong>in</strong> Cancer Across Length ScalesFor a full graphical representation <strong>of</strong> this discussion, see Figure 9, Appendix 1.The group next heard four short presentations directed to <strong>the</strong> <strong>transfer</strong> <strong>of</strong> <strong><strong>in</strong>formation</strong> across <strong>the</strong>various scales.How Information Is Used To Build Cells: Design Pr<strong>in</strong>ciples <strong>and</strong> Information TransferWallace F. Marshall, Ph.D., Assistant Pr<strong>of</strong>essor, University <strong>of</strong> California, San FranciscoGiven that cells <strong>and</strong> organelles are extremely complex, Dr. Marshall raised <strong>the</strong> question <strong>of</strong> whe<strong>the</strong>r <strong>the</strong>genome has all <strong>of</strong> <strong>the</strong> <strong><strong>in</strong>formation</strong> needed to specify this degree <strong>of</strong> complexity. He posited that <strong>the</strong>genome may not be a bluepr<strong>in</strong>t for cellular structure, given that bluepr<strong>in</strong>ts are geometrically explicit,position-based plans, without tim<strong>in</strong>g or order <strong><strong>in</strong>formation</strong> for <strong>the</strong> build<strong>in</strong>g process. Conversely, <strong>the</strong>genome is tim<strong>in</strong>g based, with <strong>the</strong> geometry implicitly based <strong>in</strong> <strong>the</strong> genome. Thus, <strong>the</strong> questionarises as to how much <strong>of</strong> <strong>the</strong> genome is needed to specify construction <strong>of</strong> <strong>the</strong> cells. By us<strong>in</strong>g a modelsystem to explore <strong>the</strong> determ<strong>in</strong>ants <strong>of</strong> organelle structure, Dr. Marshall argues that cells are probablynot as complex as <strong>the</strong>y appear; a limited number <strong>of</strong> genes may determ<strong>in</strong>e <strong>the</strong> complexity <strong>of</strong> cellularstructures.In order to probe how much <strong><strong>in</strong>formation</strong> is needed to build structures at different size scales, specificcase studies <strong>of</strong> subcellular structures can be used to identify design pr<strong>in</strong>ciples that underlie cellulararchitecture <strong>and</strong> assembly. The approach is to use a simplified organelle-level description <strong>of</strong>cellular structure. This approach avoids attempt<strong>in</strong>g to work at <strong>the</strong> detailed <strong>and</strong> complicated level <strong>of</strong>biochemical pathways, facilitat<strong>in</strong>g <strong>the</strong> study <strong>of</strong> size, shape, number, position, <strong>and</strong> orientation <strong>of</strong> <strong>the</strong>organelle. If structural <strong><strong>in</strong>formation</strong> needed at <strong>the</strong> organelle level is understood, <strong>the</strong>oretically it could beput toge<strong>the</strong>r to obta<strong>in</strong> underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> overall structural <strong><strong>in</strong>formation</strong> requirements <strong>of</strong> cells <strong>and</strong>how much <strong>of</strong> <strong>the</strong> genome would be required to specify cell structures.As an example, Dr. Marshall used his studies <strong>of</strong> <strong>the</strong> dynamic ma<strong>in</strong>tenance <strong>of</strong> flagellar length <strong>in</strong>cilia to exam<strong>in</strong>e one structural component—size. Cilia are microtubule-based structures; length isma<strong>in</strong>ta<strong>in</strong>ed at <strong>the</strong> correct rate by a steady-state process that assembles <strong>and</strong> disassembles subunitsus<strong>in</strong>g <strong>in</strong>traflagellar transport (IFT) rafts. S<strong>in</strong>ce cilia are l<strong>in</strong>ear organelles, cilia length makes a goodmodel for study<strong>in</strong>g organelle size; it is relatively less complex than size <strong>in</strong> o<strong>the</strong>r organelles (which canbe dependent on volume, structures, etc.). One question is what <strong><strong>in</strong>formation</strong> is needed to achieve <strong>and</strong>ma<strong>in</strong>ta<strong>in</strong> a def<strong>in</strong>ed cilia length? The goal <strong>of</strong> <strong>the</strong> control system, assum<strong>in</strong>g that cilia are at <strong>the</strong> correctlength, is to have equivalent rates <strong>of</strong> assembly <strong>and</strong> disassembly; perturbation <strong>of</strong> ei<strong>the</strong>r would change<strong>the</strong> equilibrium steady state <strong>and</strong> length. Dr. Marshall employed genetics to study length control, us<strong>in</strong>gmultiple mutations to demonstrate that a s<strong>in</strong>gle component, assembly rate, determ<strong>in</strong>es <strong>the</strong> length.The disassembly rate is length <strong>in</strong>dependent, while <strong>the</strong> assembly rate is under a control mechanism<strong>and</strong> limited by IFT, which is <strong>in</strong>herently length dependent. Two mechanisms result <strong>in</strong> a longer flagellamutant phenotype, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> assembly or decreas<strong>in</strong>g <strong>the</strong> disassembly rates. Multiple mutationscan produce <strong>the</strong> same result. This work demonstrates that multiple “calculations” <strong>in</strong> a cell can lead to as<strong>in</strong>gle end po<strong>in</strong>t.This study illustrates that complex cellular structures can be effectively studied us<strong>in</strong>g simple models.Moreover, Dr. Marshall argued that evolution would favor <strong>the</strong> use <strong>of</strong> crude schemes us<strong>in</strong>g fewer ra<strong>the</strong>rthan more components <strong>and</strong> that cells are less complicated than <strong>the</strong>y appear, <strong>in</strong> that most organelles18 Meet<strong>in</strong>g Report


probably require a small number <strong>of</strong> genes to modulate <strong>the</strong>ir geometry. It rema<strong>in</strong>s to be seen how thismodel will be applicable to organelles <strong>in</strong> general <strong>and</strong> to <strong>cancer</strong> specifically.Intersection <strong>of</strong> Evolution <strong>and</strong> Information Theory: What Does It Mean for Cancer?Carlo C. Maley, Ph.D., Assistant Pr<strong>of</strong>essor, The Wistar InstituteEvolution can be thought <strong>of</strong> as an algorithm for creat<strong>in</strong>g <strong>and</strong> <strong>transfer</strong>r<strong>in</strong>g <strong><strong>in</strong>formation</strong>. Mutationsgenerate new variants, <strong>and</strong> natural selection elim<strong>in</strong>ates <strong>the</strong> maladaptive variants, leav<strong>in</strong>g a correlationbetween <strong>the</strong> genome <strong>and</strong> <strong>the</strong> environments <strong>in</strong> which it evolved. Cancer is one example <strong>of</strong> multilevelselection; <strong>the</strong> tumor suppression mechanisms generated by billions <strong>of</strong> years <strong>of</strong> evolution can bedismantled by somatic evolution with<strong>in</strong> a human lifetime.Three factors are considered necessary <strong>and</strong> sufficient for natural selection. These factors are observed<strong>in</strong> all clones <strong>in</strong> neoplasms that have a phenotype that is favored over o<strong>the</strong>r phenotypes. Dr. Maleyoutl<strong>in</strong>ed <strong>the</strong>se factors as follows:• Variation <strong>in</strong> cell populations from somatic mutations. Genetic heterogeneity with<strong>in</strong> neoplasmsis commonly found <strong>and</strong> well documented; somatic evolution can give rise to heterogeneity.• Heritable variation among cells. Encoded genetic <strong>and</strong> epigenetic changes are carried over todaughter cells dur<strong>in</strong>g cell division. Clonal expansions are <strong>the</strong> signature <strong>of</strong> expansion <strong>of</strong> neoplasms<strong>and</strong> can predict progression.• Variation that affects fitness, reproduction, <strong>and</strong>/or survival <strong>of</strong> <strong>the</strong> cells (e.g., suppression <strong>of</strong>apoptosis). It is also important to note that <strong>the</strong> fitness effect <strong>of</strong> <strong>the</strong> mutations is also a function<strong>of</strong> <strong>the</strong> microenvironment.With regard to somatic evolution, human cells are well adapted to be<strong>in</strong>g part <strong>of</strong> <strong>the</strong> cooperativeenvironment <strong>of</strong> a multicellular body, but <strong>the</strong>y are not <strong>in</strong>itially well adapted to be<strong>in</strong>g a <strong>cancer</strong>ousparasite with<strong>in</strong> <strong>the</strong> body. Thus, <strong>the</strong> start<strong>in</strong>g po<strong>in</strong>t for a <strong>cancer</strong> is likely far from <strong>the</strong> optimal po<strong>in</strong>t for<strong>the</strong> <strong>cancer</strong>. However, s<strong>in</strong>ce most mutations would probably be deleterious, it is not clear that that istrue for <strong>the</strong> neoplastic cell. Some mutations must affect <strong>the</strong> genes responsible for differentiation <strong>and</strong>cooperation. Dr. Maley questioned what percentage <strong>of</strong> mutations <strong>in</strong>crease <strong>the</strong> fitness (survival) <strong>of</strong> asomatic cell.Although <strong>the</strong> evolutionary view <strong>of</strong> <strong>cancer</strong> has been around for decades, <strong>the</strong> field has not developed asneeded. As a result, many questions about details <strong>in</strong> <strong>the</strong> evolution <strong>of</strong> neoplasms rema<strong>in</strong> unanswered,<strong>and</strong> a significant amount <strong>of</strong> work is still to be done. Questions <strong>in</strong>volve mutation rate, population size,<strong>and</strong> generation time <strong>of</strong> <strong>cancer</strong> cells. How long does progression take on a s<strong>in</strong>gle cell/tissue basis? Howmuch population structure is <strong>in</strong> a neoplasm? What are <strong>the</strong> selective effects <strong>of</strong> mutations? How does<strong>the</strong> microenvironment change those selective effects? What are <strong>the</strong> selective effects <strong>of</strong> our <strong>the</strong>rapies?How does <strong>the</strong> configuration <strong>of</strong> clones change over time?Relative to <strong><strong>in</strong>formation</strong> <strong>the</strong>ory, it is <strong>in</strong>terest<strong>in</strong>g to note both <strong><strong>in</strong>formation</strong> ga<strong>in</strong> <strong>and</strong> loss <strong>in</strong> <strong>cancer</strong>. Most<strong>cancer</strong>s not only have extra DNA (are hyperdiploid) but also have large losses <strong>of</strong> genetic <strong><strong>in</strong>formation</strong><strong>and</strong> large regions <strong>of</strong> homozygosity. This suggests that reversibility <strong>of</strong> <strong>cancer</strong> cells is questionable, as<strong>the</strong>re is no way to ga<strong>in</strong> back <strong>the</strong> <strong><strong>in</strong>formation</strong>.Fur<strong>the</strong>rmore, Shannon’s <strong><strong>in</strong>formation</strong> can be measured with<strong>in</strong> a neoplasm by characteriz<strong>in</strong>g <strong>the</strong>number <strong>and</strong> frequency <strong>of</strong> clones; Shannon’s diversity predicts progression. For example, measurement<strong>of</strong> <strong>the</strong> frequency <strong>of</strong> clones <strong>in</strong> a Barrett’s esophagus neoplasm found that neoplasms conta<strong>in</strong><strong>in</strong>g morevariability (Shannon’s <strong><strong>in</strong>formation</strong>) were more likely to progress to <strong>cancer</strong>.The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 19


In conclusion, <strong><strong>in</strong>formation</strong> <strong>the</strong>ory <strong>and</strong> <strong>cancer</strong> are connected, s<strong>in</strong>ce <strong>the</strong> <strong>transfer</strong> <strong>of</strong> <strong><strong>in</strong>formation</strong> over timeoccurs dur<strong>in</strong>g neoplastic progression or via evolution. Evolution builds <strong><strong>in</strong>formation</strong> only <strong>in</strong> heritablestructures; heritable changes <strong>in</strong> neoplasms <strong>in</strong>clude genetic <strong>and</strong> epigenetic changes. There are manyforms <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong> (e.g., signal transduction from <strong>the</strong> microenvironment). Information isboth created <strong>and</strong> destroyed by somatic evolution <strong>in</strong> neoplasms, <strong>and</strong> this process drives neoplasticprogression <strong>and</strong> accounts for <strong>the</strong>rapeutic resistance. That process is poorly understood <strong>and</strong> representsa huge opportunity for progress <strong>in</strong> <strong>cancer</strong> research.The Physics <strong>of</strong> Information Transfer <strong>in</strong> CancerRobert H. Aust<strong>in</strong>, Ph.D., Pr<strong>of</strong>essor <strong>of</strong> Physics, Pr<strong>in</strong>ceton UniversityTo study cellular <strong>in</strong>teractions <strong>and</strong> <strong><strong>in</strong>formation</strong> <strong>transfer</strong> <strong>in</strong>volved <strong>in</strong> cellular survival, Dr. Aust<strong>in</strong> employs<strong>the</strong> study <strong>of</strong> bacteria <strong>in</strong> complex microenvironments us<strong>in</strong>g nan<strong>of</strong>luidics <strong>and</strong> arrays.Bacterial mutants that evolve <strong>in</strong> environments with unchanged culture media adapt to stress <strong>and</strong>express a growth advantage <strong>in</strong> stationary phase (GASP), emerg<strong>in</strong>g as GASP mutants. When <strong>the</strong> culturemedium lacks nutrients <strong>and</strong> <strong>the</strong> two types <strong>of</strong> bacteria are “stirred” toge<strong>the</strong>r, <strong>the</strong> wild-type bacteriareduce metabolism <strong>and</strong> conserve resources, while <strong>the</strong> GASP mutants do not decrease metabolism <strong>and</strong>will overgrow <strong>the</strong> wild type, similar to a <strong>cancer</strong>. However, depend<strong>in</strong>g on how <strong>the</strong> two stra<strong>in</strong>s are mixed,a complicated <strong>in</strong>terdependent relationship is observed. Both cell types can grow well toge<strong>the</strong>r, due<strong>in</strong> part to mutual benefits obta<strong>in</strong>ed from proximity; for example, <strong>the</strong> mutants are able to metabolizewild-type waste products. Cell cluster<strong>in</strong>g <strong>of</strong> <strong>the</strong> stra<strong>in</strong>s can be analyzed us<strong>in</strong>g <strong>the</strong> Pearson CorrelationCoefficient (1 <strong>in</strong>dicates attraction, –1 repulsion, 0 chaos). In culture, <strong>the</strong> GASP stra<strong>in</strong> forms relativelydiffuse clusters, while <strong>the</strong> wild type develops tight clusters with correlation coefficients near 1. If<strong>the</strong> two stra<strong>in</strong>s are mixed, <strong>the</strong> coefficient changes over time to –1. Thus, when <strong>the</strong> two stra<strong>in</strong>s aremixed, fitness for both forms is optimized by cluster<strong>in</strong>g through nonself-avoidance <strong>and</strong> selfrecognition<strong>and</strong> communication; crosstalk between species becomes apparent, <strong>and</strong> fitness isoptimized by coexistence at different length scales. The length scale <strong>of</strong> <strong>the</strong> <strong>in</strong>teraction betweenGASP <strong>and</strong> wild types not only is local but also reaches metascale correlations.These experiments also demonstrate that both stra<strong>in</strong>s are necessary for <strong>the</strong> stable existence <strong>of</strong><strong>the</strong> species <strong>in</strong> <strong>the</strong> presence <strong>of</strong> <strong>the</strong> complex environment. This leads to <strong>the</strong> question: Is <strong>cancer</strong> anecessary defense mechanism for <strong>the</strong> species? Dr. Aust<strong>in</strong> suggested that <strong><strong>in</strong>formation</strong> approaches<strong>and</strong> <strong>the</strong>oretical constructs may help expla<strong>in</strong> <strong>the</strong> language <strong>of</strong> coexistence <strong>and</strong> cooperation <strong>in</strong> morecomplex systems.Information Theory: Could This Approach Enable an Underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> Why/How <strong>of</strong> <strong>the</strong>Malignant Phenotype?Christoph C. Adami, Ph.D., Pr<strong>of</strong>essor, California Institute <strong>of</strong> TechnologyDr. Adami discussed how <strong>cancer</strong> research could take advantage <strong>of</strong> <strong>the</strong> context dependence <strong>of</strong><strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong> through exam<strong>in</strong><strong>in</strong>g <strong>in</strong>teractions <strong>of</strong> genes <strong>in</strong> <strong>cancer</strong> pathways to evaluatecritical mutations <strong>in</strong> <strong>cancer</strong>. Because somatic mutation rates <strong>in</strong> <strong>cancer</strong> are <strong>of</strong>ten elevated, not only areoncogenes <strong>and</strong> tumor suppressor genes mutated, but also o<strong>the</strong>r less significant genes that may notimpact cell transformation are also mutated. Therefore, <strong>the</strong> issue is how critical mutations that cause<strong>cancer</strong> are dist<strong>in</strong>guished from mutations that are just associated with <strong>cancer</strong>. Because <strong>the</strong> fitness <strong>of</strong>one gene can be cont<strong>in</strong>gent on <strong>the</strong> fitness <strong>of</strong> ano<strong>the</strong>r, <strong>the</strong> same method to f<strong>in</strong>d important prote<strong>in</strong>channels described <strong>in</strong> Dr. Adami’s keynote address above can be used to f<strong>in</strong>d important mutations <strong>in</strong><strong>cancer</strong>—look for <strong>the</strong> signals that change. In <strong>the</strong>ory, to def<strong>in</strong>e <strong>the</strong> channels between prote<strong>in</strong>s <strong>in</strong> cells, all<strong>the</strong> prote<strong>in</strong> comb<strong>in</strong>ations would be tested. However, a more practical approach is to look for changes<strong>in</strong> signals from prote<strong>in</strong>s that are actively signal<strong>in</strong>g. Critical mutations <strong>in</strong> <strong>cancer</strong> can be <strong>in</strong>vestigated <strong>in</strong><strong>the</strong> same way, <strong>and</strong> Dr. Adami proposes that genes that <strong>in</strong>teract <strong>in</strong> <strong>cancer</strong> can be viewed as a network.20 Meet<strong>in</strong>g Report


Given two genes, an oncogene <strong>and</strong> a tumor suppressor gene, each has wild-type <strong><strong>in</strong>formation</strong> content<strong>and</strong> wild-type replication rate. If <strong><strong>in</strong>formation</strong> can be used as a proxy for fitness, <strong>the</strong>n a mutatedoncogene, a faster replicator, should have a mutation that has <strong>in</strong>creased its <strong><strong>in</strong>formation</strong> content.In addition, <strong>the</strong> oncogene <strong>in</strong>crease is conditional on ano<strong>the</strong>r mutation <strong>in</strong> a gene with<strong>in</strong> a pathwaydeactivat<strong>in</strong>g a tumor suppressor pathway. If <strong>the</strong> mutation is with<strong>in</strong> a prote<strong>in</strong>, that prote<strong>in</strong>’s <strong><strong>in</strong>formation</strong>content may be decreased. Thus, <strong>the</strong> <strong>in</strong>creased <strong><strong>in</strong>formation</strong> <strong>of</strong> <strong>the</strong> oncogene is conditional ona mutation deactivat<strong>in</strong>g a tumor suppressor pathway, <strong>and</strong> so only <strong>the</strong> correlated mutationsbetween oncogenes <strong>and</strong> tumor suppressor genes are diagnostic <strong>of</strong> <strong>cancer</strong>.Dr. Adami proposed that f<strong>in</strong>d<strong>in</strong>g a network <strong>of</strong> genes that <strong>in</strong>teract to change replicatory fitnessis tantamount to discover<strong>in</strong>g <strong>cancer</strong> pathways. The <strong>cancer</strong> pathway requires f<strong>in</strong>d<strong>in</strong>g correlatedmutations or l<strong>in</strong>ked gene products with<strong>in</strong> a pathway. Correlated mutations can be identified us<strong>in</strong>g<strong><strong>in</strong>formation</strong> <strong>the</strong>ory if l<strong>in</strong>kage <strong><strong>in</strong>formation</strong> exists, such as whe<strong>the</strong>r two genes with mutation patternsare present <strong>in</strong> <strong>the</strong> same cell. Similar <strong>in</strong>vestigations with HIV protease <strong>and</strong> reverse transcriptasedemonstrated that correlated mutations happen only <strong>in</strong> sequence regions with high entropy <strong>and</strong>are not more likely to happen than by chance. However, Dr. Adami predicts that correlated mutationsl<strong>in</strong>ked between prote<strong>in</strong>s <strong>in</strong> a <strong>cancer</strong> pathway are more likely to happen than by chance, because <strong>the</strong>yare associated with a <strong>cancer</strong> genome.The current sequenc<strong>in</strong>g paradigm focuses on identify<strong>in</strong>g genes that have a significant number <strong>of</strong>mutations. Of note, application <strong>of</strong> <strong>the</strong> program requires new guidel<strong>in</strong>es on data collected per patient.Patient-specific lists <strong>of</strong> mutations <strong>and</strong> pr<strong>of</strong>iles are needed for such correlations. F<strong>in</strong>ally, <strong><strong>in</strong>formation</strong><strong>the</strong>ory can also be used to track <strong>and</strong> study drug resistance mutations <strong>in</strong> <strong>cancer</strong>, just as for <strong>the</strong> example<strong>of</strong> drug resistance <strong>in</strong> HIV described previously at this meet<strong>in</strong>g.Group DiscussionRobert Aust<strong>in</strong>, Ph.D., Christoph C. Adami, Ph.D.As <strong>in</strong> earlier discussions at this meet<strong>in</strong>g, <strong>the</strong> panel members considered several key questions relatedto <strong>the</strong> panel’s topic. Key po<strong>in</strong>ts <strong>and</strong> some po<strong>in</strong>ts from <strong>the</strong> discussion addressed <strong>in</strong>cluded:Although many cells circulate per day that are sloughed <strong>of</strong>f from primary tumors, very limitednumbers <strong>of</strong> <strong>the</strong>se cells result <strong>in</strong> metastasis—why is that true? Some po<strong>in</strong>ts from <strong>the</strong> discussionare summarized below:• There is currently no known mechanism by which a <strong>cancer</strong> cell can transmit a <strong>cancer</strong>ousphenotype or impr<strong>in</strong>t onto a preexist<strong>in</strong>g normal cell. Therefore, <strong>cancer</strong> aris<strong>in</strong>g <strong>in</strong> remotelocations can be understood as derived from cells sloughed from <strong>the</strong> tumor that are derivedfrom stem cells. These sloughed-<strong>of</strong>f tumor cells may become nonmalignant for a period <strong>of</strong>time but can eventually transform back to be like stem cells.• One explanation may be that <strong>the</strong> microenvironment affects phenotype <strong>and</strong> favors metastases.A preconditioned niche may facilitate neoplastic growth, but this phenomenon is not wellunderstood. There are certa<strong>in</strong> spots where tumors settle, consistent with precondition<strong>in</strong>g.• Infectious processes are associated with <strong>cancer</strong> (e.g., Helicobacter pylori, which has been relatedto <strong>in</strong>flammatory processes). Also, women with breast <strong>cancer</strong> given bone-promot<strong>in</strong>g drugsafter <strong>the</strong>ir breasts are removed have <strong>the</strong>ir risk <strong>of</strong> recurrence reduced by 50%, similar to <strong>the</strong> riskreduction follow<strong>in</strong>g 6 months <strong>of</strong> chemo<strong>the</strong>rapy. Both <strong>the</strong>se observations are consistent with<strong>in</strong>direct effects (i.e., changes <strong>in</strong> microenvironment) as critical factors <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> growth<strong>of</strong> <strong>cancer</strong>s.The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 21


Cancer tumor growth <strong>in</strong>volves behavior similar to that <strong>of</strong> punctuated evolution. What causespunctuated evolution?• Punctuated evolution is used to expla<strong>in</strong> <strong>the</strong> fossil record. It is not well understood as applied toorganisms, much less <strong>cancer</strong>, but a current <strong>the</strong>ory is that populations achieve a fitness plateau;neutral mutations produce a similar phenotype <strong>and</strong> fitness <strong>and</strong> <strong>the</strong>n pop to a new plateau.Are <strong>the</strong>re emergent properties <strong>in</strong> evolution <strong>and</strong> <strong>cancer</strong>?• Surely, it is believed that nonl<strong>in</strong>ear <strong>in</strong>teractions occur <strong>in</strong> all complex systems.Are a critical number <strong>of</strong> <strong>cancer</strong> cells needed for metastases to occur, <strong>and</strong> can this be modeledus<strong>in</strong>g concepts from phase transitions?• One piece <strong>of</strong> evidence is <strong>the</strong> f<strong>in</strong>d<strong>in</strong>g <strong>of</strong> m<strong>in</strong>imal residual disease <strong>in</strong> leukemia patients.Observations show that after <strong>the</strong>rapy, <strong>cancer</strong> cells can still be detected <strong>in</strong> <strong>the</strong> blood (BCR-ABL),but <strong>the</strong> patients rema<strong>in</strong> stable for a number <strong>of</strong> years. It is still not known whe<strong>the</strong>r, if leukemiarema<strong>in</strong>s below some critical cell number, <strong>the</strong> immune system is able to control it. If so, an area<strong>of</strong> <strong>in</strong>vestigation would be to underst<strong>and</strong> <strong>the</strong> cooperation dynamics that lead to density effects.Are <strong>cancer</strong> stem cells reality or fiction? Do stem cells lead to <strong>cancer</strong>, or do <strong>cancer</strong> cells behave likestem cells? Are cells <strong>in</strong> a tumor heterogeneous? How would <strong>the</strong> stem cell concept be reconciledwith cells <strong>in</strong> a tumor hav<strong>in</strong>g <strong>the</strong> same genome?• Cancer stem cells are a powerful idea.• The concept <strong>of</strong> stem cells is orthogonal to <strong>the</strong> evolutionary approach; no doubt <strong>the</strong>re aredifferent phenotypes <strong>in</strong> a tumor, so what is <strong>the</strong> population <strong>of</strong> evolv<strong>in</strong>g cells? If stem cells exist,that means <strong>the</strong> evolv<strong>in</strong>g cells have been reduced to <strong>the</strong> stem cells only.• Is <strong>the</strong> question one <strong>of</strong> frequency <strong>of</strong> stem cells, as stem cells are cells that proliferate for a longtime?• Is it also possible that <strong>the</strong> <strong><strong>in</strong>formation</strong> needed for cells to become neoplastic requires changes<strong>in</strong> cooperation <strong>in</strong> a network (cooperative activity/<strong><strong>in</strong>formation</strong>/mutations) ra<strong>the</strong>r than gett<strong>in</strong>genough mutations to escape control?• It is hard to see how selective forces would operate <strong>in</strong> an environment that does not yet exist.Although niche signals (growth signals) are mysterious, it is clear that <strong>the</strong>y are ubiquitous<strong>and</strong> already readable by cells. Thus, a mutation to use <strong>the</strong>se signals <strong>in</strong> cells as a metastaticmechanism would be consistent with cooperation.• The fitness effect <strong>of</strong> one mutation may be dependent on a number <strong>of</strong> o<strong>the</strong>rs happen<strong>in</strong>g first(i.e., it may be a comb<strong>in</strong>ed effect <strong>of</strong> several “neutral” mutations).Panel DiscussionThe Future: If We Underst<strong>and</strong> <strong>the</strong> Specifics (Physics, Chemistry, etc.)<strong>of</strong> <strong>the</strong> Information, Its Transfer, <strong>and</strong> Contextual Translation atMultiple Length Scales <strong>in</strong> Cancer, Can We Alter Outcomes?For a graphical representation <strong>of</strong> this discussion, see Figure 10, Appendix 1.Paul Davies, Ph.D., D.Sc., Pr<strong>of</strong>essor, Arizona State University; Donald S. C<strong>of</strong>fey, Ph.D., Pr<strong>of</strong>essor, JohnsHopk<strong>in</strong>s University; Robert Phillips, Ph.D., Pr<strong>of</strong>essor, California Institute <strong>of</strong> Technology; W. Daniel Hillis,Ph.D., Chairman, Applied M<strong>in</strong>ds, Inc.; John E. Niederhuber, M.D., Director, National Cancer Institute22 Meet<strong>in</strong>g Report


In this session, each panel member was asked to pose critical questions to o<strong>the</strong>r members <strong>of</strong> <strong>the</strong> panel.The general subject was us<strong>in</strong>g <strong><strong>in</strong>formation</strong> at all levels to affect outcomes. Follow<strong>in</strong>g are <strong>the</strong> questionsposed <strong>and</strong> highlights <strong>of</strong> <strong>the</strong> ensu<strong>in</strong>g discussion.Will we have enough <strong><strong>in</strong>formation</strong> <strong>and</strong> process<strong>in</strong>g power to manage <strong>cancer</strong> without ever reallyunderst<strong>and</strong><strong>in</strong>g <strong>the</strong> problem? In o<strong>the</strong>r words, will we ever underst<strong>and</strong> <strong>the</strong> complexity <strong>of</strong> <strong>cancer</strong>?The panel’s discussion is summarized below.• We need some pr<strong>in</strong>ciples to underst<strong>and</strong> how to apply computational methods to solve <strong>the</strong>problem. It is possible that we will never completely underst<strong>and</strong> <strong>the</strong> problem, but hav<strong>in</strong>g nosolution is not an answer. In certa<strong>in</strong> systems, achiev<strong>in</strong>g some level <strong>of</strong> underst<strong>and</strong><strong>in</strong>g will enableachiev<strong>in</strong>g computational control over a system. In addition, we will need both <strong>the</strong>oreticalconstructs <strong>and</strong> comput<strong>in</strong>g power to achieve this level <strong>of</strong> underst<strong>and</strong><strong>in</strong>g (whatever it may be).• It is worthwhile compar<strong>in</strong>g tumors we can successfully treat with those that are currentlyuntreatable. Empirical approaches are useful; for example, <strong><strong>in</strong>formation</strong> <strong>transfer</strong> develops <strong>the</strong>fertilized egg <strong>in</strong>to a chicken <strong>in</strong> <strong>the</strong> presence <strong>of</strong> heat. This transition requires time <strong>and</strong> energy<strong>and</strong> is dynamic; once developed, <strong>the</strong> chicken must susta<strong>in</strong> energy levels to live. Phenotypes,<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> <strong>cancer</strong> phenotype, can be reversed with heat. The basis for all <strong>cancer</strong>s is amorphological transition, demonstrated by <strong>in</strong>troduc<strong>in</strong>g heat-sensitive SRC mutants <strong>in</strong>to cells.By chang<strong>in</strong>g <strong>the</strong> temperature, <strong>the</strong> cells can be forced to change between normal <strong>and</strong> a tumorform<strong>in</strong>g,<strong>cancer</strong>ous phenotype. This is pert<strong>in</strong>ent, s<strong>in</strong>ce all prote<strong>in</strong>, DNA, <strong>and</strong> RNA fold<strong>in</strong>g istemperature sensitive. Temperature regulation may be one approach to address this complexissue from a different angle. Thus, <strong>the</strong> big question is how heat regulates <strong><strong>in</strong>formation</strong> <strong>in</strong> a cell.Given <strong>the</strong> above, is it possible to develop simple phenomenological models <strong>of</strong> cells, with a few(10-15) parameters to fit <strong>in</strong> order to def<strong>in</strong>e <strong>cancer</strong>?• A lot <strong>of</strong> progress can come from <strong>the</strong> use <strong>of</strong> simple models, but fitt<strong>in</strong>g a large number <strong>of</strong>parameters may be difficult. Fifteen seems to be too many.• Although difficult, more parameters may be needed to model cells to account for tissuespecificcomplexity. This would be possible, because <strong>the</strong> only way complex systems have beencontrolled has been with very simple models.• In evolution, ext<strong>in</strong>ction is driven by chang<strong>in</strong>g <strong>the</strong> habitat, not by r<strong>and</strong>om mutation. We shouldfocus on chang<strong>in</strong>g <strong>the</strong> habitat <strong>and</strong> not <strong>the</strong> tumor cells, because tumor cells become resistantto drugs, while normal cells do not.What will it take to underst<strong>and</strong> <strong>the</strong> heterogeneity <strong>of</strong> <strong>the</strong> tumor? What if most <strong>of</strong> <strong>the</strong> <strong><strong>in</strong>formation</strong><strong>in</strong> <strong>the</strong> tumor is noise <strong>and</strong> only a small subset <strong>of</strong> <strong>the</strong> cells is crucial for carc<strong>in</strong>ogenesis, mean<strong>in</strong>gthat a lot <strong>of</strong> <strong>the</strong> aberrations are not important? Perhaps cells that are more organized are betterable to renew.• Cell vibrations are observed <strong>in</strong> <strong>cancer</strong>, <strong>and</strong> it has been suggested that stochastic resonanceis <strong>in</strong>volved. What is <strong>the</strong> importance <strong>of</strong> stochastic resonance <strong>in</strong> cell signal<strong>in</strong>g? Does <strong>the</strong> noiselevel need to be raised to see small signal peaks? The evolution <strong>of</strong> <strong>the</strong> nucleus <strong>in</strong>itially <strong>in</strong>volvedprimitive kerat<strong>in</strong>s <strong>and</strong> lam<strong>in</strong><strong>in</strong>s, <strong>and</strong> <strong>the</strong>se molecules cont<strong>in</strong>ue to be implicated <strong>in</strong> cell structure<strong>and</strong> signal<strong>in</strong>g. This suggests that a lot <strong>of</strong> cell structure/organization is designed <strong>and</strong> aligned forcell signal<strong>in</strong>g. Can a cell tune itself?• Perhaps we should focus on similarities between <strong>cancer</strong> cells, not differences. The question <strong>of</strong>noise underscores that <strong>the</strong> deepest levels <strong>of</strong> detail are <strong>of</strong>ten not useful <strong>in</strong> biological systems.Model<strong>in</strong>g at a level between m<strong>in</strong>imal <strong>and</strong> deepest complexity is likely best for control.The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 23


Is <strong>the</strong> notion <strong>of</strong> a cure for <strong>cancer</strong> a mean<strong>in</strong>gful concept, <strong>and</strong> would a Manhattan Project for<strong>cancer</strong> be viable?• We do not have to cure <strong>cancer</strong>, just manage it. We can cure some <strong>cancer</strong>s today, butit is doubtful that we will elim<strong>in</strong>ate <strong>cancer</strong>. However, we will make progress <strong>in</strong> control<strong>and</strong> prevention. The progress <strong>in</strong> control will come with underst<strong>and</strong><strong>in</strong>g <strong>the</strong> system <strong>and</strong>microenvironment <strong>in</strong> which <strong>the</strong> tumor exists. We will learn about <strong>the</strong> roles <strong>of</strong> tissue progenitor,stem cell, <strong>and</strong> viral <strong>in</strong>fection. Currently ~20% <strong>of</strong> <strong>cancer</strong>s are known to have viral <strong>in</strong>volvement, apercentage that will likely <strong>in</strong>crease.• Underst<strong>and</strong><strong>in</strong>g <strong>cancer</strong> evolution may be most helpful. All organisms have DNA, but <strong>in</strong> extremeenvironments (e.g., <strong>in</strong> <strong>the</strong> deep sea, m<strong>in</strong>es under high pressure, radiation, <strong>and</strong> temperatures),some organisms survive because <strong>the</strong>y have evolved systems that protect aga<strong>in</strong>st stress.We need to underst<strong>and</strong> how evolution works to allow organisms to survive <strong>and</strong> how stresssystems work.In relation to this meet<strong>in</strong>g, is <strong>the</strong> <strong>in</strong>terest <strong>in</strong> underst<strong>and</strong><strong>in</strong>g <strong>cancer</strong> or <strong>in</strong> successfully controll<strong>in</strong>git? Are <strong>the</strong>se <strong>in</strong>terests tied toge<strong>the</strong>r, or <strong>in</strong> fact quite different?• It was essentially agreed that it was not necessary to underst<strong>and</strong> every aspect <strong>of</strong> <strong>cancer</strong>development <strong>in</strong> order to <strong>in</strong>tervene successfully. A short bra<strong>in</strong>storm<strong>in</strong>g discussion ensuedregard<strong>in</strong>g <strong>the</strong> models that might be used to develop underst<strong>and</strong><strong>in</strong>g <strong>of</strong> various aspects <strong>of</strong><strong>cancer</strong> evolution, <strong><strong>in</strong>formation</strong>, <strong>and</strong> complexity. It was suggested that a model captur<strong>in</strong>gregulation <strong>of</strong> proliferation would be valuable. Regard<strong>in</strong>g evolution, it was noted thatma<strong>the</strong>matical model<strong>in</strong>g done to date describes what has happened <strong>in</strong> <strong>the</strong> past, but we requiremodels that predict future events. A suggestion was made that <strong>cancer</strong> might be viewedas a quasi-species <strong>in</strong> terms <strong>of</strong> evolution <strong>and</strong> <strong><strong>in</strong>formation</strong>. It was noted that one <strong>of</strong> <strong>the</strong> keyforces <strong>in</strong> evolution is development <strong>of</strong> modularity, which should be exam<strong>in</strong>ed <strong>in</strong> <strong>cancer</strong>. O<strong>the</strong>r<strong>in</strong>terest<strong>in</strong>g questions for <strong>in</strong>vestigation are multicellularity <strong>and</strong> hierarchy. Development <strong>of</strong> amodel <strong>of</strong> phase transition <strong>in</strong> <strong>cancer</strong> may be helpful.• Dr. Aust<strong>in</strong>’s experimental system with bacteria (described above) has potential for use <strong>in</strong>evolution studies (i.e., to look at changes over time). It would also be good to convert <strong>the</strong>system to use with somatic cells.Mr. Mittman closed this session by ask<strong>in</strong>g <strong>the</strong> panel members to comment on what <strong>the</strong>y would like tosee addressed <strong>in</strong> <strong>the</strong> rest <strong>of</strong> <strong>the</strong> meet<strong>in</strong>g. They responded as follows:• Discuss cell communication <strong>and</strong> heterogeneity <strong>and</strong> how to quantify <strong>and</strong> model <strong>the</strong>se eventsma<strong>the</strong>matically.• Detail specific <strong>the</strong>ories to test.• Sharpen def<strong>in</strong>itions <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong>.• Address <strong>cancer</strong> control systems.24 Meet<strong>in</strong>g Report


Meet<strong>in</strong>g Review <strong>and</strong> IntroductionsAnna D. Barker, Ph.D., Deputy Director, NCIDay 3: Friday, October 31, 2008Dr. Barker noted that <strong>the</strong> meet<strong>in</strong>g had been <strong>in</strong>terest<strong>in</strong>g <strong>and</strong> challeng<strong>in</strong>g given <strong>the</strong> complex <strong>and</strong> broadsubject matter <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong> <strong>in</strong> <strong>the</strong> whole arc <strong>of</strong> <strong>cod<strong>in</strong>g</strong>, de<strong>cod<strong>in</strong>g</strong>, <strong>transfer</strong>, <strong>and</strong> <strong>translation</strong>,<strong>in</strong> addition to <strong>the</strong> focus on communication among <strong>the</strong> various length scales <strong>and</strong> across time. NCIis fund<strong>in</strong>g a large number <strong>of</strong> scientists to research <strong>the</strong> various aspects <strong>of</strong> contextual <strong><strong>in</strong>formation</strong> <strong>in</strong><strong>cancer</strong>; however, she <strong>and</strong> Dr. Niederhuber are now try<strong>in</strong>g to br<strong>in</strong>g a miss<strong>in</strong>g piece <strong>in</strong>to this research, <strong>the</strong>physics <strong>of</strong> <strong>the</strong> process.In meet<strong>in</strong>gs such as this, a conceptual framework should be built around what has been discussed.The overarch<strong>in</strong>g question <strong>of</strong> whe<strong>the</strong>r <strong><strong>in</strong>formation</strong> <strong>the</strong>ory has a role <strong>in</strong> underst<strong>and</strong><strong>in</strong>g <strong>cancer</strong>, posed at<strong>the</strong> start <strong>of</strong> this meet<strong>in</strong>g, will be revisited. In particular, dur<strong>in</strong>g <strong>the</strong> presentation by Dr. Hillis, Dr. Barkerasked <strong>the</strong> group to th<strong>in</strong>k about some <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g questions that had been raised throughout <strong>the</strong>meet<strong>in</strong>g:• What is <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong>? We need to start to answer this question. Th<strong>in</strong>k about <strong>the</strong> question,What is a gene? It is probably not what we thought it was.• How does <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong> cells differ from <strong><strong>in</strong>formation</strong> <strong>in</strong> normal cells (if at all)?• How do cells <strong>transfer</strong> <strong><strong>in</strong>formation</strong> (purview <strong>of</strong> <strong>the</strong> physicists)?• How does one actually <strong>in</strong>terpret <strong><strong>in</strong>formation</strong> at all <strong>the</strong> length scales?• If we knew <strong>the</strong> answers to <strong>the</strong> questions above, would <strong><strong>in</strong>formation</strong> <strong>the</strong>ory make sense as anorganiz<strong>in</strong>g pr<strong>in</strong>ciple? (vs. o<strong>the</strong>r possibilities, e.g., algorithmic solutions?)• If we knew some <strong>of</strong> <strong>the</strong>se answers, would it change <strong>the</strong> way we diagnose, treat, <strong>and</strong> prevent <strong>cancer</strong>?Dr. Barker <strong>the</strong>n <strong>in</strong>troduced Dr. W. Daniel Hillis to give <strong>the</strong> f<strong>in</strong>al keynote presentation <strong>of</strong> <strong>the</strong> meet<strong>in</strong>g.Keynote PresentationThe Failure <strong>and</strong> Repair <strong>of</strong> Emergent Systems: A Systems Eng<strong>in</strong>eer<strong>in</strong>g Approach to CancerW. Daniel Hillis, Ph.D., Chairman, Applied M<strong>in</strong>ds, Inc.Presentation Highlights (For a full graphical representation <strong>of</strong> this talk, see Figure 11, Appendix 1.)• Emergent systems are composed <strong>of</strong> subsystems at multiple scales <strong>and</strong> complexity, work<strong>in</strong>g toge<strong>the</strong>r to produce <strong>the</strong>emergent properties <strong>of</strong> <strong>the</strong> whole.• Emergent systems are <strong>in</strong>crementally created, are local <strong>and</strong> repetitive, <strong>and</strong> have robustness <strong>and</strong> order at multiple scales.• There are three control systems <strong>in</strong> <strong>cancer</strong>: <strong>the</strong> patient’s body, <strong>the</strong> <strong>cancer</strong>, <strong>and</strong> <strong>the</strong> patient treatment loop.• Direct treatments to help <strong>the</strong> body w<strong>in</strong> over <strong>the</strong> <strong>cancer</strong>:– Optimize <strong><strong>in</strong>formation</strong> b<strong>and</strong>width <strong>in</strong> patient-physician communication channels; <strong><strong>in</strong>formation</strong> measurements arekey.– Elim<strong>in</strong>ate extraneous levels <strong>of</strong> mean<strong>in</strong>g; treat, do not diagnose, disease; look for clues for treatment choices<strong>in</strong>stead <strong>of</strong> biomarkers <strong>of</strong> disease.• What is understood is not necessarily <strong>the</strong> best level to control.– High <strong><strong>in</strong>formation</strong> effectors do not always correspond to underst<strong>and</strong>able patterns.– Treatments with high degrees <strong>of</strong> freedom may be <strong>the</strong> most effective.Dr. Hillis started his presentation by describ<strong>in</strong>gemergent systems <strong>in</strong> general to set <strong>the</strong> stage foran illustration <strong>of</strong> how this approach can be usedto devise an alternative approach to <strong>the</strong> treatment<strong>of</strong> <strong>cancer</strong> patients. While he acknowledged thathis suggestions might be viewed as naive orheretical by <strong>the</strong> oncologist, <strong>the</strong> goal <strong>of</strong> <strong>the</strong> approachis to control <strong>the</strong> <strong>cancer</strong>. From his perspective,underst<strong>and</strong><strong>in</strong>g <strong>the</strong> details <strong>of</strong> <strong>cancer</strong> biology, whilevaluable as a tool, may not be required to reach thisgoal.The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 25


Emergent systems, such as computer networks,organisms, <strong>and</strong> economies, are complicated. Assuch, systems as a whole have behaviors that arenot obviously deducible from behavior <strong>of</strong> <strong>the</strong>component parts. A system can be viewed as ablack box with <strong>in</strong>puts <strong>and</strong> outputs <strong>and</strong> states.Analogously, a <strong>cancer</strong> patient can be viewed as asystem with various <strong>in</strong>puts (diet, treatments) <strong>and</strong>outputs (<strong>in</strong>dications <strong>of</strong> health) <strong>and</strong> a goal state(health). Most <strong>of</strong> <strong>the</strong> state is hidden, although cluescan be measured, such as a patient’s temperature.In addition, <strong>the</strong> state transition functions are alsounknown <strong>and</strong> hidden until <strong>the</strong> mechanisms <strong>of</strong> <strong>the</strong>organism <strong>and</strong> <strong>cancer</strong> are understood.Fur<strong>the</strong>rmore, <strong>the</strong>se systems can conta<strong>in</strong> subsystemsat multiple scales <strong>and</strong> complexity (molecular,cellular, tissue, organism levels). The componentswork toge<strong>the</strong>r to produce emergent properties <strong>of</strong><strong>the</strong> whole that are not reflective <strong>of</strong> <strong>the</strong> properties<strong>of</strong> <strong>the</strong> parts. An example is life, <strong>in</strong> that biomolecular<strong>in</strong>teractions <strong>in</strong> cells lead to <strong>the</strong> property <strong>of</strong> life <strong>in</strong>an organism. In o<strong>the</strong>r words, emergent propertiesare <strong>the</strong> th<strong>in</strong>gs we care about but do not tend tounderst<strong>and</strong> at a mechanistic level.would not work to control a system at <strong>the</strong> level <strong>of</strong>fundamental mechanisms due to <strong>the</strong> number <strong>of</strong>error correction systems between fundamentalmechanisms <strong>and</strong> outputs.The idea <strong>of</strong> robustness <strong>of</strong> emergent systems can beused as a way to speculate about how <strong>the</strong>se ideasmay be applied to <strong>cancer</strong>. View<strong>in</strong>g a patient <strong>and</strong><strong>cancer</strong> as an emergent system uses Ashby’s Law <strong>of</strong>Requisite Variety, <strong>the</strong> <strong>the</strong>ory that a successful controlsystem has to be as complex <strong>and</strong> have as manydegrees <strong>of</strong> freedom as <strong>the</strong> system it is controll<strong>in</strong>g.Although <strong>the</strong> consequences <strong>of</strong> <strong><strong>in</strong>formation</strong> hid<strong>in</strong>gmake robust emergent systems hard to underst<strong>and</strong><strong>in</strong> detail, <strong>the</strong>y can be easy to control <strong>and</strong> can bemanipulated without much detailed underst<strong>and</strong><strong>in</strong>gus<strong>in</strong>g <strong>the</strong> <strong>in</strong>termediate levels.Emergent systems have common properties thatcan be studied, <strong>in</strong>clud<strong>in</strong>g:• Incrementally created: For example, byprocesses like evolution or design.• Locality: Parts tend to <strong>in</strong>teract with only a fewo<strong>the</strong>r parts <strong>in</strong> a mean<strong>in</strong>gful way.• Repetitive: Parts tend to have <strong>the</strong> same <strong>the</strong>mes,but with variations such as subvariables.• Order at multiple scales: Molecule, cell, organ,etc. (emerge due to <strong>in</strong>cremental buildup).• Robustness: Allows system to survive <strong>and</strong>respond to change <strong>in</strong> <strong>in</strong>puts by buffer<strong>in</strong>g.Systems produced by evolution need to berobust to survive.There are many methods <strong>of</strong> achiev<strong>in</strong>g robustness<strong>in</strong> such systems, <strong>in</strong>clud<strong>in</strong>g negative feedback,functional redundancy, multiscale redundancy,sparse <strong>cod<strong>in</strong>g</strong> (or compression to a few mean<strong>in</strong>gfulstates), <strong>and</strong> Shannon’s redundancy. All but Shannon’sredundancy require a significant amount <strong>of</strong> energy.Multiscale redundancy is useful <strong>in</strong> that systems haveevolved mechanisms to stop cascades <strong>of</strong> errors tomultiple scales. Thus, for a mistake to propagate upto <strong>the</strong> emergent level, it must be made at multiplelevels. In addition, all systems achieve robustnessby hid<strong>in</strong>g <strong><strong>in</strong>formation</strong>. Exam<strong>in</strong>ation <strong>of</strong> output statesdoes not generally reveal <strong><strong>in</strong>formation</strong> about <strong>in</strong>ternalstates, which means systems are impossible tocontrol by controll<strong>in</strong>g <strong>the</strong> output. However, it alsoIn approach<strong>in</strong>g a <strong>cancer</strong> patient, a Markov modelcan be applied; this model system can be used for arobust, nonr<strong>and</strong>om system <strong>and</strong> has many abstractpseudostates (not real substates). The system canbe modeled us<strong>in</strong>g probability distributions <strong>of</strong> <strong>the</strong>pseudostates. As an example, a <strong>cancer</strong> patient canbe viewed as compris<strong>in</strong>g three control systems:• The patient’s body• The <strong>cancer</strong> (mutated from body control system,with different control systems)• The patient/treatment loopThe idea is to help emergent control system 1, <strong>the</strong>body, w<strong>in</strong> <strong>the</strong> battle over emergent control system2, <strong>the</strong> <strong>cancer</strong>. Due to evolution, <strong>the</strong> body probablyhas more robustness (functional redundancy) than<strong>the</strong> <strong>cancer</strong> system; this robustness can be used asleverage. Control system 3, <strong>the</strong> treatment, can beused to help <strong>the</strong> body wrestle control from <strong>the</strong><strong>cancer</strong>.Keep<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d that <strong>the</strong> purpose is to directa treatment, <strong>the</strong> system can be viewed as acommunication system with two channels—<strong>the</strong>communication channel from patient to physician26 Meet<strong>in</strong>g Report


<strong>and</strong> <strong>the</strong> channel from physician to patient. The ideais to optimize <strong>the</strong> b<strong>and</strong>width <strong>in</strong> each channel. How<strong>the</strong> <strong><strong>in</strong>formation</strong> is measured, what measurementsare made <strong>in</strong> a patient, how <strong>the</strong> measurementsare <strong>in</strong>terpreted given <strong>the</strong> <strong><strong>in</strong>formation</strong>, <strong>and</strong> whatmessage is sent back to <strong>the</strong> patient given <strong>the</strong>message are key. Recall that <strong><strong>in</strong>formation</strong> contentis dependent on who <strong>in</strong>terprets <strong>the</strong> <strong><strong>in</strong>formation</strong>for what purpose. Information is not an absolutemeasure but is dependent on perspective. Aspo<strong>in</strong>ted out by Shannon, when try<strong>in</strong>g to maximallyencode <strong><strong>in</strong>formation</strong> <strong>in</strong> a channel, humans <strong>of</strong>ten put<strong>in</strong> levels <strong>and</strong> redundancy <strong>of</strong> mean<strong>in</strong>g that can get<strong>in</strong> <strong>the</strong> way <strong>and</strong> be constra<strong>in</strong><strong>in</strong>g. En<strong>cod<strong>in</strong>g</strong> worksmost efficiently by ignor<strong>in</strong>g most levels <strong>of</strong> mean<strong>in</strong>g,avoid<strong>in</strong>g redundancy, <strong>and</strong> us<strong>in</strong>g optimized codewords to <strong>in</strong>duce desired communication states,<strong>the</strong>reby optimiz<strong>in</strong>g <strong>the</strong> <strong><strong>in</strong>formation</strong> b<strong>and</strong>width <strong>of</strong><strong>the</strong> patient/treatment loop.In <strong>the</strong> context <strong>of</strong> our model, this means determ<strong>in</strong><strong>in</strong>gwhe<strong>the</strong>r <strong>the</strong>re are extraneous levels <strong>of</strong> mean<strong>in</strong>g. Forexample, skip <strong>the</strong> “disease” level; <strong>the</strong> “k<strong>in</strong>d <strong>of</strong> <strong>cancer</strong>”is irrelevant <strong>in</strong> <strong>the</strong> treatment sett<strong>in</strong>g between <strong>the</strong>doctor <strong>and</strong> patient (although it may be useful forphysician-to-physician communication). Instead <strong>of</strong>diagnos<strong>in</strong>g <strong>the</strong> disease, treat <strong>the</strong> disease. In mov<strong>in</strong>gaway from <strong>the</strong> traditional paradigm, <strong><strong>in</strong>formation</strong>should be measured <strong>in</strong> orthogonal predictors,apply<strong>in</strong>g an ensemble <strong>of</strong> correctors. Given <strong>the</strong>comb<strong>in</strong>ation <strong>of</strong> states, determ<strong>in</strong>e what comb<strong>in</strong>ation<strong>of</strong> effectors will push <strong>the</strong> patient state to a po<strong>in</strong>twhere <strong>the</strong> patient is more likely to wrestle controlfrom <strong>the</strong> <strong>cancer</strong>. For example, <strong>in</strong>stead <strong>of</strong> look<strong>in</strong>g forbiomarkers <strong>of</strong> disease <strong>in</strong> a proteomics scan, lookat <strong>the</strong> ensemble <strong>of</strong> messages as an <strong><strong>in</strong>formation</strong>code. What are <strong>the</strong> messages tell<strong>in</strong>g us about whattreatment choices we should use?Information <strong>the</strong>ory is a useful tool for reveal<strong>in</strong>gwhat calculations to perform (i.e., determ<strong>in</strong><strong>in</strong>g<strong>the</strong> most <strong>in</strong>formative th<strong>in</strong>gs <strong>in</strong> an ensemble <strong>of</strong>measurements). Shannon’s <strong>the</strong>ory suggests that itis very likely that high-<strong><strong>in</strong>formation</strong> <strong>in</strong>dicators donot correspond nicely to underst<strong>and</strong>able concepts;usually <strong>the</strong> code words are not what one is talk<strong>in</strong>gabout. An analogous story may hold true fortreatments. The high-<strong><strong>in</strong>formation</strong> effectors probablydo not correspond directly to underst<strong>and</strong>ablepatterns. Highly targeted treatments may be <strong>the</strong>wrong tool. Treatments with more degrees <strong>of</strong>freedom, ensembles <strong>of</strong> treatments, or cocktails withmany effects may be better, although difficult to put<strong>in</strong>to practice.In summary, fundamental underst<strong>and</strong><strong>in</strong>g is worthpursu<strong>in</strong>g <strong>and</strong> always helps, but underst<strong>and</strong><strong>in</strong>gdoes not always translate <strong>in</strong>to <strong>the</strong> levels neededfor effective treatment. While different levels for<strong>in</strong>terventions are <strong>of</strong>ten needed, keep <strong>in</strong> m<strong>in</strong>d thatwhat is understood is <strong>of</strong>ten not <strong>the</strong> best level tocontrol. Examples <strong>of</strong> this approach <strong>in</strong>dicate that use<strong>of</strong> specific biomarkers <strong>and</strong> treatments may not be<strong>the</strong> best <strong>the</strong>rapeutic strategies.Discussion Highlights: In <strong>the</strong> question-<strong>and</strong>-answer period, some <strong>of</strong> <strong>the</strong> concepts <strong>in</strong>troduced byDr. Hillis were fur<strong>the</strong>r clarified. First, while Dr. Hillis stated that he does not know enough about <strong>cancer</strong>(i.e., what states correspond to <strong>in</strong> <strong>the</strong> system) to specify <strong>the</strong> most appropriate level for use <strong>of</strong> <strong>the</strong>Markov model, he does th<strong>in</strong>k that <strong>the</strong> Markov model could be applied. Dr. Hillis also clarified that he isnot argu<strong>in</strong>g aga<strong>in</strong>st <strong>the</strong> use <strong>of</strong> biomarkers, but aga<strong>in</strong>st specific diagnostic biomarkers. He is suggest<strong>in</strong>ga new approach, a slightly different def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> appropriate use <strong>of</strong> biomarkers. The currentdef<strong>in</strong>ition <strong>of</strong> <strong>in</strong>formative biomarkers corresponds to a specific treatable disease state, <strong>and</strong> whilesometimes correspondence may be demonstrated, this is too narrow a def<strong>in</strong>ition. If <strong>the</strong> def<strong>in</strong>ition <strong>of</strong><strong>in</strong>formative is changed to be <strong>in</strong> conjunction with all o<strong>the</strong>r biomarkers, can it give you <strong>the</strong> <strong><strong>in</strong>formation</strong>to help create <strong>the</strong> right treatment cocktail? He suggests <strong>the</strong> <strong><strong>in</strong>formation</strong> is <strong>the</strong>re, but not <strong>in</strong> <strong>the</strong> formwe are look<strong>in</strong>g at. It was noted by o<strong>the</strong>rs that real progress <strong>and</strong> payback have been obta<strong>in</strong>ed withsome specific biomarkers (HER2/neu, ER) <strong>in</strong> <strong>in</strong>form<strong>in</strong>g us about diseases <strong>and</strong> treatments withoutdetailed underst<strong>and</strong><strong>in</strong>g <strong>of</strong> why <strong>the</strong> biomarkers are reveal<strong>in</strong>g. Fur<strong>the</strong>rmore, <strong>the</strong> absence <strong>of</strong> biomarkershas limited <strong>the</strong> usefulness <strong>of</strong> big prevention studies.From <strong>the</strong> perspective <strong>of</strong> look<strong>in</strong>g at evolution for new treatments from natural products <strong>and</strong> arecommendation to NCI to reevaluate natural products, Dr. Hillis was asked how he would testevolution for ways <strong>of</strong> controll<strong>in</strong>g <strong>cancer</strong>. He suggested one approach <strong>of</strong> search<strong>in</strong>g for emergentphenomena, or common po<strong>in</strong>ts to many evolutionary systems, that would act as control po<strong>in</strong>ts thatcould be exploited. Are <strong>the</strong>re universal rules <strong>in</strong> evolutionary systems that can be used? Typically, wehave looked at evolution from <strong>the</strong> st<strong>and</strong>po<strong>in</strong>t <strong>of</strong> analysis ra<strong>the</strong>r than control. In response to a questionThe Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 27


about adaptive systems, he noted that attacks on multiple fronts are <strong>of</strong>ten more successful thansequential hits.A two-part question asked whe<strong>the</strong>r, given <strong>the</strong> work <strong>and</strong> <strong><strong>in</strong>formation</strong> obta<strong>in</strong>ed so far, we should stepback <strong>and</strong> look at where we are with <strong>cancer</strong> as a system, <strong>and</strong> what level should we be look<strong>in</strong>g at now,given <strong>the</strong> <strong><strong>in</strong>formation</strong> we have? Dr. Hillis suggested two approaches. The first is to put resources<strong>in</strong>to obta<strong>in</strong><strong>in</strong>g more carefully controlled measures <strong>of</strong> disease (e.g., proteomics, 2D gels, biomarkers)<strong>and</strong> determ<strong>in</strong>e whe<strong>the</strong>r <strong>the</strong>re are signal po<strong>in</strong>ts. Second, it would also be worthwhile to do somepathf<strong>in</strong>d<strong>in</strong>g (i.e., to get high-leverage ideas <strong>of</strong> places where one would direct <strong>the</strong> “<strong>in</strong>fantry”). A fur<strong>the</strong>rneed is to br<strong>in</strong>g toge<strong>the</strong>r disparate scientific groups to get better common underst<strong>and</strong><strong>in</strong>g <strong>of</strong> systems,cell biology, <strong>and</strong> <strong>the</strong> perturbations employed <strong>in</strong> treatments.Bra<strong>in</strong>storm<strong>in</strong>g Session: Elements for Address<strong>in</strong>g <strong>the</strong> Big Questions onInformation <strong>and</strong> Communication <strong>in</strong> CancerMr. Mittman led <strong>the</strong> group <strong>in</strong> this f<strong>in</strong>al bra<strong>in</strong>storm<strong>in</strong>g session to consider <strong>the</strong> elements that couldaddress big questions <strong>in</strong> relation to <strong><strong>in</strong>formation</strong> <strong>and</strong> communication <strong>in</strong> <strong>cancer</strong>. First, <strong>the</strong> big questionswere def<strong>in</strong>ed, followed by suggestions <strong>of</strong> approaches to address<strong>in</strong>g <strong>the</strong> questions.Group DiscussionInformation <strong>in</strong> CancerWhat are <strong>the</strong> contextual <strong>and</strong> <strong>the</strong>oretical def<strong>in</strong>itions <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong>? What are <strong>the</strong>components <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong>? How do we def<strong>in</strong>e <strong><strong>in</strong>formation</strong> at <strong>the</strong> various levels <strong>of</strong> scale?The group posed <strong>the</strong> follow<strong>in</strong>g approaches to answer<strong>in</strong>g <strong>the</strong>se questions:• Contextual <strong><strong>in</strong>formation</strong> matters; <strong>the</strong> big question is how to def<strong>in</strong>e <strong>the</strong>se broader states.• Def<strong>in</strong>ition is context dependent, <strong>and</strong> <strong>the</strong>reare complementary def<strong>in</strong>itions depend<strong>in</strong>g on<strong>the</strong> process <strong>and</strong> scale (cells, tissues, patients,etc).• What is <strong>the</strong> pert<strong>in</strong>ent <strong><strong>in</strong>formation</strong>? Due to<strong>the</strong> enormous number <strong>of</strong> variables, methodsare needed to search feature space <strong>and</strong> f<strong>in</strong>dapplicable variables. For <strong>the</strong> <strong><strong>in</strong>formation</strong>relevant to question X, <strong>the</strong> answer can usuallybe obta<strong>in</strong>ed with a small number <strong>of</strong> variables.• We need to def<strong>in</strong>e what space we arework<strong>in</strong>g on. Genome <strong>and</strong> prote<strong>in</strong> spacesare probably wrong, but th<strong>in</strong>k aboutcomb<strong>in</strong>ations <strong>of</strong> parameters <strong>and</strong> what <strong>the</strong>yreflect for comb<strong>in</strong>ation treatments. Forexample, <strong>in</strong> imag<strong>in</strong>g, Fourier space is moreproductive than object space, as every objectcontributes to parameters. What is <strong>the</strong> bestway to def<strong>in</strong>e <strong>the</strong> Achilles’ heel <strong>in</strong> <strong>the</strong> system?• Ma<strong>the</strong>matically, we must def<strong>in</strong>e a probabilitydistribution reflective <strong>of</strong> some biologicalfunction.• Simplify as a measure <strong>of</strong> <strong>the</strong> number <strong>of</strong>choices (at a number <strong>of</strong> states).• Consider that <strong><strong>in</strong>formation</strong> changes at specificsplice junctions.• We need a “humanome,” beyond genocentric,to capture global measurements <strong>of</strong> normalstates <strong>and</strong> responses.• Biological <strong><strong>in</strong>formation</strong>, for example, surrogatemarkers, has resulted <strong>in</strong> good correlations<strong>and</strong> applications for disease treatment;biomarkers at <strong>in</strong>dividual prote<strong>in</strong> levels dohave value.• In contrast to feature selection (which isartificially imposed), more appropriatequestions would be: What are all variables/statistics (how many states can a cell be <strong>in</strong>?)?What does it take to specify <strong>the</strong> features?What feedback is required to underst<strong>and</strong>variables? What mean<strong>in</strong>gful states can <strong>the</strong>cell take on?28 Meet<strong>in</strong>g Report


• Information may be <strong>in</strong> metagenes (compositemeasures <strong>of</strong> a large number <strong>of</strong> markers).Th<strong>in</strong>k about how we can measure markers <strong>of</strong>metagenes.• We need knowledge, not necessarily<strong><strong>in</strong>formation</strong>. Knowledge is <strong>the</strong> parts <strong>of</strong> <strong>the</strong>patient <strong>and</strong> <strong>the</strong> optimal conditions.Group DiscussionCommunication <strong>in</strong> CancerHow is <strong><strong>in</strong>formation</strong> communicated <strong>in</strong> <strong>cancer</strong>? What are <strong>the</strong> channels for <strong><strong>in</strong>formation</strong> communication?The follow<strong>in</strong>g observations were made:• The only <strong><strong>in</strong>formation</strong> used currently for<strong>cancer</strong> diagnosis is <strong>the</strong> pathologist’s read<strong>in</strong>g<strong>of</strong> <strong>the</strong> tissue sample. The <strong><strong>in</strong>formation</strong> is <strong>in</strong><strong>the</strong> cell shape; de<strong>cod<strong>in</strong>g</strong> <strong>and</strong> communication<strong>of</strong> diagnosis is with <strong>the</strong> pathologist. Theemergent level is <strong>the</strong> structure.• We need common data elements for acommon language for <strong><strong>in</strong>formation</strong> flowamong physician specialties. (For example, arules committee for pathologist read<strong>in</strong>g is <strong>in</strong>process.)• We need to start at <strong>the</strong> tissue level <strong>and</strong> moveup to <strong>the</strong> po<strong>in</strong>t where mechanical propertiesare emergent.• Cancer cells just want to proliferate; this is afundamental pr<strong>in</strong>ciple <strong>of</strong> <strong>cancer</strong>; what arebarriers to growth?• We should look at <strong>the</strong> levels where we havewon, for example, <strong>the</strong> prote<strong>in</strong> (e.g., k<strong>in</strong>ases),cell, <strong>and</strong> molecule (e.g., BCR-ABL) levels, not<strong>the</strong> tissue level.• It is also important to look at <strong>the</strong> broaderpicture <strong>in</strong> <strong>the</strong> microenvironment <strong>and</strong> at <strong>the</strong>tissue level. This is where roadblocks are put<strong>in</strong> <strong>the</strong> way by limit<strong>in</strong>g critical <strong><strong>in</strong>formation</strong> tomolecular biomarkers <strong>and</strong> genes.• Look also at normal cells <strong>and</strong> physical forces.• We need ways to measure communicationhappen<strong>in</strong>g through structural pathways.• We need quantifiable physical <strong><strong>in</strong>formation</strong><strong>of</strong> cell/environmental <strong>in</strong>teractions, networkarchitecture, gradients, force, etc.• As <strong>cancer</strong> is progressive, temporalmeasurements are also important, not justsnapshots.Breakout SessionA “Tour” <strong>of</strong> <strong>the</strong> Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer:Def<strong>in</strong><strong>in</strong>g <strong>the</strong> Scope <strong>of</strong> <strong>the</strong> Big Questions (Gr<strong>and</strong> Challenges) <strong>and</strong> How To ApproachAnswer<strong>in</strong>g Them Through Transdiscipl<strong>in</strong>ary ResearchThe participants separated <strong>in</strong>to four subgroups for <strong>the</strong> last breakout session <strong>and</strong> moved from stationto station to discuss <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong> research from four perspectives: (1) identify<strong>in</strong>g critical<strong><strong>in</strong>formation</strong>; (2) communication <strong>in</strong> <strong>cancer</strong> at multiple scales; (3) technology, models <strong>and</strong> tools; <strong>and</strong>(4) major overarch<strong>in</strong>g questions. The subgroups were tasked with provid<strong>in</strong>g <strong>in</strong>put to NCI from <strong>the</strong>seperspectives to assist <strong>in</strong> research plann<strong>in</strong>g. The breakout groups were asked to prioritize researchquestions among those already posed <strong>and</strong> select two that were <strong>of</strong> highest priority, list researchstrategies to answer <strong>the</strong> questions, <strong>and</strong> give <strong>the</strong> expected pay<strong>of</strong>fs for <strong>cancer</strong> research from answer<strong>in</strong>g<strong>the</strong>se questions. The discussion <strong>and</strong> reports from each group are summarized below.The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 29


Breakout 1: Information <strong>in</strong> CancerChair: Wallace F. Marshall, Ph.D., Assistant Pr<strong>of</strong>essor, University <strong>of</strong> California, San FranciscoAssum<strong>in</strong>g <strong>the</strong> importance <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong>, group discussion focused on specific strategiesto optimize us<strong>in</strong>g <strong><strong>in</strong>formation</strong> to manage <strong>cancer</strong>, ra<strong>the</strong>r than def<strong>in</strong><strong>in</strong>g <strong><strong>in</strong>formation</strong> <strong>in</strong> <strong>cancer</strong>. Which<strong>the</strong>ory was most appropriate to apply was also briefly discussed; this was recommended for more <strong>in</strong>depthdiscussion at a future venue.Discussion HighlightsWhat Is Information <strong>in</strong> Cancer?Top Two Research Questions Top Research Strategies Expected Pay<strong>of</strong>fs1. What is <strong>the</strong> <strong><strong>in</strong>formation</strong> thatexists between <strong>the</strong> environment<strong>and</strong> cells?2. What is <strong>the</strong> m<strong>in</strong>imal sufficientmodel for <strong>cancer</strong> cells us<strong>in</strong>g<strong><strong>in</strong>formation</strong>?Quantify heterogeneity <strong>and</strong>dynamics.Iteratively <strong>in</strong>corporate new<strong><strong>in</strong>formation</strong> <strong>and</strong> evolve models.Incorporate new types <strong>of</strong><strong><strong>in</strong>formation</strong> <strong>in</strong>to models (e.g.,mechanical).Requires <strong>in</strong>terdiscipl<strong>in</strong>ary teams <strong>and</strong>new tools to test <strong>the</strong> predictions.Enables development <strong>of</strong> rational l<strong>in</strong>ksbetween biomarkers <strong>and</strong> <strong>the</strong> outcome<strong>of</strong> treatment <strong>and</strong> course <strong>of</strong> <strong>the</strong> diseaseover time.Contributes to an evolv<strong>in</strong>g mechanisticunderst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> disease.For a full graphical representation <strong>of</strong> this session, see Appendix 1.A key question is what <strong><strong>in</strong>formation</strong> exists between <strong>the</strong> environment <strong>and</strong> cells. To <strong>in</strong>vestigate thisquestion, new <strong><strong>in</strong>formation</strong> could be <strong>in</strong>corporated <strong>in</strong>to models <strong>and</strong> new comprehensive modelscould be developed for prediction <strong>and</strong> test<strong>in</strong>g (e.g., <strong>in</strong>corporat<strong>in</strong>g biomarkers). This would <strong>in</strong> turnrequire <strong>in</strong>terdiscipl<strong>in</strong>ary teams <strong>and</strong> new tools to test <strong>the</strong> predictions <strong>and</strong> quantify heterogeneity <strong>and</strong>dynamics. The pay<strong>of</strong>f would be development <strong>of</strong> rational l<strong>in</strong>ks among biomarkers, treatment outcomes,<strong>and</strong> disease progression over time. This approach could be applied iteratively to develop bettermechanistic underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> disease <strong>and</strong> hence better models. A key result would be to def<strong>in</strong>e<strong>the</strong> m<strong>in</strong>imally sufficient model us<strong>in</strong>g <strong><strong>in</strong>formation</strong>. Ano<strong>the</strong>r major factor <strong>in</strong> <strong>the</strong> model is <strong>in</strong>corporat<strong>in</strong>g<strong>the</strong> environment, <strong>in</strong> which <strong><strong>in</strong>formation</strong> constantly changes.Breakout 2: Communication <strong>in</strong> Cancer at Multiple ScalesChair: Brian Reid, M.D., Ph.D., Full Member, Divisions <strong>of</strong> Human Biology <strong>and</strong>Public Health Sciences, Fred Hutch<strong>in</strong>son Cancer Research CenterStrategies recommended to <strong>in</strong>vestigate communication <strong>in</strong> <strong>cancer</strong> across scales focused on use <strong>and</strong>development <strong>of</strong> appropriate new technologies <strong>in</strong> <strong>in</strong> vivo <strong>and</strong> model systems most closely mimick<strong>in</strong>g<strong>the</strong> organism’s complexity.One key question is how to measure communication parameters as close to <strong>the</strong> <strong>in</strong> vivo state as possibleus<strong>in</strong>g new technologies to measure cell parameters, <strong>the</strong> microenvironment, <strong>and</strong> metabolism (e.g.,<strong>the</strong> Warburg effect). Research strategies would <strong>in</strong>clude mak<strong>in</strong>g measurements at multiple levels <strong>and</strong><strong>in</strong>tegrat<strong>in</strong>g <strong>the</strong> results. Although s<strong>in</strong>gle-cell measurements are very important, cell population dynamics30 Meet<strong>in</strong>g Report


<strong>and</strong> microenvironment effects are critical to underst<strong>and</strong><strong>in</strong>g <strong>the</strong> ecology <strong>of</strong> <strong>the</strong> <strong>cancer</strong> system. It would beuseful to exam<strong>in</strong>e past successes <strong>and</strong> failures us<strong>in</strong>g <strong>the</strong>se concepts to describe <strong>cancer</strong>s.Discussion HighlightsCancer Communication Across ScalesTop Two Research Questions Top Research Strategies Expected Pay<strong>of</strong>fs1. How do we measurecommunication parametersas close to <strong>the</strong> <strong>in</strong> vivo stateas possible (us<strong>in</strong>g newtechnologies to measure cellparameters, microenvironment,<strong>and</strong> metabolism (e.g., <strong>the</strong>Warburg effect)?2. How does <strong>cancer</strong> kill its humanhost (recurrence)?Measure ecology <strong>of</strong> <strong>the</strong> <strong>cancer</strong>system at multiple levels (cell,microenvironment, metabolism)<strong>in</strong>corporat<strong>in</strong>g new technologies asneeded; <strong>in</strong>tegrate <strong>the</strong> results.Develop/apply emerg<strong>in</strong>g <strong>in</strong> vivomeasurement technologies <strong>and</strong> 3D<strong>in</strong> vitro cell culture systems.Study pre<strong>cancer</strong>, <strong>in</strong>clud<strong>in</strong>g nuclearmorphology, by imag<strong>in</strong>g, signal<strong>in</strong>gpathways, accumulation <strong>of</strong> geneticaberrations, system adjustments,tissue morphometry.Develop collaborations to br<strong>in</strong>gphysical scientists <strong>in</strong>to picture.Control <strong>cancer</strong> (cure).• Composite measure (metagene)• Composite medication (cocktail)Better diagnostics, localization for earlydetection.Faster pace <strong>of</strong> research.Predict outcomes.Learn to control <strong>cancer</strong>.For a full graphical representation <strong>of</strong> this session, see Appendix 1.A second key question considered was how does <strong>cancer</strong> kill its host. To address this question, researchcould start with hollow-organ <strong>cancer</strong>s, us<strong>in</strong>g nanotechnology methods <strong>and</strong> biopsies to <strong>in</strong>vestigate<strong>the</strong> course <strong>of</strong> <strong>cancer</strong> <strong>in</strong> <strong>the</strong> cell, microenvironment, <strong>and</strong> metastases. In addition, <strong>in</strong>termediatescalemodels could be developed; composite measurements could be made <strong>in</strong> <strong>the</strong>se models, <strong>and</strong>composite <strong>in</strong>terventions could be used to elicit outcomes for <strong>in</strong>terventions. For example, tumors couldbe classified accord<strong>in</strong>g to response <strong>of</strong> models to drug treatment, <strong>and</strong> premalignant lesions couldbe classified by measur<strong>in</strong>g risk for progression. These models would be developed iteratively <strong>and</strong>adaptively. The pay<strong>of</strong>fs for research address<strong>in</strong>g <strong>the</strong>se questions would be new <strong>cancer</strong> control strategies<strong>in</strong>volv<strong>in</strong>g complex measurements for <strong>cancer</strong> risk <strong>and</strong> composite <strong>in</strong>tervention (drug cocktails). Thiswork would result <strong>in</strong> better diagnosis, a faster pace <strong>of</strong> research from iterative adaptation <strong>of</strong> strategies,<strong>and</strong> improvement <strong>in</strong> predict<strong>in</strong>g outcomes, particularly <strong>in</strong> pre<strong>cancer</strong>ous states.The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 31


Breakout 3: Technology, Models, <strong>and</strong> ToolsChair: Thomas V. O’Halloran, Ph.D., M.A., Pr<strong>of</strong>essor, Northwestern UniversityGroup discussion addressed develop<strong>in</strong>g appropriate models <strong>and</strong> tools rang<strong>in</strong>g from experimental toma<strong>the</strong>matical approaches <strong>and</strong> use <strong>of</strong> databases.Discussion HighlightsTechnology, Models, <strong>and</strong> ToolsTop Three Research Questions Top Research Strategies Expected Pay<strong>of</strong>fs1. Compare <strong>cancer</strong> <strong>and</strong> normalstates; what are <strong>the</strong> propertiesthat dist<strong>in</strong>guish <strong>the</strong> <strong>cancer</strong>?2. How much energy is expended<strong>in</strong> <strong>cancer</strong> evolution?3. What are <strong>the</strong> rules that govern<strong>cancer</strong> evolution?Develop new methods to preciselymeasure phenomena such aselasticity, chemical gradients, <strong>in</strong> vivodynamics, nucleosome localization(us<strong>in</strong>g microscopy), multiple signals/responses simultaneously.Deconvolution <strong>of</strong> heterogeneityàs<strong>in</strong>gle-cell resolutionàback toemergent property <strong>of</strong> tumor.Identify time-dependent orderparameters from database analysis.Develop multiscale dynamic modelsthat <strong>in</strong>clude important globalvariables to provide predictive/timedependentcomputational physicsbasedsimulation schemes.Ability to relate measurements tooutcome <strong>of</strong> <strong>the</strong>rapy.With <strong>the</strong> genotype focus would have<strong>the</strong> ability to:• Identify new order parameters thatcould permute to <strong>the</strong> cl<strong>in</strong>ic.• Relate models/fluxes to currentdrugs (e.g., those measured <strong>in</strong> NCI59 cell l<strong>in</strong>e database).For a full graphical representation <strong>of</strong> this session, see Appendix 1.Us<strong>in</strong>g new models <strong>and</strong> tools could help address key questions on <strong>the</strong> properties that dist<strong>in</strong>guish<strong>cancer</strong> from normal states, <strong>the</strong> amount <strong>of</strong> energy expended <strong>in</strong> <strong>cancer</strong> evolution, <strong>and</strong> <strong>the</strong> rulesthat govern <strong>cancer</strong> evolution. Each <strong>of</strong> <strong>the</strong>se questions can be approached by collect<strong>in</strong>g data withmultiple types <strong>of</strong> measurements, us<strong>in</strong>g those data to develop phenotypic prognostic parameters,<strong>the</strong>n develop<strong>in</strong>g test models at all scales to relate <strong>the</strong> parameters to treatment outcomes. Particularly<strong>in</strong>terest<strong>in</strong>g is development <strong>of</strong> new methods to precisely measure parameters such as elasticity,chemical gradients, multiple dynamic signal<strong>in</strong>g, nucleosome location (<strong>in</strong>clud<strong>in</strong>g <strong>in</strong>tegrated views,measurements <strong>of</strong> systems, measurements <strong>in</strong> different cells, etc.), <strong>and</strong> cellular energy expenditure(e.g., def<strong>in</strong>e energy budgets for systems before <strong>and</strong> after metastases). To exam<strong>in</strong>e metabolism<strong>and</strong> energy, energy should be measured before <strong>and</strong> after <strong>in</strong>vasion. Imag<strong>in</strong>g tools such as MRI orfluorescence temperature-sensitive probes might assist this effort. A central repository, perhaps atNCI, for all types <strong>of</strong> data used to develop models would be useful. It was noted that patient privacypolicies (Health Insurance Portability <strong>and</strong> Accountability Act [HIPAA]) complicate mak<strong>in</strong>g hum<strong>and</strong>ata available through a repository. This issue could be addressed by develop<strong>in</strong>g an au<strong>the</strong>nticationscheme for <strong>in</strong>vestigators (e.g., with <strong>in</strong>stitutions tak<strong>in</strong>g responsibility for protect<strong>in</strong>g <strong>the</strong> data for <strong>the</strong>ir<strong>in</strong>vestigators, such as outl<strong>in</strong>ed <strong>in</strong> <strong>the</strong> U.S. Department <strong>of</strong> Energy [DOE] Human Subjects ProtectionProgram). This would lead to faster discovery <strong>of</strong> emergent tumor properties <strong>and</strong> better underst<strong>and</strong><strong>in</strong>g<strong>of</strong> relationships between parameters at all scales that affect <strong>cancer</strong>, lead<strong>in</strong>g to better treatments fordisease. An example <strong>of</strong> <strong>the</strong>se relationships is <strong>the</strong> l<strong>in</strong>k between p53, mitochondrial shape, <strong>and</strong> <strong>cancer</strong>.Develop<strong>in</strong>g models that associate levels <strong>of</strong> cell <strong>and</strong> organism would accelerate <strong>the</strong> pace <strong>and</strong> reduce<strong>the</strong> cost <strong>of</strong> research.32 Meet<strong>in</strong>g Report


Breakout 4: Major Overarch<strong>in</strong>g QuestionsChair: Carlo C. Maley, Ph.D., Assistant Pr<strong>of</strong>essor, The Wistar InstituteThe group discussion focused primarily on def<strong>in</strong><strong>in</strong>g patient metastates <strong>and</strong> cellular architecturalchanges to improve control <strong>of</strong> <strong>cancer</strong>.Discussion HighlightsMajor Overarch<strong>in</strong>g QuestionsTop Two Research Questions Top Research Strategies Expected Pay<strong>of</strong>fs1. What are <strong>the</strong> metastates <strong>of</strong> <strong>the</strong><strong>cancer</strong> <strong>and</strong> patient?2. What causes cell/architecturechanges?Def<strong>in</strong>e quantitative measures <strong>of</strong>metastates.Collect quantitative data on patientderivedsamples:• Pathological variables• Imag<strong>in</strong>g• Cl<strong>in</strong>ical• Genetic• Proteomics, etc. [-omics]Use model<strong>in</strong>g; <strong>in</strong>clude normalcontrols; collapse state spaceàlookfor cluster<strong>in</strong>g; develop reproduciblemeasures.Def<strong>in</strong>e causes <strong>of</strong> cell/architecturechanges us<strong>in</strong>g 3D cultures; timecourse; exploration <strong>of</strong> <strong>in</strong>itialconditions; development <strong>of</strong> dynamiccellular proteomics <strong>in</strong> vitro <strong>and</strong> <strong>in</strong>vivo; computations/math model<strong>in</strong>g.New treatment modesàhow tochange metastates.Integrated underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>cancer</strong>.New tools for prognosis <strong>and</strong> diagnostic<strong>and</strong> <strong>the</strong>rapy management.Connect molecular biology <strong>and</strong>pathology.Therapies that normalize <strong>the</strong> tissue.Response map for cells <strong>and</strong> tissues.Develop a control <strong>the</strong>ory for manag<strong>in</strong>g<strong>cancer</strong>.Underst<strong>and</strong><strong>in</strong>g <strong>cancer</strong> <strong>and</strong> tissuedynamics.Underst<strong>and</strong><strong>in</strong>g <strong>in</strong>teractions <strong>of</strong> patientsystems (e.g., immunology).For a full graphical representation <strong>of</strong> this session, see Appendix 1.The first overarch<strong>in</strong>g question is what metastates describe <strong>the</strong> behavior <strong>of</strong> <strong>the</strong> system (<strong>cancer</strong> <strong>and</strong>patient)? To identify metastates, all possible data on normal <strong>and</strong> disease states would be collectedfrom multiple sources; <strong>the</strong>n data would be collapsed <strong>in</strong>to metavariables, look<strong>in</strong>g for cluster<strong>in</strong>g <strong>in</strong>order to def<strong>in</strong>e quantitative measures. This approach requires good-quality (low noise), reproduciblemeasurements. Patient-derived data, such as pathological variables, imag<strong>in</strong>g, <strong>and</strong> cl<strong>in</strong>ical, genetic, <strong>and</strong>proteomic measurements, would be collected, along with data from experimental systems paired withmodel<strong>in</strong>g. This approach could yield new <strong>cancer</strong> control strategies. These control strategies would be<strong>in</strong>tended to ma<strong>in</strong>ta<strong>in</strong> patients <strong>in</strong> stable metastates for <strong>the</strong> long term (but would not necessarily kill all<strong>the</strong> <strong>cancer</strong> cells); <strong>the</strong>y would allow practical management <strong>of</strong> <strong>cancer</strong>. The approaches would result <strong>in</strong>new treatment modes to change <strong>the</strong> metastates <strong>and</strong> a control <strong>the</strong>ory for manag<strong>in</strong>g <strong>cancer</strong>, as well asnew tools for diagnosis, prognosis, <strong>and</strong> <strong>the</strong>rapy management.A second question considered was what causes cellular <strong>and</strong> architectural changes <strong>in</strong> <strong>cancer</strong> <strong>and</strong>neoplastic progression? To <strong>in</strong>vestigate, both patient <strong>and</strong> experimental systems would be used,focus<strong>in</strong>g on time courses <strong>of</strong> state changes. Fur<strong>the</strong>r clarification is needed <strong>in</strong> control <strong>of</strong> chromosomeamplification <strong>and</strong> rearrangement <strong>in</strong> evolution <strong>and</strong> <strong>cancer</strong>. Also, exam<strong>in</strong><strong>in</strong>g evolution <strong>of</strong> <strong>in</strong>fectiousdisease may be <strong>in</strong>formative, <strong>and</strong> game <strong>the</strong>ory would be an excit<strong>in</strong>g tool to use. O<strong>the</strong>r techniquesThe Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 33


could <strong>in</strong>clude dynamic cellular <strong>in</strong> vitro <strong>and</strong> <strong>in</strong> vivo proteomics <strong>and</strong> 3D cultures, complemented withmodel<strong>in</strong>g. Investigations <strong>of</strong> architectural changes would permit fur<strong>the</strong>r underst<strong>and</strong><strong>in</strong>g <strong>of</strong> connectionsbetween molecular biology <strong>and</strong> pathology, <strong>cancer</strong>, <strong>and</strong> tissue dynamics. Determ<strong>in</strong><strong>in</strong>g <strong>the</strong> possibility <strong>of</strong>manipulat<strong>in</strong>g stem cell differentiation by controll<strong>in</strong>g <strong>the</strong> microenvironment could be very useful. All<strong>the</strong>se strategies could allow evaluation <strong>of</strong> <strong>in</strong>terventions that normalize tissue.For a full graphical representation <strong>of</strong> this session, see Appendix 1.Summary <strong>and</strong> Next StepsAnna D. Barker, Ph.D., Deputy Director, NCI, <strong>and</strong> John E. Niederhuber, M.D., Director, NCIDr. Barker thanked <strong>the</strong> attendees for <strong>the</strong>ir participation <strong>and</strong> contributions, particularly those whogave keynote <strong>and</strong> shorter panel presentations, <strong>and</strong> Mr. Mittman for his excellent meet<strong>in</strong>g facilitation.She thanked Dr. Niederhuber for his support <strong>of</strong> this <strong>in</strong>novative <strong>and</strong> potentially paradigm-chang<strong>in</strong>g<strong>in</strong>itiative, po<strong>in</strong>t<strong>in</strong>g out that this was not always easy for <strong>the</strong> NCI Director <strong>in</strong> tough budget times. Shenoted that, like <strong>the</strong> two prior th<strong>in</strong>k tanks, this meet<strong>in</strong>g had exceeded expectations. This group has seta high bar for exploration <strong>of</strong> <strong>the</strong> very complex areas <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>and</strong> its management <strong>in</strong> <strong>cancer</strong>.The questions posed <strong>in</strong> all <strong>the</strong> sessions were important to develop<strong>in</strong>g a fundamental underst<strong>and</strong><strong>in</strong>g<strong>of</strong> <strong>cancer</strong>, <strong>and</strong> many <strong>of</strong>fer new approaches to ultimately controll<strong>in</strong>g <strong>the</strong> disease. Interest<strong>in</strong>gly, thismeet<strong>in</strong>g posited that we may need to look more closely at <strong>the</strong> level <strong>and</strong> depth <strong>of</strong> <strong><strong>in</strong>formation</strong> requiredfor control <strong>of</strong> <strong>the</strong> disease.Dr. Niederhuber also voiced his thanks for <strong>the</strong> participants’ contributions. The dialogue <strong>and</strong> format<strong>of</strong> <strong>the</strong> meet<strong>in</strong>g were stimulat<strong>in</strong>g <strong>and</strong> enrich<strong>in</strong>g. The fact that so many participants told him that,as a result <strong>of</strong> <strong>the</strong>se meet<strong>in</strong>gs, <strong>the</strong>y th<strong>in</strong>k about <strong>the</strong>ir work differently <strong>and</strong> have established newrelationships with colleagues makes <strong>the</strong> meet<strong>in</strong>g even more worthwhile. It is his goal to keep <strong>the</strong>momentum from this <strong>and</strong> <strong>the</strong> prior th<strong>in</strong>k tanks mov<strong>in</strong>g ahead. Dr. Barker will present a proposal to<strong>the</strong> NCI Board <strong>of</strong> Scientific Advisors to move forward with a fund<strong>in</strong>g <strong>in</strong>strument to allow support for anetwork <strong>of</strong> centers to pursue <strong>the</strong>se <strong>in</strong>novative new directions. Dr. Niederhuber <strong>and</strong> Dr. Barker plan tocont<strong>in</strong>ue this series <strong>of</strong> th<strong>in</strong>k tanks <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g year, as <strong>the</strong> science will move rapidly <strong>and</strong> <strong>the</strong>re are anumber <strong>of</strong> areas yet to explore. Dr. Niederhuber adjourned <strong>the</strong> meet<strong>in</strong>g.34 Meet<strong>in</strong>g Report


Appendix 1. Meet<strong>in</strong>g SketchesFigure 1. Keynote PresentationIs DNA a Molecule? Mus<strong>in</strong>gs on Good Cells Mak<strong>in</strong>g Bad ChoicesRobert PhillipsFigure 2. Welcome <strong>and</strong> Introduction <strong>of</strong> Keynote PresentationJohn E. NiederhuberThe Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 35


Figure 3. Keynote PresentationInformation Theory <strong>in</strong> Molecular Biology: Key to Underst<strong>and</strong><strong>in</strong>g Information Transfer, Signal<strong>in</strong>g, <strong>and</strong>Translation <strong>in</strong> CancerChristoph C. AdamiFigure 4. Keynote PresentationThe Information: Genetic Code(s) <strong>and</strong> Cancer—State <strong>of</strong> <strong>the</strong> ScienceDavid Haussler36 Meet<strong>in</strong>g Report


Figure 5. Keynote PresentationThe Rest <strong>of</strong> <strong>the</strong> Story: The Small RNAs <strong>and</strong> CancerPhillip A. SharpFigure 6. Small Group DiscussionInformation Theory—If It’s So Important <strong>in</strong> Cancer, Why Have We Not Made More Progress <strong>in</strong> <strong>the</strong> Field?Robert Mittman <strong>and</strong> GroupThe Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 37


Figure 7. Brief PresentationsContextual Translation <strong>of</strong> Information: So Many Signals, So Many Channels, So Much Translation on SoMany ScalesDarryl K. Shibata, Philip R. LeDuc, Mauro Ferrari, Jennifer Lipp<strong>in</strong>cott-Schwartz, Robert A. GatenbyFigure 8. Small Group DiscussionsUnderst<strong>and</strong><strong>in</strong>g Signal<strong>in</strong>g <strong>and</strong> Contextual Translation <strong>of</strong> Information at Multiscales: What’s RelevantFrom <strong>the</strong> Physical Sciences?Facilitator: Robert Mittman38 Meet<strong>in</strong>g Report


Figure 9. Panel DiscussionThe Outcomes <strong>and</strong> Consequences <strong>of</strong> Information Transfer <strong>in</strong> Cancer Across Length ScalesWallace F. Marshall, Carlo C. Maley, Robert H. Aust<strong>in</strong>, Christoph C. AdamiFigure 10. Panel DiscussionThe Future: If We Underst<strong>and</strong> <strong>the</strong> Specifics (Physics, Chemistry, etc.) <strong>of</strong> <strong>the</strong> Information, Its Transfer, <strong>and</strong>Contextual Translation at Multiple Length Scales <strong>in</strong> Cancer, Can We Alter Outcomes?Paul Davies, Donald S. C<strong>of</strong>fey, Robert Phillips, W. Daniel Hillis, John E. NiederhuberThe Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 39


Figure 11. Keynote PresentationThe Failure <strong>and</strong> Repair <strong>of</strong> Emergent Systems: A Systems Eng<strong>in</strong>eer<strong>in</strong>g Approach to CancerW. Daniel Hillis40 Meet<strong>in</strong>g Report


Appendix 2. Bibliography1. Gerlich, D., J. Beaudou<strong>in</strong>, et al. (2003). “Global chromosome positions are transmitted throughmitosis <strong>in</strong> mammalian cells.” Cell 112(6): 751-64.2. Kirchhamer, C. V., L. D. Bogarad, et al. (1996). “Developmental expression <strong>of</strong> syn<strong>the</strong>tic cis-regulatorysystems composed <strong>of</strong> spatial control elements from two different genes.” Proc Natl Acad Sci U S A93(24): 13849-54.3. Poirier, M. G., M. Bussiek, et al. (2008). “Spontaneous access to DNA target sites <strong>in</strong> folded chromat<strong>in</strong>fibers.” J Mol Biol 379(4): 772-86.4. Mumm, J. P., A. L<strong>and</strong>y, et al. (2006). “View<strong>in</strong>g s<strong>in</strong>gle lambda site-specific recomb<strong>in</strong>ation events fromstart to f<strong>in</strong>ish.” Embo J 25(19): 4586-95.5. Small, S., A. Blair, et al. (1992). “Regulation <strong>of</strong> even-skipped stripe 2 <strong>in</strong> <strong>the</strong> Drosophila embryo.” EmboJ 11(11): 4047-57.6. Alberts, B. (1998). “The cell as a collection <strong>of</strong> prote<strong>in</strong> mach<strong>in</strong>es: prepar<strong>in</strong>g <strong>the</strong> next generation <strong>of</strong>molecular biologists.” Cell 92(3): 291-4.7. Bissell, M. J., <strong>and</strong> M. A. Labarge (2005). “Context, tissue plasticity, <strong>and</strong> <strong>cancer</strong>: are tumor stem cellsalso regulated by <strong>the</strong> microenvironment?” Cancer Cell 7(1): 17-23.8. Ch<strong>in</strong>, S. F., A. E. Teschendorff, et al. (2007). “High-resolution aCGH <strong>and</strong> expression pr<strong>of</strong>il<strong>in</strong>g identifiesa novel genomic subtype <strong>of</strong> ER negative breast <strong>cancer</strong>.” Genome Biol 8(10): R215.9. Cancer Genome Atlas Research Network. (2008) .“Comprehensive genomic characterizationdef<strong>in</strong>es human glioblastoma genes <strong>and</strong> core pathways.” Nature 455(7216): 1061-8.10. Mor<strong>in</strong>, R. D., M. D. O’Connor, et al. (2008). “Application <strong>of</strong> massively parallel sequenc<strong>in</strong>g to microRNApr<strong>of</strong>il<strong>in</strong>g <strong>and</strong> discovery <strong>in</strong> human embryonic stem cells.” Genome Res 18(4): 610-21.11. Lee, R. C., R. L. Fe<strong>in</strong>baum, et al. (1993). “The C. elegans heterochronic gene l<strong>in</strong>-4 encodes small RNAswith antisense complementarity to l<strong>in</strong>-14.” Cell 75(5): 843-54.12. Wightman, B., I. Ha, et al. (1993). “Posttranscriptional regulation <strong>of</strong> <strong>the</strong> heterochronic gene l<strong>in</strong>-14 byl<strong>in</strong>-4 mediates temporal pattern formation <strong>in</strong> C. elegans.” Cell 75(5): 855-62.13. Lagos-Qu<strong>in</strong>tana, M., R. Rauhut, et al. (2001). “Identification <strong>of</strong> novel genes <strong>cod<strong>in</strong>g</strong> for smallexpressed RNAs.” Science 294(5543): 853-8.14. Lau, N. C., L. P. Lim, et al. (2001). “An abundant class <strong>of</strong> t<strong>in</strong>y RNAs with probable regulatory roles <strong>in</strong>Caenorhabditis elegans.” Science 294(5543): 858-62.15. Lee, R. C., <strong>and</strong> V. Ambros (2001). “An extensive class <strong>of</strong> small RNAs <strong>in</strong> Caenorhabditis elegans.”Science 294(5543): 862-4.16. Bonci, D., V. Coppola, et al. (2008). “The miR-15a-miR-16-1 cluster controls prostate <strong>cancer</strong> bytarget<strong>in</strong>g multiple oncogenic activities.” Nat Med 14(11): 1271-7.17. Jacob, F., <strong>and</strong> J. Monod (1961). “Genetic regulatory mechanisms <strong>in</strong> <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> prote<strong>in</strong>s.” J MolBiol 3: 318-56.18. Shannon, C. E. (1948). “A ma<strong>the</strong>matical <strong>the</strong>ory <strong>of</strong> communication.” Bell System Technical J 27: 379-423, 623-656.The Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 41


Appendix 3. Meet<strong>in</strong>g AgendaOverviewThis is <strong>the</strong> third <strong>in</strong> a series <strong>of</strong> NCI “th<strong>in</strong>k tanks” that br<strong>in</strong>g toge<strong>the</strong>r leaders from <strong>the</strong> physicalsciences with basic <strong>and</strong> cl<strong>in</strong>ical <strong>cancer</strong> researchers to explore approaches that may contribute tosolv<strong>in</strong>g <strong>in</strong>tractable problems that we face <strong>in</strong> underst<strong>and</strong><strong>in</strong>g <strong>and</strong> controll<strong>in</strong>g <strong>cancer</strong>. Although <strong>the</strong>conversations <strong>in</strong> <strong>the</strong> first meet<strong>in</strong>g identified a large number <strong>of</strong> potential research opportunities, fourmajor <strong>the</strong>mes emerged for fur<strong>the</strong>r exploration as follows: <strong>the</strong> “physics” <strong>of</strong> <strong>cancer</strong> (e.g., forces <strong>and</strong>mechanics, <strong>the</strong>rmodynamics, gradients, etc.); evolution <strong>and</strong> evolutionary <strong>the</strong>ory <strong>in</strong> <strong>cancer</strong>; <strong><strong>in</strong>formation</strong><strong>cod<strong>in</strong>g</strong>, <strong>transfer</strong> <strong>translation</strong>, <strong>and</strong> <strong><strong>in</strong>formation</strong> <strong>the</strong>ory <strong>in</strong> <strong>cancer</strong>; <strong>and</strong> <strong>the</strong> complexity <strong>of</strong> <strong>cancer</strong>.The second meet<strong>in</strong>g <strong>in</strong> this series focused on “A New Look at Evolution <strong>and</strong> Evolutionary Theory <strong>in</strong>Cancer.” This meet<strong>in</strong>g identified a number <strong>of</strong> <strong>the</strong> major research questions <strong>in</strong> <strong>the</strong> field <strong>and</strong> elaborateda number <strong>of</strong> “gr<strong>and</strong> challenges” that, if met, would significantly improve our underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> role<strong>of</strong> evolution <strong>in</strong> <strong>cancer</strong>. Underly<strong>in</strong>g many <strong>of</strong> <strong>the</strong> conversations at this th<strong>in</strong>k tank were questions on <strong>the</strong>role <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>and</strong> <strong><strong>in</strong>formation</strong> <strong>the</strong>ory <strong>in</strong> <strong>cancer</strong>, specifically those changes that confer selectiveadvantages. Overall it was clear that a great deal <strong>of</strong> knowledge is needed to elucidate <strong>the</strong> role <strong>of</strong><strong><strong>in</strong>formation</strong> flow at all scales <strong>in</strong> underst<strong>and</strong><strong>in</strong>g <strong>the</strong> emergence <strong>of</strong> <strong>the</strong> malignant phenotype.Although this th<strong>in</strong>k tank will focus on <strong>the</strong> <strong>cod<strong>in</strong>g</strong>, de<strong>cod<strong>in</strong>g</strong>, flow, <strong>and</strong> <strong>translation</strong> <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>in</strong><strong>cancer</strong>, our conversations will by necessity reflect <strong>in</strong> an <strong>in</strong>tegrative way all four <strong>of</strong> <strong>the</strong> <strong>the</strong>mes thatderived from <strong>the</strong> first meet<strong>in</strong>g. Our overall goal for this meet<strong>in</strong>g is to better def<strong>in</strong>e <strong>and</strong> underst<strong>and</strong> thiscomplex field relative to its potential role <strong>in</strong> underst<strong>and</strong><strong>in</strong>g <strong>and</strong> controll<strong>in</strong>g <strong>cancer</strong>. Overall we plan to:• Explore <strong>the</strong> concept <strong>of</strong> what “<strong><strong>in</strong>formation</strong>” means <strong>in</strong> terms <strong>of</strong> <strong>the</strong> genetic code <strong>and</strong> its <strong>translation</strong> <strong>in</strong><strong>cancer</strong> relative to context <strong>and</strong> certa<strong>in</strong> specific aspects that characterize <strong>cancer</strong>.• From <strong>the</strong> perspective <strong>of</strong> both <strong>the</strong> physical <strong>and</strong> biological sciences, determ<strong>in</strong>e <strong>the</strong> “state <strong>of</strong> <strong>the</strong>science” <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>and</strong> <strong><strong>in</strong>formation</strong> <strong>the</strong>ory <strong>in</strong> terms <strong>of</strong> underst<strong>and</strong><strong>in</strong>g <strong>cancer</strong> at all scales.• Identify <strong>the</strong> major critical research questions <strong>in</strong> <strong>the</strong> state <strong>of</strong> <strong>the</strong> science <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>and</strong><strong><strong>in</strong>formation</strong> sciences <strong>in</strong> <strong>cancer</strong> that could represent major areas for transdiscipl<strong>in</strong>ary research.• Determ<strong>in</strong>e where/how <strong>in</strong>novative research approaches <strong>in</strong> <strong><strong>in</strong>formation</strong>/<strong><strong>in</strong>formation</strong> <strong>the</strong>ory mightlead to <strong>the</strong> development <strong>of</strong> new <strong>cancer</strong> <strong>in</strong>terventions.• Offer guidance on how <strong>the</strong> NCI can <strong>in</strong>tegrate areas from <strong>the</strong> physical sciences (physics,ma<strong>the</strong>matics, chemistry, eng<strong>in</strong>eer<strong>in</strong>g, etc.) with <strong>cancer</strong> biology/oncology to enable <strong>the</strong>development <strong>of</strong> this field <strong>of</strong> study.OutcomesIt is anticipated that <strong>the</strong> outcomes <strong>of</strong> this th<strong>in</strong>k tank will enable <strong>the</strong> development <strong>of</strong> <strong>the</strong> <strong>in</strong>novativestrategies, models, <strong>and</strong> approaches needed to build this transdiscipl<strong>in</strong>ary field <strong>of</strong> <strong>cancer</strong> <strong><strong>in</strong>formation</strong><strong>cod<strong>in</strong>g</strong>, <strong>transfer</strong>, <strong>and</strong> <strong>translation</strong> as well as its <strong>the</strong>oretical foundation. Input from <strong>the</strong> meet<strong>in</strong>g will beutilized to <strong>in</strong>form new research directions <strong>and</strong> mechanisms that will hopefully energize <strong>and</strong> advancethis convergent field <strong>of</strong> <strong>cancer</strong> research. Specifically, targeted outcomes <strong>in</strong>clude <strong>the</strong> follow<strong>in</strong>g:• Produce a detailed view <strong>and</strong> <strong>in</strong>terpretation <strong>of</strong> <strong>the</strong> state <strong>of</strong> <strong>the</strong> field <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>and</strong> <strong><strong>in</strong>formation</strong><strong>the</strong>ory related to <strong>cancer</strong>.• Assum<strong>in</strong>g that <strong>the</strong> field is not currently a major thrust <strong>in</strong> terms <strong>of</strong> our research efforts tounderst<strong>and</strong> <strong>and</strong> control <strong>cancer</strong>, def<strong>in</strong>e <strong>the</strong> barriers that are limit<strong>in</strong>g <strong>the</strong> development <strong>of</strong> <strong>the</strong> field.42 Meet<strong>in</strong>g Report


• If progress <strong>in</strong> <strong>the</strong> field <strong>of</strong> <strong><strong>in</strong>formation</strong> <strong>the</strong>ory <strong>and</strong> <strong><strong>in</strong>formation</strong> management applied to <strong>cancer</strong> is tobe achieved <strong>in</strong> a timely manner, def<strong>in</strong>e major research questions <strong>and</strong> directions for <strong>the</strong> future.• Propose examples <strong>of</strong> research strategies, data management approaches, <strong>and</strong> <strong>in</strong>frastructure thatcould be employed to <strong>in</strong>form <strong>and</strong> support address<strong>in</strong>g <strong>the</strong>se research questions.The conversations compris<strong>in</strong>g this th<strong>in</strong>k tank, <strong>in</strong>clud<strong>in</strong>g bra<strong>in</strong>storm<strong>in</strong>g sessions, presentations,roundtables, <strong>and</strong> reports from work groups, will be captured <strong>in</strong> a report that will be available on an NCIWeb site dedicated to this Physical Sciences-Based Frontiers <strong>in</strong> Oncology Series.AgendaWednesday, October 295:00 p.m. - 6:00 p.m. Registration Salon III Foyer6:00 p.m. - 7:15 p.m. Reception <strong>and</strong> Buffet D<strong>in</strong>ner Salon III7:30 p.m. - 7:50 p.m. Meet<strong>in</strong>g Background <strong>and</strong> IntroductionsAnna D. Barker, Ph.D.Deputy DirectorNational Cancer InstituteWelcome <strong>and</strong> Introduction <strong>of</strong> Keynote PresenterJohn E. Niederhuber, M.D.DirectorNational Cancer Institute7:50 p.m. - 8:50 p.m. Keynote PresentationIs DNA a Molecule? Mus<strong>in</strong>gs on Good Cells Mak<strong>in</strong>g Bad ChoicesRobert Phillips, Ph.D.Pr<strong>of</strong>essorCalifornia Institute <strong>of</strong> TechnologyQuestions/Discussion8:50 p.m. - 9:00 p.m. Th<strong>in</strong>k Tank ProcessAnna D. Barker, Ph.D.Deputy DirectorNational Cancer Institute9:00 p.m. - 9:10 p.m. Process <strong>and</strong> Outcomes OverviewFacilitator: Robert Mittman, M.S., M.P.P.Founder/PresidentFacilitation, Foresight, StrategyThe Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 43


Thursday, October 307:00 a.m. - 8:00 a.m. Cont<strong>in</strong>ental Breakfast8:00 a.m. - 8:30 a.m. The NCI’s Physical Sciences-Based Frontiers<strong>in</strong> Oncology Th<strong>in</strong>k Tank SeriesAnna D. Barker, Ph.D.Deputy DirectorNational Cancer InstituteSalon IIITh<strong>in</strong>k Tank ProcessFacilitator: Robert Mittman, M.S., M.P.P.Founder/PresidentFacilitation, Foresight, StrategyWelcome <strong>and</strong> Introduction <strong>of</strong> Keynote PresentationJohn E. Niederhuber, M.D.DirectorNational Cancer Institute8:30 a.m. - 9:00 a.m. Keynote PresentationInformation Theory <strong>in</strong> Molecular Biology: Key to Underst<strong>and</strong><strong>in</strong>gInformation Transfer, Signal<strong>in</strong>g, <strong>and</strong> Translation <strong>in</strong> CancerChristoph C. Adami, Ph.D.Pr<strong>of</strong>essorCalifornia Institute <strong>of</strong> Technology9:00 a.m. - 10:30 a.m. Small Group Discussions: Information Theory – If It’s So Important <strong>in</strong>Cancer, Why Have We Not Made More Progress <strong>in</strong> <strong>the</strong> Field?Facilitator: Robert Mittman, M.S., M.P.P.10:30 a.m. - 10:45 a.m. Break10:45 a.m. - 11:15 a.m. Keynote PresentationThe Information: Genetic Code(s) <strong>and</strong> Cancer—State <strong>of</strong> <strong>the</strong> ScienceDavid Haussler, Ph.D., M.S.Pr<strong>of</strong>essorUniversity <strong>of</strong> California, Santa Cruz11:15 a.m. - 11:45 a.m. Keynote PresentationThe Rest <strong>of</strong> <strong>the</strong> Story: The Small RNAs <strong>and</strong> CancerPhillip A. Sharp, Ph.D.Pr<strong>of</strong>essorMassachusetts Institute <strong>of</strong> Technology11:45 a.m. - 12:15 p.m. Group Discussion: Cancer InformationDr. Adami, Dr. Haussler, Dr. Sharp, <strong>and</strong> Group12:15 p.m. - 1:10 p.m. LunchFacilitator: Robert Mittman, M.S., M.P.P.44 Meet<strong>in</strong>g Report


1:10 p.m. - 2:30 p.m. Contextual Translation <strong>of</strong> Information: So Many Signals, So ManyChannels, So Much Translation on So Many ScalesPanel: Brief PresentationsBeyond <strong>the</strong> Genome: Underst<strong>and</strong><strong>in</strong>g <strong>the</strong> Human Somatic Cell TreeDarryl K. Shibata, M.D.Pr<strong>of</strong>essorUniversity <strong>of</strong> Sou<strong>the</strong>rn CaliforniaSignal<strong>in</strong>g Pathways: An Eng<strong>in</strong>eer’s PerspectivePhilip R. LeDuc, Ph.D.Associate Pr<strong>of</strong>essorCarnegie Mellon UniversityMultiscale Nature <strong>of</strong> Information TransferMauro Ferrari, Ph.D., M.S.Pr<strong>of</strong>essorUniversity <strong>of</strong> Texas Health Science Center at HoustonDynamics <strong>and</strong> Cross-Talk <strong>of</strong> Intracellular OrganellesJennifer Lipp<strong>in</strong>cott-Schwartz, Ph.D., M.S.Senior InvestigatorNational Institute <strong>of</strong> Child Health <strong>and</strong> Human DevelopmentInformation Theory <strong>in</strong> Liv<strong>in</strong>g Systems: Contributions <strong>of</strong> <strong>the</strong>MicroenvironmentRobert A. Gatenby, M.D.Division ChiefM<strong>of</strong>fitt Cancer Center <strong>and</strong> Research InstituteDiscussionFacilitator: Robert Mittman, M.S., M.P.P.2:30 p.m. - 3:45 p.m. Small Group Discussions: Underst<strong>and</strong><strong>in</strong>g Signal<strong>in</strong>g <strong>and</strong> ContextualTranslation <strong>of</strong> Information at Multiscales: What’s Relevant From <strong>the</strong>Physical Sciences?Facilitator: Robert Mittman, M.S., M.P.P.3:45 p.m. - 6:00 p.m. M<strong>in</strong>d-Clear<strong>in</strong>g Break******************************************6:00 p.m. Th<strong>in</strong>k Tank Reconvenes Salon III6:00 p.m. - 6:30 p.m. Work<strong>in</strong>g D<strong>in</strong>nerThe Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 45


6:30 p.m. - 7:30 p.m. The Outcomes <strong>and</strong> Consequences <strong>of</strong> Information Transfer <strong>in</strong> CancerAcross Length ScalesPanel DiscussionHow Information Is Used To Build Cells: Design Pr<strong>in</strong>ciples <strong>and</strong>Information Transfer (10-m<strong>in</strong>ute overview)Wallace F. Marshall, Ph.D.Assistant Pr<strong>of</strong>essorUniversity <strong>of</strong> California, San FranciscoIntersection <strong>of</strong> Evolution <strong>and</strong> Information Theory: What Does It Mean forCancer? (5-m<strong>in</strong>ute perspective)Carlo C. Maley, Ph.D.Assistant Pr<strong>of</strong>essorThe Wistar InstituteThe Physics <strong>of</strong> Information Transfer <strong>in</strong> Cancer (5-m<strong>in</strong>ute perspective)Robert H. Aust<strong>in</strong>, Ph.D.Pr<strong>of</strong>essor <strong>of</strong> PhysicsPr<strong>in</strong>ceton UniversityInformation Theory: Could This Approach Enable an Underst<strong>and</strong><strong>in</strong>g <strong>of</strong><strong>the</strong> Why/How <strong>of</strong> <strong>the</strong> Malignant Phenotype? (5-m<strong>in</strong>ute perspective)Christoph C. Adami, Ph.D.Pr<strong>of</strong>essorCalifornia Institute <strong>of</strong> TechnologyDiscussionFacilitator: Robert Mittman, M.S., M.P.P.7:30 p.m. - 8:30 p.m. Small Group Discussions: From <strong>the</strong> Viewpo<strong>in</strong>t <strong>of</strong> Information Transfer<strong>and</strong> Translation: New Research Approaches/Directions to BetterUnderst<strong>and</strong> <strong>the</strong> Cancer Process at MultiscalesFacilitator: Robert Mittman, M.S., M.P.P.8:30 p.m. - 9:30 p.m. The Future: If We Underst<strong>and</strong> <strong>the</strong> Specifics (Physics, Chemistry, etc.) <strong>of</strong><strong>the</strong> Information, Its Transfer, <strong>and</strong> Contextual Translation at MultipleLength Scales <strong>in</strong> Cancer, Can We Alter Outcomes?Panel DiscussionPaul Davies, Ph.D., D.Sc.Pr<strong>of</strong>essorArizona State UniversityDonald S. C<strong>of</strong>fey, Ph.D.Pr<strong>of</strong>essorJohns Hopk<strong>in</strong>s UniversityRobert Phillips, Ph.D.Pr<strong>of</strong>essorCalifornia Institute <strong>of</strong> Technology46 Meet<strong>in</strong>g Report


W. Daniel Hillis, Ph.D.ChairmanApplied M<strong>in</strong>ds, Inc.John E. Niederhuber, M.D.DirectorNational Cancer InstituteDiscussionFacilitator: Robert Mittman, M.S., M.P.P.Friday, October 317:00 a.m. - 8:00 a.m. Cont<strong>in</strong>ental Breakfast Salon III8:00 a.m. - 8:15 a.m. Review <strong>of</strong> Day 1Robert Mittman, M.S., M.P.P.Founder/PresidentFacilitation, Foresight, Strategy8:15 a.m. - 9:00 a.m. Keynote PresentationThe Failure <strong>and</strong> Repair <strong>of</strong> Emergent Systems: A Systems Eng<strong>in</strong>eer<strong>in</strong>gApproach to CancerW. Daniel Hillis, Ph.D.ChairmanApplied M<strong>in</strong>ds, Inc.Questions <strong>and</strong> Discussion9:00 a.m. - 11:30 a.m. A “Tour” <strong>of</strong> <strong>the</strong> Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong>Information <strong>in</strong> Cancer: Def<strong>in</strong><strong>in</strong>g <strong>the</strong> Scope <strong>of</strong> <strong>the</strong> Big Questions (Gr<strong>and</strong>Challenges) <strong>and</strong> How to Approach Answer<strong>in</strong>g Them ThroughTransdiscipl<strong>in</strong>ary ResearchTh<strong>in</strong>k<strong>in</strong>g Groups Salon II, Plaza B,Plaza D, <strong>and</strong> DiplomatIndividual Group FacilitationFacilitator: Group Leader FacilitatorsRobert Mittman, M.S., M.P.P.11:30 a.m. - 1:00 p.m. Report<strong>in</strong>g <strong>and</strong> Ref<strong>in</strong><strong>in</strong>g <strong>the</strong> Gr<strong>and</strong> ChallengesGroup Report<strong>in</strong>gFacilitator: Robert Mittman, M.S., M.P.P.1:00 p.m. - 1:30 p.m. Summary <strong>and</strong> Next StepsJohn E. Niederhuber, M.D.DirectorNational Cancer InstituteAnna D. Barker, Ph.D.Deputy DirectorNational Cancer InstituteThe Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 47


Appendix 4. Meet<strong>in</strong>g ParticipantsChristoph C. Adami, Ph.D.Pr<strong>of</strong>essorKeck Graduate School <strong>of</strong> Applied Life Sciences535 Watson DriveClaremont, CA 91711-4817(909) 607-9853(909) 607-8086 Faxadami@kgi.eduDavid B. Agus, M.D.DirectorSpielberg Family Center for Applied ProteomicsCedars-S<strong>in</strong>ai Medical CenterSuite 215E8631 West Third StreetLos Angeles, CA 90048(310) 423-7620(310) 423-1998 Faxdavid.agus@cshs.orgGaurav Arya, Ph.D.Assistant Pr<strong>of</strong>essor <strong>of</strong> Nanoeng<strong>in</strong>eer<strong>in</strong>gDepartment <strong>of</strong> Mechanical <strong>and</strong> AerospaceEng<strong>in</strong>eer<strong>in</strong>gUniversity <strong>of</strong> California, San Diego261 EBU IIMail Code 04119500 Gilman DriveLa Jolla, CA 92093-041(858) 822-5542(858) 534-5698 Faxgarya@ucsd.eduRobert H. Aust<strong>in</strong>, Ph.D.Pr<strong>of</strong>essor <strong>of</strong> PhysicsDepartment <strong>of</strong> PhysicsPr<strong>in</strong>ceton University122 Jadw<strong>in</strong> HallPr<strong>in</strong>ceton, NJ 08544(609) 258-4353(609) 258-1115 Faxaust<strong>in</strong>@pr<strong>in</strong>ceton.eduGang Bao, Ph.D.Robert A. Milton Chair <strong>in</strong> Biomedical Eng<strong>in</strong>eer<strong>in</strong>gGeorgia Institute <strong>of</strong> Technology <strong>and</strong> EmoryUniversity313 Ferst Drive, NWAtlanta, GA 30332(404) 385-0373(404) 894-4243 Faxgang.bao@bme.gatech.eduAnna D. Barker, Ph.D.Deputy DirectorNational Cancer InstituteNational Institutes <strong>of</strong> HealthBuild<strong>in</strong>g 31, Room 11A-30MSC 258031 Center DriveBe<strong>the</strong>sda, MD 20892-2580(301) 496-1045(301) 480-2889 Faxbarkera@mail.nih.govRavi V. Bellamkonda, Ph.D.Pr<strong>of</strong>essorDepartment <strong>of</strong> Biomedical Eng<strong>in</strong>eer<strong>in</strong>gGeorgia Institute <strong>of</strong> Technology/Emory University313 Ferst Drive, NWAtlanta, GA 30332(404) 385-5038(404) 385-5044 Faxravi@bme.gatech.eduSherr<strong>in</strong> Bennett, M.S.PresidentInteractive Learn<strong>in</strong>g Systems214 Water StreetPo<strong>in</strong>t Richmond, CA 94801(510) 233-2230sherr<strong>in</strong>bennett@earthl<strong>in</strong>k.netCarl T. Bergstrom, Ph.D.Associate Pr<strong>of</strong>essorDepartment <strong>of</strong> BiologyUniversity <strong>of</strong> Wash<strong>in</strong>gtonBox 351800Seattle, WA 98195-1800(206) 685-3487cbergst@u.wash<strong>in</strong>gton.edu48 Meet<strong>in</strong>g Report


Jordan D. Berl<strong>in</strong>, M.D.Cl<strong>in</strong>ical DirectorGastro<strong>in</strong>test<strong>in</strong>al OncologyAssociate Pr<strong>of</strong>essor <strong>of</strong> Medic<strong>in</strong>eMedical OncologistV<strong>and</strong>erbilt-Ingram Cancer Center777 Preston Build<strong>in</strong>gNashville, TN 37232-6307(615) 322-4967(615) 343-7602 Faxjordan.berl<strong>in</strong>@v<strong>and</strong>erbilt.eduKenneth H. Buetow, Ph.D.DirectorCenter for Bio<strong>in</strong>formatics <strong>and</strong> InformationTechnologyNational Cancer InstituteNational Institutes <strong>of</strong> HealthSuite 60002115 East Jefferson StreetBe<strong>the</strong>sda, MD 20892(301) 435-1520(301) 480-6641 Faxbuetowk@mail.nih.govPedro Cano, M.D.The University <strong>of</strong> Texas M.D. Anderson CancerCenterBox 1371515 Holcombe BoulevardHouston, TX 77030-4095(713) 792-6313(713) 794-1824 Faxpcano@md<strong>and</strong>erson.orgDonald S. C<strong>of</strong>fey, Ph.D.Pr<strong>of</strong>essor <strong>of</strong> Urology ResearchJohns Hopk<strong>in</strong>s School <strong>of</strong> Medic<strong>in</strong>eMarburg Build<strong>in</strong>g, Room 121600 North Wolfe StreetBaltimore, MD 21287-2101(410) 955-2517(410) 502-9336 Faxdc<strong>of</strong>fey@jhmi.eduCarolyn C. Compton, M.D., Ph.D.DirectorOffice <strong>of</strong> Biorepositories <strong>and</strong> BiospecimenResearchNational Cancer InstituteNational Institutes <strong>of</strong> HealthBuild<strong>in</strong>g 31, Room 10A-03MSC 258031 Center DriveBe<strong>the</strong>sda, MD 20892-2580(301) 402-1762(301) 480-4814 Faxcomptcar@mail.nih.govPeter T. Cumm<strong>in</strong>gs, Ph.D.John Robert Hall Pr<strong>of</strong>essor <strong>of</strong> ChemicalEng<strong>in</strong>eer<strong>in</strong>gPr<strong>of</strong>essor <strong>of</strong> Chemical <strong>and</strong> BiomolecularEng<strong>in</strong>eer<strong>in</strong>gV<strong>and</strong>erbilt UniversityVU Station B 351604303 Ol<strong>in</strong> HallNashville, TN 37235(615) 322-8129(615) 343-7951 Faxpeter.cumm<strong>in</strong>gs@v<strong>and</strong>erbilt.eduPaul Davies, Ph.D., D.Sc.Pr<strong>of</strong>essor <strong>and</strong> DirectorThe Beyond Center for Fundamental Concepts <strong>in</strong>ScienceArizona State UniversityP.O. Box 871504Tempe, AZ 85287-1504(480) 965-3240(480) 965-7954 Faxpaul.davies@asu.eduMichael W. Deem, Ph.D.John W. Cox Pr<strong>of</strong>essor <strong>of</strong> Bioeng<strong>in</strong>eer<strong>in</strong>gPr<strong>of</strong>essor <strong>of</strong> Physics <strong>and</strong> AstronomyRice UniversityMail Stop 1426100 Ma<strong>in</strong> StreetHouston, TX 77005-1892(713) 384-5811(713) 348-5852 Faxmwdeem@rice.eduThe Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 49


Micah X. Dembo, Ph.D.Pr<strong>of</strong>essor <strong>of</strong> Biomedical Eng<strong>in</strong>eer<strong>in</strong>gCellular <strong>and</strong> Subcellular Mechanics LaboratoryBoston University44 Cumm<strong>in</strong>gton StreetBoston, MA 02215-2407(617) 353-1671(617) 353-1671 Faxmxd@bu.eduEmmanuele DiBenedetto, Ph.D.Centennial Pr<strong>of</strong>essor <strong>of</strong> Ma<strong>the</strong>maticsPr<strong>of</strong>essor <strong>of</strong> Molecular Physiology <strong>and</strong> BiophysicsDepartment <strong>of</strong> Ma<strong>the</strong>maticsV<strong>and</strong>erbilt UniversityStevenson CenterNashville, TN 37240(615) 343-5906(615) 343-0215 Faxem.diben@v<strong>and</strong>erbilt.eduAlex<strong>and</strong>er G. Dimitrov, Ph.D.Assistant Pr<strong>of</strong>essorCenter for Computational BiologyMontana State UniversityP.O. Box 173505Bozeman, MT 59715(406) 994-6404(406) 994-7438 Faxalex@cns.montana.eduTravis M. Earles, M.S., M.B.A.NSTC RepresentativeNanobiotechnologyOffice <strong>of</strong> Science <strong>and</strong> Technology PolicyExecutive Office <strong>of</strong> <strong>the</strong> PresidentRoom 5203-5725 17th Street, NWWash<strong>in</strong>gton, DC 20502(202) 456-6025(202) 456-6021 Faxtravis_m._earles@ostp.eop.govThomas Earnest, Ph.D.Senior Scientist/Group LeaderStructural Proteomics Development GroupPhysical Biosciences DivisionLawrence Berkeley National LaboratoryMail Stop 64R01211 Cyclotron RoadBerkeley, CA 94720-8118(510) 486-4603tnearnest@lbl.govWarren J. Ewens, Ph.D.Pr<strong>of</strong>essorDepartment <strong>of</strong> BiologyUniversity <strong>of</strong> PennsylvaniaLeidy Laboratories, Room 324Philadelphia, PA 19104-6018(215) 898-7109(215) 898-8780 Faxwewens@sas.upenn.eduMauro Ferrari, Ph.D., M.S.Pr<strong>of</strong>essorThe University <strong>of</strong> Texas Health Science Center atHoustonSar<strong>of</strong><strong>in</strong> Research Build<strong>in</strong>g, Room 537-D1825 Pressler StreetHouston, TX 77030(713) 500-2444(713) 500-2462 Faxmauro.ferrari@uth.tmc.eduRobert A. Gatenby, M.D.Division ChiefRadiology <strong>and</strong> Integrated Ma<strong>the</strong>maticalOncologyM<strong>of</strong>fitt Cancer Center <strong>and</strong> Research Institute12902 Magnolia DriveTampa, FL 33612(813) 745-2843(813) 745-6070 Faxrobert.gatenby@m<strong>of</strong>fitt.org50 Meet<strong>in</strong>g Report


Daniela S. Gerhard, Ph.D.DirectorOffice <strong>of</strong> Cancer GenomicsNational Cancer InstituteNational Institutes <strong>of</strong> HealthBuild<strong>in</strong>g 31, Room 10A-07MSC 258031 Center DriveBe<strong>the</strong>sda, MD 20892-2580(301) 451-8027(301) 480-4368 Faxgerhardd@mail.nih.govRobert H. Getzenberg, Ph.D.Director, Urological ResearchJohns Hopk<strong>in</strong>s School <strong>of</strong> Medic<strong>in</strong>eMarburg Build<strong>in</strong>g, Room 121600 North Wolfe StreetBaltimore, MD 21287(410) 502-3137(410) 502-9336 Faxrgetzen1@jhmi.eduPiotr Grodz<strong>in</strong>ski, Ph.D.Program Director for Cancer NanotechnologyOffice <strong>of</strong> Technology <strong>and</strong> Industrial RelationsNational Cancer InstituteNational Institutes <strong>of</strong> HealthBuild<strong>in</strong>g 3131 Center DriveBe<strong>the</strong>sda, MD 20892(301) 496-1550(301) 496-7807 Faxgrodz<strong>in</strong>p@mail.nih.govJordan U. Gutterman, M.D.Pr<strong>of</strong>essor <strong>of</strong> Medic<strong>in</strong>eChiefSection <strong>of</strong> Cellular <strong>and</strong> Molecular GrowthRegulationThe University <strong>of</strong> Texas M.D. Anderson CancerCenterUnit 9501515 Holcombe BoulevardP.O. Box 301429Houston, TX 77030-1429(713) 563-4213(713) 563-4205 Faxjgutterm@md<strong>and</strong>erson.orgDavid Haussler, Ph.D., M.S.InvestigatorHoward Hughes Medical InstituteDirectorCenter for Biomolecular Science <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>gUniversity <strong>of</strong> California, Santa CruzEng<strong>in</strong>eer<strong>in</strong>g 2 Build<strong>in</strong>g, Suite 501Mail Stop CBS/ITI1156 High StreetSanta Cruz, CA 95064(831) 227-2116(831) 459-1809 Faxhaussler@soe.ucsc.eduJames R. Heath, Ph.D.Elizabeth W. Gilloon Pr<strong>of</strong>essor <strong>and</strong> Pr<strong>of</strong>essor <strong>of</strong>ChemistryDivision <strong>of</strong> Chemistry <strong>and</strong> Chemical Eng<strong>in</strong>eer<strong>in</strong>gCalifornia Institute <strong>of</strong> TechnologyMail Code 127-721200 East California BoulevardPasadena, CA 91125(626) 395-6079(626) 395-2355 Faxheath@caltech.eduHenry H.Q. Heng, Ph.D.Associate Pr<strong>of</strong>essorCenter for Molecular Medic<strong>in</strong>e <strong>and</strong> GeneticsSchool <strong>of</strong> Medic<strong>in</strong>eWayne State University3226 Scott Hall540 East CanfieldDetroit, MI 48202(313) 577-9544(313) 577-5218 Faxhheng@med.wayne.eduW. Daniel Hillis, Ph.D., M.S.Chairman <strong>and</strong> C<strong>of</strong>ounderApplied M<strong>in</strong>ds, Inc.1209 Gr<strong>and</strong> Central AvenueGlendale, CA 91201(818) 545-1401(818) 244-0204 Faxdanny@appliedm<strong>in</strong>ds.comThe Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 51


Sr<strong>in</strong>ivasan S. Iyengar, Ph.D.Assistant Pr<strong>of</strong>essorChemistry DepartmentAdjunct Assistant Pr<strong>of</strong>essorPhysics DepartmentIndiana UniversityRoom C202B800 East Kirkwood AvenueBloom<strong>in</strong>gton, IN 47405-7102(812) 856-1875(812) 855-8300 Faxiyengar@<strong>in</strong>diana.eduPaul Janmey, Ph.D.Pr<strong>of</strong>essorDepartments <strong>of</strong> Physiology, Physics, <strong>and</strong>Bioeng<strong>in</strong>eer<strong>in</strong>gSchool <strong>of</strong> Medic<strong>in</strong>eUniversity <strong>of</strong> Pennsylvania1010 Vagelos Laboratory3340 Smith WalkPhiladelphia, PA 19104(215) 573-7380(215) 573-6815 Faxjanmey@mail.med.upenn.eduDon H. Johnson, Ph.D.J.S. Abercrombie Pr<strong>of</strong>essorDepartment <strong>of</strong> Electrical <strong>and</strong> ComputerEng<strong>in</strong>eer<strong>in</strong>gRice University6100 Ma<strong>in</strong> StreetHouston, TX 77005-1892(713) 348-4956(713) 348-5685 Faxdhj@rice.eduSusan M. Keat<strong>in</strong>g, Ph.D.Senior ScientistCCS Associates2005 L<strong>and</strong><strong>in</strong>gs DriveMounta<strong>in</strong> View, CA 94043(650) 691-4400(650) 691-4410 Faxskeat<strong>in</strong>g@ccsa<strong>in</strong>c.comGary J. Kell<strong>of</strong>f, M.D.Special AdvisorCancer Imag<strong>in</strong>g ProgramDivision <strong>of</strong> Cancer Treatment <strong>and</strong> DiagnosisNational Cancer InstituteNational Institutes <strong>of</strong> HealthExecutive Plaza North, Suite 6058MSC 49106130 Executive BoulevardBe<strong>the</strong>sda, MD 20892(301) 594-0423(301) 480-3507 Faxkell<strong>of</strong>fg@mail.nih.govPeter Kuhn, Ph.D.Associate Pr<strong>of</strong>essorThe Scripps Research InstituteGAC-120010550 North Torrey P<strong>in</strong>es RoadLa Jolla, CA 92037(858) 784-7078(858) 784-8996 Faxpkuhn@scripps.eduJan Lammerd<strong>in</strong>g, Ph.D.Instructor <strong>in</strong> Medic<strong>in</strong>e <strong>and</strong> Associate BiophysicistBrigham <strong>and</strong> Women’s Hospital/Harvard MedicalSchoolPartners Research Build<strong>in</strong>g, Room 28365 L<strong>and</strong>sdowne StreetCambridge, MA 02139(617) 768-8273(617) 768-8280 Faxjlammerd<strong>in</strong>g@rics.bwh.harvard.eduAurel A. Lazar, Ph.D.Pr<strong>of</strong>essorDepartment <strong>of</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>gColumbia University524 SW MuddMail Code 4705500 West 120th StreetNew York, NY 10027(212) 854-6438aurel@ee.columbia.edu52 Meet<strong>in</strong>g Report


Philip R. LeDuc, Ph.D.Associate Pr<strong>of</strong>essorDepartments <strong>of</strong> Mechanical <strong>and</strong> BiomedicalEng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong> <strong>of</strong> Biological SciencesCarnegie Mellon UniversityScaife Hall, Room 4155000 Forbes AvenuePittsburgh, PA 15213(412) 268-2504(412) 268-3348 Faxprleduc@cmu.eduJerry S.H. Lee, Ph.D.Special Assistant to <strong>the</strong> Deputy DirectorOffice <strong>of</strong> <strong>the</strong> DirectorNational Cancer InstituteNational Institutes <strong>of</strong> HealthBuild<strong>in</strong>g 31, Room 11A-30CMSC 258031 Center DriveBe<strong>the</strong>sda, MD 20892-2580(301) 594-0255(301) 496-7807 Faxleejerry@mail.nih.govRong Li, Ph.D.Investigator <strong>and</strong> Pr<strong>of</strong>essorDepartment <strong>of</strong> Molecular <strong>and</strong> IntegrativePhysiologySchool <strong>of</strong> Medic<strong>in</strong>eUniversity <strong>of</strong> KansasStowers Institute for Medical Research1000 East 50th StreetKansas City, MO 64110(816) 926-4340(816) 926-4660 Faxrli@stowers-<strong>in</strong>stitute.orgJonathan D. Licht, M.D.Pr<strong>of</strong>essor <strong>and</strong> ChiefDivision <strong>of</strong> Hematology/OncologyAssociate DirectorCl<strong>in</strong>ical Sciences ResearchRobert H. Lurie Comprehensive Cancer CenterLurie 5-123303 East Superior StreetChicago, IL 60611(312) 503-1114(312) 503-0189 Faxj-licht@northwestern.eduJan T. Liphardt, Ph.D.Assistant Pr<strong>of</strong>essorPhysics DepartmentLawrence Berkeley National LaboratoryStanley Hall, Room 478Berkeley, CA 94720-3220(510) 666-2784liphardt@berkeley.eduJennifer Lipp<strong>in</strong>cott-Schwartz, Ph.D., M.S.ChiefSection on Organelle BiologyCell Biology <strong>and</strong> Metabolism BranchNational Institute <strong>of</strong> Child Health <strong>and</strong> HumanDevelopmentNational Institutes <strong>of</strong> HealthBuild<strong>in</strong>g 18T, Room 10118 Library DriveBe<strong>the</strong>sda, MD 20892(301) 402-1010(301) 402-0078 Faxjlipp<strong>in</strong>@helix.nih.govCarlo C. Maley, Ph.D.Assistant Pr<strong>of</strong>essorMolecular <strong>and</strong> Cellular Oncogenesis ProgramSystems Biology DivisionThe Wistar Institute3601 Spruce StreetPhiladelphia, PA 19104(215) 495-6838(215) 495-6829 Faxcmaley@alum.mit.eduScott R. Manalis, Ph.D.Pr<strong>of</strong>essorMassachusetts Institute <strong>of</strong> Technology8 Magaz<strong>in</strong>e CourtCambridge, MA 02139(617) 253-5039scottm@media.mit.eduWallace F. Marshall, Ph.D.Assistant Pr<strong>of</strong>essorDepartment <strong>of</strong> Biochemistry <strong>and</strong> BiophysicsUniversity <strong>of</strong> California, San FranciscoGH-N376 Genentech Hall600 16th StreetSan Francisco, CA 94143-2200(415) 514-4323wmarshall@biochem.ucsf.eduThe Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 53


Owen J.T. McCarty, Ph.D.Assistant Pr<strong>of</strong>essorDepartment <strong>of</strong> Biomedical Eng<strong>in</strong>eer<strong>in</strong>gDepartment <strong>of</strong> Cell <strong>and</strong> Development BiologyCenter for Health <strong>and</strong> Heal<strong>in</strong>gOregon Health & Science UniversityRoom 130333303 SW Bond AvenueBeaverton, OR 97006(503) 418-9307(503) 418-9311 Faxmccartyo@ohsu.eduLisa Joy McCawley, Ph.D.Research Assistant Pr<strong>of</strong>essorDepartment <strong>of</strong> Cancer BiologyV<strong>and</strong>erbilt University Medical CenterPreston Build<strong>in</strong>g, Room 7712220 Pierce AvenueNashville, TN 37232(615) 343-9143(615) 936-2911 Faxlisa.mccawley@v<strong>and</strong>erbilt.eduRobert M. McMeek<strong>in</strong>g, Ph.D.Pr<strong>of</strong>essorDepartment <strong>of</strong> Mechanical Eng<strong>in</strong>eer<strong>in</strong>gUniversity <strong>of</strong> California, Santa BarbaraSanta Barbara, CA 93106(805) 893-8434(805) 893-8651 Faxrmcm@eng<strong>in</strong>eer<strong>in</strong>g.ucsb.eduRobert Mittman, M.S., M.P.P.Founder/PresidentFacilitation, Foresight, Strategy3 Roberts CourtMoraga, CA 94556(925) 377-8838(925) 377-8808 Faxrobert@mittman.orgRaj Mohanty, Ph.D.Pr<strong>of</strong>essorDepartment <strong>of</strong> PhysicsBoston University590 Commonwealth AvenueBoston, MA 02215(617) 353-9297(617) 353-9393 Faxmohanty@bu.eduLarry A. Nagahara, Ph.D.Nanotechnology Project ManagerNCI Alliance for Nanotechnology <strong>in</strong> CancerOffice <strong>of</strong> Technology <strong>and</strong> Industrial RelationsNational Cancer InstituteNational Institutes <strong>of</strong> HealthBuild<strong>in</strong>g 31, Room 10A-52MSC 258031 Center DriveBe<strong>the</strong>sda, MD 20892-2580(301) 496-1550(301) 496-7807 Faxnagaharl@mail.nih.govIlya Nemenman, Ph.D.Research <strong>and</strong> Development Scientist 4Computer Computation <strong>and</strong> Statistical SciencesDivisionLos Alamos National LaboratoryMail Stop B256Los Alamos, NM 87545(505) 665-8250(505) 667-1126 Faxnemenman@lanl.govJohn E. Niederhuber, M.D.DirectorOffice <strong>of</strong> <strong>the</strong> DirectorNational Cancer InstituteNational Institutes <strong>of</strong> HealthBuild<strong>in</strong>g 31, Room 11A-48MSC 259031 Center DriveBe<strong>the</strong>sda, MD 20892-2590(301) 594-6369(301) 402-0338 Faxniederhj@mail.nih.govLarry Norton, M.D.Deputy Physician-<strong>in</strong>-Chief for Breast CancerProgramsMemorial Sloan-Ketter<strong>in</strong>g Cancer Center205 East 64th StreetNew York, NY 10065(212) 639-5319(212) 303-9120 Faxnortonl@mskcc.org54 Meet<strong>in</strong>g Report


Thomas V. O’Halloran, Ph.D., M.A.Charles E. <strong>and</strong> Emma H. Morrison Pr<strong>of</strong>essorDepartment <strong>of</strong> ChemistryNorthwestern University2145 Sheridan RoadEvanston, IL 60208-3113(847) 491-5060(847) 491-7713 Faxt-ohalloran@northwestern.eduMichael E. Paulaitis, Ph.D.Ohio Em<strong>in</strong>ent Scholar Pr<strong>of</strong>essorDirectorInstitute <strong>in</strong> Multiscale Model<strong>in</strong>g <strong>of</strong> BiologicalInteractionsDepartment <strong>of</strong> Chemical <strong>and</strong> BiomolecularEng<strong>in</strong>eer<strong>in</strong>gThe Ohio State University125 K<strong>of</strong>folt Laboratories140 West 19th AvenueColumbus, OH 43210-1185(614) 247-8847(614) 292-3769 Faxpaulaitis.1@osu.eduRobert Phillips, Ph.D.Pr<strong>of</strong>essor <strong>of</strong> Applied Physics <strong>and</strong> MechanicalEng<strong>in</strong>eer<strong>in</strong>gDivision <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong> Applied ScienceCalifornia Institute <strong>of</strong> Technology159 BroadMC 128-951200 California BoulevardPasadena, CA 91125(626) 395-3374phillips@pboc.caltech.eduSteven Piantadosi, M.D., Ph.D.DirectorSamuel Osch<strong>in</strong> Comprehensive Cancer InstituteCedars-S<strong>in</strong>ai Medical CenterMezzan<strong>in</strong>e, Room C20028700 Beverly BoulevardLos Angeles, CA 90048(310) 423-8431(310) 423-8300 Faxsteven.piantadosi@csmc.eduHong Qian, Ph.D.Pr<strong>of</strong>essorDepartment <strong>of</strong> Applied Ma<strong>the</strong>maticsUniversity <strong>of</strong> Wash<strong>in</strong>gtonBox 352420Seattle, WA 98195(206) 543-2584(206) 685-1440 Faxqian@amath.wash<strong>in</strong>gton.eduBrian J. Reid, M.D., Ph.D.Full MemberDivisions <strong>of</strong> Human Biology <strong>and</strong> Public HealthSciencesFred Hutch<strong>in</strong>son Cancer Research CenterMail Stop C1-1571100 Fairview Avenue, NorthSeattle, WA 98109-1024(206) 667-4073(206) 667-6132 Faxbjr@fhcrc.orgCynthia A. Re<strong>in</strong>hart-K<strong>in</strong>g, Ph.D.Assistant Pr<strong>of</strong>essorDepartment <strong>of</strong> Biomedical Eng<strong>in</strong>eer<strong>in</strong>gCornell UniversityWeill Hall, Room 302Ithaca, NY 14850(607) 255-8491cak57@cornell.eduJoseph A. Rudnick, Ph.D.Act<strong>in</strong>g DeanPr<strong>of</strong>essor <strong>of</strong> PhysicsDivision <strong>of</strong> Physical SciencesCollege <strong>of</strong> Letters <strong>and</strong> ScienceUniversity <strong>of</strong> California, Los AngelesBox 951438Murphy Hall, Room 2300Los Angeles, CA 90095-1438(310) 825-1042(310) 825-7823 Faxjrudnick@physics.ucla.eduThe Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 55


Joel H. Saltz, M.D., Ph.D.Chief Medical Information OfficerDirectorComprehensive Center for InformaticsPr<strong>of</strong>essorDepartment <strong>of</strong> PathologyEmory UniversitySuite 5001521 Dickey DriveAtlanta, GA 30322(404) 727-6202(404) 727-4992 Faxjhsaltz@emory.eduThomas D. Schneider, Ph.D.Research ScientistNational Cancer InstituteNational Institutes <strong>of</strong> HealthBuild<strong>in</strong>g 469, Room 105Frederick, MD 21702-1201(301) 846-5581(301) 846-5598 Faxtoms@ncifcrf.govJames P. Sethna, Ph.D., M.A.Pr<strong>of</strong>essor <strong>of</strong> PhysicsCornell UniversityClark HallIthaca, NY 14853-2501(607) 255-5132(607) 255-6428 Faxsethna@lassp.cornell.eduPhillip A. Sharp, Ph.D.Pr<strong>of</strong>essorThe David H. Koch Institute for Integrative CancerResearchMassachusetts Institute <strong>of</strong> TechnologyRoom E17-52977 Massachusetts AvenueCambridge, MA 02139-4307(617) 253-6421(617) 253-3867 Faxsharppa@mit.eduDarryl K. Shibata, M.D.Pr<strong>of</strong>essor <strong>of</strong> PathologyKeck School <strong>of</strong> Medic<strong>in</strong>eUniversity <strong>of</strong> Sou<strong>the</strong>rn CaliforniaNorris Cancer Center, Room 64101441 Eastlake AvenueLos Angeles, CA 90033(323) 226-7067(323) 226-2686 Faxdshibata@usc.eduJames L. Siegrist, Ph.D.General Sciences Associate DirectorDirectorPhysics DivisionLawrence Berkeley National LaboratoryMail Stop 50R40491 Cyclotron RoadBerkeley, CA 94720(510) 486-4397(510) 486-6003 Faxjlsiegrist@lbl.govCarol<strong>in</strong>e C. Sigman, Ph.D.PresidentCCS Associates2005 L<strong>and</strong><strong>in</strong>gs DriveMounta<strong>in</strong> View, CA 94043(650) 691-4400(650) 240-4013 Faxcsigman@ccsa<strong>in</strong>c.comD<strong>in</strong>ah S. S<strong>in</strong>ger, Ph.D.DirectorDivision <strong>of</strong> Cancer BiologyNational Cancer InstituteNational Institutes <strong>of</strong> HealthExecutive Plaza North, Suite 50446130 Executive BoulevardBe<strong>the</strong>sda, MD 20892-7390(301) 496-8636(301) 496-8656 Faxds13j@nih.gov56 Meet<strong>in</strong>g Report


Ana M. Soto, M.D.Pr<strong>of</strong>essorDepartment <strong>of</strong> Anatomy <strong>and</strong> Cellular BiologyTufts UniversityArnold Build<strong>in</strong>g, Room 116 HarrisonBoston, MA(617) 636-6954(617) 636-6536 Faxana.soto@tufts.eduFuyuhiko Tamanoi, Ph.D.Pr<strong>of</strong>essorDepartment <strong>of</strong> Microbiology, Immunology, <strong>and</strong>Molecular GeneticsCalifornia NanoSystems InstituteUniversity <strong>of</strong> California, Los AngelesMolecular Science Build<strong>in</strong>g, Room 1602609 Charles E. Young DriveLos Angeles, CA 90095-1489(310) 206-7318(310) 206-5231 Faxfuyut@microbio.ucla.eduPeter J. Thomas, Ph.D.Associate Pr<strong>of</strong>essorDepartment <strong>of</strong> Ma<strong>the</strong>matics, Biology, <strong>and</strong>Cognitive ScienceCase Western Reserve UniversityYost 210Clevel<strong>and</strong>, OH 44106(216) 368-3623peter.j.thomas@case.eduThomas G. Thundat, Ph.D.Dist<strong>in</strong>guished ScientistOak Ridge National LaboratoryBuild<strong>in</strong>g 4500SMS 6123Oak Ridge, TN 37831-6123(865) 574-6201(865) 574-6210 Faxugt@ornl.govYiider Tseng, Ph.D.Associate Pr<strong>of</strong>essorDepartment <strong>of</strong> Chemical Eng<strong>in</strong>eer<strong>in</strong>gUniversity <strong>of</strong> FloridaChemical Eng<strong>in</strong>eer<strong>in</strong>g Build<strong>in</strong>g, Room 223Museum RoadGa<strong>in</strong>esville, FL 32611(352) 392-0862(352) 392-9513 Faxytseng@che.ufl.eduYu-Li Wang, Ph.D.Pr<strong>of</strong>essor <strong>and</strong> HeadDepartment <strong>of</strong> Biomedical Eng<strong>in</strong>eer<strong>in</strong>gCarnegie Mellon UniversitySuite 4105-07700 Technology DrivePittsburgh, PA 15219(412) 268-4442(412) 268-9807 Faxyuliwanga@<strong>and</strong>rew.cmu.eduSamuel A. Wells, Jr., M.D.Pr<strong>of</strong>essorDepartment <strong>of</strong> SurgeryWash<strong>in</strong>gton University School <strong>of</strong> Medic<strong>in</strong>eCampus Box 8109660 South Euclid AvenueSt. Louis, MO 63110(919) 201-0310(314) 454-1898wellss@wudosis.wustl.eduRobert M. Westervelt, Ph.D.Pr<strong>of</strong>essorDepartment <strong>of</strong> PhysicsSchool <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong> Applied SciencesHarvard University29 Oxford StreetCambridge, MA 02138(617) 495-3296(617) 495-9837 Faxwestervelt@seas.harvard.eduThe Cod<strong>in</strong>g, De<strong>cod<strong>in</strong>g</strong>, Transfer, <strong>and</strong> Translation <strong>of</strong> Information <strong>in</strong> Cancer 57


John P. Wikswo, Ph.D.Gordon A. Ca<strong>in</strong> University Pr<strong>of</strong>essorDepartment <strong>of</strong> Physics <strong>and</strong> AstronomyV<strong>and</strong>erbilt UniversityVU Station B 351807Nashville, TN 37235-1807(615) 343-4124(615) 322-4977 Faxjohn.wikswo@v<strong>and</strong>erbilt.eduDenis Wirtz, Ph.D.Pr<strong>of</strong>essorDepartment <strong>of</strong> Chemical <strong>and</strong> BiomolecularEng<strong>in</strong>eer<strong>in</strong>gJohns Hopk<strong>in</strong>s UniversityMaryl<strong>and</strong> Hall, Room 1163400 North Charles StreetBaltimore, MD 21218(410) 516-7006(410) 516-2355 Faxwirtz@jhu.eduMiq<strong>in</strong> Zhang, Ph.D.Associate Pr<strong>of</strong>essorDepartment <strong>of</strong> Materials Science <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>gUniversity <strong>of</strong> Wash<strong>in</strong>gton302L Roberts HallBox 352120Seattle, WA 98195(206) 616-9356(206) 543-3100 Faxmzhang@u.wash<strong>in</strong>gton.edu58 Meet<strong>in</strong>g Report


NIH Publication No. 09-7388Pr<strong>in</strong>ted June 2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!