11.07.2015 Views

Spacecraft and Aircraft Dynamics - Illinois Institute of Technology

Spacecraft and Aircraft Dynamics - Illinois Institute of Technology

Spacecraft and Aircraft Dynamics - Illinois Institute of Technology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Spacecraft</strong> <strong>and</strong> <strong>Aircraft</strong> <strong>Dynamics</strong>Matthew M. Peet<strong>Illinois</strong> <strong>Institute</strong> <strong>of</strong> <strong>Technology</strong>Lecture 11: The Effect <strong>of</strong> a Non-Spherical Earth


IntroductionIn this Lecture, you will learn:The Non-Spherical Earth• The gravitational potential• Expression in the R-T-N frame• Perturbations◮◮PeriodicSecularMission Planning• Sun-Synchronous Orbits• Frozen Orbits• Critical InclinationM. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 2 / 33


Recall The Perturbation Equations⃗F disturbance = Rê R + T ê T + Nê NSemi-major AxisEccentricity:√ȧ = 2a 3µ(1 − e 2 [eR sin f + T (1 + e cos f)])tan E ecc=2Inclination:√ddt i = a(1 − e 2 ) N cos(ω + f)µ 1 + e cos fArgument <strong>of</strong> Perigee:˙ω = − ˙Ω cos i +RAAN:√a(1 − e˙Ω =2 )µ√(a(1 − e 2 )e 2 −R cos f + Tµ√1 − e1 + e tan f 2N sin(ω + f)sin i(1 + e cos f))(2 + e cos f) sin f1 + e cos fM. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 3 / 33


RecallSatellite-Normal Coordinate System⃗F = Nê N + Rê R + T ê TSatellite-Normal CS (R-T-N):• ê R points along the earth →satellite vector.• ê N points in the direction <strong>of</strong> ⃗ h• ê T is defined by the RHR◮ êT · v > 0.M. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 4 / 33


The Non-spherical EarthThe Spherical EarthRecall that gravity for a point mass isGravity force derives from the potentialfield.⃗F = ∇UTo find U, we integratedU = − 2πR2 Gσm 2 sin θdθρFor a uniform spherical mass,⃗F = −µ⃗r‖⃗r‖ 2• There is symmetry about the line ⃗r 12 .• The point-mass approximation holds.M. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 5 / 33


The Non-spherical EarthA Distorted Potential FieldFor a spherical earth, dU is symmetricdU = − 2πR2 Gσm 2 sin θdθρThe actual gravity field• Is not precisely spherical.• ρ varies throughout the object.The result is a distorted potential field.Figure: The geoid, 15000:1 scaleM. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 6 / 33


The Non-spherical EarthA Distorted Potential FieldSocrates: So how do we derive the potential field?Tycho Brahe: We measure it!!!Definition 1.Physical Geodesy is the study <strong>of</strong> thegravitational potential field <strong>of</strong> the earth.Definition 2.The Geoid is equipotential surfacewhich coincides with the surface <strong>of</strong> theocean.M. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 7 / 33


The Non-spherical EarthA Distorted Potential FieldQuestion: So how do we measure the potential field <strong>of</strong> the earth?LAGEOS: Laser Geodynamics Satellites1. Precisely measure the orbit <strong>of</strong> asatellite as it orbits the earth2. Account for drag, third-bodydynamics, etc.3. Remaining perturbation must becauses by gravitational potentialThe orbits <strong>of</strong> the LAGEOS satellites aremeasured precisely by laser reflection.Note: Only measures potential alongpath <strong>of</strong> the orbit.• We must observe for a long time toget comprehensive data.M. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 8 / 33


The Non-spherical EarthMeasuring satellite positions from earth is inaccurate.• Atmospheric DistortionGRACE:1. Measure the relative position <strong>of</strong>two adjacent satellites2. Relative motion yields gradient <strong>of</strong>the potential fieldLess fancy methods:• Survey markers• Altimetry• Ocean level variationM. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 9 / 33


The Non-spherical EarthQuestion: So what is U(⃗r)?Response: Too much data to write as a function.In order to be useful, we match the data to a few basis functions.Coordinates: Express position usingφ gc , λ, r.• φ gc is declination from equatorialplane.• r is radius• λ is right ascension, measuredfrom Greenwich meridian.We will have a function <strong>of</strong> formU(φ gc , λ, r)M. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 10 / 33


The HarmonicsThe potential has the formU(φ gc , λ, r) = µ r + U zonal(r, φ gc )+ U sectorial (r, λ)+ U tesseral (r, φ gc , λ)Actually, U sectorial varies with φ gc , but not very actively.M. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 11 / 33


The Zonal HarmonicsZonal Harmonics: These have the formU zonal (r, φ gc ) = µ ∞∑( ) i ReJ i P i (φ gc )r ri=2• R e is the earth radius• P i are the Legendre Polynomials• The J i are determined by the Geodesy data!Zonal harmonics vary only with latitude.M. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 12 / 33


The Sectorial HarmonicsSectorial Harmonics: These have the formU sect (r, φ gc , λ) = µ ∞∑(C i,sect cos(iλ) + S i,sect sin(iλ))ri=2(Rer) icos(φ gc ) i• Divides globe into slices by longitude.• Varies with φ gc , but P i,i (φ gc ) is uniformly positive.• The C i,sectorial <strong>and</strong> S i,sectorial are also determined by the Geodesy data!Sectorial harmonics vary only with longitude.M. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 13 / 33


The Tesseral HarmonicsThese have the formU tesseral (r, φ gc , λ) = µ r∞∑(C i,j cos(iλ) + S i,j sin(iλ))i,j=2(Rer) iP i,j (φ gc )• Divides globe into slices by longitude <strong>and</strong> latitude.• The C i,j <strong>and</strong> S i,j are also determined by the Geodesy data!M. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 14 / 33


The J2 PerturbationFor simplicity, we ignore all harmonics except the first zonal harmonic.(Re) 2 [ 32 sin2 (φ gc ) − 1 2]∆U J2 (r, φ gc ) = µ r (J 2rThis corresponds to a single b<strong>and</strong> about theequator.• The earth is 21 km wider than it is tall.• A flattening ratio <strong>of</strong>1300 .• J 2 = .0010826• J 3 = .000002532• J 4 = .000001620M. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 15 / 33


The J2 PerturbationSince sin φ gc = z r ,U J2 (r, φ gc ) = µ rJ 22(ReWe now calculate the perturbation force as⃗F = ∂U J2∂r= µJ 2 R 2 eêR + ∂U J2[∂z3zr 5 êz +From the rotation matrices, we have that<strong>and</strong> sinceêzr) 2 [ 3z2r 2 − 1 ]( ) ]32r 4 − 15z22r 6 ê Rê z = sin i sin(ω + f)ê R + sin i cos(ω + f)ê T + cos iê Nz = r sin φ gc = r sin i sin(ω + f)Using θ = ω + f, this yields the disturbing force in the R-T-N frame:⃗F = −3µJ 2Re2 [( 1r 4 2 − 3 sin2 i sin 2 ) ]θê R + sin 2 i sin θ cos θê T + sin i sin θ cos iê N2M. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 16 / 33


The J2 PerturbationThe primary effect <strong>of</strong> J 2 is on Ω <strong>and</strong> ω.We plug the force equations into the expressions for ˙Ω <strong>and</strong> ˙ω√a(1 − e˙Ω =2 ) N sin(ω + f)µ sin i(1 + e cos f)to get˙Ω = − 3µJ 2R 2 ehp 3 cos i sin 2 θ [1 + e cos f] 3If we average ˙Ω over an orbit, then we get the final expression˙Ω J2,av = − 3 ( ) 22 nJ Re2 cos ipLikewise, we can find an expression for ˙ω:˙ω J2,av = 3 2 nJ 2(Rep) 2 [2 − 5 ]2 sin2 iM. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 17 / 33


J2 Nodal RegressionPhysical ExplanationThe ascending node migrates opposite the direction <strong>of</strong> flight˙Ω J2,av = − 3 ( ) 22 nJ Re2 cos ipThe equatorial bulge produces extra pullin the equatorial plane• Creates a torque on the angularmomentum vector• Like gravity, the torque causes ⃗ h toprecess.• Only depends on inclinationM. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 18 / 33


J2 Nodal RegressionMagnitudeThe nodal regression rate is <strong>of</strong>ten large. Cannot Be Neglected!!!.Figure: Magnitude <strong>of</strong> Regression Rate vs. inclination <strong>and</strong> altitudeM. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 19 / 33


J2 Apsidal RotationSimilar to nodal regression, but perigee moves forward or backward, dependingon inclination.˙ω J2,av = 3 ( ) 2 [2 nJ Re2 2 − 5 ]p 2 sin2 iM. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 20 / 33


J2 Apsidal RotationMagnitudeThe apsidal rotation rate is <strong>of</strong>ten large.Figure: Magnitude <strong>of</strong> Regression Rate vs. inclination <strong>and</strong> altitudeM. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 21 / 33


J2 EffectOther Elements: EccentricityThe J 2 effect on other elements is usually minor. ȧ ∼ = 0.Figure: Eccentricity Change for Low-Inclination OrbitM. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 22 / 33


J2 EffectOther Elements: EccentricityFigure: Eccentricity Change for Moderate-Inclination OrbitM. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 23 / 33


J2 EffectOther Elements: EccentricityFigure: Eccentricity Change for High-Inclination OrbitM. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 24 / 33


J2 EffectOther Elements: InclinationFigure: Inclination Change for Eccentric <strong>and</strong> Circular OrbitsM. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 25 / 33


J 2 Special OrbitsCritical InclinationDefinition 3.˙ω J2,av = 3 2 nJ 2(ReA Critically Inclined Orbit is one where ˙ω = 0For a critically inclined orbit,which means4 − 5 sin 2 i = 0i = sin −1 √ 4/5= 63.43 ◦ or 116.57 ◦p) 2 [2 − 5 ]2 sin2 iM. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 26 / 33


J 2 Special OrbitsSun-Synchronous OrbitsSun-Synchronous orbits maintain the same orientation <strong>of</strong> the orbital plane withrespect to the sun.Applications:• Mapping• Solar-Powered• Shadow-evading• Time-<strong>of</strong>-Day AppsM. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 27 / 33


J 2 Special OrbitsSun-Synchronous OrbitsThe earth rotates 360 ◦ about the sun every 365.25 days.Definition 4.A Sun-Synchronous Orbit is one where ˙Ω = .9855 ◦ /day = 1.992 · 10 −7 rad/s.Thuscos i = −1.992 · 10 −7 ( pR e) 223nJ 2• The orbital plane rotates onceevery year.M. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 28 / 33


J 2 Special OrbitsSun-Synchronous OrbitsUnlike critically inclined orbits, sun-synchronous orbits depend on altitude.M. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 29 / 33


Numerical ExampleL<strong>and</strong>satProblem: Design a sun-synchronous orbit with r p = R e + 695km <strong>and</strong>r a = R e + 705km.Solution: The desired inclination for a sun-synchronous orbit is given by(( ) )2 pi = cos −1 −4.778 · 10 −6 2R e 3nJ 2For this orbit a = R e + 700km = 7078km. The eccentricity ise = 1 − r pa ∼ = 0J 2 = .0010826. Thus the required inclination isi = 1.716rad = 98.33 ◦M. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 30 / 33


Numerical ExampleMolnaya OrbitProblem: Molnaya Orbits are usually designed so that perigee always occursover the same latitude. Design a critically inclined orbit with a period <strong>of</strong> 12hours <strong>and</strong> which precesses at ˙Ω = −.2 ◦ /day .Solution: We can first use the period to solve for a. From<strong>and</strong> n = 2π/T = 2rad/day we haven =√ µa 3a = 3 √ µn 2Now the critical inclination for ˙ω = 0 is i = 63.4 ◦ or i = 116.6 ◦ . We choosei = 63.4 ◦ . To achieve ˙Ω = −.2 ◦ /day, we use˙Ω = −3nJ 2Re22a 2 (1 − e 2 ) 2 cos iM. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 31 / 33


Numerical ExampleMolnaya Orbit, continuedSince a is already fixed, we must use e. We can solve for e as√e = 1 +√− 3nJ 2Re22 ˙Ωacos i = .7459.2Note: Make sure the units <strong>of</strong> a <strong>and</strong> n match those <strong>of</strong> R e <strong>and</strong> ˙Ω, respectively.M. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 32 / 33


SummaryThis Lecture you have learned:How to account for perturbations to Earth gravity• Gravity Mapping• Harmonic Functions• J 2 Perturbation◮ Effect on Ω◮ Effect on ω◮ Minor effect (e, i)How to design specialized orbits• Critically - Inclined Orbit.• Sun-Synchronous Orbit.• ApplicationsNext Lecture: Final Review.M. Peet Lecture 11: <strong>Spacecraft</strong> <strong>Dynamics</strong> 33 / 33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!