24.11.2012 Views

nutrient fluxes in multitrophic aquaculture systems - Institut für ...

nutrient fluxes in multitrophic aquaculture systems - Institut für ...

nutrient fluxes in multitrophic aquaculture systems - Institut für ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Aus dem <strong>Institut</strong> <strong>für</strong> Tierzucht und Tierhaltung<br />

der Agrar- und Ernährungwissenschaftlichen Fakultät<br />

der Christian-Albrechts-Universität zu Kiel<br />

NUTRIENT FLUXES IN MULTITROPHIC<br />

AQUACULTURE SYSTEMS<br />

Dissertation<br />

zur Erlangung des Doktorgrades<br />

der Agrar- und Ernährungwissenschaftlichen Fakultät<br />

der Christian-Albrechts-Universität zu Kiel<br />

vorgelegt von<br />

Master of Science<br />

YUDI NURUL IHSAN<br />

aus Bandung - Indonesien<br />

Kiel, 2012<br />

Dekan<strong>in</strong>: Prof. Dr. K. Schwarz<br />

Erster Berichterstatter: Prof. Dr. C. Schulz<br />

Zweiter Berichterstatter: Prof. Dr. E. Hartung<br />

Tag der mündlichen Prüfung: 09.02.2012


Gedruckt mit Genehmigung der Agrar- und Ernährungswissenschaftlichen<br />

Fakultät der Christian-Albrechts-Universität zu Kiel<br />

II


Table of Contents<br />

General Introduction ....................................................................................................... 1<br />

Chapter 1:<br />

Nutrient flux <strong>in</strong> polyculture system us<strong>in</strong>g seaweed as biofilter: Implication for<br />

susta<strong>in</strong>ability............................................................................................................... 5<br />

Chapter 2:<br />

A Comparison of <strong>nutrient</strong> <strong>fluxes</strong> <strong>in</strong> monoculture and polyculture <strong>systems</strong> for<br />

shrimp (Penaeus vannamei) and seaweed (Gracillaria verrucosa) production...... . 20<br />

Chapter 3:<br />

Nutrient Fluxes and Mass Balances <strong>in</strong> Various Polyculture Systems Us<strong>in</strong>g<br />

Shrimp Penaeus vannamei, Fish Oreochromis sp. and Seaweed Gracillaria<br />

verrucosa................................................................................................................. 46<br />

Chapter 4:<br />

Nitrogen Assimilation Potential of Seaweed Gracillaria verrucosa <strong>in</strong><br />

Polyculture with Pacific White Shrimps (Penaeus vannamei) .............................. 74<br />

General Discussion ...................................................................................................... 95<br />

General Summary......................................................................................................... 102<br />

Zusammenfassung........................................................................................................ 104<br />

Danksagung.................................................................................................................. 107<br />

Lebenslauf.................................................................................................................... 108<br />

III


General Introduction<br />

The mar<strong>in</strong>e sector <strong>in</strong>clud<strong>in</strong>g <strong>aquaculture</strong> is one of the lead<strong>in</strong>g sectors <strong>in</strong> economic<br />

development <strong>in</strong> the world. Aquaculture contributes significantly to food<br />

availability, household food security, <strong>in</strong>come generation, trade, and improved<br />

liv<strong>in</strong>g standards <strong>in</strong> Indonesia. In poor rural communities, <strong>aquaculture</strong> can be an<br />

<strong>in</strong>tegral component of development contribut<strong>in</strong>g to susta<strong>in</strong>able livelihoods and<br />

enhanc<strong>in</strong>g social well-be<strong>in</strong>g. S<strong>in</strong>ce 1990 the gap between the demand for and<br />

supply of fish has been widen<strong>in</strong>g rapidly due to the decl<strong>in</strong>e of capture fisheries<br />

production and a cont<strong>in</strong>ually grow<strong>in</strong>g population. Aquaculture is forecasted to<br />

dom<strong>in</strong>ate, if not surpass, the importance of mar<strong>in</strong>e capture fisheries <strong>in</strong> provid<strong>in</strong>g<br />

high quality animal prote<strong>in</strong> to lower <strong>in</strong>come groups, employment, and export<br />

earn<strong>in</strong>gs.<br />

Indonesia has good fisheries and <strong>aquaculture</strong> potential. Because of its rich, coastal<br />

and mar<strong>in</strong>e resources suitable for <strong>aquaculture</strong> development, it is one country<br />

where <strong>aquaculture</strong> can contribute to economic and social development goals. The<br />

potential area for <strong>aquaculture</strong> is estimated at about 26 million hectares (ha),<br />

consist<strong>in</strong>g of 24.5 million ha of coastal areas suitable for mariculture, 913<br />

thousand ha of brackish water areas, and 1.1 million ha of freshwater areas.<br />

Actual area coverage of <strong>aquaculture</strong> is currently estimated at only 681 thousand<br />

ha, correspond<strong>in</strong>g to less than 3% of the total potential area.<br />

The contribution of fish to global human food supply has reached a record of<br />

about 17 kg per person <strong>in</strong> average, supply<strong>in</strong>g over three billion people with at<br />

least 15% of their average animal prote<strong>in</strong> <strong>in</strong>take (FAO, 2010). Mar<strong>in</strong>e <strong>aquaculture</strong><br />

has been a rapidly grow<strong>in</strong>g <strong>in</strong>dustry, <strong>in</strong>creas<strong>in</strong>g from about 18.6 million tons <strong>in</strong><br />

2006 to 20.1 million tons <strong>in</strong> 2009 and these patterns are expected to cont<strong>in</strong>ue up to<br />

2030 due to the <strong>in</strong>creas<strong>in</strong>g global demand and high market value of <strong>aquaculture</strong><br />

products (FAO, 2010). Global production of shrimp has <strong>in</strong>creased by more than<br />

600% between 1989 and 2009 and is expected to cont<strong>in</strong>ue due to the high market<br />

value of cultured shrimp. This production comes from a variety of farms rang<strong>in</strong>g<br />

from small-scale ponds to large-scale ponds.<br />

As a result of the rapid production <strong>in</strong>crease, it is not unreasonable to conceive that<br />

<strong>aquaculture</strong> activities might affect the environment <strong>in</strong> a variety of ways, especially<br />

1


fish and shrimp <strong>aquaculture</strong> which need to supplemented with an exogenous<br />

source of <strong>nutrient</strong>s. Increased production is be<strong>in</strong>g achieved by expansion of land<br />

and water areas under culture and <strong>in</strong>volve higher utilization of production <strong>in</strong>puts<br />

such as water, feeds, fertilizers, and chemicals. Higher <strong>in</strong>puts normally affect the<br />

surround<strong>in</strong>g environment <strong>in</strong> a number of ways. Particular concern arise by the<br />

effects of particulate nitrogeneous wastes produced by the ponds <strong>in</strong> the form of<br />

uneaten feed and fish faeces (Pearson and Gowen, 1990; Troell et al., 2003).<br />

Poorly managed coastal shrimp farms have been cited for degrad<strong>in</strong>g nearshore<br />

habitats through <strong>nutrient</strong> enrichment (Boyd, 1999; Hargreaves, 1998). Nutrient<br />

enrichment could also affect the shrimp farms themselves through self-pollution.<br />

Poor water quality may reduce farm productivity by dim<strong>in</strong>ish<strong>in</strong>g shrimp growth<br />

and/or promot<strong>in</strong>g shrimp disease outbreaks (Hargreaves, 1998; L<strong>in</strong>, 1989).<br />

Identify<strong>in</strong>g <strong>aquaculture</strong> species and system that are expected to be profitable is an<br />

essential step toward develop<strong>in</strong>g susta<strong>in</strong>able <strong>aquaculture</strong> and to decrease the<br />

adverse impact (Andersen, 2002 <strong>in</strong> Leung et al., 2007). Asian countries have been<br />

practic<strong>in</strong>g polyculture <strong>systems</strong>, through trial and error and experimentation for<br />

centuries (Qian et al., 1996). These strategies were motivated by the need to<br />

maximize productivity per unit of land and water bodies. They were based on<br />

diversified self-reliance <strong>in</strong> feed and basic raw material production and the<br />

philosophy that the by-products (wastes) from one resource use must become an<br />

<strong>in</strong>put of another resource <strong>in</strong> use (Chop<strong>in</strong> et al., 2001; Neori et al., 2004). On the<br />

other hand polyculture has disadvantage as it could decrease ma<strong>in</strong> target<br />

organisms production due to competition <strong>in</strong> space and <strong>nutrient</strong> utilization with cocultured<br />

organisms.<br />

Shrimp Penaeus vannamei, seaweed Gracillaria verrucosa and fish Oreochromis<br />

sp. had been used <strong>in</strong> presented thesis due to the different trophic level they<br />

<strong>in</strong>habitated, the high economic value, and well developed knowledge of<br />

cultivation. Hypothesis of this study are: (1) <strong>nutrient</strong> given to the ponds can be<br />

used most efficiently by polyculture system, (2) polyculture system us<strong>in</strong>g shrimp,<br />

seaweed and fish can be used to m<strong>in</strong>imize adverse impact of <strong>aquaculture</strong> to the<br />

environment, (3) seaweed Gracillaria verrucosa can be used to absorb <strong>nutrient</strong><br />

excretion from shrimp and fish wastes and may contribute to the oxygen budget.<br />

2


To prove this hypothesis, <strong>in</strong> Chapter 1 of present study, based on a literature<br />

review polyculture system can be described as the practice of cultur<strong>in</strong>g more than<br />

one aquatic organism <strong>in</strong> the same system. In Chapter 2, empiricial calculations of<br />

<strong>nutrient</strong>s <strong>fluxes</strong> and mass balances <strong>in</strong> monoculture and polyculture <strong>systems</strong> with<br />

shrimp Penaeus vannamei and seaweed Gracillaria verrucosa were realized and<br />

compared. Additional <strong>in</strong>vestigations were conducted <strong>in</strong> Chapter 3 to determ<strong>in</strong>e<br />

<strong>nutrient</strong> <strong>fluxes</strong> and mass balances <strong>in</strong> various polyculture <strong>systems</strong> us<strong>in</strong>g shrimp<br />

Penaeus vannamei, Fish Oreochromis sp. and Seaweed Gracillaria verrucosa.<br />

F<strong>in</strong>ally, <strong>in</strong> Chapter 4, nitrogen assimilation potential of seaweed Gracillaria<br />

verrucosa <strong>in</strong> polyculture with pacific white shrimps Penaeus vannamei was<br />

estimated.<br />

References<br />

Boyd, C. E. 1999. Codes of Practise for Responsible Shrimp Farm<strong>in</strong>g. Global<br />

Aquaculture Alliance. St. Louis MO. USA. 48.<br />

Chop<strong>in</strong>, T., A. H Buschmann, C. Hall<strong>in</strong>g, M Troell, N Kautsky, A. Neori, G.<br />

Kraemer, J. Zertuche-Gonzalez, C. Yarish, C. Neefus. 2001. Integrat<strong>in</strong>g<br />

seaweeds <strong>in</strong>to <strong>aquaculture</strong> <strong>systems</strong>: a key towards susta<strong>in</strong>ability. J Phycol<br />

37:975–986.<br />

FAO. 2010. The state of world fisheries and <strong>aquaculture</strong>. Fisheries and<br />

<strong>aquaculture</strong> department. Food and Agriculture Organization of United<br />

Nations. Rome. Italy.<br />

Hargreaves, J.A. (1998). Nitrogen biogeochemistry of <strong>aquaculture</strong> ponds.<br />

Aquaculture 166, 181–212.<br />

Neori, A., T. Chop<strong>in</strong> T, M. Troell, A. H. Buschmann, G.P. Kraemer, C. Hall<strong>in</strong>g,<br />

M. Shpigel, C Yarish. 2004. Integrated <strong>aquaculture</strong>: rationale, evolution<br />

and state of the art emphasiz<strong>in</strong>g seaweed biofiltration <strong>in</strong> modern<br />

mariculture. Aquaculture 231:361–391.<br />

Pearson, T. H., and R. J. Gowen. 1990. Impact of caged fish farm<strong>in</strong>g on the<br />

mar<strong>in</strong>e environment – the Scottisch experience, 9-13. In <strong>in</strong>teractions<br />

between <strong>aquaculture</strong> and the environment, vol. An Taisce - The National<br />

Trust for Ireland, Dubl<strong>in</strong>.<br />

3


Troell M, C. Hall<strong>in</strong>g, A. Neori, T. Chop<strong>in</strong>, A. H. Buschmann, N. Kautsky, C.<br />

Yarish. 2003. Integrated mariculture: ask<strong>in</strong>g the right questions.<br />

Aquaculture 226:69–90.<br />

Qian, P. Y., C. Y. Wu, M. Wu, Y. K. Xie. 1996. Integrated cultivation of red alga<br />

Kappaphycus alvarezii and the pearl oyster P<strong>in</strong>ctada martensi.<br />

Aquaculture 147: 21-35<br />

4


Chapter 1: Nutrient Flux <strong>in</strong> Polyculture System Us<strong>in</strong>g Seaweed as<br />

Biofilter: Implications for Susta<strong>in</strong>ability (M<strong>in</strong>i Review)<br />

Y. N. Ihsan ab , K. J. Hesse c , C. Schulz ab<br />

a Gesellschaft <strong>für</strong> Mar<strong>in</strong>e Aquakultur mbH, Hafentörn 3, D-25761 Büsum<br />

b <strong>Institut</strong>e for Animal Breed<strong>in</strong>g and Husbandry, Christian-Albrechts-Universität<br />

D-24098 Kiel<br />

c Research and Technology Centre, Christian-Albrechts-Universität<br />

D-25761 Büsum<br />

Submitted to the Journal of Asian Fisheries Society<br />

5


Abstract<br />

In general, feed based shrimp and fish <strong>aquaculture</strong> can produce a large amount of<br />

waste, <strong>in</strong>clud<strong>in</strong>g nitrogen and phosphorus that is released to the aquatic<br />

environment without treatment. One of the ma<strong>in</strong> environmental issues is the direct<br />

discharge of significant <strong>nutrient</strong> loads <strong>in</strong>to coastal waters from <strong>aquaculture</strong> ponds<br />

system. In its search for best management practices, the <strong>aquaculture</strong> <strong>in</strong>dustry<br />

should develop <strong>in</strong>novative and responsible practices that optimize its efficiency<br />

and create diversification, while ensur<strong>in</strong>g the remediation of the consequences of<br />

its activities to ma<strong>in</strong>ta<strong>in</strong> the health of coastal waters. At present, seaweed<br />

cultivation <strong>in</strong> <strong>in</strong>tegrated polyculture system appears to be a viable approach to<br />

reduce discharge <strong>nutrient</strong>s to the environment. By <strong>in</strong>tegrat<strong>in</strong>g fed <strong>aquaculture</strong>, the<br />

wastes of one resource user become a resource for the others (Neori et al., 2004).<br />

Seaweed can be efficient at removal of <strong>nutrient</strong>s from effluent of <strong>in</strong>tensive fish<br />

farm (Troell et al., 1997; Neori et al., 2004). The production of seaweed <strong>in</strong> cage<br />

culture can be successfully <strong>in</strong>tegrated with production of fish and shrimp.<br />

Regard<strong>in</strong>g the environmental benefits of <strong>in</strong>tegrated seaweed and fish or shrimp<br />

production, seaweed culture can also benefit by <strong>in</strong>creas<strong>in</strong>g their economic<br />

viability. Integrated seaweed <strong>aquaculture</strong> <strong>systems</strong> have been suggested as a<br />

possible solution for secur<strong>in</strong>g an <strong>in</strong>creas<strong>in</strong>g and environmentally sounded<br />

production of future supply of fish and seafood.<br />

6


Introduction<br />

Aquaculture has expanded rapidly all over of the world, especially <strong>in</strong> tropical<br />

areas which account for 89% of production <strong>in</strong> terms of quantity and 79% <strong>in</strong> terms<br />

of value (FAO, 2010). Aquaculture production (exclud<strong>in</strong>g seaweed) was less than<br />

1 million tons per year <strong>in</strong> the early 1950, production <strong>in</strong> 2008 already achieved<br />

52.5 million tons, with a value of US$ 98.4 billion. Seaweed production by<br />

<strong>aquaculture</strong> <strong>in</strong> 2008 was 15.8 million tons (live weight equivalent), with a value<br />

of US$7.4 billion, represent<strong>in</strong>g an average annual growth rate <strong>in</strong> terms of weight<br />

of almost 8% s<strong>in</strong>ce 1970. If seaweed is <strong>in</strong>cluded, total global <strong>aquaculture</strong><br />

production <strong>in</strong> 2008 amounted to 68.3 tons with a first-sale value of US$ 106<br />

billion (FAO, 2010). It is expected that world <strong>aquaculture</strong> production will<br />

cont<strong>in</strong>ue to grow <strong>in</strong> the com<strong>in</strong>g decade. Aquaculture is a source of <strong>in</strong>come and<br />

livelihood for millions of people around the world. Employment <strong>in</strong> fisheries and<br />

<strong>aquaculture</strong> has grown substantially <strong>in</strong> the last three decades, with an average rate<br />

of <strong>in</strong>crease of 3.6% per year s<strong>in</strong>ce 1980 (FAO, 2010).<br />

The expansion of <strong>aquaculture</strong> has brought concern about the possible effect of<br />

<strong>aquaculture</strong> effluents on coastal ecosystem. Aquaculture has contributed to<br />

environment degradation, with visible effect such as <strong>in</strong>creases <strong>in</strong> particulate<br />

organic matter and chemical change such as dissolved oxygen reduction and<br />

<strong>in</strong>creased nitrogen and phosphorus concentrations <strong>in</strong> water (Troell et al., 1999).<br />

The negative impact of <strong>aquaculture</strong> on the environment due to the release of<br />

nitrogen and phosphorus is related to eutrophication processes, especially <strong>in</strong><br />

coastal and sheltered areas (Neori et al., 2000; Neori and Shpigel, 2003). This<br />

<strong>nutrient</strong> release is primarily caused by <strong>in</strong>tensive and semi <strong>in</strong>tensive production of<br />

fish. Feed and fertilizer which are applied <strong>in</strong> ponds are not fully <strong>in</strong>corporated <strong>in</strong>to<br />

the cultured species partly deposited <strong>in</strong> pond sediments or discharged as effluents.<br />

In average, fish or shrimp assimilates only 23-31% of nitrogen and 10-13% of<br />

phosphorus of the total <strong>in</strong>puts and rema<strong>in</strong><strong>in</strong>g 14-53% of nitrogen and 39-67% of<br />

phosphorus are deposited <strong>in</strong> the sediment (Neori et al., 2000; Dhirendra and L<strong>in</strong>,<br />

2002; Schuenhoff et al., 2003). Nutrient <strong>in</strong> <strong>aquaculture</strong> effluents are distributed <strong>in</strong><br />

a particulate or soluble fraction (Ackefors and Enell, 1994). In fresh manure,<br />

about 7-32% of total nitrogen (TN) and 30-84% of total phosphorus (TP) are<br />

7


ound <strong>in</strong> this particulate fraction and the rema<strong>in</strong>der are excreted <strong>in</strong> dissolved<br />

forms (Bergheim et al., 1993). In <strong>in</strong>tensive mar<strong>in</strong>e shrimp culture, only 24% and<br />

13% of dietary nitrogen and phosphorus were <strong>in</strong>corporated <strong>in</strong>to harvested shrimp,<br />

while the rema<strong>in</strong><strong>in</strong>g <strong>nutrient</strong>s were released <strong>in</strong>to the surround<strong>in</strong>g water (Briggs<br />

and Funge-Smith, 1994). Phosphorus releases were estimated to be 9.4 kg<br />

(Ackefors and Enell, 1990) and 19.6–22.4 kg (Holby and Hall, 1991) per ton of<br />

shrimp produced. This release may cause environmental and socio-economic<br />

problems (Troell et al., 1999). The future <strong>aquaculture</strong> must be based on the<br />

development of susta<strong>in</strong>able environmentally sounded production techniques<br />

(Neori et al., 2004).<br />

In recent years, <strong>in</strong>tegrated <strong>aquaculture</strong> has been proposed as a mean to reduce the<br />

<strong>nutrient</strong> load<strong>in</strong>g from <strong>aquaculture</strong>, <strong>in</strong>clud<strong>in</strong>g the improvement of feed utilization<br />

by animals. Feed <strong>aquaculture</strong> (e.g. f<strong>in</strong>fish, shrimp) needs to be <strong>in</strong>tegrated with<br />

organic and <strong>in</strong>organic extractive <strong>aquaculture</strong> (e.g. shellfish and seaweed). Schulz<br />

et al. (2003) reported the total suspended solids (TSS) were reduced by 95.8-<br />

97.3% from ra<strong>in</strong>bow trout farm effluent <strong>in</strong> constructed wetland with emergent<br />

plants and subsurface horizontal water flow. This <strong>nutrient</strong> <strong>in</strong>corporation of cocultured<br />

organisms of different trophic levels is the basis of environmentally<br />

sounded <strong>aquaculture</strong> (Chop<strong>in</strong> et al., 2001; Neori et al., 2004). Integrated<br />

<strong>aquaculture</strong> provides <strong>nutrient</strong> bioremediation, mutual benefits to the co-cultured<br />

organisms, economic diversification and <strong>in</strong>creased profitability. Ideally, <strong>nutrient</strong><br />

process <strong>in</strong> polyculture system with two or more ecologically compatible species<br />

should be balanced, waste from one species are recycled as fertilizer or feed by<br />

another without conflict<strong>in</strong>g with each other (Neori et al., 2000).<br />

The aim of this paper is to present and discuss the <strong>nutrient</strong> <strong>fluxes</strong> from various<br />

polyculture <strong>systems</strong> on coastal waters. Additionally, comparative studies <strong>in</strong> this<br />

paper provide evidence that polyculture represents a promis<strong>in</strong>g technique relative<br />

to conventional monoculture for the production of <strong>aquaculture</strong>.<br />

Polyculture system<br />

Polyculture is the practice of cultur<strong>in</strong>g more than one species of aquatic organism<br />

<strong>in</strong> the same pond. The motivat<strong>in</strong>g pr<strong>in</strong>ciple is that fish production <strong>in</strong> ponds may<br />

8


e maximized by rais<strong>in</strong>g a comb<strong>in</strong>ation of species hav<strong>in</strong>g different food habits.<br />

The concept of polyculture of fish is based on the concept of total utilization of<br />

different trophic and spatial niches of a pond <strong>in</strong> order to obta<strong>in</strong> maximum fish<br />

production per unit area (Edward, 1992; Chiang, 1993; Qian et al., 1996). The<br />

mixture of fish gives better utilization of available natural food produced <strong>in</strong> a<br />

pond. The compatible fish species hav<strong>in</strong>g complimentary feed<strong>in</strong>g habits are<br />

stocked so that all the ecological niches of pond ecosystem are effectively<br />

utilized. The possibility of <strong>in</strong>creas<strong>in</strong>g fish production per unit area, through<br />

polyculture, is considerable, when compared with monoculture system of fish.<br />

Different species comb<strong>in</strong>ation <strong>in</strong> polyculture system effectively contributes also to<br />

improve the pond environment (Buschmann, 1996; Schuenhoff et al., 2003; Matos<br />

et al., 2006).<br />

Ponds that have been enriched through chemical fertilization, manur<strong>in</strong>g or feed<strong>in</strong>g<br />

practices conta<strong>in</strong> abundant natural fish food organisms liv<strong>in</strong>g at different depths<br />

and locations <strong>in</strong> the water column. Most fish feed predom<strong>in</strong>antly on selected<br />

groups of these organisms. Polyculture should comb<strong>in</strong>e fish hav<strong>in</strong>g different<br />

feed<strong>in</strong>g habits <strong>in</strong> proportions that effectively utilize these various natural feed<br />

items (Figure 1). As a result, higher yields are obta<strong>in</strong>ed (Bocek, unpublished).<br />

Figure 1: Polyculture utilizes natural foods efficiently<br />

(source: Bocek, unpublished)<br />

9


Shrimp ponds are traditionally set up <strong>in</strong> mar<strong>in</strong>e coastal areas and can lead to<br />

adverse impact on the environment, especially of large areas of mangrove forest.<br />

Cage culture can be a more susta<strong>in</strong>able alternative for rear<strong>in</strong>g shrimp and<br />

polyculture with seaweed may also improve susta<strong>in</strong>ability.<br />

Table 1. Worldwide polyculture system<br />

Species Location Objective References<br />

Shrimp (Penaeus monodon)<br />

and Milkfish (Chanos<br />

chanos)<br />

Abalone (Haliotis<br />

tuberculata), fish, and<br />

seaweed (Ulva lactuca)<br />

Thailand To compare shrimp<br />

performance<br />

between mono and<br />

polyculture system<br />

Israel To evaluated Nbudgets<br />

and fish<br />

performance<br />

Tilapia and shrimp Thailand To <strong>in</strong>crease fish<br />

production<br />

Fish (Sparus aurata and<br />

seaweed (Ulva. lactuca)<br />

Shrimp (Litopenaeus<br />

vannamei) and seaweed<br />

(Kappaphycus alvarezii)<br />

Portugal To evaluated the<br />

performance of<br />

ponds with effluent<br />

through seaweed<br />

Brazil To test the<br />

feasibility of cocultur<strong>in</strong>g<br />

shrimp<br />

and seaweed<br />

Kuntiyo and Balio,<br />

1997<br />

Neori et al., 1998<br />

Yi et al., 2003<br />

Schuenhoff et al.,<br />

2003<br />

Lombardi et al.,<br />

2006<br />

Table 1 show the worldwide various polyculture <strong>systems</strong> that have been done by<br />

several researchers. Kuntiyo and Balio (1997) reported after 109 culture days,<br />

results showed no significant difference (P>0.05) on growth and survival rates of<br />

both commodities <strong>in</strong> two culture schemes. Mean weight ga<strong>in</strong> was 30.88 g for<br />

shrimp and 263.33 g for milkfish <strong>in</strong> monoculture and 31.85 g and 210.57 g for<br />

shrimp and milkfish, respectively, <strong>in</strong> the polyculture system. Mean survival rates<br />

10


were 94.03% for shrimp and 99.0% for milkfish <strong>in</strong> monoculture; and 82.13% for<br />

shrimp and 92.33% for milk-fish for the polyculture system. Net aggregate<br />

production, however, was highly significant <strong>in</strong> polyculture, atta<strong>in</strong><strong>in</strong>g 923.50<br />

kg/ha/crop. Economic feasibility revealed encourag<strong>in</strong>g results for polyculture over<br />

monoculture, with return on <strong>in</strong>vestment (ROI) valued at 45% for polyculture.<br />

Nutrient flux<br />

The two significant components of the pond environment are the pond water and<br />

sediment which <strong>in</strong>teract cont<strong>in</strong>uously to <strong>in</strong>fluence the culture environment. Pond<br />

sediment can be further divided <strong>in</strong>to the pond soil component (the pond bottom<br />

and walls) and the accumulated sediment component (Briggs and Funge-Smith,<br />

1994).<br />

Nutrient budget are derived for solid, particulate organic matter, nitrogen, and<br />

phosphorus. The erosion of pond soil is the major source of solid budget and<br />

organic matter <strong>in</strong> the pond. The feed applied to the pond is a significant source of<br />

organic matter (31-50%) <strong>in</strong> the pond but contributed little amount of solids (4-7%)<br />

to the system (Funge-Smith and Briggs, 1998). This is important s<strong>in</strong>ce the feed<br />

component is also an <strong>in</strong>dication of the faecal contribution by fish or shrimp.<br />

Funge-Smith and Stewart (1996) reported the nitrogen budgets reveal <strong>in</strong> more<br />

detail, the source and s<strong>in</strong>ks of the organic components <strong>in</strong> an <strong>in</strong>tensive shrimp pond<br />

(Table 2). Applied feed accounted for 78% of the <strong>in</strong>put N to the ponds. Erosion of<br />

the pond soils, whilst a major contributor of solid, accounted for only 16% of<br />

added to the system. Other m<strong>in</strong>or contribution was <strong>in</strong>fluent water (4.03%), and<br />

fertilizer, ra<strong>in</strong>fall, shrimp stocked (2%). The s<strong>in</strong>ks for nitrogen were the sediments<br />

(24%), harvested shrimp (18%), and discharged water (28%). This leaves<br />

approximately 30% of the nitrogen unaccounted for which is assumed to be N lost<br />

to the atmosphere as N2.<br />

11


Table 2. Nitrogen budget for <strong>in</strong>tensive shrimp ponds (Funge-Smith and Stewart,<br />

1996)<br />

Source and s<strong>in</strong>ks Nitrogen (%)<br />

Nitrogen <strong>in</strong>put<br />

Feed 78<br />

Fertilizer 1.8<br />

Ra<strong>in</strong>fall 0.12<br />

Shrimp stocked 0.02<br />

Influent water 4.03<br />

Erosion of pond soil 16<br />

Nitrogen output<br />

Sediment removal 24<br />

Shrimp harvest 18<br />

Water outflow 17<br />

Harvest dra<strong>in</strong>age 11<br />

Denitrification 30<br />

Application of seaweed to polyculture system<br />

The use of seaweed <strong>in</strong>tegrated with fish cultures has been studied <strong>in</strong> open water<br />

and land-based system condition <strong>in</strong> Israel, Portugal, Brazil, and Indonesia (Neori<br />

et al., 1998; Schuenhoff et al., 2003; Lombardi et al., 2006). General concepts<br />

about <strong>nutrient</strong> uptake by seaweed can be found <strong>in</strong> Harrison and Hurd (2001). To<br />

optimize the seaweed component of an <strong>in</strong>tegrated <strong>aquaculture</strong> system, particular<br />

attention should be given not only to physical and chemical factors such as light,<br />

temperature, effluent <strong>nutrient</strong> concentration and flux, and water motion but also<br />

biological factors such as <strong>in</strong>terplant variability, <strong>nutrient</strong> prehistory, type of plant<br />

tissue and age.<br />

A pilot scale system for the <strong>in</strong>tensive abalone <strong>in</strong> polyculture system was<br />

established aimed at elim<strong>in</strong>at<strong>in</strong>g the dependence on external feed source and<br />

<strong>nutrient</strong> discharge levels. Effluents from abalone (Haliotis tuberculata) culture<br />

tanks dra<strong>in</strong>ed <strong>in</strong>to seaweed (Ulva lactuca) culture and biofilter tanks. Nitrogenous<br />

12


waste products by abalone contributed to the nutrition of seaweed. The abalone<br />

grew on average 0.26%/d and mean seaweed production amounted 230 g/m 2 /d.<br />

Nitrogen supplied was removed on average 58% (Neori et al., 1998).<br />

Polyculture system consisted of fish and seaweed was evaluated by Schuenhoff et<br />

al. (2003). An <strong>in</strong>tensive fishpond (Sparus aurata) and three stage seaweed Ulva<br />

lactuca biofilter were used which recirculated 50% of the effluent back to the<br />

fishpond. Seaweed mean production was 94 g/m 2 /day. Nitrogen content of Ulva<br />

lactuca was 34% of dry weight. Seaweed Ulva lactuca can remove 30% of<br />

dissolved <strong>nutrient</strong> load from fishpond.<br />

There were no negative <strong>in</strong>terferences <strong>in</strong> co-cultur<strong>in</strong>g shrimp and seaweed <strong>in</strong>side<br />

the same cage. Lombardi et al. (2006) reported no significant difference (P>0.05)<br />

between two treatment (monoculture and polyculture with seaweed) for shrimp<br />

weight ga<strong>in</strong>, food conversion rate (FCR), and survival rate. Shrimp yield reached<br />

production rates of 3.23 kg/m 2 /a and seaweed Kappaphycus alvarezii production<br />

reached rates as high as 23.70 kg/m 2 /a. It means seaweed is able to grow <strong>in</strong>side<br />

shrimp cage (Table 3).<br />

Seaweed can also be a useful tool for measur<strong>in</strong>g the zone of <strong>in</strong>fluence of an<br />

<strong>aquaculture</strong> site, because they are <strong>in</strong>tegrators of bioavailable <strong>nutrient</strong>s over time<br />

(Troell et al., 1997). Jimenez del Rio (1994) found that <strong>in</strong>creas<strong>in</strong>g ammonium<br />

load<strong>in</strong>g rates per unit area of Ulva lactuca tank cultures fed with fish effluents led<br />

to decrease dissolved nitrogen efficiency but <strong>in</strong>creased nitrogen area uptake rate.<br />

Seaweed yield and prote<strong>in</strong> content also <strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g ammonium<br />

supply per unit area. The same conclusion as ammonium uptake efficiency<br />

decreased with the water turnover rate but the uptake per gram of Gracillaria per<br />

time <strong>in</strong>creased (Troell et al., 1997). Seaweed performs better as nitrogen absorber<br />

with ammonium than with nitrate which is excellent <strong>in</strong> context on <strong>in</strong>tensive fish<br />

<strong>aquaculture</strong> where most of nitrogen is released as ammonium (Carmona et al.,<br />

2001).<br />

Review of result<br />

Polyculture <strong>systems</strong> us<strong>in</strong>g seaweeds for the removal or conversion of wastes has<br />

been done together with shrimp or fish. Lombardi et al. (2006) calculated the<br />

13


mean relative growth rate (RGR) for seaweed is 0.80-1.30%/day. This value is<br />

lower compared to the others (Table 3). The highest RGR is nearly 3.00%/day<br />

reported by Eswaran et al. (2002). The result suggest that depth is the ma<strong>in</strong> factor<br />

that affects the growth of seaweed, because <strong>in</strong> most of the experiment higher RGR<br />

were observed on surface float<strong>in</strong>g ropes, whereas the lowest RGR from Lombardi<br />

et al. (2006) were cultured at different depth between 1 – 2 m.<br />

Table 3. Relative growth rate (RGR) of seaweed <strong>in</strong> various studies (Lombardo et<br />

al., 2006)<br />

RGR (%) Condition Reference<br />

0.80 – 1.30 Inside cages Lombardy et al., 2006<br />

3.72 – 7.17 Inside cages Hurtado-Ponce, 1992<br />

8.00 – 10.00 Outside cages R<strong>in</strong>cones and Rubio,<br />

1998<br />

4.00 – 8.00 Outside cages Ohno et al., 1999<br />

2.30 – 4.20 Outside cages Hurtado et al., 2001<br />

6.50 – 10.70 Outside cages De Paula et al., 2001<br />

Nearly 3.00 Outside cages Eswaran et al., 2002<br />

Dur<strong>in</strong>g the last decade, renewed <strong>in</strong>terest <strong>in</strong> <strong>in</strong>corporat<strong>in</strong>g seaweed as a biofilter<br />

l<strong>in</strong>k <strong>in</strong> <strong>in</strong>tegrated carnivore-herbivore polyculture system has produce new<br />

approach and practical technologies (Troell et al., 1999; De Paula et al., 2002;<br />

Eswaran et al., 2002; Lombardi et al., 2006). These studies <strong>in</strong>dicate that seaweeds<br />

especially Gracillaria sp. can assimilate as much as 5-20% of the ammonium<br />

produced by <strong>in</strong>tensive fish or shrimp culture (Lombardi et al., 2006).<br />

The ma<strong>in</strong> issue <strong>in</strong> the effective implementation of polyculture <strong>systems</strong> is their<br />

optimal function<strong>in</strong>g, which requires an <strong>in</strong>-depth understand<strong>in</strong>g of the physiology<br />

and nutrition of the selected species. With seaweed, like with many organisms, the<br />

different physiological processes tak<strong>in</strong>g place have different environmental<br />

requirements (Harrison and Hurd, 2001). Consequently, the optimization of the<br />

overall efficiency of a cultivation system can be complex because it will require a<br />

compromise between apparently conflict<strong>in</strong>g objective e.g. biomass or particular<br />

14


compound production versus bioremediation efficiency (Chop<strong>in</strong> and Yarish,<br />

1998). For example, growth, <strong>nutrient</strong> uptake, carrageenan (agar production), and<br />

phycocolloid quality respond differentially to <strong>nutrient</strong> enrichment (Buschmann et<br />

al., 2001).<br />

In tank culture, <strong>nutrient</strong> availability can be controlled by chang<strong>in</strong>g the water flow.<br />

By <strong>in</strong>creas<strong>in</strong>g the water flow, <strong>nutrient</strong> flux will <strong>in</strong>crease as well, which allows a<br />

high biomass production of <strong>nutrient</strong>-sufficient seaweeds. In the other side, the<br />

<strong>nutrient</strong> uptake efficiency is low and <strong>nutrient</strong> concentration rema<strong>in</strong>s high <strong>in</strong> the<br />

effluents. If the water flow is low, <strong>nutrient</strong>s become limit<strong>in</strong>g and seaweed biomass<br />

production decreases, but the <strong>nutrient</strong> uptake efficiency is higher (Hanisak, 1998).<br />

If seaweed is only used as a biofilter and identified low commercial value species<br />

like Ulva lactuca, they can be used to depurate fish effluents (Schuenhoff et al.,<br />

2003). However, this apparent bioremediation merely shifts the problem of waste<br />

disposal as the seaweed scrubber will <strong>in</strong> turn need to be disposed of or treated. On<br />

the other hand, species like Gracilaria sp., Porphyra sp., or Lam<strong>in</strong>aria sp. offer<br />

both high bioremediation efficiency and commercial value <strong>in</strong> established market<br />

such as human consumption (Neori and Shpigel, 1999).<br />

When the value added for the service of improv<strong>in</strong>g water quality and coastal<br />

health is f<strong>in</strong>ally recognized, quantified and comb<strong>in</strong>ed with that of the pr<strong>in</strong>cipal<br />

crop (shrimp <strong>aquaculture</strong>), the seaweed component of a polyculture system will be<br />

understood to significantly improve the success of a diversified operation. An<br />

accrued benefit to operators of polyculture system is the fact that the currently<br />

discharge (unassimilated or excreted) nitrogen and phosphorus, which represent a<br />

loss of money <strong>in</strong> real terms, will be captured and converted <strong>in</strong>to the production of<br />

salable biomass and bioproducts, hence generat<strong>in</strong>g revenues that may more than<br />

compensate for the expenses. Additionally, as legislative guidel<strong>in</strong>es, standards,<br />

and controls regard<strong>in</strong>g the discharge of <strong>in</strong>organic <strong>nutrient</strong>s <strong>in</strong>to coastal waters<br />

become more str<strong>in</strong>gent <strong>in</strong> many countries and for susta<strong>in</strong>able <strong>aquaculture</strong>,<br />

bioremediation via the production of seaweeds will help the shrimp <strong>aquaculture</strong><br />

<strong>in</strong>dustry and avoid noncompliance.<br />

To successfully develop <strong>in</strong>tegrated <strong>aquaculture</strong> system, much research and<br />

development rema<strong>in</strong>s to be undertaken, particularly <strong>in</strong> the follow<strong>in</strong>g areas:<br />

15


1. Transfer and modification of cultivation technologies to local environments<br />

and socioeconomics,<br />

2. development of the cultivation of native species of marketable value that will<br />

be fast grow<strong>in</strong>g at different times of the year and <strong>in</strong> diverse habitats,<br />

3. site-specific biological, chemical, physical, and socioeconomic modell<strong>in</strong>g to<br />

def<strong>in</strong>e the appropriate proportions between the different co-cultured<br />

organisms.<br />

Conclusions<br />

Responsible <strong>aquaculture</strong> practices should be based on balanced ecosystem<br />

management approach, the basic premise of which is to <strong>in</strong>corporate the biological<br />

and environmental function of a diverse group of organisms <strong>in</strong>to a unified system<br />

that ma<strong>in</strong>ta<strong>in</strong>s the natural <strong>in</strong>teraction of species and allows an ecosystem to<br />

function susta<strong>in</strong>ably. To help and to ensure its susta<strong>in</strong>ability, however, it needs to<br />

responsibly change its too often monoculture practices by adopt<strong>in</strong>g polyculture<br />

ones to become better <strong>in</strong>tegrated <strong>in</strong>to broader coastal management framework.<br />

References<br />

Ackefors, H. and Enell, M. 1994. The release of <strong>nutrient</strong>s and organic matter from<br />

<strong>aquaculture</strong> <strong>systems</strong> <strong>in</strong> Nordic countries. Journal Appl. Ichthyol. 10:225-<br />

41<br />

Bergheim, A., Kristiansen, R., Kelly, L. 1993. Treatment and utilization of sludge<br />

from landbased farms for salmon. In: Wang, J. K. (Ed.), Techniques for<br />

Modern Aquaculture. Proceed<strong>in</strong>gs of an Aquacultural Eng<strong>in</strong>eer<strong>in</strong>g<br />

Conference, 21-23 June 1993. Wash<strong>in</strong>gton, DC. USA. Pp 1134.<br />

Buschmann, A.H., M. Troell, N. Kautsky and L. Kautsky. 1996. Integrated tank<br />

cultivation of salmonids and Gracillaria chilensis. Hydrobiology,<br />

326/327: 75-82.<br />

Briggs, M. R. P., and Funge-Smith, S. J. 1994. A <strong>nutrient</strong> budget of some<br />

<strong>in</strong>tensive mar<strong>in</strong>e shrimp ponds <strong>in</strong> Thailand. Aquacult. Fisheries Manage.<br />

25:789-811.<br />

16


Carmona, R., Kraemer, G. P., Zertuche, J. A., Chanes, L., Chop<strong>in</strong>, T., Neefus, C.,<br />

Yarish, C. 2001. Explor<strong>in</strong>g Porphyra species for use as nitrogen scrubbers<br />

<strong>in</strong> <strong>in</strong>tegrated <strong>aquaculture</strong>. Journal Phycol. 37:9-10.<br />

Chiang, Y. M. 1993. Seaweed cultivation <strong>in</strong> Taiwan. In Liao, I. C., Cheng, J. H.,<br />

Wu, M. C., Guo, J. J. (Eds.) Proc. Symp. On Aquaculture held <strong>in</strong> Beij<strong>in</strong>g,<br />

21-23 December 1992. Taiwan Fisheries Research <strong>Institut</strong>e, Keelung, pp.<br />

143-151<br />

Chop<strong>in</strong>, T., A. H Buschmann, C. Hall<strong>in</strong>g, M Troell, N Kautsky, A. Neori, G.<br />

Kraemer, J. Zertuche-Gonzalez, C. Yarish, C. Neefus. 2001. Integrat<strong>in</strong>g<br />

seaweeds <strong>in</strong>to <strong>aquaculture</strong> <strong>systems</strong>: a key towards susta<strong>in</strong>ability. J Phycol<br />

37:975–986.<br />

Chop<strong>in</strong>, T. and Yarish, C. 1998. Nutrients or not <strong>nutrient</strong>s? That is the question <strong>in</strong><br />

seaweed <strong>aquaculture</strong> and the answer depends on the type and purpose of<br />

the <strong>aquaculture</strong> system. World Aquaculture, 29:31-3, 60-1.<br />

De Paula, E. J., Pereira, R. T., Ohno, M. 2002. Growth rate of the<br />

carrageenophyte Kappaphycus alvarezii (Rhodophyta, Gigart<strong>in</strong>ales)<br />

<strong>in</strong>troduced <strong>in</strong> subtropical waters of Sao Paulo State, Brazil. Phycol. Res.<br />

50:1-9.<br />

Edward, P. 1992. Reuse of human wastes <strong>in</strong> <strong>aquaculture</strong>, a technical review.<br />

Water and sanitation report no 2. UNDP-World Bank Sanitation Program.<br />

World Bank. Wash<strong>in</strong>gton, DC. Pp, 33-50.<br />

Eswaran, K., Ghosh, P. K., Mairh, O. P. 2002. Experimental field cultivation of<br />

Kappaphycus alvarezii (Doty) Doty ex. P. Silva at Mandapam region.<br />

Seaweed Res. Util. 24: 67-72.<br />

FAO. 2010. The state of world fisheries and <strong>aquaculture</strong>. Fisheries and<br />

<strong>aquaculture</strong> department. Food and Agriculture Organization of United<br />

Nations. Rome. Italy.<br />

Funge-Smith, S. J. and Stewart, J. A. 1996. Coastal Aquaculture: Identification of<br />

Social, Economic and Environmental Constra<strong>in</strong>ts to Susta<strong>in</strong>ability with<br />

Reference to Shrimp Culture. In: Coastal Aquaculture and Environment:<br />

Strategies for Susta<strong>in</strong>ability. <strong>Institut</strong>e of Aquaculture, University of<br />

Stirl<strong>in</strong>g. Stirl<strong>in</strong>g. Scotland.<br />

17


Hanisak, M. D. 1998. Seaweed cultivation: global trends. World Aquaculture,<br />

29:18-21<br />

Harrison, P. J., and Hurd, C. L. 2001. Nutrient physiology of seaweeds:<br />

application of concepts to <strong>aquaculture</strong>. Cah. Biol. Mar. 42:71-82<br />

Holby, O. and Hall, P. O. J. 1991. Chemical <strong>fluxes</strong> and mass balances <strong>in</strong> a mar<strong>in</strong>e<br />

fish cage farm. II. Phosphorus. Mar. Ecol. Prog. Ser., 70: 263-272.<br />

Jimenez del Rio, M., Ramazanov, Z., Garcia-Re<strong>in</strong>a, G. 1994. Optimization of<br />

yield and biofilter<strong>in</strong>g efficiencies of Ulva rigida C. Ag. Cultivated with<br />

Sparus aurata L. waste waters. Sci. Mar. 58:329-35<br />

Kuntiyo and Balio.1997. Comparative study between mono and polyculture<br />

<strong>systems</strong> on the production of prawn and milkfish <strong>in</strong> brackish water ponds.<br />

Network of Aquaculture Centres <strong>in</strong> Asia Bangkok, Thailand.<br />

Lombardi, J. V., de Almeida-Marques, H. L., Pereira, R. T. L., Barreto, O. J. S.,<br />

de Paula, E. J. 2006. Cage polyculture of the Pacific white shrimp<br />

Litopenaeus vannamei and the Philipp<strong>in</strong>es seaweed Kappaphycus<br />

alvarezii. J. Aquacult. 258:412-415.<br />

Neori, A., Ragg, N. L.C., Shpigel, M. 1998. The <strong>in</strong>tegrated culture of seaweed,<br />

abalone, fish and clams <strong>in</strong> modular <strong>in</strong>tensive land-based <strong>systems</strong>: II.<br />

Performance and nitrogen partition<strong>in</strong>g with<strong>in</strong> an abalone (Haliotis<br />

tuberculata) and macroalgae culture system. Aquacult. Eng. 17:215-239.<br />

Neori, A., M Shpigel, D. Ben-Ezra. 2000. Susta<strong>in</strong>able <strong>in</strong>tegrated system for<br />

culture fish, seaweed and abalone. Aquaculture. 186. 279-291.<br />

Neori, A., T. Chop<strong>in</strong> T, M. Troell, A. H. Buschmann, G.P. Kraemer, C. Hall<strong>in</strong>g,<br />

M. Shpigel, C Yarish. 2004. Integrated <strong>aquaculture</strong>: rationale, evolution<br />

and state of the art emphasiz<strong>in</strong>g seaweed biofiltration <strong>in</strong> modern<br />

mariculture. Aquaculture 231:361–391.<br />

Neori, A. and Shpigel, M. 2003. Us<strong>in</strong>g algae to treat effluents and feed<br />

<strong>in</strong>vertebrates <strong>in</strong> susta<strong>in</strong>able <strong>in</strong>tegrated mariculture. World Aquacult<br />

30(2):46–51<br />

Schuenhoff, A., Shpigel, M., Lupatsch, I., Ashkenazi, A., Msuya, F. E., Neori, A.<br />

2003. A semi-recirculat<strong>in</strong>g, <strong>in</strong>tegrated system for the culture of fish and<br />

seaweed. Aquaculture 221:167–181.<br />

18


Schulz, C., J. Gelbrecht, B. Rennert. 2003. Treatment of ra<strong>in</strong>bow trout farm<br />

effluents <strong>in</strong> constructed wetland with emergent plants and subsurface<br />

horizontal water flow. Aquaculture. Elsevier. 217: 207-221.<br />

Troell, M., C Hall<strong>in</strong>g, A Nilsson, A. H Buschmann., N Kautsky, L Kautsky. 1997.<br />

Integrated mar<strong>in</strong>e cultivation of Gracillaria chilensis (Gracilariales,<br />

Bangiophyceae) and salmon cages for reduced environmental impact and<br />

<strong>in</strong>creased economic output. Aquaculture 156:45–61.<br />

Troell, M., P. Ronnback, C. Hall<strong>in</strong>g, N. Kautsky and A.H. Buschmann. 1999.<br />

Ecological eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong> <strong>aquaculture</strong>: Use of seaweeds for remov<strong>in</strong>g the<br />

<strong>nutrient</strong>s from the <strong>in</strong>tensive mariculture. J. Appl. Phycol., 11: 89-97.<br />

19


Chapter 2: A Comparison of Nutrients Fluxes <strong>in</strong> Monoculture and<br />

Polyculture Systems for Shrimp (Penaeus vannamei) and<br />

Seaweed (Gracillaria verrucosa) Production<br />

Y. N. Ihsan ab , K. J. Hesse c , N. Holmgren d, C. Schulz ab<br />

a Gesellschaft <strong>für</strong> Mar<strong>in</strong>e Aquakultur mbH, Hafentörn 3, D-25761 Büsum<br />

b <strong>Institut</strong>e for Animal Breed<strong>in</strong>g and Husbandry, Christian-Albrechts-Universität<br />

D-24098 Kiel<br />

c Research and Technology Centre, Christian-Albrechts-Universität<br />

D-25761 Büsum<br />

d<br />

University of Skövde – Sweden<br />

541 28, Skövde – Sweden<br />

Submitted to the Journal of World Aquaculture Society<br />

20


Abstract<br />

Integrated <strong>aquaculture</strong> <strong>systems</strong> are well known to utilize various forms of<br />

<strong>nutrient</strong>s with higher total assimilation rates than monoculture. In order to<br />

evaluate the <strong>nutrient</strong> efficiency of comb<strong>in</strong>ed shrimp and seaweed production<br />

<strong>nutrient</strong> <strong>fluxes</strong> were compared with shrimp monoculture <strong>systems</strong>. Therefore<br />

triplicate ponds of 1200 m² were stocked with Gracillaria verrucosa (50 kg) and<br />

20 <strong>in</strong>dividuals of shrimp (0.22 ± 0.016 g/<strong>in</strong>d)/m 2 . The culture period lasted 100<br />

days and water samples to describe <strong>nutrient</strong> <strong>fluxes</strong> were taken every 10 days. The<br />

average ammonium-nitrogen concentration over the whole period was 0.24 mg/l<br />

<strong>in</strong> polyculture while <strong>in</strong> monoculture 0.37 mg/l of ammonium-nitrogen were<br />

analyzed. Survival rate of shrimp <strong>in</strong> polyculture and monoculture were 86.32%<br />

and 69.17% respectively. A mass balance model was developed for total nitrogen<br />

and total phosphorus to estimate their <strong>fluxes</strong>. From the total nitrogen and total<br />

phosphorus <strong>in</strong>put, 24.2% and 5.3% were <strong>in</strong>corporated <strong>in</strong> 335.7 kg/1200 m 2 shrimp<br />

weight ga<strong>in</strong> <strong>in</strong> monoculture, while 30.8% and 6.9% were <strong>in</strong>corporated <strong>in</strong> 501.5<br />

kg/1200m 2 shrimp weight ga<strong>in</strong> and 3.5% and 2.4% were <strong>in</strong>corporated <strong>in</strong> 325<br />

kg/1200 m 2 seaweed Gracillaria <strong>in</strong> polyculture system. Therefore, polyculture<br />

<strong>systems</strong> us<strong>in</strong>g seaweed Gracillaria seem to act more efficiently with regard to<br />

<strong>nutrient</strong> accumulation.<br />

21


Introduction<br />

Shrimp <strong>aquaculture</strong> has been developed towards a commercial <strong>in</strong>dustry <strong>in</strong><br />

Southeast Asian countries <strong>in</strong>clud<strong>in</strong>g Indonesia. The coastal area, which <strong>in</strong>cludes<br />

mangrove forests, has been changed to be utilized for <strong>aquaculture</strong> activities with<strong>in</strong><br />

the last decades (Clough, 1993). Moreover, an effluent conta<strong>in</strong><strong>in</strong>g a large quantity<br />

of <strong>nutrient</strong>s as a result of feed and fertilizer application, has been discharged from<br />

<strong>aquaculture</strong> ponds <strong>in</strong>to the environment. Rapid development of <strong>in</strong>tensive<br />

<strong>aquaculture</strong> <strong>in</strong> coastal areas throughout the world has raised <strong>in</strong>creas<strong>in</strong>g concerns<br />

on its environmental impact (Wu, 1995; Mazzola et al., 1999). Organic and<br />

<strong>in</strong>organic <strong>in</strong>puts have led to a substantial <strong>in</strong>crease of <strong>nutrient</strong> load<strong>in</strong>g <strong>in</strong> coastal<br />

waters.<br />

In general, shrimp culture produces a large amount of waste, <strong>in</strong>clud<strong>in</strong>g nitrogen<br />

and phosphorus, that is released to the aquatic environment. Feed and fertilizer<br />

which are applied <strong>in</strong> shrimp ponds are not fully <strong>in</strong>corporated <strong>in</strong>to the shrimp, but<br />

partly deposited <strong>in</strong> pond sediments or discharged as effluents. In average, shrimp<br />

assimilates only 23-31% of nitrogen and 10-13% of phosphorus of the total<br />

<strong>in</strong>puts. While rema<strong>in</strong><strong>in</strong>g 14-53% of nitrogen <strong>in</strong>puts and 39-67% of phosphorus<br />

<strong>in</strong>puts are deposited <strong>in</strong> the sediment (Dhirendra and L<strong>in</strong>, 2002). Nutrient <strong>in</strong><br />

<strong>aquaculture</strong> effluents are distributed <strong>in</strong> a particulate or soluble fraction (Ackefors<br />

and Enell, 1994). In fresh manure, about 7-32% of total nitrogen (TN) and 30-<br />

84% of total phosphorus (TP) are bound <strong>in</strong> this particulate fraction and the<br />

rema<strong>in</strong>der are excreted <strong>in</strong> dissolved forms (Bergheim et al., 1993). In <strong>in</strong>tensive<br />

mar<strong>in</strong>e shrimp culture, only 24% and 13% of dietary nitrogen and phosphorus<br />

were <strong>in</strong>corporated <strong>in</strong>to harvested shrimp, while the rema<strong>in</strong><strong>in</strong>g <strong>nutrient</strong>s were<br />

released <strong>in</strong>to the surround<strong>in</strong>g water (Briggs and Funge-Smith, 1994). Phosphorus<br />

releases were estimated to be 9.4 kg (Ackefors and Enell, 1990) and 19.6–22.4 kg<br />

(Holby and Hall, 1991) per tonne of shrimp produced.<br />

The <strong>nutrient</strong> releases dur<strong>in</strong>g pond dra<strong>in</strong><strong>in</strong>g at harvest were exceed<strong>in</strong>g or equal<strong>in</strong>g<br />

the limitations recommended by the U.S. Environment Protection Agency (Choo<br />

and Tanaka, 2000). On the other hand, tidal mangrove estuaries impacted by<br />

shrimp pond effluent, have some capacity to process <strong>in</strong>termittent <strong>in</strong>puts of pondderived<br />

<strong>nutrient</strong>s. Mangrove vegetation is capable of remov<strong>in</strong>g excessive<br />

22


<strong>nutrient</strong>s, of up to 70% of <strong>nutrient</strong> <strong>in</strong>put for NO3 - -N and NH4 + -N, reduc<strong>in</strong>g PO4 2- -<br />

P fluctuation, and produc<strong>in</strong>g bioactive compounds (Primavera, 2000).<br />

In recent years, there has been <strong>in</strong>creas<strong>in</strong>g emphasis on develop<strong>in</strong>g treatment<br />

<strong>systems</strong> for aquacultural effluents. Schulz et al. (2003) reported the total<br />

suspended solids (TSS) were reduced by 95.8-97.3% from ra<strong>in</strong>bow trout farm<br />

effluent <strong>in</strong> constructed wetland with emergent plants and subsurface horizontal<br />

water flow. This <strong>nutrient</strong> <strong>in</strong>corporation of co-cultured organisms of different<br />

trophic levels is the basis of environmentally sounded <strong>aquaculture</strong> (Chop<strong>in</strong> et al.,<br />

2001; Neori et al., 2004). Ideally, <strong>nutrient</strong> process <strong>in</strong> polyculture system with two<br />

or more ecologically compatible species should be balanced, waste from one<br />

species are recycled as fertilizer or feed by another without conflict<strong>in</strong>g with each<br />

other (Neori et al., 2000). By <strong>in</strong>tegrat<strong>in</strong>g fed mariculture (fish and shrimp) with<br />

extractive mariculture (seaweed), the wastes of one resource consumer become a<br />

source (fertilizer or feed) for others <strong>in</strong> the system. Such a balanced ecosystem<br />

approach provides <strong>nutrient</strong> bioremediation capacity, mutual benefits to cocultured<br />

organisms, and economic diversification by produc<strong>in</strong>g other value added<br />

materials (Chop<strong>in</strong> et al., 2001).<br />

Silvofisheries or aquasilviculture, <strong>in</strong> which low-density cultures are <strong>in</strong>tegrated <strong>in</strong><br />

mangrove areas, have been reviewed by Primavera (2000). Mangrove ecosystem<br />

plays an obvious role <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the biological balance <strong>in</strong> the coastal<br />

environment where shrimp ponds are usually constructed. The removal of<br />

mangroves around shrimp ponds has frequently resulted <strong>in</strong> harvest failure. Boyd<br />

(1999) claimed that mangrove forests are not a suitable site for shrimp farms due<br />

to many reasons such as <strong>in</strong>adequate slope for dra<strong>in</strong>age, excessive organic matter<br />

releases, nitrogen, phosphorus, acid sulphate soil or pyrite discharge. Effluent<br />

treatment <strong>in</strong> shrimp <strong>aquaculture</strong> by macroalgae co-cultivation is still not generally<br />

practiced. However, studies <strong>in</strong>vestigat<strong>in</strong>g the performance of <strong>in</strong>tegrated<br />

mariculture (polyculture) <strong>in</strong> open-waters, have been hampered by the difficulties<br />

<strong>in</strong>volved with the experimental setup and data collection at sea (Petrell and Alie,<br />

1996; Troell et al., 1997; Neori, 2004).<br />

23


In this research, we aim to compare <strong>nutrient</strong> <strong>fluxes</strong> <strong>in</strong> shrimp monoculture with<br />

shrimps and seaweed polyculture <strong>systems</strong> designed to enhance <strong>nutrient</strong> utilization<br />

and to decrease environmental impact of <strong>aquaculture</strong> activities.<br />

Materials and methods<br />

This study was conducted at the Sungai Buntu research station, Research <strong>Institut</strong>e<br />

for Brackish water fisheries, West Java, Indonesia (Figure 1). Shrimp <strong>aquaculture</strong><br />

was <strong>in</strong>tensively carried out for about 3 months from 26 September 2009 to 05<br />

Januar 2010. The experimental site was divided <strong>in</strong>to 3 divisions: Water <strong>in</strong>put<br />

(canal) approximately 1 ha, triplicate of shrimp <strong>aquaculture</strong> ponds (<strong>in</strong>tensive<br />

monoculture) and triplicate of shrimp + seaweed Gracillaria ponds (<strong>in</strong>tensive<br />

polyculture) (Figure 2). The area of each pond was 1200 m 2 (40 m x 30 m) and<br />

the water depth of each pond was 1 m.<br />

Location of experiments<br />

(Sungai Buntu-West Java)<br />

Figure 1. Map of Research <strong>Institut</strong>e for Brackish water fisheries, West Java,<br />

Indonesia<br />

24


Ocean<br />

(North<br />

Java Sea)<br />

Fresh Fresh sea Water<br />

water <strong>in</strong>put A <strong>in</strong>put<br />

Chanel<br />

Water Stock<br />

B B B<br />

C C C<br />

River<br />

Intensive monocilture<br />

system<br />

Waste Waste water water output<br />

output<br />

Intensive polyculture<br />

system<br />

Sampl<strong>in</strong>g po<strong>in</strong>t:<br />

A. Water <strong>in</strong>flow<br />

B. Polyculture system<br />

C. Monoculture system<br />

: Gracilaria<br />

Figure 2. Schematic outl<strong>in</strong>e of shrimp monoculture and polyculture <strong>systems</strong><br />

Each pond was fertilized with 3 kg of urea before stock<strong>in</strong>g of shrimp and<br />

Gracillaria. Fertilizers were used to <strong>in</strong>crease primary productivity or natural food<br />

establishment <strong>in</strong> ponds.<br />

The seaweed Gracillaria (Gracillaria verrucosa), provided from local production<br />

<strong>in</strong> Sungai Buntu, Karawang-West Java was <strong>in</strong>serted <strong>in</strong>to polyethylene ropes that<br />

were fixed by the rafts. A suspension culture unit was composed of four rafts,<br />

each <strong>in</strong> turn of n<strong>in</strong>e ropes. Each rope (about 10 m long) was <strong>in</strong>serted with a piece<br />

of alga (15 g) every 20 cm. Distance between adjacent ropes was 50 cm and<br />

between adjacent units distance was 3 m.<br />

Shrimp Penaeus vannamei post larvae (0.22 ± 0.016 g/<strong>in</strong>d) were stocked at a<br />

density of 20 <strong>in</strong>dividuals/m 2 (Table 2) <strong>in</strong> each of the 6 ponds. Triplicate<br />

polyculture ponds of 1200 m² were additionally stocked with Gracillaria. Before<br />

stock<strong>in</strong>g, shrimp were acclimatized for one night to the pond water conditions.<br />

Control sampl<strong>in</strong>g of shrimp weight ga<strong>in</strong> was realized every 10 days to determ<strong>in</strong>e<br />

the actual weight for feed application. 5 <strong>in</strong>dividuals were taken to be weighed.<br />

Feed supplied equaled to 7-10% of shrimp biomass <strong>in</strong> accordance to time after<br />

control sampl<strong>in</strong>g (modified after Baliao and Tookw<strong>in</strong>as, 2002). At day 0 and day<br />

1 after sampl<strong>in</strong>g, daily feed supply amounted 7%, from day 2 until day 4 8%,<br />

from day 5 until day 7 9% and from day 8 until day 9 10%. Feed was given 4<br />

25


times a day, i.e. at 07.00, 12.00, 17.00 and 22.00. Two percent of the water<br />

volume of the shrimp ponds was added every day.<br />

Every 10 days ponds were monitored to estimate the survival rate (SR) of shrimp.<br />

Survival rate (SR) was calculated as ratio between the numbers of shrimp at a<br />

certa<strong>in</strong> time (at sampl<strong>in</strong>g) to the number of shrimp at the time of stock<strong>in</strong>g. To<br />

determ<strong>in</strong>e the number of shrimp at sampl<strong>in</strong>g follow<strong>in</strong>g formula were used:<br />

Nt = Nu * Lt / Lj<br />

Description:<br />

Nt = number of shrimp <strong>in</strong> ponds at time-t<br />

Nu = number of shrimp caught <strong>in</strong> nets at each sampl<strong>in</strong>g time-t<br />

Lt = pond area (m 2 )<br />

Lj = net effective aperture area (m 2 ).<br />

Nutrient sampl<strong>in</strong>g<br />

Every 10 days, the water quality (ammonium-nitrogen, nitrate-nitrogen, nitritenitrogen,<br />

orthophosphate-phosphorus and hydrogen sulphide) were analysed. The<br />

samples were taken over 24 hours by <strong>in</strong>tervals of 3 hours. Water sample were<br />

taken 20 cm below the water surface. Every day at 08.00 and 16.00, water<br />

temperature, sal<strong>in</strong>ity, and dissolved oxygen (DO) were monitored <strong>in</strong> situ with a<br />

portable water quality sensor system (TOA model WQC-20A electronic Ltd.,<br />

Japan). Water samples were collected us<strong>in</strong>g plastic bottles <strong>in</strong>stalled at the edge of<br />

a stick. They were immediately filtered through Whatman GF/F filters 0.7 µM<br />

millipore for soluble <strong>nutrient</strong>s analyses (PO4 -3 , NO3 - , NO2 _ , NH4 + ). The<br />

ammonium-nitrogen concentration <strong>in</strong> the filtrate was measured immediately after<br />

filtration. Total nitrogen (TN), total phosphorus (TP), nitrate-nitrogen, nitritenitrogen,<br />

and orthophosphat concentrations were measured by the APHA (1995)<br />

standard method. The <strong>nutrient</strong> analyses were performed by spectrophotometer<br />

(Shimadzu UV-2400).<br />

The standard methods for the determ<strong>in</strong>ation of ammonium-, nitrite- and nitratenitrogen<br />

were based on moderate alkal<strong>in</strong>e solution with hypochlorite,<br />

diazotization and cadmium reduction followed by diazotization, respectively. The<br />

standard method for the determ<strong>in</strong>ation of orthophosphat was based on the reaction<br />

26


of the phosphorus ions with an acidified molybdate reagent. The<br />

spectrophotometer wave length for ammonium-nitrogen, nitrite-nitrogen, nitratenitrogen<br />

and phosphorus were 630 nm, 542 nm, 542 nm and 882 nm, respectively.<br />

Pre-ashed (500 °C) and weight of GF/F filters <strong>in</strong> glass dishes were used to<br />

determ<strong>in</strong>e suspended solids <strong>in</strong> accordance to standard filtration method<br />

(APHA,1995). Nitrogen and phosporus content <strong>in</strong> organic matter of shrimp feed,<br />

shrimp, Gracillaria and total suspended solids were measured us<strong>in</strong>g Kjehdahl<br />

method. H2S was measured by Cl<strong>in</strong>e methode based on N, N-dimethyl-pphenylenediam<strong>in</strong>e<br />

(Cl<strong>in</strong>e, 1968).<br />

Statistics<br />

Water quality and <strong>nutrient</strong> <strong>fluxes</strong> from water <strong>in</strong>flow, monoculture and polyculture<br />

ponds were analyzed statistically. All data were checked for normality<br />

(Kolmogorov – Smirnov test) and homogeneity of variances (HOV, Brown<br />

Forsythe test). Differences of means of triplicate ponds (n=3) were evaluated for<br />

significance by the range tests of Tukey HSD (P


Result and discussion<br />

Water quality<br />

Water temperature ranged from 23.7–28.7 ºC. Average values of temperature<br />

ranged between 26.5–27.8 o C at sampl<strong>in</strong>g po<strong>in</strong>ts. Sal<strong>in</strong>ity also showed no<br />

significant difference between the mono- and polyculture <strong>systems</strong> (P>0.05).<br />

Average values of sal<strong>in</strong>ity for <strong>in</strong>flow water (canal), monoculture and polyculture<br />

ponds were 36.7 ppt, 38.2 ppt and 37.7 ppt, respectively (Table 1). This values<br />

were high as the experiments were realized dur<strong>in</strong>g dry season. Dissolved oxygen<br />

<strong>in</strong> water is the most important factor which determ<strong>in</strong>es water quality for<br />

aquacultural purposes. Appropriate dissolved oxygen (DO) level for shrimp<br />

<strong>aquaculture</strong> are higher than 3 mg/l. In this study, the average of dissolved oxygen<br />

(DO) over 100 days period <strong>in</strong> monoculture was 3.03 mg/l while <strong>in</strong> polyculture<br />

significantly higher DO values of 4.77 mg/l were recorded (Tabel 1). It can be<br />

assumed that <strong>in</strong> day light, Gracillaria produces sufficient amounts of oxygen by<br />

photosynthesis activities.<br />

Table 1. Water quality parameter over 100 days period<br />

Parameter Inflow Monoculture Polyculture<br />

Temperature ( o C) 27.84 a 26.5±1.02 a 26.50±1.05 a<br />

Dissolved oxygen (mg/l) 4.2 a 3.03±0.58 b 4.77±0.67 a<br />

Sal<strong>in</strong>ity (ppt) 36.7 a 38.18±0.74 a 37.72±0.57 a<br />

pH 7.75 a 7.77±0.15 a 7.73±0.17 a<br />

TSS (mg/l)* 15.6 a 59.89±8.44 b 56.5±7.53 b<br />

TN (mg/l)* 0.95 a 2.97±0.50 b 3.2±0.33 b<br />

TP (mg/l)* 0.17 a 1.3±0.19 b 1.1±0.22 b<br />

NH4 + -N (mg/l) 0.014 a 0.37±0.04 b 0.24±0.03 c<br />

NO3 - -N (mg/l) 0.004 a 0.018±0.001 b 0.017±0.001 b<br />

NO2 - -N (mg/l) 0.0002 a 0.002±0.0005 b 0.002±0.0004 b<br />

PO4-P (mg/l) 0.001 a 0.005±0.0006 b 0.004±0.0008 b<br />

Values given are means of 10 times sampl<strong>in</strong>g <strong>in</strong> triplicate ponds. (*TSS, TN, and TP are<br />

means of 4 times sampl<strong>in</strong>g <strong>in</strong> triplicate ponds).<br />

Values with the same superscript letter do not differ significantly (P>0.05).<br />

28


Xu (2008) reported the Gracillaria cultivation can improve other aspects of water<br />

quality <strong>in</strong>stead of <strong>in</strong>creas<strong>in</strong>g DO. Its photosynthesis produces DO that promotes<br />

decomposition of organics. Density raft culture of Gracillaria impedes the water<br />

circulation and may decrease chemical oxygen demand (COD) <strong>in</strong> the water<br />

column. In addition, several species of Gracillaria can produce oxygen under low<br />

light condition, such as <strong>in</strong> ra<strong>in</strong>y days and remediate anoxia (Xu et al., 2004).<br />

Concentration (m g/l)<br />

0.02<br />

0.018<br />

0.016<br />

0.014<br />

0.012<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0<br />

0 20 40 60 80 100 120<br />

a<br />

b<br />

c<br />

Time (days)<br />

a<br />

c<br />

a<br />

a<br />

a<br />

c<br />

a<br />

c<br />

b<br />

Polyculture<br />

Monoculture<br />

Inflow<br />

Figure 3. Concentration of H2S dur<strong>in</strong>g the experimental period, values are<br />

mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05).<br />

Hydrogen sulfide (H2S) can severely affect shrimp growth <strong>in</strong> pond. H2S is<br />

produced by chemical reduction of organic matter that accumulates and forms a<br />

thick layer of organic deposits at the bottom. High levels of hydrogen sulfide<br />

would affect directly demersal or burrow<strong>in</strong>g shrimps such as Peneaus monodon.<br />

At levels of 0.1–0.2 mg/l of H2S <strong>in</strong> the water, shrimp growth will be disturbed and<br />

die <strong>in</strong>stantly at concentration higher than 4 mg/l (Law, 1988). In this study,<br />

hydrogen sulfide (H2S) presented after 60 days. Highest hydrogen sulfide (H2S)<br />

levels of 0.018 mg/l were recorded at harvest for the monoculture system and of<br />

29


0.009 mg/l for the polyculture system (figure 3). This means that H2S was not<br />

harmful for the growth of shrimp <strong>in</strong> monoculture and polyculture system.<br />

Nutrients <strong>fluxes</strong><br />

Dissolved <strong>nutrient</strong> fixation is one of the core advantages of constructed wetlands<br />

compared to standard mechanical effluent treatment (Schulz, 2003). In this study,<br />

the ammonium concentration <strong>in</strong>creased gradually <strong>in</strong> monoculture and polyculture<br />

<strong>systems</strong> and orthophosphate concentration progressively <strong>in</strong>creased as well.<br />

Though well water was supplied to the pond, the ammonium-nitrogen<br />

concentrations <strong>in</strong> monoculture <strong>in</strong>creased from 0.005 to 0.779 mg/l (Figure 4), with<br />

an average concentration of ammonium-nitrogen dur<strong>in</strong>g the 100 days period of<br />

0.37 mg/l (Table 1). In polyculture system, it <strong>in</strong>creased from 0.003 to 0.483 mg/l<br />

(Figure 4), with an average of 0.24 mg/l. Therefore, ammonium-nitrogen<br />

concentrations were significantly higher <strong>in</strong> comparison to polyculture system<br />

(P0.05).<br />

30<br />

Monoculture<br />

Polyculture<br />

Inflow


Concentration (mg/l)<br />

Concentration (mg/l)<br />

0.045<br />

0.04<br />

0.035<br />

0.03<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

a<br />

a<br />

a<br />

a<br />

a<br />

b<br />

a b b<br />

a<br />

a<br />

a<br />

a<br />

a<br />

b b b<br />

a<br />

0 20 40 60 80 100 120<br />

b<br />

a<br />

a<br />

Time (days)<br />

Figure 5. Concentrations of nitrate-nitrogen (NO3 + -N) dur<strong>in</strong>g the<br />

experimental period, values are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05).<br />

0.008<br />

0.007<br />

0.006<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a a<br />

a a a<br />

a a<br />

a<br />

a<br />

b<br />

b b b b b b<br />

a a<br />

a<br />

a<br />

a<br />

0 20 40 60 80 100 120<br />

Time (days)<br />

Figure 6. Concentrations of nitrite-nitrogen (NO2 + -N) dur<strong>in</strong>g the<br />

experimental period, values are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05).<br />

a<br />

b<br />

a<br />

a<br />

b<br />

a<br />

a<br />

a<br />

b<br />

Monoculture<br />

Polyculture<br />

Inflow<br />

Monoculture<br />

polyculture<br />

Inflow<br />

Low values of nitrate- and nitrite-nitrogen, of 0.0044 and 0.0002 mg/l (Table 1)<br />

were observed <strong>in</strong> the pond <strong>in</strong>let and higher values were generated, possibly by<br />

nitrification bacteria <strong>in</strong> the pond <strong>systems</strong>. Nevertheless, no differences could be<br />

31


observed for nitrate and nitrite <strong>in</strong> monoculture or polyculture <strong>systems</strong> dur<strong>in</strong>g the<br />

experiment (P>0.05) (Figures 5 and 6). The average concentration of nitrate and<br />

nitrite-nitrogen <strong>in</strong> the monoculture system were 0.018 and 0.002 mg/l,<br />

respectively, and 0.017 and 0.002 mg/l <strong>in</strong> polyculture system (Table 1).<br />

Hopk<strong>in</strong>s et al. (1995) found that particulate matter and dissolved <strong>nutrient</strong>s <strong>in</strong> the<br />

outflow water <strong>in</strong>creased considerably with higher water exchange rates. The<br />

authors concluded that assimilation by phytoplankton and nitrify<strong>in</strong>g bacteria<br />

attached to detritus particles are the ma<strong>in</strong> processes of nitrogen removal from the<br />

water column Hargreaves (1998) suggests that the potential for N removal from<br />

ponds by denitrification is high.<br />

Concentration (mg/l)<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

a a<br />

b<br />

a<br />

b<br />

0 20 40 60 80 100 120<br />

a<br />

Time (days)<br />

a<br />

b<br />

a<br />

Polyculture<br />

Monoculture<br />

Inflow<br />

Figure 7. Concentrations of Total Nitrogen (TN) dur<strong>in</strong>g the experimental<br />

period, values are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05).<br />

32


concentration (mg/l)<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0<br />

a<br />

a<br />

b<br />

a<br />

b<br />

a a a a<br />

b<br />

b b<br />

a<br />

b<br />

a<br />

a<br />

b b<br />

0 20 40 60 80 100 120<br />

a<br />

Time (days)<br />

a<br />

a a<br />

a<br />

a a a<br />

b<br />

b b b<br />

Monoculture<br />

Polyculture<br />

Inflow<br />

Figure 8. Concentration of Orthophosphate (PO4) dur<strong>in</strong>g the experimental<br />

period, values are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05).<br />

Concentration (mg/l)<br />

3.5<br />

3<br />

a<br />

2.5<br />

2<br />

a<br />

a<br />

1.5<br />

a<br />

1<br />

0.5<br />

0<br />

b<br />

a<br />

a<br />

b<br />

b<br />

-0.5 0 20 40 60<br />

Time (days)<br />

80 100 120<br />

Polyculture<br />

Monoculture<br />

Inflow<br />

Figure 9. Concentrations of Total Phosphorus (TP) dur<strong>in</strong>g the experimental<br />

period, values are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05).<br />

33


Total nitrogen (TN) and total phosphorus (TP) concentration <strong>in</strong>creased <strong>in</strong> the<br />

outlet water of polyculture and monoculture ponds. TN <strong>in</strong> polyculture ponds<br />

<strong>in</strong>creased from 0.15-7.43 mg/l (Figure 7), with an average of 3.2 mg/l (Table 1),<br />

while <strong>in</strong> monoculture TN ranged from 0.13–7.26 mg/l (Figure 7), with an average<br />

of 2.97 mg/l (Table 1). TP <strong>in</strong> polyculture pond <strong>in</strong>creased from 0.015–2.83 mg/l<br />

(Figure 9), with an average of 1.1 mg/l (Table 1), while <strong>in</strong> monoculture values of<br />

0.013–2.41 mg/l (Figure 9) and an average of 1.3 mg/l (Table 1) could be<br />

observed, but no significant differences (P>0.05) could be observed between the<br />

<strong>systems</strong>.<br />

The average concentrations of orthophosphate <strong>in</strong> the <strong>in</strong>let water, monoculture and<br />

polyculture effluents dur<strong>in</strong>g the 100 days period were 0.001, 0.005 and 0.004<br />

mg/l, respectively (Table 1). There were no significant differences between<br />

monoculture and polyculture system (P>0.05). Orthophosphate <strong>in</strong>creased from<br />

0.0012 mg/l to 0.0081 mg/l for monoculture and 0.0012 mg/l to 0.0067 mg/l for<br />

the polyculture <strong>systems</strong> (Figure 8). It can be assumed that the <strong>in</strong>itial concentration<br />

of phosphorus was not <strong>in</strong>fluenced by <strong>in</strong>flow<strong>in</strong>g phosphorus.<br />

34


Table 2. Performance of experimental <strong>in</strong>tensive shrimp polyculture and<br />

monoculture system over 100 days period (n=3)<br />

Parameter Polyculture Monoculture<br />

Stocked larvae:<br />

Stock<strong>in</strong>g density<br />

(Individuals/m 2 )<br />

Total larvae (<strong>in</strong>d)<br />

Weight (g/<strong>in</strong>d)<br />

Total weight (kg)<br />

20<br />

24000<br />

0.22 ± 0.016<br />

5.1<br />

20<br />

24000<br />

0.22 ± 0.016<br />

5.1<br />

Culture time (days) 100 100<br />

At harvest:<br />

Shrimp (<strong>in</strong>d/ m 2 )<br />

Total shrimp<br />

Individual weight<br />

(g/<strong>in</strong>d)<br />

Weight (kg/m 2 )<br />

Total weight (kg)<br />

16.8 a<br />

20141 a<br />

24.9 ± 1.8 a<br />

0.42<br />

501.5<br />

13.5 b<br />

16140 b<br />

20.8 ± 1.05 b<br />

0.28<br />

335.7<br />

Survival rate (%) 86.32 a 69.17 b<br />

Total Feed (kg) 826.7 a 620 b<br />

FCR 1.67 a 1.88 b<br />

Values with the same superscript letter do not differ significantly (P>0.05).<br />

Seventy thousand post larvae (PL) were stocked <strong>in</strong> the triplicate ponds with a<br />

density of 20 <strong>in</strong>d/m 2 . Initial weight of <strong>in</strong>dividual larvae (PL) was 0.22 ± 0.016 g<br />

result<strong>in</strong>g <strong>in</strong> a total stock<strong>in</strong>g weight of approximately 5.1 kg/1200 m 2 .<br />

Approximately 826.7 kg/ of pelleted feed was supplied for each polyculture<br />

system pond and 620 kg for the triplicate monoculture ponds (Table 2). 501.5<br />

kg/1200 m 2 of shrimp were harvested for the polyculture system and 335.7<br />

kg/1200 m 2 for the monoculture system (Table 2). Feed given to the polyculture<br />

ponds was higher compared to the monoculture shrimp due to the higher growth<br />

performance <strong>in</strong> polyculture ponds. The average f<strong>in</strong>al weight of shrimp was 24.9 ±<br />

35


1.8 g for polyculture <strong>systems</strong> with survival rates of 86.3%. For monoculture, the<br />

weight of shrimp was 20.8 ± 1.05 g and survival rate accounted 69.17% (Table 2).<br />

Survival rate of shrimp <strong>in</strong> polyculture was significantly higher than <strong>in</strong><br />

monoculture, and the weight of shrimp as well (P


Mass balance<br />

Mass Balance calculations for <strong>nutrient</strong>s are important to evaluate the efficiency of<br />

feed <strong>nutrient</strong> utilization <strong>in</strong> order to estimate the pollut<strong>in</strong>g potential of pond<br />

effluents (Tucker and Boyd, 1985; Briggs and Simon, 1994).<br />

TN-mass balance polyculture system<br />

Fertilization<br />

3% (1.56 kg)<br />

Water <strong>in</strong>flow<br />

6.9%<br />

(3.65 kg)<br />

Seaweed stocked<br />

0.04%<br />

(0.02 kg)<br />

Stocked shrimp<br />

0.06%<br />

(0.03 kg)<br />

Shrimp feed 90%<br />

(47.6 kg) a<br />

Shrimp feed 90%<br />

(47.6 kg) a<br />

TN-mass balance monoculture system<br />

Fertilization<br />

3.8% (1.56 kg)<br />

Water <strong>in</strong>flow<br />

8.9% (3.65 kg)<br />

Shrimp stocked<br />


TP-mass balance polyculture system<br />

Seaweed Stocked<br />

0.06%<br />

(0.006 kg)<br />

Shrimp stocked<br />

0.2%<br />

(0.02 kg)<br />

Fertilization<br />

2% (0.2 kg)<br />

Water <strong>in</strong>flow<br />

6.2% (0.6)<br />

TP-mass balance monoculture system<br />

Fertilization<br />

2.7% (0.2 kg)<br />

Water <strong>in</strong>flow<br />

7.9% (0.6 kg)<br />

Shrimp stocked<br />

0.3%<br />

(0.02 kg)<br />

Shrimp food<br />

91.74% (8.9 kg) a<br />

Shrimp harvest<br />

6.9% (0.67 kg) a<br />

Shrimp food<br />

91.74% (8.9 kg) a<br />

Shrimp harvest<br />

6.9% (0.67 kg) a<br />

Shrimp food<br />

89.1% (6.7 kg) b<br />

Shrimp food<br />

89.1% (6.7 kg) b<br />

Seaweed<br />

harvest 2.4%<br />

(0.23 kg)<br />

Pond Water<br />

Shrimp harvest<br />

5.3% (0.4 kg) b<br />

Shrimp harvest<br />

5.3% (0.4 kg) b<br />

Pond Water<br />

Others<br />

Associated<br />

43.4%<br />

(4.23 kg)<br />

Outlet<br />

water<br />

47.3%<br />

(4.6 kg) a<br />

Outlet<br />

water<br />

47.3%<br />

(4.6 kg) a<br />

Others<br />

Associated<br />

42.8%<br />

(3.22 kg)<br />

Outlet<br />

water<br />

51.9%<br />

(3.9 kg) a<br />

Outlet<br />

water<br />

51.9%<br />

(3.9 kg) a<br />

Figure 11. Total phosphate mass balance <strong>in</strong> experimental polyculture and<br />

monoculture <strong>systems</strong>. Values are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly between mono- and<br />

polyculture <strong>systems</strong> (P>0.05).<br />

38


Us<strong>in</strong>g the strategy proposed by Funge-Smith and Briggs (1998), a mass balance<br />

for the fate of <strong>nutrient</strong>s <strong>in</strong> feed added to shrimp ponds was developed based on the<br />

<strong>nutrient</strong> amount of feed and fertilizer added, shrimp and Gracillaria stocked,<br />

shrimp and Gracillaria harvested, and <strong>nutrient</strong>s <strong>in</strong> and out-flow<strong>in</strong>g water.<br />

Each pond was fertilized with approximately 3 kg urea/1200 m 2 before stock<strong>in</strong>g.<br />

Total nitrogen (TN) and total phosphate (TP) from fertilizer were 1.56 kg/1200 m 2<br />

and 0.2 kg/1200 m 2 for the monoculture and polyculture system. Whereas TN and<br />

TP from <strong>in</strong>flow<strong>in</strong>g water were 3.65 kg/1200 m 2 and 0.6 kg/1200 m 2 for the<br />

monoculture and polyculture system (Figures 10 and 11). Outlet water conta<strong>in</strong>ed<br />

10.4 kg/1200 m 2 and 3.9 kg/1200 m 2 of total nitrogen (TN) and total phosphorus<br />

(TP), for the monoculture system and 11.27 kg/1200 m 2 and 4.6 kg for the<br />

polyculture system (Figures 10 and 11).<br />

Figure 10 and 11 showed total nitrogen and total phosphorus mass balance <strong>in</strong><br />

polyculture system with a growth performance of 0.42 kg shrimp m -2 and 0.3 kg<br />

Gracillaria m -2 and a feed conversion ratio of 1.67 (shrimp: 34.5% dry matter,<br />

9.4% N, 0.38% P; Feed: 90% dry matter) and with 0.28 kg shrimp m -2 and a feed<br />

conversion ratio of 1.88 (shrimp: 33% dry matter, 8.9% N, 0.3% P; Feed: 90% dry<br />

matter) <strong>in</strong> monoculture system.<br />

In addition, monoculture system were characterised by 8.9% and 0.3% of applied<br />

total nitrogen (TN) and total phosphorus (TP) <strong>in</strong>corporated <strong>in</strong> shrimp and 9.4%<br />

and 0.38% <strong>in</strong> shrimps of the polyculture system. Gracillaria <strong>in</strong>corporated 3.31%<br />

and 0.42% of total nitrogen (TN) and total phosphorus (TP) <strong>in</strong> polyculture<br />

system. When shrimp were harvested, at least about 24.2% of the total nitrogen<br />

(TN) and 5.3% of the total phosphorus (TP) for the monoculture system and about<br />

34.3% (30.8% from shrimp harvest and 3.5% from seaweed harvest) of the total<br />

nitrogen (TN) and 9.3% (6.9% from shrimp harvest and 2.4% from seaweed<br />

harvest) of the total phosphorus (TP) for the polyculture system were removed<br />

(Figures 10 and 11). Total nitrogen and total phosphorus <strong>in</strong> outlet water amounted<br />

10.4 kg/1200 m 2 and 3.9 kg/1200 m 2 <strong>in</strong> the monoculture system. In the<br />

polyculture ponds 11.27 kg/1200 m 2 and 4.6 kg/1200 m 2 of TP and TN were<br />

recorded <strong>in</strong> outlet water (Figures 10 and 11).<br />

39


The largest source of nitrogen orig<strong>in</strong>ated from feed with 87.2% for the<br />

monoculture and 90% for the polyculture system. The rema<strong>in</strong><strong>in</strong>g nitrogen derived<br />

from fertilizer and <strong>in</strong>flow<strong>in</strong>g water, 3.8% and 8.9% for the monoculture and 3%<br />

and 6.9% for the polyculture system (Figure 10). Outlet water conta<strong>in</strong>ed 25.4% of<br />

total nitrogen for the monoculture and 21.3% for the polyculture system (Figure<br />

10). Denitrification, ammonium volatilization and total nitrogen <strong>in</strong> other organism<br />

e.g. benthos and zooplankton were not directly evaluated <strong>in</strong> this study, but 50.4%<br />

of total nitrogen <strong>in</strong>put for the monoculture and 44.4% for the polyculture system<br />

could be analyzed as unidentified losses. This loss of nitrogen was assumed to be<br />

lost to the atmosphere as N2 via denitrification. The volatilization of nitrogen<br />

emphasizes the significance of microbial decomposition process <strong>in</strong> ponds.<br />

Another possibility for this loss of nitrogen could be the <strong>in</strong>corporation <strong>in</strong>to other<br />

organisms. Hopk<strong>in</strong>s et al. (1993) could not account for 13 - 46% of total nitrogen<br />

<strong>in</strong>put <strong>in</strong> <strong>in</strong>tensive shrimp ponds. 27.4% of the total nitrogen was unaccounted <strong>in</strong> a<br />

semi <strong>in</strong>tensive shrimp farm <strong>in</strong> North-Western Mexico expla<strong>in</strong>ed by denitrification<br />

and atmospheric diffusion of unionized ammonia (Paez-Osuna et al. 1997).<br />

N-fixation by blue-green algae was not taken <strong>in</strong>to account by the model, and the<br />

significance of this contribution is unknown. In this model, the amount of nitrogen<br />

from stock<strong>in</strong>g larvae and Gracillaria were only 0.03 kg/1200 m 2 and 0.02<br />

kg/1200 m 2 respectively.<br />

The nitrogen mass balance reveal <strong>in</strong> detail, the source and s<strong>in</strong>k of the organic<br />

component <strong>in</strong> a shrimp pond. Funge-Smith and Briggs (1998) reported the actual<br />

amount of <strong>nutrient</strong>s assimilated <strong>in</strong>to shrimp biomass is a small fraction of the total<br />

amount applied as feed. Only 18-27% of nitrogen applied to the pond was<br />

assimilated <strong>in</strong>to shrimp, thus there is considerable wastage as <strong>nutrient</strong>s are<br />

<strong>in</strong>corporated <strong>in</strong>to plankton biomass, volatilized or trapped <strong>in</strong> the sediment. The<br />

s<strong>in</strong>ks for nitrogen are the sediments (24%), harvested shrimp (18-27%) and<br />

discharge water (27%). Approximately 30% of the nitrogen unaccounted is<br />

assumed to be N losses to the atmosphere as N2 or ammonia.<br />

The largest source of total phosphorus (TP) orig<strong>in</strong>ated from feed, 89.1 % for the<br />

monoculture and 91.74% for the polyculture system. The rest of TP derived from<br />

fertilizer and water <strong>in</strong>put were 2.7% and 7.9% for the monoculture <strong>systems</strong> and<br />

40


2% and 6.2% for the polyculture system, respectively (Figure 11). Total<br />

phosphorus <strong>in</strong> outlet water was 51.9% <strong>in</strong> the monoculture and 47.3% <strong>in</strong> the<br />

polyculture system of total phosphorus <strong>in</strong>put (Figure 11). That means, 51.9% of<br />

total phosphorus <strong>in</strong>put for monoculture and 47.3% of total phosphorus <strong>in</strong>put for<br />

polyculture system were discharged to the environment. TP associated <strong>in</strong> other<br />

organisms e.g. benthos and zooplankton was not directly evaluated <strong>in</strong> this study,<br />

but 42.8% of total phosphorus <strong>in</strong>put for the monoculture and 43.4% for the<br />

polyculture system were unaccounted. It can be assumed that this amount is lost<br />

through consumption by other macrofauna or fixed <strong>in</strong> m<strong>in</strong>erals <strong>in</strong> sediment.<br />

The processes of denitrification, ammonia volatilization and phosphorus<br />

adsorption by sediments serve to regulate their concentrations <strong>in</strong> the water column<br />

(Tucker and Boyd, 1985). Boyd (1985) reported that 56% of phosphorus <strong>in</strong>puts <strong>in</strong><br />

freshwater catfish ponds was lost through uptake by sediments. Briggs and Funge-<br />

Smith (1994) reported that 84% of the phosphorus was reta<strong>in</strong>ed <strong>in</strong> the sediments<br />

of <strong>in</strong>tensive mar<strong>in</strong>e shrimp ponds <strong>in</strong> Thailand. Funge-Smith and Briggs (1998)<br />

reported the pr<strong>in</strong>cipal source of phosphorus <strong>in</strong> <strong>in</strong>tensive shrimp ponds was the<br />

applied feed (51%). The 26% shortfall <strong>in</strong> <strong>in</strong>puts was assumed to be the eroded<br />

pond bottom. Effluent water constituted 10% of TP loss <strong>in</strong> the budget and this is<br />

ma<strong>in</strong>ly bound <strong>in</strong> the suspended solid fraction. Thus, trapp<strong>in</strong>g of the suspended<br />

solid fraction is important to m<strong>in</strong>imize its environmental impact.<br />

Effluents from shrimp <strong>aquaculture</strong> typically were enriched <strong>in</strong> suspended solid and<br />

<strong>nutrient</strong>s. Different alternatives have been considered to mitigate or resolve the<br />

impact of shrimp pond effluents on the water quality of adjacent coastal waters.<br />

The use of polyculture technology, with shrimp and seaweed, have been<br />

positively evaluated <strong>in</strong> this study. Improved pond design, construction of buffer<br />

ponds, reduction and elim<strong>in</strong>ation of water exchange rates are other <strong>in</strong>terest<strong>in</strong>g<br />

alternatives that could reduce the impact of shrimp pond effluents (Paez-Osuna,<br />

2000), but for marg<strong>in</strong>al areas polyculture seems to be a viable way to <strong>in</strong>crease<br />

<strong>nutrient</strong> efficiencies <strong>in</strong> shrimp <strong>aquaculture</strong>.<br />

41


Conclusions<br />

The seaweed Gracillaria can be cultivated <strong>in</strong> polyculture with shrimp. This<br />

macroalgae can not only serve as an effective biofilter for shrimp ponds but also<br />

can <strong>in</strong>crease shrimp productivity. The weight and survival rate of shrimp <strong>in</strong><br />

polyculture <strong>systems</strong> were higher than <strong>in</strong> monoculture. The <strong>nutrient</strong>s <strong>fluxes</strong><br />

demonstrate a high efficiency <strong>in</strong> polyculture <strong>systems</strong> than <strong>in</strong> monoculture. The<br />

polyculture us<strong>in</strong>g Gracillaria as co-cultivation may thus encourage future<br />

polyculture <strong>systems</strong> to be adopted by farmers as an environmentally friendly way<br />

of <strong>aquaculture</strong>.<br />

References<br />

Ackefors, H. and M. Enell. 1990. Discharge of <strong>nutrient</strong> from Swedish fish<br />

farm<strong>in</strong>g to adjacent sea areas. Ambio. 19: 28-35.<br />

Ackefors, H. and M. Enell. 1994. The release of <strong>nutrient</strong> and organic matter from<br />

<strong>aquaculture</strong> system <strong>in</strong> Nordic countries. J. Appl. Ichthyol. 10: 225-241.<br />

Alonso-Rodriguez, R. and F. Paez-Osuna. 2003. Nutrients, phytoplankton and<br />

harmful alga blooms <strong>in</strong> shrimp ponds: a review with special reference to<br />

the situation <strong>in</strong> the Gulf of California. Aquaculture 219: 317-336.<br />

APHA. 1995. Standard Methods for the Exam<strong>in</strong>ation of Water and Wastewater,<br />

19th ed. Wash<strong>in</strong>gton, DC. USA.<br />

Baliao, D. D. And S. Tookw<strong>in</strong>as. 2002. Best Management Practices for a<br />

Mangrove-friendly Shrimp Farm<strong>in</strong>g. Aquaculture extention manual. 35.<br />

Seafdec. ASEAN. Philip<strong>in</strong>es.<br />

Bergheim, A., S. Sanni, G. Indrevik, P. Holland. 1993. Sludge removal from<br />

salmonid tank effluent us<strong>in</strong>g rotar<strong>in</strong>g microsieves. Aquaculture. Eng. 12:<br />

97-109.<br />

Boyd, C. E. 1985. Chemical budgets for channel catfish ponds. Transactions of<br />

the America Fisheries Society. 114: 291-298.<br />

Boyd, C. E. 1999. Codes of Practise for Responsible Shrimp Farm<strong>in</strong>g. Global<br />

Aquaculture Alliance. St. Louis MO. USA. 48.<br />

42


Briggs, M. R. P. and S. J. Funge-Smith. 1994. A <strong>nutrient</strong> budget of some<br />

<strong>in</strong>tensive mar<strong>in</strong>e shrimp ponds <strong>in</strong> Thailand. Aquaculture and Fish.<br />

Manage. 25: 789–811.<br />

Cl<strong>in</strong>e, J. D. 1968. K<strong>in</strong>etics of the sulfide - Oxygen reaction <strong>in</strong> sea water: an<br />

<strong>in</strong>vestigation at constant temperature and sal<strong>in</strong>ity. M. S. Thesis, Univ.<br />

Wash<strong>in</strong>gton, seattle.<br />

Clough, B. F. (1993) Status and value of mangrove forests. In The economic and<br />

environmental values of mangrove forests and their present state of<br />

conservation <strong>in</strong> the South-East Asia/Pacific region, Mangrove eco<strong>systems</strong><br />

technical reports vol. 1, SME/ITTO/JIAM Project PD71/ 89 Rev.1 (F),<br />

ISME, Ok<strong>in</strong>awa, Japan, 1–10.<br />

Choo, P. S. and K. Tanaka. 2000. Nutrient levels <strong>in</strong> ponds dur<strong>in</strong>g the grow-out<br />

and harvest phase of Penaeus monodon under semi-<strong>in</strong>tensive culture.<br />

JIRCAS J. 8: 13–20<br />

Funge-Smith, S. J. And M. R. P. Briggs. 1998. Nutrient budgets <strong>in</strong> <strong>in</strong>tensive<br />

shrimp ponds: implication for susta<strong>in</strong>ability. Aquaculture. Elsevier. 164:<br />

117-133.<br />

Hargreaves, J. A. 1998. Nitrogen biogeochemistry of <strong>aquaculture</strong> ponds.<br />

Aquaculture. Elsevier. 166: 181-212.<br />

Holby, O. And O. J. Hall. 1991. Chemical <strong>fluxes</strong> and mass balances <strong>in</strong> a mar<strong>in</strong>e<br />

fish cage farm. II. Phosphorus. Mar<strong>in</strong>e Ecological Progress Series. 70:<br />

263-272.<br />

Hopk<strong>in</strong>s, J. S., R. D. Hamilton, P. A. Sandifer, C. L. Browdy, A. D. Stokes. 1993.<br />

Effect of water exchange rate on production, water quality, effluent<br />

characteristic and nitrogen budgets of <strong>in</strong>tensive shrimp ponds. World<br />

Aquaculture Society. 24: 304-320.<br />

Hopk<strong>in</strong>s, J.S., C.L. Browdy, R.D. Hamilton II and J.A Heffernan III. 1995. The<br />

effect of low-rate sand filtration and modified feed management on<br />

effluent quality, pond water quality and production of <strong>in</strong>tensive shrimp<br />

ponds. Estuaries. 18: 116–123.<br />

43


Mazzola, S., S. Mirto., R. Danovaro. 1999. Initial fishfarm impact on meiofaunal<br />

assemblages <strong>in</strong> coastal sediments of the Western Mediterranean. Mar<strong>in</strong>e<br />

Pollution Bulet<strong>in</strong>. 38. 1126-1133<br />

McK<strong>in</strong>non, A. D., L. A. Trott., D. M. Alongi, A. Davidson. 2002. Water column<br />

production and <strong>nutrient</strong> characteristics <strong>in</strong> mangrove creeks receiv<strong>in</strong>g<br />

shrimp farm effluent. Aquaculture Res. 33. 55–73.<br />

Mozes, N., D. Conijeski, M. Eshchar, A. Ashkenazy, M. Fediuk. 2001. Where to<br />

f<strong>in</strong>d economical improvements <strong>in</strong> a recirculation <strong>aquaculture</strong> system<br />

(RAS)? An analysis of gilthead sea bream (Sparus aurata) production<br />

costs <strong>in</strong> a commercial scale RAS <strong>in</strong> Israel, Abstracts of contributions<br />

presented at the International Conference Aquaculture Europe, EAS<br />

Special Publication vol. 29.<br />

Mozes, N., M. Eshchar, D. Conijeski, M. Fediuk. 2002. Mar<strong>in</strong>e water<br />

recirculat<strong>in</strong>g system <strong>in</strong> Israel performance, production cost analysis and<br />

rationale for desert conditions, Proceed<strong>in</strong>gs from the Fourth International<br />

Conference on Recirculat<strong>in</strong>g Aquaculture—July 18–21, 2002.<br />

Paez-Osuna, F. 2001. The environmental impact of shrimp <strong>aquaculture</strong>: a global<br />

perspective. Environmental Pollution. Elsevier. 112. 229-231.<br />

Paez-Osuna, F., S. R. Guerrero-Galvan, A. C. Ruiz-Fernandez, R. Esp<strong>in</strong>oza-<br />

Angulo. 1997. Fluxes and mass balancess of <strong>nutrient</strong>s <strong>in</strong> semi-<strong>in</strong>tensive<br />

shrimp farm <strong>in</strong> North-Western Mexico. Mar<strong>in</strong>e Pollution Bullet<strong>in</strong>. 34.<br />

290-297.<br />

Primavera, J. H. (2000) Integrated mangrove-<strong>aquaculture</strong> <strong>systems</strong> <strong>in</strong> Asia. In<br />

Integrated coastal zone management, autumn ed., 121–130. Available<br />

onl<strong>in</strong>e at http://www.iucn.org/theme/ceesp/Publication/SL/Aquaculture-<br />

JPrimavera.pdf (Verified 4 Jan. 2006)<br />

Schulz, C., J. Gelbrecht, B. Rennert. 2003. Treatment of ra<strong>in</strong>bow trout farm<br />

effluents <strong>in</strong> constructed wetland with emergent plants and subsurface<br />

horizontal water flow. Aquaculture. Elsevier. 217. 207-221.<br />

Shnel, N., Y. Barak, T. Ezer, Z. Dafni, J. van Rijn. 2002. Design and performance<br />

of a zero-discharge tilapia recirculat<strong>in</strong>g system. Aquacultural Eng<strong>in</strong>eer<strong>in</strong>g.<br />

26. 191–203.<br />

44


SPSS. 1999. Statistic software package. Release 9.0.1 for MS W<strong>in</strong>dows.<br />

Tacon, A. G. J. 2002. Thematic review of feed and feed management practices <strong>in</strong><br />

shrimp <strong>aquaculture</strong>. Report prepared under the World Bank, NACA,<br />

WWF and FAO consortium program on shrimp farm<strong>in</strong>g and the<br />

environment, published by consortium. 69.<br />

Tucker, C. S. and C. E. Boyd. 1985. Water quality. In Water Quality (Channel<br />

Catfish Culture Ponds), ed. C. S. Tucker, 135-227. Development <strong>in</strong><br />

Aquaculture and Fisheries Science. Elsevier. Netherlands.<br />

Wu, R. 1995. The environmental impact of mar<strong>in</strong>e fish culture: towards a<br />

susta<strong>in</strong>able future. Mar<strong>in</strong>e pollution Bullet<strong>in</strong>. 31. 159-166.<br />

Xu, Y. J., N. Z. Jiao, L. M. Qian. 2004. Nitrogen nutritional identities of<br />

Gracillaria as bio<strong>in</strong>dicators and restoral plants (<strong>in</strong> Ch<strong>in</strong>ese with English<br />

abstract). Journal of Fishery Sciences of Ch<strong>in</strong>a. 11. 276-281.<br />

Xu, Y. J., J. Fang, Q. Tang, J. L<strong>in</strong>, G. Le. 2008. Improvement of water quality by<br />

the macroalga, Gracilaria lemaneiformis (Rhodophyta), near <strong>aquaculture</strong><br />

effluent outlets. World Aquaculture Society. 39. 549-555.<br />

45


Chapter 3: Nutrient Fluxes and Mass Balances <strong>in</strong> Various<br />

Polyculture Systems Us<strong>in</strong>g Shrimp (Penaeus vannamei), Fish<br />

(Oreochromis sp.) and Seaweed (Gracillaria verrucosa)<br />

Y. N. Ihsan ab , K. J. Hesse c , C. Schulz ab<br />

a Gesellschaft <strong>für</strong> Mar<strong>in</strong>e Aquakultur mbH, Hafentörn 3, D-25761 Büsum<br />

b <strong>Institut</strong>e for Animal Breed<strong>in</strong>g and Husbandry, Christian-Albrechts-Universität<br />

D-24098 Kiel<br />

c Research and Technology Centre, Christian-Albrechts-Universität<br />

D-25761 Büsum<br />

Submitted to the Journal of World Aquaculture Society<br />

46


Abstract<br />

A comparative study on polyculture <strong>systems</strong> us<strong>in</strong>g various comb<strong>in</strong>ations of<br />

shrimp (Penaeus vannamei), seaweed Gracillaria (Gracillaria verrucosa), and<br />

fish (Oreochromis sp.) was conducted <strong>in</strong> order to calculate <strong>nutrient</strong>s <strong>fluxes</strong> and<br />

mass balances. Therefore, triplicate ponds of 1000 m 2 size were stocked with 0.4<br />

kg/m 2 seaweed and 15 shrimps/m 2 (polyculture I), and triplicate ponds of size<br />

1000 m 2 were stocked with 0.4 kg/m 2 seaweed, 15 shrimps/m 2 , and 0.25 fish/m 2<br />

(polyculture II). Every 10 days dur<strong>in</strong>g the 90-day culture period, pooled 24hwater<br />

samples were taken to describe <strong>nutrient</strong> <strong>fluxes</strong> <strong>in</strong> the ponds. Water quality<br />

<strong>in</strong> both polyculture <strong>systems</strong> were with<strong>in</strong> the physiological ranges for the shrimp,<br />

with whole period average total suspended solids (TSS) concentrations of 50.5 ±<br />

7.6 mg/l <strong>in</strong> polyculture I, while <strong>in</strong> polyculture II TSS was 64.9 ± 4.2 mg/l. The<br />

average total nitrogen (TN) and total phosphorus (TP) amount <strong>in</strong> polyculture I<br />

were 2.25 ± 0.4 mg/l and 0.84 ± 0.05 mg/l, respectively, while <strong>in</strong> polyculture II<br />

TN and TP amounted 2.66 ± 0.8 mg/l and 0.89 ± 0.05 mg/l, respectively. A mass<br />

balance model was developed for total nitrogen and total phosphorus to estimate<br />

their <strong>fluxes</strong>. From total nitrogen and total phosphorus <strong>in</strong>put, 46.79% and 14.99%<br />

were <strong>in</strong>corporated <strong>in</strong> 313.08 kg/1000 m 2 shrimp weight ga<strong>in</strong> <strong>in</strong> polyculture system<br />

I, while 41.47% and 13.47% were <strong>in</strong>corporated <strong>in</strong> 291.25 kg/1000m 2 shrimp<br />

weight ga<strong>in</strong> and 13.64% and 5.09% were <strong>in</strong>corporated <strong>in</strong> 40.67 kg/1000 m 2 fish<br />

weight ga<strong>in</strong> <strong>in</strong> polyculture system II. Cultivated seaweed could remove up to<br />

10.56% of supplied TN and 9.75% of TP <strong>in</strong> polyculture I, while 10.94% of<br />

supplied TN and 8.83% of TP were <strong>in</strong>corporated seaweed <strong>in</strong> polyculture II. TN<br />

and TP released <strong>in</strong>to environment <strong>in</strong> polyculture I amounted 17.6% and 36.23%,<br />

respectively, and <strong>in</strong> polyculture II 20.6% and 37.41%, respectively. These results<br />

suggest that no significant differences <strong>in</strong> shrimp performance between the two<br />

polyculture <strong>systems</strong> could be observed, additional fish biomass production <strong>in</strong><br />

polyculture II proves the higher <strong>nutrient</strong> retention.<br />

47


Introduction<br />

In recent years the contribution of fish to global diets has reached a record of<br />

about 17 kg per capita on average, supply<strong>in</strong>g over three billion people with at<br />

least 15 percent of their total animal derived prote<strong>in</strong> <strong>in</strong>take (FAO, 2010). Mar<strong>in</strong>e<br />

<strong>aquaculture</strong> has been a rapidly grow<strong>in</strong>g <strong>in</strong>dustry, <strong>in</strong>creas<strong>in</strong>g from about 18.6<br />

million tons <strong>in</strong> 2006 to 20.1 million tons <strong>in</strong> 2009 and these patterns are expected<br />

to cont<strong>in</strong>ue up to the year 2030 due to the <strong>in</strong>creas<strong>in</strong>g global demand and high<br />

market value of <strong>aquaculture</strong> products (FAO, 2010).<br />

There are many obstacles such as diseases, environmental degradation and lack of<br />

management that fish and shrimp farmers <strong>in</strong> Southeast Asia have to overcome<br />

(Primavera, 1998). This means there is an urgent need to develop and dissem<strong>in</strong>ate<br />

<strong>aquaculture</strong> practices <strong>in</strong> an economical yet still environmental friendly manner<br />

(Funge-Smith and Briggs, 1998). One of the ma<strong>in</strong> environmental issues from open<br />

<strong>aquaculture</strong> <strong>systems</strong> is the direct discharge of significant <strong>nutrient</strong> loads <strong>in</strong>to the<br />

environment. Result<strong>in</strong>g waste accumulation generated by the aquatic animal<br />

farm<strong>in</strong>g can be divided <strong>in</strong>to two categories: solid wastes consist<strong>in</strong>g of non-eaten<br />

feed, faecal material, and soluble products which <strong>in</strong>clude ammonia, ur<strong>in</strong>e,<br />

dissolved organic matter and carbon dioxide. In <strong>aquaculture</strong> effluents, about 7-<br />

32% of total nitrogen (TN) and 30-84% of total phosphorus (TP) and up to 27%<br />

of total carbon are bound <strong>in</strong> the particulate fraction and the rema<strong>in</strong>der can be<br />

found <strong>in</strong> dissolved form (Bergheim et al., 1993). Nutrient <strong>in</strong> farm wastes<br />

orig<strong>in</strong>at<strong>in</strong>g from feed supply are of greatest concern due to their role <strong>in</strong><br />

eutrophication processes (Persson, 1991) and discharge should be m<strong>in</strong>imized as<br />

much as possible and viable.<br />

In shrimp <strong>aquaculture</strong>, environmental conditions <strong>in</strong> terms of both quantity and<br />

quality have <strong>in</strong>creas<strong>in</strong>gly become a limit<strong>in</strong>g factor so that the production has<br />

shown a tendency to shift from area-based cultivation (extensive) towards<br />

<strong>in</strong>tensified <strong>systems</strong> (Thakur and L<strong>in</strong>, 2003). The excretion of rema<strong>in</strong><strong>in</strong>g feed<br />

components <strong>in</strong> <strong>in</strong>tensive <strong>systems</strong> will have the potential to degradate<br />

environmental conditions for shrimp culture (Boyd, 1991; Primavera, 1994). The<br />

degradation could cause an oxygen deficiency which <strong>in</strong> turn leads to anaerobic<br />

conditions. In anaerobic conditions, decomposition of organic material will<br />

48


produce toxic compounds, especially ammonia (NH3) and hydrogen sulfide (H2S)<br />

and result<strong>in</strong>g <strong>in</strong> decreased shrimp performance (Boyd, 1991; Goddard, 1996).<br />

One way to improve <strong>aquaculture</strong> production and reduce the negative<br />

environmental impacts is to perform polyculture <strong>systems</strong> that <strong>in</strong>volve organisms<br />

of different trophic levels. Ideally, the <strong>nutrient</strong> <strong>fluxes</strong> <strong>in</strong> the polyculture system<br />

should be balanced with two or more ecologically compatible species, that waste<br />

from one species is recycled to become <strong>in</strong>put (fertilizer or feed) for another<br />

species without conflict<strong>in</strong>g each other (Neori et al., 2000).<br />

In a previous study a comparison of <strong>nutrient</strong> <strong>fluxes</strong> and mass balances between<br />

monoculture and polyculture <strong>systems</strong> us<strong>in</strong>g shrimp and seaweed Gracillaria has<br />

been <strong>in</strong>vestigated (Ihsan et al., submitted). Polyculture <strong>systems</strong>, us<strong>in</strong>g seaweed<br />

and shrimp, act more efficiently with regard to <strong>nutrient</strong> accumulation and system<br />

performance. However, <strong>nutrient</strong> retention is often limited by additional needed<br />

cultivation area, especially if plants are utilized (Buschmann et al., 2001). Thus,<br />

polyculture <strong>systems</strong> us<strong>in</strong>g shrimp and seaweed <strong>in</strong> comb<strong>in</strong>ation with omnivorous<br />

tilapia proposed as a technological alternative for <strong>in</strong>tegrated <strong>aquaculture</strong>. At<br />

present, this study focus on the calculation of <strong>nutrient</strong>s <strong>fluxes</strong> and mass balances<br />

<strong>in</strong> various polyculture <strong>systems</strong> us<strong>in</strong>g shrimp, seaweed and fish <strong>in</strong> order to identify<br />

most efficient polyculture practices.<br />

Material and method<br />

The experiment was conducted <strong>in</strong> Sungai Buntu, West Java over a 90-day period<br />

from July–October 2010 dur<strong>in</strong>g the dry season. This area is located on the<br />

northern Java Island (Figure 1). The experimental site was divided <strong>in</strong>to 3 sectors:<br />

Water <strong>in</strong>put unit of approximately 1 ha, triplicate polyculture I <strong>systems</strong> consist<strong>in</strong>g<br />

of ponds stocked with shrimp and seaweed and triplicate polyculture II <strong>systems</strong><br />

consist<strong>in</strong>g of shrimp + fish + seaweed ponds (Figure 2). The area of each pond<br />

was 1000 m 2 (40 m x 25 m). The water depth of each pond amounted 1 m. Each<br />

pond was fertilized with 3 kg/1000 m 2 of urea before stock<strong>in</strong>g. Fertilizers were<br />

used to activate and <strong>in</strong>crease primary production and establishment of natural<br />

feeds <strong>in</strong> ponds.<br />

49


Location of experiments<br />

(Sungai Buntu-West Java)<br />

Figure 1. Map of Research <strong>Institut</strong>e for Brackish water fisheries, West Java,<br />

Indonesia<br />

Figure 2. Schematic outl<strong>in</strong>e of polyculture <strong>systems</strong> I and II<br />

50


The seaweed, provided from local production <strong>in</strong> Sungai Buntu, Karawang, West<br />

Java was <strong>in</strong>serted <strong>in</strong>to polyethylene ropes that were fixed by rafts. A suspension<br />

culture unit was composed of four rafts, with each <strong>in</strong> turn consisted of n<strong>in</strong>e ropes.<br />

Each rope (about 8.5 m long) was <strong>in</strong>serted with a piece of algae (25 g) every 20<br />

cm. The distance between adjacent ropes and units was 20 cm 3 m, respectively.<br />

Shrimp post larvae (0.43 ± 0.11 g) were stocked <strong>in</strong> each of the 6 ponds at a density<br />

of 15 <strong>in</strong>dividuals/m 2 and seaweed at a density of 0.4 kg/m 2 (Table 2). Triplicate<br />

polyculture II ponds of 1000 m² were additionally stocked with fish (4.7 ± 0.6<br />

g/<strong>in</strong>d) at a density of 0.25 <strong>in</strong>dividuals/m 2 . Before stock<strong>in</strong>g, shrimp and fish were<br />

acclimatized for one night to the pond-water conditions.<br />

Commercial shrimp feed (Lux<strong>in</strong>do 39, Lux<strong>in</strong>do Internusa Ltd.) conta<strong>in</strong><strong>in</strong>g 40%<br />

prote<strong>in</strong> was given. Control sampl<strong>in</strong>g of shrimp weight ga<strong>in</strong> was done every 10<br />

days to determ<strong>in</strong>e the actual weight for feed application. For this procedure 5<br />

<strong>in</strong>dividuals were caught and analyzed. Daily feed supply equaled to 7-10% of<br />

shrimp biomass <strong>in</strong> accordance to time after control sampl<strong>in</strong>g (modified after<br />

Baliao and Tookw<strong>in</strong>as, 2002). At day 0 and day 1 after sampl<strong>in</strong>g, daily feed<br />

supply amounted 7%/shrimp biomass, from day 2 until day 4 8%, from day 5 until<br />

day 7 9% and from day 8 until day 9 10% shrimp biomass were fed. Feed was<br />

given 4 times a day, i.e. at 07.00, 12.00, 17.00 and 22.00. Two percent of the<br />

water volume of the shrimp ponds was exchanged every day.<br />

Sampl<strong>in</strong>g and analytical procedures<br />

Fluxes of follow<strong>in</strong>g water quality parameters were measured: temperature,<br />

sal<strong>in</strong>ity, dissolved oxygen (DO), pH, alkal<strong>in</strong>ity, hydrogen sulphide (H2S), total<br />

suspended solids (TSS), ammonium, nitrate, nitrite, orthophosphate, total nitrogen<br />

(TN) and total phosphorus (TP).<br />

Every 10 days, the water quality was analyzed. Samples of each pond sampl<strong>in</strong>g<br />

po<strong>in</strong>t were taken over 24 hours at 3-hour <strong>in</strong>tervals and pooled for follow<strong>in</strong>g<br />

analytical procedures. Water sample were taken 20 cm below the water surface <strong>in</strong><br />

central pond <strong>in</strong>let and each pond outlet. Every day at 08.00 and 16.00, the water<br />

temperature, sal<strong>in</strong>ity, and dissolved oxygen (DO) were monitored <strong>in</strong> situ us<strong>in</strong>g a<br />

portable (TOA model WQC-20A Electronic Ltd., Japan) water-quality analyzer.<br />

51


Water samples were collected us<strong>in</strong>g plastic bottles attached to the end of a stick.<br />

They were immediately filtered through Whatman GF/F filters 0.7 µM millipore<br />

for soluble <strong>nutrient</strong>s analyses (PO4 -3 , NO3 - , NO2 _ , NH4 + ). The ammonium<br />

concentration <strong>in</strong> the filtrate was measured immediately after filtration. Total<br />

nitrogen (TN), total phosphorus (TP), nitrate, nitrite, and orthophosphate<br />

concentrations were measured us<strong>in</strong>g the APHA (1995) standard methods. The<br />

<strong>nutrient</strong> analyses were performed with a spectrophotometer (Shimadzu UV-2400).<br />

The standard method for determ<strong>in</strong><strong>in</strong>g ammonium, nitrite and nitrate were based<br />

on moderate alkal<strong>in</strong>e solution with hypochlorite, diazotization, and cadmium<br />

reduction followed by diazotization, respectively. The standard method for<br />

determ<strong>in</strong>ation of phosphorus <strong>in</strong> the water and feed and shrimp, seaweed or fish<br />

samples was based on the reaction of ions with an acidified molybdate reagent.<br />

The spectrophotometer wave lengths for ammonium, nitrite, nitrate and<br />

phosphorus were 630 nm, 542 nm, 542 nm, and 882 nm, respectively. GF/F filters<br />

<strong>in</strong> glass dishes were used to determ<strong>in</strong>e suspended solids. Total suspended solids<br />

were estimated us<strong>in</strong>g the standard filtration method (APHA, 1995). H2S was<br />

measured us<strong>in</strong>g the Cl<strong>in</strong>e-method based on N, N-dimethyl-p-phenylenediam<strong>in</strong>e<br />

(Cl<strong>in</strong>e, 1968). The spectrophotometer wave length for H2S was 670 nm. Nitrogen<br />

content <strong>in</strong> the feed, shrimp, fish and seaweed were us<strong>in</strong>g Kjeldahl method.<br />

Calculation<br />

The growth performance criteria of shrimp and fish <strong>in</strong>clud<strong>in</strong>g survival rate,<br />

specific growth rate, and feed conversion ratio were calculated at the end of the<br />

experiment.<br />

Survival Rate (SR) was calculated as a ratio between the shrimp or fish quantity at<br />

sampl<strong>in</strong>g times and stock<strong>in</strong>g time us<strong>in</strong>g the formula:<br />

SR = (Nt / N0) X 100%<br />

With: SR = survival rate<br />

N0 = number of shrimp or fish on day 0 (<strong>in</strong>dividual)<br />

Nt = number of shrimp or fish on day t (<strong>in</strong>dividual)<br />

52


Specific growth rate of shrimp or fish (SGR) represents the relative <strong>in</strong>crease <strong>in</strong><br />

daily weight dur<strong>in</strong>g a certa<strong>in</strong> time <strong>in</strong>terval and were calculated with:<br />

SGR = ((ln Wt - ln W0) / t) X 100%<br />

With: SGR = Specific growth rate<br />

W 0 = weight of shrimp or fish on day-0 (g)<br />

Wt = weight of shrimp or fish on day-t (g)<br />

t = time of experiment (day)<br />

Feed conversion ratio (FCR) is the ratio between the amount of feed given to<br />

shrimp weight ga<strong>in</strong> <strong>in</strong> a certa<strong>in</strong> period (NRC, 1977) us<strong>in</strong>g the formula:<br />

FCR = F / ΔB<br />

With: FCR = feed conversion ratio<br />

F = amount of feed given dur<strong>in</strong>g experiment (kg)<br />

ΔB = shrimp biomass weight ga<strong>in</strong> dur<strong>in</strong>g experiment (kg)<br />

Statistics<br />

Water quality and <strong>nutrient</strong> <strong>fluxes</strong> and growth performance parameter observed<br />

between polyculture I and polyculture II ponds were analyzed statistically. All<br />

data were checked for normality (Kolmogorov-Smirnov test) and homogeneity of<br />

variances (HOV, Brown-Forsythe test). Differences of means of triplicate ponds<br />

(n=3) were evaluated for significance us<strong>in</strong>g the range tests of Tukey HSD<br />

(P


FC : Content of N or P <strong>in</strong> dry pellet<br />

fC : Content of N or P <strong>in</strong> fertilizer<br />

IC : Content of N or P <strong>in</strong> <strong>in</strong>flow<strong>in</strong>g water<br />

SSC : Content of N or P <strong>in</strong> stocked shrimp<br />

SGC : Content of N or P <strong>in</strong> stocked Gracillaria<br />

SFC : Content of N or P <strong>in</strong> stocked fish<br />

HSC : Content of N or P <strong>in</strong> harvested shrimp<br />

HGC : Content of N or P <strong>in</strong> harvested Gracillaria<br />

HFC : Content of N or P <strong>in</strong> harvested fish<br />

OC : Content of N or P <strong>in</strong> outflow<strong>in</strong>g water<br />

Result<br />

Water quality<br />

Table 1 shows that the average concentration of DO <strong>in</strong> polyculture <strong>systems</strong> I and<br />

II as well as of <strong>in</strong>flow<strong>in</strong>g water was <strong>in</strong> high ranges of more than 4 mg/l. The<br />

average concentration of DO between the polyculture <strong>systems</strong> dur<strong>in</strong>g the 90-day<br />

experiment was not significantly different (P>0.05).<br />

Table 1. Mean of water quality parameter over 90 days period (n=3)<br />

Parameter Unit Water <strong>in</strong>put Polyculture I Polyculture II<br />

DO mg/l 4.5 b 5.9 ± 0.7 a 5.4 ± 0.6 a<br />

Sal<strong>in</strong>ity Ppt 27.7 a 29.3 ± 1.0 a 29.9 ± 0.8 a<br />

Température<br />

0 C 27.8 a 26.4 ± 0.05 a 26.9 ± 0.07 a<br />

pH - 7.9 a 8.1 ± 0.1 a 7.9 ± 0.2 a<br />

Alkal<strong>in</strong>ity mg/l 117.6 a 116.4 ± 3.2 a 112.1 ± 2.0 a<br />

H2S mg/l 0 a 0.02 ± 0.001 a 0.03 ± 0.008 a<br />

TSS mg/l 16.3 c 50.5 ± 7.6 a 64.9 ± 4.2 b<br />

Values with the same superscript letter do not differ significantly (P>0.05)<br />

54


Table 1 shows that the average sal<strong>in</strong>ity for the 90-day experiment was 29.30 ±<br />

1.00 ppt for polyculture I and 29.90 ± 0.80 ppt for polyculture II. Average sal<strong>in</strong>ity<br />

was not significantly different between the ponds (P>0.05).<br />

Figure 3 shows a tendency of alkal<strong>in</strong>ity to decrease dur<strong>in</strong>g the 90-day experiment.<br />

However, the alkal<strong>in</strong>ity was not significantly different between ponds (P>0.05).<br />

Alkal<strong>in</strong>ity <strong>in</strong> polyculture I ranged between 118.93–109.33 mg/l (Figure 3) with an<br />

average of 116.40 ± 3.20 mg/l (Table 1), while <strong>in</strong> polyculture II it ranged between<br />

124.80–102.07 mg/l (Figure 3) with an average of 112.10 ± 2.00 mg/l (Table 1).<br />

The average pH over the 90-day experiment was not significantly different<br />

between polyculture I and II (P>0.05), with 8.10 ± 0.10 for polyculture I and 7.90<br />

± 0.20 for polyculture II (Table 1).<br />

Concentration (mg/l)<br />

140.00<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

Alkal<strong>in</strong>ity<br />

a a a a a<br />

a<br />

a a a<br />

a<br />

a a a a a<br />

0 20 40 60 80 100<br />

Time (days)<br />

a a a<br />

ab<br />

b<br />

ab<br />

b<br />

ab<br />

b<br />

Polyculture I<br />

Polyculture II<br />

water <strong>in</strong>put<br />

Figure 3. Concentration of Alkal<strong>in</strong>ity dur<strong>in</strong>g the experimental period, values<br />

are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05)<br />

55


Concentration (m g/l)<br />

140.00<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

Total Suspended Solid<br />

a<br />

a<br />

b<br />

b<br />

b<br />

b<br />

a a b<br />

a<br />

a<br />

a<br />

a<br />

c c c c c c c<br />

0 20 40 60 80 100<br />

a<br />

Time (days)<br />

Figure 4. Concentration of total suspended solid (TSS) dur<strong>in</strong>g the<br />

experimental period, values are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05)<br />

a<br />

a<br />

a<br />

Polyculture I<br />

Polyculture II<br />

water <strong>in</strong>put<br />

TSS tend to <strong>in</strong>crease and was significantly different between polyculture I and II<br />

(P0.05). The average survival rate of shrimp <strong>in</strong> polyculture I dur<strong>in</strong>g the<br />

production period was 84.4%, while <strong>in</strong> polyculture II it was 82.8% (Table 2.). The<br />

data showed that mortality rates were low <strong>in</strong> both <strong>systems</strong>. Survival rate of fish <strong>in</strong><br />

polyculture II at harvest amounted 78.8% (Table 2).<br />

56


Table 2. Performance of experimental polyculture system over 90 days period<br />

(n=3)<br />

Parameter Polyculture I Polyculture II<br />

Stock<strong>in</strong>g density:<br />

Shrimp (<strong>in</strong>dividual/m2)<br />

Fish (<strong>in</strong>dividual/m2)<br />

Total larvae stocked:<br />

Shrimp (<strong>in</strong>d)<br />

Fish (<strong>in</strong>d)<br />

Weight of stocked larvae:<br />

Shrimp (g/<strong>in</strong>d)<br />

Fish (g/<strong>in</strong>d)<br />

Total weight:<br />

Shrimp (kg)<br />

Fish (kg)<br />

15<br />

-<br />

15000<br />

-<br />

0.43 ± 0.11 a<br />

-<br />

6.45 a<br />

-<br />

15<br />

0.25<br />

15000<br />

250<br />

0.43 ± 0.11 a<br />

4.7 ± 0.6<br />

6.45 a<br />

1.18<br />

Area (m2) 1000 1000<br />

Culture time (days) 90 90<br />

Total Feed (kg) 526.65 a 526.65 a<br />

At harvest:<br />

Shrimp (<strong>in</strong>d/m2)<br />

Fish (<strong>in</strong>d/m2)<br />

Weight:<br />

Shrimp (g/<strong>in</strong>d)<br />

Fish (g/<strong>in</strong>d)<br />

Total weight:<br />

Shrimp (kg/1000 m 2 )<br />

Fish (kg/1000 m 2 )<br />

12.66 a<br />

-<br />

24.73 ± 0.71 a<br />

-<br />

313.08 a<br />

-<br />

12.42 a<br />

0.20<br />

23.45 ± 1.43 a<br />

206.1 ± 11.36<br />

291.25 a<br />

40.67<br />

Survival rate<br />

Shrimp (%)<br />

84.4<br />

Fish (%)<br />

a<br />

82.8 a<br />

78.8<br />

FCR 1.72 a 1.84 a<br />

57


SGR:<br />

Shrimp (%/day)<br />

Fish (%/day)<br />

4.5 a<br />

4.4 a<br />

4.2 a<br />

Values with the same superscript letter do not differ significantly (P>0.05)<br />

Figure 5 shows that the growth rate of shrimp was not significantly different<br />

between polyculture I and II (P>0.05). The average weight of shrimp at harvest<br />

was 24.73 ± 0.71 and 23.45 ± 1.43 g/<strong>in</strong>d for polyculture I and II, respectively<br />

(Table 2), while the average fish weight at the time of harvest was 206.1 ± 11.36<br />

g/<strong>in</strong>d (Table 2). Specific growth rate (SGR) for shrimp <strong>in</strong> polyculture I and II was<br />

not significantly different (P>0.05) with an average value over the 90-day<br />

experiment of 4.5%/day and 4.4%/day, respectively. SGR of fish over the 90-day<br />

period amounted 4.2% /day.<br />

Weight (g)<br />

30.00<br />

25.00<br />

20.00<br />

15.00<br />

10.00<br />

5.00<br />

0.00<br />

Weight<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

0 20 40 60 80 100<br />

a<br />

Time (days)<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

Polyculture I<br />

Polyculture II<br />

Figure 5. Individual weight of shrimp dur<strong>in</strong>g the experimental period, values<br />

are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05)<br />

58


Biomass production of shrimp <strong>in</strong> polyculture I and II was not significantly<br />

different (P>0.05) with an average value of 313.08 and 291.25 kg/1000 m 2 ,<br />

respectively (Table 2). In polyculture II there was an additional production from<br />

the fish of 40.67 kg/1000 m 2 (Table 2).<br />

Nutrient flux<br />

The ammonium concentration <strong>in</strong>creased gradually <strong>in</strong> both polyculture <strong>systems</strong><br />

and orthophosphate concentration <strong>in</strong>creased progressively as well. Even though<br />

well water was supplied to the pond at a renewal rate of 2%/day, the ammonium<br />

concentrations <strong>in</strong> polyculture I <strong>in</strong>creased dur<strong>in</strong>g the production period from 0.12<br />

to 0.53 mg/l (Figure 6), with an average concentration of 0.34 ± 0.06 mg/l (Table<br />

3). In the polyculture II system, it <strong>in</strong>creased from 0.17 to 0.71 mg/l (Figure 6),<br />

with an average over the production period of 0.45 ± 0.07 mg/l. Therefore,<br />

ammonium concentrations <strong>in</strong> both polyculture <strong>systems</strong> did not display significant<br />

differences (P>0.05).<br />

Concentration (mg/l)<br />

0.800<br />

0.700<br />

0.600<br />

0.500<br />

0.400<br />

0.300<br />

0.200<br />

0.100<br />

0.000<br />

a<br />

a<br />

a b<br />

a<br />

c c c c<br />

a a a a<br />

Ammonium<br />

a a b<br />

c<br />

0 20 40 60 80 100<br />

Time (days)<br />

a<br />

b<br />

a<br />

b<br />

c c c c<br />

Figure 6. Concentration of ammonium-nitrogen (NH4 - -N) dur<strong>in</strong>g the<br />

experimental period, values are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05)<br />

59<br />

a<br />

a<br />

Polyculture I<br />

Polyculture II<br />

Water <strong>in</strong>put


Concentration (mg/l)<br />

0.080<br />

0.070<br />

0.060<br />

0.050<br />

0.040<br />

0.030<br />

0.020<br />

0.010<br />

0.000<br />

a<br />

a<br />

a a<br />

c c<br />

a<br />

a<br />

a<br />

c c<br />

Orthophosphate<br />

b<br />

a<br />

c c c c c<br />

0 20 40 60 80 100<br />

b<br />

a<br />

Time (days)<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

Polyculture I<br />

Polyculture II<br />

Water <strong>in</strong>put<br />

Figure 7. Concentration of orthophosphate (PO4-P) dur<strong>in</strong>g the experimental<br />

period, values are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05)<br />

Orthophosphate <strong>in</strong> polyculture I <strong>in</strong>creased dur<strong>in</strong>g the 90-day period from 0.01 to<br />

0.05 mg/l (Figure 7), with an average concentration of orthophosphate of 0.03 ±<br />

0.006 mg/l (Table 3), while <strong>in</strong> polyculture II it <strong>in</strong>creased from 0.01 to 0.07 mg/l<br />

(Figure 7) with an average of 0.04 ± 0.003 mg/l. These concentrations <strong>in</strong> both<br />

polyculture <strong>systems</strong> did not exhibit significant differences (P>0.05).<br />

Nitrite (NO2 - ) and nitrate (NO3 - ) <strong>in</strong> both polyculture <strong>systems</strong> did not show<br />

significant differences (P>0.05) with average concentrations of 0.005 ± 0.001<br />

mg/l and 0.05 ± 0.01, mg/l <strong>in</strong> polyculture I and 0.006 ± 0.001 mg/l and 0.05 ±<br />

0.007 mg/l <strong>in</strong> polyculture II, respectively (Table 3).<br />

60


Table 3. Mean of <strong>nutrient</strong> concentrations over 90 days period (n=3)<br />

Variable Unit Water <strong>in</strong>put Polyculture I Polyculture II<br />

NH4 mg/l 0.014 b 0.34 ± 0.06 a 0.45 ± 0.07 a<br />

NO2 mg/l 0.0002 b 0.005 ± 0.001 a 0.006 ± 0.001 a<br />

NO3 mg/l 0.004 b 0.05 ± 0.01 a 0.05 ± 0.007 a<br />

PO4 mg/l 0.01 b 0.03 ± 0.006 a 0.04 ± 0.003 a<br />

TN mg/l 0.18 b 2.25 ± 0.4 a 2.66 ± 0.8 a<br />

TP mg/l 0.046 b 0.84 ± 0.05 a 0.89 ± 0.05 a<br />

Values with the same superscript letter do not differ significantly (P>0.05)<br />

Additionally, total nitrogen (TN) and total phosphorus (TP) concentration<br />

<strong>in</strong>creased <strong>in</strong> the outlet water of polyculture <strong>systems</strong> I and II. TN <strong>in</strong> the polyculture<br />

I pond <strong>in</strong>creased from 0.40–5.15 mg/l (Figure 8), with an average of 2.25 ± 0.40<br />

mg/l (Table 3) and TN <strong>in</strong> polyculture II ranged from 0.47–6.16 mg/l (Figure 8),<br />

with an average of 2.66 ± 0.80 mg/l (Table 3). TP <strong>in</strong> polyculture I <strong>in</strong>creased from<br />

0.03–1.56 mg/l (Figure 9), with an average of 0.84 ± 0.05 mg/l (Table 3), while <strong>in</strong><br />

polyculture II values of 0.03–1.64 mg/l (Figure 9) and an average of 0.89 ± 0.05<br />

mg/l (Table 3) could be observed, but no significant differences (P>0.05) could be<br />

calculated between the <strong>systems</strong>.<br />

61


Concentration (m g/l)<br />

Concentration (mg/l)<br />

8.000<br />

7.000<br />

6.000<br />

5.000<br />

4.000<br />

3.000<br />

2.000<br />

1.000<br />

0.000<br />

Total Nitrogen (TN)<br />

a<br />

b a<br />

a<br />

a<br />

b<br />

a<br />

b a<br />

a<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

0 20 40 60 80 100<br />

a<br />

Time (days)<br />

a<br />

a<br />

a a<br />

a<br />

b b b<br />

a<br />

Polyculture I<br />

Polyculture II<br />

Water <strong>in</strong>put<br />

Figure 8. Concentration of total nitrogen (TN) dur<strong>in</strong>g the experimental<br />

period, values are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05)<br />

1.800<br />

1.600<br />

1.400<br />

1.200<br />

1.000<br />

0.800<br />

0.600<br />

0.400<br />

0.200<br />

0.000<br />

Total Phosphorus (TP)<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

b<br />

a<br />

b b b b b b b<br />

0 20 40 60 80 100<br />

Time (days)<br />

a<br />

Polyculture I<br />

Polyculture II<br />

water <strong>in</strong>put<br />

Figure 9. Concentration of total phosphorus (TP) dur<strong>in</strong>g the experimental<br />

period, values are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05)<br />

62


Mass balance<br />

Total nitrogen (TN) and total phosphorus (TP) from fertilizer amounted 1.56<br />

kg/1000 m 2 and 0.2 kg/1000 m 2 for polyculture system I and II, respectively.<br />

Whereas TN and TP from <strong>in</strong>flow<strong>in</strong>g water were 0.5 kg/1000 m 2 and 0.13 kg/1000<br />

m 2 for both polyculture <strong>systems</strong> (Figure 10 and 11).<br />

TN-mass balance polyculture system I<br />

Figure 11. Total nitrogen mass balance <strong>in</strong> experimental polyculture and<br />

Valueare mean of triplicate ponds (n=3)<br />

Fertilization<br />

4.36% Values (1.56 kg) with the same superscript letter do not differ Pond significantly Water between<br />

polyculture <strong>systems</strong> I and II (P>0.05).<br />

a<br />

06%<br />

(0.02 kg) a<br />

ssociated<br />

25.06%<br />

(8.97 kg) a<br />

0.<br />

a<br />

Fertilization<br />

4.36% (1.56 kg) Pond Water<br />

a<br />

06%<br />

(0.02 kg) a<br />

ssociated<br />

25.06%<br />

(8.97 kg) a<br />

0.<br />

a<br />

Water <strong>in</strong>flow<br />

1.4%<br />

(0.5 kg) a<br />

Water <strong>in</strong>flow<br />

1.4%<br />

(0.5 kg) a<br />

Seaweed stocked<br />

0.06%<br />

(0.02 kg)<br />

rimp stocked<br />

a<br />

Seaweed stocked<br />

0.06%<br />

(0.02 kg)<br />

Shrimp<br />

stocked<br />

a<br />

Sh<br />

Shrimp feed<br />

94.13%<br />

(33.7 kg) a<br />

Shrimp feed<br />

94.13%<br />

(33.7 kg) a<br />

TN-mass balance polyculture system II<br />

Fertilization<br />

4.34% (1.56 kg) a<br />

Seaweed stocked<br />

0.06%<br />

(0.02 kg)<br />

Shrimp stocked<br />

0.06%<br />

(0.02 kg)<br />

a<br />

Fish stocked<br />

0.36%<br />

(0.13 kg)<br />

Shrimp<br />

0.06%<br />

(0.02 kg) a<br />

Fish stocked<br />

0.36%<br />

(0.13 kg) b<br />

Fertilization<br />

4.34% (1.56 kg) a<br />

Seaweed stocked<br />

0.06%<br />

(0.02 kg)<br />

Shrimp stocked<br />

0.06%<br />

(0.02 kg)<br />

a<br />

Fish stocked<br />

0.36%<br />

(0.13 kg)<br />

Shrimp<br />

0.06%<br />

(0.02 kg) a<br />

Fish stocked<br />

0.36%<br />

(0.13 kg) b<br />

Shrimp feed<br />

93.79% (33.7 kg) a<br />

Shrimp feed<br />

93.79% (33.7 kg) a<br />

Shrimp harvest<br />

46.79% (16.75 kg) a<br />

Shrimp harvest<br />

46.79% (16.75 kg) a<br />

Shrimp harvest<br />

41.47% (14.9 kg) a<br />

Shrimp harvest<br />

41.47% (14.9 kg) a<br />

Seaweed harvest<br />

10.56% (3.78 kg) a<br />

Seaweed harvest<br />

10.56% (3.78 kg) a<br />

Seaweed harvest<br />

10.94% (3.93 kg) a<br />

Seaweed harvest<br />

10.94% (3.93 kg) a<br />

Pond Water<br />

Others<br />

Outlet water<br />

17.6%<br />

(6.3 kg) a<br />

Outlet water<br />

17.6%<br />

(6.3 kg) a<br />

Fish harvest<br />

13.64%<br />

(4.9 kg) b<br />

Fish harvest<br />

13.64%<br />

(4.9 kg) b<br />

Others<br />

associated<br />

13.36%<br />

(4.8 kg) b<br />

Others<br />

associated<br />

13.36%<br />

(4.8 kg) b<br />

Outlet<br />

water<br />

20.6%<br />

(7.4 kg) a<br />

Outlet<br />

water<br />

20.6%<br />

(7.4 kg) a<br />

Figure 10. Total nitrogen mass balance <strong>in</strong> experimental polyculture <strong>systems</strong><br />

I and II. Values are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly between polyculture<br />

<strong>systems</strong> I and II (P>0.05).<br />

63


TP-mass balance polyculture system I<br />

Shrimp stocked<br />

0.15%<br />

(0.01 kg) a<br />

Seaweed Stocked<br />

0.15%<br />

(0.01 kg) a<br />

Shrimp stocked<br />

0.15%<br />

(0.01 kg) a<br />

Seaweed Stocked<br />

0.15%<br />

(0.01 kg) a<br />

Fertilization<br />

3% (0.2 kg) a<br />

Fertilization<br />

3% (0.2 kg) a<br />

Water <strong>in</strong>flow<br />

1.95% (0.13 kg) a<br />

Water <strong>in</strong>flow<br />

1.95% (0.13 kg) a<br />

Shrimp feed<br />

94.75% (6.32 kg) a<br />

Shrimp feed<br />

94.75% (6.32 kg) a<br />

TP-mass balance polyculture system II<br />

Stocked shrimp<br />

0.15%<br />

(0.01 kg) a<br />

Seaweed stocked<br />

0.15%<br />

(0.01 kg) a<br />

Fish stocked<br />

0.18%<br />

(0.012 kg) b<br />

Stocked shrimp<br />

0.15%<br />

(0.01 kg) a<br />

Seaweed stocked<br />

0.15%<br />

(0.01 kg) a<br />

Fish stocked<br />

0.18%<br />

(0.012 kg) b<br />

Fertilization<br />

2.99% (0.2 kg) a<br />

Fertilization<br />

2.99% (0.2 kg) a<br />

Water <strong>in</strong>flow<br />

1.95%<br />

(0.13 kg) a<br />

Water <strong>in</strong>flow<br />

1.95%<br />

(0.13 kg) a<br />

Shrimp feed 94.58%<br />

(6.32 kg) a<br />

Shrimp feed 94.58%<br />

(6.32 kg) a<br />

Shrimp harvest<br />

14.99% (1.0 kg) a<br />

Shrimp harvest<br />

14.99% (1.0 kg) a<br />

Shrimp harvest<br />

13.47% (0.90 kg) a<br />

Shrimp harvest<br />

13.47% (0.90 kg) a<br />

Seaweed harvest<br />

9.75% (0.65 kg) a<br />

Seaweed harvest<br />

9.75% (0.65 kg) a<br />

Pond Water<br />

Seaweed harvest<br />

8.83% (0.59 kg) a<br />

Seaweed harvest<br />

8.83% (0.59 kg) a<br />

Pond Water<br />

Others<br />

Associated<br />

40.03%<br />

(2.67 kg) a<br />

Others<br />

Associated<br />

40.03%<br />

(2.67 kg) a<br />

Outlet<br />

water<br />

35.23%<br />

(2.35 kg) a<br />

Outlet<br />

water<br />

35.23%<br />

(2.35 kg) a<br />

Fish harvest<br />

5.09%<br />

(0.34 kg) b<br />

Fish harvest<br />

5.09%<br />

(0.34 kg) b<br />

Others<br />

associated<br />

35.20%<br />

(2.35 kg) b<br />

Others<br />

associated<br />

35.20%<br />

(2.35 kg) b<br />

Outlet<br />

water<br />

37.41%<br />

(2.50 kg) a<br />

Outlet<br />

water<br />

37.41%<br />

(2.50 kg) a<br />

Figure 11. Total phosphate mass balance <strong>in</strong> experimental polyculture<br />

<strong>systems</strong> I and II. Values are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly between polyculture<br />

<strong>systems</strong> I and II (P>0.05).<br />

In polyculture system I shrimp yielded a growth performance of 0.31 kg/m 2 and a<br />

feed conversion ratio (FCR) of 1.72, and <strong>in</strong> polyculture system II equal<br />

performance with 0.29 kg/m 2 but additional 0.04 kg fish/m 2 , at FCR of 1.84.<br />

64


Shrimp and seaweed harvested <strong>in</strong> polyculture system I <strong>in</strong>corporated <strong>in</strong> total at<br />

least 57.35% of TN and 24.74% of TP and <strong>in</strong> polyculture system II higher but no<br />

significantly different (P>0.05) <strong>nutrient</strong> assimilation of 66.05% for TN and of<br />

27.39% for TP could be found <strong>in</strong> the total biomass (shrimp, seaweed and fish).<br />

Total nitrogen and phosphorous released with the outlet water amounted 6.3<br />

kg/1000 m 2 and 2.35 kg/1000 m 2 <strong>in</strong> polyculture system I. In the polyculture<br />

system II, 7.4 kg/1000 m 2 and 2.50 kg/1000 m 2 of TN and TP could be found <strong>in</strong><br />

the outflow<strong>in</strong>g water, but no significant differences (P>0.05) could be calculated<br />

between the <strong>systems</strong>.<br />

The largest source of TN orig<strong>in</strong>ated from feed with 94.13% for the polyculture<br />

system I and 93.79% for the polyculture system II. The rema<strong>in</strong><strong>in</strong>g nitrogen<br />

derived from fertilizer and <strong>in</strong>flow<strong>in</strong>g water with 4.36% and 1.4% <strong>in</strong> polyculture<br />

system I and with 4.34% and 1.39% <strong>in</strong> polyculture system II (Figure 10). In this<br />

model, the amount of TN from stocked shrimp larvae and seaweed <strong>in</strong> polyculture<br />

system I was 0.02 kg/1000 m 2 and 0.02 kg/1000 m 2 , respectively. This means<br />

only 0.12% of TN <strong>in</strong> the ponds derived from stocked biomass <strong>in</strong> polyculture<br />

system I. In polyculture system II 0.06% and 0.36 % of TN derived from stocked<br />

seaweed and fish (Figure 10).<br />

Outlet water conta<strong>in</strong>ed 17.6% of TN for the polyculture system I and 20.6% for<br />

the polyculture system II (Figure 10). 25.06% of TN <strong>in</strong> polyculture system I could<br />

be analyzed as unidentified losses and 13.36% <strong>in</strong> polyculture system II.<br />

With 94.75% for the polyculture system I and 94.58% for the polyculture system<br />

II largest source of total phosphorus (TP) orig<strong>in</strong>ated from feed, but without<br />

significant differences (P>0.05) between the <strong>systems</strong>. The rema<strong>in</strong><strong>in</strong>g TP derived<br />

from fertilizer and <strong>in</strong>flow<strong>in</strong>g water with around 3% and 1.95% for both<br />

polyculture <strong>systems</strong>. TP orig<strong>in</strong>ated from stocked shrimp larvae and seaweed were<br />

0.15% and 0.15% for both polyculture <strong>systems</strong>. TP from stocked fish amounted<br />

0.18% <strong>in</strong> polyculture system II. Total phosphorus (TP) <strong>in</strong> outlet water was 2.35<br />

kg/1000m² for the polyculture system I and 2.50 kg/1000m² for the polyculture<br />

system II (Figure 11). That means, 35.23% of TP <strong>in</strong>put for the polyculture system<br />

I and 37.41% of TP for the polyculture system II were discharged to the<br />

environment, but no significant differences (P>0.05) could be calculated between<br />

65


the <strong>systems</strong>. 40.03% and 35.20% of TP <strong>in</strong> polyculture system I and II were<br />

unaccounted and significant differences (P0.05). It can<br />

be stated that the utilization of feed by shrimp <strong>in</strong> polyculture I and II was efficient<br />

for growth performance. In comparison to the global average shrimp feed<br />

conversion ratio of around 2.0 (Tacon, 2002), the observed feed conversions <strong>in</strong><br />

both polyculture <strong>systems</strong> were very efficient.<br />

In general, the presence of fish led to lower dissolved oxygen (DO) <strong>in</strong> polyculture<br />

II than <strong>in</strong> polyculture I even though it was not significantly different (P>0.05)<br />

(Table 1). In both polyculture <strong>systems</strong>, aeration was used every night from 22.00<br />

until 05.00. Hydrogen sulphide (H2S) concentration for 90 days was still with<strong>in</strong><br />

the limits. The average of H2S for polyculture I and II were 0.02 ± 0.001 and 0.03<br />

± 0.008 mg/l (Table 1), respectively. At levels of 0.1–0.2 mg/l H2S <strong>in</strong> the water,<br />

shrimp growth will be <strong>in</strong>fluenced and they will die <strong>in</strong>stantly at concentrations<br />

66


higher than 4 mg/l (Law, 1988). Thus, DO concentration and H2S for the 90-day<br />

period were still with<strong>in</strong> the safe limits for shrimp and fish. Additionally DO<br />

concentrations should be l<strong>in</strong>ked with seaweed assimilation activities. Its<br />

photosynthesis produces DO that promotes decomposition of organics (Xu, 2008).<br />

The fish <strong>in</strong> studied polyculture system impacted the amount of suspended solids<br />

by faecal excretion and bioturbation, so that amount of total suspended solids<br />

(TSS) <strong>in</strong> polyculture II was higher than <strong>in</strong> polyculture I (P


study showed that seaweed can remove 3.5% of <strong>in</strong>flow<strong>in</strong>g TN and 2.4% of<br />

<strong>in</strong>flow<strong>in</strong>g TP (Ihsan et al., submitted). In addition, ammonium <strong>in</strong> polyculture was<br />

lower than <strong>in</strong> monoculture <strong>systems</strong> and amounted 0.24 mg/l while <strong>in</strong> monoculture<br />

0.37 mg/l could be analyzed. Troell et al. (1997) reported that seaweed have a<br />

high capacity for remov<strong>in</strong>g <strong>nutrient</strong>s from fish effluents, and seaweed production<br />

is higher <strong>in</strong> areas surround<strong>in</strong>g fish cage than <strong>in</strong> areas apart from <strong>aquaculture</strong><br />

<strong>systems</strong>. Seaweed had the potential to remove at least 5% of dissolved nitrogen<br />

released from the fish farm and 7% of released dissolved phosphorous.<br />

Buschmann et al. (1994) found that tank cultivated Gracillaria could remove as<br />

much as 90-95% of the ammonium <strong>in</strong> effluent waters released from salmon tanks.<br />

In this study, <strong>nutrient</strong> assimilation by seaweed between the two polyculture<br />

<strong>systems</strong> did not result <strong>in</strong> significant differences (Figures 10 and 11). Our results<br />

showed a high capacity <strong>in</strong> assimilation of excretory products from shrimp<br />

<strong>nutrient</strong>s by seaweed <strong>in</strong> both polyculture <strong>systems</strong>. The ability of Gracillaria to<br />

assimilate and store nitrogen for ubsequent growth makes it possible to utilize<br />

high <strong>nutrient</strong> concentrations most efficiently. Such rapid accumulation by<br />

seaweed has been documented to function even <strong>in</strong> darkness (Cohen and Neori,<br />

1991)<br />

Mass balance model calculated <strong>in</strong> this study demonstrate <strong>nutrient</strong> utilization <strong>in</strong> the<br />

evaluated polyculture <strong>systems</strong>. TN and TP <strong>in</strong>corporated <strong>in</strong> shrimp and seaweed <strong>in</strong><br />

polyculture I was lower than polyculture <strong>systems</strong> II but not significantly different<br />

(Figures 10 and 11). Nutrients were efficiently utilized by shrimp, seaweed and<br />

fish. In comparison to previous results 34.3% of TN and 9.3% of TP were<br />

<strong>in</strong>corporated <strong>in</strong> shrimp and Gracillaria of polyculture <strong>systems</strong> while <strong>in</strong><br />

monoculture only 24.2% of TN and 5.3% of TP were reta<strong>in</strong>ed <strong>in</strong> shrimp (Ihsan et<br />

al., submitted). Neori et al. (1998) reported that the seaweed harvest conta<strong>in</strong>ed<br />

about 33% of the total N <strong>in</strong>put and 50% was fed to the animal <strong>in</strong> the overall N<br />

budget of the abalone tanks and their seaweed biofilter tanks. Lombardi et al.<br />

(2006) reported that shrimp harvest<strong>in</strong>g accounted for 35.5% and 6.1% of the total<br />

nitrogen and total phosphorus <strong>in</strong>put <strong>in</strong>to the ponds <strong>in</strong> cage polyculture of white<br />

shrimp with seaweed Kappaphycus alvarezii.<br />

68


TN and TP <strong>in</strong>corporated <strong>in</strong> organism <strong>in</strong> polyculture system I were higher than <strong>in</strong><br />

polyculture system II, while TN and TP discharged to the environment through<br />

outlet water <strong>in</strong> both polyculture <strong>systems</strong> did not differ significantly (Figure 10 and<br />

11). Previous results (Ihsan et al., submitted) reported that 44.4% of TN and of<br />

43.3% TP <strong>in</strong> polyculture <strong>systems</strong> and 50.4% of TN and 42.8% of TP <strong>in</strong><br />

monoculture <strong>systems</strong> were <strong>in</strong>corporated <strong>in</strong> organic biomass, whereas 21.3% and<br />

47.3% of TN and TP were released <strong>in</strong>to the environment <strong>in</strong> polyculture system <strong>in</strong><br />

contrast to 25.4% and 51.9% TN and TP released from monoculture <strong>systems</strong>,<br />

respectively. Lombardi et al. (2006) reported that outlet water removed significant<br />

quantities of nitrogen (36.7%) and phosphorus (30.3%) <strong>in</strong> cage polyculture of the<br />

white shrimp and seaweed Kappaphycus alvarezii. Neori and Shpigel (1999)<br />

recorded a reduction <strong>in</strong> the effluent of 72% of total nitrogen and 61% of total<br />

phosphorus <strong>in</strong> <strong>in</strong>tegrated culture of prawn (Penaeus monodon), mussel (Mytilus<br />

edulis) and seaweed Gracillaria. In polyculture system, TN and other excess<br />

<strong>nutrient</strong>s from the feed based shrimp culture are taken up by seaweed (Mart<strong>in</strong>ez-<br />

Aragon et al., 2002). A primary role of biofiltration is the treatment and<br />

conversion of toxic metabolites and pollutants. Microalgae photosynthetically<br />

convert the dissolved <strong>in</strong>organic <strong>nutrient</strong>s <strong>in</strong>to particulate matter suspended <strong>in</strong> the<br />

water, while seaweed <strong>in</strong> contrast extract the <strong>nutrient</strong>s out of the water (Troell and<br />

Norberg, 1998). Seaweed efficiently take up dissolved <strong>in</strong>organic nitrogen present<br />

<strong>in</strong> fish net pen effluents (Troell et al., 1999). Seaweed growth on polyculture<br />

effluents has been also shown to be superior than <strong>in</strong> fertilizer enriched seawater<br />

(Neori et al., 1991).<br />

Total nitrogen (TN) and total phosphorus (TP) <strong>in</strong>corporated <strong>in</strong> shrimp <strong>in</strong> this<br />

study did not show significant differences (P>0.05). From the above it can be<br />

stated that the rate of feed utilization by shrimp was optimal, as well as the ability<br />

of seaweed Gracillaria and fish to utilize <strong>nutrient</strong>s <strong>in</strong> the pond. This proves the<br />

use of polyculture <strong>in</strong> <strong>aquaculture</strong> <strong>systems</strong> <strong>in</strong> order to improve <strong>nutrient</strong> utilization<br />

and to decrease <strong>nutrient</strong> discharge to the environment. However, despite this<br />

relative success, it is necessary to exam<strong>in</strong>e other polyculture <strong>systems</strong> by<br />

<strong>in</strong>tegration of other species such as oysters with seaweed, shrimp and fish to<br />

enhance the <strong>systems</strong> <strong>nutrient</strong> assimilation performance.<br />

69


Conclusion<br />

This study showed that polyculture with shrimp (Penaeus vannamei), fish (Tilapia<br />

sp), and seaweed Gracillaria can be used to <strong>in</strong>crease biomass production.<br />

Inflow<strong>in</strong>g <strong>nutrient</strong>s can be used either by shrimp (Penaeus vannamei), fish<br />

(Tilapia sp) or seaweed Gracillaria (Gracillaria verrucosa). The ability of<br />

seaweed Gracillaria to do photosynthesis caused optimal levels of dissolved<br />

oxygen (DO). The impact of fish as a co-culture organism caused higher total<br />

suspended solids (TSS) <strong>in</strong> polyculture II than <strong>in</strong> polyculture I, but it was still<br />

with<strong>in</strong> the safe limits for shrimp.<br />

References<br />

APHA. 1995. Standard method for the exam<strong>in</strong>ation of water and wastewater, 19 th<br />

ed. APHA. Wash<strong>in</strong>gton, DC. USA.<br />

Balio, D. D. and S. Tookw<strong>in</strong>as. 2002. Best management practices for a mangrovefriendly<br />

shrimp farm<strong>in</strong>g. Aquaculture extension manual. 35. Seafdec.<br />

ASEAN. Philipp<strong>in</strong>es.<br />

Bergheim, A., Kristiansen, R., Kelly, L. 1993. Treatment and utilization of sludge<br />

from landbased farms for salmon. In: Wang, J. K. (Ed.), Techniques for<br />

Modern Aquaculture. Proceed<strong>in</strong>gs of an Aquacultural Eng<strong>in</strong>eer<strong>in</strong>g<br />

Conference, 21-23 June 1993. Wash<strong>in</strong>gton, DC. USA. Pp 1134.<br />

Buschmann, A.H., M. Troell, N. Kautsky and L. Kautsky. 1996. Integrated tank<br />

cultivation of salmonids and Gracillaria chilensis. Hydrobiology,<br />

326/327: 75-82.<br />

Buschmann, A. H., M Troell, N. Kautsky. 2001. Integrated algal farm<strong>in</strong>g: a<br />

review. Cah Biol Mar 42:83–90<br />

Boyd, C. E. 1991. Water quality management and aeration <strong>in</strong> shrimp farm<strong>in</strong>g.<br />

Fisheries and allied <strong>aquaculture</strong>s department. Auburn university.<br />

Boyd, C. E. 1998. Pond water aeration system. Aquacultural eng<strong>in</strong>eer<strong>in</strong>g. 18 (1).<br />

9-40.<br />

Cl<strong>in</strong>e, J. D. K<strong>in</strong>etics of the sulphide – oxygen reaction <strong>in</strong> sea water: an<br />

<strong>in</strong>vestigation at constant temperature and sal<strong>in</strong>ity. M. S. Thesis, Univ.<br />

Wash<strong>in</strong>gton, Seattle.<br />

70


Chop<strong>in</strong>, T., A. H Buschmann, C. Hall<strong>in</strong>g, M Troell, N Kautsky, A. Neori, G.<br />

Kraemer, J. Zertuche-Gonzalez, C. Yarish, C. Neefus. 2001. Integrat<strong>in</strong>g<br />

seaweeds <strong>in</strong>to <strong>aquaculture</strong> <strong>systems</strong>: a key towards susta<strong>in</strong>ability. J Phycol<br />

37:975–986.<br />

Cohen, I., A Neori. 1991. Ulva lactuca biofilters for mar<strong>in</strong>e fishpond effluent. I.<br />

Ammonium uptake k<strong>in</strong>etics and nitrogen content. Bot. Mar. 34: 475-482.<br />

FAO. 2003. Health management and biosecurity ma<strong>in</strong>tenance <strong>in</strong> white shrimp<br />

(Penaeus vannamei) hatcheries <strong>in</strong> Lat<strong>in</strong> America. FAO Fisheries<br />

Technical Paper. 420. Rome. Italy.<br />

FAO. 2010. The state of world fisheries and <strong>aquaculture</strong>. Fisheries and<br />

<strong>aquaculture</strong> department. Food and Agriculture Organization of United<br />

Nations. Rome. Italy.<br />

Funge-Smith, S. J. and M. R. P. Briggs. 1998. Nutrient budgets <strong>in</strong> <strong>in</strong>tensive<br />

shrimp ponds: implications for susta<strong>in</strong>ability. Aquaculture. 164. 117-133.<br />

Goddard, S. 1996. Feed management <strong>in</strong> <strong>in</strong>tensive <strong>aquaculture</strong>. New York:<br />

Chapman and Hall.<br />

Ihsan, Y. N, K. J. Hesse, N Holmgren, C Schulz. Submitted. A Comparison of<br />

Nutrients Fluxes <strong>in</strong> Monoculture and Polyculture Systems for Shrimp<br />

(Penaeus vannamei) and Seaweed (Gracillaria verrucosa) Production.<br />

Submitted to the journal of World Aquaculture Society.<br />

Law, A. T. 1988. Water quality requirements for Penaeus monodon culture.<br />

Proceed<strong>in</strong>gs of the sem<strong>in</strong>ar on mar<strong>in</strong>e prawn farm<strong>in</strong>g <strong>in</strong> Malaysia.<br />

Malaysia Fisheries Society. 53-65.<br />

Lim, C., C. D. Webster. 2007. Tilapia: Biology, culture, and nutrition. The<br />

Haworth press. New York. 678.<br />

Lombardi, J. V., de Almeida-Marques, H. L., Pereira, R. T. L., Barreto, O. J. S.,<br />

de Paula, E. J. 2006. Cage polyculture of the Pacific white shrimp<br />

Litopenaeus vannamei and the Philipp<strong>in</strong>es seaweed Kappaphycus<br />

alvarezii. Aquaculture 258:412-415.<br />

Mart<strong>in</strong>ez-Aragon, J. F., Hernandez, I., Perez-Llorens, J. L., Vazquez, R., Vergara.<br />

J. J., 2002. Biofilter<strong>in</strong>g efficiency <strong>in</strong> removal of dissolved <strong>nutrient</strong>s by<br />

71


three species of estuar<strong>in</strong>e macroalgae cultivated with sea bass<br />

(Dicenntrarchus labrax) waste waters: J. App. Phycol. 14, 365-374<br />

Nelson, S. G., E. P. Gleen, J. Conn, D. Moore, T. Walsh, M. Akutagawa. 2001.<br />

Cultivation of Gracillaria parvispora (Rhodophyta) <strong>in</strong> shrimp-farm<br />

effluent ditches and float<strong>in</strong>g cages <strong>in</strong> Hawaii: a two-phase polyculture<br />

system. Aquaculture. 193. 239-248.<br />

Neori, A., M Shpigel, D. Ben-Ezra. 2000. Susta<strong>in</strong>able <strong>in</strong>tegrated system for<br />

culture fish, seaweed and abalone. Aquaculture. 186. 279-291.<br />

Neori, A. and Shpigel, M. 1999. Algae treat effluents and feed <strong>in</strong>vertebrates <strong>in</strong><br />

susta<strong>in</strong>able <strong>in</strong>tegrated mariculture. World Aquacult. 30:46-9,51.<br />

Primavera, J. H. 1994. Environmental and socioeconomic effects of shrimp<br />

farm<strong>in</strong>g: The Philipp<strong>in</strong>e experience. Info fish International. 1. 44-49.<br />

Primavera, J. H. 1998. Tropical shrimp farm<strong>in</strong>g and its susta<strong>in</strong>ability. In De Silva<br />

SS, editor. Tropical mariculture. San Diego. Academic press. 257-289.<br />

Rana, K., M. Perotti, M. Ped<strong>in</strong>i, and A.G.J. Tacon. 2006. Major trends <strong>in</strong> global<br />

<strong>aquaculture</strong> production: 1984 to 1994. FAO Aquaculture Newsletter 13:9-<br />

12.<br />

S<strong>in</strong>dilariu, P. D., C. Schulz, R. Reiter. 2007. Treatment of flow-through trout<br />

<strong>aquaculture</strong> effluents <strong>in</strong> a constructed wetland. Elsevier. Aquaculture. 270.<br />

92-104.<br />

SPSS. 1999. Statistic software package. Release 9.0.1 for MS W<strong>in</strong>dows.<br />

Tacon, A. G. J. 2002. Thematic review of feed and feed management practices <strong>in</strong><br />

shrimp <strong>aquaculture</strong>. Report prepared under the World Bank, NACA,<br />

WWF, and FAO consortium program on shrimp farm<strong>in</strong>g and the<br />

environment. Published by consortium. 69.<br />

Thakur, D. P. And C. K. L<strong>in</strong>. 2003. Water quality and <strong>nutrient</strong> budget <strong>in</strong> closed<br />

shrimp (Penaeus monodon) culture system. Aquaculture eng<strong>in</strong>eer<strong>in</strong>g. 27.<br />

159-176.<br />

Troell, M. and Norberg, J. 1998. Modell<strong>in</strong>g output and retention of suspended<br />

solid <strong>in</strong> an <strong>in</strong>tegrated salmon-mussel culture. Ecol. Model. 110:65-77.<br />

Troell, M., C Hall<strong>in</strong>g, A Nilsson, A. H Buschmann., N Kautsky, L Kautsky. 1997.<br />

Integrated mar<strong>in</strong>e cultivation of Gracillaria chilensis (Gracilariales,<br />

72


Bangiophyceae) and salmon cages for reduced environmental impact and<br />

<strong>in</strong>creased economic output. Aquaculture 156:45–61.<br />

Xu, Y. J., J. Fang, Q. Tang, J. L<strong>in</strong>, G. Le. 2008. Improvement of water quality by<br />

the macroalga, Gracillaria lemaneiformis (Rhodophyta), near <strong>aquaculture</strong><br />

effluent outlets. World <strong>aquaculture</strong> society. 39. 549-555.<br />

Yang, Y. F., X. G. Fei, J. M. Song, H. Y. Hu, G. C. Wang, Kyo, Chung. 2006.<br />

Growth of Gracillaria lemaneiformis under different cultivation conditions<br />

and its effects on <strong>nutrient</strong> removal <strong>in</strong> Ch<strong>in</strong>ese coastal waters. Aquaculture.<br />

254 (1-4). 248-255.<br />

73


Chapter 4: Nitrogen Assimilation Potential of Seaweed<br />

(Gracillaria verrucosa) <strong>in</strong> Polyculture with Pacific White Shrimps<br />

(Penaeus vannamei)<br />

Y. N. Ihsan ab , K. J. Hesse c , C. Schulz ab<br />

a Gesellschaft <strong>für</strong> Mar<strong>in</strong>e Aquakultur mbH, Hafentörn 3, D-25761 Büsum<br />

b <strong>Institut</strong>e for Animal Breed<strong>in</strong>g and Husbandry, Christian-Albrechts-Universität<br />

D-24098 Kiel<br />

c Research and Technology Centre, Christian-Albrechts-Universität<br />

D-25761 Büsum<br />

Submitted to the Journal of Asian Fisheries Society<br />

74


Abstract<br />

In order to evaluate the <strong>nutrient</strong> absorption efficiency of comb<strong>in</strong>ed shrimp and<br />

seaweed production, nitrogen <strong>fluxes</strong> <strong>in</strong> polycultures were compared with shrimp<br />

monoculture <strong>systems</strong>. Therefore, triplicate concrete tanks, with a volume of 3 m 3 ,<br />

were stocked with shrimp Penaeus vannamei (6–7 g, 5 <strong>in</strong>d/100 litres) and<br />

seaweed (Gracillaria verrucosa) <strong>in</strong> densities of 0 g/l, 3.125 g/l, 6.250 g/l, and<br />

9.375 g/l. The culture period lasted four weeks and water samples were taken<br />

every week to measure <strong>nutrient</strong> <strong>fluxes</strong>. The use of seaweed at a density of 3.125<br />

g/l <strong>in</strong> shrimp polyculture showed the highest ability for nitrogen assimilation<br />

orig<strong>in</strong>at<strong>in</strong>g from shrimp waste. This treatment <strong>in</strong>creased shrimp survival rate from<br />

63% (without seaweed) to 83% and the growth performance of shrimp from<br />

247.78 g (without seaweed) to 350.20 g. Rema<strong>in</strong><strong>in</strong>g nitrogen excreted by shrimp<br />

amounted to 15.36 g, which was ma<strong>in</strong>ly (14.62 g) utilized by seaweed to form a<br />

biomass of 16.90 kg. Therefore, polyculture <strong>systems</strong> us<strong>in</strong>g seaweed seem to act<br />

more efficiently with regard to <strong>nutrient</strong> accumulation.<br />

75


Introduction<br />

Shrimp <strong>aquaculture</strong> has developed quickly s<strong>in</strong>ce the 1980s <strong>in</strong> Southeast Asian<br />

countries <strong>in</strong>clud<strong>in</strong>g Indonesia. However, the rapid <strong>in</strong>dustrial growth of<br />

<strong>aquaculture</strong> has raised environmental concerns about eutrophication and depletion<br />

of natural habitats (Naylor et al., 2000; Zhang, 2003; Zhou et al., 2003; Mao et al.,<br />

2006). Animal mariculture and other anthropogenic activities generate large<br />

quantities of organic and <strong>in</strong>organic waste. Especially feed supply results <strong>in</strong><br />

excretory products and discharge of uneaten feed, which releases up to 70% of<br />

dietary <strong>nutrient</strong>s <strong>in</strong>to the environment (Porter et al., 1987). Released <strong>nutrient</strong>s<br />

<strong>in</strong>crease eutrophication processes (Neori et al., 1991; Rathakrishnan, 2001) and<br />

the accumulation of acute toxic substances for aquatic animals (Troell et al., 1999;<br />

Neori et al., 2001).<br />

Integrated <strong>multitrophic</strong> <strong>aquaculture</strong> techniques are good candidates to overcome<br />

these susta<strong>in</strong>ability problems (Ruddle and Zong, 1988; Primavera, 1991;<br />

Hishamunda and Ridler, 2004). These <strong>systems</strong> have been proposed as a tool for<br />

develop<strong>in</strong>g environmentally sounded <strong>aquaculture</strong> practices and resource<br />

management with<strong>in</strong> a balanced coastal ecosystem approach (Troell et al., 2003;<br />

Neori et al., 2004). The polyculture of aquatic animals and plants reduces the<br />

environmental impact of the culture system compared to monoculture because of<br />

the reutilization of dissolved and particulate waste products (Petrell et al., 1993).<br />

Seaweed can absorb significant amounts of waste <strong>nutrient</strong>s, controll<strong>in</strong>g<br />

eutrophication, and consequently, improv<strong>in</strong>g the health and stability of mar<strong>in</strong>e<br />

eco<strong>systems</strong> (Buschmann et al., 2001; Chop<strong>in</strong> et al., 2001; Troell et al., 2003; Fei,<br />

2004; Neori et al., 2004). The physiological mechanisms of seaweed biofiltration<br />

have been studied <strong>in</strong>, e.g. filter-feed<strong>in</strong>g bivalve culture <strong>systems</strong> (Fang et al.,<br />

1996), fish cage farms (Troell et al., 1997; Hayashi et al., 2008), shrimp culture<br />

ponds (Jones et al., 2001; Nelson et al., 2001), and polyculture ponds conta<strong>in</strong><strong>in</strong>g<br />

shrimp Penaeus vannamei and seaweed Gracillaria verrucosa (Ihsan et al.,<br />

submitted).<br />

In an <strong>aquaculture</strong> system most of the nitrogenous and phosphorus dissolved<br />

<strong>in</strong>organic waste products are excreted <strong>in</strong> the form of ammonium (NH4 + ) and<br />

phosphate (PO4 3- ). Both compounds are potentially toxic to aquatic organisms and<br />

76


<strong>in</strong>crease eutrophication potential. The mechanical and chemical treatment and<br />

other processes to remove the excess of ammonium and phosphate from waste<br />

water and the culture ponds are very expensive and may also affect the<br />

environment (Troell et al., 2003). Seaweed has been studied <strong>in</strong> recent years for<br />

<strong>nutrient</strong> removal strategies. This treatment technique is considered to be the most<br />

<strong>in</strong>expensive and environmentally sounded clearification way (Buschmann et al.,<br />

1996; Rathakrishnan, 2001; Neori et al., 2004).<br />

The subject of the present study is the parameterization of the rate of nitrogen<br />

uptake by the seaweed from shrimp wastewater of polyculture <strong>systems</strong> <strong>in</strong> order to<br />

reduce the <strong>nutrient</strong> releases <strong>in</strong>to the environment.<br />

Material and Method<br />

The experiment was conducted <strong>in</strong> Sungai Buntu, West Java over a 40-day period<br />

from August–September 2009 <strong>in</strong> an <strong>in</strong>door laboratory facility (Figure 1). This<br />

study used a completely randomized block design conducted <strong>in</strong> two phases. Phase<br />

I aimed to determ<strong>in</strong>e optimal stock<strong>in</strong>g densities and ammonia excretion rates of<br />

shrimps, whereas the second phase quantified the nitrogen assimilation of<br />

seaweed at four seaweed stock<strong>in</strong>g densities.<br />

Location of experiments<br />

(Sungai Buntu-West Java)<br />

Figure 1. Map of Research <strong>Institut</strong>e for Brackish water fisheries, West Java,<br />

Indonesia<br />

77


The experiment <strong>in</strong> phase I was divided <strong>in</strong>to 3 treatments us<strong>in</strong>g glass aquaria with<br />

shrimp stock<strong>in</strong>g densities of 5, 10, and 15 <strong>in</strong>d/100 liters of water. For each<br />

treatment two replications were conducted. Phase I was carried out for 1 week.<br />

The aquarium was filled with 100 liters of aerated sea water, and the environment<br />

was controlled with temperatures <strong>in</strong> the range of 27–30 ° C and sal<strong>in</strong>ity rang<strong>in</strong>g<br />

from 25 to 28 ppt. Shrimp were fasted for one day then weighed; afterwards they<br />

were fed for one week and weighed aga<strong>in</strong> at the end of the experiment. On the last<br />

day, shrimp were transferred <strong>in</strong>to two conta<strong>in</strong>ers (10 liters), which had been filled<br />

with aerated sea water and exposed for 8 hours to ultraviolet (UV) light for<br />

dis<strong>in</strong>fection of other nitrogen-consum<strong>in</strong>g organisms. Stock<strong>in</strong>g density <strong>in</strong> the<br />

conta<strong>in</strong>ers was one shrimp per 5 liters. Two conta<strong>in</strong>ers without shrimp served as a<br />

control. Sampl<strong>in</strong>g was carried out 6 times at 1 h <strong>in</strong>tervals from 0–5 h. Afterwards<br />

ammonium nitrogen was measured <strong>in</strong> accordance to APHA standard methods<br />

(1995).<br />

In phase 2, nitrogen assimilation of seaweed at four stock<strong>in</strong>g densities of seaweed<br />

was <strong>in</strong>vestigated with 3 replications us<strong>in</strong>g concrete tanks (3 m³ volume, 1 m * 3 m<br />

* 1 m). Seaweed stock<strong>in</strong>g densities were 0 g/l (Treatment A), 3.125 g/l (Treatment<br />

B), 6.250 g/l (Treatment C), and 9.375 g/l of seaweed (Treatment D).<br />

Determ<strong>in</strong>ation of seaweed density was modified from Rathakrishnan (2001).<br />

Shrimp stock<strong>in</strong>g density used <strong>in</strong> experimental phase 2 amounted 5 shrimp/100<br />

liter with an <strong>in</strong>itial weight of 6–7 g, based on the outcome of growth and survival<br />

results of phase 1 experiments. Individual and total weight of the replicate tank<br />

load<strong>in</strong>g groups was not significantly different (P>0.05).<br />

The shrimp were fed a commercial diet with a prote<strong>in</strong> content of 40% four times a<br />

day, i.e. at 07.00, 12.00, 17.00 and 22.00. The feed quantity was dynamically<br />

assigned to shrimp biomass <strong>in</strong>crease estimated from control sampl<strong>in</strong>g. The daily<br />

feed ratio provided 7% of the weight of shrimp at sampl<strong>in</strong>g, modified <strong>in</strong><br />

accordance with Baliao and Tookw<strong>in</strong>as (2002). Subsamples of shrimps (number<br />

of <strong>in</strong>dividuals) and algae from each tank were weighed every week.<br />

78


Sampl<strong>in</strong>g<br />

In both phases of the experiment, the follow<strong>in</strong>g water quality parameters were<br />

measured: temperature, sal<strong>in</strong>ity, dissolved oxygen (DO), pH, ammonium, nitrate,<br />

nitrite, and total nitrogen (TN). Additionally, the number and weight of shrimp<br />

and survival rate, growth rate and feed conversion ratio (FCR) were assessed.<br />

In phase 2, every week, ammonium, nitrate, nitrite, and total nitrogen were<br />

analyzed. The samples were taken over a 24-hour period at 3 hour <strong>in</strong>tervals. Water<br />

samples were taken from 20 cm below the water surface. Everyday at 08.00 and<br />

16.00, the water temperature, sal<strong>in</strong>ity, and dissolved oxygen (DO) were monitored<br />

<strong>in</strong> situ with a portable water-quality analyser (TOA model WQC-20A Electronics<br />

Ltd., Japan). Water samples were collected us<strong>in</strong>g plastic bottles attached to the<br />

end of a stick. They were immediately filtered through Whatman GF/F filters 0.7<br />

µM millipore for soluble <strong>nutrient</strong>s analyses (NO3 - , NO2 - , NH4 + ). The ammonium<br />

concentration <strong>in</strong> the filtrate was measured immediately follow<strong>in</strong>g filtration. Total<br />

nitrogen (TN), nitrate, and nitrite concentrations were measured us<strong>in</strong>g the APHA<br />

(1995) standard method. The standard methods for the determ<strong>in</strong>ation of<br />

ammonium, nitrite and nitrate were based on moderate alkal<strong>in</strong>e solution with<br />

hypochlorite, diazotization, and cadmium reduction followed by diazotization,<br />

respectively. The spectrophotometer wave lengths for ammonium, nitrite, and<br />

nitrate were 630 nm, 542 nm, and 542 nm, respectively. The <strong>nutrient</strong> analyses<br />

were performed us<strong>in</strong>g a spectrophotometer (Shimadzu UV-2400).<br />

The nitrogen content <strong>in</strong> the feed, shrimp, and seaweed was measured us<strong>in</strong>g the<br />

Kjeldahl method. Subsamples of shrimp (quantity) and algae (quantity) were<br />

analyzed at the beg<strong>in</strong>n<strong>in</strong>g and the end of the experiment to assess changes <strong>in</strong><br />

nitrogenous composition.<br />

Calculation<br />

Survival Rate (SR) was calculated as a ratio of the shrimps quantity at stock<strong>in</strong>g<br />

and sampl<strong>in</strong>g time us<strong>in</strong>g the follow<strong>in</strong>g formula:<br />

SR = (Nt / N0) X 100%<br />

With: SR = survival rate<br />

79


N 0 = number of shrimp on day 0 (<strong>in</strong>dividuals)<br />

Nt = number of shrimp on day t (<strong>in</strong>dividuals)<br />

Specific growth rate were calculated with the formula (Busacker et al., 1990):<br />

SGR = ((ln Wt - ln W0) / t) * 100%<br />

With: SGR = Specific growth rate<br />

W 0 = weight on day-0 (g/<strong>in</strong>dividual)<br />

Wt = weight on day-t (g/<strong>in</strong>dividual)<br />

t = time of experiment (day)<br />

The feed conversion ratio (FCR) was calculated as the ratio between the amount<br />

of feed given to shrimp biomass <strong>in</strong>crement at a certa<strong>in</strong> period (NRC, 1977) us<strong>in</strong>g<br />

the formula:<br />

FCR = F / ΔB<br />

With: FCR = feed conversion ratio<br />

F = amount of feed given dur<strong>in</strong>g experiment (kg)<br />

ΔB = addition of shrimp biomass dur<strong>in</strong>g experiment (kg)<br />

Nitrogen retention was calculated based on the follow<strong>in</strong>g equation:<br />

NR = ∑TNt - ∑TN0<br />

With: NR = Nitrogen retention (g)<br />

∑TNt = amount of total nitrogen on day-t (g)<br />

∑TN0 = amount of total nitrogen on day-0 (g)<br />

Ammonium excretion was calculated based on the follow<strong>in</strong>g equation (Yigid,<br />

2005):<br />

AE = ((Nt – N0)/(W * Tt-0))<br />

With: AE = Ammonium excretion (mg-N/g/h)<br />

Nt = Ammonium concentration on time-t (mg/l)<br />

N0 = Ammonium concentration on time-0 (mg/l)<br />

W = weight of shrimp (g)<br />

Tt-0= sampl<strong>in</strong>g <strong>in</strong>terval<br />

80


Statistics<br />

Growth rate, survival rate, nitrogen retention and <strong>nutrient</strong> <strong>fluxes</strong> from experiments<br />

were analyzed statistically. All data were checked for normality (Kolmogorov-<br />

Smirnov test) and homogeneity of variances (HOV, Brown Forsythe test).<br />

Differences of means of triplicates <strong>in</strong> phase 2 were evaluated for significance by<br />

the range tests of Tukey HSD (P


ammonium excretion was 0.004 mg/g/h. The results of the first phase ammonia<br />

excretion trial are summarized <strong>in</strong> Table 2.<br />

Table 2. Ammonium Excretion<br />

Conta<strong>in</strong>ers<br />

Time observation (h)<br />

0 1 2 3 4 5<br />

Weight<br />

of<br />

shrimp<br />

(g)<br />

Ammonium<br />

excretion<br />

(mg/g/h)<br />

Replicate1 0.356 0.438 0.535 0.603 0.671 0.620 7.89 0.005<br />

Replicate2 0.544 0.586 0.540 0.580 0.660 0.643 8.21 0.003<br />

Average 0.450 0.512 0.537 0.591 0.665 0.631 8.05 0.004<br />

Phase II<br />

Growth of shrimp<br />

The total weight of shrimp at the end of the experiment was significantly different<br />

between treatments (P0.05) among the treatment without seaweed<br />

and the treatment with stock<strong>in</strong>g of seaweed 3.125 g/l (B), 6.250 g/l (C), and 9.375<br />

g/l (D) (Figure 2).<br />

The survival rate (SR) of shrimp <strong>in</strong> phase II, showed that from the first week until<br />

the end of the study there was a significant difference (P


Table 3. Weight, Retention, and FCR<br />

Treatment<br />

A B C D<br />

Total N-Feed (g) 16.44 18.09 16.9 18.41<br />

Start<br />

Weight shrimp (g) 266.41 265.95 269.74 266.81<br />

N shrimp (%) 7.44 7.43 7.53 7.45<br />

Weight Seaweed (g) 1562.6 3125.26 4688.29<br />

N Seaweed (%) 8.06 16.13 24.19<br />

End<br />

Weight shrimp (g) 243.78 a<br />

N shrimp (%) 1.78 a<br />

350.2 b<br />

10.16 b<br />

327.96 c<br />

9.13 b<br />

Weight Seaweed (g) 3255.12 a 5963.78 b<br />

N Seaweed (%) 22.68 a<br />

N-Retention<br />

Shrimp (g) 0.59 a<br />

2.73 b<br />

Seaweed (g) 14.62 a<br />

N production of shrimp 15.85 a<br />

N <strong>in</strong> water (g) 15.85 a<br />

FCR 2.69 a<br />

15.36 a<br />

0.74 b<br />

1.99 a<br />

Daily Growth rate of<br />

Seaweed (%) 2.62 a<br />

24.67 a<br />

1.6 c<br />

8.54 b<br />

15.3 a<br />

6.76 c<br />

2.02 a<br />

2.31 a<br />

314.71 d<br />

9.22 b<br />

6563.24 b<br />

36.65 b<br />

1.78 c<br />

12.46 c<br />

16.63 a<br />

4.18 c<br />

2.24 a<br />

1.20 b<br />

Values with the same superscript letter do not differ significantly (P>0.05)<br />

83


Weight (g)<br />

18.00<br />

17.00<br />

16.00<br />

15.00<br />

14.00<br />

13.00<br />

12.00<br />

11.00<br />

10.00<br />

a<br />

a<br />

Weight Average of Shrimp<br />

a<br />

a<br />

0 1 2 3 4 5<br />

Time (Week)<br />

a<br />

a<br />

a<br />

a<br />

Seaweed 0 g/l<br />

Seaweed 3.125 g/l<br />

Seaweed 6.250 g/l<br />

Seaweed 9.375 g/l<br />

Figure 2. Individual weight of shrimp dur<strong>in</strong>g the experimental period, values<br />

Survival rate (% )<br />

are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05)<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

b b<br />

a a<br />

Survival Rate<br />

0 1 2 3 4 5<br />

b<br />

a<br />

Time (Week)<br />

b<br />

a<br />

b<br />

b<br />

Seaweed 0 g/l<br />

Seaweed 3.125 g/l<br />

Seaweed 6.250 g/l<br />

Seaweed 9.375 g/l<br />

Figure 3. Survival Rate of shrimp dur<strong>in</strong>g the experimental period, values are<br />

mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05)<br />

84


Growth of seaweed<br />

The daily growth rate of seaweed was significantly different (P0.05).<br />

The lowest FCR value occurred <strong>in</strong> the treatment with stock<strong>in</strong>g density of seaweed<br />

3.125 g/l (treatment B) i.e. 1.99 and the highest occurred <strong>in</strong> the treatment without<br />

seaweed (treatment A) i.e. 2.69.<br />

Nitrogen retention of shrimp <strong>in</strong> each treatment was significantly different<br />

(P


Concentration (m g/l)<br />

Concentration (m g/l)<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

a<br />

b<br />

a<br />

b<br />

Total Nitrogen<br />

0 1 2 3 4 5<br />

a<br />

Time (Week)<br />

b<br />

a<br />

b<br />

b<br />

b<br />

Seaweed 0 g/l<br />

Seaweed 3.125 g/l<br />

Seaweed 6.250 g/l<br />

Seaweed 9.375 g/l<br />

Figure 4. Concentration of total nitrogen (TN) dur<strong>in</strong>g the experimental<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

period, values are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05)<br />

a<br />

b<br />

b<br />

b<br />

b<br />

b<br />

c<br />

a<br />

Ammonium<br />

0 1 2 3 4 5<br />

d<br />

c<br />

b<br />

Time (Week)<br />

a<br />

c<br />

a<br />

b<br />

Seaweed 0 g/l<br />

Seaweed 3.125 g/l<br />

Seaweed 6.250 g/l<br />

Seaweed 9.375 g/l<br />

Figure 5. Concentration of ammonium-nitrogen (NH4 - -N) dur<strong>in</strong>g the<br />

experimental period, values are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05)<br />

86


Even though fresh water was supplied to the ponds, the ammonium-nitrogen<br />

concentrations occurred <strong>in</strong> different amounts <strong>in</strong> all treatments. The highest<br />

concentration of ammonium occurred <strong>in</strong> treatment A (without seaweed) at week 2,<br />

i.e. 0.94 mg/l (Figure 5).<br />

Nitrate showed a different pattern as well. The peak nitrate concentration <strong>in</strong> all<br />

treatments was 0.009 mg/l. Treatment (A) occurred at week 1, treatment (B) at<br />

week 2, treatment (C) at week 4, and treatment (D) at week 3 (Figure 6). While<br />

nitrite showed the same pattern <strong>in</strong> all treatments. The peak concentration of nitrite<br />

<strong>in</strong> all treatments occurred at week 2 and not significantly different (P>0.05).<br />

Treatment (A) was 0.009 mg/l, treatment (B) 0.007 mg/l, treatment (C) 0.008<br />

mg/l, and treatment (D) 0.009 mg/l (Figure 7).<br />

Concentration (mg/l)<br />

0.012<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0<br />

a<br />

a<br />

b<br />

b<br />

c<br />

a<br />

Nitrate<br />

0 1 2 3 4 5<br />

b<br />

c<br />

Time (WeeK)<br />

Seaweed 0 g/l<br />

Figure 6. Concentration of Nitrate-nitrogen (NO3 - -N) dur<strong>in</strong>g the<br />

experimental period, values are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05)<br />

87<br />

a<br />

a<br />

c<br />

b<br />

Seaweed 3.125 g/l<br />

Seaweed 6.250 g/l<br />

Seaweed 9.375 g/l


Concentration (m g/l)<br />

0.01<br />

0.009<br />

0.008<br />

0.007<br />

0.006<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

Nitrite<br />

0 1 2 3 4 5<br />

a<br />

Time (Week)<br />

a<br />

a<br />

a<br />

a<br />

a<br />

Seaweed 0 g/l<br />

Seaweed 3.125 g/l<br />

Seaweed 6.250 g/l<br />

Seaweed 9.375 g/l<br />

Figure 7. Concentration of Nitrite-nitrogen (NO2 - -N) dur<strong>in</strong>g the experimental<br />

period, values are mean of triplicate ponds (n=3)<br />

Values with the same superscript letter do not differ significantly (P>0.05)<br />

Discussion<br />

Utilization of dissolved nitrogen by seaweed <strong>in</strong> the water aims to reduce the waste<br />

burden <strong>in</strong> the <strong>aquaculture</strong> media. Nitrogen content of the treatment us<strong>in</strong>g the<br />

seaweed was <strong>in</strong>creased but it did not get too high (Figure 4), prov<strong>in</strong>g that the<br />

seaweed Gracillaria verrucosa could take up nitrogen. The seaweed could make<br />

use of ammonium through a diffusion process us<strong>in</strong>g all parts of its body. The<br />

higher the ability of seaweed to absorb the dissolved ammonium, the greater its<br />

growth. This means that the content of nitrogen will also further <strong>in</strong>crease <strong>in</strong> the<br />

seaweed biomass, which can be seen from nitrogen seaweed bladder <strong>in</strong>creases.<br />

Nitrogen is necessary for the seaweed <strong>in</strong> the regulation of metabolism and<br />

reproduction. Growth and biomass can be achieved properly if the seaweed<br />

receives sufficient nitrogen. Uptake of nitrogen by seaweed Gracillaria verrucosa<br />

is not only a function of external nitrogen concentration, but also of the <strong>in</strong>ternal<br />

concentration <strong>in</strong> the plant net. Retrieval and storage of nitrogen by the seaweed<br />

can be affected by the concentration of dissolved <strong>in</strong>organic nitrogen <strong>in</strong> water and<br />

88


<strong>in</strong>fluenced by ecological fluctuations of nitrogen <strong>in</strong> plant tissues. Low nitrogen<br />

concentrations <strong>in</strong> the environment cannot meet the needs of seaweed for nitrogen<br />

for further usage. But the seaweed has the ability to assimilate and store <strong>nutrient</strong>s<br />

from its surround<strong>in</strong>gs, especially at low concentrations. Nitrogen dry weight<br />

content <strong>in</strong> treatments C and D were lower than treatment B. Presumably, although<br />

the amount of nitrogen <strong>in</strong> the form of nitrate and nitrite <strong>in</strong> water is high but<br />

Gracillaria was less able to utilize it. This is consistent with the f<strong>in</strong>d<strong>in</strong>g that the<br />

most nitrogen absorbed by the seaweed is nitrogen <strong>in</strong> ammonium form (Troell et<br />

al., 1999). To meet the need for nitrogen, the reserves stored <strong>in</strong> the network are<br />

used prior to growth.<br />

The ability of seaweed <strong>in</strong> tak<strong>in</strong>g up nitrogen from shrimp <strong>aquaculture</strong> waste <strong>in</strong><br />

different treatments dur<strong>in</strong>g the four weeks of ma<strong>in</strong>tenance <strong>in</strong> treatment B,<br />

seaweed was capable of utiliz<strong>in</strong>g dissolved nitrogen from shrimp waste up to<br />

14.62 g, so that the weight of seaweed would be <strong>in</strong>creas<strong>in</strong>g twice. If it was<br />

calculated per hour, then the seaweed is capable of absorb<strong>in</strong>g dissolved nitrogen<br />

at a rate of 0.013 g-N/kg/hr. The utilization of nitrogen by seaweed <strong>in</strong> this study is<br />

higher than the results of the previous study (Ihsan et al., submitted). In the<br />

previous study, the TN of seaweed <strong>in</strong> polyculture system was 3.5%. In phase 2 of<br />

the study, the absorption of nitrogen by seaweed was three times greater than the<br />

production value of nitrogen excretion of shrimp per hour and kilogram <strong>in</strong> study<br />

phase I (Table 1). This means that dissolved nitrogen excretion of the shrimp can<br />

be utilized optimally by the seaweed.<br />

Utilization of ammonium at treatments C (6.250 g/l of seaweed) and D (9.375 g/l<br />

of seaweed) is greater than for treatment B (3.125 g/l of seaweed) only at the<br />

beg<strong>in</strong>n<strong>in</strong>g of the study (first week). This condition does not last as long as the<br />

amount of ammonium reduced. To meet <strong>nutrient</strong> needs, seaweed then utilizes<br />

nitrate and nitrite. It can be seen from the steady depletion of nitrate and nitrite<br />

content <strong>in</strong> <strong>aquaculture</strong> media. In general, seaweed gradually absorbs nitrogen, i.e.<br />

ammonium> nitrate> nitrite (Troell et al., 1999). Utilization of nitrate and nitrite<br />

by the seaweed is less efficient because nitrate and nitrite must first be reduced<br />

before used by seaweed. Seaweed us<strong>in</strong>g nitrate for the metabolism need<br />

<strong>in</strong>volvement of nitrate reductase enzyme (Patadjai, 1993). Absorption of nitrate<br />

89


and nitrite by the seaweed is <strong>in</strong>fluenced by the concentration of ammonium <strong>in</strong> the<br />

media. Due to the nitrogen used by seaweed <strong>in</strong> treatments C and D be<strong>in</strong>g nitrate<br />

and nitrite, then the growth of seaweed was not as fast at the beg<strong>in</strong>n<strong>in</strong>g of more<br />

research utiliz<strong>in</strong>g ammonium. Soriano (2002) reported the growth of seaweed<br />

dur<strong>in</strong>g the first two weeks as rapid, but that it then decl<strong>in</strong>ed until the end.<br />

Ma<strong>in</strong>tenance of seaweed Gracillaria verrucosa <strong>in</strong> dra<strong>in</strong> ponds of shrimp <strong>in</strong> the<br />

first 15 days reached 8.8% and then cont<strong>in</strong>ued to decl<strong>in</strong>e.<br />

Glen et al. (2002) showed that seaweed Gracillaria parvispora cultivation <strong>in</strong><br />

shrimp pond effluent water could <strong>in</strong>crease the nitrogen content <strong>in</strong> the thallus of<br />

1% to 3.5% with a growth rate of 8–9% per day, which is higher than the growth<br />

rate of seaweed fed chemical fertilizers i.e. only 4–5% per day. The content of<br />

ammonium <strong>in</strong> treatment A (without seaweed) <strong>in</strong> the second week decreased<br />

drastically. This is due to the oxidation of ammonium <strong>in</strong>to nitrite and then <strong>in</strong>to<br />

nitrate. The content of nitrite and nitrate <strong>in</strong>creased until reach<strong>in</strong>g a peak; this is<br />

due to the aeration of the culture medium so that the oxygen demand for oxidation<br />

processes is met. Boyd (1999) described the process of oxidation with ammonium<br />

as the energy source, CO2 as a carbon source and O2 the source for the oxidation<br />

process. The oxidation process also occurred <strong>in</strong> treatments B, C, and D but <strong>in</strong><br />

small quantities because the ammonium first utilized by seaweed. Besides that,<br />

seaweed also produces oxygen from photosynthesis rest. Xu (2008) reported<br />

Gracillaria cultivation can improve other aspects of water quality <strong>in</strong>stead of<br />

<strong>in</strong>creas<strong>in</strong>g DO. Its photosynthesis produces DO, which promotes decomposition<br />

of organics. Density raft culture of Gracillaria verrucosa impedes the water<br />

circulation and may reduce chemical oxygen demand (COD) <strong>in</strong> the water column.<br />

In addition, several species of Gracillaria can produce oxygen under low light<br />

conditions, such as <strong>in</strong> ra<strong>in</strong>y days and remediate anoxia (Xu et al., 2004). Neori et<br />

al. (2004) reported that seaweed Gracillaria sp. is capable of supply<strong>in</strong>g oxygen<br />

(DO) of 2.86 mg/l for 24 hours to the ma<strong>in</strong>tenance medium us<strong>in</strong>g polyculture with<br />

milkfish, shrimp, and seaweed.<br />

Ammonium concentrations <strong>in</strong>creased aga<strong>in</strong> <strong>in</strong> all treatments dur<strong>in</strong>g week 4, with<br />

the highest value <strong>in</strong> treatment (D). This is due to the feed<strong>in</strong>g; the higher residual<br />

and fecal excretion issued shrimp and dead seaweed. Additionally the maximum<br />

90


growth of seaweed was achieved <strong>in</strong> the third week. When maximum growth has<br />

been achieved then the absorption of nitrogen will decrease.<br />

Water quality greatly affects the growth of shrimp. Good water quality is capable<br />

of support<strong>in</strong>g shrimp life, thereby <strong>in</strong>creas<strong>in</strong>g the appetite of the shrimp. Based on<br />

the value of FCR and the retention of each treatment, it is known that the FCR<br />

<strong>in</strong>dicates the efficiency level of the feed utilization by shrimp as well as affect<strong>in</strong>g<br />

the <strong>nutrient</strong> waste load discharged <strong>in</strong>to the environment. The smallest FCR<br />

occurred <strong>in</strong> treatment B (1.99) with a biomass of 350.2 g and survival rate of<br />

82.67%. This means that the high feed utilization by shrimp for growth causes the<br />

retention value also to be high (2.73 g). In comparison to the global average<br />

shrimp feed conversion ratio of around 2.0, the observed feed conversion were<br />

quite good (Tacon, 2002).<br />

The concentration of ammonium and nitrite <strong>in</strong> treatment (B) was lower compared<br />

with other treatments. To grow the shrimp from 265.95 g to 350.16 g, 15.36 g of<br />

nitrogen waste were generated (Table 3). Most of the waste (14.62 g) was<br />

absorbed by the seaweed, which enabled it to grow to1.69 kg, while the rema<strong>in</strong><strong>in</strong>g<br />

0.74 g of residual waste rema<strong>in</strong>ed <strong>in</strong> the water. The smaller the concentration of<br />

nitrogen rema<strong>in</strong><strong>in</strong>g <strong>in</strong> the water, the more effective the utilization rate of nitrogen<br />

by the seaweed.<br />

Conclusions<br />

The seaweed Gracillaria verrucosa can be cultivated <strong>in</strong> polyculture together with<br />

the shrimp Penaeus vannamei. The ability of seaweed <strong>in</strong> tak<strong>in</strong>g up nitrogen from<br />

the water would make the farm<strong>in</strong>g environment better and support shrimp<br />

production. This can be seen from the survival rates (SR) be<strong>in</strong>g significantly<br />

different (P


References<br />

American Public Health Association, 1995. Standard Methods for the<br />

Exam<strong>in</strong>ation of Water and Wastewater, 19th ed. APHA, Wash<strong>in</strong>gton, DC.<br />

USA.<br />

Baliao, D. D. and S. Tookw<strong>in</strong>as. 2002. Best Management Practices for a<br />

Mangrove-friendly Shrimp Farm<strong>in</strong>g. Aquaculture extension manual. 35.<br />

Seafdec. ASEAN. Philip<strong>in</strong>es.<br />

Boyd, C. E. 1999. Codes of Practise for Responsible Shrimp Farm<strong>in</strong>g. Global<br />

Aquaculture Alliance. St. Louis MO. USA. 48.<br />

Busacker, G. P., I. R. Adelman, E. M. Goolish. 1990. Growth. In: Schreck, C. B.,<br />

Moyle, P. B. (eds.) Methods for fish biology. American Fisheries Society,<br />

Bethesda, MD. p. 363-387<br />

Buschmann, A. H., M Troell, N. Kautsky. 2001. Integrated algal farm<strong>in</strong>g: a<br />

review. Cah Biol Mar 42:83–90<br />

Chop<strong>in</strong>, T., A. H Buschmann, C. Hall<strong>in</strong>g, M. Troell, N. Kautsky, A. Neori, G.<br />

Kraemer, J. Zertuche-Gonzalez, C. Yarish, C. Neefus. 2001. Integrat<strong>in</strong>g<br />

seaweeds <strong>in</strong>to <strong>aquaculture</strong> <strong>systems</strong>: a key towards susta<strong>in</strong>ability. J Phycol<br />

37:975–986.<br />

Fang, J. G., H. L Sun, J.P Yan J P, S.H. Kuang, F Li, G Newkirk, J Grant. 1996.<br />

Polyculture of scallop Chlamys farreri and kelp Lam<strong>in</strong>aria japonica <strong>in</strong><br />

Sungo bay. Ch<strong>in</strong> J Oceanology Limnol 14(4):322–329.<br />

Fei, X.G. 2004. Solv<strong>in</strong>g the coastal eutrophication problem by large scale<br />

seaweed cultivation. Hydrobiologia 512:145–151<br />

Hayashi, L., N. S Yokoya, S Ost<strong>in</strong>i, R.T Pereira, E. S Braga, E. C Oliveira. 2008.<br />

Nutrients removed by Kappaphycus alvararezii (Rhodophyta,<br />

Solieriaceae) <strong>in</strong> <strong>in</strong>tegrated cultivation with fishes <strong>in</strong> recirculat<strong>in</strong>g water.<br />

Aquaculture 277:185–191.<br />

Ihsan, Y. N., K. J. Hesse, N. Holmgren, C. Schulz. Submitted. A Comparison of<br />

Nutrients Fluxes <strong>in</strong> Monoculture and Polyculture Systems for Shrimp<br />

(Penaeus vannamei) and Seaweed (Gracillaria verrucosa) Production<br />

92


Jones, A B., W. C. Dennison, N. P. Preston. 2001. Integrated treatment of shrimp<br />

effluent by sedimentation, oyster filtration and macroalgal absorption: a<br />

laboratory scale study. Aquaculture 193:155–178.<br />

Langdon, C., F Evans, C. Demetropoulos. 2004. An environmentallysusta<strong>in</strong>able,<br />

<strong>in</strong>tegrated, co-culture system for dulse and abalone production.<br />

Aquaculture Eng 32:43–56.<br />

Mao, Y Z., Y Zhou, H. S Yang, R. C Wang. 2006. Seasonal variation <strong>in</strong><br />

metabolism of cultured Pacific oyster, Crassostrea gigas, <strong>in</strong> Sanggou Bay,<br />

Ch<strong>in</strong>a. Aquaculture 253:322–333.<br />

Naylor, R. L., R. J. Goldburg, J.H. Primavera, N. Kautsky, M. C. Beveridge, J<br />

Clay, C. Folke, J. Lubchenco, H Mooney, M Troell. 2000. Effect of<br />

<strong>aquaculture</strong> on world fish supplies. Nature 405:1017–1024.<br />

Nelson, S. G., E. P. Glenn, J. Conn, D. Moore D, T. Walsh, M. Akutagawa. 2001.<br />

Cultivation of Gracillaria parvispora (Rhodophyta) <strong>in</strong> shrimp-farm<br />

effluent ditches and float<strong>in</strong>g cages <strong>in</strong> Hawaii: a two phase polyculture<br />

system. Aquaculture 193:239–248.<br />

Neori, A., T. Chop<strong>in</strong> T, M. Troell, A. H. Buschmann, G.P. Kraemer, C. Hall<strong>in</strong>g,<br />

M. Shpigel, C Yarish. 2004. Integrated <strong>aquaculture</strong>: rationale, evolution<br />

and state of the art emphasiz<strong>in</strong>g seaweed biofiltration <strong>in</strong> modern<br />

mariculture. Aquaculture 231:361–391.<br />

Petrell, R. J., T. K. Mazhari, P.J. Harrison, L. D. Druehl. 1993. Mathematical<br />

model of Lam<strong>in</strong>aria production near a British Columbian salmon sea cage<br />

farm. J Appl Phycol 5:1–14.<br />

Porter, C.B., M.D. Krom, M.G. Rob<strong>in</strong>ns, L. Brickell, A. Davidson. 1987.<br />

Ammonia excretion and total nitrogen budget for Gilthead sea bream<br />

(Sparu aurata) and its effects on water quality conditions. Aquaculture,<br />

66: 287-297. Curr. Res. J. Biol. Sci., 2(2): 150-153, 2010.<br />

Primavera, J. 1991. Intensive prawn farm<strong>in</strong>g <strong>in</strong> the Philipp<strong>in</strong>es: ecological, social,<br />

and economics implications. Ambio 20:28–33<br />

Rathakrishnan. 2001. Removal of nitrogenous wastes by seaweeds <strong>in</strong> closed<br />

Lobster culture <strong>systems</strong>. J. M ar. Biol. Ass. Ind., 43(1,2): 181-185.<br />

93


Ruddle, K., G. F. Zong. 1988. Integrated agriculture–<strong>aquaculture</strong> <strong>in</strong> South Ch<strong>in</strong>a.<br />

Cambridge University Press, UK<br />

Schulz, C., J. Gelbrecht, B. Rennert. 2003. Treatment of ra<strong>in</strong>bow trout farm<br />

effluents <strong>in</strong> constructed wetland with emergent plants and subsurface<br />

horizontal water flow. Aquaculture. Elsevier. 217: 207-221.<br />

Shpigel, M., A. Neori. 1996. The <strong>in</strong>tegrated culture of seaweed, abalone, fish and<br />

clams <strong>in</strong> modular <strong>in</strong>tensive land-based <strong>systems</strong>: J Appl Phycol (2009)<br />

21:649–656 655I.<br />

SPSS. 1999. Statistic software package. Release 9.0.1 for MS W<strong>in</strong>dows.<br />

Tacon, A. G. J. 2002. Thematic review of feed and feed management practices <strong>in</strong><br />

shrimp <strong>aquaculture</strong>. Report prepared under the World Bank, NACA,<br />

WWF and FAO consortium program on shrimp farm<strong>in</strong>g and the<br />

environment, published by consortium, 69.<br />

Troell, M., C. Hall<strong>in</strong>g, A Nilsson, A. H. Buschmann., N. Kautsky, L. Kautsky.<br />

1997. Integrated mar<strong>in</strong>e cultivation of Gracillaria chilensis (Gracilariales,<br />

Bangiophyceae) and salmon cages for reduced environmental impact and<br />

<strong>in</strong>creased economic output. Aquaculture 156:45–61.<br />

Troell, M., P. Ronnback, C. Hall<strong>in</strong>g, N. Kautsky and A.H. Buschmann. 1999.<br />

Ecological eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong> <strong>aquaculture</strong>: Use of seaweeds for remov<strong>in</strong>g the<br />

<strong>nutrient</strong>s from the <strong>in</strong>tensive mariculture. J. Appl. Phycol., 11: 89-97.<br />

Troell M, C. Hall<strong>in</strong>g, A. Neori, T. Chop<strong>in</strong>, A. H. Buschmann, N. Kautsky, C.<br />

Yarish. 2003. Integrated mariculture: ask<strong>in</strong>g the right questions.<br />

Aquaculture 226:69–90.<br />

Zhang, F S. 2003. Aquaculture development <strong>in</strong> Ch<strong>in</strong>a: status and prospect. World<br />

Sci-Tech R&D 25(3):5–13 (English abstract)<br />

Zhou, Y., H. S. Yang, Y. Z. Mao, X. T. Yuan, T. Zhang, Y. Liu, F. S. Zhang.<br />

2003. Biodeposition by the Zhikong scallop Chlamys farreri <strong>in</strong> Sanggou<br />

Bay, Shandong, northern Ch<strong>in</strong>a. Ch<strong>in</strong> J Zool 38:40–44 (English abstract)<br />

94


General Discussion<br />

System performance<br />

In recent years, polyculture system has been proposed as a key to develop<br />

environmentally sounded <strong>aquaculture</strong> practices and resource management through<br />

a balanced ecosystem approach to avoid pronounced shifts <strong>in</strong> coastal areas. Feed<br />

based <strong>aquaculture</strong> needs to be <strong>in</strong>tegrated with extractive <strong>aquaculture</strong>. Multitrophic<br />

polyculture system provides bioremediation potential, mutual benefits to the cocultured<br />

organism, economic diversification by creat<strong>in</strong>g other value added<br />

products and <strong>in</strong>crease profitability per cultivation unit.<br />

In chapter one, based on a literature study polyculture system are described as the<br />

practice of cultur<strong>in</strong>g more than one species of aquatic organism <strong>in</strong> the same<br />

system. The motivat<strong>in</strong>g pr<strong>in</strong>ciple is that fish/shrimp production may be<br />

maximized by rais<strong>in</strong>g a comb<strong>in</strong>ation of species hav<strong>in</strong>g different food habits. The<br />

concept of polyculture of fish/shrimp is based on the concept of total utilization of<br />

different trophic and spatial niches of a pond <strong>in</strong> order to obta<strong>in</strong> maximum<br />

fish/shrimp production per unit area (Edward, 1992; Chiang, 1993; Qian et al.,<br />

1996). The ma<strong>in</strong> advantages of polyculture <strong>systems</strong> is that wastes of one resource<br />

user become a source for the others (Neori et al., 2004).<br />

The use of seaweed <strong>in</strong>tegrated with fish/shrimp cultures has been studied <strong>in</strong> open<br />

water and land-based system condition <strong>in</strong> Israel, Portugal, Brazil, and Indonesia<br />

(Neori et al., 1998; Schuenhoff et al., 2003; Lombardi et al., 2006; Ihsan et al.,<br />

submitted). General concepts about <strong>nutrient</strong> uptake by seaweed can be found <strong>in</strong><br />

Harrison and Hurd (2001). To optimize the seaweed component of an <strong>in</strong>tegrated<br />

<strong>aquaculture</strong> system, particular attention should be given not only to physical and<br />

chemical factors such as light, temperature, effluent <strong>nutrient</strong> concentration and<br />

flux, and water motion but also to biological factors such as plant variability<br />

<strong>in</strong>clud<strong>in</strong>g tissue type, plant age, etc.<br />

Xu (2008) reported the Gracillaria cultivation can improve other aspect of water<br />

quality <strong>in</strong>stead of <strong>in</strong>creas<strong>in</strong>g DO. Its photosynthesis produces DO that promotes<br />

decomposition of organics. Density raft culture of Gracillaria impedes the water<br />

circulation and may decrease chemical oxygen demand (COD) <strong>in</strong> the water<br />

95


column. In addition, several species of Gracillaria can produce oxygen under low<br />

light condition, such as <strong>in</strong> ra<strong>in</strong>y days and remediate anoxia (Xu et al., 2004).<br />

In chapter two, polyculture <strong>systems</strong> us<strong>in</strong>g seaweed Gracillaria seem to act more<br />

efficiently with regard to <strong>nutrient</strong> accumulation than <strong>in</strong> monoculture. The average<br />

ammonium-nitrogen concentration over the whole period was 0.24 mg/l <strong>in</strong><br />

polyculture while <strong>in</strong> monoculture 0.37 mg/l of ammonium-nitrogen were<br />

analyzed. Survival rate of shrimp <strong>in</strong> polyculture and monoculture were 86.32%<br />

and 69.17%, respectively.<br />

Growth performance<br />

Overall, the growth performance of shrimp <strong>in</strong> polyculture was better than<br />

monoculture <strong>systems</strong>. In chapter two, the average f<strong>in</strong>al weight of shrimp was 24.9<br />

± 1.8 g for polyculture <strong>systems</strong> with survival rates of 86.3%. For monoculture, the<br />

weight of shrimp was 20.8 ± 1.05 g and survival rate accounted 69.17%. Survival<br />

rate of shrimp <strong>in</strong> polyculture was significantly higher than <strong>in</strong> monoculture, and the<br />

weight of shrimp as well. The feed conversion ratio (FCR) for the polyculture and<br />

monoculture system <strong>in</strong> this study were significantly (P0.05). The average weight of shrimp at harvest was 24.73<br />

± 0.71 and 23.45 ± 1.43 g/<strong>in</strong>d for polyculture I and II, respectively. Specific<br />

growth rate (SGR) for shrimp <strong>in</strong> polyculture I and II was not significantly<br />

different (P>0.05) with an average value over the 90-day experiment of 4.5%/day<br />

and 4.4%/day, respectively.<br />

Shrimp growth and production were reported to be basically related to the<br />

environmental condition (Songsangj<strong>in</strong>da, 1994). Results from this study showed<br />

clear differences <strong>in</strong> performance parameters between monoculture and polyculture<br />

<strong>systems</strong>. This result may <strong>in</strong>dicate that seaweed play a vital role on system<br />

productivity. This result is <strong>in</strong> agreement with the observation of Troell et al.<br />

(1997) and Soriano et al. (2002). They reported that the environmental conditions<br />

for growth of shrimp <strong>in</strong> polyculture <strong>systems</strong> is better than <strong>in</strong> monoculture. Apart<br />

96


from remov<strong>in</strong>g <strong>nutrient</strong>s, the seaweed as co-cultured organisms may contribute to<br />

the oxygen budget of the ponds.<br />

Fluctuation of water quality <strong>in</strong> ponds is the result of variation <strong>in</strong> <strong>nutrient</strong>s load<strong>in</strong>g<br />

from feed and biological processes of shrimp and organisms <strong>in</strong> water column<br />

(Burford and Williams, 2001).<br />

In chapter three, the water quality <strong>in</strong> polyculture <strong>systems</strong> were <strong>in</strong> optimal ranges<br />

for fish and shrimp <strong>in</strong>dicated by a high survival rate (SR) dur<strong>in</strong>g the 90-day<br />

period. Results from this study showed, that no significant differences <strong>in</strong> shrimp<br />

performance between the two polyculture <strong>systems</strong>. Shrimp growth and production<br />

correlated with stock<strong>in</strong>g density, feed<strong>in</strong>g management and water quality. The<br />

ma<strong>in</strong> <strong>nutrient</strong>s were <strong>in</strong>troduced <strong>in</strong>to the ponds via feed application. This suggests<br />

that pellet feed may properly promote <strong>nutrient</strong> excretion by shrimp and fish that<br />

can cause hypoxic conditions due to decomposition of organic material by<br />

bacteria <strong>in</strong> the bottom layer of the pond.<br />

Nutrient flux<br />

The two significant components of the pond environment are the pond water and<br />

sediment which <strong>in</strong>teract cont<strong>in</strong>uously to <strong>in</strong>fluence the culture environment. Pond<br />

sediment can be further divided <strong>in</strong>to the pond soil component (the pond bottom<br />

and walls) and the accumulated sediment component (Briggs and Funge-Smith,<br />

1994). In the <strong>in</strong>vestigation by Funge-Smith and Briggs (1998), around 90% of<br />

nitrogen <strong>in</strong>put to the pond came from feed but most of the nitrogen (70-80%) was<br />

not reta<strong>in</strong>ed <strong>in</strong> shrimp body, but rema<strong>in</strong> <strong>in</strong> the pond as accumulated sediment.<br />

In chapter two, the ammonium concentration <strong>in</strong>creased gradually <strong>in</strong> monoculture<br />

and polyculture <strong>systems</strong> and orthophosphate concentration progressively<br />

<strong>in</strong>creased as well. Though well water was supplied to the pond, the ammoniumnitrogen<br />

concentrations <strong>in</strong> monoculture <strong>in</strong>creased from 0.005 to 0.779 mg/l, with<br />

an average concentration of ammonium-nitrogen dur<strong>in</strong>g the 100 days period of<br />

0.37 mg/l. In polyculture system, it <strong>in</strong>creased from 0.003 to 0.483 mg/l, with an<br />

average of 0.24 mg/l. Therefore, ammonium-nitrogen concentrations <strong>in</strong><br />

monoculture system were significantly higher <strong>in</strong> comparison to polyculture<br />

system (P


Ideally, <strong>nutrient</strong> process <strong>in</strong> polyculture system with two or more ecologically<br />

compatible species should be balanced, waste from one species are recycled as<br />

fertilizer or feed by another without conflict<strong>in</strong>g with each other (Neori et al.,<br />

2000). By <strong>in</strong>tegrat<strong>in</strong>g fed mariculture (fish and shrimp) with extractive<br />

mariculture (seaweed), the wastes of one resource consumer become a source<br />

(fertilizer or feed) for others <strong>in</strong> the system. To get more <strong>in</strong>formation about<br />

optimum <strong>nutrient</strong> utilization, the absorbtion of nitrogen derived by shrimp waste<br />

<strong>in</strong>to seaweed Gracillaria verrucosa is described <strong>in</strong> chapter four.<br />

In chapter four, the total nitrogen (TN) concentration <strong>in</strong>creased gradually. It<br />

shows that the concentration of total nitrogen (TN) <strong>in</strong>creased <strong>in</strong> polyculture and<br />

monoculture system. The highest <strong>in</strong>crease of TN occurred <strong>in</strong> monoculture system<br />

(treatment without seaweed) from 0.82 to 2.73 mg/. The lowest <strong>in</strong>crease occurred<br />

<strong>in</strong> polyculture us<strong>in</strong>g seaweed at stock<strong>in</strong>g densities of 9.375 g/l (treatment D)<br />

rang<strong>in</strong>g from 0.55 to 1.46 mg/l.<br />

Mass balance<br />

In chapter two, a mass balance model was developed for total nitrogen and total<br />

phosphorus to estimate their <strong>fluxes</strong>. From the total nitrogen and total phosphorus<br />

<strong>in</strong>put, 24.2% and 5.3% were <strong>in</strong>corporated <strong>in</strong> 335.7 kg/1200 m 2 shrimp weight ga<strong>in</strong><br />

<strong>in</strong> monoculture, while 30.8% and 6.9% were <strong>in</strong>corporated <strong>in</strong> 501.5 kg/1200m 2<br />

shrimp weight ga<strong>in</strong> and 3.5% and 2.4% were <strong>in</strong>corporated <strong>in</strong> 325 kg/1200 m 2<br />

seaweed Gracillaria <strong>in</strong> polyculture system.<br />

In chapter three, mass balance model <strong>in</strong> this study showed <strong>nutrient</strong> utilization <strong>in</strong><br />

the evaluated polyculture <strong>systems</strong>. TN and TP <strong>in</strong>corporated <strong>in</strong> shrimp and<br />

seaweed <strong>in</strong> polyculture I was lower than polyculture <strong>systems</strong> II but not significant<br />

different.<br />

Conclusion<br />

Responsible <strong>aquaculture</strong> practices should be based on a balanced ecosystem<br />

management approach, which <strong>in</strong>corporate the biological and environmental<br />

function of a diverse group of organisms <strong>in</strong>to a unified system that ma<strong>in</strong>ta<strong>in</strong>s the<br />

natural <strong>in</strong>teraction of species and allows an ecosystem to function susta<strong>in</strong>able. In<br />

98


general, shrimp and fish <strong>aquaculture</strong> us<strong>in</strong>g additional feed produces a large<br />

amount of waste, <strong>in</strong>clud<strong>in</strong>g nitrogen and phosphorus that could be released <strong>in</strong>to<br />

the aquatic environment if not treated.<br />

Integrated seaweed <strong>aquaculture</strong> <strong>systems</strong> have been suggested as a possible<br />

solution for secur<strong>in</strong>g an <strong>in</strong>creas<strong>in</strong>g and environmentally sounded production of<br />

future supply.<br />

Normally, production of ma<strong>in</strong> target organism <strong>in</strong> polyculture system could<br />

decrease due to competition <strong>in</strong> space and <strong>nutrient</strong> utilization with co-cultured<br />

organisms. The results <strong>in</strong> this study suggest that seaweed can not only serve as an<br />

effective biofilter for shrimp ponds but also can <strong>in</strong>crease shrimp production even<br />

<strong>in</strong>tegrated with fish with<strong>in</strong> the same system. The weight and survival rate of<br />

shrimp <strong>in</strong> polyculture <strong>systems</strong> were higher than <strong>in</strong> monoculture.<br />

The ability of seaweed <strong>in</strong> tak<strong>in</strong>g up nitrogen from the water would make the<br />

farm<strong>in</strong>g environment better and support shrimp production. Thus polyculture<br />

<strong>systems</strong> us<strong>in</strong>g seaweed seem to act more efficiently with regard to <strong>nutrient</strong><br />

accumulation.<br />

References<br />

Briggs, M. R. P., and Funge-Smith, S. J. 1994. A <strong>nutrient</strong> budget of some<br />

<strong>in</strong>tensive mar<strong>in</strong>e shrimp ponds <strong>in</strong> Thailand. Aquacult. Fisheries Manage.<br />

25:789-811.<br />

Chiang, Y. M. 1993. Seaweed cultivation <strong>in</strong> Taiwan. In Liao, I. C., Cheng, J. H.,<br />

Wu, M. C., Guo, J. J. (Eds.) Proc. Symp. On Aquaculture held <strong>in</strong> Beij<strong>in</strong>g,<br />

21-23 December 1992. Taiwan Fisheries Research <strong>Institut</strong>e, Keelung, pp.<br />

143-51<br />

Edward, P. 1992. Reuse of human wastes <strong>in</strong> <strong>aquaculture</strong>, a technical review.<br />

Water and sanitation report no 2. UNDP-World Bank Sanitation Program.<br />

World Bank. Wash<strong>in</strong>gton, DC. Pp, 33-50.<br />

Funge-Smith, S. J. and M. R. P. Briggs. 1998. Nutrient budgets <strong>in</strong> <strong>in</strong>tensive<br />

shrimp ponds: implications for susta<strong>in</strong>ability. Aquaculture. 164. 117-133.<br />

Harrison, P. J., and Hurd, C. L. 2001. Nutrient physiology of seaweeds:<br />

application of concepts to <strong>aquaculture</strong>. Cah. Biol. Mar. 42:71-82<br />

99


Ihsan, Y. N, K. J. Hesse, N Holmgren, C Schulz. Submitted. A Comparison of<br />

Nutrients Fluxes <strong>in</strong> Monoculture and Polyculture Systems for Shrimp<br />

(Penaeus vannamei) and Seaweed (Gracillaria verrucosa) Production.<br />

Submitted to the journal of World Aquaculture Society.<br />

Lombardi, J. V., de Almeida-Marques, H. L., Pereira, R. T. L., Barreto, O. J. S.,<br />

de Paula, E. J. 2006. Cage polyculture of the Pacific white shrimp<br />

Litopenaeus vannamei and the Philipp<strong>in</strong>es seaweed Kappaphycus<br />

alvarezii. J. Aquacult. 258:412-415.<br />

Neori, A., Ragg, N. L.C., Shpigel, M. 1998. The <strong>in</strong>tegrated culture of seaweed,<br />

abalone, fish and clams <strong>in</strong> modular <strong>in</strong>tensive land-based <strong>systems</strong>: II.<br />

Performance and nitrogen partition<strong>in</strong>g with<strong>in</strong> an abalone (Haliotis<br />

tuberculata) and macroalgae culture system. Aquacult. Eng. 17:215-239.<br />

Neori, A., T. Chop<strong>in</strong> T, M. Troell, A. H. Buschmann, G.P. Kraemer, C. Hall<strong>in</strong>g,<br />

M. Shpigel, C Yarish. 2004. Integrated <strong>aquaculture</strong>: rationale, evolution<br />

and state of the art emphasiz<strong>in</strong>g seaweed biofiltration <strong>in</strong> modern<br />

mariculture. Aquaculture 231:361–391.<br />

Qian, P. Y., C. Y. Wu, M. Wu, Y. K. Xie. 1996. Integrated cultivation of red alga<br />

Kappaphycus alvarezii and the pearl oyster P<strong>in</strong>ctada martensi.<br />

Aquaculture 147: 21-35<br />

Schuenhoff, A., Shpigel, M., Lupatsch, I., Ashkenazi, A., Msuya, F. E., Neori, A.<br />

2003. A semi-recirculat<strong>in</strong>g, <strong>in</strong>tegrated system for the culture of fish and<br />

seaweed. Aquaculture 221:167–181.<br />

Soriano, E. M., C Morales, W. S. C Moreira. 2002. Cultivation of Gracillaria<br />

(Rhodophyta) <strong>in</strong> shrimp pond effluents <strong>in</strong> Brazil. Aquaculture Research<br />

33: 1081-1086.<br />

Tacon, A. G. J. 2002. Thematic review of feed and feed management practices <strong>in</strong><br />

shrimp <strong>aquaculture</strong>. Report prepared under the World Bank, NACA,<br />

WWF and FAO consortium program on shrimp farm<strong>in</strong>g and the<br />

environment, published by consortium. 69.<br />

Troell, M., C Hall<strong>in</strong>g, A Nilsson, A. H Buschmann., N Kautsky, L Kautsky. 1997.<br />

Integrated mar<strong>in</strong>e cultivation of Gracilaria chilensis (Gracilariales,<br />

100


Bangiophyceae) and salmon cages for reduced environmental impact and<br />

<strong>in</strong>creased economic output. Aquaculture 156:45–61.<br />

Xu, Y. J., N. Z. Jiao, L. M. Qian. 2004. Nitrogen nutritional identities of<br />

Gracillaria as bio<strong>in</strong>dicators and restoral plants (<strong>in</strong> Ch<strong>in</strong>ese with English<br />

abstract). Journal of Fishery Sciences of Ch<strong>in</strong>a. 11. 276-281.<br />

Xu, Y. J., J. Fang, Q. Tang, J. L<strong>in</strong>, G. Le. 2008. Improvement of water quality by<br />

the macroalga, Gracillaria lemaneiformis (Rhodophyta), near <strong>aquaculture</strong><br />

effluent outlets. World <strong>aquaculture</strong> society. 39. 549-555.<br />

101


General Summary<br />

Feed based shrimp and fish <strong>aquaculture</strong> produces a large amount of waste,<br />

<strong>in</strong>clud<strong>in</strong>g nitrogen and phosphorus that is released to the aquatic environment<br />

without treatment. The present thesis is focussed on various polyculture <strong>systems</strong><br />

us<strong>in</strong>g shrimp Penaeus vannamei, fish Oreochromis sp. and seaweed Gracillaria<br />

verrucosa. Seaweed cultivation <strong>in</strong> <strong>in</strong>tegrated polyculture system appears to be a<br />

viable approach to reduce <strong>nutrient</strong>s discharge to the environment. Seaweed can be<br />

efficient <strong>in</strong> remov<strong>in</strong>g <strong>nutrient</strong>s from effluents of <strong>in</strong>tensive fish and shrimp farm.<br />

By <strong>in</strong>tegrat<strong>in</strong>g fed with extractive forms of <strong>aquaculture</strong>, the wastes of one<br />

resource user become a source for the others.<br />

Chapter one presents an <strong>in</strong>troduction of <strong>nutrient</strong> <strong>fluxes</strong> <strong>in</strong> various polyculture<br />

<strong>systems</strong> and implication for its susta<strong>in</strong>ability. A review of scientific literature<br />

illustrates important aspects to implement polyculture system us<strong>in</strong>g seaweed as<br />

biofilter. The production of seaweed <strong>in</strong> cage culture can be successfully <strong>in</strong>tegrated<br />

<strong>in</strong> the production of fish and shrimp. Regard<strong>in</strong>g the environmental benefits of<br />

<strong>in</strong>tegrated seaweed and fish or shrimp production, seaweed culture can also<br />

benefit by <strong>in</strong>creas<strong>in</strong>g their economic viability. Integrated seaweed <strong>aquaculture</strong><br />

<strong>systems</strong> have been suggested as a possible solution for secur<strong>in</strong>g an <strong>in</strong>creas<strong>in</strong>g and<br />

environmentally sounded production of future supply of fish and seafood.<br />

Chapter two compares performance and <strong>nutrient</strong> <strong>fluxes</strong> of monoculture and<br />

polyculture system. Therefore triplicate ponds of 1200 m² were stocked with<br />

seaweed (0.04 kg/m²) and 20 <strong>in</strong>dividuals of shrimp (0.22 ± 0.016 g/<strong>in</strong>d)/m 2 . The<br />

culture period lasted 100 days and water samples to describe <strong>nutrient</strong> <strong>fluxes</strong> were<br />

taken every 10 days. Results <strong>in</strong>dicate that polyculture <strong>systems</strong> us<strong>in</strong>g seaweed<br />

seem to act more efficiently with regard to <strong>nutrient</strong> accumulation. The average<br />

ammonium-nitrogen concentration over the whole period was 0.24 mg/l <strong>in</strong><br />

polyculture while <strong>in</strong> monoculture 0.37 mg/l of ammonium-nitrogen were<br />

analyzed. From the total nitrogen and total phosphorus <strong>in</strong>put, 24.2% and 5.3%<br />

were <strong>in</strong>corporated <strong>in</strong> 335.7 kg/1200 m 2 shrimp weight ga<strong>in</strong> <strong>in</strong> monoculture, while<br />

30.8% and 6.9% were <strong>in</strong>corporated <strong>in</strong> 501.5 kg/1200m 2 shrimp weight ga<strong>in</strong> and<br />

102


3.5% and 2.4% were <strong>in</strong>corporated <strong>in</strong> 325 kg/1200 m 2 seaweed <strong>in</strong> polyculture<br />

system.<br />

A comparative study on polyculture <strong>systems</strong> us<strong>in</strong>g various comb<strong>in</strong>ations of<br />

shrimp, seaweed and fish was conducted <strong>in</strong> chapter three <strong>in</strong> order to calculate<br />

<strong>nutrient</strong>s <strong>fluxes</strong> and mass balances. Therefore, triplicate ponds of 1000 m 2 size<br />

were stocked with 0.4 kg/m 2 seaweed and 15 shrimps/m 2 (polyculture I), and<br />

triplicate ponds of size 1000 m 2 were stocked with 0.4 kg/m 2 seaweed, 15<br />

shrimps/m 2 , and 0.25 fish/m 2 (polyculture II). A mass balance model was<br />

developed for total nitrogen and total phosphorus to estimate their <strong>fluxes</strong>. From<br />

total nitrogen and total phosphorus <strong>in</strong>put, 46.79% and 14.99% were <strong>in</strong>corporated<br />

<strong>in</strong> 313.08 kg/1000 m 2 shrimp weight ga<strong>in</strong> <strong>in</strong> polyculture system I, while 41.47%<br />

and 13.47% were <strong>in</strong>corporated <strong>in</strong> 291.25 kg/1000 m 2 shrimp weight ga<strong>in</strong> and<br />

13.64% and 5.09% were <strong>in</strong>corporated <strong>in</strong> 40.67 kg/1000 m 2 fish weight ga<strong>in</strong> <strong>in</strong><br />

polyculture system II. These results suggest that no significant differences <strong>in</strong><br />

shrimp performance between the two polyculture <strong>systems</strong> (P>0.05) could be<br />

observed.<br />

Chapter four evaluated the <strong>nutrient</strong> absorption efficiency of comb<strong>in</strong>ed shrimp and<br />

seaweed production. Therefore, triplicate concrete tanks, with a volume of 3 m 3 ,<br />

were stocked with shrimp (6–7 g, 5 <strong>in</strong>d/100 litres) and seaweed <strong>in</strong> densities of 0<br />

g/l, 3.125 g/l, 6.250 g/l, and 9.375 g/l. The use of seaweed at a density of 3.125 g/l<br />

<strong>in</strong> shrimp polyculture showed the highest ability for nitrogen assimilation<br />

orig<strong>in</strong>at<strong>in</strong>g from shrimp waste. This treatment <strong>in</strong>creased shrimp survival rate from<br />

63% (without seaweed) to 83% and the growth performance of shrimp from<br />

247.78 g (without seaweed) to 350.20 g. Rema<strong>in</strong><strong>in</strong>g nitrogen excreted by shrimp<br />

amounted to 15.36 g, which was ma<strong>in</strong>ly (14.62 g) utilized by seaweed to form a<br />

biomass of 16.90 kg. Therefore, polyculture <strong>systems</strong> us<strong>in</strong>g seaweed seem to act<br />

more efficiently with regard to <strong>nutrient</strong> accumulation and beneficial effects on cocultured<br />

organisms.<br />

103


Zusammenfassung<br />

Die futtermittelbasierte Aquakultur kann zu e<strong>in</strong>er Anreicherung von<br />

Stoffwechselendprodukten führen, die die Qualität des genutzten Gewässers<br />

erheblich bee<strong>in</strong>trächtigen können. In der vorliegenden Arbeit wurde deshalb die<br />

Reduzierung von Nährstoffemissionen der Aquakultur durch multitrophe<br />

Haltungssysteme untersucht. Hierzu wurden verschiedene Kulturverfahren von<br />

Tilapia, Shrimp und Makroalgen unter praxisgleichen Bed<strong>in</strong>gungen <strong>in</strong> Indonesien<br />

untersucht.<br />

Kapitel e<strong>in</strong>s der vorliegenden Arbeit führt thematisch e<strong>in</strong> und beschreibt die<br />

grundlegenden Prozesse im Nährstoffkreislauf von Gewässer- und<br />

Aquakultursystemen. Aufgrund der vielfältigen gelösten und partikulären<br />

Nährstofffraktionen <strong>in</strong> Aquakultursystemen kann nur auf Basis von multitrophen<br />

Systemen e<strong>in</strong>e relevante Nährstoffausnutzung realisiert werden. Anhand vieler<br />

Untersuchungen aus der Literatur kann dabei auf die besondere Bedeutung von<br />

Algen als Biofilter <strong>in</strong> e<strong>in</strong>em Polykultur-System h<strong>in</strong>gewiesen werden, da deren<br />

hohe Wachstumspotentiale die anfallenden gelösten Stickstoff- und<br />

Phosphorverb<strong>in</strong>dungen der tierischen Aquakulturproduktion effektiv verwerten,<br />

die Haltungsumwelt <strong>für</strong> weitere Organismen optimieren und der zusätzlichen<br />

ökonomischen Wertschöpfung dienen. Weiterh<strong>in</strong> bietet sich die komb<strong>in</strong>ierte<br />

Aufzucht von carnivoren mit omni- oder herbivioren Species an, da somit die<br />

Stoffwechselendprodukte <strong>in</strong> der niedrigeren Trophieebene effektiv <strong>in</strong> Biomasse<br />

überführt werden können.<br />

In Kapitel zwei werden die Potentiale von Monokultur- und Polykultursysteme<br />

experimentell mite<strong>in</strong>ander verglichen. Da<strong>für</strong> wurden drei Teiche mit identischer<br />

Fläche von 1200 m 2 <strong>in</strong> Polykultur mit Gracillaria verrucosa (50 kg) und 20<br />

Shrimps/m² (Penaeus vannamei, Anfangsgewicht 0.22 ± 0.016 g) besetzt.<br />

Weiterh<strong>in</strong> dienten 3 Teiche mit Shrimpmonokultur bei Besatzdichten von 20<br />

Shrimps/m² als Vergleich. Der Versuch wurde über 100 Tage durchgeführt und im<br />

Abstand von 10 Tagen wurden die Wasser<strong>in</strong>haltsstoffe erfasst. Die Werte<br />

<strong>in</strong>dizieren, dass das Polykultur-System mit Algen Gracillaria effizienter die<br />

zugeführten Nährstoffe <strong>in</strong> Biomasse überführen. Die Durchschnittskonzentration<br />

104


von Ammonium-Stickstoff über die gesamte Versuchsperiode betrug<br />

beispielsweise 0.24 mg/l im Polykultur- und 0.37 mg/l im Monokultursystem. In<br />

der Nährstoffbilanzierung zeigt sich, dass aus dem gesamten Stickstoff (TN)- und<br />

Phospore<strong>in</strong>trag (TP) 24.2% bzw. 5.3% <strong>in</strong> 335.7 kg Shrimpsbiomasse <strong>in</strong> der<br />

Monokultur überführt wurde, während <strong>in</strong> der Polykultur 30.8% bzw. 6.9% des<br />

e<strong>in</strong>getragenen TN und TP <strong>in</strong> 501.5 kg Shrimps und 3.5 % bzw. 2.4% des TN und<br />

TP <strong>in</strong> 325 kg Makroalgen Gracillaria verrucosa e<strong>in</strong>gebaut wurden.<br />

Im dritten Kapitel wurden das Polykulturverfahren mit Gracillaria-Algen und<br />

Shrimp (Peneaus vannamei, Polykultur I) mit e<strong>in</strong>em dreigliedrigen Verfahren aus<br />

Shrimp (Peneaus vannamei), Fisch (Oreochromis niloticus) und Makroalgen<br />

(Gracillaria verrucosa, Polykultur II) verglichen. Hier<strong>für</strong> wurde wiederum e<strong>in</strong><br />

triplikater Versuchsansatz mit jeweils drei Teichen mit e<strong>in</strong>er Fläche von 1000 m 2<br />

e<strong>in</strong>gesetzt und mit 0.4 kg/m 2 Makroalgen und 15 Shrimps/m 2 besetzt. In die<br />

dreigliedrigen Polykultursystemteiche wurden zusätzlich 0.25 Fische/m² gesetzt.<br />

Das Fütterungsmanagement berücksichtigte lediglich die Shrimps, die <strong>in</strong> beiden<br />

Versuchsansätzen mit vergleichbarer Intensität gefüttert wurden. In der<br />

Nährstoffbilanz zeigte sich, dass <strong>in</strong> Polykultur I aus dem TN- und TP-E<strong>in</strong>trag<br />

46.70% und 14.99% <strong>in</strong> 313.08 kg Shrimpbiomasse umgesetzt wurde, während <strong>in</strong><br />

Polykultur II 41.7% und 13.47% <strong>in</strong> 291.25 kg Shrimps und 13.62% und 5.09% <strong>in</strong><br />

40.67 kg m 2 Fisch e<strong>in</strong>gebaut wurden. Die Makroalgen <strong>in</strong>korporierten <strong>in</strong><br />

Polykultur I 10.56 % und 9.75 % TN und TP, und <strong>in</strong> Polykultur II vergleichbare<br />

10.94% und 8.83%. Dieses Ergebnis zeigt, dass das Shrimpsaufkommen durch die<br />

Polykultur mit Fischen nicht signifikant bee<strong>in</strong>trächtigt wird, durch die zusätzliche<br />

Nährstoffb<strong>in</strong>dung jedoch signifikant weniger Nährstoffe aus dem System geführt<br />

werden.<br />

Im abschließenden vierten Kapitel wurde das Nährstoffaufnahmepotential von<br />

variierendem Makroalgenbesatz <strong>in</strong> Polykultur mit Shrimps untersucht. Da<strong>für</strong><br />

wurden <strong>in</strong> kle<strong>in</strong>skaligen Betonsystemen mit e<strong>in</strong>em Volumen von 3 m 3 Garnelen,<br />

Penaeus vannamei, (6-7 g, 5 Ind/100 Liter) und Makroalgen Gracillaria<br />

verrucosa bei verschiedenen Kulturdichten von 0 g/l, 3.125 g/l, 6.250 g/l und<br />

9.375 g/l aufgezogen und die Wachstumsleistungen und Nährstoffbilanzen<br />

105


ermittelt. Dabei zeigte sich, dass die Stickstoffaufnahme der Makroalgen bei e<strong>in</strong>er<br />

Besatzdichte von 3.<br />

125 g/l am höchsten ist. Zudem kann e<strong>in</strong>e positive Wirkung auf die Shrimps<br />

festgestellt werden, da sich höhere Wachstumsleistungen (Gesamtendgewicht:<br />

243.78 g ohne Algen; 350.20 g bei Algendichte: 3.125 g/l) und<br />

Überlebensleistungen der Shrimps (63% ohne Algen, 83% bei Algendichte von<br />

3.125 g/l) e<strong>in</strong>stellen. Der aus der Shrimpfütterung stammende Stickstoff (15.36 g)<br />

wurde dabei überwiegend (14.62 g) von den Algen zur Biomassebildung genutzt.<br />

Schlussfolgend kann gesagt werden, dass die gezielte Polykultur von Shrimps-,<br />

Fisch und Makroalgenaufzucht zu e<strong>in</strong>er deutlich verbesserten<br />

Nährstoffausnutzung und damit zu ger<strong>in</strong>geren Nährstoffausträgen aus<br />

Aquakulturen führen können. Die Zusammenhänge zwischen den<br />

unterschiedlichen trophischen Produktionsebenen s<strong>in</strong>d jedoch nur <strong>in</strong> Teilen<br />

verstanden, so dass weiterh<strong>in</strong> e<strong>in</strong> sehr großes Optimierungspotential besteht.<br />

106


Danksagung<br />

An dieser Stelle möchte ich den Menschen Dank entgegenbr<strong>in</strong>gen, die zum<br />

Gel<strong>in</strong>gen der vorliegenden Arbeit beigetragen haben.<br />

Ich bedanke mich bei me<strong>in</strong>em Betreuer Herrn Prof. Dr. Carsten Schulz <strong>für</strong> die<br />

Überlassung des <strong>in</strong>teressanten Themas und das mir geschenkte Vertrauen bei der<br />

Projektbearbeitung.<br />

Herrn Dr. Karl J. Hesse vom FTZ-Buesum und Prof. Dr. Nöel Holmgren der<br />

Universität zu Skövde-Sweden danke ich <strong>für</strong> die Diskussion.<br />

Dank gilt me<strong>in</strong>en lieben Kolleg<strong>in</strong>nen und Kollegen vom FTZ/Corelab <strong>für</strong> die<br />

Unterstützung bei der Versuchsdurchführung und die überaus schöne Zeit <strong>in</strong> Kiel<br />

und Büsum. Besonders bei Herrn Prof. Dr. Roberto Mayerle, Dr. Peter Weppen,<br />

Britta Egge und Daniela Koch bedanke ich mich, dass ich als Gast <strong>in</strong> FTZ/Corelab<br />

arbeiten durfte.<br />

Den Kollegen aus Indonesien danke ich <strong>für</strong> die gute Zusammenarbeit.<br />

Ich bedanke mich bei Herrn Dede Suhendar <strong>für</strong> die Hilfsbereitschaft bei der<br />

Versuchsdurchführung und die angenehme Büronachbarschaft.<br />

Me<strong>in</strong>en Eltern danke ich <strong>für</strong> die wie immer selbstlose Unterstützung jeglicher Art.<br />

Und ganz besonders danke ich euch, Am<strong>in</strong>udd<strong>in</strong> Shaleh und Mulyati Am<strong>in</strong>udd<strong>in</strong>,<br />

weil ihr mir allzeit Kraft gebt<br />

Me<strong>in</strong> größter Dank an me<strong>in</strong>e Frau Tri Dewi K P und me<strong>in</strong>e K<strong>in</strong>der, Azka Auliya<br />

Yudanegara, Gilang Auliya Fauz<strong>in</strong> und Fadhlan Auliya Danurdoro <strong>für</strong> ihre<br />

Unterstützung.<br />

107


Name: Yudi Nurul Ihsan<br />

Geburstag: 1.12.1975<br />

Lebenslauf<br />

Gebursort: Bandung – Indonesien<br />

Eltern: Am<strong>in</strong>udd<strong>in</strong> Shaleh<br />

Schulausbildung:<br />

Mulyati Am<strong>in</strong>udd<strong>in</strong><br />

1982-1988 SD Melong Asih II Bandung - Indonesien<br />

1988-1994<br />

Studium:<br />

SMAM Garut - Indonesien<br />

1994-1999 Bachelor-Studium “Aquaculture“ an der Bogor Agricultural<br />

University zu Bogor (IPB-Bogor) Indonesien<br />

1999-2002 Master-Studium “Coastal and Mar<strong>in</strong>e Resource<br />

Management“ an der Bogor Agricultural University zu<br />

Bogor (IPB-Bogor) Indonesien<br />

Berufliche Tätigkeit:<br />

2002-2005 Wissenschaftliche Mitarbeiter am Center for Coastal and<br />

Mar<strong>in</strong>e Resources Study (CCMRS-IPB) Bogor, Indonesien<br />

2005-2008 Wissenschaftliche Mitarbeiter an der Fisheries and Mar<strong>in</strong>e<br />

Sciences Fakultät, Universitas Padjadjaran Bandung,<br />

Indonesien<br />

2008-2011 Wissenschaftliche Mitarbeiter bei der Gesellschaft <strong>für</strong><br />

Mar<strong>in</strong>e Aquakultur (GMA) mbH <strong>in</strong> Büsum bei Herrn Prof.<br />

Dr. C. Schulz<br />

108

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!