Single-Molecule Tracking in Living Cells Using ... - Theranostics

Single-Molecule Tracking in Living Cells Using ... - Theranostics Single-Molecule Tracking in Living Cells Using ... - Theranostics

Getty surveys f<strong>in</strong>d PST boosted L.A.'s image as arts capital - latimes.comhttp://www.latimes.com/enterta<strong>in</strong>ment/arts/culture/la-et-cm-getty-survey-...2 of 2 12/3/2012 1:40 PM5. Still, when the same survey asked if L.A. has a shallow culture, about 10% “strongly agreed” and thatnumber rema<strong>in</strong>ed the same after PST, suggest<strong>in</strong>g that some clichés are harder to shake — or some peopleharder to w<strong>in</strong> over — than others.RELATED:Plans for a sequel under wayTop 20 PST shows by daily average attendancePacific Standard Time goes almost like clockworkCopyright © 2012, Los Angeles Times


1. IntroductionThe ability to selectively detect a s<strong>in</strong>gle molecule or small number of molecules <strong>in</strong> liv<strong>in</strong>g cells isa very powerful way to understand the dynamics of cellular organization. Many key cellularprocesses are mediated by a small number of molecules, and can be regarded as s<strong>in</strong>gle-moleculeevents. Therefore, monitor<strong>in</strong>g the behavior of a s<strong>in</strong>gle molecule, e.g. a s<strong>in</strong>gle prote<strong>in</strong>, <strong>in</strong> liv<strong>in</strong>gcells is a powerful approach for <strong>in</strong>vestigat<strong>in</strong>g the details of cellular events.Conventional <strong>in</strong> vivo imag<strong>in</strong>g methods such as magnetic resonance imag<strong>in</strong>g, computedtomography and positron emission tomography do not have a sufficient resolution level toreveal bioactivity at the s<strong>in</strong>gle molecule <strong>in</strong> vivo. Although the use of organic fluorescence orlum<strong>in</strong>escence imag<strong>in</strong>g provides reliable results, the data obta<strong>in</strong>ed are mean values from multiplemolecular events at a particular po<strong>in</strong>t <strong>in</strong> time. Therefore, such techniques do not provide<strong>in</strong>formation about how the activities of s<strong>in</strong>gle molecules, <strong>in</strong>clud<strong>in</strong>g prote<strong>in</strong>s, fluctuate with<strong>in</strong>different parts of liv<strong>in</strong>g cells at different po<strong>in</strong>ts <strong>in</strong> time [1-3].<strong>S<strong>in</strong>gle</strong> particle methods have been under development s<strong>in</strong>ce the late 1980s <strong>in</strong> order to enablethe imag<strong>in</strong>g of s<strong>in</strong>gle molecules <strong>in</strong> cells [4]. Initially, micron-sized latex beads and goldnanoparticles (40-100 nm <strong>in</strong> size), which could be detected by <strong>in</strong>terference contrast microscopy,were used to follow the movement of s<strong>in</strong>gle molecules <strong>in</strong> liv<strong>in</strong>g cells. Follow<strong>in</strong>g thedemonstration by Sieala <strong>in</strong> the 1990s that s<strong>in</strong>gle molecules of fluorescent dyes could be detected<strong>in</strong> solution, s<strong>in</strong>gle fluorescent dye-based imag<strong>in</strong>g has become a useful and common tool <strong>in</strong>biophysics [5]. Subsequently, these methods were extended to track s<strong>in</strong>gle dyes and GreenFluorescent Prote<strong>in</strong> (GFP) <strong>in</strong> liv<strong>in</strong>g cells [1]. Follow<strong>in</strong>g the <strong>in</strong>troduction of GFP, it becamepossible to monitor the expression and localization of a GFP-tagged prote<strong>in</strong> <strong>in</strong> liv<strong>in</strong>g organisms[6-7]. Nowadays, fluorescent prote<strong>in</strong>s (derivatives of GFP) are available with several differentexcitation/emission spectra that allow for simultaneous observation of more than one prote<strong>in</strong> [8].Because the fusion of GFP with the prote<strong>in</strong> of <strong>in</strong>terest is achieved at the genetic level, thesta<strong>in</strong><strong>in</strong>g is highly specific and the stoichiometry is well def<strong>in</strong>ed at one GFP per prote<strong>in</strong>. For<strong>in</strong>stance, it is possible to observe the relative amount of an expressed prote<strong>in</strong> and its localizationthroughout the cell’s life cycle with<strong>in</strong> a population of cells. In addition, prote<strong>in</strong> translocationwith<strong>in</strong> the cell can be tracked by follow<strong>in</strong>g the movement of a s<strong>in</strong>gle fluorescent molecule.However, analysis of the properties of s<strong>in</strong>gle molecules <strong>in</strong> liv<strong>in</strong>g cells us<strong>in</strong>g latex beads,gold nanoparticles, fluorescent dyes, and GFP is restricted by either the size of the probe (40 nmgold nanoparticles or 500 nm latex spheres) or the photobleach<strong>in</strong>g of small fluorescent labels(fluorescent dyes and GFP). These restrictions reduce the duration of the measurements andlimit the observation of complex dynamics [9]. Although non-fluorescent particle track<strong>in</strong>g is notlimited by such issues, it is not easily amenable to signal multiplex<strong>in</strong>g. Therefore, thecorrelation of multiple parameters by such techniques is not possible [10].3


Quantum dots (QDs) do not possess the limitations of conventional probes (latex beads,gold nanoparticles, fluorescent dyes, GFP). They have therefore become of <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>terestas lum<strong>in</strong>escent tracers <strong>in</strong> biological applications such as molecular histopathology, diseasediagnosis and biological imag<strong>in</strong>g [11-14], <strong>in</strong>clud<strong>in</strong>g <strong>in</strong> vivo tumor detection [15-18], stem cellimag<strong>in</strong>g [19-21], and drug delivery [22-24]. Indeed, QDs, which are <strong>in</strong>termediary <strong>in</strong> size (2 to10 nm), are substantially more photostable than conventional fluorophores, and have beenvaunted as promis<strong>in</strong>g fluorescent probes [25-26].Recently, the number of research reports relat<strong>in</strong>g to s<strong>in</strong>gle molecule track<strong>in</strong>g us<strong>in</strong>g quantumdots has gradually <strong>in</strong>creased. From 1985 to 2010, the total number of reports conta<strong>in</strong><strong>in</strong>g the twokey terms, “s<strong>in</strong>gle molecule track<strong>in</strong>g” and “quantum dot”, was 156. The number of reportsconta<strong>in</strong><strong>in</strong>g only one of these key terms was 1,348 for “s<strong>in</strong>gle molecule track<strong>in</strong>g” and 53,424 for“quantum dot” (data from Web of Science). <strong>S<strong>in</strong>gle</strong> molecule track<strong>in</strong>g us<strong>in</strong>g QDs is therefore atthe frontiers of research <strong>in</strong>to bioimag<strong>in</strong>g.In this review, we first <strong>in</strong>troduce the fundamental physicochemical properties of QDs thatenable s<strong>in</strong>gle molecule track<strong>in</strong>g via a s<strong>in</strong>gle QD. We then discuss several examples of QD-baseds<strong>in</strong>gle molecule track<strong>in</strong>g, <strong>in</strong>clud<strong>in</strong>g membrane dynamics, neuronal function, selective transportmechanisms of the nuclear pore complex, and <strong>in</strong> vivo real-time observation.Figure 1. Number of research report from 1985 to 2010 conta<strong>in</strong><strong>in</strong>g the key words (a)“s<strong>in</strong>gle molecule track<strong>in</strong>g” and “quantum dot”, (b) “s<strong>in</strong>gle molecule track<strong>in</strong>g”, and (c)“quantum dot”. The data are from WEB of KNOWLEDGE SM by THOMSONREUTERS (2011).4


2. Physicochemical properties of QDsQDs are semiconductor nanocrystals compris<strong>in</strong>g elements from the periodic groups II-IV, IV-VI,or III-V, which act as a semiconductor core (e.g., CdTe, CdSe, PbSe, GaAs, GaN, InP, and InAs)[27]. In order to m<strong>in</strong>imize the surface defect and <strong>in</strong>crease the quantum yield, the core issurrounded by a semiconductor shell such as ZnS that has wide-bandgap energy [28]. Becausethe lattice constants of CdSe and ZnS <strong>in</strong> bulk crystals are 4.30Å (a-axis) and 5.42Å, respectively(Table 1), the lattice mismatch between them is quite large [29]. However, the relatively largesurface curvature <strong>in</strong> the quantum dot enables epitaxial shell growth on the core. The size of QDsranges between 2 and 10 nm <strong>in</strong> diameter, which is close to or smaller than the dimensions of theexcitation Bohr radius. As a result, the mobility of the electron-charged carrier is restricted <strong>in</strong>the range of nanoscale dimensions, and this quantum conf<strong>in</strong>ement effect provides the QDs withunique optical and electrical properties [30]. The optical properties of QDs <strong>in</strong>clude highquantum yields, high molar ext<strong>in</strong>ction coefficients (ca. 10-100 times higher than that of organicdyes), broad absorption with narrow (25-40 nm half width), symmetric photolum<strong>in</strong>escencespectra between UV to near-<strong>in</strong>frared regions, large effective Stock shifts, and high resistanceaga<strong>in</strong>st photobleach<strong>in</strong>g and photo- and chemical-degradation [31-32].Note: the data of Table 1 is obta<strong>in</strong>ed from reference 29.Because QDs are mostly synthesized <strong>in</strong> the organic solvent phase, the result<strong>in</strong>g QDs arewater-<strong>in</strong>soluble [11, 33]. Therefore, to make use of their optical properties <strong>in</strong> biological systems,the surface has to be modified by a hydrophilic coat<strong>in</strong>g. QDs obta<strong>in</strong>ed <strong>in</strong> the organic phase aretransferred to the aqueous phase by a ligand exchange method [11, 34]. Alternatively, a polymerand lipid coat<strong>in</strong>g is another efficient method of provid<strong>in</strong>g QDs with good water solubility.Recently, several studies relat<strong>in</strong>g to QD surface coat<strong>in</strong>g methods that have <strong>in</strong>creased water5


dispersion have been reported [35]. For <strong>in</strong>stance, QDs (CdTe/ZnTe; core/shell) from a directone-pot synthesis <strong>in</strong> the aqueous phase exhibited low toxicity with high quantum yield (52%),and underwent bioconjugation (cyste<strong>in</strong>-capped) with a small particle size (3-5 nm) [36]. Toimprove their <strong>in</strong> vitro and <strong>in</strong> vivo imag<strong>in</strong>g performance, recent efforts have focused ma<strong>in</strong>ly onthe functionalization of QDs to accommodate the demands of imag<strong>in</strong>g sensitivity andspecificity.3. Preparation and usage of bioconjugated QDsThe method used for bioconjugation of QDs is important for subsequent QD-based targetdelivery, cellular entrance, and s<strong>in</strong>gle molecule track<strong>in</strong>g [37]. QDs used for bioimag<strong>in</strong>gapplications are prepared by a variety of steps, <strong>in</strong>clud<strong>in</strong>g synthesis of core QDs and their shellcoat<strong>in</strong>g, surface modification, and bioconjugation. In particular, appropriate surfacemodification enables the successful conjugation of biomolecules with QDs. Reactive functionalgroups and molecules suitable for the surface coat<strong>in</strong>g of core/shell QDs to facilitate subsequentbioconjugation <strong>in</strong>clude thiol, streptavid<strong>in</strong>, biot<strong>in</strong>, primary am<strong>in</strong>es, maleimide, succ<strong>in</strong>imide,carboxylic acid, or biocompatible polymer [25, 38]. Biomolecules, <strong>in</strong>clud<strong>in</strong>g antibodies,peptides, prote<strong>in</strong>s, aptamers, nucleic acids, small molecules, and liposomes, are all candidatesfor bioconjugation to QDs [28, 38]. These biomolecules can be covalently coated onto thesurface of QDs if they conta<strong>in</strong> a functional group, otherwise non-covalent coat<strong>in</strong>g on the QDssurface is performed. These bioconjugated QDs are extensively used for direct and <strong>in</strong>directlabel<strong>in</strong>g of extracellular prote<strong>in</strong>s and subcellular organelles. Therefore, bioconjugated QDs areclassified as (i) nonspecific extracellular label<strong>in</strong>g, (ii) nonspecific <strong>in</strong>tracellular delivery, (iii)targeted extracellular label<strong>in</strong>g, and (iv) targeted <strong>in</strong>tracellular delivery [38]. Several excellentreviews that discuss the various methods of QD bioconjugation have been published [38-42].Bioconjugated QDs are essential for effective s<strong>in</strong>gle molecule track<strong>in</strong>g us<strong>in</strong>g QDs.4. Confirmation of s<strong>in</strong>gle QD track<strong>in</strong>g us<strong>in</strong>g the antibunch<strong>in</strong>g measurementGenerally, the antibunch<strong>in</strong>g measurement confirms whether the s<strong>in</strong>gle molecule track<strong>in</strong>g ofs<strong>in</strong>gle fluorescent molecules is real or not. Also, evidence of s<strong>in</strong>gle molecule track<strong>in</strong>g us<strong>in</strong>g as<strong>in</strong>gle QD is obta<strong>in</strong>ed from an antibunch<strong>in</strong>g measurement [43-47]. Indeed, several studies haveconfirmed that antibunch<strong>in</strong>g was observed <strong>in</strong> s<strong>in</strong>gle QDs [48]. Very recently, antibunch<strong>in</strong>g wasdetected from a s<strong>in</strong>gle QD that was excited by a multiphoton excitation wavelength (two photonexcitation) (Fig. 2) [49]. The multiphoton excitation of QDs has advantages for s<strong>in</strong>gle moleculetrack<strong>in</strong>g. For <strong>in</strong>stance, the excitation wavelength (e.g. us<strong>in</strong>g an 800 nm wavelength amplified byTi:sapphire laser) atta<strong>in</strong>s deep tissue penetration, where the light <strong>in</strong> the range of the so called“transparent w<strong>in</strong>dow” (700-900 nm) is absorbed less by water and tissues <strong>in</strong> the <strong>in</strong> vivo6


environment. This enables deep tissue imag<strong>in</strong>g with low photodamage to cells, and is thussuitable for long-term track<strong>in</strong>g studies. Therefore, s<strong>in</strong>gle QDs excited by the multiphotonexcitation wavelength are strong candidates for imag<strong>in</strong>g by s<strong>in</strong>gle molecule track<strong>in</strong>g <strong>in</strong> the nearfuture.In the follow<strong>in</strong>g sections, we will describe the measurement and analysis techniques used <strong>in</strong>s<strong>in</strong>gle QD-based s<strong>in</strong>gle molecule track<strong>in</strong>g.5. Measurement techniques for s<strong>in</strong>gle molecule track<strong>in</strong>gMany current bioimag<strong>in</strong>g technologies have been developed us<strong>in</strong>g GFP. GFP enables real-timeobservation of the movements of prote<strong>in</strong>s <strong>in</strong> cells. In particular, endocytosis, endosome track<strong>in</strong>gand various <strong>in</strong>fective processes have been revealed by means of s<strong>in</strong>gle molecule measurementtechniques us<strong>in</strong>g scann<strong>in</strong>g near-field optical microscopy [50-51]. Recently, because GFP hasweak fluorescence and a short fluorescent lifetime (a few seconds to tens of seconds), QDs have(A)(B)(C)Figure 2. Measurement of QD antibunch<strong>in</strong>g. (A) Photolum<strong>in</strong>escence <strong>in</strong>tensity image of quantumdots via two-photon excitation at room temperature (scale bar 1 m); (B) correspond<strong>in</strong>gphotolum<strong>in</strong>escence life time <strong>in</strong>formation image; and (C) co<strong>in</strong>cidence measurement of PL photonpairs of a s<strong>in</strong>gle quantum dot (arrow <strong>in</strong> (A)). The process of obta<strong>in</strong><strong>in</strong>g permission from reference49 is now <strong>in</strong> preparation.begun to replace GFP. Compared with GFP, QDs have ~10-100 times higher fluorescence thanGFP, and are ~100-1000 times more stable aga<strong>in</strong>st photobleach<strong>in</strong>g [52].For s<strong>in</strong>gle molecule track<strong>in</strong>g, three-dimensional (3D) observation of prote<strong>in</strong>s is bothimportant and necessary to enable a precise understand<strong>in</strong>g of their movements. However,7


conventional microscopic observations only obta<strong>in</strong> two-dimensional (2D) <strong>in</strong>formation. Toovercome this problem, the superposition of 2D pictures obta<strong>in</strong>ed by confocal microscopy hasbeen used to reconstruct 3D images. However, the low resolution time (a few seconds) ofconventional microscopy makes it difficult to reveal prote<strong>in</strong> movements that occur with<strong>in</strong> theorder of milliseconds. <strong>Track<strong>in</strong>g</strong> the movements of s<strong>in</strong>gle molecules through three dimensionspresents a difficult and, until recently, unsolved technical problem [53-60].Recently, a method for track<strong>in</strong>g s<strong>in</strong>gle prote<strong>in</strong>s labeled with a s<strong>in</strong>gle QD <strong>in</strong> liv<strong>in</strong>g cells wasreported, where the 3D molecular movements were followed by active feedback once every 5ms by us<strong>in</strong>g four overlapp<strong>in</strong>g confocal volume elements (Fig. 3) [61]. This method has severaladvantages compared to conventional 3D molecular track<strong>in</strong>g methods based uponcharge-coupled device cameras, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>creased Z-track<strong>in</strong>g range (ca. 10 μm), substantiallylower excitation energy (ca. 15 μW), and the ability to perform time-resolved spectroscopy (e.g.fluorescence correlation spectroscopy or fluorescence lifetime measurements) on the moleculesbe<strong>in</strong>g tracked. In particular, fluorescence photon antibunch<strong>in</strong>g from the <strong>in</strong>dividual QD-labeledprote<strong>in</strong>s <strong>in</strong> liv<strong>in</strong>g cells was successfully demonstrated, which showed the track<strong>in</strong>g of an<strong>in</strong>dividual dye-labeled nucleotide (Cy5-dUTP) at biologically relevant transport rates. Thetrajectories of receptors on the cell membrane revealed the three-dimensional and nanoscalefeatures of cell surface topology. Dur<strong>in</strong>g the later stages of the signal transduction cascade,assembles of QD labeled IgE-FcεRI were captured <strong>in</strong> the course of ligand-meditatedendocytosis and were tracked dur<strong>in</strong>g vesicular transit through the cell at the rapid speed of ~950nm/s. In addition to the substantial k<strong>in</strong>etic data obta<strong>in</strong>ed from these three-dimensionaltrajectories, the <strong>in</strong>dividual photon arrival time was recorded with about 400 ps accuracy, thusenabl<strong>in</strong>g the implementation of a number of time-resolved analysis methods impossible withcamera-based track<strong>in</strong>g methods.6. Analysis of s<strong>in</strong>gle QD track<strong>in</strong>g data<strong>S<strong>in</strong>gle</strong> molecule experiments suffer from a lack of statistical data, and s<strong>in</strong>gle molecule track<strong>in</strong>g<strong>in</strong> the cell is no exception. It is necessary to identify the appropriate parameters required toautomatically classify and analyze the data. As a result, various analytical techniques have beendeveloped to extract mean<strong>in</strong>gful properties from the trajectories of s<strong>in</strong>gle molecules. Generally,comput<strong>in</strong>g the mean square displacement (MSD) as a function of time can rapidly determ<strong>in</strong>e themodel of motion and yields associated parameters (diffusion coefficient, transport velocity, sizeof conf<strong>in</strong>ement doma<strong>in</strong>s, etc) [3-4, 62-63]. However, this method only gives the averagedmotion parameters of the whole trajectory. Thus, MSD analysis might be <strong>in</strong>adequate to describetransient behaviors when a molecule dynamically <strong>in</strong>teracts with specific molecular partners or8


Figure 3. (A) Three-dimensional trajectory of a s<strong>in</strong>gle QD-labeled IgE-FcεRI on anunstimulated mast cell at 37˚C. A ra<strong>in</strong>bow color scheme is used to denote the passage oftime. (B) Counts used for 3D track<strong>in</strong>g and feedback. (C) CCD image show<strong>in</strong>g the receptorlocation relative to the mast cell (arrow po<strong>in</strong>ts to the QD). (D) Z-position of this receptor,show<strong>in</strong>g over 4 m of Z-motion that would be missed <strong>in</strong> CCD-based track<strong>in</strong>g methods. (E)Mean-squared displacement (blue) and fit (red). The motion is highly compartmentalized. (F)Photon pair correlation measurement derived from this ~14 s long trajectory that showsfluorescence photon antibunch<strong>in</strong>g. The process of obta<strong>in</strong><strong>in</strong>g permission from reference 61 isnow <strong>in</strong> preparation.directly with its environment. Therefore, it is important to determ<strong>in</strong>e how precisely s<strong>in</strong>gleparticle track<strong>in</strong>g can be performed, and what <strong>in</strong>formation can be obta<strong>in</strong>ed from the data and howaccurately, rema<strong>in</strong> active research topics. Michalet et al used MSD analysis to study simpleBrownian diffusion <strong>in</strong> an isotropic medium [64]. The ability of MSD analysis to extract reliablediffusion coefficient (D) values for a s<strong>in</strong>gle particle with Brownian motion <strong>in</strong> an isotropicmedium was confirmed, even though its precise localization was uncerta<strong>in</strong>. As a result ofsimulation-supported theoretical analysis, a simple unweighted least-squares fit of the MSDcurve provided the best estimation of the D value, thus enabl<strong>in</strong>g an optimal number of MSDpo<strong>in</strong>ts to be used for the fitt<strong>in</strong>g.An alternative approach us<strong>in</strong>g image correlation spectroscopy was demonstrated, which didnot rely on the formation and analysis of <strong>in</strong>dividual trajectories [65]. This method is quicker, but9


potentially less <strong>in</strong>formative because only the population-average values of the k<strong>in</strong>eticparameters (diffusion coefficient, velocity and others) are obta<strong>in</strong>ed.Furthermore, <strong>in</strong> long duration QD track<strong>in</strong>g experiments, very rare events <strong>in</strong> the tracks mustbe spotted from thousands of frames. The <strong>in</strong>creas<strong>in</strong>g amount of data and the low probability ofspott<strong>in</strong>g rare events necessitate the development of adapted tools to classify the trajectories.Therefore, f<strong>in</strong>d<strong>in</strong>g the right thresholds and the right parameters to discrim<strong>in</strong>ate between thephysics of the different trajectories are important. These <strong>in</strong>clude the time dependent diffusioncoefficient, deviation from l<strong>in</strong>earity <strong>in</strong> the MSD, and asymmetry of the trajectory [66-67].7. Applications of s<strong>in</strong>gle molecule track<strong>in</strong>g <strong>in</strong> liv<strong>in</strong>g cellsThe direct observation of the movements of <strong>in</strong>dividual biological molecules can transform ourunderstand<strong>in</strong>g of important biophysical and cellular processes. For <strong>in</strong>stance, s<strong>in</strong>gle moleculetrack<strong>in</strong>g has enabled an understand<strong>in</strong>g of cellular membrane dynamics [68-70], gene regulation[71], and motor prote<strong>in</strong> k<strong>in</strong>etics [72-73]. In particular, reveal<strong>in</strong>g the activation of molecules andprote<strong>in</strong>s on the membrane is very important <strong>in</strong> relation to cell signal<strong>in</strong>g. QDs give a reasonablecompromise between large beads and small fluorophores for the track<strong>in</strong>g of s<strong>in</strong>gle molecules <strong>in</strong>liv<strong>in</strong>g cells, and QDs will be useful tools for ultrasensitive studies of the dynamics of cellularprocesses.The technical difficulty of QDs diffus<strong>in</strong>g through membranes and <strong>in</strong>to the cytosol is ageneral concern. QDs can be delivered <strong>in</strong>to the cytosol by physical delivery techniques such asmicro<strong>in</strong>jection [74-75] and electroporation [74, 76]. It is difficult to deliver QDs to a number ofcells at the same time us<strong>in</strong>g micro<strong>in</strong>jection, which is more suited to specifically target<strong>in</strong>g<strong>in</strong>dividual cells. However, micro<strong>in</strong>jection is unique <strong>in</strong> be<strong>in</strong>g able to deliver the QDs directly <strong>in</strong>tonuclei [77]. In the follow<strong>in</strong>g sections, several <strong>in</strong>terest<strong>in</strong>g topics that demonstrate theattractiveness of s<strong>in</strong>gle QD-based s<strong>in</strong>gle molecule track<strong>in</strong>g, such as membrane dynamics,neuronal function, selective transport mechanisms of the nuclear pore complex, and <strong>in</strong> vivo realtime observation, are <strong>in</strong>troduced.Membrane dynamicsRecent research developments have required us to revise the classical fluid mosaic model of theplasma membrane proposed by S<strong>in</strong>ger and Nicholoson more than 35 years ago [78]. Inparticular, it is now known that lipids and prote<strong>in</strong>s diffuse heterogeneously <strong>in</strong> plasmamembranes. A current challenge for cell signal<strong>in</strong>g and its regulation is understand<strong>in</strong>g how thestructural organization of plasma membranes affects <strong>in</strong>dividual prote<strong>in</strong>s.P<strong>in</strong>aud et al demonstrated that QD label<strong>in</strong>g enabled the high resolution and long-termtrack<strong>in</strong>g of <strong>in</strong>dividual glycosyl-phosphatidyl-<strong>in</strong>ositol anchored avid<strong>in</strong> test probes (Av-GPI) and10


Figure 4. <strong>S<strong>in</strong>gle</strong> QD track<strong>in</strong>g of Av-GPI by total <strong>in</strong>ternal reflection fluorescence(TIRF) microscopy, and quantification and classification of diffusion modes. (A)First frame from a dual-color TIRF movie of a HeLa cell. Av-GPIs <strong>in</strong> the ventralplasma membrane are labeled with QDs (red) and GM1 molecules are labeled withAlexa-488 CT×B (green). (B) Selected frames from a region of <strong>in</strong>terest (whitesquare <strong>in</strong> (A)) <strong>in</strong> which diffus<strong>in</strong>g Av-GPIs are tracked. Diffusion trajectories aredeterm<strong>in</strong>ed by the series of fitted positions, connected by a straight l<strong>in</strong>e. Noticethat Alexa-488 CT×B bleaches fast compared to QDs and the signal was nearlycompletely lost after 10 s. To facilitate visualization, the QD po<strong>in</strong>t-spread-functionsize was <strong>in</strong>tentionally expanded. <strong>Track<strong>in</strong>g</strong> was performed on raw images. (C)Overlay of Av-GPI trajectories with the mean <strong>in</strong>tensity projection image (ΣImean)for the Alexa-488 CT×B channel. This approach allows colocalization studies ofAv-GPIs with<strong>in</strong> fixed/slow diffus<strong>in</strong>g GM1-rich doma<strong>in</strong>s despite the fastphotobleach<strong>in</strong>g of Alexa-488 CT×B. The process of obta<strong>in</strong><strong>in</strong>g permission fromreference 10 is now <strong>in</strong> preparation.their various diffusion behaviors [10]. It was revealed that cholesterol-/sph<strong>in</strong>golipid-richmicrodoma<strong>in</strong>s can segment the diffusion of GPI-anchored prote<strong>in</strong>s <strong>in</strong> liv<strong>in</strong>g cells, and thedynamic partition<strong>in</strong>g raft model can precisely describe the diffusive behavior of someraft-associated prote<strong>in</strong>s across the plasma membrane (Fig. 4).Another example <strong>in</strong>volves G prote<strong>in</strong>-coupled receptors (GPCRs). GPCRs are the largestprote<strong>in</strong> superfamily <strong>in</strong> the human genome, compris<strong>in</strong>g 30% of recent drug targets, and theyregulate several cellular signal<strong>in</strong>g responses [79]. However, it is very difficult to research thefunction of GPCRs because it is impossible to dist<strong>in</strong>guish among the traffick<strong>in</strong>g of many<strong>in</strong>dividual receptors at the same time <strong>in</strong> multiple endosomal pathways. Therefore, s<strong>in</strong>glemolecule imag<strong>in</strong>g of endosomal traffick<strong>in</strong>g enables cellular signal<strong>in</strong>g to be understood, andprovides powerful tools for reveal<strong>in</strong>g the movements of GPCR targeted therapeutics.Accurate measurement of the endosomal traffick<strong>in</strong>g and <strong>in</strong>ternalization of seroton<strong>in</strong>11


(5-hydroxytryptam<strong>in</strong>e, 5-HT) receptors was achieved by us<strong>in</strong>g s<strong>in</strong>gle QD probes andquantitative localization [80]. These results emphasize the future importance of determ<strong>in</strong><strong>in</strong>g thedownstream effectors with<strong>in</strong> cells that mediate cell signal<strong>in</strong>g and guide receptor fate. QDspresent attractive opportunities for <strong>in</strong>vestigat<strong>in</strong>g the role of such effectors <strong>in</strong> receptor regulation.Such s<strong>in</strong>gle molecule studies of endosomal GPCR track<strong>in</strong>g will provide unique <strong>in</strong>sights <strong>in</strong>tohow receptor targeted therapeutics regulate cellular signal<strong>in</strong>g.Regard<strong>in</strong>g G prote<strong>in</strong>-coupled receptors [81-82], adenos<strong>in</strong>e-5’-triphosphate (ATP) signal<strong>in</strong>gacts through the membrane-bound pur<strong>in</strong>ergic receptor (P2Y). ATP, which is the universal fuel<strong>in</strong>side cells, also plays a critical role as a s<strong>in</strong>gl<strong>in</strong>g molecule <strong>in</strong> a spectrum of cellular functions,<strong>in</strong>clud<strong>in</strong>g hormone secretion, neurotransmission, proliferation, differentiation, and apoptosis[83]. The physiology of ATP receptors is not fully understood, despite their <strong>in</strong>creasedimportance <strong>in</strong> cell biology and disease mechanisms such as <strong>in</strong>flammation, cardiovasculardisease and pa<strong>in</strong>. ATP-conjugated quantum dots (QDATP) were used to specifically and readilylabel ATP receptors on liv<strong>in</strong>g neuroendocr<strong>in</strong>e PC12 cells, thus enabl<strong>in</strong>g their characterization[84]. This was the first study <strong>in</strong> which dynamic data on P2Y receptor traffick<strong>in</strong>g withsub-second resolution, <strong>in</strong> the context of neuronal differentiation and apoptosis, had beenobta<strong>in</strong>ed. This study demonstrates the potential of QDs as a novel tool to study the physiologyof P2Y receptors <strong>in</strong> relation to various critical diseases and cellular functions.Application of QDs <strong>in</strong> neuroscienceIn the neuroscience field, the issue of lateral mobility of neurotransmitter receptors has becomecentral to understand<strong>in</strong>g the development and plasticity of synapses. Therefore, the membranedynamics of glyc<strong>in</strong>e receptors have been <strong>in</strong>vestigated <strong>in</strong> transfected neurons by us<strong>in</strong>g latexbeads. However, because these measurements use beads with 500 nm <strong>in</strong> size, the analysis ofreceptor dynamics <strong>in</strong> the synaptic cleft is restricted [4]. <strong>S<strong>in</strong>gle</strong> QD track<strong>in</strong>g has successfullyallowed the direct measurement of the mobility and entry-exit k<strong>in</strong>etics of a variety ofneuroreceptors <strong>in</strong> synapses [9]. For example, the peculiarity of QDs enables the record<strong>in</strong>g of<strong>in</strong>dividual molecule mobility at the neuron surface, even <strong>in</strong> conf<strong>in</strong>ed cellular compartments. TheQDs were used to track <strong>in</strong>dividual GlyRs and to analyze their lateral dynamics <strong>in</strong> the membraneof liv<strong>in</strong>g neurons for periods rang<strong>in</strong>g from milliseconds to m<strong>in</strong>utes. The direct measurement ofthe mobility and entry-exit k<strong>in</strong>etics at synapses for several neuroreceptors [85] <strong>in</strong>clud<strong>in</strong>gNMDA [86], AMPA [87-88], glyc<strong>in</strong>e [9, 89-90], cannab<strong>in</strong>oid [91], GABA [90], and acetylchol<strong>in</strong>e receptors [92] has been reported.An alternative example of the use of QDs <strong>in</strong> neuroscience <strong>in</strong>volves their contribution toreveal<strong>in</strong>g <strong>in</strong>tractable disease mechanisms <strong>in</strong> ophthalmology. Coupl<strong>in</strong>g QDs to antibodies thatrecognize molecules associated with age-related macular degeneration (AMD)-<strong>in</strong>duced changes12


<strong>in</strong> the Bruch membrane [93-94] might provide a means to image the biochemical and/orstructural abnormalities associated with AMD [95]. This data is not obta<strong>in</strong>ed at the s<strong>in</strong>glemolecule track<strong>in</strong>g level; however, this approach may be crucial for the development of AMDtreatments that target early molecular changes and early stages of the disease. Therefore, AMDand other <strong>in</strong>tractable ophthalmology diseases will benefit from QD-based technologies,particularly at the s<strong>in</strong>gle molecule track<strong>in</strong>g level, <strong>in</strong> the near feature.Characterization of the nuclear pore complexIn an excit<strong>in</strong>g recent development, QDs enabled track<strong>in</strong>g measurements across the nuclearmembrane via nuclear pore complexes to be obta<strong>in</strong>ed (Fig. 5) [96]. In the cell, prote<strong>in</strong>s requiredby the nucleus need to be transported through the nuclear membrane <strong>in</strong> a highly selectivemanner. The cargo is covered with a class of prote<strong>in</strong>s, the import<strong>in</strong>s/karyopher<strong>in</strong>s, which<strong>in</strong>teract with a steep gradient of RanGTP (a GTPase) across the nuclear envelope to allowpassage through the membrane. The diffusive trajectories of import<strong>in</strong>-coated QDs through thenuclear pore were reported. As a result, it was revealed that cytoplasmic filaments <strong>in</strong>creased thecapture area for transport-competent cargoes, although lengthy cytoplasmic dock<strong>in</strong>g is notessential. The cargoes encounter size-selective barriers <strong>in</strong>side the channel; that is, thetransport-competent cargos diffuse extraord<strong>in</strong>arily with<strong>in</strong> the central channels, with more freediffusion of cargoes at higher receptor density, and the central channel is functionallyasymmetric. In another example, mRNAs tagged with QDs were micro<strong>in</strong>jected <strong>in</strong>to the nucleusto study their anomalous diffusion through a physical barrier to study prote<strong>in</strong>-DNA <strong>in</strong>teractions<strong>in</strong> liv<strong>in</strong>g cells [77].In vivo real-time track<strong>in</strong>g of s<strong>in</strong>gle quantum dotsQuantitative analysis relat<strong>in</strong>g to the dynamics of nanoparticle delivery <strong>in</strong> vivo is very importantto the development of more efficient drug delivery systems. Until recently, the specificprocesses of nanoparticle delivery <strong>in</strong> vivo post-<strong>in</strong>jection had not been revealed at the s<strong>in</strong>gleparticle level. To address this issue, QD-based real-time track<strong>in</strong>g of s<strong>in</strong>gle particles was used forthe study of a drug delivery system [97]. The specific delivery of s<strong>in</strong>gle QD-complexes to theper<strong>in</strong>uclear region of cancer cells follow<strong>in</strong>g their <strong>in</strong>jection <strong>in</strong>to the tail ve<strong>in</strong> of liv<strong>in</strong>g mice wassuccessfully demonstrated. The <strong>in</strong> vivo QD imag<strong>in</strong>g system enables s<strong>in</strong>gle particle track<strong>in</strong>g witha 30 nm high resolution video rate. Additionally, quantitative and qualitative <strong>in</strong>formationrelat<strong>in</strong>g to the velocity, directionality, and transportation mode of nanoparticles is available from13


(A)(B)(D)(C)Figure 5. Experimental design. (A) Diagram of a QD-based cargo. The snurport<strong>in</strong>-1import<strong>in</strong>- b<strong>in</strong>d<strong>in</strong>g (IBB) /Z-doma<strong>in</strong> fusion prote<strong>in</strong> is coupled via a bifunctionalsucc<strong>in</strong>imidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate crossl<strong>in</strong>ker (SMCC) to theam<strong>in</strong>o-PEG polymer coat of a fluorescent QD. The three helix Z-doma<strong>in</strong> acts as a spacer tocorrectly present the import<strong>in</strong>- b<strong>in</strong>d<strong>in</strong>g for biological function. Not to scale. (B) Dynamiclight scatter<strong>in</strong>g size distributions of QD- IBB cargos <strong>in</strong> the presence and absence of IBB. (C)Dwell time distribution of all QD <strong>in</strong>teractions with the nuclear pore complex. The time axisis truncated at 300 s. (D) Bright-field image of a nucleus with a QD fluorescence image(with background subtraction applied) overlaid <strong>in</strong> red. A s<strong>in</strong>gle QD cargo at the nuclearenvelope is boxed. (E) Individual consecutive frames from a s<strong>in</strong>gle-molecule experimentshow<strong>in</strong>g the arrival (first frame) from the cytoplasm and departure (f<strong>in</strong>al frame) of the cargo<strong>in</strong>to the nucleus. The centroids determ<strong>in</strong>ed from fitt<strong>in</strong>g of the PSF (po<strong>in</strong>t spread function) areoverlaid as red crosses. Frame numbers are <strong>in</strong> the bottom left hand corner of each frame.Movies were captured at 40 Hz. The process of obta<strong>in</strong><strong>in</strong>g permission from reference 96 isnow <strong>in</strong> preparation.time-resolved track<strong>in</strong>g. Therefore, this method may provide new <strong>in</strong>sight <strong>in</strong>to the behavior ofparticles <strong>in</strong> complex biological environments, and <strong>in</strong> turn will enable rational progress <strong>in</strong>particle design to <strong>in</strong>crease the therapeutic <strong>in</strong>dex of nanocarriers that target tumors.14


8. Challenges and prospectsOvercom<strong>in</strong>g the toxicity and bl<strong>in</strong>k<strong>in</strong>g problems associated with QDsDespite the many advantages of QDs described above, they have several disadvantages thatrestrict their widespread use. The major concerns of the potential toxicity of II-IV QDs restricttheir practical use <strong>in</strong> biological and medical applications. Certa<strong>in</strong>ly, several studies havereported that charge, size, coat<strong>in</strong>g ligands, and oxidative, photolytic and mechanical stabilitycan contribute to the cytotoxicity of cadmium-conta<strong>in</strong><strong>in</strong>g QDs [98-105]. Another critical factorthat determ<strong>in</strong>es the cytotoxicity of QDs is the leakage of heavy metal ions from the core that iscaused by photolysis and oxidation. [98, 101]. To overcome the potential toxicities of QDscaused by cadmium, several approaches have been implemented. Although cover<strong>in</strong>g the CdSeor CdTe core with a shell layer such as ZnS reduced the cadmium toxicity, the reduction is notyet sufficient. Su et al reported that cover<strong>in</strong>g the CdTe core with both CdS and ZnS shell layers(i.e. core-shell-shell structure) reduced the toxicity of QDs, result<strong>in</strong>g <strong>in</strong> improved cell viabilityat high concentrations of QDs dur<strong>in</strong>g long-term culture of several cell l<strong>in</strong>es <strong>in</strong> vitro [106].Alternatively, silica coat<strong>in</strong>g of QDs was successful <strong>in</strong> reduc<strong>in</strong>g the toxicity of cadmium [107].Recently, cadmium-free InP and CuInS 2 have become attractive candidates for non-toxic QDs[16, 108-110]. Even though some remarkable progress to overcome the toxicity problems ofQDs has been made, there rema<strong>in</strong>s no perfect solution for all QDs. This is because a wide rangeof QDs are made by differ<strong>in</strong>g methods, and are used <strong>in</strong> a variety of cell systems, models andanimals. Therefore, it is difficult to evaluate the toxicity of QDs at the universal level. However,cont<strong>in</strong>ued development of approaches such as coat<strong>in</strong>g and the use of cadmium-free compoundsshould overcome the problems of QD toxicity.Another problem of us<strong>in</strong>g QDs for s<strong>in</strong>gle molecule imag<strong>in</strong>g is their bl<strong>in</strong>k<strong>in</strong>g phenomenon[111]. The photolum<strong>in</strong>escence from <strong>in</strong>dividual QDs is def<strong>in</strong>ed by the large <strong>in</strong>tensity fluctuationsknown as bl<strong>in</strong>k<strong>in</strong>g, whereby their photolum<strong>in</strong>escence repeats on and off <strong>in</strong>termittently, evenwith successive photoexcitation. Bl<strong>in</strong>k<strong>in</strong>g is thought to be an <strong>in</strong>escapable property of <strong>in</strong>dividualQD fluorescence. The high efficiency of non-radiative recomb<strong>in</strong>ation processes (e.g. Augerionization) between the extra charge and a subsequently excited electron-hole pair can producea charged QD whose photolum<strong>in</strong>escence is temporarily quenched, and which recovers only afterthe QD becomes neutralized aga<strong>in</strong>. The theoretical orig<strong>in</strong>s of bl<strong>in</strong>k<strong>in</strong>g rema<strong>in</strong> equivocal, andmany research models attribute the charg<strong>in</strong>g of QDs to their off-state. This bl<strong>in</strong>k<strong>in</strong>gphenomenon of <strong>in</strong>dividual QDs is not suitable for s<strong>in</strong>gle molecule track<strong>in</strong>g. The bl<strong>in</strong>k<strong>in</strong>gphenomenon cont<strong>in</strong>ues from a few milliseconds to several hours [112]. Dur<strong>in</strong>g this period, onewill lose the trajectory of QD-based s<strong>in</strong>gle molecule movements.To overcome these problems, the suppression of bl<strong>in</strong>k<strong>in</strong>g was recently demonstrated bypassivation of the surface of QDs with thiol moieties, whereby an emission duty cycle of nearly15


100% ma<strong>in</strong>ta<strong>in</strong>ed their biocompatibility. However, the use of thiol <strong>in</strong> biological systems is notideal because of its toxicity [113]. Numerous reports agree with the op<strong>in</strong>ion that the accuratecontrol of the <strong>in</strong>organic shell will greatly suppress the bl<strong>in</strong>k<strong>in</strong>g of QDs. The critical steps toreduce the bl<strong>in</strong>k<strong>in</strong>g are to create very thick shells of CdS or CdZnS approach<strong>in</strong>g 20 monolayers,and to reduce the lattice mismatch between the CdSe core and the shell materials [114-116].This results <strong>in</strong> fewer charge carrier trap states and limits bl<strong>in</strong>k<strong>in</strong>g. Although the bl<strong>in</strong>k<strong>in</strong>gprobability can be decreased by these approaches, the disadvantage of us<strong>in</strong>g this type of s<strong>in</strong>glequantum dot track<strong>in</strong>g is that the f<strong>in</strong>al diameter of the <strong>in</strong>organic material is 15-20 nm. Suchlarger-sized QD particles are not suitable for s<strong>in</strong>gle molecule imag<strong>in</strong>g because of sterich<strong>in</strong>drance, and the reduced diffusion velocity caused by the QD may affect the <strong>in</strong>tr<strong>in</strong>sicactivation of prote<strong>in</strong>s and molecules <strong>in</strong> vivo. Recently however, completely non-bl<strong>in</strong>k<strong>in</strong>gCdSe-ZnSe QDs with a size of 8 nm were reported, where Zn was gradually alloyed <strong>in</strong>to thecore [117]. The small size of these QDs is suitable for s<strong>in</strong>gle molecule track<strong>in</strong>g. However, thesenon-bl<strong>in</strong>k<strong>in</strong>g QDs have multi-emission peaks, thus the multicolor imag<strong>in</strong>g experiments may berestricted; <strong>in</strong> other words, the advantages of QDs with narrow emission spectra may be lost.Nevertheless, this new type of QD represents an attractive option for s<strong>in</strong>gle QD track<strong>in</strong>gbecause it would no longer be necessary to account for bl<strong>in</strong>k<strong>in</strong>g dur<strong>in</strong>g image process<strong>in</strong>g andanalysis.Prospects for s<strong>in</strong>gle molecule track<strong>in</strong>g us<strong>in</strong>g advanced probesIt was reported recently that heavily doped semiconductor nanocrystal quantum dots weresuccessfully synthesized [118-119]. The method to dope semiconductor nanocrystals with metalimpurities enabled control of the band gap and Fermi energy, which enhances their performance<strong>in</strong> electronic devices. The yielded n- and p-doped semiconductor nanocrystals may nowpotentially be applied <strong>in</strong> solar cells, th<strong>in</strong>-film transistors and optoelectronic devices. They mayalso be applied as effective s<strong>in</strong>gle molecule track<strong>in</strong>g tools <strong>in</strong> the near future.Recently, silicon QDs have also attracted considerable attention [120-123]. The ma<strong>in</strong>advantages of silicon QDs are low toxicity compared with cadmium-based QDs, and full colorwith water dispersion. Furthermore, two-photon excitation emission <strong>in</strong> the aqueous phase, andthree-photon excitation emission <strong>in</strong> the chloroform phase, were successfully observed <strong>in</strong> siliconQDs. [124]. Because silicon QD-based cell imag<strong>in</strong>g has already been reported, safe andeffective s<strong>in</strong>gle molecule track<strong>in</strong>g us<strong>in</strong>g s<strong>in</strong>gle QDs <strong>in</strong> vivo is likely to be described <strong>in</strong> the nearfuture. Additionally, InP and CuInS 2 are promis<strong>in</strong>g candidate for imag<strong>in</strong>g because they possessseveral advantageous properties required by bioimag<strong>in</strong>g probes [16, 109-110]. One advantage isthe absence of toxic elements such as cadmium, lead, mercury, tellurium, and arsenic. The otheradvantage regards photolum<strong>in</strong>escence, <strong>in</strong> that InP and CuInS 2 emit from the visible to16


near-<strong>in</strong>frared (NIR) region, with high quantum yield. Bioconjugated InP and CuInS 2 that emit atmultiphoton excitation (two-photon) wavelengths have already been reported, which will enabledeep tissue imag<strong>in</strong>g because of the long wavelength. Bioconjugated InP- and CuInS 2 -basedQDs are acceptable for s<strong>in</strong>gle molecule track<strong>in</strong>g <strong>in</strong> the near future.In addition to QDs, organic nanocrystals have also successfully demonstrated theirusefulness <strong>in</strong> both <strong>in</strong> vitro live cell imag<strong>in</strong>g [125] and <strong>in</strong> vivo drug delivery systems [126].Organic nanocrystals are between the size ranges of molecular and bulk crystals (ca. 100 nm),and have unique size-dependent optical properties [127]. This size range is one order ofmagnitude compared to QDs, where the so-called quantum size conf<strong>in</strong>ement effect is observed(2-10 nm). Antibunch<strong>in</strong>g was observed <strong>in</strong> s<strong>in</strong>gle fluorescent organic nanocrystals [128]. Thissuggests that s<strong>in</strong>gle molecule track<strong>in</strong>g us<strong>in</strong>g organic nanocrystals will be demonstrated <strong>in</strong> thenear future, if the organic nanocrystals have the requisite particle size (2-5 nm) and highfluorescence <strong>in</strong>tensity for s<strong>in</strong>gle molecule track<strong>in</strong>g <strong>in</strong> vitro and <strong>in</strong> vivo.It was recently reported that nanodiamonds with nitrogen vacancy centers were found to behighly photolum<strong>in</strong>escent while exhibit<strong>in</strong>g no photobleach<strong>in</strong>g and photobl<strong>in</strong>k<strong>in</strong>g [129-130]. Assuch, nanodiamonds may be useful as imag<strong>in</strong>g probes for super-resolution optical microscopy.Antibunch<strong>in</strong>g and multiphoton excitation emission were demonstrated for nanodiamonds. Thesmallest nanodiamond particle size is 5 nm [131], and unlike semiconductor QDs they do notpresent heavy metal ion toxicity. The surface modification of nanodiamonds will allow s<strong>in</strong>glemolecule track<strong>in</strong>g by the b<strong>in</strong>d<strong>in</strong>g of a s<strong>in</strong>gle diamond nanocrystal. Therefore, s<strong>in</strong>gle moleculeimag<strong>in</strong>g techniques us<strong>in</strong>g diamond nanocrystals will be developed together with QD techniques.9. ConclusionIn this review, we have <strong>in</strong>troduced s<strong>in</strong>gle quantum dot-based s<strong>in</strong>gle molecule track<strong>in</strong>g. First, thephysicochemical properties of QDs were discussed. QDs have several properties that enablelong-last<strong>in</strong>g s<strong>in</strong>gle molecule track<strong>in</strong>g <strong>in</strong> liv<strong>in</strong>g cells. We have discussed several examples ofhow QDs have been used to effectively reveal s<strong>in</strong>gle molecule track<strong>in</strong>g <strong>in</strong> membrane dynamics,neuronal function, selective transport mechanisms of the nuclear pore complex, and <strong>in</strong> vivoreal-time observation. We also briefly discussed the prospects for s<strong>in</strong>gle molecule track<strong>in</strong>g us<strong>in</strong>gadvanced probes. Cont<strong>in</strong>ued development of the physicochemical properties of QDs, togetherwith imag<strong>in</strong>g techniques and data analysis methods, will provide much <strong>in</strong>sight <strong>in</strong>to thedynamics of molecular processes <strong>in</strong> live cells. QDs will thus play a key role <strong>in</strong> the future of cellbiology research.AcknowledgmentsThis study was partially supported by Health and Labour Science Research Grants for Research17


on Intractable Diseases from the M<strong>in</strong>istry of Health, Labour and Welfare of Japan, and aChalleng<strong>in</strong>g Exploratory Research (No. 23650287) from the Japan Society for the Promotion ofScience.Conflict of InterestsThe authors have declared that no conflict of <strong>in</strong>terest existsReferences1. Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T. Advances <strong>in</strong> s<strong>in</strong>gle-moleculefluorescence methods for molecular biology. Annu Rev Biochem. 2008; 77: 51-76.2. Weiss S. Fluorescence spectroscopy of s<strong>in</strong>gle biomolecules. Science. 1999; 283:1676-83.3. Wieser S, Schutz GJ. <strong>Track<strong>in</strong>g</strong> s<strong>in</strong>gle molecules <strong>in</strong> the live cell plasma membrane-Do'sand Don't's. Methods. 2008; 46: 131-40.4. Saxton MJ, Jacobson K. <strong>S<strong>in</strong>gle</strong>-particle track<strong>in</strong>g: applications to membrane dynamics.Annu Rev Biophys Biomol Struct. 1997; 26: 373-99.5. Shera EB, Seitz<strong>in</strong>ger NK, Davis LM, Keller RA, Soper SA. Detection of s<strong>in</strong>glefluorescent molecules. Chem Phys Lett. 1990; 174: 553-7.6. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent prote<strong>in</strong> as amarker for gene expression. Science. 1994; 263: 802-5.7. Shimomura O, Johnson FH, Saiga Y. Extraction, purification and properties ofaequor<strong>in</strong>, a biolum<strong>in</strong>escent prote<strong>in</strong> from the lum<strong>in</strong>ous hydromedusan, Aequorea. J Cell CompPhysiol. 1962; 59: 223-39.8. Heim R, Prasher DC, Tsien RY. Wavelength mutations and posttranslationalautoxidation of green fluorescent prote<strong>in</strong>. Proc Natl Acad Sci U S A. 1994; 91: 12501-4.9. Dahan M, Levi S, Luccard<strong>in</strong>i C, Rosta<strong>in</strong>g P, Riveau B, Triller A. Diffusion dynamicsof glyc<strong>in</strong>e receptors revealed by s<strong>in</strong>gle-quantum dot track<strong>in</strong>g. Science. 2003; 302: 442-5.10. P<strong>in</strong>aud F, Michalet X, Iyer G, Margeat E, Moore HP, Weiss S. Dynamic partition<strong>in</strong>g ofa glycosyl-phosphatidyl<strong>in</strong>ositol-anchored prote<strong>in</strong> <strong>in</strong> glycosph<strong>in</strong>golipid-rich microdoma<strong>in</strong>simaged by s<strong>in</strong>gle-quantum dot track<strong>in</strong>g. Traffic. 2009; 10: 691-712.11. J<strong>in</strong> S, Hu YX, Gu ZJ, Liu L, Wu HC. Application of quantum dots <strong>in</strong> biologicalimag<strong>in</strong>g. J Nanomater. 2011; 834139.12. Smith AM, Dave S, Nie SM, True L, Gao XH. Multicolor quantum dots for moleculardiagnostics of cancer. Expert Rev Mol Diagn. 2006; 6: 231-44.13. X<strong>in</strong>g Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, et al. Bioconjugatedquantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc. 2007; 2:18


1152-65.14. Yezhelyev MV, Al-Hajj A, Morris C, Marcus AI, Liu T, Lewis M, et al. In situmolecular profil<strong>in</strong>g of breast cancer biomarkers with multicolor quantum dots. Adv Mater.2007; 19: 3146-51.15. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer target<strong>in</strong>g and imag<strong>in</strong>gwith semiconductor quantum dots. Nat Biotechnol. 2004; 22: 969-76.16. Bharali DJ, Lucey DW, Jayakumar H, Pudavar HE, Prasad PN.Folate-receptor-mediated delivery of InP quantum dots for bioimag<strong>in</strong>g us<strong>in</strong>g confocal andtwo-photon microscopy. J Am Chem Soc. 2005; 127: 11364-71.17. Stroh M, Zimmer JP, Duda DG, Levchenko TS, Cohen KS, Brown EB, et al. Quantumdots spectrally dist<strong>in</strong>guish multiple species with<strong>in</strong> the tumor milieu <strong>in</strong> vivo. Nat Med. 2005; 11:678-82.18. Voura EB, Jaiswal JK, Mattoussi H, Simon SM. <strong>Track<strong>in</strong>g</strong> metastatic tumor cellextravasation with quantum dot nanocrystals and fluorescence emission-scann<strong>in</strong>g microscopy.Nat Med. 2004; 10: 993-8.19. Lei Y, Tang H, Yao L, Yu R, Feng M, Zou B. Applications of mesenchymal stem cellslabeled with Tat peptide conjugated quantum dots to cell track<strong>in</strong>g <strong>in</strong> mouse body. BioconjugChem. 2008; 19: 421-7.20. Schroeder T. Imag<strong>in</strong>g stem-cell-driven regeneration <strong>in</strong> mammals. Nature. 2008; 453:345-51.21. Slotk<strong>in</strong> JR, Chakrabarti L, Dai HN, Carney RS, Hirata T, Bregman BS, et al. In vivoquantum dot label<strong>in</strong>g of mammalian stem and progenitor cells. Dev Dyn. 2007; 236: 3393-401.22. de la Zerda A, Gambhir SS. Drug delivery: keep<strong>in</strong>g tabs on nanocarriers. NatNanotechnol. 2007; 2: 745-6.23. Med<strong>in</strong>tz IL, Pons T, Delehanty JB, Susumu K, Brunel FM, Dawson PE, et al.Intracellular delivery of quantum dot-prote<strong>in</strong> cargos mediated by cell penetrat<strong>in</strong>g peptides.Bioconjug Chem. 2008; 19: 1785-95.24. Derfus AM, Chen AA, M<strong>in</strong> DH, Ruoslahti E, Bhatia SN. Targeted quantum dotconjugates for siRNA delivery. Bioconjug Chem. 2007; 18: 1391-6.25. Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Lum<strong>in</strong>escent quantum dotsfor multiplexed biological detection and imag<strong>in</strong>g. Curr Op<strong>in</strong> Biotechnol. 2002; 13: 40-6.26. Empedocles S, Bawendi M. Spectroscopy of s<strong>in</strong>gle CdSe nanocrystallites. AccountsChem Res. 1999; 32: 389-96.27. Michalet X, P<strong>in</strong>aud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots forlive cells, <strong>in</strong> vivo imag<strong>in</strong>g, and diagnostics. Science. 2005; 307: 538-44.28. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection.19


Science. 1998; 281: 2016-8.29. Maenosono S. In: Yamamoto S, ed. Application of Quantum Dot <strong>in</strong> Life Science, 1sted. Tokyo: CMC International Co., Ltd.; 2007: 15-26.30. Wang Y, Chen L. Quantum dots, light<strong>in</strong>g up the research and development ofnanomedic<strong>in</strong>e. Nanomedic<strong>in</strong>e-UK. 2011; 7: 385-402.31. Alivisatos P. The use of nanocrystals <strong>in</strong> biological detection. Nat Biotechnol. 2004; 22:47-52.32. Murphy CJ. Optical sens<strong>in</strong>g with quantum dots. Anal Chem. 2002; 74: 520A-6A.33. Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearlymonodisperse Cde (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc. 1993; 115:8706-15.34. Rajh T, Micic OI, Nozik AJ. Synthesis and characterization of surface-modifiedcolloidal Cdte quantum dots. J Phys Chem. 1993; 97: 11999-2003.35. Wang Y, Chen L. Quantum dots, light<strong>in</strong>g up the research and development ofnanomedic<strong>in</strong>e. Nanomed-Nanotechnol. 2011; 7: 385-402.36. Law WC, Yong KT, Roy I, D<strong>in</strong>g H, Hu R, Zhao W, et al. Aqueous-phase synthesis ofhighly lum<strong>in</strong>escent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimag<strong>in</strong>g.Small. 2009; 5: 1302-10.37. Bruchez Jr M, Moronne M, G<strong>in</strong> P, Weiss S, Alivisatos AP. Semiconductor nanocrystalsas fluorescent biological labels. Science. 1998; 281: 2013-6.38. Biju V, Itoh T, Ishikawa M. Deliver<strong>in</strong>g quantum dots to cells: bioconjugated quantumdots for targeted and nonspecific extracellular and <strong>in</strong>tracellular imag<strong>in</strong>g. Chem Soc Rev. 2010;39: 3031-56.39. Erathodiyil N, Y<strong>in</strong>g JY. Functionalization of <strong>in</strong>organic nanoparticles for bioimag<strong>in</strong>gapplications. Accounts Chem Res. 2011; 44: 925-35.40. Med<strong>in</strong>tz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates forimag<strong>in</strong>g, labell<strong>in</strong>g and sens<strong>in</strong>g. Nat Mater. 2005; 4: 435-46.41. Biju V, Itoh T, Anas A, Sujith A, Ishikawa M. Semiconductor quantum dots and metalnanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem.2008; 391: 2469-95.42. Oh EJ, Park K, Kim KS, Kim J, Yang JA, Kong JH, et al. Target specific andlong-act<strong>in</strong>g delivery of prote<strong>in</strong>, peptide, and nucleotide therapeutics us<strong>in</strong>g hyaluronic acidderivatives. J Control Release. 2010; 141: 2-12.43. Ban<strong>in</strong> U, Bruchez M, Alivisatos AP, Ha T, Weiss S, Chemla DS. Evidence for athermal contribution to emission <strong>in</strong>termittency <strong>in</strong> s<strong>in</strong>gle CdSe/CdS core/shell nanocrystals. JChem Phys. 1999; 110: 1195-201.20


44. Basche T. Fluorescence <strong>in</strong>tensity fluctuations of s<strong>in</strong>gle atoms, molecules andnanoparticles. J Lum<strong>in</strong>. 1998; 76-7: 263-9.45. Fore S, Laurence TA, Hollars CW, Huser T. Count<strong>in</strong>g constituents <strong>in</strong> molecularcomplexes by fluorescence photon antibunch<strong>in</strong>g. Ieee J Sel Top Quant. 2007; 13: 996-1005.46. Neuhauser RG, Shimizu KT, Woo WK, Empedocles SA, Bawendi MG. Correlationbetween fluorescence <strong>in</strong>termittency and spectral diffusion <strong>in</strong> s<strong>in</strong>gle semiconductor quantum dots.Phys Rev Lett. 2000; 85: 3301-4.47. Sugisaki M, Ren HW, Nishi K, Masumoto Y. Fluorescence <strong>in</strong>termittency <strong>in</strong>self-assembled InP quantum dots. Phys Rev Lett. 2001; 86: 4883-6.48. Zwiller V, Blom H, Jonsson P, Panev N, Jeppesen S, Tsegaye T, et al. <strong>S<strong>in</strong>gle</strong> quantumdots emit s<strong>in</strong>gle photons at a time: Antibunch<strong>in</strong>g experiments. Appl Phys Lett. 2001; 78:2476-8.49. Wissert MD, Rudat B, Lemmer U, Eisler HJ. Quantum dots as s<strong>in</strong>gle-photon sources:Antibunch<strong>in</strong>g via two-photon excitation. Phys Rev B. 2011; 83. 113304.50. de Lange F, Cambi A, Huijbens R, de Bakker B, Rensen W, Garcia-Parajo M, et al.Cell biology beyond the diffraction limit: near-field scann<strong>in</strong>g optical microscopy. J Cell Sci.2001; 114: 4153-60.51. Sako Y, Yanagida T. <strong>S<strong>in</strong>gle</strong>-molecule visualization <strong>in</strong> cell biology. Nat Rev Mol CellBio. 2003; 4: SS1-SS5.52. Ho YP, Leong KW. Quantum dot-based theranostics. Nanoscale. 2010; 2: 60-8.53. Cang H, Xu CS, Montiel D, Yang H. Guid<strong>in</strong>g a confocal microscope by s<strong>in</strong>glefluorescent nanoparticles. Opt Lett. 2007; 32: 2729-31.54. Holtzer L, Meckel T, Schmidt T. Nanometric three-dimensional track<strong>in</strong>g of <strong>in</strong>dividualquantum dots <strong>in</strong> cells. Appl Phys Lett. 2007; 90. 053902.55. Lessard GA, Goodw<strong>in</strong> PM, Werner JH. Three-dimensional track<strong>in</strong>g of <strong>in</strong>dividualquantum dots. Appl Phys Lett. 2007; 91. 224106.56. McHale K, Berglund AJ, Mabuchi H. Quantum dot photon statistics measured bythree-dimensional particle track<strong>in</strong>g. Nano Lett. 2007; 7: 3535-9.57. Ram S, Prabhat P, Chao J, Ward ES, Ober RJ. High accuracy 3D quantum dot track<strong>in</strong>gwith multifocal Plane microscopy for the study of fast <strong>in</strong>tracellular dynamics <strong>in</strong> live cells.Biophys J. 2008; 95: 6025-43.58. Thompson MA, Lew MD, Badieirostami M, Moerner WE. Localiz<strong>in</strong>g and track<strong>in</strong>gs<strong>in</strong>gle nanoscale emitters <strong>in</strong> three dimensions with high spatiotemporal resolution us<strong>in</strong>g adouble-helix po<strong>in</strong>t spread function. Nano Lett. 2010; 10: 211-8.59. Toprak E, Balci H, Blehm BH, Selv<strong>in</strong> PR. Three-dimensional particle track<strong>in</strong>g viabifocal imag<strong>in</strong>g. Nano Lett. 2007; 7: 2043-5.21


60. Wells NP, Lessard GA, Werner JH. Confocal, Three-dimensional track<strong>in</strong>g of<strong>in</strong>dividual quantum dots <strong>in</strong> high-background environments. Anal Chem. 2008; 80: 9830-4.61. Wells NP, Lessard GA, Goodw<strong>in</strong> PM, Phipps ME, Cutler PJ, Lidke DS, et al.Time-resolved three-dimensional molecular track<strong>in</strong>g <strong>in</strong> live cells. Nano Lett. 2010; 10: 4732-7.62. Qian H, Sheetz MP, Elson EL. <strong>S<strong>in</strong>gle</strong> particle track<strong>in</strong>g. Analysis of diffusion and flow<strong>in</strong> two-dimensional systems. Biophys J. 1991; 60: 910-21.63. P<strong>in</strong>aud F, Clarke S, Sittner A, Dahan M. Prob<strong>in</strong>g cellular events, one quantum dot at atime. Nat Methods. 2010; 7: 275-85.64. Michalet X. Mean square displacement analysis of s<strong>in</strong>gle-particle trajectories withlocalization error: Brownian motion <strong>in</strong> an isotropic medium. Phys Rev E Stat Nonl<strong>in</strong> SoftMatter Phys. 2010; 82: 041914.65. Durisic N, Bachir AI, Kol<strong>in</strong> DL, Hebert B, Lagerholm BC, Grutter P, et al. Detectionand correction of bl<strong>in</strong>k<strong>in</strong>g bias <strong>in</strong> image correlation transport measurements of quantum dottagged macromolecules. Biophys J. 2007; 93: 1338-46.66. Huet S, Karatek<strong>in</strong> E, Tran VS, Fanget I, Cribier S, Henry JP. Analysis of transientbehavior <strong>in</strong> complex trajectories: application to secretory vesicle dynamics. Biophys J. 2006;91: 3542-59.67. Pierobon P, Cappello G. Quantum dots to tail s<strong>in</strong>gle bio-molecules <strong>in</strong>side liv<strong>in</strong>g cells.Adv Drug Deliver Rev. 2012; <strong>in</strong> press.68. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A. Phospholipids undergohop diffusion <strong>in</strong> compartmentalized cell membrane. J Cell Biol. 2002; 157: 1071-81.69. Andrews NL, Lidke KA, Pfeiffer JR, Burns AR, Wilson BS, Oliver JM, et al. Act<strong>in</strong>restricts Fc epsilon RI diffusion and facilitates antigen-<strong>in</strong>duced receptor immobilization. NatCell Biol. 2008; 10: 955-63.70. Dahan M, Levi S, Luccard<strong>in</strong>i C, Rosta<strong>in</strong>g P, Riveau B, Triller A. Diffusion dynamicsof glyc<strong>in</strong>e receptors revealed by s<strong>in</strong>gle-quantum dot track<strong>in</strong>g. Science. 2003; 302: 442-5.71. Elf J, Li GW, Xie XS. Prob<strong>in</strong>g transcription factor dynamics at the s<strong>in</strong>gle-moleculelevel <strong>in</strong> a liv<strong>in</strong>g cell. Science. 2007; 316: 1191-4.72. Gelles J, Schnapp BJ, Sheetz MP. <strong>Track<strong>in</strong>g</strong> k<strong>in</strong>es<strong>in</strong>-driven movements withnanometre-scale precision. Nature. 1988; 331: 450-3.73. Yildiz A, Forkey JN, McK<strong>in</strong>ney SA, Ha T, Goldman YE, Selv<strong>in</strong> PR. Myos<strong>in</strong> V walkshand-over-hand: <strong>S<strong>in</strong>gle</strong> fluorophore imag<strong>in</strong>g with 1.5-nm localization. Science. 2003; 300:2061-5.74. Derfus AM, Chan WCW, Bhatia SN. Intracellular delivery of quantum dots for livecell label<strong>in</strong>g and organelle track<strong>in</strong>g. Adv Mater. 2004; 16: 961-6.75. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo22


imag<strong>in</strong>g of quantum dots encapsulated <strong>in</strong> phospholipid micelles. Science. 2002; 298: 1759-62.76. Keren K, Yam PT, K<strong>in</strong>khabwala A, Mogilner A, Theriot JA. Intracellular fluid flow <strong>in</strong>rapidly mov<strong>in</strong>g cells. Nat Cell Biol. 2009; 11: 1219-24.77. Ishihama Y, Funatsu T. <strong>S<strong>in</strong>gle</strong> molecule track<strong>in</strong>g of quantum dot-labeled mRNAs <strong>in</strong> acell nucleus. Biochem Biophys Res Commun. 2009; 381: 33-8.78. S<strong>in</strong>ger SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes.Science. 1972; 175: 720-31.79. Hopk<strong>in</strong>s AL, Groom CR. The druggable genome. Nat Rev Drug Discov. 2002; 1:727-30.80. Fichter KM, Flajolet M, Greengard P, Vu TQ. K<strong>in</strong>etics of G-prote<strong>in</strong>-coupled receptorendosomal traffick<strong>in</strong>g pathways revealed by s<strong>in</strong>gle quantum dots. P Natl Acad Sci USA. 2010;107: 18658-63.81. Hussl S, Boehm S. Functions of neuronal P2Y receptors. Pflugers Arch. 2006; 452:538-51.82. Surprenant A, North RA. Signal<strong>in</strong>g at pur<strong>in</strong>ergic P2X receptors. Annu Rev Physiol.2009; 71: 333-59.83. Khakh BS. Molecular physiology of P2X receptors and ATP signall<strong>in</strong>g at synapses.Nat Rev Neurosci. 2001; 2: 165-74.84. Jiang S, Liu A, Duan H, Soo J, Chen P. Label<strong>in</strong>g and track<strong>in</strong>g P2 pur<strong>in</strong>ergic receptors<strong>in</strong> liv<strong>in</strong>g cells us<strong>in</strong>g ATP-conjugated quantum dots. Adv Funct Mater. 2011; 21: 2776-80.85. Triller A, Choquet D. New concepts <strong>in</strong> synaptic biology derived from s<strong>in</strong>gle-moleculeimag<strong>in</strong>g. Neuron. 2008; 59: 359-74.86. Groc L, He<strong>in</strong>e M, Cous<strong>in</strong>s SL, Stephenson FA, Lounis B, Cognet L, et al. NMDAreceptor surface mobility depends on NR2A-2B subunits. Proc Natl Acad Sci U S A. 2006; 103:18769-74.87. He<strong>in</strong>e M, Groc L, Frischknecht R, Beique JC, Lounis B, Rumbaugh G, et al. Surfacemobility of postsynaptic AMPARs tunes synaptic transmission. Science. 2008; 320: 201-5.88. Groc L, Lafourcade M, He<strong>in</strong>e M, Renner M, Rac<strong>in</strong>e V, Sibarita JB, et al. Surfacetraffick<strong>in</strong>g of neurotransmitter receptor: comparison between s<strong>in</strong>gle-molecule/quantum dotstrategies. J Neurosci. 2007; 27: 12433-7.89. Ehrensperger MV, Hanus C, Vannier C, Triller A, Dahan M. Multiple association statesbetween glyc<strong>in</strong>e receptors and gephyr<strong>in</strong> identified by SPT analysis. Biophys J. 2007; 92:3706-18.90. Levi S, Schweizer C, Bannai H, Pascual O, Charrier C, Triller A. Homeostaticregulation of synaptic GlyR numbers driven by lateral diffusion. Neuron. 2008; 59: 261-73.91. Mikasova L, Groc L, Choquet D, Manzoni OJ. Altered surface traffick<strong>in</strong>g of23


presynaptic cannab<strong>in</strong>oid type 1 receptor <strong>in</strong> and out synaptic term<strong>in</strong>als parallels receptordesensitization. Proc Natl Acad Sci U S A. 2008; 105: 18596-601.92. Geng L, Qian YK, Madhavan R, Peng HB. Transmembrane mechanisms <strong>in</strong> theassembly of the postsynaptic apparatus at the neuromuscular junction. Chem Biol Interact.2008; 175: 108-12.93. Zarb<strong>in</strong> MA, Montemagno C, Leary JF, Ritch R. Nanomedic<strong>in</strong>e <strong>in</strong> ophthalmology: thenew frontier. Am J Ophthalmol. 2010; 150: 144-62.94. Zarb<strong>in</strong> MA. Current concepts <strong>in</strong> the pathogenesis of age-related macular degeneration.Arch Ophthalmol. 2004; 122: 598-614.95. Takeda A, Baffi JZ, Kle<strong>in</strong>man ME, Cho WG, Nozaki M, Yamada K, et al. CCR3 is atarget for age-related macular degeneration diagnosis and therapy. Nature. 2009; 460: 225-30.96. Lowe AR, Siegel JJ, Kalab P, Siu M, Weis K, Liphardt JT. Selectivity mechanism ofthe nuclear pore complex characterized by s<strong>in</strong>gle cargo track<strong>in</strong>g. Nature. 2010; 467: 600-3.97. Tada H, Higuchi H, Wanatabe TM, Ohuchi N. In vivo real-time track<strong>in</strong>g of s<strong>in</strong>glequantum dots conjugated with monoclonal anti-HER2 antibody <strong>in</strong> tumors of mice. Cancer Res.2007; 67: 1138-44.98. Bottrill M, Green M. Some aspects of quantum dot toxicity. Chem Commun. 2011; 47:7039-50.99. Hosh<strong>in</strong>o A, Hanada S, Yamamoto K. Toxicity of nanocrystal quantum dots: therelevance of surface modifications. Arch Toxicol. 2011; 85: 707-20.100. Hardman R. A toxicologic review of quantum dots: toxicity depends onphysicochemical and environmental factors. Environ Health Perspect. 2006; 114: 165-72.101. Rzigal<strong>in</strong>ski BA, Strobl JS. Cadmium-conta<strong>in</strong><strong>in</strong>g nanoparticles: perspectives onpharmacology and toxicology of quantum dots. Toxicol Appl Pharmacol. 2009; 238: 280-8.102. Fowler BA. Monitor<strong>in</strong>g of human populations for early markers of cadmium toxicity:a review. Toxicol Appl Pharmacol. 2009; 238: 294-300.103. Derfus AM, Chan WCW, Bhatia SN. Prob<strong>in</strong>g the cytotoxicity of semiconductorquantum dots. Nano Lett. 2004; 4: 11-8.104. L<strong>in</strong> CH, Chang LW, Chang H, Yang MH, Yang CS, Lai WH, et al. The chemical fateof the Cd/Se/Te-based quantum dot 705 <strong>in</strong> the biological system: toxicity implications.Nanotechnology. 2009; 20. 215101.105. Sanvicens N, Marco MP. Multifunctional nanoparticles - properties and prospects fortheir use <strong>in</strong> human medic<strong>in</strong>e. Trends Biotechnol. 2008; 26: 425-33.106. Su Y, He Y, Lu H, Sai L, Li Q, Li W, et al. The cytotoxicity of cadmium based,aqueous phase - synthesized, quantum dots and its modulation by surface coat<strong>in</strong>g. Biomaterials.2009; 30: 19-25.24


107. Selvan ST, Patra PK, Ang CY, Y<strong>in</strong>g JY. Synthesis of silica-coated semiconductor andmagnetic quantum dots and their use <strong>in</strong> the imag<strong>in</strong>g of live cells. Angew Chem Int Ed. 2007; 46:2448-52.108. Tamang S, Beaune G, Texier I, Reiss P. Aqueous phase transfer of InP/ZnSnanocrystals conserv<strong>in</strong>g fluorescence and high colloidal stability. ACS Nano. 2011; 5:9392-402.109. Yong KT, D<strong>in</strong>g H, Roy I, Law WC, Bergey EJ, Maitra A, et al. Imag<strong>in</strong>g pancreaticcancer us<strong>in</strong>g bioconjugated InP quantum dots. ACS Nano. 2009; 3: 502-10.110. Yong KT, Roy I, Hu R, D<strong>in</strong>g H, Cai H, Zhu J, et al. Synthesis of ternary CuInS(2)/ZnSquantum dot bioconjugates and their applications for targeted cancer bioimag<strong>in</strong>g. Integr Biol.2010; 2: 121-9.111. Nirmal M, Dabbousi BO, Bawendi MG, Mackl<strong>in</strong> JJ, Trautman JK, Harris TD, et al.Fluorescence <strong>in</strong>termittency <strong>in</strong> s<strong>in</strong>gle cadmium selenide nanocrystals. Nature. 1996; 383: 802-4.112. Fomenko V, Nesbitt DJ. Solution control of radiative and nonradiative lifetimes: anovel contribution to quantum dot bl<strong>in</strong>k<strong>in</strong>g suppression. Nano Lett. 2008; 8: 287-93.113. Hohng S, Ha T. Near-complete suppression of quantum dot bl<strong>in</strong>k<strong>in</strong>g <strong>in</strong> ambientconditions. J Am Chem Soc. 2004; 126: 1324-5.114. Chen Y, Vela J, Htoon H, Casson JL, Werder DJ, Bussian DA, et al. "Giant" multishellCdSe nanocrystal quantum dots with suppressed bl<strong>in</strong>k<strong>in</strong>g. J Am Chem Soc. 2008; 130: 5026-7.115. Mahler B, Sp<strong>in</strong>icelli P, Buil S, Quel<strong>in</strong> X, Hermier JP, Dubertret B. Towardsnon-bl<strong>in</strong>k<strong>in</strong>g colloidal quantum dots. Nat Mater. 2008; 7: 659-64.116. Vela J, Htoon H, Chen Y, Park YS, Ghosh Y, Goodw<strong>in</strong> PM, et al. Effect of shellthickness and composition on bl<strong>in</strong>k<strong>in</strong>g suppression and the bl<strong>in</strong>k<strong>in</strong>g mechanism <strong>in</strong> 'giant'CdSe/CdS nanocrystal quantum dots. J Biophotonics. 2010; 3: 706-17.117. Wang X, Ren X, Kahen K, Hahn MA, Rajeswaran M, Maccagnano-Zacher S, et al.Non-bl<strong>in</strong>k<strong>in</strong>g semiconductor nanocrystals. Nature. 2009; 459: 686-9.118. Cao YC. Materials science. Impurities enhance semiconductor nanocrystalperformance. Science. 2011; 332: 48-9.119. Mocatta D, Cohen G, Schattner J, Millo O, Rabani E, Ban<strong>in</strong> U. Heavily dopedsemiconductor nanocrystal quantum dots. Science. 2011; 332: 77-81.120. Choi J, Wang NS, Reipa V. Conjugation of the photolum<strong>in</strong>escent silicon nanoparticlesto streptavid<strong>in</strong>. Bioconjug Chem. 2008; 19: 680-5.121. Erogbogbo F, Tien CA, Chang CW, Yong KT, Law WC, D<strong>in</strong>g H, et al. Bioconjugationof lum<strong>in</strong>escent silicon quantum dots for selective uptake by cancer cells. Bioconjug Chem.2011; 22: 1081-8.122. Erogbogbo F, Yong KT, Roy I, Xu G, Prasad PN, Swihart MT. Biocompatible25


lum<strong>in</strong>escent silicon quantum dots for imag<strong>in</strong>g of cancer cells. ACS Nano. 2008; 2: 873-8.123. Shiohara A, Prabakar S, Faramus A, Hsu CY, Lai PS, Northcote PT, et al. Sizedcontrolled synthesis, purification, and cell studies with silicon quantum dots. Nanoscale. 2011;3: 3364-70.124. He GS, Zheng Q, Yong KT, Erogbogbo F, Swihart MT, Prasad PN. Two- andthree-photon absorption and frequency upconverted emission of silicon quantum dots. NanoLett. 2008; 8: 2688-92.125. Baba K, Kasai H, Masuhara A, Oikawa H, Nakanishi H. Organic solvent-freefluorescence confocal imag<strong>in</strong>g of liv<strong>in</strong>g cells us<strong>in</strong>g pure nanocrystal forms of fluorescent dyes.Jpn J Appl Phys. 2009; 48. 117002.126. Baba K, Pudavar HE, Roy I, Ohulchanskyy TY, Chen Y, Pandey RK, et al. Newmethod for deliver<strong>in</strong>g a hydrophobic drug for photodynamic therapy us<strong>in</strong>g pure nanocrystalform of the drug. Mol Pharm. 2007; 4: 289-97.127. Kasai H, Nalwa HS, Okada S, Oikawa H, Nakanishi H. Fabrication and spectroscopiccharacterization of organic nanocrystals. In: Nalwa HS, ed. Handbook of NanostructuredMaterials and Nanotechnology, 1st ed. Sandego: Academic Press; 1999; Vol. 5: 433-73.128. Masuo S, Masuhara A, Akashi T, Muranushi M, Machida S, Kasai H, et al. Photonantibunch<strong>in</strong>g <strong>in</strong> the emission from a s<strong>in</strong>gle organic dye nanocrystal. Jpn J Appl Phys. 2007; 46:L268-L270.129. Aharonovich I, Castelletto S, Simpson DA, Su CH, Greentree AD, Prawer S.Diamond-based s<strong>in</strong>gle-photon emitters. Rep Prog Phys. 2011; 74. 076501.130. Faklaris O, Joshi V, Ir<strong>in</strong>opoulou T, Tauc P, Sennour M, Girard H, et al.Photolum<strong>in</strong>escent diamond nanoparticles for cell label<strong>in</strong>g: study of the uptake mechanism <strong>in</strong>mammalian cells. ACS Nano. 2009; 3: 3955-62.131. Mochal<strong>in</strong> VN, Gogotsi Y. Wet chemistry route to hydrophobic blue fluorescentnanodiamond. J Am Chem Soc. 2009; 131: 4594-5.26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!