11.07.2015 Views

On the Two Point Boundary Value Problem for Systems of Linear ...

On the Two Point Boundary Value Problem for Systems of Linear ...

On the Two Point Boundary Value Problem for Systems of Linear ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>On</strong> <strong>the</strong> <strong>Two</strong> <strong>Point</strong> <strong>Boundary</strong> <strong>Value</strong> <strong>Problem</strong> <strong>for</strong> <strong>Systems</strong> <strong>of</strong><strong>Linear</strong> Generalized Differential Equations with SingularitiesMalkhaz AshordiaA. Razmadze Ma<strong>the</strong>matical Institute <strong>of</strong> I. Javakhishvili Tbilisi State UniversitySukhumi State University, Tbilisi, GeorgiaE-mail: ashord@rmi.geMurman KvekveskiriSukhumi State University, Tbilisi, GeorgiaFor <strong>the</strong> system <strong>of</strong> linear generalized ordinary differential equations with singularities<strong>the</strong> two point boundary value problemdx(t) = dA(t) · x(t) + df(t) <strong>for</strong> t ∈ ]a, b[ , (1)x i (a+) = 0 (i = 1, . . . , n 0 ), x i (b−) = 0 (i = n 0 + 1, . . . , n), (2)is considered, where −∞ < a < b < +∞, x(t) = (x i (t)) n i=1 , n 0 ∈ {1, . . . , n}, f = (f l ) n l=1 :[a, b] → R n is a vector-function whose components have bounded variations, and A = (a il ) n i,l=1 :[a, b] → R n×n is a matrix-function such that <strong>the</strong> functions a i1 , . . . , a il have bounded variationson every closed interval from ]a, b] <strong>for</strong> i ∈ {1, . . . , n 0 } and on every closed interval from [a, b[ <strong>for</strong>i ∈ {n 0 + 1, . . . , n}.There are established sufficient conditions <strong>for</strong> <strong>the</strong> unique solvability <strong>of</strong> this problem in <strong>the</strong> casewhen considered system is singular, i. e., <strong>the</strong> components <strong>of</strong> <strong>the</strong> matrix-function A may haveunbounded variation on <strong>the</strong> interval [a, b].By BV loc (]a, b[ , R n×m ) we denote <strong>the</strong> set <strong>of</strong> all matrix-functions X : ]a, b[ → R n×m with boundedvariation on every closed interval from ]a, b[ .By a solution <strong>of</strong> <strong>the</strong> problem (1), (2) we mean a vector-function x = (x i ) n i=1 ∈ BV loc(]a, b[ , R n )satisfying <strong>the</strong> condition (2) and <strong>the</strong> system (1), i.e., such that x(t) = x(s)+∫ tsdA(τ)·(τ)+f(t)−f(s)<strong>for</strong> a < s ≤ t < b, where integral is considered in <strong>the</strong> Lebesgue–Stieltjes sense.Let det(I n + (−1) j d j A(t)) ≠ 0 <strong>for</strong> t ∈ ]a, b[ (j = 1, 2) and let γ α (· , s) be a unique solution <strong>of</strong> <strong>the</strong>Cauchy problem dγ(t) = γ(t) dα(t), γ(s) = 1.Definition. Let n 0 ∈{1, . . . , n}. We say that a matrix-function C =(c il ) n i,l=1 ∈BV([a, b], Rn×n )belongs to <strong>the</strong> set U(a+, b−; n 0 ) if <strong>the</strong> functions c il (i ≠ l; i, l = 1, . . . , n) are nondecreasing on [a, b]and <strong>the</strong> systemsgn(n 0 + 1 )n∑2 − i · dx i (t) ≤ x l (t) dc il (t) <strong>for</strong> t ∈ ]a, b[ (i = 1, . . . , n)has no nontrivial, nonnegative solution satisfying <strong>the</strong> condition (2).l=1Theorem. Let <strong>the</strong> vector-function f have bounded variation, and let <strong>the</strong> matrix-function A =(a il ) n i,l=1 ∈ BV loc(]a, b[ , R n×n ) be such that <strong>the</strong> conditions(s0 (a ii )(t) − s 0 (a ii )(s) ) sgn(n 0 + 1 )2 − i ≤ s 0 (c ii − α i )(t) − s 0 (c ii − α i )(s),(−1) j(∣ ∣ 1 + (−1) j d j a ii (t) ∣ ) (− 1 sgn n 0 + 1 )2 − i (≤ d j cii (t) − α i (t) ) ;∣ s0 (a il )(t) − s 0 (a il )(s) ∣ ≤ s0 (c il )(t) − s 0 (c il )(s) (i ≠ l),|d j a il (t)| ≤ d j c il (t) (i ≠ l)3


hold <strong>for</strong> a < s < t < b (i, l = 1, . . . , n), where C = (c il ) n i,l=1 ∈ U(a+, b−; n 0), α i : ]a, b[ → R(i = 1, . . . , n) are nondecreasing functions andlim d 1α i (t) < 1 (i = 1, . . . , n 0 ),t→a+lim d 2α i (t) < 1 (i = n 0 + 1, . . . , n 0 ); (3)t→b−lim sup { γ αi (t, a + 1/k) : k = 1, 2, . . . } = 0 (i = 1, . . . , n 0 ),t→a+lim sup { γ αi (t, b − 1/k) : k = 1, 2, . . . } = 0 (i = n 0 + 1, . . . , n 0 ).t→b−Then <strong>the</strong> problem (1), (2) has one and only one solution.Corollary. Let <strong>the</strong> vector-function f have bounded variation, and let <strong>the</strong> matrix-function A =(a il ) n i,l=1 ∈ BV loc(]a, b[, R n×n ) be such that <strong>the</strong> conditions(s0 (a ii )(t) − s 0 (a ii )(s) ) sgn(n 0 + 1 2 − i )≤ h ii(s0 (β)(t) − s 0 (β)(s) )− ( s 0 (α)(t) − s 0 (α)(s) ) ,(−1) j(∣ ∣ 1 + (−1) j d j a ii (t) ∣ ) (− 1 sgn n 0 + 1 )2 − i ≤ h ii d j β(t) − d j α(t) ) ,∣ s0 (a il )(t) − s 0 (a il )(s) ∣ ( ≤ hil s0 (β)(t) − s 0 (β)(s) (i ≠ l),|d j a il (t)| ≤ h il d j β(t) (i ≠ l)hold <strong>for</strong> a < s < t < b (i, l = 1, . . . , n), where α is a nondecreasing on ]a, b[ function satisfying <strong>the</strong>conditions (3) and (4); β is a nondecreasing on [a, b] function having no more than a finite number<strong>of</strong> discontinuity points, h ii ∈ R, h il ∈ R + (i ≠ l; i, l = 1, . . . , n). Let, moreover, ρ 0 r(H) < 1, where(4)H = (h ik ) n i,k=1 , { 2∑ }ρ 0 = max λ mj : m = 0, 1, 2 , λ 00 = 2 (s0 (β)(b) − s 0 (β)(a) ) ,πj=0λ 0j = λ j0 = ( s 0 (β)(b) − s 0 (α)(a) ) 1 ( 2s j (β)(b) − s j (β)(a) ) 1 2(j = 1, 2),λ mj = 1 ( ) 1µαm µ 2 αj sin −1 π(m, j = 1, 2),24n αm + 2µ αm = max { d m α(t) : t ∈ [a, b] } (m = 1, 2),and n αm is a number <strong>of</strong> points from [a, b] <strong>for</strong> which d m α(t) ≠ 0 <strong>for</strong> every m ∈ {1, 2}. Then <strong>the</strong>problem (1), (2) has one and only one solution.4


Uni<strong>for</strong>m Estimates and Existence <strong>of</strong> Solution withPrescribed Domain to a Nonlinear Third-OrderDifferential EquationI. AstashovaLomonosov Moscow State University, Moscow State University <strong>of</strong> Economics, Statistics andIn<strong>for</strong>matics, Moscow, RussiaE-mail: ast@diffiety.ac.ru1 IntroductionIn 1990, after my lecture at Enlarged Sessions <strong>of</strong> <strong>the</strong> Seminar <strong>of</strong> I.Vekua Institute <strong>of</strong> AppliedMa<strong>the</strong>matics, pr<strong>of</strong>essor T. A. Chanturia posed me a question about existence <strong>for</strong> any finite x ∗ , x ∗ ,x ∗ < x ∗ <strong>of</strong> a non-extensible solution y(x) with domain (x ∗ , x ∗ ) to <strong>the</strong> equation y ′′′ +p(x)|y| k−1 y = 0.For such equation <strong>of</strong> <strong>the</strong> second order some related result was obtained in [1]. I’ve got an answer<strong>for</strong> <strong>the</strong> third-order equation in 1992 ([3]), but un<strong>for</strong>tunately T. A. Chanturia could not see it. . .The pro<strong>of</strong> <strong>of</strong> this result was very complicated, but with <strong>the</strong> help <strong>of</strong> uni<strong>for</strong>m estimates <strong>of</strong> solutions([8]) it became much better.2 Uni<strong>for</strong>m Estimates <strong>of</strong> SolutionsConsider <strong>the</strong> differential equationy ′′′ + p(x, y, y ′ , y ′′ )|y| k−1 y = 0, k > 1, (1)<strong>the</strong> function p(x, y 0 , y 1 , y 2 ) is continuous in x and Lipschitz continuous in y 0 , y 1 , y 2 with0 < p ∗ ≤ p(x, y 0 , y 1 , y 2 ) ≤ p ∗ , (2)where p ∗ , p ∗ are positive constants.Put β = k−13> 0.Theorem 1. For any k > 1, p ∗ > 0, p ∗ > p ∗ , h > 0 <strong>the</strong>re exists a constant C > 0 such that <strong>for</strong>any p(x, y, y ′ , y ′′ ) satisfying (2), any solution y(x) to (1) satisfying <strong>the</strong> condition |y(x 0 )| = h > 0in some point x 0 ∈ R cannot be extended to <strong>the</strong> interval (x 0 − C h −β , x 0 + C h −β ).Theorem 2. For any k > 1, p ∗ > 0, p ∗ > p ∗ <strong>the</strong>re exists a constant C > 0 such that <strong>for</strong> anyp(x, y, y ′ , y ′′ ) satisfying (2) and any solution y(x) to (1) defined on [−a, a] it holds |y(0)| ≤ ( Ca ¯g)1/β i .Theorem 3. For any k > 1, p ∗ > 0, p ∗ > p ∗ <strong>the</strong>re exists a constant C > 0 such that <strong>for</strong> anyp(x, y, y ′ , y ′′ ) satisfying (2) and any solution y(x) to (1) defined on [a, b] it holds|y(x)| ≤ C min(x − a, b − x) −1/β . (3)Remark 1. In [5] uni<strong>for</strong>m estimates <strong>for</strong> positive solutions with <strong>the</strong> same domain to <strong>the</strong> equationn−1∑y (n) + a j (x)y (i) + p(x)|y| k−1 y = 0with continuous functions p(x) and a j (x), n ≥ 1, k > 1 were obtained.estimates <strong>for</strong> absolute values <strong>of</strong> all solutions to <strong>the</strong> equationwere proved.j=0n−1∑y (n) + a j (x)y (i) + p(x)|y| k = 0j=05In [6] similar uni<strong>for</strong>m


3 Existence <strong>of</strong> Solution with Prescribed DomainConsider <strong>the</strong> differential equation (1) with <strong>the</strong> same propositions about <strong>the</strong> function p(x, y 0 , y 1 , y 2 ).Definition. A solution y(x) has a resonance asymptote x = x ∗ iflim y(x) = +∞, limx→x∗ y(x) = −∞.x→x ∗Theorem 4. Suppose that condition (2) holds. Let y(x) be a solution to (1) defined on [x 0 , x ∗ )with <strong>the</strong> resonance asymptote x = x ∗ . Then <strong>the</strong> position <strong>of</strong> <strong>the</strong> asymptote x = x ∗ depends continuouslyon y(x 0 ), y ′ (x 0 ), y ′′ (x 0 ).Theorem 5. Suppose that condition (2) holds. Then <strong>for</strong> any finite x ∗ < x ∗ <strong>the</strong>re exists anon-extensible solution y(x) to (1) defined on (x ∗ , x ∗ ) with <strong>the</strong> vertical asymptote x = x ∗ and <strong>the</strong>resonance asymptote x = x ∗ .Corollary 1. Suppose that condition (2) holds. Then <strong>for</strong> any x ∗ ∈ R <strong>the</strong>re exists a Knesersolution <strong>of</strong> (1) with <strong>the</strong> vertical asymptote x = x ∗ defined on <strong>the</strong> interval (x ∗ , +∞) and tending to0 as x → +∞.Corollary 2. Suppose that condition (2) holds. Then <strong>for</strong> any x ∗ ∈ R <strong>the</strong>re exists a nonextensiblesolution y(x) <strong>of</strong> (1) with <strong>the</strong> resonance asymptote x = x ∗ defined on <strong>the</strong> interval (−∞, x ∗ )and tending to 0 as x → −∞.Theorem 6. Suppose that condition (2) holds. Then <strong>for</strong> any finite or infinite x ∗ < x ∗ <strong>the</strong>reexists a non-extensible solution y(x) <strong>of</strong> (1) with domain (x ∗ , x ∗ ).Remark 2. In [4], [7] asymptotic behavior <strong>of</strong> all possible solutions to (1) is described.AcknowledgementsThe work was partially supported by <strong>the</strong> Russian Foundation <strong>for</strong> Basic Researches (Grant 11-01-00989) and by Special Program <strong>of</strong> <strong>the</strong> Ministery <strong>of</strong> Education and Science <strong>of</strong> <strong>the</strong> Russian Federation(Project 2.1.1/13250).References[1] V. A. Kondratiev and V. A. Nikishkin, <strong>On</strong> positive solutions <strong>of</strong> y ′′ = p(x)y k . (Russian) Some<strong>Problem</strong>s <strong>of</strong> Qualitative Theory <strong>of</strong> Differential Equations and Motion Control, Saransk, 1980,134–141.[2] I. T. Kiguradze and T. A. Chanturia, Asymptotic properties <strong>of</strong> solutions <strong>of</strong> nonautonomousordinary differential equations. Ma<strong>the</strong>matics and its Applications (Soviet Series), 89. KluwerAcademic Publishers Group, Dordrecht, 1993.[3] I. V. Astashova, <strong>On</strong> <strong>the</strong> existence <strong>of</strong> solution with prescribed domain <strong>for</strong> an equation <strong>of</strong> <strong>the</strong>third order. (Russian) Dokl. Sem. IPM Imeni I. N. Vekua, Tbilisi, TSU 7 (1992), No. 3, 16–19.[4] I. V. Astashova, Application <strong>of</strong> dynamical systems to <strong>the</strong> investigation <strong>of</strong> <strong>the</strong> asymptoticproperties <strong>of</strong> solutions <strong>of</strong> higher-order nonlinear differential equations. (Russian) Sovrem. Mat.Prilozh. No. 8 (2003), 3–33; translation in J. Math. Sci. (N. Y.) 126 (2005), No. 5, 1361–1391.[5] I. V. Astashova, Uni<strong>for</strong>m estimates <strong>for</strong> positive solutions <strong>of</strong> quasilinear ordinary differentialequations. (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 72 (2008), No. 6, 85–104; translationin Izv. Math. 72 (2008), No. 6, 1141–1160.6


[6] I. V. Astashova, Uni<strong>for</strong>m estimates <strong>of</strong> positive solutions to quasi-linear differential inequalities.(Russian) Trudy Seminara Imeni I. G. Petrovskogo 143 (2007), No. 26, 27–36; translation inJ. Math. Sci. 143 (2007), No. 4, 3198–3204.[7] I. V. Astashova, Qualitative properties <strong>of</strong> solutions to quasilinear ordinary differential equations.(Russian) MESI, Moscow, 2010 (ISBN 978-5-7764-0647-8).[8] I. V. Astashova, <strong>On</strong> uni<strong>for</strong>m estimates <strong>of</strong> solutions to nonlinear third-order differential equations.Trudy Seminara Imeni I. G. Petrovskogo, 2011, No. 29 (to appear).7


<strong>On</strong> <strong>the</strong> Convergence <strong>of</strong> Difference Schemes <strong>for</strong> GeneralizedBBM EquationGivi BerikelashviliA. Razmadze Ma<strong>the</strong>matical Institute <strong>of</strong> I. Javakhishvili Tbilisi State University,Georgian Technical University, Tbilisi, GeorgiaE-mail: bergi@rmi.geWe consider <strong>the</strong> initial boundary value problem <strong>for</strong> generalized Benjamin–Bona–Mahony (BBM)equation∂u∂t + ∂u∂x + γ ∂(u)m∂x− µ ∂3 u∂x 2 ∂t = 0, (x, t) ∈ Q T , (1)u(a, t) = u(b, t) = 0, t ∈ [0, T ), u(x, 0) = φ(x), x ∈ [a, b], (2)where γ and µ are positive constants, m ≥ 2 is a positive integer, and Q T := (a, b) × (0, T ). In<strong>the</strong> cases m=2,3 (1) represents <strong>the</strong> BBM (or regularized long-wave) and modified BBM equations,respectively.For convenience we introduce <strong>the</strong> notationx i = a + ih, t j = jτ, i = 0, 1, 2, . . . , n, j = 0, 1, 2, . . . , J,where h = (b − a)/n and τ = T/J denote <strong>the</strong> spatial and <strong>the</strong> temporal mesh size, respectively. Letu j i := u(x i, t j ), U j i ∼ u(x i, t j ),(U j i ) x := U j i+1 − U j ih(U j i ) t := U j+1i− U j iτn−1∑(U j , V j ) :=, (U j i )¯x := U j i − U j i−1, (U j ih) x ◦ := 1 2 ((U j i ) x + (U j i )¯x),, (U j i )¯t := U j i − U j−1iτi=1hU j i V ji , (U j , V j ] :=∥U j ∥ 2 := (U j , U j ), ∥U j ]| 2 := (U j , U j ], ∥U j ∥ 2 W 1 2, (U j i ) ◦ t := 1 2 ((U j i ) t + (U j i )¯t),n∑i=1hU j i V ji ,:= ∥U j¯x]| 2 + ∥U j ∥ 2 .We approximate <strong>the</strong> problem (1), (2) with <strong>the</strong> help <strong>of</strong> <strong>the</strong> difference scheme:whereLU j i= 0, i = 1, 2, . . . , n − 1, j = 0, 1, . . . , J − 1, (3)U j 0 = U j n = 0, j = 0, 1, . . . , J, U 0 i = φ(x i ), i = 0, 1, . . . , n, (4)LU j i := (U j i ) t ◦ + 1 j+1(Ui+ U j−1i) ◦2 x++ γm2(m + 1) ΛU j i − µ(U j i )¯xx t ◦ , i = 1, n − 1, j = 1, 2, . . . , J − 1,LU 0 i := (U 0 i ) t + 1 2 (U 1 i + U 0 i ) ◦ x++ γm2(m + 1) ΛU 0 i − µ(U 0 i )¯xxt , i = 1, n − 1, j = 0,ΛU j i := (U j i )m−1 (U j+1i+ U j−1i) ◦ x+ ( (U j i )m−1 (U j+1i+ U j−1i) ) ◦ x, j = 1, 2, . . . , J − 1,ΛU 0 i := (U 0 i ) m−1 (U 1 i + U 0 i ) ◦ x+ ( (U 0 i ) m−1 (U 1 i + U 0 i ) ) ◦ x.8


The obtained algebraic equations are linear with respect to <strong>the</strong> values <strong>of</strong> desired function <strong>for</strong> eachnew level.Theorem 1. The finite difference scheme (3), (4) is uniquely solvable and possesses <strong>the</strong> followinginvariantE j := ∥U j ∥ 2 + µ∥U j¯x]| 2 = ∥φ∥ 2 + µ∥φ¯x ]| 2 := E 0 , j = 1, 2, . . . .Definition. Let U, V are solutions <strong>of</strong> a difference scheme respectively with any initial dateU 0 , V 0 . If <strong>the</strong>re exists a constant c(T ) > 0, independent <strong>of</strong> mesh sizes τ and h, such that∥U j − V j ∥ 1h ≤ c(T )∥U 0 − V 0 ∥ 2h , j ≥ 1,where ∥ · ∥ 1h and ∥ · ∥ 2h are suitable norms on <strong>the</strong> set <strong>of</strong> qrid functions, <strong>the</strong>n we say that differencescheme is stable with respect to initial data. A difference scheme is said to be absolutely stable ifit is stable <strong>for</strong> any τ and h.Theorem 2. Difference scheme (3), (4) is absolutely stable with respect to initial data.Using procedure proposed by R. D. Lazarov, V. L. Makarov and A. A. Samarskii [1] anddeveloped in [2], we obtain convergence rate estimates that are compatible with <strong>the</strong> smoothness <strong>of</strong><strong>the</strong> desired solution.Theorem 3. Let <strong>the</strong> exact solution <strong>of</strong> <strong>the</strong> initial-boundary value problem (1), (2) belong toW2 k(Q T ), k > 1. Then <strong>the</strong> convergence rate <strong>of</strong> <strong>the</strong> finite difference scheme (3), (4) is determined by<strong>the</strong> estimate∥U j − u j ∥ W 12≤ c(τ k−1 + h k−1 )∥u∥ W k2 (Q T ) , 1 < k ≤ 3,where c = c(u) denotes positive constant, independent <strong>of</strong> h and τ.References[1] R. D. Lazarov, V. L. Makarov, and A. A. Samarskii, Application <strong>of</strong> exact difference schemes<strong>for</strong> constructing and investigating difference schemes on generalized solutions. (Russian) Mat.Sb. (N.S.) 117(159) (1982), No. 4, 469–480, 559.[2] A. A. Samarskii, R. D. Lazarov, and V. L. Makarov, Difference schemes <strong>for</strong> differential equationswith generalized solutions. (Russian) Visshaja Shkola, Moscow, 1987.9


Asymptotic Behavior <strong>of</strong> Solutions <strong>of</strong> Differential Equations <strong>of</strong> <strong>the</strong>Type y (n) = α 0 p(t) n−1 ∏φ i (y (i) )i=0M. O. BilozerovaI. I. Mechnikov Odessa National University, Odessa, UkraineE-mail: Marbel@ukr.netThe differential equationn−1∏y (n) = α 0 p(t) φ i (y (i) ), (1)where α 0 ∈ {−1, 1}, p : [a, ω[ 1 → ]0, +∞[ (−∞ < a < ω ≤ +∞), φ i : ∆ Yi → ]0, +∞[ (i = 0, . . . , n)are <strong>the</strong> continuous functions, Y i ∈ {0, ±∞}, ∆ Yi is ei<strong>the</strong>r <strong>the</strong> interval [yi 0, Y i[ 2 or <strong>the</strong> interval ]Y i , yi 0],is considered. We suppose also that every φ i (z) is regularly varying as z → Y i (z ∈ ∆ Yi ) <strong>of</strong> indexσ i and n−1 ∑σ i ≠ 1.i=0According to <strong>the</strong> type <strong>of</strong> <strong>the</strong> functions φ 0 , . . . , φ n−1 it is clear that <strong>the</strong> equation (1) is in somesense similar to <strong>the</strong> well known differential equationi=0n−1∏y (n) = α 0 p(t) |y (i) | σ i. (2)We call <strong>the</strong> solution y <strong>of</strong> <strong>the</strong> equation (1) <strong>the</strong> P ω (λ 0 n−1 )-solution, where −∞ ≤ λ0 n−1 ≤ +∞, if<strong>the</strong> following conditions take placei=0y (i) : [t 0 , ω[ → ∆ Yi ,lim y (i) (y (n−1) (t)) 2(t) = Y i (i = 0, . . . , n − 1), limt↑ω t↑ω y (n) (t)y (n−2) (t) = λ0 n−1.All P ω (λ 0 n−1 )-solutions <strong>of</strong> <strong>the</strong> equation (2) were investigated in [2], [3]. In case n = 2 <strong>for</strong> allP ω (λ 0 n−1 )-solutions <strong>of</strong> <strong>the</strong> equation (1) <strong>the</strong> necessary and sufficient conditions <strong>of</strong> existence andasymptotic representations as t ↑ ω were found later [4]–[7]. The methods <strong>of</strong> this investigations areused in this work <strong>for</strong> <strong>the</strong> equation (1), where n ≥ 2.The cases λ 0 ∈ { 0, 1 2 , 2 3 , . . . , n−1} n−2 are singular by <strong>the</strong> studying <strong>of</strong> Pω (λ 0 n−1 )-solutions <strong>of</strong> <strong>the</strong>equation (1). P ω (λ 0 n−1 )-solutions, where λ 0 ∈ { 0, 1 2 , 2 3 , . . . , n−2n−1}are regularly varying functions ast ↑ ω <strong>of</strong> indexes {0, 1, . . . , n−1}. To investigate such solutions we have to put additional conditionson <strong>the</strong> functions φ 0 , . . . , φ n−1 and <strong>the</strong> function p. The necessary and sufficient conditions <strong>of</strong> <strong>the</strong>existence <strong>of</strong> P ω (λ 0 n−1 )-solutions <strong>of</strong> <strong>the</strong> equation (1) <strong>for</strong> λ0 n−1 ∈ { 0, 1 2 , 2 3 , . . . , n−2n−1}are found in thiswork. The asymptotic representations as t ↑ ω <strong>for</strong> such solutions and <strong>the</strong>ir derivatives from <strong>the</strong>first to (n − 1)-th order are found too. We will illustrate this results <strong>for</strong> <strong>the</strong> case λ 0 = 0, that isone <strong>of</strong> <strong>the</strong> most difficult <strong>for</strong> investigation.We call <strong>the</strong> slowly varying as z → Y (z ∈ ∆) function θ satisfies <strong>the</strong> condition S if <strong>for</strong> every continuouslydifferentiable function L : ∆ → ]0; +∞[ such that lim′ (z) zLz→Y L(z)= 0, <strong>the</strong> next representationz∈∆takes placeθ(zL(z)) = θ(z)[1 + o(1)] as z → Y (z ∈ ∆).1 If ω > 0 we will take a > 0.2 If Y i = +∞ (Y i = −∞) we take y 0 i > 0 (y 0 i < 0) correspondingly.10


Let us introduce subsidiary notations.⎧a, if ⎪⎨A 0 ω =ω, if⎪⎩C ={tπ ω (t) =t − ωI 0 (t) =∫ ωa∫ ωa∫ tA 0 ωn−31∑, µ = (i + 2 − n)σ i ,1 − σ n−1<strong>for</strong> ω = +∞,<strong>for</strong> ω < +∞,p(τ) dτ, I 1 (t) =p(τ) dτ = +∞,p(τ) dτ < +∞,⎧∫ tA 1 ω⎪⎨ a, ifA 1 ω =⎪⎩ ω, ifi=0θ n−1 (z) = φ n−1 (z)|z| −σ n−1,I 0 (τ)(∣C|π ω (τ)| µ θ |I0 (τ)| C ) ∣ Cn−1 ∣∣ dτ,∫ ωa∫ ωThe following conclusion takes place <strong>for</strong> <strong>the</strong> equation (1).ay 0 n−1I 0 (τ)(∣|π ω (τ)| µ θ |I0 (τ)| C ) ∣ Cn−1 ∣∣yn−10 dτ = +∞,I 0 (τ)(∣|π ω (τ)| µ θ |I0 (τ)| C ) ∣ Cn−1 ∣∣ dτ < +∞.Theorem. Let <strong>the</strong> function θ n−1 satisfy <strong>the</strong> condition S and σ n−1 ≠ 1. Then <strong>the</strong> followingconditions are necessary <strong>for</strong> <strong>the</strong> existence <strong>of</strong> P ω (0)-solutions <strong>of</strong> <strong>the</strong> equation (1):I 1 ′ lim(t)I 0(t)t↑ω p(t)I 1 (t) = 0,lim y 0t↑ωn−2|I 1 (t)| (1−σ n−1)/(1− n−1 ∑)σ jj=0y 0 n−1limt↑ω y0 n−1|I 0 (t)| C = Y n−1 , (3)= Y n−2 , limt↑ωy 0 i |π ω (t)| n−i−2 = Y i , (4)α 0 y 0 n−1CI 0 (t) > 0, y 0 n−2y 0 n−1I 1 (t) > 0, y 0 i y 0 i+1(n − i − 1)(n − i − 2) > 0 if t ∈ [a, ω[ , (5)πwhere i = 0, . . . , n − 3. If <strong>the</strong>re exists a finite or an infinite limit lim ω (t)p(t)t↑ωI 0 (t), <strong>the</strong>n <strong>the</strong> conditions(3)–(5) are sufficient <strong>for</strong> <strong>the</strong> existence <strong>of</strong> such solutions <strong>of</strong> <strong>the</strong> equation (1). Moreover, <strong>for</strong> anyP ω (0)-solution <strong>of</strong> (1) <strong>the</strong> following asymptotic representationsy (n−1) (t)= α 0 (1 − σ n−1 )I 0 (t)[1 + o(1)],∏φ j (y (j) (t))n−1j=0y (n−1) (t)y (n−2) (t) = I′ 1 (t)y[1 + o(1)],I 1 (t)hold as t ↑ ω, where i = 0, . . . , n − 3.(i) (t)y (n−2) (t) = [π ω(t)] n−i−2[1 + o(1)](n − i − 2)!References[1] E. Seneta, Regularly varying functions. Lecture Notes in Ma<strong>the</strong>matics, Vol. 508. Springer-Verlag, Berlin–New York, 1976.[2] V. M. Evtukhov, A class <strong>of</strong> monotone solutions <strong>of</strong> an nth-order nonlinear differential equation<strong>of</strong> Emden–Fowler type. (Russian) Soobshch. Akad. Nauk Gruzii 145 (1992), No. 2, 269–273.[3] V. M. Evtukhov, Asymptotic representations <strong>of</strong> monotone solutions <strong>of</strong> an nth-order nonlineardifferential equation <strong>of</strong> Emden–Fowler type. (Russian) Dokl. Akad. Nauk 324 (1992), No. 2,258–260; English transl.: Russian Acad. Sci. Dokl. Math. 45 (1992), No. 3, 560–562 (1993).11


[4] V. M. Evtukhov and M. A. Belozerova, Asymptotic representations <strong>of</strong> solutions <strong>of</strong> secondorderessentially nonlinear nonautonomous differential equations. (Russian) Ukrain. Mat. Zh.60 (2008), No. 3, 310–331; English transl.: Ukrainian Math. J. 60 (2008), No. 3, 357–383.[5] M. A. Belozerova, Asymptotic properties <strong>of</strong> a class <strong>of</strong> solutions <strong>of</strong> essentially nonlinear secondorderdifferential equations. (Russian) Mat. Stud. 29 (2008), No. 1, 52–62.[6] M. A. Belozerova, Asymptotic representations <strong>of</strong> solutions <strong>of</strong> differential equations <strong>of</strong> <strong>the</strong>second order with nonlinearities, that are in some sense near to <strong>the</strong> power type. (Ukrainian)Nauk. Visn. Thernivetskogo univ, Thernivtsi: Ruta 374 (2008), 34–43.[7] M. A. Belozerova, Asymptotic representations <strong>of</strong> solutions <strong>of</strong> second-order nonautonomousdifferential equations with nonlinearities close to power type. (Russian) Nelīnīīnī Koliv. 12(2009), No. 1, 3–15; English transl.: Nonlinear Oscil. (N. Y.) 12 (2009), No. 1, 1–14.12


<strong>On</strong> Stability <strong>of</strong> Delay <strong>Systems</strong>Alexander DomoshnitskyDepartment <strong>of</strong> Ma<strong>the</strong>matics and Computer Sciences, Ariel University Center, Ariel, IsraelE-mail: adom@ariel.ac.ilConsider <strong>the</strong> systemn∑x ′ i(t) + p ij (t)x j (t − τ ij (t)) = f i (t), i = 1, . . . , n, t ∈ [0, +∞),j=1x i (θ) = 0 <strong>for</strong> θ < 0.(1)Its general solution has <strong>the</strong> following representationx(t) =∫ t0C(t, s)f(s) ds + X(t)α,where <strong>the</strong> n × n matrix C(t, s) is called <strong>the</strong> Cauchy matrix <strong>of</strong> equation (1), X(t) is a n × nfundamental matrix <strong>of</strong> <strong>the</strong> system(M i x)(t) ≡ x ′ i(t) +n∑p ij (t)x j (t − τ ij (t)) = 0, i = 1, . . . , n, t ∈ [0, +∞),j=1x i (θ) = 0 <strong>for</strong> θ < 0,such that X(0) = I (I is <strong>the</strong> unit n × n matrix), f = col(f 1 , . . . , f n ), α = col(α 1 , . . . , α n )(1 0 )Definition 1. Let us say that system (1) is exponentially stable if <strong>the</strong> Cauchy and fundamentalmatrices X(t) = {X ij (t, s)} i,j=1,...,n and C(t, s) = {C ij (t, s)} i,j=1,...,n satisfy <strong>the</strong> exponentialestimate, i.e. <strong>the</strong>re exist N and γ such that<strong>for</strong> 0 ≤ s ≤ t < +∞, i, j = 1, . . . , n.|C ij (t, s)| ≤ Ne −γ(t−s) , |X ij (t)| ≤ Ne −γt ,Theorem 1. Let <strong>the</strong> following conditions be fulfilled:1) p ij ≤ 0 <strong>for</strong> i ≠ j, i, j = 1, . . . , n − 1;2)∫ tt−τ ii (t)p ii (s)ds ≤ 1 e<strong>for</strong> i = 1, . . . , n − 1;3) p jn ≥ 0, p nj ≤ 0 <strong>for</strong> j = 1, . . . , n − 1, p nn ≥ 0;4) <strong>the</strong>re exist positive α and β i such thatn−1∑p nn (t)e ατnn(t) − p nj (t)β j e ατnj(t) ≤ α ≤j=1≤{min − p in (t) 1 n−1∑e ατin(t) + p ij (t) β }je ατ jn(t), t ∈ [0, +∞).1≤i≤n−1 β i β i13j=1


Then <strong>the</strong> elements <strong>of</strong> <strong>the</strong> n-th row <strong>of</strong> <strong>the</strong> Cauchy matrix <strong>of</strong> system (1) satisfy <strong>the</strong> inequalities:C nn (t, s) > 0, C nj (t, s) ≥ 0 <strong>for</strong> j = 1, . . . , n − 1, 0 ≤ s ≤ t < +∞. If in addition <strong>the</strong>re exist positiveε and z 1 , . . . , z n−1 such thatn−1∑p ij (t) ≥ ε > 0,j=1n−1∑p in (t) − p ij (t)z j ≥ ε > 0, i = 1, . . . , n − 1,j=1n−1∑p nn (t) + |p nj (t)|z j ≥ ε > 0,j=1t ∈ [0, +∞), (2)<strong>the</strong>n system (1) is exponentially stable.Remark 1. It was assumed in condition 3) that p jn ≥ 0, <strong>for</strong> j = 1, . . . , n − 1, and Wazewskii’scondition, generally speaking, is not fulfilled.Remark 2. A possible case is p nn = 0 and <strong>the</strong> principle <strong>of</strong> main diagonal dominance (evenin its generalized <strong>for</strong>m, assuming, <strong>for</strong> example, that <strong>the</strong> matrix {p ij } i,j=1,...,n is M-matrix), is notfulfilled.Remark 3. The inequalitycannot be set instead <strong>of</strong> <strong>the</strong> inequalityn−1∑p nn (t) + |p nj (t)|β j > 0, t ∈ [0, +∞)j=1n−1∑p nn (t) − p nj (t)β j ≥ ε > 0, t ∈ [0, +∞)j=1in <strong>the</strong> condition (2) <strong>of</strong> Theorem 1. Actually in <strong>the</strong> case p nj (t) ≡ 0 <strong>for</strong> j = 1, . . . , n − 1 andp nn (t) = 1 , <strong>the</strong> component xt 2 n (t) <strong>of</strong> <strong>the</strong> solution vector <strong>of</strong> <strong>the</strong> homogeneous system (1 0 ) does nottend to zero when t → +∞.Remark 4. Conditions 1) and 2) imply that all elements <strong>of</strong> <strong>the</strong> Cauchy matrix K(t, s) ={K ij (t, s)} i,j=1,...,n−1 <strong>of</strong> auxiliary systemare nonnegative.n−1∑x ′ i(t) + p ij (t)x j (t − τ ij (t)) = f i (t), i = 1, . . . , n − 1, t ∈ [0, +∞), (3)j=1Remark 5. The inequalityn−1∑p ij (t) ≥ ε > 0, t ∈ [0, +∞)j=1implies that <strong>the</strong> Cauchy matrix <strong>of</strong> <strong>the</strong> auxiliary system (3) satisfies <strong>the</strong> exponential estimate andthis is essential in <strong>the</strong> case <strong>of</strong> separated n-th equation, i.e. when p nj (t) ≡ 0, p jn (t) ≡ 0 <strong>for</strong>j = 1, . . . , n − 1.14


<strong>On</strong> Well-Posedness with Respect to Functional <strong>for</strong> anOptimal Control <strong>Problem</strong> with Distributed DelaysPhridon DvalishviliI. Javakhishvili Tbilisi State University, Tbilisi, GeorgiaE-mail: pridon.dvalishvili@tsu.geLet Rx n be an n-dimensional vector space <strong>of</strong> points x = (x 1 , . . . , x n ) T , where T means transpose;O ⊂ Rx n and V ⊂ Ru r be open sets; <strong>the</strong> (n + 1)-dimensional function F (t, x, u) = (f 0 , f) T becontinuous on <strong>the</strong> set I × O × V and continuously differentiable with respect to x, where I =[t 0 , t 1 ]; next, τ > 0, θ > 0 given numbers, let Φ and Ω be sets <strong>of</strong> continuous initial functionsφ(t) ∈ O, t ∈ [t 0 − τ, t 0 ] and measurable control functions u(t) ∈ U, t ∈ [t 0 − θ, t 1 ], respectively,where U ⊂ V is a compact set.Let x 0 ∈ O and φ ∈ Φ be fixed initial vector and function. To each control function u ∈ Ω weassign <strong>the</strong> differential equation with distributed delayswith <strong>the</strong> initial conditionẋ(t) =∫ 0 ∫ 0−τ −θf(t, x(t + s), u(t + ξ)) ds dξ, t ∈ I (1)x(t) = φ(t), t ∈ [t 0 − τ, t 0 ), x(t 0 ) = x 0 . (2)Definition 1. Let u ∈ Ω be a given control. A function x(t) = x(t; u) ∈ O, t ∈ [t 0 − τ, t 1 ],is called a solution <strong>of</strong> Eq. (1) with <strong>the</strong> initial condition (2) or a solution corresponding to u anddefined on [t 0 − τ, t 1 ], if it satisfies condition (2) and is absolutely continuous on <strong>the</strong> interval [t 0 , t 1 ]and satisfies Eq. (1) almost everywhere on [t 0 , t 1 ].Definition 2. A control u ∈ Ω is said to be admissible if <strong>the</strong> corresponding solution x(t) =x(t; u) is defined on <strong>the</strong> interval [t 0 − τ, t 1 ].whereWe denote <strong>the</strong> set <strong>of</strong> admissible controls by Ω 0 .Definition 3. A control u 0 ∈ Ω 0 is said to be optimal if <strong>for</strong> any u ∈ Ω 0 we haveJ(u) =∫ t 1 { ∫0∫ 0t 0 −τ −θJ(u 0 ) ≤ J(u),The optimal control u 0 is called solution <strong>of</strong> <strong>the</strong> problem (1)–(3).}f 0 (t, x(t + s), u(t + ξ)) ds dξ dt. (3)Introduce <strong>the</strong> following notations: By Y we denote <strong>the</strong> set <strong>of</strong> continuous functions y(t) ∈ O,t ∈ I 1 = [t 0 − τ, t 0 ) ∪ (t 0 , t 1 ], with cly(I 1 ) ⊂ O is <strong>the</strong> compact set;F (t, y(·), u) =∫ 0−τF (t, y(t + s), u) ds, y ∈ Y, P (t, y(·)) = { F (t, y(·), u) : u ∈ U } .Theorem 1. Let <strong>the</strong> following conditions hold: Ω 0 ≠ Ø; <strong>the</strong>re exists a compact set K 0 ⊂ Osuch that x(t; u) ∈ K 0 , t ∈ [t 0 − τ, t 1 ], ∀ u ∈ Ω 0 ; <strong>for</strong> any (t, y) ∈ I × Y <strong>the</strong> set P (t, y(·)) is convex.Then <strong>the</strong> problem (1)–(3) has a solution u 0 .15


Let K 1 ⊂ O be a compact set containing a certain neighborhood <strong>of</strong> <strong>the</strong> set K 0 . By E we denote<strong>the</strong> set <strong>of</strong> functions G(t, x, y) = (g 0 , g) T ∈ Rxn+1 continuous on <strong>the</strong> set I × O and continuouslydifferentiable with respect to x and satisfying <strong>the</strong> condition∫|G δ (t, x)| dt ≤ const, ∀ x ∈ K 1 .ITheorem 2. Let <strong>the</strong> conditions <strong>of</strong> Theorem 1 hold. Then <strong>for</strong> any ε > 0 <strong>the</strong>re exists a numberδ > 0 such that <strong>for</strong> an arbitrary vector x 0δ ∈ O and functions φ δ ∈ Φ, G δ ∈ E satisfying <strong>the</strong>conditions|x 0 − x 0δ | + ∥φ − φ δ ∥ + ∥G δ ∥ ≤ δ,<strong>the</strong> perturbed optimal problemẋ(t) =J(u, δ) =∫ 0 ∫ 0−τ −θ∫ t 1 { ∫0∫ 0t 0 −τ −θhas a solution u 0δ and <strong>the</strong> following inequalityis fulfilled. Here{}f(t, x(t + s), u(t + ξ)) + g(t, x(t + s)) ds dξ, t ∈ I 1 ,x(t) = φ δ (t), t ∈ [t 0 − τ, t 0 ), x(t 0 ) = x 0δ ,[] }f 0 (t, x(t + s), u(t + ξ)) + g 0 (t, x(t + s)) ds dξ dt|J(u 0 ) − J(u 0δ )| ≤ ε∥ φ − φ δ ∥= sup { |φ(t) − φ δ (t)| : t ∈ I 1},{ ∣∣∣ ∫t ′′∥G δ ∥ = sup g(t, x) dt∣ : t ′ , t ′′ ∈ I, x ∈ K 1}.Theorems 1 and 2 are proved by scheme given in [1], [2].t ′References[1] T. A. Tadumadze, Some problems in <strong>the</strong> qualitative <strong>the</strong>ory <strong>of</strong> optimal control. (Russian) Tbilis.Gos. Univ., Tbilisi, 1983.[2] P. A. Dvalishvili, Some problems in <strong>the</strong> qualitative <strong>the</strong>ory <strong>of</strong> optimal control with distributeddelay. (Russian) Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 41 (1991), 83–113.16


Asymptotic Representations <strong>of</strong> Solutions <strong>of</strong> Ordinary DifferentialEquations <strong>of</strong> N-th Order with Regularly Varying NonlinearsV. M. Evtukhov and A. M. KlopotI. I. Mechnikov Odessa National University, Odessa, UkraineE-mail: emden@farlep.net, mrtark@gmail.comWe consider <strong>the</strong> differential equationy (n) =m∑k=1n−1∏α k p k (t) φ kj (y (j) ), (1)where α k ∈ {−1; 1} (k = 1, m), p k : [a, ω[ → ]0, +∞[ (k = 1, m) are continuous functions, φ kj :△ Yj → ]0, +∞[ (k = 1, m; j = 0, n − 1) are continuous and regularly varying at y (j) −→ Y jfunctions <strong>of</strong> orders σ kj , −∞ < a < ω ≤ +∞, △ Yj one-sided neighbourhood Y j , Y j is ei<strong>the</strong>r 0, or±∞.Continuous function φ : ∆ Y → ]0, +∞[ , where Y is ei<strong>the</strong>r 0, or ±∞ and ∆ Y one-sidedneighbourhood Y , is regularly variyng at y → Y , if <strong>the</strong>re exists a number σ ∈ R such that= λ σ <strong>for</strong> any λ > 0. In this case <strong>the</strong> number σ is called <strong>the</strong> order <strong>of</strong> regularly varyinglim y→Yy∈∆Yφ(λy)φ(y)function. Regularly varying at y → Y zero-order function is called slowly changing function.Since each regularly varying at y → Y function φ <strong>of</strong> σ order is represented as φ(y) = |y| σ L(y),where L- slowly changing function at y → Y , <strong>the</strong>n <strong>the</strong> differential equation (1) is asymptoticallyclose at y (j) → Y j (j = 0, n − 1) to <strong>the</strong> equationy (n) =m∑k=1j=0n−1∏α k p k (t) |y (j) | σ kj.Asymptotic behavior <strong>of</strong> certain classes <strong>of</strong> solutions <strong>of</strong> those equation is investigated in works [1], [2].A solution y <strong>of</strong> <strong>the</strong> equation (1) is called P ω (Y 1 , . . . , Y n−1 , λ 0 )- solution, where −∞ ≤ λ 0 ≤ +∞,if it is defined on an interval [t 0 , ω[ ⊂ [a, ω[ and satisfies <strong>the</strong> following conditionsy (j) (t) ∈ ∆ Yj at t ∈ [t 0 , ω[ , limt↑ωy (j) (t) = Y j (j = 0, n − 1), limt↑ω[y (n−1) (t)] 2y (n) (t)y (n−2) (t) = λ 0.Choose <strong>the</strong> numbers b j ∈ ∆ Yj (j = 0, n − 1) such that |b j | < 1 at Y j = 0, b j > 1 (b j < −1) atY j = +∞ (Y j = −∞), and introduce <strong>the</strong> numbers{1, if ∆ν 0j = sign b j , ν 1j =Yj − left neighborhood Y j ,(j = 0, n − 1).−1, if ∆ Yj − right neighborhood Y j ,Note that P ω (Y 0 , . . . , Y n−1 , λ 0 ) solution <strong>of</strong> equation (1) satisfies <strong>the</strong> following conditionsNext, letj=0ν 0j ν 1j < 0, if Y j = 0, ν 0j ν 1j > 0, if Y j = ±∞ (j = 0, n − 1). (2)a 0i = (n − i)λ 0 − (n − i − 1) (i = 1, . . . , n) at λ 0 ∈ R,{{t, if ω = +∞,π ω (t) =t − ω, if ω < +∞, , β = 1, if ω = +∞,−1, if ω < +∞, ,17


n−1∑γ k = 1 − σ kj , µ kn =j=0n−2∑σ kj (n − j − 1), C k =j=0∫ tJ kn (t) = p k (τ) ∣ πω (τ) ∣ a, if ⎪⎨µ kndτ, A kn =A kn⎧ω, if⎪⎩∫ ωa∫ ωan−2∏j=0(λ 0 − 1) n−j−1 ∣ ∣∣∣σ kj∣(k = 1, m),n−1 ∏a 0ii=j+1p k (t) ∣ ∣π ω (t) ∣ ∣ µ kndt = +∞,p k (t) ∣ ∣ πω (t) ∣ ∣ µ kndt < +∞(k = 1, m).Theorem. Let λ 0 ∈ R \ { 0, 1 2 , . . . , n−2n−1 , 1} and <strong>for</strong> some s ∈ {1, . . . , m} <strong>the</strong> inequality γ s ≠ 0and <strong>the</strong> conditionslim supt↑ωln p k (t) − ln p s (t)∣ ln |πω (t)| ∣ ∣< β n−1∑(σ sj − σ kj )a 0j+1 <strong>for</strong> all k ∈ {1, . . . , m} \ {s}λ 0 − 1j=0be fulfilled. Then <strong>for</strong> P ω (Y 0 , . . . , Y n−1 , λ 0 ) solutions <strong>of</strong> equation (1) to be exist it is necessary andif algebraic relatively ρ equationn−1∑n−1∏σ sj a 0ij=0 i=j+1 i=1j∏n−1∏(a 0i + ρ) = (1 + ρ) (a 0i + ρ)does not have roots with zero real part, it is also sufficient that inequality (2), <strong>the</strong> inequalitiesν 0j ν 0j+1 a 0j+1 (λ 0 − 1)π ω (t) > 0 (j = 0, n − 2), α s ν on−1 γ s J sn (t) > 0 at t ∈ ]a, ω[and <strong>the</strong> conditionπ ω (t)Jlimsn(t)′ = γ st↑ω J sn (t) λ 0 − 1are satisfied. Moreover, <strong>for</strong> each such a solution at t ↑ ω <strong>the</strong> asymptotic representationsy (j) (t) = [(λ 0 − 1)π ω (t)] n−j−1y (n−1) (t)[1 + o(1)] (j = 0, 1, . . . , n − 2),n−1 ∏a 0in−1 ∏j=0i=j+1|y (n−1) (t)| γ sL sj([(λ0 −1)π ω (t)] n−j−1n−1 ∏a 0ii=j+1hold, where L sj (y (j) ) = |y (j) | −σ sjφ sj (y (j) ) (j = 0, n − 1).i=1) = α sν 0n−1 γ s C s J sn (t)[1 + o(1)]y (n−1) (t)References[1] A. V. Kostin, Asymptotics <strong>of</strong> <strong>the</strong> regular solutions <strong>of</strong> nonlinear ordinary differential equations.(Russian) Differentsial’nye Uravneniya 23 (1987), No. 3, 524–526.[2] V. M. Evtukhov and E. V. Shebanina, Asymptotic behaviour <strong>of</strong> solutions <strong>of</strong> nth order differentialequations. Mem. Differential Equations Math. Phys. 13 (1998), 150–153.18


<strong>On</strong> Mixed Type Quasi-<strong>Linear</strong> Equations with General Integrals,Represented by Superposition <strong>of</strong> Arbitrary FunctionsJondo GvazavaA. Razmadze Ma<strong>the</strong>matical Institute <strong>of</strong> I. Javakhishvili Tbilisi State University, Tbilisi, GeorgiaE-mail: jgvazava@rmi.geWe discuss second-order quasi-linear equations with two independent variables x, t. The coefficients<strong>of</strong> <strong>the</strong> principal part <strong>of</strong> <strong>the</strong> equation are assumed to be polynomials with respect to unknownsolutions and to <strong>the</strong>ir derivatives <strong>of</strong> <strong>the</strong> first order, while <strong>the</strong> characteristic roots expressed by<strong>the</strong>se values are always real. Depending on <strong>the</strong> solutions, on some sets <strong>of</strong> points <strong>the</strong>se roots maycoincide. There<strong>for</strong>e <strong>the</strong> equations under consideration should be referred to a class <strong>of</strong> equations<strong>of</strong> mixed type, in particular, to hyperbolic equations with admissible parabolic degeneration. Forevery particular equation <strong>of</strong> such a type, a structure <strong>of</strong> points <strong>of</strong> parabolic degeneration dependscompletely on <strong>the</strong> data <strong>of</strong> <strong>the</strong> initial, or <strong>of</strong> some o<strong>the</strong>r <strong>for</strong>mulated problem. In <strong>the</strong> present reportwe will consider equations which admit explicit representation <strong>of</strong> general integrals in <strong>the</strong> <strong>for</strong>m <strong>of</strong>superposition <strong>of</strong> arbitrary functions. A number <strong>of</strong> <strong>the</strong>se arbitrary elements is equal to two, and<strong>the</strong>ir arguments, except independent variables, contain an unknown solution as well. Such is, <strong>for</strong>example, <strong>the</strong> equation∂u ∂ 2 u[∂t ∂t 2 + u ∂u∂t − ∂u ] ∂u2∂x ∂x∂t − u ∂u ∂ 2 u= 0, (1)∂x ∂t2 having certain practical application. A class <strong>of</strong> its hyperbolic solutions is defined by <strong>the</strong> conditionH ≡ ∂u∂x + u ∂u ≠ 0. (2)∂tIf H is identical zero <strong>for</strong> some solution, <strong>the</strong>n <strong>the</strong> solution itself is parabolic. If, however, <strong>the</strong>condition (2) is fulfilled not everywhere, <strong>the</strong>n <strong>the</strong> corresponding solution is called mixed one. Ageneral integral <strong>of</strong> <strong>the</strong> equation has <strong>the</strong> <strong>for</strong>muf ′ (u) − f(u) + g[x − f(u)] = t, (3)where f, g ∈ C 2 (R 1 ) are arbitrary functions. Consider now <strong>the</strong> Cauchy problem with <strong>the</strong> initialconditionsu ∣ ∂ut=0= τ(x), ∣ = ν(x), (x, t) ∈ H, τ, ν ∈ C 2 (J) (4)∂t t=0on <strong>the</strong> data supportJ := { (x, t) : t = 0, α ≤ x ≤ β } .The functional equationsτ(x) = ζ,∫ xατ(z)ν(z)τ ′ dz = ξ (5)(z) + τ(z)ν(z)with respect to x are assumed to be uniquely solvable and we denote <strong>the</strong>ir solutions by, respectively,x = T (ζ) and x = G(ξ). In this case, subjecting <strong>the</strong> general integral (3) to <strong>the</strong> conditions (4), onewill be able to define arbitrary functions in terms <strong>of</strong> <strong>the</strong> initial perturbationsf[ζ] = f[τ(α)] + f ′ [τ(α)] [ τ(T (ζ)) − τ(α) ] +g(ξ) = g[α − f ′ (α)] +G(ξ)∫α19T∫(ζ)α[τ(T ζ)) − τ(ζ)]τ ′ (z)τ ′ (z) + τ(z)ν(z)τ(z)τ ′ (z)τ ′ (z) + τ(z)ν(z) dz.dz,


Having defined in such a way arbitrary functions and substituting <strong>the</strong>m into <strong>the</strong> representation(3), we construct <strong>the</strong> integral <strong>of</strong> <strong>the</strong> problem (1), (4). To describe a structure <strong>of</strong> <strong>the</strong> domain<strong>of</strong> definition <strong>of</strong> <strong>the</strong> integral <strong>of</strong> <strong>the</strong> problem, we use <strong>the</strong> properties <strong>of</strong> characteristic invariants,represented in <strong>the</strong> given case by <strong>the</strong> right-hand sides <strong>of</strong> <strong>the</strong> functional equations (5), in particular,<strong>the</strong> fact that along any characteristic <strong>of</strong> <strong>the</strong> corresponding family <strong>the</strong>y are constant. A globalcharacter <strong>of</strong> that property allows one to construct all characteristics emanated from <strong>the</strong> points <strong>of</strong><strong>the</strong> data support <strong>of</strong> <strong>the</strong> problem (1), (4) and, consequently, <strong>the</strong> domain <strong>of</strong> definition <strong>of</strong> <strong>the</strong> integralby means <strong>of</strong> a set <strong>of</strong> points <strong>of</strong> intersection <strong>of</strong> <strong>the</strong>se characteristics.20


Fredholm Type Theorem <strong>for</strong> <strong>Systems</strong> <strong>of</strong> Functional-DifferentialEquations with Positively Homogeneous OperatorsRobert HaklInstitute <strong>of</strong> Ma<strong>the</strong>matics, Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> Czech Republic, branch in Brno, Brno,Czech RepublicE-mail: hakl@ipm.czConsider <strong>the</strong> system <strong>of</strong> functional-differential equationsu ′ i(t) = p i (u 1 , . . . , u n )(t) + f i (u 1 , . . . , u n )(t) <strong>for</strong> a. e. t ∈ [a, b] (i = 1, . . . , n) (1)toge<strong>the</strong>r with boundary conditionsl i (u 1 , . . . , u n ) = h i (u 1 , . . . , u n ) (i = 1, . . . , n). (2)Here, p i , f i : [C([a, b]; R)] n → L ( [a, b]; R ) are continuous operators satisfying Carathéodory condition,i.e., <strong>the</strong>y are bounded on every ball by an integrable function, and l i , h i : [C([a, b]; R)] n → Rare continuous functionals which are bounded on every ball by a constant. Fur<strong>the</strong>rmore, we assumethat p i and l i satisfy <strong>the</strong> following condition: <strong>the</strong>re exist positive real numbers λ ij and µ i such thatλ ij λ jm = λ im whenever i, j, m ∈ {1, . . . , n}, and <strong>for</strong> every c > 0 and u k ∈ C([a, b]; R) (k = 1, . . . , n)we havecp i (u 1 , . . . , u n )(t) = p i (c λ i1u 1 , . . . , c λ inu n )(t) <strong>for</strong> a. e. t ∈ [a, b],c µ il i (u 1 , . . . , u n ) = l i (c λ i1u 1 , . . . , c λ inu n ).By a solution to (1), (2) we understand an absolutely continuous vector-valued function (u i ) n i=1 :[a, b] → R n satisfying (1) almost everywhere in [a, b] and (2).Remark 1. From <strong>the</strong> above-stated assumptions it follows that λ ii = 1, λ ij = 1/λ ji <strong>for</strong> everyi, j ∈ {1, . . . , n}.Notation 1. Define, <strong>for</strong> every i ∈ {1, . . . , n}, <strong>the</strong> following functions{q i (t, ρ) def ∣∣fi= sup (u 1 , . . . , u n )(t) ∣ }: ∥uk ∥ C ≤ ρ λ ik, k = 1, . . . , n <strong>for</strong> a. e. t ∈ [a, b],{η i (ρ) def ∣∣hi= sup (u 1 , . . . , u n ) ∣ }: ∥uk ∥ C ≤ ρ λ ikµ i , k = 1, . . . , n .Theorem 1. Let∫ bq i (s, ρ)limds = 0,ρ→+∞ ρaη i (ρ)lim = 0 (i = 1, . . . , n). (3)ρ→+∞ ρIf <strong>the</strong> problemu ′ i(t) = (1 − δ)p i (u 1 , . . . , u n )(t) − δp i (−u 1 , . . . , −u n )(t) <strong>for</strong> a. e. t ∈ [a, b] (i = 1, . . . , n),(1 − δ)l i (u 1 , . . . , u n ) − δl i (−u 1 , . . . , −u n ) = 0 (i = 1, . . . , n)has only <strong>the</strong> trivial solution <strong>for</strong> every δ ∈ [0, 1/2], <strong>the</strong>n <strong>the</strong> problem (1), (2) has at least one solution.21


Sketch <strong>of</strong> pro<strong>of</strong>. There exists r > 0 such that <strong>for</strong> any absolutely continuous vector-valued fucntion(u i ) n i=1 defined on [a, b] and every δ ∈ [0, 1/2], <strong>the</strong> a priori estimaten∑k=1∥u k ∥ λ k1C≤ r n∑i=1(∥ ˜f)i ∥ λ i1L+ |˜h i | λ i1µ iholds, where˜f i (t) def= u ′ i(t) − (1 − δ)p i (u 1 , . . . , u n )(t) + δp i (−u 1 , . . . , −u n )(t) <strong>for</strong> a. e. t ∈ [a, b] (i = 1, . . . , n),Put˜hidef= (1 − δ)l i (u 1 , . . . , u n ) − δl i (−u 1 , . . . , −u n ) (i = 1, . . . , n).x = ( (u i ) n i=1, (α i ) n i=1)∈ X = [C([a, b]; R)] n × R n with <strong>the</strong> norm ∥x∥ =A(x) def=((∫ tu i (a) + α i +Ω =a{x ∈ X :) np i (u 1 , . . . , u n )(s) + f i (u 1 , . . . , u n )(s) ds ,i=1n∑k=1n∑ (∥uk ∥ C + |α k | ) ,k=1(αi + l i (u 1 , . . . , u n ) − h i (u 1 , . . . , u n ) ) )n,i=1(∥uk ∥ λ k1C + |α k| ) < ρ 0}<strong>for</strong> sufficiently large ρ 0 .Then using Krasnosel’skii <strong>the</strong>orem (see [1, Theorem 41.3, p. 325]):A(x) − x∥A(x) − x∥ ≠A(−x) + x∥A(−x) + x∥ (x ∈ ∂Ω) =⇒ ∃ x 0 ∈ Ω such that A(x 0 ) = x 0 ,we prove <strong>the</strong> assertion <strong>of</strong> this <strong>the</strong>orem. For more detailed idea <strong>of</strong> <strong>the</strong> pro<strong>of</strong> one can see [2].If <strong>the</strong> operators p i and l i are homogeneous, i.e., ifp i (−u 1 , . . . , −u n )(t)=−p i (u 1 , . . . , u n )(t) <strong>for</strong> a. e. t ∈ [a, b], u j ∈C([a, b]; R) (i, j = 1, . . . , n), (4)l i (−u 1 , . . . , −u n ) = −l i (u 1 , . . . , u n ) u j ∈ C([a, b]; R) (i, j = 1, . . . , n) (5)hold, <strong>the</strong>n from Theorem 1 we obtain <strong>the</strong> following assertion.Corollary 1. Let (3), (4), and (5) be fulfilled. If <strong>the</strong> problemu ′ i(t) = p i (u 1 , . . . , u n )(t) <strong>for</strong> a. e. t ∈ [a, b] (i = 1, . . . , n), (6)l i (u 1 , . . . , u n ) = 0 (i = 1, . . . , n) (7)has only <strong>the</strong> trivial solution, <strong>the</strong>n <strong>the</strong> problem (1), (2) has at least one solution.For a particular case when p i are defined byp i (u 1 , . . . , u n )(t) def= ˜p i (t)|u i+1 (t)| λ isgn u i+1 (t) <strong>for</strong> a. e. t ∈ [a, b] (i = 1, . . . , n − 1), (8)p n (u 1 , . . . , u n )(t) def= ˜p n (t)|u 1 (t)| λ nsgn u 1 (t) <strong>for</strong> a. e. t ∈ [a, b], (9)where ˜p i ∈ L ( [a, b]; R ) , we have <strong>the</strong> following assertion.22


Corollary 2. Let (3), (5), (8), and (9) be fulfilled. Let, moreover,n∏λ i = 1,i=1and let <strong>the</strong> problem (6), (7) have only <strong>the</strong> trivial solution. Then <strong>the</strong> problem (1), (2) has at leastone solution.resp.In [3], <strong>the</strong> problem (1), (2) is studied with n = 2, p 1 , p 2 defined by (8), (9), andl 1 (u 1 , . . . , u n ) def=l 1 (u 1 , . . . , u n ) def=∫ a 0a∫ a 0au 1 (s) dα 1 (s),u 1 (s) dα 1 (s),l 2 (u 1 , . . . , u n ) def=l 2 (u 1 , . . . , u n ) def=∫ bb 0u 1 (s) dα 2 (s), (10)∫ bb 0u 2 (s) dα 2 (s), (11)where a < a 0 ≤ b, a ≤ b 0 < b, α 1 : [a, a 0 ] → R and α 2 : [b 0 , b] → R are functions <strong>of</strong> boundedvariation. For this particular case, Theorem 1 yieldsCorollary 3. Let n = 2, (3) be fulfilled, λ 1 λ 2 = 1, k ∈ {1, 2}, and letu ′ 1 = ˜p 1 (t)|u 2 | λ 1sgn u 2 , u ′ 2 = ˜p 2 (t)|u 1 | λ 2sgn u 1 ,∫ a 0au 1 (s) dα 1 (s) = 0,∫ bb 0u k (s) dα 1 (s) = 0have only <strong>the</strong> trivial solution. Then <strong>the</strong> problem (1), (2) with p i and l i defined by (8), (9), and(10), resp. (11) has at least one solution.References[1] M. A. Krasnosel’skiǐ and P. P. Zabreǐko, Geometric methods <strong>of</strong> nonlinear analysis. (Russian)Monographs in Nonlinear Analysis and Applications. Izdat. “Nauka”, Moscow, 1975.[2] A. Lasota, Une généralisation du premier théorème de Fredholm et ses applications à la théoriedes équations différentielles ordinaires. Ann. Polon. Math. 18 (1966), 65–77.[3] I. Kiguradze and J. Šremr, Solvability conditions <strong>for</strong> non-local boundary value problems <strong>for</strong>two-dimensional half-linear differential systems. Nonlin. Anal., TMA 74 (2011), No. 17, 6537–6552.23


Periodic Solution to <strong>Two</strong>-Dimensional Half-<strong>Linear</strong> SystemRobert HaklInstitute <strong>of</strong> Ma<strong>the</strong>matics, Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> Czech Republic, branch in Brno, Brno,Czech RepublicE-mail: hakl@ipm.czManuel ZamoraDepartamento de Matemática Aplicada, Facultad de Ciencias, Granada, Spain<strong>On</strong> <strong>the</strong> interval [0, ω] we consider <strong>the</strong> system <strong>of</strong> differential equationsu ′ 1 = p 1 (t)|u 2 | λ 1sgn u 2 + f 1 (t, u 1 , u 2 ),u ′ 2 = p 2 (t)|u 1 | λ 2sgn u 1 + f 2 (t, u 1 , u 2 ),subjected to <strong>the</strong> periodic-type boundary conditionsu 1 (0) − u 1 (ω) = h 1 (u 1 , u 2 ), u 2 (0) − u 2 (ω) = h 2 (u 1 , u 2 ). (2)Here, p i ∈ L([0, ω]; R), f i ∈ Car([0, ω] × R 2 ; R), h i : C([0, ω]; R) × C([0, ω]; R) → R are continuousfunctionals bounded on every ball, and λ i > 0 such that λ 1 λ 2 = 1.Notation 1. Define <strong>the</strong> following functions{q i (t, ρ) def ∣∣= sup f i (t, x 1 , x 2 ) ∣ }: |x i | ≤ ρ, |x 3−i | ≤ ρ λ 3−i<strong>for</strong> a. e. t ∈ [0, ω] (i = 1, 2),{}η i (ρ) def= sup |h i (u 1 , u 2 )| : ∥u i ∥ C ≤ ρ, ∥u 3−i ∥ C ≤ ρ λ 3−i(i = 1, 2).Theorem 1. Let∫ ωq i (s, ρ)limds = 0,ρ→+∞ ρ0Let, moreover, σ ∈ {1, −1} be such thatand let <strong>the</strong>re exist α i ∈ AC([0, ω]; R) (i = 1, 2) such that(1)η i (ρ)lim = 0 (i = 1, 2). (3)ρ→+∞ ρσp 1 (t) ≥ 0 <strong>for</strong> a. e. t ∈ [0, ω], p 1 ≢ 0, (4)α ′ 1(t) = p 1 (t)|α 2 (t)| λ 1sgn α 2 (t) <strong>for</strong> a. e. t ∈ [0, ω],α 1 (0) = α 1 (ω),α 2(t) ′ ≤ p 2 (t)|α 1 (t)| λ 2sgn α 1 (t) <strong>for</strong> a. e. t ∈ [0, ω], α 2 (0) ≤ α 2 (ω),σα 1 (t) > 0 <strong>for</strong> t ∈ [0, ω],{}meas t ∈ [0, ω] : α 2(t) ′ < p 2 (t)|α 1 (t)| λ 2sgn α 1 (t) + α 2 (ω) − α 2 (0) > 0.Then <strong>the</strong> problem (1), (2) has at least one solution.Corollary 1. Let (3) and (4) be fulfilled with σ ∈ {1, −1}. Let, moreover,∫ ω0[σp 2 (s)] − ds


ω∫Remark 1. Theorem 1 and Corollary 1 are applicable in <strong>the</strong> case when σp 2 (s) ds > 0. For <strong>the</strong>ω∫case when σp 2 (s) ds < 0 one can use <strong>the</strong> following assertion.0Theorem 2. Let (3) and (4) be fulfilled with σ ∈ {1, −1}. Let, moreover,0∫ ωσp 2 (s) ds < 0,∫ ω( ∫ωλ1σp 1 (s) ds [σp 2 (s)] − ds)< 4 1+λ 1.000Then <strong>the</strong> problem (1), (2) has at least one solution.Sketch <strong>of</strong> <strong>the</strong> pro<strong>of</strong>s. According to <strong>the</strong> general result established in [1] one can see that <strong>the</strong> followingassertion holds:Proposition 1. Let (3) be fulfilled. If <strong>the</strong> problemu ′ 1 = p 1 (t)|u 2 | λ 1sgn u 2 ,u ′ 2 = p 2 (t)|u 1 | λ 2sgn u 1 ,u 1 (0) − u 1 (ω) = 0, u 2 (0) − u 2 (ω) = 0 (6)has only <strong>the</strong> trivial solution, <strong>the</strong>n <strong>the</strong> problem (1), (2) has at least one solution.Then <strong>the</strong> conditions <strong>of</strong> Theorems 1 and 2 and Corollary 1 are obtained by direct analysing <strong>the</strong>non-trivial solutions <strong>of</strong> <strong>the</strong> problem (5), (6).Remark 2. Results obtained are unimprovable in that sense that nei<strong>the</strong>r <strong>of</strong> <strong>the</strong> strict inequalitiesestablished in Corollary 1 and Theorem 2 can be weakened.Remark 3. When λ i = 1, p 1 ≡ 1, h i ≡ 0, f 1 ≡ 0, f 2 (t, x, y) = f(t) <strong>for</strong> a. e. t ∈ [0, ω], x, y ∈ Rwith f ∈ L([0, ω]; R), <strong>the</strong>n <strong>the</strong> problem (1), (2) becomes a periodic problem <strong>for</strong> <strong>the</strong> second-orderlinear equationu ′′ = p 2 (t)u + f(t), u(0) = u(ω), u ′ (0) = u ′ (ω).In this case, Theorems 1 and 2, and Corollary 1 coincide with <strong>the</strong> results obtained in [2].References[1] R. Hakl, Fredholm type <strong>the</strong>orem <strong>for</strong> functional-differential equations with positively homogeneousoperators. (submitted)[2] R. Hakl and P. J. Torres, Maximum and antimaximum principles <strong>for</strong> a second order differentialoperator with variable coefficients <strong>of</strong> indefinite sign. Appl. Math. Comput. 217 (2011), No. 19,7599–7611.(5)25


Necessary Conditions <strong>of</strong> Optimality <strong>for</strong> Optimal <strong>Problem</strong>s withGeneral Variable Delays and <strong>the</strong> Mixed Initial ConditionMedea IordanishviliI. Javakhishvili Tbilisi State University, Tbilisi, GeorgiaE-mail: imedea@yahoo.comLet Rx n be an n-dimensional vector space <strong>of</strong> points x = (x 1 , . . . , x n ) T , where T means transpose;P ⊂ Rp, k Z ⊂ Rz e and V ⊂ Ru r be open sets and O = { x = (p, z) T ∈ Rx n : p ∈ Rp, k z ∈ Rz} e , withk +e = n; <strong>the</strong> n-dimensional function f(t, p 1 , . . . , p s , z 1 , . . . , z m , u 1 , . . . , u ν ) be continuous on <strong>the</strong> set[a, b]×P s ×Z m ×V ν and continuously differentiable with respect to p i , i = 1, s and z j , j = 1, m; <strong>the</strong>functions q i (t 0 , t 1 , p, z, x), i = 0, l be continuously differentiable on <strong>the</strong> set [a, b] × [a, b] × P × Z × O.Let us consider <strong>the</strong> optimal control problem:ẋ(t) = f(t, p(τ 1 (t)), . . . , p(τ s (t)), z(σ 1 (t)), . . . , z(σ m (t)), u(θ 1 (t)), . . . , u(θ ν (t))), u(·) ∈ Ω,x(t) = (p(t), z(t)) T = (φ(t), g(t)) T , t ∈ [τ 0 , t 0 ),x(t 0 ) = (p 0 , g(t 0 )) T , p 0 ∈ P, φ(·) ∈ Φ, g(·) ∈ G,q i( t 0 , t 1 , p 0 , g(t 0 ), x(t 1 ) ) = 0, i = 1, l,q 0 (t 0 , t 1 , p 0 , g(t 0 ), x(t 1 )) −→ min,where <strong>the</strong> functions τ i (t), i = 1, s are continuously differentiable and satisfying <strong>the</strong> conditionsτ i (t) ≤ t, ˙τ i (t) > 0; <strong>the</strong> functions σ i (t), i = 1, m, θ j (t), j = 1, ν satisfy <strong>the</strong> similar conditions; Φand G are sets <strong>of</strong> continuous initial functions φ : [τ 0 , b] → P 1 , and g : [τ 0 , b] → Z 1 , where P 1 ⊂ Pand Z 1 ⊂ Z are compact convex sets, τ 0 = min{τ 1 (a), . . . , τ s (a), σ 1 (a), . . . , σ m (a)}; Ω is <strong>the</strong> set <strong>of</strong>piecewise continuous control functions, u : [θ, b] → U, with finite number <strong>of</strong> points <strong>of</strong> discontinuity,θ = min{θ 1 (a), . . . , θ ν (a)}, U ⊂ V is a compact convex set.In <strong>the</strong> paper, on <strong>the</strong> basis <strong>of</strong> variation <strong>for</strong>mulas <strong>of</strong> solution [1] and by a scheme given in [2],necessary conditions <strong>of</strong> optimality are obtained: in <strong>the</strong> <strong>for</strong>m <strong>of</strong> linearized maximum principle <strong>for</strong>control and initial function, in <strong>the</strong> <strong>for</strong>m <strong>of</strong> equalities and inequalities <strong>for</strong> initial and final moments.References[1] L. Alkhazishvili and M. Iordanishvili, Local variation <strong>for</strong>mulas <strong>for</strong> solution <strong>of</strong> delay controlleddifferential equation with mixed initial condition. Mem. Differential Equations Math. Phys.51 (2010), 17–41.[2] G. L. Kharatishvili and T. A. Tadumadze, Formulas <strong>for</strong> <strong>the</strong> variation <strong>of</strong> a solution and optimalcontrol problems <strong>for</strong> differential equations with retarded arguments. (Russian) Sovrem. Mat.Prilozh. No. 25, Optimal. Upr. (2005), 3–166; translation in J. Math. Sci. (N. Y.) 140 (2007),No. 1, 1–175.26


Asymptotic Equivalence <strong>of</strong> <strong>Linear</strong> <strong>Systems</strong> <strong>for</strong> Small<strong>Linear</strong> PerturbationsN. A. IzobovInstitute <strong>of</strong> Ma<strong>the</strong>matics <strong>of</strong> <strong>the</strong> National Academy <strong>of</strong> Sciences <strong>of</strong> Belarus, Minsk, BelarusE-mail: izobov@im.bas-net.byS. A. MazanikBelarusian State University, Minsk, BelarusE-mail: smazanik@bsu.by1 Tests <strong>of</strong> Lyapunov’s Reducibility <strong>of</strong> <strong>Linear</strong> <strong>Systems</strong>Consider <strong>the</strong> linear systemsẋ = A(t)x, x ∈ R n , t ∈ I = [0, +∞), (1)with piecewise continuous and bounded (by <strong>the</strong> constant a ≥ ∥A(t)∥ <strong>for</strong> t ∈ I) coefficients. Alongwith systems (1), we will consider <strong>the</strong> systemsẏ = (A(t) + Q(t))y, y ∈ R n , t ∈ I, (2)likewise with piecewise continuous and bounded on I coefficients.<strong>Systems</strong> (1) and (2) are asymptotically equivalent (Lyapunov-equivalent, reducible) if <strong>the</strong>reexists a linear trans<strong>for</strong>mation x = L(t)y, transferring one <strong>of</strong> <strong>the</strong> systems into ano<strong>the</strong>r, where <strong>the</strong>matrix L(t) is <strong>the</strong> Lyapunov one, i.e., satisfying <strong>the</strong> condition{sup |L(t)∥ + ∥L −1 (t)∥ + ∥ ˙L(t)∥ } < +∞.t∈I<strong>On</strong>e <strong>of</strong> <strong>the</strong> tests <strong>of</strong> asymptotical equivalence <strong>of</strong> systems (1) and (2) is reflected [1] in <strong>the</strong> followingassertion.Theorem 1. If ∥ +∞ ∫Q(u) du ∥ ≤ Ce −σt , t ∈ I, σ > 2a, where C is some constant, <strong>the</strong>n <strong>the</strong>tsystems (1) and (2) are asymptotically equivalent.The following statement [1] establishes that <strong>the</strong> estimate σ > 2a is unimprovable in a whole set<strong>of</strong> linear systems (1) with piecewise continuous matrices <strong>of</strong> coefficients.Theorem 2. For any number a > 0 <strong>the</strong>re exist system (1) with piecewise continuous matrix <strong>of</strong>coefficients with <strong>the</strong> norm ∥A(t)∥ ≤ a <strong>for</strong> t ∈ I and <strong>the</strong> piecewise continuous matrix Q(t), satisfying<strong>the</strong> condition ∥ +∞ ∫Q(u) du ∥ ≤ Ce −2at , t ∈ I, such that systems (1) and (2) are not asymptoticallyequivalent.tThe following assertion establishes [2] <strong>the</strong> integral test <strong>of</strong> asymptotic equivalence <strong>of</strong> systems (1)and (2).limt→+∞Theorem 3. If <strong>the</strong> matrix <strong>of</strong> perturbations Q(t) <strong>of</strong> system (2) satisfies <strong>the</strong> condition+∞ ∫ ∥∥X A (t, τ)Q(τ)X A (τ, t) ∥ dτ < 1, where X A (t, τ) is <strong>the</strong> Cauchy matrix <strong>of</strong> system (1), <strong>the</strong>ntsystem (2) is equivalent to system (1).27


2 Coefficients and Exponents <strong>of</strong> Reducibility <strong>of</strong> <strong>Linear</strong> <strong>Systems</strong>Let <strong>the</strong> perturbation Q(t) satisfy <strong>the</strong> conditionor <strong>the</strong> more general condition∥Q(t)∥ ≤ C(Q)e −σt , σ ≥ 0, t ≥ 0, (3)λ[Q] ≡limt→+∞ t−1 ln ∥Q(t)∥ ≤ −σ ≤ 0. (4)These perturbations <strong>for</strong> σ = 0 in both cases (3) and (4) we assume additionally to be vanishingat infinity: Q(t) → 0 as t → +∞. To every system (1) we put into correspondence <strong>the</strong> sets R(A)and R λ (A) <strong>of</strong> those values <strong>of</strong> <strong>the</strong> parameter σ in (3) and (4) <strong>for</strong> which perturbed system (2) <strong>for</strong> anyperturbation Q(t) satisfying (3) or, respectively, (4), is asymptotically equivalent to non-perturbedsystem (1).Definition. An exact lower bound r(A) <strong>of</strong> <strong>the</strong> set R(A) (an exact lower bound ρ(A) <strong>of</strong> <strong>the</strong> setR λ (A)) will be called a coefficient <strong>of</strong> reducibility (an exponent <strong>of</strong> reducibility) <strong>of</strong> system (1).Theorem 4 ([2]). The coefficient <strong>of</strong> reducibility r(A) and <strong>the</strong> exponent <strong>of</strong> reducibility ρ(A) <strong>of</strong>every system (1) with piecewise continuous bounded coefficients coincide.This fact allows one to define a new asymptotic invariant <strong>of</strong> linear systems, i.e., <strong>the</strong> coefficient<strong>of</strong> reducibility <strong>of</strong> <strong>the</strong> system r A , as a general value <strong>of</strong> its coefficient and exponent <strong>of</strong> reducibility.However, despite <strong>the</strong> fact that <strong>the</strong> above-mentioned values coincide <strong>for</strong> every system (1), <strong>the</strong> behavior<strong>of</strong> <strong>the</strong> coefficient <strong>of</strong> reducibility r A is distinct with respect to perturbations (3) and (4). Thefollowing <strong>the</strong>orem [2] establishes this difference.Theorem 5. For any number a > 0, <strong>the</strong>re exists system (1) with <strong>the</strong> coefficient <strong>of</strong> reducibilityr A = 2a such that system (2) with any piecewise continuous perturbation Q satisfying condition (3)with Q is reducible to <strong>the</strong> initial system (1) and non-reducible to that system <strong>for</strong> some perturbationQ satisfying <strong>the</strong> condition (4) with σ = r A .Thus it follows from <strong>the</strong> above results (see also [3, 4]) that both <strong>the</strong> sets R(A) and R λ (A)are <strong>the</strong> intervals, and (2a, +∞) ⊂ R λ (A) ⊂ R(A). In addition, despite <strong>the</strong> fact that <strong>the</strong> valuesr(A) and ρ(A) coincide <strong>for</strong> any system (1), <strong>the</strong>ir properties are distinct: <strong>the</strong>re exist systems (1)in which R(A) = R λ (A) = (r A , +∞) and, at <strong>the</strong> same time, <strong>the</strong>re exist systems (1) <strong>for</strong> whichR(A) = [r A , +∞) and R λ (A) = (r A , +∞). Moreover [5], unlike <strong>the</strong> coefficient r(A) which can orcannot belong to <strong>the</strong> set R(A), <strong>the</strong> exponent <strong>of</strong> reducibility ρ(A) <strong>of</strong> system (1) never belongs to<strong>the</strong> set R λ (A).Establishment <strong>of</strong> <strong>the</strong> above-mentioned properties <strong>of</strong> <strong>the</strong> coefficient <strong>of</strong> reducibility <strong>of</strong> <strong>the</strong> lineardifferential system allows one to investigate certain parametric properties <strong>of</strong> <strong>the</strong> so-called sets <strong>of</strong>non-reducibility N r (a, σ) and N ρ (a, σ) σ ∈ (0, 2a] <strong>of</strong> all those systems (1) <strong>for</strong> every <strong>of</strong> which <strong>the</strong>reexists a non-reducible to it system (2) with <strong>the</strong> matrix Q(t) satisfying, respectively, ei<strong>the</strong>r condition(3), or <strong>the</strong> more general condition (4).These sets are non-empty <strong>for</strong> σ ∈ (0, 2a] and empty <strong>for</strong> σ > 2a. Moreover, <strong>the</strong>se sets get strictlynarrow as parameter σ ∈ (0, 2a] increases and <strong>for</strong> σ ∈ (0, 2a] <strong>the</strong>y do not coincide with each o<strong>the</strong>r.References[1] N. A. Izobov and S. A. Mazanik, <strong>On</strong> asymptotically equivalent linear systems under exponentiallydecaying perturbations. (Russian) Differ. Uravn. 42 (2006), No. 2, 168–173; Englishtransl.: Differ. Equ. 42 (2006), No. 2, 182–187.[2] N. A. Izobov and S. A. Mazanik, A general test <strong>for</strong> <strong>the</strong> reducibility <strong>of</strong> linear differential systems,and <strong>the</strong> properties <strong>of</strong> <strong>the</strong> reducibility coefficient. (Russian) Differ. Uravn. 43 (2007), No. 2,191–202; English transl.: Differ. Equ. 43 (2007), No. 2, 196–207.28


[3] N. A. Izobov and S. A. Mazanik, The coefficient <strong>of</strong> reducibility <strong>of</strong> linear differential systems.Mem. Differential Equations Math. Phys. 39 (2006), 154–157.[4] N. A. Izobov and S. A. Mazanik, Asymptotic equivalence <strong>of</strong> linear differential systems underexponentially decaying perturbations. Analytic methods <strong>of</strong> analysis and differential equations:AMADE 2006, 69–80, Camb. Sci. Publ., Cambridge, 2008.[5] N. A. Izobov and S. A. Mazanik, <strong>On</strong> a property <strong>of</strong> <strong>the</strong> reducibility exponent <strong>of</strong> linear differentialsystems. (Russian) Differ. Uravn. 44 (2008), No. 3, 323–328; English transl.: Differ. Equ. 44(2008), No. 3, 334–340.29


The Initial-Characteristic <strong>Problem</strong>s <strong>for</strong> Wave Equations withNonlinear Damping TermOtar JokhadzeA. Razmadze Ma<strong>the</strong>matical Institute <strong>of</strong> I. Javakhishvili Tbilisi State University, Tbilisi, GeorgiaE-mail: ojokhadze@yahoo.comFor one-dimensional wave equations with nonlinear damping term [1]–[4]u tt − u xx + h(u t ) = f(x, t), (1)in <strong>the</strong> half-plane Ω := {(x, t) : x ∈ R, t > 0} let us consider <strong>the</strong> Initial-Cauchy problem with <strong>the</strong>following conditionsu(x, 0) = φ(x), u t (x, 0) = ψ(x), x ∈ R, (2)where f, h, φ, ψ are given, and u unknown real functions.Conditions, imposed on nonlinear function h, are obtained guaranteeing <strong>the</strong> existence <strong>of</strong> aglobal classical solution <strong>of</strong> (1), (2). The violation <strong>of</strong> those conditions may cause <strong>the</strong> blow-up <strong>of</strong> <strong>the</strong>solution.Theorem 1. Let <strong>the</strong> conditionsbe fulfilled andh ∈ C 2 (R), f ∈ C 1 (Ω), φ ∈ C 2 (R), ψ ∈ C 1 (R)h ′ (s) ≥ −M, s ∈ R, M := const > 0. (3)Then <strong>the</strong>re exists a unique global classical solution u ∈ C 2 (Ω) <strong>of</strong> <strong>the</strong> problem (1), (2).Violation <strong>of</strong> <strong>the</strong> condition (3) may, generally speaking, cause an absence [5] <strong>of</strong> <strong>the</strong> classicalsolution <strong>of</strong> <strong>the</strong> problem (1), (2).Let h(s) = −|s| α s, s ∈ R, α > 1 and <strong>the</strong> function ψ ≥ 0 has <strong>the</strong> compact supports, <strong>for</strong> example,<strong>the</strong> segment [x 1 , x 2 ] ⊂ R; T ∞ := (αc α 1 c 2) −1 > 0, c 2 := (x 2 − x 1 ) −α andTheorem 2. If,∫ x 2c 1 := 1 ψ(x)dx > 0. (4)2x 1φ ′′ (x) ≥ 0, ψ(x) ≥ 0, x ∈ R, f(x, t) ≥ 0, (x, t) ∈ Ω, (5)<strong>the</strong>n <strong>for</strong> T ∞ > 0 <strong>the</strong> problem (1), (2) has no classical solution.Remark. Naturally arise a question. What is happening, when some <strong>of</strong> <strong>the</strong> conditions (4), (5)are violated.Let <strong>the</strong> condition (4) be violated i.e. <strong>the</strong> function ψ ≥ 0 has not compact supportφ(x) = αx + β, α, β := const, x ∈ R, ψ ≡ 0, f ≡ 0.Then <strong>the</strong> problem (1), (2) has <strong>the</strong> global classical solution u = αx + β.Let <strong>the</strong> first condition <strong>of</strong> (5) be violated:φ = −x 2 , x ∈ R, ψ ≡ 1, f ≡ 1.30


Then <strong>the</strong> problem (1), (2) has <strong>the</strong> global classical solution u = −x 2 + t.Let now <strong>the</strong> second condition <strong>of</strong> (5) be violated:φ ≡ 0, ψ ≡ −1, f ≡ 1.Then <strong>the</strong> problem (1), (2) has <strong>the</strong> global classical solution u = −t.Let at last <strong>the</strong> third condition <strong>of</strong> (5) be violated:φ ≡ 1, ψ ≡ 1, f ≡ −1.Then <strong>the</strong> problem (1), (2) has <strong>the</strong> global classical solution u = 1 + t.Similarly can be considered <strong>the</strong> characteristic (Goursat) and initial characteristic (First Darbouxand Chachy–Goursat) problems and obtained corresponding results.References[1] J.-L. Lions and W. A. Strauss, Some non-linear evolution equations. Bull. Soc. Math. France93 (1965), 43–96.[2] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod;Gauthier-Villars, Paris, 1969.[3] L. Hörmander, Lectures on nonlinear hyperbolic differential equations. Ma<strong>the</strong>matiques & Applications(Berlin) [Ma<strong>the</strong>matics & Applications], 26. Springer-Verlag, Berlin, 1997.[4] O. Jokhadze, The Cauchy problem <strong>for</strong> one-dimensional wave equations with nonlinear dissipativeand damping terms. Proc. A. Razmadze Math. Inst. 155 (2011), 126–130.[5] E. Mitidieri and S. I. Pohozaev, A priori estimates and <strong>the</strong> absence <strong>of</strong> solutions <strong>of</strong> nonlinearpartial differential equations and inequalities. (Russian) Tr. Mat. Inst. Steklova 234 (2001),1–384; English transl.: Proc. Steklov Inst. Math. 2001, No. 3(234), 1–362.31


The Multidimensional Darboux <strong>Problem</strong> <strong>for</strong> a Class <strong>of</strong>Nonlinear Wave EquationsSergo KharibegashviliA. Razmadze Ma<strong>the</strong>matical Institute <strong>of</strong> I. Javakhishvili Tbilisi State University, Tbilisi, GeorgiaE-mail: khar@rmi.geConsider <strong>the</strong> nonlinear wave equation <strong>of</strong> <strong>the</strong> typeLu := ∂2 un∑∂t 2 − ∂ 2 u∂x 2 ii=1+ f(u) = F, n > 1, (1)where f and F are given real functions, f is a nonlinear function, and u is an unknown real function.Denote by D : t > |x|, x n > 0, <strong>the</strong> half <strong>of</strong> <strong>the</strong> light cone <strong>of</strong> <strong>the</strong> future which is boundedby <strong>the</strong> part S 0 : D ∩ {x n = 0} <strong>of</strong> <strong>the</strong> hyperplane x n = 0 and by <strong>the</strong> half S : t = |x|, x n ≥ 0,<strong>of</strong> <strong>the</strong> characteristic conoid C : t = |x| <strong>of</strong> equation (1). Assume D T := {(x, t) ∈ D : t < T },S 0 T := {(x, t) ∈ S0 : t ≤ T }, S T := {(x, t) ∈ S : t ≤ T }, T > 0. When T = ∞, it is obvious thatD ∞ = D, S 0 ∞ = S 0 and S ∞ = S.For equation (1) we consider <strong>the</strong> multidimensional version <strong>of</strong> <strong>the</strong> Darboux problem: find in <strong>the</strong>domain D T a solution u(x, t) <strong>of</strong> that equation with <strong>the</strong> boundary conditionsu ∣ ∣S 0T= 0, u ∣ ∣ST= 0. (2)Below we consider <strong>the</strong> following conditions imposed on <strong>the</strong> function f:f ∈ C(R), |f(u)| ≤ M 1 + M 2 |u| α , α = const ≥ 0, (3)∫ u0f(s)ds ≥ −M 3 − M 4 u 2 , (4)where M i = const ≥ 0, i = 1, 2, 3, 4.Note that in case α ≤ 1 <strong>the</strong> inequality (3) results in <strong>the</strong> equality (4).0Let W 1 2 (D T , ST 0 ∪ S T ) := { u ∈ W2 1(D T ) : u ∣ S 0 = 0 } , where W kT ∪S T 2 (D T ) is <strong>the</strong> well-knownSobolev space consisting <strong>of</strong> <strong>the</strong> functions u ∈ L 2 (D T ) whose all generalized derivatives up to <strong>the</strong>∣k-th order, inclusive, also belong to <strong>the</strong> space L 2 (D T ), while <strong>the</strong> equality u = 0 is understoodin <strong>the</strong> sense <strong>of</strong> <strong>the</strong> trace <strong>the</strong>ory.∣S 0T ∪S TDefinition 1. Let F ∈ L 2 (D T ). A function u ∈ 0 W 1 2 (D T , S 0 T ∪ S T ) is said to be a stronggeneralized solution <strong>of</strong> <strong>the</strong> problem (1), (2) <strong>of</strong> <strong>the</strong> class W 1 2 in <strong>the</strong> domain D T if <strong>the</strong>re exists asequence <strong>of</strong> functions u m ∈ 0 C 2 (D T , S 0 T ∪ S T ) := { u ∈ C 2 (D T ) : u ∣ ∣S 0T ∪S Tin <strong>the</strong> space 0 W 1 2 (D T , S 0 T ∪ S T ) and Lu m → F in <strong>the</strong> space L 2 (D T ).= 0 } such that u m → uTheorem 1. Let F ∈ L 2,loc (D ∞ ) and F ∈ L 2 (D T ) <strong>for</strong> any T > 0. Let 0 ≤ α < n+1n−1and <strong>the</strong>function f satisfy <strong>the</strong> inequality (3). Moreover, in case α > 1, let <strong>the</strong> function f satisfy also <strong>the</strong>condition (4). Then <strong>the</strong> problem (1), (2) is globally solvable in <strong>the</strong> class W2 1 , i.e. <strong>for</strong> any T > 0 thisproblem has at least one strong generalized solution <strong>of</strong> <strong>the</strong> class W2 1 in <strong>the</strong> domain D T in <strong>the</strong> sense<strong>of</strong> Definition 1.Theorem 2. Let F ∈ L 2,loc (D ∞ ) and F ∈ L 2 (D T ) <strong>for</strong> any T > 0. Let 1 < α < n+1n−1. For <strong>the</strong>function f let <strong>the</strong> condition (3) be fulfilled but <strong>the</strong> condition (4) may be violated. Then <strong>the</strong> problem32


(1), (2) is locally solvable in <strong>the</strong> class W 1 2 , i.e. <strong>the</strong>re exists a number T 0 = T 0 (F ) > 0 such that <strong>for</strong>T ≤ T 0 this problem has at least one strong generalized solution <strong>of</strong> <strong>the</strong> class W 1 2 in <strong>the</strong> domain D Tin <strong>the</strong> sense <strong>of</strong> Definition 1.Note that in case f(u) = −|u| α , 1 < α < n+1n−1, <strong>the</strong> condition (4) is violated.Theorem 3. Let f(u) = −|u| α , 1 < α < n+1n−1 . If F ∈ L 2,loc(D ∞ ), F ∈ L 2 (D T ) <strong>for</strong> any T > 0,and F ≥ 0, F (x, t) ≥ ct −k <strong>for</strong> t ≥ 1, where c = const > 0, 0 < k = const ≤ n + 1, <strong>the</strong>n <strong>the</strong>re existsa positive number T 1 = T 1 (F ) such that, <strong>for</strong> T > T 1 , <strong>the</strong> problem (1), (2) cannot have a stronggeneralized solution <strong>of</strong> <strong>the</strong> class W 1 2 in <strong>the</strong> domain D T in <strong>the</strong> sense <strong>of</strong> Definition 1.33


<strong>On</strong> <strong>Two</strong>-<strong>Point</strong> <strong>Boundary</strong> <strong>Value</strong> <strong>Problem</strong>s <strong>for</strong> Higher OrderQuasi-Halflinear Differential Equations with Strong SingularitiesIvan KiguradzeA. Razmadze Ma<strong>the</strong>matical Institute <strong>of</strong> I. Javakhishvili Tbilisi State University, Tbilisi, GeorgiaE-mail: kig@rmi.geIn <strong>the</strong> open interval ]a, b[ we consider <strong>the</strong> differential equation( ∏m )u (2m) = p(t) |u (i−1) | α isgn u + q(t, u) (1)i=1with <strong>the</strong> Dirichlet or <strong>the</strong> focal boundary conditionslimt→a u(i−1) (t) = 0,limt→a u(i−1) (t) = 0,lim u (i−1) (t) = 0 (i = 1, . . . , m); (2)t→blim u (i−1) (t) = 0 (i = 1, . . . , m). (3)t→bHere m is a natural number, p : ]a, b[ → R and q : ]a, b[ ×R → R are continuous functions and α i(i = 1, . . . , m) are nonnegative numbers such thatwhereα 1 > 0,m∑α i = 1.We say that <strong>the</strong> equation (1) has a strong singularity at <strong>the</strong> point a (at <strong>the</strong> point b) if∫ ta(s − a) α−1 |p(s)| ds = +∞( ∫bti=1)(b − s) α−1 |p(s)| ds = +∞α = 2m −m∑iα i .i=1<strong>for</strong> a < t < b,The obtained by us sufficient conditions <strong>of</strong> solvability <strong>of</strong> <strong>the</strong> problem (1), (2) (<strong>of</strong> <strong>the</strong> problem(1), (3)) cover <strong>the</strong> case, where <strong>the</strong> equation (1) has strong singularities at <strong>the</strong> points a and b (hasa strong singulary at <strong>the</strong> point a).By C 2m,m (]a, b[) we denote <strong>the</strong> space <strong>of</strong> 2m-times continuously differentiable functions u :]a, b[ → R such that∫ ba|u (m) (s)| 2 ds < +∞. Put1m∏ (2 2m−i+1 ) αi, 1m∏γ 1 =γ2 =(2m−1)!! (2m−2i+1)!! (m−1)! √ 2m−1i=1i=1φ 1 (t) = ( (t − a) −2m + (b − t) −2m) m∏ 12φ 2 (t) = ( (t − a) 1−2m + (b − t) 1−2m) 1 2i=1m∏i=1((m−i)! √ 2m−2i+1) −αi,((t − a) 2i−2m−2 + (b − t) 2i−2m−2) α i2,((t − a) 2i−2m−1 + (b − t) 2i−2m−1) α i2,q ∗ (t, y) = max { |q(t, x)| : |x| ≤ y } , q ∗ (t, y) = inf { |q(t, x)| : |x| ≥ y } .34


Along with (1), we consider <strong>the</strong> differential equationdepending on <strong>the</strong> parameter λ ∈ [0, 1].Theorem 1. Let( ∏m )u (n) = λp(t) |u (i−1) | α isgn u, (4)i=1(−1) m p(t) ≤ lφ 1 (t) + p 0 (t)φ 2 (t) <strong>for</strong> a < t < b, (5)where l and p 0 : ]a, b[ → [0, +∞[ are, respectively, a nonnegative number and a continuous functionsuch thatIf, moreover,γ 1 l < 1,∫ bap 0 (t) dt < +∞.∫ b[ ] m−1limq(t, [(t − a)(b − t)] m− 1 2ρ)(t − a)(b − t)2dt = 0 (6)ρ→+∞ρaand <strong>for</strong> an arbitrary λ ∈ [0, 1] <strong>the</strong> problem (4), (2) has only <strong>the</strong> trivial solution in <strong>the</strong> spaceC 2m,n (]a, b[), <strong>the</strong>n <strong>the</strong> problem (1), (2) has at least one solution in <strong>the</strong> same space.Theorem 2. Let <strong>the</strong> conditions (5) and (6) hold, where l and p 0 : ]a, b[ → [0, +∞[ are, respectively,a nonnegative number and a continuous function such thatγ 1 l + γ 2∫bap 0 (t) dt < 1. (7)Then <strong>the</strong> problem (1), (2) in <strong>the</strong> space C 2m,m (]a, n[) has at least one solution.Theorem 3. Let along with (5) and (6) <strong>the</strong> conditions(−1) m p(t) ≥ 0, (−1) m q(t, x) ≥ 0 <strong>for</strong> a < t < b, x ∈ R,limρ→0∫ ba(t − a) m (b − t) m q ∗(t, (t − a) m (b − t) m ρ)ρdt = +∞hold, where l and p 0 : ]a, b[ → [0, +∞[ are, respectively, a nonnegative number and a continuousfunction satisfying <strong>the</strong> inequality (7). Then <strong>the</strong> problem (1), (2) in <strong>the</strong> space C 2m,m (]a, b[) alongwith <strong>the</strong> trivial solution has a positive and a negative on ]a, b[ solutions.Analogous results have been established <strong>for</strong> <strong>the</strong> problem (1), (3).Remark. In Theorem 1 (in Theorems 2 and 3) <strong>the</strong> condition γ 1 l < 1 (<strong>the</strong> condition (7)) isunimprovable and it cannot be replaced by <strong>the</strong> conditionAcknowledgementsγ 1 l ≤ 1( ∫bγ 1 l + γ 2a)p 0 (t) dt ≤ 1 .Supported by <strong>the</strong> Shota Rustaveli National Science Foundation (Project # GNSF/ST09 175 3-101).35


<strong>On</strong> Conditional Well-Posedness <strong>of</strong> Nonlocal <strong>Problem</strong>s <strong>for</strong>Fourth Order Singular <strong>Linear</strong> Hyperbolic EquationsTariel KiguradzeFlorida Institute <strong>of</strong> Technology, Melbourne, USAE-mail: tkigurad@fit.eduIn <strong>the</strong> rectangle Ω = [0, a] × [0, b] consider <strong>the</strong> linear hyperbolic equationu (2,2) =with <strong>the</strong> nonlocal boundary conditionsHere∫ a02∑i=1 k=1u(s, y) dα i (s) = 0 <strong>for</strong> 0 ≤ y ≤ b,2∑h ik (x, y)u (i−1,k−1) + h(x, y) (1)∫ b0u(x, t) dβ k (t) = 0 <strong>for</strong> 0 ≤ x ≤ a (i, k = 1, 2). (2)u (i,k) (x, y) = ∂i+k u(x, y)∂x i ∂y k (i, k = 0, 1, 2),h ik : Ω → R (i, k = 1, 2) are measurable functions, h ∈ L(Ω), and α i : [0, a] → R and β i : [0, b] → R(i = 1, 2) are functions <strong>of</strong> bounded variation. Moreover,where∫ a∆ 1 (x) = α 2 (a)xα i (0) = 0, β i (0) = 0, ∆ i (0) = 1 (i = 1, 2), (3)∫ aα 1 (s) ds − α 1 (a)xα 2 (s) ds,∫ b∆ 2 (y) = β 2 (b)y∫ bβ 1 (t) dt − β 1 (b)yβ 2 (t) dt.We employ <strong>the</strong> concepts <strong>of</strong> well-posedness and conditional well-posedness <strong>for</strong> problem (1), (2)that were introduced in [1].Along with <strong>the</strong> equation (1) consider <strong>the</strong> corresponding homogeneous equationu (2,2) =and introduce <strong>the</strong> functions:{1 <strong>for</strong> s ≥ t,χ(s, t) =0 <strong>for</strong> s < t,g 1 (x, s) =g 2 (y, t) =∫ a0∫ b0α 1 (τ) dτ∫ as2∑i=1 k=1∫ aα 2 (τ) dτ −2∑h ik (x, y)u (i−1,k−1) , (1 0 )sα 1 (τ) dτ∫ a0α 2 (τ) dτ+ (s − a)∆ 1 (0) + (a − x)∆ 1 (s) + χ(x, s)(x − s) <strong>for</strong> 0 ≤ x, s ≤ a,β 1 (τ) dτ∫ bt∫ bβ 2 (τ) dτ −tβ 1 (τ) dτ∫ b0β 2 (τ) dτ+ (t − b)∆ 2 (0) + (b − y)∆ 2 (t) + χ(y, t)(y − t) <strong>for</strong> 0 ≤ y, t ≤ b,36


φ 11 (x) = max { |g 1 (x, s)| : 0 ≤ s ≤ a } ,φ 12 (x) = sup {∣ ∣∆ 1 (s) − χ(x, s) ∣ }: 0 ≤ s ≤ a, s ≠ x ,φ 21 (y) = max { |g 2 (y, t)| : 0 ≤ t ≤ b } , φ 22 (y) = sup{ ∣∣∆ 2 (t) − χ(y, t) ∣ ∣ : 0 ≤ t ≤ b, t ≠ y } .Theorem 1. If along with (3) <strong>the</strong> condition∫ b ∫ a00φ 1i (x)φ 2k (y)|h ik (x, y)| dx dy < +∞ (i, k = 1, 2)holds, <strong>the</strong>n problem (1), (2) is conditionally well-posed if and only if <strong>the</strong> corresponding homogeneousproblem (1 0 ), (2) has only <strong>the</strong> trivial solution.Theorem 2. If along with (3) <strong>the</strong> inequality2∑2∑i=1 k=1 0∫ b ∫ a0φ i (x)ψ k (y)|h ik (x, y)| dx dy < 1 (4)holds, <strong>the</strong>n problem (1), (2) is conditionally well-posed. Moreover, if h ik ∈ L(Ω) (i, k = 1, 2), <strong>the</strong>nproblem (1), (2) is well-posed.Theorem 3. If conditions (3) and (4) hold, and∫ b ∫ a00|h 11 (x, y)| dx dy = +∞,<strong>the</strong>n problem (1), (2) is conditionally well-posed but not well-posed.References[1] I. Kiguradze and T. Kiguradze, Conditions <strong>for</strong> Well-Posedness <strong>of</strong> Nonlocal <strong>Problem</strong>s <strong>for</strong> HigherOrder <strong>Linear</strong> Differential Equations with Singularities. Georgian Math. J. 18 (2011), No. 4.37


Relaxational Oscillations and Diffusive Chaos inBelousov’s ReactionA. Yu. KolesovP. G. Demidov Yaroslavl State University, Yaroslavl’, RussiaE-mail: kolesov@uniyar.ac.ruN. Kh. RozovLomonosov Moscow State University, Moscow, RussiaE-mail: fpo.mgu@mail.ruThe surprising phenomenon <strong>of</strong> chemistry, <strong>the</strong> reaction discovered by B. P. Belousov in 1951(frequently called also as Belousov–Zhabotinsky’s reaction), is an instructive episode in <strong>the</strong> history<strong>of</strong> home natural science deserving separate narration. The ma<strong>the</strong>matical model <strong>of</strong> <strong>the</strong> reactionearns <strong>the</strong> attention and it should be included in <strong>the</strong> compulsory course <strong>of</strong> ordinary differentialequations, since its discussion may, on <strong>the</strong> one hand, be anticipated by a ra<strong>the</strong>r simply organizablevisual experiment and, on <strong>the</strong> o<strong>the</strong>r hand, it shows an exclusive value and might <strong>of</strong> ma<strong>the</strong>matization<strong>for</strong> penetration into <strong>the</strong> essence <strong>of</strong> natural phenomena.We will consider modification <strong>of</strong> <strong>the</strong> ma<strong>the</strong>matical model <strong>of</strong> Belousov’s reaction, namely, asystem <strong>of</strong> three ordinary differential equationsẋ = r 1[1 + a(1 − z) − x]x, ẏ = r2 [x − y]y, ż = r 3[αx + (1 − α)y − z]z, (1)where x, y, z are <strong>the</strong> analogues <strong>of</strong> concentration densities <strong>of</strong> chemical substances; <strong>the</strong> parametersr 1 , r 2 , r 3 and a are positive ones, and <strong>the</strong> parameter α ∈ (0, 1). The most natural from <strong>the</strong> chemicalpoint <strong>of</strong> view is <strong>the</strong> assumption that <strong>the</strong> parameter a is “very large” and <strong>the</strong> rest parameters are<strong>of</strong> order 1.Belousov’s reaction has, <strong>for</strong> <strong>the</strong> first time, shown experimentally <strong>the</strong> possibility <strong>for</strong> <strong>the</strong> chemicalreaction to run periodically, and moreover, <strong>the</strong> stages running “very fast” in <strong>the</strong> course <strong>of</strong> <strong>the</strong> reactionalternate with those running “ra<strong>the</strong>r slowly”. Such periodical processes are called relaxationaloscillations. There<strong>for</strong>e <strong>of</strong> interest is <strong>the</strong> study <strong>of</strong> relaxation regime in system (1) in which we passfrom <strong>the</strong> parameter a to <strong>the</strong> small parameter ε = 1/a.We fix an arbitrary compact set Ω 0 <strong>of</strong> <strong>the</strong> semi-strip {(u 0 , v 0 ) : u 0 > 0, 0 < v 0 < 1} and denoteby()L ε (u 0 , v 0 ) = x(t, u 0 , v 0 , ε), y(t, u 0 , v 0 , ε), z(t, u 0 , v 0 , ε) : t ≥ 0, (u 0 , v 0 ) ∈ Ω 0 (2)<strong>the</strong> trajectory <strong>of</strong> <strong>the</strong> systemεẋ = r 1[1 − z + ε(1 − x)]x, ẏ = r2 [x − y]y, ż = r 3[αx + (1 − α)y − z]z, (3)emanating <strong>for</strong> t = 0 from <strong>the</strong> point (x, y, z) = (1, u 0 , v 0 ). We introduce into consideration <strong>the</strong>second positive root t = T (u 0 , v 0 , ε) (if it exists) <strong>of</strong> <strong>the</strong> equation x(t, u 0 , v 0 , ε) = 1 and on <strong>the</strong>intersecting plane {(x, y, z) : x = 1} we define <strong>the</strong> Poincaré successor operator Π ε (u 0 , v 0 ):Π ε (u 0 , v 0 ) = ( y(t, u 0 , v 0 , ε), z(t, u 0 , v 0 , ε) )∣ ∣∣t=T(u0 ,v 0 ,ε) . (4)Theorem 1. <strong>On</strong> <strong>the</strong> set Ω 0 , in <strong>the</strong> metric <strong>of</strong> <strong>the</strong> space C 1 (Ω 0 ; R 2 ) <strong>the</strong>re exists <strong>the</strong> limitingoperatorlim Π ε(u 0 , v 0 ) = Π 0 (u 0 , v 0 ) (5)ε→0describing constructively.38


Theorem 2. Under <strong>the</strong> conditionα 0, 0 < v 0 < 1} <strong>the</strong>re exists atleast one stable fixed point, and <strong>for</strong> all sufficiently small ε > 0 <strong>the</strong> initial operator Π ε has a stablefixed point (u ε , v ε ) with asymptotically close to (u 0 , v 0 ) components. In system (3), this point isassociated with <strong>the</strong> stable relaxational cycle L ε .Theorem 3. The time <strong>of</strong> motion <strong>of</strong> <strong>the</strong> phase point <strong>of</strong> system (3) along <strong>the</strong> “rapid segments”<strong>of</strong> <strong>the</strong> trajectory L ε is <strong>of</strong> order ε ln(1/ε), while <strong>the</strong> time <strong>of</strong> motion along its “slow segments” admitsas ε → 0 a finite positive limit.The distributed model, associated with system (1), i.e., <strong>the</strong> parabolic boundary value problem∂x∂t = ∂ 2 xdD0 1∂s 2 + r [ ] ∂x1 1 + a(1 − z) − x x, ∣ = ∂x∣ = 0,∂s s=0 ∂s s=1∂y ∂ 2 y∂y∣ = ∂y∣ = 0,s=0 s=1∂z∂t = dD0 3∂t = dD0 2∂s 2 + r 2[x − y]y,∂s ∂s∂ 2 z∂s 2 + r [ ] ∂z3 αx + (1 − α)y − z z, ∣ = ∂z∣ = 0∂s s=0 ∂s s=1on <strong>the</strong> segment 0 ≤ s ≤ 1, is also considered. Here d, D j , j = 1, 2, 3 are positive parameters. Ofinterest is <strong>the</strong> investigation <strong>of</strong> attractors arising in its phase space (x, y, , z) ∈ C([0, 1]; R 3 ) as ddecreases.For <strong>the</strong> distributed model (7), by means <strong>of</strong> numerical experiments we have managed to establisha phenomenon <strong>of</strong> diffusion chaos, an unrestricted growth <strong>of</strong> dimensions <strong>of</strong> chaotic attractors as d →0, i.e., <strong>for</strong> proportional decrease <strong>of</strong> coefficients <strong>of</strong> diffusion. <strong>Two</strong> types <strong>of</strong> chaotic autooscillations,<strong>the</strong> relaxation chaos and that <strong>of</strong> <strong>the</strong> type <strong>of</strong> self-organization, are discovered.(7)References[1] B. P. Belousov, Periodically acting reaction and its mechanisms. Autowave processes in systemswith diffusion. Gor’kii. Institute <strong>of</strong> Applied Physics Acad. Sci. SSSR, 1981, 176–186.[2] A. M. Zhabotinskii, Concentrational autooscillations. Nauka, Moscow, 1974.39


<strong>On</strong> Three <strong>Problem</strong>s <strong>of</strong> <strong>the</strong> Qualitative Theory <strong>of</strong>Differential EquationsA. V. Kostin, L. L. Kol’tsova, T. Yu. Kosetskaya, and T. V. KondratenkoI. I. Mechnikov Odessa National University, Odessa, UkraineE-mail: a − kostin@ukr.net; koltsova.liliya@gmail.comI. The asymptotics as t → +∞ <strong>of</strong> solutions <strong>of</strong> monotone type <strong>for</strong> a real nonlinear first orderdifferential equation (ODE-1)s∑k=1n∑p k (t)y α k(y ′ ) β k+ p k (t)y α k(y ′ ) β k= 0 (1)k=s+1is considered.To find <strong>for</strong>mal asymptotic representations <strong>for</strong> solutions <strong>of</strong> monotone type, it is assumed that<strong>the</strong>re exists at least one such a solution y(t) <strong>of</strong> equation (1), and <strong>for</strong> that solution asymptoticallybasic are <strong>the</strong> summands appearing in <strong>the</strong> sums ∑k=1. Under that assumption, we have obtained <strong>for</strong>y(t) possible <strong>for</strong>mal asymptotic representations (exact, or requiring more precise determination).An asymptotic character <strong>of</strong> <strong>the</strong> obtained <strong>for</strong>mal asymptotic representations is investigated. ( L.L. Kol’tsova and A. V. Kostin, The results <strong>of</strong> <strong>the</strong> work are submitted <strong>for</strong> publication in Mem.Differential Equations Math. Phys. (Tbilisi).II. We investigate a classical problem dealing with asymptotic stability (AS) <strong>of</strong> <strong>the</strong> real linearhomogeneous differential equation ODE-n, n ′ geq2 (n is order <strong>of</strong> ODE),y (n) + p 1 (t)y (n−1) + · · · + p n (t)y = 0, t ∈ I = [t 0 , +∞[ (2)under <strong>the</strong> condition that <strong>the</strong> roots λ i (t) (i = 1, n) <strong>of</strong> <strong>the</strong> corresponding characteristic equation aresuch that λ i (t) ∈ C 1 +∞ ∫(I), Reλ i (t) < 0, Re λ i (t)dt = −∞, ∃ Re λ i (+∞), −∞ ≤ Re λ i (+∞) ≤ 0t 0(i = 1, n).The case n = 2 is considered ra<strong>the</strong>r thoroughly. We have managed to prove <strong>the</strong> property <strong>of</strong>asymptotic stability in <strong>the</strong> case <strong>of</strong> real λ i (t) (i = 1, 2) in <strong>the</strong> following subcases:(1) λ 1 (+∞) ∈ R − =] − ∞, 0[ , λ 2 (+∞) = 0, λ ′ 1 (t) = o(λ 2(t));(2) λ i (+∞) = 0 (i = 1, 2), λ ′ 1 (t) = o(λ 1(t)λ 2 (t));(3) λ 1 (+∞) = 0, λ 2 (+∞) = −∞, λ ′ 1 (t) = o(λ2 1 (t));(4) λ i (+∞) = −∞ (i = 1, 2), λ ′ 1 (t) = o(λ2 1 (t)), λ′ 1 (t) = o(λ 1(t)λ 2 (t)).The subcase λ i (+∞) ∈ R − (i = 1, 2) is known.The case <strong>of</strong> complex-conjugate roots λ i (t) (i = 1, 2) is considered analogously. (T. Yu. Kosetskaya,A. V. Kostin).III. We investigate <strong>the</strong> problem on <strong>the</strong> existence <strong>of</strong> a particular solution y(t) from some class<strong>of</strong> real functions{K f(t) : f(t) ∈ C 2 (R), sup |f(t)| < +∞ }Rin ODE-2,y ′′ + ay ′ + by = f(t) + µF (t, y, y ′ ), (3)40


where (t, y, y ′ ) ∈ G { t ∈ R, |y −u(t)| ≤ h 1 , |y ′ −u ′ }(t)| ≤ h 2 , hi < +∞ (i = 1, 2), a, b ∈ R, f(t) ∈ K,<strong>the</strong> roots λ i (i = 1, 2) <strong>of</strong> <strong>the</strong> equation λ 2 + aλ + b = 0 are such that Re λ i ≠ 0 (i = 1, 2), and <strong>the</strong>condition∫ t{+∞ (R λ i > 0)f(τ) exp Re λ i (t − τ) dτ ∈ K, A i =−∞ (R λ i < 0) , f(t) ∈ KA iis fulfilled, u(t) ∈ K is a unique solution <strong>of</strong> <strong>the</strong> class K <strong>of</strong> <strong>the</strong> equationy ′′ + ay ′ + by = f(t),F, F y, ′ Fy ′ (∈ C(G), sup |F | + |F′ ′ y | + |Fy ′ | ) < +∞ (F (t, f(t), f ′ (t)) ∈ K, if f(t) ∈ K).′GUsing <strong>the</strong> Perron trans<strong>for</strong>mation, we have obtained <strong>the</strong> estimate <strong>for</strong> a small parameter µ whichguarantees <strong>the</strong> solvability <strong>of</strong> <strong>the</strong> problem. In <strong>the</strong> capacity <strong>of</strong> <strong>the</strong> class K one can consider a class<strong>of</strong> almost-periodic, slowly varying and ano<strong>the</strong>r functions. (A. V. Kostin, T. V. Kondratenko)41


Investigation <strong>of</strong> Stability <strong>of</strong> Stochastic Differential Equations byUsing Lyapunov Functions <strong>of</strong> Constant SignsA. A. LevakovBelarusian State University, Minsk, BelarusE-mail: alevakov@bsu.byThe method <strong>of</strong> Lyapunov functions is one <strong>of</strong> <strong>the</strong> most effective one <strong>for</strong> <strong>the</strong> investigation <strong>of</strong>stability <strong>of</strong> differential systems, in particular, <strong>of</strong> stochastic differential systems. The main purpose<strong>of</strong> <strong>the</strong> report is <strong>the</strong> <strong>the</strong>orem on <strong>the</strong> stability <strong>of</strong> stochastic differential equations by using Lyapunovfunctions <strong>of</strong> constant signs.Consider <strong>the</strong> stochastic differential equationdx(t) = f(x(t))dt + g(x(t))dW (t), (1)with <strong>the</strong> Borel-measurable functions f : R d → R d , g : R d → R d×d .Definition 1. If <strong>the</strong>re exists a process x(t) given on some probability space (Ω, F, P ) with aflow <strong>of</strong> σ-algebras F t , satisfying <strong>the</strong> following conditions:(1) <strong>the</strong>re exists a (F t )-moment <strong>of</strong> <strong>the</strong> stop e such that <strong>the</strong> process x(t)1 [0,e) (t) is (F t )-coordinated,has continuous trajectories <strong>for</strong> t < e a.s. and lim sup ∥x(t)∥ = ∞ if e < ∞;t↑e(2) <strong>the</strong>re exists <strong>the</strong> (F t )-Brownian motion W (t), W (0) = 0 a.s.;(3) <strong>the</strong> processes f(x(t)) and g(x(t)) belong, respectively, to <strong>the</strong> spaces L loc1 and L loc2 , where Lloc iis a set <strong>of</strong> all measurable (F t )-coordinated processes ψ such that <strong>for</strong> every moment <strong>of</strong> <strong>the</strong>σ∫stop σ, 0 ≤ σ < e <strong>the</strong> condition ∥ψ(s, ω)∥ i ds < ∞ a.s. i ∈ {1, 2} is fulfilled;(4) with probability I <strong>for</strong> all t ∈ [0, e), <strong>the</strong> equality0∫ tx(t) = x(0) +0∫ tf(x(τ)) dτ +0g(x(τ)) dW (τ)holds, and <strong>the</strong> set (x(t), Ω, F, P, F t , W (t), e) (or briefly, x(t)) is called a weak solution <strong>of</strong>equation (1).We choose rows <strong>of</strong> <strong>the</strong> matrix g with numbers β 1 , . . . , β l , β 1 < · · · < β l , and let β l+1 < · · · < β dbe numbers <strong>of</strong> <strong>the</strong> rest rows. We construct <strong>the</strong> matrix⎛g β1 gβ ⊤ 1. . . g β1 g ⊤ ⎞β lσ β1 ,...,β l(x 1 , . . . , x d ) = ⎝ . . . . . . . . . ⎠ ,g βl gβ ⊤ 1. . . g βl gβ ⊤ lwhere g βj is <strong>the</strong> row with <strong>the</strong> number β j <strong>of</strong> <strong>the</strong> matrix g, and also we construct <strong>the</strong> sets H 1 , H 2 ;H 1 (β 1 , . . . , β l ) = { (x β1 , . . . , x βl ) | <strong>for</strong> any open neighborhood U (xβ1 ,...,x βl ) <strong>of</strong> <strong>the</strong> point (x β1 , . . . , x βl )<strong>the</strong>re exists a number a > 0 such that <strong>the</strong> integral∫sup(det σβ1 ,...,β l(x 1 , . . . , x d ) ) −1 dxβ1 . . . dx βl(x βl+1 ,...,x βd )∈D 2 (0,a)U (xβ1 ,...,x βl )42


is ei<strong>the</strong>r indeterminate, or is equal to ∞}, where D 2 (0, a) = { (x βl+1 , . . . , x βd ) | (x 2 β l+1+ · · · +x 2 β d) 1/2 ≤ a } ; H 2 (β 1 , . . . , β l ) = { (x β1 , . . . , x βl ) ∈ H c 1 (β 1, . . . , β l ) | <strong>for</strong> any open neighborhoodU (xβ1 ,...,x βl ) <strong>of</strong> <strong>the</strong> point (x β1 , . . . , x βl ) <strong>the</strong>re exists a number a > 0 such that <strong>the</strong> function(sup det σβ1 ,...,β l(x 1 , . . . , x d ) ) −1 : U → [0, ∞](x βl+1 ,...,x βd )∈D 2 (0,a)is not Borel-measurable } (under <strong>the</strong> complement H c 1 <strong>of</strong> <strong>the</strong> set H 1 is understood <strong>the</strong> complementin <strong>the</strong> space <strong>of</strong> variables (x β1 , . . . , x βl ), and under <strong>the</strong> open neighborhood is understood <strong>the</strong> neighborhoodwhich is open in <strong>the</strong> space <strong>of</strong> <strong>the</strong> same variables (x β1 , . . . , x βl )).Let Ĥ(β 1, . . . , β l ) = H 1 (β 1 , . . . , β l ) ∪ H 2 (β 1 , . . . , β l ).We will say that <strong>the</strong> real function h(x) = h(x 1 , . . . , x d ) satisfies Condition C) if <strong>the</strong>re existindices β 1 , . . . , β l , β 1 < · · · < β l ≤ d such that:1) <strong>the</strong> function h <strong>for</strong> every fixed (x β1 , . . . , x βl ) is continuous with respect to <strong>the</strong> rest components(x βl+1 , . . . , x βd ) <strong>of</strong> <strong>the</strong> vector x;2) in <strong>the</strong> space <strong>of</strong> variables (x β1 , . . . , x βl ) <strong>the</strong>re is a closed set H with <strong>the</strong> properties:(2a) H ⊃ Ĥ(β 1, . . . , β l );(2b) <strong>the</strong> set {(x 1 , . . . , x d )| (x β1 , . . . , x βl ) ∈ H} belongs to <strong>the</strong> set <strong>of</strong> points <strong>of</strong> continuity <strong>of</strong> <strong>the</strong>mapping h;(2c) <strong>the</strong> function σ β1 ,...,β l(x 1 , . . . , x d ) <strong>for</strong> every fixed (x β1 , . . . , x βl ) ∈ H c is continuous withrespect to <strong>the</strong> variables (x βl+1 , . . . , x βd ).Let <strong>the</strong> functions f(x) and g(x) be Borel-measurable and locally bounded, <strong>the</strong> components <strong>of</strong><strong>the</strong> functions f(x), σ(x) = g(x)g ⊤ (x) satisfy Condition C). Then <strong>for</strong> any given probability ν on(R d , β(R d )) equation (1) has a weak solution with an initial distribution ν [1].Definition 2. A zero solution is said to be ϖ-stable, if <strong>for</strong> any ε > 0 <strong>the</strong>re exists δ > 0 suchthat <strong>for</strong> a weak solution x(t) <strong>of</strong> equation (1), <strong>for</strong> which ∥x(0)∥ ≤ δ a.s., we have E(∥x(t)∥ ϖ ) ≤ ε∀ t ≥ 0 (E is a ma<strong>the</strong>matical expectation).Definition 3. A zero solution is said to be asymptotically ϖ-stable, if it is ϖ-stable and<strong>the</strong>re exists M > 0 such that, <strong>for</strong> any weak solution x(t) <strong>for</strong> which ∥x(0)∥ ≤ M a.s., <strong>the</strong> relationlimt→+∞ E(∥x(t)∥ϖ ) = 0 is fulfilled.Condition L). There exists a twice continuously differentiable function V : R d → R + suchthat ∀x ∈ R d ,∂V (x)BV (x) =∂xf(x) + 1 ( ∂ 22 tr V (x))∂x 2 g(x)g ⊤ (x) ≤ 0.Assume M V = {x ∈ R d | BV (x) = 0}. We say that a weak solution (x(t), W (t), Ω, F, P, F t )belongs to <strong>the</strong> set M V if)g(x(t))g ⊤ (x(t)) = 0∂V (x(t))∂x<strong>for</strong> (µ × P )- almost all (t, ω) ∈ R + × Ω.f(x(t)) + 1 2 tr ( ∂ 2 V (x(t))∂x 2Condition A). There exist <strong>the</strong> constants r > 1, σ > 0, M > 0 such that <strong>for</strong> any weak solutionx(t) <strong>of</strong> <strong>the</strong> system (1), satisfying <strong>the</strong> condition ∥x(0)∥ ≤ σ, <strong>the</strong> inequality E(∥x(t)∥ r ) ≤ M ∀ t ≥ 0is fulfilled.Condition B). The system (1) has no nonzero weak solutions x(t) such that x(0) = 0 a.s.Definition 4. The process x(t), t ∈ ] − ∞, 0] given on some probability space (Ω, F, P ) is saidto be a weak solution <strong>of</strong> equation (1) on <strong>the</strong> interval ] − ∞, 0], if:43


1) <strong>for</strong> every t 0 ∈ ] − ∞, 0[ , <strong>the</strong>re exists <strong>the</strong> extension (˜Ω, ˜F, ˜P ) <strong>of</strong> <strong>the</strong> space (Ω, F, P ) and onthat extension <strong>the</strong>re exists <strong>the</strong> flow (˜F t ), t ∈ [t 0 , 0], such that on (˜Ω, ˜F, ˜P ) with (˜F t ) one candefine <strong>the</strong> (˜F t )-Brownian motion W (t), W (t 0 ) = 0 a.s.;2) <strong>the</strong> processes f(x(t)) and g(x(t)) belong, respectively, to <strong>the</strong> spaces L 1 and L 2 , where L i is <strong>the</strong>set <strong>of</strong> all measurable (˜F t )-coordinated processes ψ(t), t ∈ [t 0 , 0] such that ∥ψ(s, ω)∥ i ds < ∞t 0a.s., i ∈ {1, 2};∫ t∫ t3) with probability 1 <strong>for</strong> all t ∈ [t 0 , 0] <strong>the</strong> equality x(t) = x(t 0 ) + f(x(τ)) dτ + g(x(τ)) dW (τ)t 0 t 0holds.The o<strong>the</strong>r necessary definitions and notation can be found in [1].Theorem. Let <strong>the</strong> functions f(x) and g(x) be Borel-measurable and locally bounded, <strong>the</strong> components<strong>of</strong> <strong>the</strong> functions f(x), σ(x) = g(x)g ⊤ (x) satisfy Condition C), <strong>the</strong> system (1) satisfyConditions A), B) and L), and let 0 < s < r. If <strong>the</strong>re exists a constant a > 0 such that <strong>the</strong>system (1) has no nonzero weak solutions x(t) on <strong>the</strong> interval ] − ∞, 0] possessing <strong>the</strong> properties:x(t) ∈ m V = {x ∈ R d | V (x) =} ∀ t ∈ ] − ∞, 0] a.s.; E(∥x(t)∥ s ) ≤ a ∀ t ∈ ] − ∞, 0], <strong>the</strong>n azero solution <strong>of</strong> <strong>the</strong> system (1) is s-stable. If, moreover, <strong>the</strong>re exists a constant b > 0 such that<strong>the</strong> system has no nonzero weak solutions x(t), t ∈ [0, ∞[ , satisfying <strong>the</strong> conditions x(t) ∈ M V ,E(∥x(t)∥ s ) ≤ b ∀ t ∈ [0, ∞[ , <strong>the</strong>n a zero solution is asymptotically s-stable.∫ 0References[1] A. A. Levakov, Stochastic differential equations. Belorusian State University, Minsk, 2009.44


<strong>On</strong> Hybrid StabilizationElena LitsynThe Weizmann Institute <strong>of</strong> Science, Rehovot, IsraelThe Research Institute, The Colledge <strong>of</strong> Judea and Samaria, Ariel, IsraelE-mail: elena@wisdom.weizmann.ac.ilYurii V. NepomnyashchikhPerm State University, Perm, RussiaE-mail: yura@prognoz.psu.ruArcady PonosovInstitutt <strong>for</strong> matematiske fag, NLH, NorwayE-mail: matap@imf.nlh.no1 IntroductionHybrid systems are those combining both discrete and continuous dynamics. Many examples <strong>of</strong>hybrid systems can be found in manufacturing systems, intelligent vehicle highway systems, veriouschemical plants. Hybrid systems also arise when <strong>the</strong>re is a necessity <strong>of</strong> combining logical decisionwith <strong>the</strong> generation <strong>of</strong> continuous control laws.An important question is how to stabilize a continuous control plant through an interactionwith a discrete time controller. Such a ”hybrid” feedback may help when <strong>the</strong> ordinary feedbackfails to stabilize <strong>the</strong> system.An example <strong>of</strong> a linear system which cannot be stabilized by <strong>the</strong> ordinary output feedback is<strong>the</strong> harmonic oscillator:dξdt = η,dηdt= −ξ + u, u = u(y), y = ξ. (1.1)The only measured quantity (output), which is allowed to control, is <strong>the</strong> position variable ξ. Althoughthis last system is both controllable and observable, it cannot be stabilized by (even discontinuous)output feedbacks.It was however shown by Z. Artstein (1995), <strong>the</strong>re exists a special hybrid feedback control, underwhich system (1.1) becomes asymptotically stable. Z. Artstein conjectured also that hybrid controlscan stabilize general linear systems <strong>of</strong> ordinary differential equations.2 The Main ResultWe give here <strong>the</strong> following affirmative answer to Artstein’s conjecture on <strong>the</strong> existence <strong>of</strong> a hybridstabilizer.Theorem 2.1. Under assumptions <strong>of</strong> controllability <strong>of</strong> (A, B) and observability <strong>of</strong> (A, C) <strong>the</strong>systemẋ = Ax + Bu,u = u(y), y = Cxis stabilizable by a hybrid feedback control designed with <strong>the</strong> help <strong>of</strong> a discrete automaton which hasat most countable number <strong>of</strong> locations.Pro<strong>of</strong> is based on <strong>the</strong> classical stabilization technique as well as on some recent results in <strong>the</strong><strong>the</strong>ory <strong>of</strong> functional-differential equations in an essential way.45


3 Applications to Theorem 2.1We give here two examples.1. Predator-Prey InteractionsAn example <strong>of</strong> a situation, where hybrid feedback controls may be <strong>of</strong> use, is given by a populationmodel with an arbitrary number <strong>of</strong> species, some <strong>of</strong> <strong>the</strong>m being observable and <strong>the</strong> o<strong>the</strong>rs not.Although such a model is nonlinear, but linearization about <strong>the</strong> equilibrium state provides a linearsystem with a control depending on a part <strong>of</strong> variables while <strong>the</strong> rest variables may be not observableat all, so that <strong>the</strong>se variables cannot be used <strong>for</strong> setting up a control function. A stabilization <strong>of</strong><strong>the</strong> unstable equilibrium state may become <strong>the</strong>n problematical if we use ordinary feedback, only.What does help is hybrid feedback controls.2. A Contribution to <strong>the</strong> Theory <strong>of</strong> Love AffairsHere is ano<strong>the</strong>r example which illustrates <strong>the</strong> power <strong>of</strong> stabilization by hybrid feedback controls.The ma<strong>the</strong>matical model <strong>for</strong> <strong>the</strong> dynamics <strong>of</strong> love affairs is given by a 2×2-system <strong>of</strong> linear equations(Strogatz, 1994). We consider <strong>the</strong> following particular case, which is called <strong>the</strong> star-crossed romancebetween Romeo and Juliet.Ṙ = aJ, J ˙ = −bR, (3.1)R(t) = Romeo’s love/hate <strong>for</strong> Juliet at time t,J(t) = Juliet’s love/hate <strong>for</strong> Romeo at time t(love gives positive sign to variables, while hate makes variables negative).From <strong>the</strong> system (3.1) we obtain <strong>the</strong> following tragic picture.The more Romeo loves Juliet, <strong>the</strong> more Juliet wants to run away and hide. But when Romeogets discouraged and backs <strong>of</strong>f, Juliet begins to find him strangely attractive. Romeo, on <strong>the</strong> o<strong>the</strong>rhand, tends to echo her; he warms up when she loves him, and grows cold when she hates him. . . Thesad outcome <strong>of</strong> <strong>the</strong>ir affair is, <strong>of</strong> course, a never-ending cycle <strong>of</strong> love and hate, because solutions<strong>of</strong> <strong>the</strong> system (3.1) are ellipses with a center at (0, 0).We observe that ordinary feedback controls do not help Romeo and Juliet in this unpleasantsituation. If, <strong>for</strong> instance, we insert a feedback control like u = αR in <strong>the</strong> first equation suddenlyturns Romeo ei<strong>the</strong>r into an “eager beaver” (α > 0), or into a “cautious lover” (α < 0) which seemsto be quite unrealistic as soon as one particular Juliet is concerned. The same applies to Juliet.The only possibility is <strong>the</strong>re<strong>for</strong>e to try making influence on <strong>the</strong> constants a and b in <strong>the</strong> system(3.1). But any feedback control like u = αJ or/and v = βR will never change <strong>the</strong> sad and tragicpicture <strong>of</strong> never-ending ellipses in <strong>the</strong> phase-plane, because <strong>the</strong> corresponding coefficient matrixwill always have imaginary eigenvalues!We propose a hybrid feedback scenario, which according to Theorem 2.1 does make solutions<strong>of</strong> <strong>the</strong> system (3.1) asymptotically stable. This scenario can be described explicitly and does leadto a kind <strong>of</strong> “happy end”. Naturally, <strong>the</strong> relationship between Romeo and Juliet will fizzle out tomutual indifference and <strong>the</strong> disaster will be prevented.Un<strong>for</strong>tunately, it is impossible to use a similar procedure to help Romeo and Juliet becomingeventually daring to each o<strong>the</strong>r, because hybrid feedback controls can stabilize solutions, but <strong>the</strong>ycannot exclude oscillations.46


<strong>On</strong> Oscillation and Nonoscillation <strong>of</strong> <strong>Two</strong>-Dimensional<strong>Linear</strong> Differential <strong>Systems</strong>Alexander Lomtatidze and Jiří ŠremrInstitute <strong>of</strong> Ma<strong>the</strong>matics, Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> Czech Republic, branch in Brno, Brno,Czech RepublicE-mail: bacho@math.muni.cz; sremr@ipm.czConsider <strong>the</strong> systemu ′ = q(t)v,v ′ = −p(t)u,where p, q : [0, +∞[ → R are locally Lebesgue integrable functions such that(1)q(t) ≥ 0 <strong>for</strong> a. e. t ≥ 0,∫+∞q(s) ds < +∞,and q ≢ 0 in any neighbourhood <strong>of</strong> +∞. Under a solution <strong>of</strong> system (1) we understand a vectorfunction(u, v): [0, +∞[ → R 2 with locally absolutely continuous components satisfying equalities(1) almost everywhere in [0, +∞[ . A solution (u, v) <strong>of</strong> system (1) is said to be nontrivial if u ≢ 0in any neighbourhood <strong>of</strong> +∞. A nontrivial solution (u, v) <strong>of</strong> system (1) is called oscillatory if <strong>the</strong>function u has a sequence <strong>of</strong> zeros tending to infinity.Definition 1. System (1) is said to be oscillatory if every nontrivial solution <strong>of</strong> this system isoscillatory, and nonoscillatory o<strong>the</strong>rwise.whereFor any λ > 1, we put∫ tc(t; λ) := (λ − 1)f λ−1 (t)0f(t) :=∫0( ∫s)q(s)f λ f λ (ξ)p(ξ) dξ ds <strong>for</strong> t ≥ 0,(s)0+∞tq(s)ds <strong>for</strong> t ≥ 0.The following <strong>the</strong>orem is an analogue <strong>of</strong> <strong>the</strong> well-known Hartman–Wintner <strong>the</strong>orem.orTheorem 1. Let <strong>the</strong>re exist λ > 1 such that ei<strong>the</strong>rThen system (1) is oscillatory.−∞ < lim inft→+∞lim c(t; λ) = +∞t→+∞c(t; λ) < lim sup c(t; λ).t→+∞If we take this <strong>the</strong>orem into account it is obvious that, <strong>for</strong> given λ > 1, <strong>the</strong> following two casesremain uncovered. The first case, where<strong>the</strong>re exists a finite limitlim c(t; λ), (2)t→+∞47


and <strong>the</strong> second case, wherelim inf c(t; λ) = −∞.t→+∞Below, we establish new oscillation and nonoscillation criteria assuming that (2) holds <strong>for</strong> someλ > 1. Having such λ, we denotewhereQ(t; λ) :=Moreover, <strong>for</strong> any µ < 1, we put( ∫1t)f λ−1 c 0 (λ) − f λ (s)p(s) ds(t)0c 0 (λ) =<strong>for</strong> t ≥ 0,lim c(t; λ). (3)t→+∞Finally, let∫ tH(t; µ) := f 1−µ (t)0f µ (s)p(s) ds <strong>for</strong> t ≥ 0.Q ∗ (λ) = lim inf Q(t; λ),t→+∞ Q∗H ∗ (µ) = lim inf H(t; µ),t→+∞ H∗Now we <strong>for</strong>mulate our main results.(λ) = lim sup Q(t; λ),t→+∞(µ) = lim sup H(t; µ).t→+∞Theorem 2. Let <strong>the</strong>re exist λ > 1 such that condition (2) holds andlim supt→+∞−1 (c0f λ−1 (λ) − c(t; λ) ) > 1 (t) ln f(t)4 ,where <strong>the</strong> number c 0 (λ) is defined by <strong>for</strong>mula (3). Then system (1) is oscillatory.Corollary 1. Let <strong>the</strong>re exist λ > 1 and µ < 1 such that condition (2) holds andThen system (1) is oscillatory.or( ) 1lim inf Q(t; λ) + H(t; µ) >t→+∞4(λ − 1) + 14(1 − µ) . (4)Corollary 2. Let <strong>the</strong>re exist λ > 1 such that condition (2) holds and ei<strong>the</strong>rQ ∗ (λ) >H ∗ (µ) ><strong>for</strong> some µ < 1. Then system (1) is nonoscillatory.14(λ − 1)14(1 − µ)Remark 1. It might seem that if assumption (5) is satisfied in <strong>the</strong> previous corollary <strong>the</strong>nassumption (2) is redundant. However, one can show that, under assumption (5), <strong>the</strong> functionc(· ; λ) possesses a limit <strong>for</strong> every λ > 1 and c(t; λ) > −∞. If this limit is equal to +∞,limt→+∞<strong>the</strong>n system (1) is oscillatory according to Theorem 1. There<strong>for</strong>e, assumption (2) in <strong>the</strong> previouscorollary is necessary in a certain sense also in <strong>the</strong> case where inequality (5) is supposed to besatisfied.48(5)


The next <strong>the</strong>orem deals with <strong>the</strong> upper limit <strong>of</strong> <strong>the</strong> sum on <strong>the</strong> left-hand side <strong>of</strong> inequality (4)and thus it complements Corollary 1 in a certain sense.Theorem 3. Let <strong>the</strong>re exist λ > 1 and µ < 1 such that condition (2) holds andThen system (1) is oscillatory.or( ) λ 2lim sup Q(t; λ) + H(t; µ) >t→+∞4(λ − 1) + µ 24(1 − µ) .The following statement complements Corollary 2.Theorem 4. Let <strong>the</strong>re exist λ > 1 and µ < 1 such that condition (2) holds and ei<strong>the</strong>rλ(2 − λ)4(λ − 1) ≤ Q ∗(λ) ≤µ(2 − µ)4(1 − µ) ≤ H ∗(µ) ≤Then system (1) is oscillatory.14(λ − 1) , H∗ (µ) >14(1 − µ) , Q∗ (λ) >µ 24(1 − µ) + 1 + √ 1 − 4(λ − 1)Q ∗ (λ)2λ 24(λ − 1) − 1 − √ 1 − 4(1 − µ)H ∗ (µ).2At last, we present two results dealing with nonoscillation <strong>of</strong> system (1).Theorem 5. Let <strong>the</strong>re exist λ > 1 such that condition (2) holds and ei<strong>the</strong>ror(2λ − 3)(2λ − 1)− < Q ∗ (λ), Q ∗ (λ) 1. There<strong>for</strong>e, assumption (2)in Theorems 5 and 6 is necessary also in <strong>the</strong> case where inequalities (6) and (7) are supposed tobe satisfied.49


An Infinite Dimensional Generalization <strong>of</strong> Weak Exponents <strong>for</strong>Solutions <strong>of</strong> Equations in Total DerivativesE. K. Makarov and E. A. ShakhInstitute <strong>of</strong> Ma<strong>the</strong>matics <strong>of</strong> <strong>the</strong> National Academy <strong>of</strong> Sciences <strong>of</strong> Belarus, Minsk, BelarusE-mail: jcm@im.bas-net.byLet E and F be real Banach spaces, K ⊂ E be a closed convex cone with a bounded base.Consider a linear completely integrable equation in total derivativesy ′ h = A(x)hy, y ∈ F, h ∈ E, x ∈ E, (1)with a bounded continuous coefficient A : E → L(E, L(F, F )) (here and in <strong>the</strong> sequel, we usenotation and notions from [1]). Let E(y) be a set <strong>of</strong> all linear continuous functionals µ ∈ E ∗ suchthat <strong>the</strong> inequality lim sup ∥x∥ −1 (ln y(x) + µx) ≤ 0 holds.x→∞, x∈KIn [2], <strong>the</strong> interrelation is established between characteristic functionals and (weak) characteristicexponents <strong>of</strong> solutions <strong>of</strong> equation (1) <strong>for</strong> a finite-dimensional E in <strong>the</strong> <strong>for</strong>m E(y) = E(exp ψ[y]),where ψ[y](x) := limt→+∞ t−1 ln y(tx) is a modified exponent <strong>of</strong> a solution y. This result is valid only<strong>for</strong> a finite-dimensional E. There<strong>for</strong>e it is necessary to generalize <strong>the</strong> above notions in order toobtain some analog <strong>of</strong> <strong>the</strong> statement in [2] <strong>for</strong> <strong>the</strong> settings <strong>of</strong> infinite-dimensional E.For this, we introduce new exponent ψ[y](φ) by means <strong>of</strong> <strong>the</strong> <strong>for</strong>mulaψ[y](φ) :=limt→+∞ t−1 ln ∥ ∥y(φ(t)) ∥ ∥,as <strong>the</strong> functional on <strong>the</strong> space Φ <strong>of</strong> continuous functions φ : [0, +∞[ → K such that ∥φ(t)∥ → ∞,as t → +∞ and sup ∥φ(t)∥/t < +∞.Theorem. The inclusion λ ∈ E(y) holds if and only if <strong>for</strong> any φ ∈ Φ <strong>the</strong> inequality ψ[y](φ) +λ(φ) ≤ 0, where λ(φ) := lim t −1 λφ(t), holds.t→∞References[1] I. V. Gaǐshun, <strong>Linear</strong> total differential equations. (Russian) “Nauka i Tekhnika”, Minsk, 1989.[2] E. K. Makarov, <strong>On</strong> <strong>the</strong> interrelation between characteristic functionals and weak characteristicexponents. (Russian) Differentsial’nye Uravneniya 30 (1994), No. 3, 393–399; translation inDifferential Equations 30 (1994), No. 3, 362–367.50


A Certain Class <strong>of</strong> Discontinuous Dynamical <strong>Systems</strong> in <strong>the</strong> PlaneKateryna Mamsa and Yuriy PerestyukTaras Shevchenko National University <strong>of</strong> Kyiv, Kyiv, UkraineE-mail: Perestyuk@gmail.comIn <strong>the</strong> monographs [1]–[3], a <strong>the</strong>ory <strong>of</strong> impulsive differential equations is built. Mainly, <strong>the</strong> ma<strong>the</strong>maticalmodels <strong>of</strong> evolutionary processes that undergo impulsive perturbations at fixed moments<strong>of</strong> time or at <strong>the</strong> moments, when <strong>the</strong> moving point meets <strong>the</strong> given hypersurfaces in <strong>the</strong> extendedphase space are considered. However, in <strong>the</strong> monographs [1]–[3], <strong>the</strong> importance <strong>of</strong> studying <strong>of</strong>systems with impulsive perturbations that occur at <strong>the</strong> moments, when <strong>the</strong> phase point meets <strong>the</strong>given sets in <strong>the</strong> phase space is emphasized. In this report, we investigate a linear differentialsystems in <strong>the</strong> plane that are subjected to impulsive perturbations on <strong>the</strong> given line, i.e. systems<strong>of</strong> <strong>the</strong> <strong>for</strong>mdxdt = Ax, ⟨a, x⟩ ̸= 0; ∆x∣ ∣⟨a,x⟩=0= Bx,where x ∈ R 2 , A and B are constant matricies, a is a constant vector.The motion <strong>of</strong> <strong>the</strong> phase point is defined by <strong>the</strong> differential system ẋ = Ax, when this point isoutside <strong>of</strong> <strong>the</strong> line ⟨a, x⟩ = 0 and immediately transfers to a point x + = (E + B)x(t ∗ ) at <strong>the</strong> timewhen phase point meets with <strong>the</strong> line ⟨a, x⟩ = 0.We have indicated <strong>the</strong> necessary and sufficient conditions <strong>for</strong> <strong>the</strong> existence <strong>of</strong> one-impulsive andtwo-impulsive discontinuous cycles <strong>of</strong> this system, as well as conditions <strong>for</strong> asymptotic stability <strong>of</strong><strong>the</strong> zero equilibrium position.References[1] A. M. Samoǐlenko and N. A. Perestyuk, Impulsive differential equations. (Russian) VishchaShkola, Kiev, 1987.[2] A. M. Samoǐlenko and N. A. Perestyuk, Impulsive differential equations. World Scientific Serieson Nonlinear Science. Series A: Monographs and Treatises, 14. World Scientific PublishingCo., Inc., River Edge, NJ, 1995.[3] N. A. Perestyuk, V. A. Plotnikov, A. M. Samoǐlenko, and N. V. Skripnik, Impulsive differentialequations with a multivalued and discontinuous right-hand side. (Russian) Proceedings <strong>of</strong> Institute<strong>of</strong> Ma<strong>the</strong>matics <strong>of</strong> NAS <strong>of</strong> Ukraine. Ma<strong>the</strong>matics and its Applications. 67. NatsionalnaAkademiya Nauk Ukraini, Institut Matematiki, Kiev, 2007.51


Generalized <strong>Linear</strong> Differential Equations in a Banach Space:Continuous Dependence on a ParameterG. A. MonteiroUniversidade de São Paulo, Instituto de Ciências Matemáticas e Computação, ICMC-USP, SãoCarlos, SP, BrazilE-mail: gam@icmc.usp.br.M. TvrdýMa<strong>the</strong>matical Institute, Academy <strong>of</strong> Sciences <strong>of</strong> Czech Republic, Prague, Czech RepublicE-mail: tvrdy@math.cas.czIn what follows, X is a Banach space and L(X) is <strong>the</strong> Banach space <strong>of</strong> bounded linear operatorson X. By ∥ · ∥ X we denote <strong>the</strong> norm in a Banach space X. Fur<strong>the</strong>r, BV ([a, b], X) is <strong>the</strong>set <strong>of</strong> X valued functions <strong>of</strong> bounded variation on [a, b] and G([a, b], X) is <strong>the</strong> set <strong>of</strong> X valuedfunctions having on [a, b] all one-sided limits (i.e. X valued functions regulated on [a, b]). A coupleP =(D, ξ), where D={α 0 , α 1 , . . . , α m } and ξ=(ξ 1 , . . . , ξ m )∈[a, b] m , is said to be a partition <strong>of</strong> [a, b]if a=α 0


∫ tx k (t) = ˜x k +ad[A k (s)]x k (s)+f k (t)−f k (a), t ∈ [a, b], k∈N. (1 k )The following assumptions are crucial <strong>for</strong> <strong>the</strong> existence <strong>of</strong> solutions to (1) and (1 k )[I − ∆ − A(t) ] −1 ∈L(X) <strong>for</strong> all t ∈ (a, b], (2)and[I − ∆ − A k (t) ] −1 ∈L(X) <strong>for</strong> all t ∈ (a, b], k∈N. (2k )For <strong>the</strong> basic properties <strong>of</strong> generalized linear differential equations in a Banach space, see [7].Our first result extends that by M. Ashordia [1] valid <strong>for</strong> <strong>the</strong> case X = R n .Theorem 1. Let A, A k satisfy (1) and (1 k ), and letA k ⇒ A on [a, b], (3)α ∗ ( ):= sup v arba A k


[4] Z. Halas, G. Monteiro, and M. Tvrdý, Emphatic convergence and sequential solutions <strong>of</strong>generalized linear differential equations. (submitted).[5] Z. Opial, Continuous parameter dependence in linear systems <strong>of</strong> differential equations. J.Differential Equations 3 (1967), 571–579.[6]Š. Schwabik, Abstract Perron-Stieltjes integral. Math. Bohem. 121 (1996), No. 4, 425–447.[7]Š. Schwabik, <strong>Linear</strong> Stieltjes integral equations in Banach spaces. Math. Bohem. 124 (1999),No. 4, 433–457.54


<strong>Two</strong>-<strong>Point</strong> <strong>Boundary</strong> <strong>Value</strong> <strong>Problem</strong>s <strong>for</strong> Strongly SingularHigher-Order <strong>Linear</strong> Differential Equations withDeviating ArgumentsSulkhan MukhigulashviliMa<strong>the</strong>matical Institute, Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> Czech Republic, Brno, Czech RepublicIlia State University, Tbilisi, GeorgiaE-mail: mukhig@ipm.czConsider <strong>the</strong> boundary value problemu (n) (t) =m∑p j (t)u (j−1) (τ j (t)) + q(t) <strong>for</strong> a < t < b (1)j=1with <strong>the</strong> two-point boundary conditionsu (i−1) (a) = 0 (j = 1, . . . , m), u (i−1) (b) = 0 (j = 1, . . . , n − m), (2)where n ≥ 2, m is <strong>the</strong> integer part <strong>of</strong> n/2, p j , q ∈ L lob (]a, b[) (j = 1, . . . , m), and τ j : ]a, b[ → ]a, b[are measurable functions. By u (j−1) (a) (by u (j−1) (b)) we denote <strong>the</strong> right (<strong>the</strong> left) limit <strong>of</strong> <strong>the</strong>function u (j−1) at <strong>the</strong> point a (at <strong>the</strong> point b).The Agarwal–Kiguradze type <strong>the</strong>orems [1] are obtained by us, which contains unimprovable ina certain sense conditions guaranteeing <strong>the</strong> unique solvability <strong>of</strong> problem (1), (2). The results below∑cover <strong>the</strong> strongly singular case, where m ∫ b(t − a) n−j (b − t) n−j |p j (t)| dt = +∞.We use <strong>the</strong> following notations.L α,β (]a, b[) (L 2 α,βj=1 a(]a, b[)) is <strong>the</strong> space <strong>of</strong> integrable (square integrable) with <strong>the</strong> weight(t − a) α (b − t) β functions y : ]a, b[ → R, with <strong>the</strong> norm ∥y∥ Lα,β =(∥y∥L 2 = ( ∫ b(s − a) α (b − s) β y 2 (s) ds ) 1/2 );α,β∫ tca∫ ba(s − a) α (b − s) β |y(s)| ds˜L 2 α,β (]a, b[) is <strong>the</strong> space <strong>of</strong> functions y ∈ L loc(]a, b[) such that ỹ ∈ L 2 α,β(]a, b[), where ỹ(t) =y(s) ds, c = (a + b)/2. The norm in ˜L 2 α,β(]a, b[) is defined by <strong>the</strong> equality{[ ∫t= max (s − a) α( ∫ t∥y∥˜L2 α,βa{[ ∫bs+ max (b − s) β( ∫ts] 2 1/2 }y(ξ) dξ)ds : a ≤ t ≤ c +t] 2 1/2 }y(ξ) dξ)ds : c ≤ t ≤ b . (3)˜C n−1,m (]a, b[) is <strong>the</strong> space <strong>of</strong> (n − 1)-times continuously differentiable functions y : ]a, b[ → Rsuch that∫ ba|u (m) (s)| 2 ds


By h j and f j (j = 1, . . . , m) we denote <strong>the</strong> functions and operator, respectively, defined by <strong>the</strong>equalitiesh 1 (t, s)=∣∫ ts(ξ−a) n−2m[ (−1) n−m p 1 (ξ) ] + dξ ∣ ∣∣∣,f j (c)(t, s) =∣∫ ts∫(ξ − a) n−2m |p j (ξ)|∣τ j (ξ)ξh j (t, s)=∣∫ ts(ξ−a) n−2m p j (ξ) dξ∣ (j =2, . . . , m),∣ ∣∣∣1/2 (ξ 1 − c) 2(m−j) dξ 1 dξ∣ (j = 1, . . . , m).Along with (1), we consider <strong>the</strong> corresponding homogeneous equationm∑u (n) (t) = p j (t)u (j−1) (τ j (t)). (1 0 )j=1Theorem 1. Let <strong>the</strong>re exist a 0 ∈ ]a, b[ , b 0 ∈ ]a 0 , b[ and positive numbers l kj and γ kj (k = 0, 1,j = 1, . . . , m) such that(t − a) 2m−j h j (t, s) ≤ l 0j <strong>for</strong> a ≤ t ≤ s < a 0 , lim sup(t − a) m− 1 2 −γ 0jf j (a)(t, s) < +∞,t→a(b − t) 2m−j h j (t, s) ≤ l 1j <strong>for</strong> b 0 ≤ s ≤ t < b, lim sup(b − t) m− 1 2 −γ 1jf j (b)(t, s) < +∞,m∑j=1t→b(2m − j)2 2m−j+1(2m − 1)!!(2m − 2j + 1)!! l kj < 1 (k = 0, 1).If, moreover, problem (1 0 ), (2) has only <strong>the</strong> trivial solution in <strong>the</strong> space ˜C n−1,m (]a, b[), <strong>the</strong>n problem(1), (2) is uniquely solvable in this space <strong>for</strong> every q ∈ ˜L 2n−2m−2,2m−2 (]a, b[).Theorem 2. Let <strong>the</strong>re exist numbers t ∗ ∈ ]a, b[ , l kj > 0, l kj ≥ 0, and γ kj > 0 (k = 0, 1;j = 1, . . . , m) such that along with inequalitiesm∑ ((2m − j)2 2m−j+1 l 0j(2m − 1)!!(2m − 2j + 1)!! + 2 2m−j−1 (t ∗ − a) γ 0jl)0j(2m − 2j − 1)!!(2m − 3)!! √ < 1 2γ 0j 2 ,<strong>the</strong> conditionsj=1m∑ ((2m − j)2 2m−j+1 l 1j(2m − 1)!!(2m − 2j + 1)!! + 2 2m−j−1 (b − t ∗ ) γ 0jl)1j(2m − 2j − 1)!!(2m − 3)!! √ < 1 2γ 1j 2 ,j=1(t − a) 2m−j h j (t, s) ≤ l 0j , (t − a) m−γ 0j−1/2 f j (a)(t, s) ≤ l 0j <strong>for</strong> a < t ≤ s ≤ t ∗ ,(b − t) 2m−j h j (t, s) ≤ l 1j , (b − t) m−γ 1j−1/2 f j (b)(t, s) ≤ l 1j <strong>for</strong> t ∗ ≤ s ≤ t < bhold. Then <strong>for</strong> every q ∈ ˜L 2 2n−2m−2,2m−2 (]a, b[), (1), (2) is uniquely solvable in <strong>the</strong> space ˜C n−1,m (]a, b[).AcknowledgementsSupported by <strong>the</strong> Shota Rustaveli National Science Foundation (Project # GNSF/ST09 175 3-101)and <strong>the</strong> Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> Czech Republic (Institutional Research Plan # AV0Z10190503).References[1] R. P. Agarwal and I. Kiguradze, <strong>Two</strong>-point boundary value problems <strong>for</strong> higher-order lineardifferential equations with strong singularities. <strong>Boundary</strong> <strong>Value</strong> <strong>Problem</strong>s, 2006, 1–32; ArticleID 83910.56


Asymptotics <strong>of</strong> Solutions <strong>of</strong> a <strong>Linear</strong> Homogeneous System <strong>of</strong>Differential Equations in <strong>the</strong> Case <strong>of</strong> Asymptotically Equivalent,as t → +∞, Roots <strong>of</strong> a Characteristic EquationV. V. NikonenkoI. I. Mechnikov Odessa National University, Odessa, UkraineE-mail: a − kostin@ukr.netThe investigation <strong>of</strong> linear homogeneous systems (LHS) was carried out by <strong>the</strong> author by combining<strong>the</strong> method <strong>of</strong> generalized shearing trans<strong>for</strong>mations [1] and <strong>the</strong> method <strong>of</strong> L-diagonal systems[2]. The cases which are particular <strong>for</strong> <strong>the</strong> well-known methods are considered.We study <strong>the</strong> 2-dimensional linear homogeneous systemε(t)Y ′ = ( D −1 ΛD + α(t)B + Q(t) ) Y, (1)where t ∈ [t 0 , +∞[ = I, Y = (y 1 , y 2 ) T , <strong>the</strong> scalar functions ε(t) and α(t), <strong>the</strong> constant matrices D,Λ, B and <strong>the</strong> matrix Q(t) are, in a general case, complex, and <strong>the</strong> following conditions are fulfilled:1) 0 ≠ ε(t) ∈ C 1 (I),+∞ ∫t 0|ε −1 (t)| dt = +∞,2) 0 ≠ α(t) ∈ C 1 (I), α(+∞) = 0,( )d11 d3) D =12, detD ≠ 0,d 21 d 22( )λ eΛ = , λ ≠ 0, e ∈ {0, 1},0 λ( )b11 bB =12, B ≠ O (O is a zero matrix),b 21 b 22( )q11 (t) qQ(t) =12 (t), Q(t) ∈ C(I), Q(t) = o(|α(t)|),q 21 (t) q 22 (t)4) ∃ a finite or an infinite limit limt→+∞ ε(t) w′ (t)w(t) = a, where w = w(t) = α 1 2 (t) (<strong>for</strong> a specific choice<strong>of</strong> root).Denote( )A = D −1 a11 aBD =12,a 21 a 22( )P (t) = D −1 p11 (t) pQ(t)D =12 (t), P (t) = o(|α(t)|).p 21 (t) p 22 (t)Theorem 1. Let e = 1, |a| < +∞, <strong>the</strong> conditions (1)–(4) be fulfilled, and4 + a 21 ≠ 0, |α ′ | + |w ′ | + ∣a 2) ′ ∣ ∣∣ + ∥P ′ ( P ) ′ ∥ ∥( ∥∥ ∥∥ P) ′ ∥ ∥∥w 2 ∥ + ∥ + ∈ wL1 (I),α(εw′57


Re ( wε (˜µ 1 − ˜µ 2 ) ) do not change its sign in I, where ˜µ i (t) (i = 1, 2) are <strong>the</strong> roots <strong>of</strong> <strong>the</strong> equation˜µ 2 − ˜µ(wa 12 − ε w′w 2 + p 22w + wa 11 + p ) (11− a 21 + p )21 (1 )+ αa12 + p 12 = 0.wwThen LHS (1) has two linearly independent solutionsY i (t) = e∫ t(λε(τ) + w′ (τ)ε(τ) ˜µ i(τ)t 0)dτ(d1i + o(1)·d 2i + o(1))(i = 1, 2). (2)If all d ik ≠ 0 (i, k = 1, 2), <strong>the</strong>n asymptotics (2) are exact.The cases, where among d ik (i, k = 1, 2) <strong>the</strong>re are those equal to zero, and also <strong>the</strong> case e = 1,a = ∞, are considered.Generalization <strong>of</strong> <strong>the</strong> obtained results to <strong>the</strong> case <strong>of</strong> LHS (1) <strong>of</strong> dimension n > 2 (Λ is Jordan’sblock) is also considered.References[1] V. V. Nikonenko, <strong>On</strong> an asymptotic representation <strong>of</strong> solutions <strong>of</strong> quasi-linear systems o<strong>for</strong>dinary differential equations. Dissertation <strong>for</strong> <strong>the</strong> degree <strong>of</strong> Candidate <strong>of</strong> <strong>the</strong> Phys.-Math.Sciences, Tbilisi, 1989, 169p.[2] M. V. Fedoryuk, Asymptotical methods in <strong>the</strong> <strong>the</strong>ory <strong>of</strong> ordinary linear differential equations.Nauka, Moscow, 1980.58


<strong>On</strong> Oscillations <strong>of</strong> Solutions to Second-Order <strong>Linear</strong> DelayDifferential EquationsZdeněk OpluštilInstitute <strong>of</strong> Ma<strong>the</strong>matics, Brno University <strong>of</strong> Technology, Brno, Czech RepublicJiří ŠremrInstitute <strong>of</strong> Ma<strong>the</strong>matics, Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> Czech Republic, branch in Brno, Brno,Czech RepublicE-mail: sremr@ipm.cz<strong>On</strong> <strong>the</strong> half-line R + = [0, +∞[ , we consider <strong>the</strong> second-order linear delay differential equationu ′′ (t) + p(t)u(τ(t)) = 0, (1)where p: R + → R + is a locally Lebesgue integrable function and τ : R + → R + is a measurablefunction such thatτ(t) ≤ t <strong>for</strong> a. e. t ≥ 0,lim ess inf{τ(s) : s ≥ t} = +∞.t→+∞Solutions to equation (1) can be defined in various ways. Since we are interested in properties<strong>of</strong> solutions in <strong>the</strong> neighbourhood <strong>of</strong> +∞, we introduce <strong>the</strong> following commonly used definition.Definition 1. Let t 0 ∈ R + and a 0 = ess inf{τ(t) : t ≥ t 0 }. A continuous function u: [a 0 , +∞[ →R is said to be a solution to equation (1) on <strong>the</strong> interval [t 0 , +∞[ if it is absolutely continuoustoge<strong>the</strong>r with its first derivative on every compact interval contained in [t 0 , +∞[ and satisfiesequality (1) almost everywhere in [t 0 , +∞[ . A solution u to equation (1) on <strong>the</strong> interval [t 0 , +∞[is called proper if <strong>the</strong> inequality sup{|u(s)| : s ≥ t} > 0 holds <strong>for</strong> t ≥ t 0 .Definition 2. A proper solution u to equation (1) is said to be oscillatory if it has a sequence<strong>of</strong> zeros tending to infinity, and non-oscillatory o<strong>the</strong>rwise.It is known that if <strong>the</strong> integral+∞ ∫0τ(s)p(s) ds is convergent, <strong>the</strong>n equation (1) has propernon-oscillatory solutions. There<strong>for</strong>e, we will assume throughout <strong>the</strong> paper thatLet us putG ∗ = lim inft→+∞∫+∞0∫1tsτ(s)p(s) ds,t0τ(s)p(s) ds = +∞. (2)G ∗ = lim supt→+∞∫1tsτ(s)p(s) ds.t0Proposition 1. Let condition (2) hold and G ∗ > 1. Then every proper solution to equation(1) is oscillatory.In view <strong>of</strong> Proposition 1, it is natural to suppose in <strong>the</strong> sequel thatG ∗ ≤ 1. (3)A Wintner type oscillation criterion is presented in <strong>the</strong> next <strong>the</strong>orem.59


Theorem 1. Let conditions (2) and (3) be fulfilled and let <strong>the</strong>re exist λ < 1 and ε ∈ [0, 1[ suchthat∫+∞s λ( τ(s)) 1−εG∗p(s)ds= +∞. (4)sThen every proper solution to equation (1) is oscillatory.0Theorem 2. Let conditions (2) and (3) hold and let <strong>the</strong>re exist ε ∈ [0, 1[ such thatlim supt→+∞∫1tsln t0( τ(s)Then every proper solution to equation (1) is oscillatory.In view <strong>of</strong> Theorem 1, we can assume in <strong>the</strong> sequel that∫+∞0s λ( τ(s)ss) 1−εG∗p(s)ds >14 . (5)) 1−εG∗p(s)ds < +∞ <strong>for</strong> all λ < 1, ε ∈ [0, 1[ .It allows one to define, <strong>for</strong> any λ < 1 and ε ∈ [0, 1[, <strong>the</strong> function∫+∞Q(t; λ, ε) := t 1−λ s λ( τ(s)) 1−εG∗p(s)ds <strong>for</strong> t > 0.sMoreover, <strong>for</strong> any µ > 1 and ε ∈ [0, 1[ , we putH(t; µ, ε) := 1t µ−1By using <strong>the</strong> lower and upper limitst∫tQ ∗ (λ, ε) = lim inf Q(t; λ, ε),t→+∞ Q∗H ∗ (µ, ε) = lim inf H(t; µ, ε),t→+∞ H∗0s µ( τ(s)) 1−εG∗p(s)ds <strong>for</strong> t > 0.s(λ, ε) = lim sup Q(t; λ, ε),t→+∞(µ, ε) = lim sup H(t; µ, ε),t→+∞we establish new Hille and Nehari type oscillation criteria, which coincide with <strong>the</strong> well-knownresults in <strong>the</strong> case <strong>of</strong> ordinary differential equations.Theorem 3. Let conditions (2) and (3) be fulfilled and let <strong>the</strong>re exist λ < 1, µ > 1, andε ∈ [0, 1[ such that( ) λ 2lim sup Q(t; λ, ε) + H(t; µ, ε) >t→+∞4(1 − λ) + µ 24(µ − 1) . (6)Then every proper solution to equation (1) is oscillatory.As a corollary <strong>of</strong> Theorem 3 (with µ = 2 and λ = 0, respectively) we obtainCorollary 1. Let conditions (2) and (3) be fulfilled and let <strong>the</strong>re exist ε ∈ [0, 1[ such thatei<strong>the</strong>r Q ∗ (λ, ε) >(2 − λ)24(1 − λ) <strong>for</strong> some λ < 1, or H∗ (µ, ε) >Then every proper solution to equation (1) is oscillatory.60µ 24(µ − 1)<strong>for</strong> some µ > 1.


The next <strong>the</strong>orem deals with <strong>the</strong> lower limit <strong>of</strong> <strong>the</strong> sum on <strong>the</strong> left-hand side <strong>of</strong> inequality (6)and thus it complements Theorem 3 in a certain sense.Theorem 4. Let conditions (2) and (3) be fulfilled and let <strong>the</strong>re exist λ < 1, µ > 1, andε ∈ [0, 1[ such that( ) 1lim inf Q(t; λ, ε) + H(t; µ, ε) >t→+∞4(1 − λ) + 14(µ − 1) . (7)Then every proper solution to equation (1) is oscillatory.Theorem 4 yieldsCorollary 2. Let conditions (2) and (3) be fulfilled and let <strong>the</strong>re exist ε ∈ [0, 1[ such thatei<strong>the</strong>r Q ∗ (λ, ε) >14(1 − λ) <strong>for</strong> some λ < 1, or H ∗(µ, ε) >14(µ − 1)<strong>for</strong> some µ > 1.Then every proper solution to equation (1) is oscillatory.Now we give a statement complementing Corollary 2.Theorem 5. Let conditions (2) and (3) be fulfilled and let <strong>the</strong>re exist λ < 1, µ > 1, andε ∈ [0, 1[ such that ei<strong>the</strong>rorH ∗ (µ, ε) >λ(2 − λ)4(1 − λ) ≤ Q ∗(λ, ε) ≤µ 24(µ − 1) − 1 214(1 − λ) , (8))(9)(1 − √ 1 − 4(1 − λ)Q ∗ (λ, ε)µ(2 − µ)4(µ − 1) ≤ H 1∗(µ, ε) ≤4(µ − 1) , (10)Q ∗ λ 2(λ, ε) >4(1 − λ) + 1 (1 + √ )1 − 4(µ − 1)H ∗ (µ, ε) .2(11)Then every proper solution to equation (1) is oscillatory.If both conditions (8) and (10) are satisfied <strong>the</strong>n oscillation criteria (9) and (11) can be slightlyrefined as is presented in <strong>the</strong> last statement.Theorem 6. Let conditions (2) and (3) be fulfilled and let <strong>the</strong>re exist λ < 1, µ > 1, andε ∈ [0, 1[ such that inequalities (8) and (10) are satisfied. If( )lim sup Q(t; λ, ε) + H(t; µ, ε) >t→+∞> Q ∗ (λ, ε) + H ∗ (µ, ε) + 1 (√1 − 4(1 − λ)Q∗ (λ, ε) + √ )1 − 4(µ − 1)H ∗ (µ, ε) ,2<strong>the</strong>n every proper solution to equation (1) is oscillatory.τ(t)tRemark 1. If we assume, in addition, that <strong>the</strong>re are numbers α > 0 and t 0 ≥ 0 such that≥ α <strong>for</strong> a. e. t ≥ t 0 , <strong>the</strong>n we can put ε = 1 in all above presented statements.61


Solvability and Well-Posedness<strong>of</strong> <strong>Two</strong>-<strong>Point</strong> Weighted Singular <strong>Boundary</strong> <strong>Value</strong> <strong>Problem</strong>sNino PartsvaniaA. Razmadze Ma<strong>the</strong>matical Institute <strong>of</strong> I. Javakhishvili Tbilisi State University, Tbilisi, GeorgiaE-mail: ninopa@rmi.geIn an open interval ]a, b[, we consider <strong>the</strong> second order nonlinear differential equationu ′′ = f(t, u) (1)with two-point weighted boundary conditions <strong>of</strong> one <strong>of</strong> <strong>the</strong> following two types:andlim supt→a|u(t)|< +∞, lim sup(t − a) αt→blim supt→a|u(t)|< +∞ (2)(b − t) β|u(t)|< +∞, lim(t − a) α t→b u′ (t) = 0. (3)Here f :]a, b[×R → R is a continuous function, α ∈]0, 1[, and β ∈]0, 1[.Following R. P. Agarwal and I. Kiguradze [1,2] we say that Eq. (1) with respect to <strong>the</strong> timevariable has a strong singularity at <strong>the</strong> point a (at <strong>the</strong> point b) if <strong>for</strong> any t 0 ∈]a, b[ and x > 0∫t 0<strong>the</strong> condition (t − a) [ |f(t, x)|−f(t, x) sgn x ] dt = +∞ ( ∫ b(b − t) [ |f(t, x)|−f(t, x) sgn x ] = +∞ ) isat 0satisfied.Theorems obtained by us contain unimprovable in a certain sense sufficient conditions <strong>for</strong> <strong>the</strong>solvability and well-posedness <strong>of</strong> <strong>the</strong> problem (1), (2) (<strong>of</strong> <strong>the</strong> problem (1), (3)), at that <strong>the</strong>se <strong>the</strong>orems,unlike <strong>the</strong> previous well-known results, cover <strong>the</strong> case, where Eq. (1) with respect to <strong>the</strong>time variable has strong singularities at <strong>the</strong> points a and b (has a strong singularity at <strong>the</strong> pointa).Be<strong>for</strong>e passing to <strong>the</strong> <strong>for</strong>mulation <strong>of</strong> <strong>the</strong> main results, we introduce some notation.f ∗ (t, x) = max { |f(t, y)| : 0 ≤ y ≤ x } <strong>for</strong> a < t < b, x ≥ 0.By G 0 and G 1 we denote <strong>the</strong> Green functions <strong>of</strong> <strong>the</strong> problems u ′′ = 0; u(a) = u(b) = 0 andu ′′ = 0; u(a) = u ′ (b) = 0, respectively, i.e.,⎧(s − a)(t − b)⎪⎨G 0 (t, s) = b − a⎪⎩(t − a)(s − b)b − a<strong>for</strong> a ≤ s ≤ t ≤ b,<strong>for</strong> a ≤ t < s ≤ b,For any continuous function h :]a, b[→ R, we assume∫bν α,β (h) = sup{(t − a) −α (b − t) −β∫bν α (h) = sup{(t − a) −αaaand G 1 (t, s) ={a − s <strong>for</strong> a ≤ s ≤ t ≤ b,a − t <strong>for</strong> a ≤ t < s ≤ b.}|G 0 (t, s)h(s)| ds : a < t < b ,}|G 1 (t, s)h(s)| ds : a < t < b .62


Definition. The problem (1), (2) (<strong>the</strong> problem (1), (3)) is said to be well-posed if <strong>for</strong> anycontinuous function h :]a, b[→ R, satisfying <strong>the</strong> condition ν α,β (h) < +∞ ( ν α (h) < +∞ ) , <strong>the</strong>perturbed differential equationv ′′ = f(t, v) + h(t) (4)has a unique solution, satisfying <strong>the</strong> boundary conditions (2) (<strong>the</strong> boundary conditions (3)), and<strong>the</strong>re exists a positive constant r, independent <strong>of</strong> <strong>the</strong> function h, such that in <strong>the</strong> interval ]a, b[ <strong>the</strong>inequality |u(t) − v(t)| ≤ rν α,β (h)(t − a) α (b − t) β ( |u(t) − v(t)| ≤ rν α (h)(t − a) α) is satisfied, whereu and v are <strong>the</strong> solutions <strong>of</strong> (1),(2) and (4),(2) (<strong>of</strong> (1),(3) and (4),(3)), respectively.The following statements are valid.Theorem 1. Let <strong>the</strong>re exist a constant l ∈ [0, 1[ and a continuous function q :]a, b[→ [0, +∞[such that( )α(1 − α)f(t, x) sgn x ≥ −l(t − a) 2 + 2αβ β(1 − β)+(t − a)(b − t) (b − t) 2 |x| − q(t) <strong>for</strong> a < t < b, x ∈ R,and ν α,β (q) < +∞. Then <strong>the</strong> problem (1), (2) has at least one solution.Theorem 2. Let <strong>the</strong>re exist a constant l ∈ [0, 1[ such that( )α(1 − α)f(t, x) − f(t, y) ≥ −l(t − a) 2 + 2αβ β(1 − β)+(t − a)(b − t) (b − t) 2 (x − y) <strong>for</strong> a < t < b, x > y,and ν α,β (f(·, 0)) < +∞. Then <strong>the</strong> problem (1), (2) is well-posed.Theorem 3. Let <strong>the</strong>re exist a constant l < α(1−α) and a continuous function q :]a, b[→ [0, +∞[such thatlf(t, x) sgn x ≥ − |x| − q(t) <strong>for</strong> a < t < b, x ∈ R(t − a) 2and ν α (q) < +∞. If, moreover, <strong>the</strong> condition∫ btholds, <strong>the</strong>n <strong>the</strong> problem (1), (3) has at least one solution.f ∗ (s, x)ds < +∞ <strong>for</strong> a < t < b, x > 0 (5)Theorem 4. Let <strong>the</strong>re exist a constant l < α(1 − α) such thatlf(t, x) − f(t, y) ≥ − (x − y) <strong>for</strong> a < t < b, x > y.(t − a) 2If, moreover, ν α (f(·, 0)) < +∞ and <strong>the</strong> condition (5) holds, <strong>the</strong>n <strong>the</strong> problem (1), (3) is well-posed.AcknowledgementsSupported by <strong>the</strong> Shota Rustaveli National Science Foundation (Project # GNSF/ST09 175 3-101).References[1] R. P. Agarwal and I. Kiguradze, <strong>Two</strong>-point boundary value problems <strong>for</strong> higher-order lineardifferential equations with strong singularities. <strong>Boundary</strong> <strong>Value</strong> <strong>Problem</strong>s, 2006, 1–32; ArticleID 83910.[2] I. Kiguradze, <strong>On</strong> two-point boundary value problems <strong>for</strong> higher order singular ordinary differentialequations. Mem. Differential Equations Math. Phys. 31 (2004), 101–107.63


<strong>On</strong> Invariant Sets <strong>of</strong> Impulsive Multi-Frequency <strong>Systems</strong>Mykola Perestyuk and Petro FeketaTaras Shevchenko National University <strong>of</strong> Kyiv, Kyiv, UkraineE-mail: pmo@univ.kiev.ua, petro.feketa@gmail.comWe consider a system <strong>of</strong> differential equations, defined in <strong>the</strong> direct product <strong>of</strong> an m-dimensionaltorus T m and an n-dimensional Euclidean space E n that undergo impulsive perturbations at <strong>the</strong>moments when <strong>the</strong> phase point φ meets a given set in <strong>the</strong> phase spacedφdt = a(φ),dx= A(φ)x + f(φ), φ ∉ Γ,dt∆x ∣ φ∈Γ= B(φ)x + g(φ),(1)where φ = (φ 1 , . . . , φ m ) T ∈ T m , x = (x 1 , . . . , x n ) T ∈ E n , a(φ) is a continuous 2π-periodic withrespect to each <strong>of</strong> <strong>the</strong> components φ v , v = 1, . . . , m vector function that satisfies a Lipschitzcondition with respect to φ. Functions A(φ), B(φ) are continuous 2π-periodic with respect toeach <strong>of</strong> <strong>the</strong> components φ v , v = 1, . . . , m square matrices; f(φ), g(φ) are continuous (piecewisecontinuous with first kind discontinuities in <strong>the</strong> set Γ) 2π-periodic with respect to each <strong>of</strong> <strong>the</strong>components φ v , v = 1, . . . , m vector functions.We assume that <strong>the</strong> set Γ is a subset <strong>of</strong> <strong>the</strong> torus T m , which is a manifold <strong>of</strong> dimension m − 1defined by <strong>the</strong> equation Φ(φ) = 0 <strong>for</strong> some continuous scalar 2π-periodic with respect to each <strong>of</strong><strong>the</strong> components φ v , v = 1, . . . , m function.Denote by t i (φ), i ∈ Z <strong>the</strong> solutions <strong>of</strong> <strong>the</strong> equation Φ(φ t (φ)) = 0 that are <strong>the</strong> moments <strong>of</strong>impulsive action in system (1). Let <strong>the</strong> function Φ(φ) be such that <strong>the</strong> solutions t = t i (φ) existsince o<strong>the</strong>rwise system (1) would not be an impulsive system.We call a point φ ∗ an ω-limit point <strong>of</strong> <strong>the</strong> trajectory φ t (φ) if <strong>the</strong>re exists a sequence {t n } n∈Nin R so thatlim t n = +∞,n→+∞lim φ t n(φ) = φ ∗ .n→+∞The set <strong>of</strong> all ω-limit points <strong>for</strong> a given trajectory φ t (φ) is called ω-limit set <strong>of</strong> <strong>the</strong> trajectory φ t (φ)and denoted by Ω φ . DenoteΩ =∪Ω φ ,φ∈T mand assume that <strong>the</strong> matrices A(φ) and B(φ) are constant in <strong>the</strong> domain Ω:A(φ) ∣ ∣φ∈Ω= Ã,B(φ)∣ ∣φ∈Ω= ˜B.We will obtain sufficient conditions <strong>for</strong> <strong>the</strong> existence and asymptotic stability <strong>of</strong> an invariant set <strong>of</strong><strong>the</strong> system (1) in terms <strong>of</strong> <strong>the</strong> eigenvalues <strong>of</strong> <strong>the</strong> matrices à and ˜B. Denoteγ = max Reλj(Ã), j=1,...,n α2 = max λ (j (E + ˜B) T (E + ˜B) ) .j=1,...,nTheorem 1. Let <strong>the</strong> moments <strong>of</strong> impulsive perturbations {t i (φ)} be such that uni<strong>for</strong>mly withrespect to t ∈ R <strong>the</strong>re exists a finite limiti(t, t +lim˜T )= p. (2)˜T →∞ ˜T64


If <strong>the</strong> following inequality holds<strong>the</strong>n system (1) has an asymptotically stable invariant set.γ + p ln α < 0, (3)Such approach may be extended to <strong>the</strong> nonlinear system <strong>of</strong> <strong>the</strong> <strong>for</strong>mdφdt = a(φ),dxdt = A 0(φ)x + A 1 (φ, x)x + f(φ), φ ∉ Γ,∆x ∣ ∣φ∈Γ= B 0 (φ)x + B 1 (φ, x)x + g(φ).Theorem 2. Let <strong>the</strong> matrices A 0 (φ) and B 0 (φ) be constant in <strong>the</strong> domain Ω, uni<strong>for</strong>mly withrespect to t ∈ R <strong>the</strong>re exist a finite limit (2) and <strong>the</strong> inequality (3) hold. Then <strong>the</strong>re exist sufficientlysmall constants a 1 and b 1 and sufficiently small Lipschitz constants L A and L B such that <strong>for</strong>any continuous 2π-periodic with respect to each <strong>of</strong> <strong>the</strong> components φ v , v = 1, . . . , m functions∥A 1 (φ, x) and B 1 (φ, x) such that maxA 1 (φ, x) ∥ ≤ a 1 ,φ∈T m,x∈ ¯J hx ′ , x ′′ ∈ ¯J h ,∥∥A 1 (φ, x ′ ) − A 1 (φ, x ′′ ) ∥ ≤ L A ∥x ′ − x ′′ ∥,system (4) has an asymptotically stable invariant set.(4)∥maxB 1 (φ, x) ∥ ≤ b 1 and <strong>for</strong> anyφ∈T m,x∈ ¯J h∥∥B 1 (φ, x ′ ) − B 1 (φ, x ′′ ) ∥ ∥ ≤ L B ∥x ′ − x ′′ ∥,In summary, we have obtained sufficient conditions <strong>for</strong> <strong>the</strong> existence and asymptotic stability<strong>of</strong> invariant sets <strong>of</strong> a linear impulsive system <strong>of</strong> differential equations defined in T m × E n that hasspecific properties in <strong>the</strong> ω-limit set Ω <strong>of</strong> <strong>the</strong> trajectories φ t (φ). We have proved that it is sufficientto impose some restrictions on system (1) only in <strong>the</strong> domain Ω to guarantee <strong>the</strong> existence andasymptotic stability <strong>of</strong> <strong>the</strong> invariant set.References[1] S. I. Doudzyany and M. O. Perestyuk, <strong>On</strong> stability <strong>of</strong> trivial invariant torus <strong>of</strong> a certain class<strong>of</strong> systems with impulsive perturbations. Ukrainian Math. J. 50 (1998), No. 3, 338–349.[2] M. O. Perestyuk and S. Ī. Baloha, Existence <strong>of</strong> an invariant torus <strong>for</strong> a class <strong>of</strong> systems <strong>of</strong>differential equations. (Ukrainian) Nelīnīīnī Koliv. 11 (2008), No. 4, 520–529 (2009); Englishtransl.: Nonlinear Oscil. (N. Y.) 11 (2008), No. 4, 548–558.[3] M. O. Perestyuk and P. V. Feketa, Invariant manifolds <strong>of</strong> a class <strong>of</strong> systems <strong>of</strong> differentialequations with impulse perturbation. (Ukrainian) Nelīnīīnī Koliv. 13 (2010), No. 2, 240–252;English transl.: Nonlinear Oscil. (N. Y.) 13 (2010), No. 2, 260–273.[4] M. Perestyuk and P. Feketa, Invariant sets <strong>of</strong> impulsive differential equations with particularitiesin ω-limit set. Abstr. Appl. Anal. 2011, Art. ID 970469, 14 pp.[5] N. A. Perestyuk and V. A. Plotnikov, A. M. Samoilenko, and N. V. Skripnik, Differentialequations with impulse effects: multivalued right-hand sides with discontinuities. DeGruyterStudies in Ma<strong>the</strong>matics 40, Walter de Gruyter Co., Berlin, 2011.[6] A. M. Samoǐlenko, Elements <strong>of</strong> <strong>the</strong> ma<strong>the</strong>matical <strong>the</strong>ory <strong>of</strong> multi-frequency oscillations. Translatedfrom <strong>the</strong> 1987 Russian original by Yuri Chapovsky. Ma<strong>the</strong>matics and its Applications(Soviet Series), 71. Kluwer Academic Publishers Group, Dordrecht, 1991.[7] A. M. Samoǐlenko and N. A. Perestyuk, Impulsive differential equations. World Scientific Serieson Nonlinear Science. Series A: Monographs and Treatises, 14. World Scientific PublishingCo., Inc., River Edge, NJ, 1995.65


<strong>On</strong> <strong>the</strong> Well-Possedness <strong>of</strong> <strong>the</strong> Weighted Cauchy <strong>Problem</strong> <strong>for</strong>Nonlinear Singular Differential Equations <strong>of</strong> Higher Orders withDeviating ArgumentsB. PůžaMasaryk University, Institute <strong>of</strong> Ma<strong>the</strong>matics <strong>of</strong> <strong>the</strong> Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> Czech Republic,Brno, Czech RepublicE-mail: puza@math.muni.czZ. SokhadzeAkaki Tsereteli State University, Kutaisi, GeorgiaE-mail: z.soxadze@gmail.comIn a finite interval ]a, b[ we consider <strong>the</strong> differential equation()u (n) (t) = f t, u(τ 1 (t)), . . . , u (n−1) (τ n (t))(1)with <strong>the</strong> weighted initial conditionslim supt→a( |u (i−1) (t)|ρ (i−1) (t))< +∞ (i = 1, . . . , n), (2)where f : ]a, b[ ×R n → R is a function, satisfying <strong>the</strong> local Carathéodory conditions, τ i : ]a, b[ → ]a, b](i = 1, . . . , n) are measurable functions, and ρ : [a, b] → [0, +∞[ is <strong>the</strong> (n − 1)-times continuouslydifferentiable function such thatρ (i−1) (a) = 0,ρ (i−1) (t) > 0 <strong>for</strong> a < t ≤ b (i = 1, . . . , n).Let q : ]a, b] → ]0, +∞[ be some nonincreasing function. The problems (1), (2) is said to bewell-posed with <strong>the</strong> weight q, if <strong>for</strong> any integrable with <strong>the</strong> weight q function h : ]a, b[ → R,satisfying <strong>the</strong> condition<strong>the</strong> differential equation{ ( ∫tν q,n (h; ρ) def= supa)}q(s)h(s) ds /q(t)ρ (n−1) (t) : a < t ≤ b < +∞,()u (n) (t) = f t, u(τ 1 (t)), . . . , u (n−1) (τ n (t)) + h(t)under <strong>the</strong> initial conditions (2) has a unique solution u h and <strong>the</strong>re exists <strong>the</strong> positive not dependingon r function h, such that∣∣u (i−1)h(t) − u (i−1)0 (t) ∣ ≤ rν q,n (h; ρ)ρ (i−1) (t) <strong>for</strong> a ≤ t ≤ b (i = 1, . . . , n),where u 0 is a solution <strong>of</strong> <strong>the</strong> problem (1), (2).The problem (1), (2) is said to be well-posed if it is well-posed with <strong>the</strong> weight q(t) ≡ 1.Theorem 1. Let in <strong>the</strong> domain ]a, b[ ×R n <strong>the</strong> condition∣ f(t, x1 , . . . , x n ) − f(t, y 1 , . . . , y n ) ∣ ∣ ≤66n∑h i (t)|x i − y i |, (3)i=1


e fulfilled, where h i ∈ L loc (]a, b]) (i = 1, . . . , n). Let, moreover,{ ( ∫tsupand <strong>the</strong>re exist a number γ ∈ ]0, 1[ such thatn∑∫ ti=1 aThen <strong>the</strong> problem (1), (2) is well-posed.a)}|f(s, 0, . . . , 0)| ds /ρ (n−1) (t) : a < t ≤ b < +∞ρ (i−1) (τ i (s))h i (s) ds ≤ γρ (n−1) (t) <strong>for</strong> a ≤ t ≤ b.Theorem 2. Let n ≥ 2, <strong>the</strong> function f 0 (t) def= f(t, 0, . . . , 0) be integrable with <strong>the</strong> weight q, andν n,q (f 0 ; ρ) < +∞, where q : ]a, b] → ]0, +∞[ is some nonincreasing function, satisfying <strong>the</strong> equality(lim q(t)ρ (n−1) (t) ) = 0.t→aLet, moreover, in <strong>the</strong> domain ]a, b[ ×R n <strong>the</strong> condition (3) be fulfilled, where h i ∈ L loc (]a, b]) (i =1, . . . , n), and <strong>the</strong>re exist <strong>the</strong> numbers m ∈ {1, . . . , n − 1} and γ ∈ ]0, 1[ such that∫ ta(∑ mexp∫ ti=1 s(x − a) n−i(n − i)!)h i (x) dx ≤ q(s)q(t)[∑ m q(s) ∣ ρ (i−1) (τ i (s)) − ρ (i−1) (s) ∣ hi (s) +i=1n∑i=m+1≤ γq(t)ρ (n−1) (t) <strong>for</strong> a < t ≤ b.<strong>for</strong> a < s ≤ t ≤ b,]ρ (i−1) (τ i (s))h i (s) ds ≤Then <strong>the</strong> problem (1), (2) is well-posed with <strong>the</strong> weight q.The above-<strong>for</strong>mulated <strong>the</strong>orems cover <strong>the</strong> case in which <strong>the</strong> equation (1) is strongly singular,i.e., <strong>the</strong> case, where{ ∣∣f(t,where f ∗ (t, x) = max x1 , . . . , x n ) ∣ n∑ :∫ ba(t − a) µ f ∗ (t, x) dt = +∞ <strong>for</strong> µ ≥ 0, x > 0,i=1}|x i | ≤ x . It should be also noted that <strong>the</strong> conditionγ ∈ ]0, 1[ in <strong>the</strong>se <strong>the</strong>orems is unimprovable and it cannot be replaced by <strong>the</strong> condition γ = 1.AcknowledgementThis work was supported by <strong>the</strong> Education Ministry <strong>of</strong> Czech Republic (Project # MSM0021622409)and by <strong>the</strong> Shota Rustaveli National Science Foundation (Project # GNSF/ST09 175 3 101).67


Three Types <strong>of</strong> Solutions <strong>of</strong> Some Singular NonlinearDifferential EquationIrena RachůnkováPalacký University, Olomouc, Czech RepublicE-mail: irena.rachunkova@upol.czThe differential equation(p(t)u′ ) ′ = p(t)f(u) (1)is investigated on <strong>the</strong> positive half line under <strong>the</strong> assumptions (2)–(6):f ∈ Lip loc (R), ∃ L ∈ (0, ∞) : f(L) = 0, (2)∃ L 0 ∈ [−∞, 0) : xf(x) < 0, x ∈ (L 0 , 0) ∪ (0, L), (3)∃ ¯B ∈ (L 0 , 0) : F ( ¯B) = F (L),where F (x) = −∫ x0f(z) dz, x ∈ R, (4)p ∈ C[0, ∞) ∩ C 1 (0, ∞), p(0) = 0, (5)p ′ (t) > 0, t ∈ (0, ∞),Due to p(0) = 0, equation (1) has a singularity at t = 0.The following results are proved.p ′ (t)lim = 0. (6)t→∞ p(t)1. For each B < 0 equation (1) has a unique solution u B ∈ C 1 [0, ∞) ∩ C 2 (0, ∞) which satisfies<strong>the</strong> initial conditionsu(0) = B, u ′ (0) = 0. (7)2. A solution u B <strong>of</strong> problem (1), (7) satisfying sup{u(t) : t ∈ [0, ∞)} < L is called a dampedsolution. If M d is <strong>the</strong> set <strong>of</strong> all B < 0 such that u B is a damped solution, <strong>the</strong>n M d is nonemptyand open in (−∞, 0).3. A solution u B <strong>of</strong> problem (1), (7) satisfying sup{u(t) : t ∈ [0, ∞)} > L is called an escapesolution. If M e is <strong>the</strong> set <strong>of</strong> all B < 0 such that u B is an escape solution, <strong>the</strong>n M e is open in(−∞, 0). In addition, M e is nonempty provided one <strong>of</strong> <strong>the</strong> following additional assumptions (A1),(A2), (A3), or (A4) is valid:• (A1): L 0 ∈ (−∞, 0), f(L 0 ) = 0.• (A2):f(x) > 0 <strong>for</strong> x ∈ (−∞, 0) and0 ≤ lim supx→−∞f(x)|x|< ∞.• (A3):f(x) > 0 <strong>for</strong> x ∈ (−∞, 0) and <strong>the</strong>re exists k ≥ 2 such thatlimt→0+p ′ (t)∈ (0, ∞).tk−2 Fur<strong>the</strong>r, <strong>the</strong>re exists r ∈ (1, k+2k−2) such that f fulfilsf(x)limx→−∞ |x| r ∈ (0, ∞).68


• (A4): ∫1dsp(s) < ∞.4. If M e is nonempty, <strong>the</strong>n problem (1), (7) has a solution u such that0sup { u(t) : t ∈ [0, ∞) } = L.Such solution is called homoclinic. It is increasing and lim t→∞ u(t) = L.5. Some o<strong>the</strong>r additional conditions <strong>for</strong> p and f which give asymptotic <strong>for</strong>mulas <strong>for</strong> dampedand homoclinic solutions are discussed.References[1] I. Rachůnková and J. Tomeček, Bubble-type solutions <strong>of</strong> nonlinear singular problems. Math.Comput. Modelling 51 (2010), No. 5-6, 658–669.[2] I. Rachůnková and J. Tomeček, Strictly increasing solutions <strong>of</strong> a nonlinear singular differentialequation arising in hydrodynamics. Nonlinear Anal. 72 (2010), No. 3-4, 2114–2118.[3] I. Rachůnková, L. Rachůnek, and J. Tomeček, Existence <strong>of</strong> oscillatory solutions <strong>of</strong> singularnonlinear differential equations. Abstr. Appl. Anal. 2011, Art. ID 408525, 20 pp.[4] I. Rachůnková and J. Tomeček, Superlinear singular problems on <strong>the</strong> half line. Bound. <strong>Value</strong>Probl. 2010, Art. ID 429813, 18 pp.69


Slowly Growing Solutions <strong>of</strong> Singular <strong>Linear</strong> FunctionalDifferential <strong>Systems</strong>Andras Rontó and Vita PylypenkoNational Technical University <strong>of</strong> Ukraine “KPI”, Kyiv, UkraineInstitute <strong>of</strong> Ma<strong>the</strong>matics, Academy <strong>of</strong> Sciences <strong>of</strong> Czech Republic, Brno, Czech RepublicE-mail: ronto@ipm.czWe consider <strong>the</strong> system <strong>of</strong> linear functional differential equationsx ′ i(t) =n∑(l ik x k )(t) + q i (t), t ∈ [a, b), i = 1, 2, . . . , n, (1)k=1subjected to <strong>the</strong> initial conditionsx i (a) = λ i , i = 1, 2, . . . , n, (2)where −∞ < a < b < ∞, <strong>the</strong> functions q i , i = 1, 2, . . . , n, are locally integrable, l ik : C([a, b), R) →L 1; loc ([a, b), R), i, k = 1, 2, . . . , n, are linear mappings and L 1; loc ((a, b], R) is <strong>the</strong> set <strong>of</strong> functionsu : (a, b] → R such that u| [a+ε,b] ∈ L 1 ([a + ε, b], R) <strong>for</strong> any ε ∈ (0, b − a).Our aim is to find conditions sufficient <strong>for</strong> <strong>the</strong> existence and uniqueness <strong>of</strong> a slowly growingsolution <strong>of</strong> <strong>the</strong> initial value problem (1), (2). The “slow growth” <strong>of</strong> a solution x = (x i ) n i=1 : [a, b) →R n is understood in <strong>the</strong> sense that its components satisfy <strong>the</strong> conditionssup h i (t)|x i (t)| < +∞, i = 1, 2, . . . , n, (3)t∈[a,b)where h i : [a, b) → [0, +∞), i = 1, 2, . . . , n, are certain given continuous functions possessing <strong>the</strong>propertieslim h i(t) = 0, i = 1, 2, . . . , n. (4)t→b−Solutions <strong>of</strong> system (1) are sought <strong>for</strong> in <strong>the</strong> class <strong>of</strong> functions that are only locally absolutelycontinuous and, in particular, may be unbounded in a neighbourhood <strong>of</strong> <strong>the</strong> point b.Definition. By a solution <strong>of</strong> <strong>the</strong> functional differential system (1), we mean a locally absolutelycontinuous vector function x = (x i ) n i=1 : [a, b) → Rn with components possessing <strong>the</strong> propertiesh i x ′ i ∈ L 1([a, b), R), i = 1, 2 . . . , n, and satisfying equalities (1) almost everywhere on <strong>the</strong> interval[a, b). We say that a solution x = (x i ) n i=1 : [a, b) → Rn <strong>of</strong> system (1) is slowly growing if it hasproperty (3).The <strong>the</strong>orem <strong>for</strong>mulated below concerns <strong>the</strong> case where <strong>the</strong> right-hand side terms <strong>of</strong> equations(1) are determined by linear operators which are positive with respect to <strong>the</strong> pointwise partialorderings <strong>of</strong> <strong>the</strong> linear manifolds C([a, b), R) and L 1; loc ([a, b), R).Definition. An operator l : C([a, b), R) → L 1; loc ([a, b), R) is said to be positive if (lu)(t) ≥ 0<strong>for</strong> a. e. t ∈ [a, b) whenever u is non-negative on [a, b).Theorem ([1]). Let us assume that <strong>the</strong> linear mappings l ik : C([a, b), R) → L 1; loc ([a, b), R),i, k = 1, 2, . . . , n, are positive, <strong>the</strong> relationsn∑ ( 1)h k l ik ∈ L 1 ([a, b), R), i = 1, 2, . . . , n, (5)h kk=170


hold, and <strong>the</strong>re exists a certain δ ∈ [0, 1) such that <strong>the</strong> inequalityn∑( n∑l ikj=1k=1∫·a( ) 1l kj)(s) ds (t) ≤ δh jn∑ ( 1l ik)(t) (6)h kis satisfied <strong>for</strong> a. e. t ∈ [a, b) and every i = 1, 2, . . . , n.Then <strong>the</strong> initial value problem (1), (2) has a unique slowly growing solution <strong>for</strong> arbitrary locallyintegrable functions q i : [a, b) → R, i = 1, 2, . . . , n, possessing <strong>the</strong> propertyk=1{h i q i | i = 1, 2, . . . , n} ⊂ L 1 ([a, b), R). (7)Fur<strong>the</strong>rmore, if q i and λ i , i = 1, 2, . . . , n, satisfy <strong>the</strong> condition−n∑λ k (l ik 1)(t) ≤ q i (t), t ∈ [a, b), i = 1, 2, . . . , n, (8)k=1<strong>the</strong>n <strong>the</strong> unique solution <strong>of</strong> problem (1), (2), (3) has non-negative components.The symbol l ik 1 in (8) stands <strong>for</strong> <strong>the</strong> result <strong>of</strong> application <strong>of</strong> <strong>the</strong> operator l ik to <strong>the</strong> functionequal identically to 1.By virtue <strong>of</strong> <strong>the</strong> positivity <strong>of</strong> <strong>the</strong> mappings l ik , i, k = 1, 2, . . . , n, conditions (8) are satisfied, inparticular, if {λ i | i = 1, 2, . . . , n} ⊂ [0, +∞) and <strong>the</strong> functions q i , i = 1, 2, . . . , n, are non-negativealmost everywhere on [a, b).Remark. The condition δ < 1 on <strong>the</strong> constant δ appearing in assumption (6) <strong>of</strong> Theorem issharp and cannot be weakened.References[1] V. Pylypenko and A. Rontó, <strong>On</strong> slowly growing solutions <strong>of</strong> singular linear functional differentialsystems. Math. Nachr., 2011, Issue 17-18.71


<strong>On</strong> <strong>the</strong> Existence <strong>of</strong> Special Class Solutions <strong>of</strong> a Quasi-<strong>Linear</strong>Differential System in <strong>On</strong>e Particular CaseS. A. ShchogolevI. I. Mechnikov Odessa National University, Odessa, UkraineE-mail: shchogolevs@rambler.ruThe system <strong>of</strong> differential equationsdz jdt = (j − 1)b(t, ε)z 1 + (2 − j)εα(t, ε)z 2 + h j (t, ε, θ) + µZ j (t, ε, θ, z 1 , z 2 ), j = 1, 2 (1)is considered, where α ∈ S m−1 , b ∈ S m , h 1 , h 2 ∈ B m (<strong>the</strong> definitions <strong>of</strong> classes S m and B m aregiven in [1]), inf |b| > 0, z 1, z 2 ∈ D, <strong>the</strong> functions Z 1 and Z 2 belong to <strong>the</strong> class B m with respect toGt, ε, θ and have in D continuous partial derivatives with respect to x 1 , x 2 up to some order 2q + 3,inclusive, and if z 1 , z 2 ∈ B m , <strong>the</strong>n <strong>the</strong>se partial derivatives are also <strong>of</strong> <strong>the</strong> class B m . µ ∈ R + .Denote ∀ f ∈ B m :and introduce <strong>the</strong> functionsξ 10 (t, ε, θ) =ξ 20 (t, ε, θ) =∞∑n=−∞(n≠0)∞∑n=−∞(n≠0)Γ n (f) = 12π∫ 2π0Γ n (h 1 (t, ε, θ))inϕ(t, ε)( −b(t, ε)Γn (h 1 (t, ε, θ))n 2 ϕ 2 (t, ε)f(t, ε, θ)exp(−inθ)dθ, n ∈ Z,exp(inθ) − Γ 0(h 2 (t, ε, θ))b(t, ε)where <strong>the</strong> function N 0 (t, ε) is defined from <strong>the</strong> equationDenote, fur<strong>the</strong>r, (Z) 0 = Z(t, ε, θ, ξ 10 , ξ 20 ),η 11 (t, ε, θ) =η 21 (t, ε, θ) =,+ Γ n(h 2 (t, ε, θ)))exp(inθ) + N 0 (t, ε),inϕ(t, ε)Q(t, ε, N 0 ) = Γ 0(Z1 (t, ε, θ, ξ 10 , ξ 20 ) ) = 0. (2)∞∑n=−∞(n≠0)∞∑n=−∞(n≠0)Q 1 (t, ε, N 0 ) = Γ 0( (∂Z1∂ξ 1)Γ n ((Z 1 ) 0 )inϕ(t, ε) exp(inθ) − Γ 0((Z 2 ) 0 ),b(t, ε)( −b(t, ε)Γn ((Z 1 ) 0 )n 2 ϕ 2 (t, ε)( η ∂Z111(t, ε, θ) +0+ Γ )n((Z 2 ) 0 )inϕ(t, ε)∂ξ 2)Lemma. Let <strong>the</strong> system (1) satisfy <strong>the</strong> following conditions:(1) Γ 0 (h 1 (t, ε, θ)) ≡ 0 ∀ t, ε ∈ G;(2) <strong>the</strong> equality (2) is fulfilled ∀ t, ε ∈ G and ∀ N 0 ;72)η 21(t, ε, θ) .0exp(inθ),


(3) <strong>the</strong> equation Q 1 (t, ε, N 0 ) = 0 has a root N 0 (t, ε) satisfying <strong>the</strong> condition∣ infdQ 1 (t, ε, N 0 ) ∣∣∣G∣> 0.dN 0Then <strong>for</strong> sufficiently small values <strong>of</strong> <strong>the</strong> parameter µ <strong>the</strong>re exists trans<strong>for</strong>mation <strong>of</strong> <strong>the</strong> typez j = ˜ξ j (t, ε, θ, µ) +where ˜ξ j , ψ jk ∈ B m (j, k = 1, 2), reducing <strong>the</strong> system (2) to <strong>the</strong> <strong>for</strong>md˜z jdt = (j − 1)b(t, ε)˜z j ++ε2∑k=1( q∑l=12∑r jk (t, ε, θ, µ)˜z k + µ q+1k=12∑ψ jk (t, ε, µ)˜z k , j = 1, 2, (3)k=1a jkl (t, ε)µ l )˜z k + εc j (t, ε, θ, µ) + µ 2q (t, ε, θ, µ)+2∑w jk (t, ε, θ, µ)˜z k + µ ˜Z j (t, ε, θ, ˜z 1 , ˜z 2 , µ), j = 1, 2, (4)k=1where a jkl ∈ S m , c j , d j , r jk , w jk ∈ B m−1 , ˜Z j contain summands, not lower than <strong>of</strong> <strong>the</strong> 2nd orderwith respect to ˜z 1 , ˜z 2 .Introduce <strong>the</strong> matrices A l (t, ε) = (a jkl (t, ε)) j,k=1,2 , (l = 1, q) (a jkl are defined in Lemma 1),Theorem. Let:J(t, ε) =(0 0b(t, ε) 0), A ∗ (t, ε, µ) = J(t, ε) +q∑A l (t, ε)µ l .(1) eigenvalues λ ∗ j (t, ε, µ) (j = 1, 2) <strong>of</strong> <strong>the</strong> matrix A∗ (t, ε, µ) be such that infG |Reλ∗ j (t, ε, µ)| ≥ γ 0µ q 0(γ 0 > 0, 0 < q 0 ≤ q);(2) <strong>for</strong> <strong>the</strong> matrix A ∗ (t, ε, µ), <strong>the</strong>re exist a matrix U(t, ε, µ) such that(a) inf |detU(t, ε, µ)| > 0;G(b) U −1 A ∗ U = Λ(t, ε, µ) is a diagonal matrix;(3) <strong>the</strong> conditions <strong>of</strong> <strong>the</strong> lemma be fulfilled.Then <strong>for</strong> sufficiently small values µ, ε/µ 2q 0−1 , <strong>the</strong> system (1) has a particular solution <strong>of</strong> <strong>the</strong> classB m−1 .l=1References[1] A. V. Kostin and S. A. Shchëgolev, <strong>On</strong> <strong>the</strong> stability <strong>of</strong> oscillations represented by Fourierseries with slowly varying parameters. (Russian) Differ. Uravn. 44 (2008), No. 1, 45–51, 142;translation in Differ. Equ. 44 (2008), No. 1, 47–53.73


Asymptotic Representation <strong>for</strong> Solutions <strong>of</strong> <strong>Systems</strong> <strong>of</strong>Differential Equations with Regularly andFast Varying NonlinearitiesO. R. ShlyepakovI. I. Mechnikov Odessa National University, Odessa, UkraineE-mail: oleg@gavrilovka.com.uaWe consider <strong>the</strong> system <strong>of</strong> differential equations{y ′ i = α ip i (t)φ i+1 (y i+1 ) (i = 1, n − 1),y ′ n = α n p n (t)φ 1 (y 1 ),(1)where α i ∈ {−1, 1} (i = 1, n), p i : [a, ω[ → ]0, +∞[ (i = 1, n) are continuous functions, −∞ < a


⎧1 − Λ i − γ i , if i ∈ I,⎪⎨ β lβ i =, if i ∈ {l + 1, . . . , n} \ I,Λ l · · · Λ i−1β l⎪⎩, if i ∈ {1, . . . , l − 1} \ I,Λ l · · · Λ n Λ 1 · · · Λ i−1where limits <strong>of</strong> integration A i ∈ {ω, a} are chosen in such a way that corresponding integral I i aimsei<strong>the</strong>r to zero, or to ∞ when t ↑ ω.{A ∗ 1, if A i = a,i =(i = 1, . . . , n).−1, if A i = ωTheorem. Let Λ i ∈ R\{0} (i = 1, n) and l = min I. Then <strong>for</strong> <strong>the</strong> existence <strong>of</strong> P ω (Λ 1 , . . . , Λ n )-solutions <strong>of</strong> (1) it is necessary and, if algebraic equationn∏ ( ∏i−1(1 − γ i )i=1j=1)Λ j + ν −n∏ ∏i−1Λ j = 0 (3)i=1 j=1does not have roots with zero real part, it is also sufficient that <strong>for</strong> each i ∈ {1, . . . , n}I i (t)I i+1 ′ lim(t)t↑ω Ii ′(t)I i+1(t) = Λ β i+1iβ iand following conditions are satisfied A ∗ i β i > 0 when Φ 0 i = +∞, A ∗ i β i < 0 when Φ 0 i = 0,sign [ α i A ∗ i β i]= sign φ′i (z). Moreover, components <strong>of</strong> each solution <strong>of</strong> that type admit followingasymptotic representation when t ↑ ωφ i (y i (t))φ ′ i (y i(t))φ i+1 (y i+1 (t)) = α iβ i I i (t)[1 + o(1)], if i ∈ I,φ i (y i (t))φ ′ i (y i(t))φ i+1 (y i+1 (t)) = α I i (t)iβ i [1 + o(1)], if i ∈ I,I l (t)and <strong>the</strong>re exists <strong>the</strong> whole k-parametric family <strong>of</strong> <strong>the</strong>se solutions if <strong>the</strong>re are k positive roots(including multiple roots) among <strong>the</strong> solutions <strong>of</strong> (3), with signs <strong>of</strong> real parts different from those<strong>of</strong> <strong>the</strong> number A ∗ l β l.References[1] D. D. Mirzov, Asymptotic properties <strong>of</strong> solutions <strong>of</strong> a system <strong>of</strong> Emden-Fowler type. (Russian)Differentsial’nye Uravneniya 21 (1985), No. 9, 1498–1504, 1649.[2] V. M. Evtukhov, Asymptotic representations <strong>of</strong> regular solutions <strong>of</strong> a two-dimensional system<strong>of</strong> differential equations. (Russian) Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki2002, No. 4, 11–17.[3] E. Seneta, Regularly varying functions. (Russian) Nauka, Moscow, 1985.[4] V. Marić, Regular variation and differential equations. Lecture Notes in Ma<strong>the</strong>matics, 1726.Springer-Verlag, Berlin, 2000.75


Limit Properties <strong>of</strong> Positive Solutions <strong>of</strong> Fractional <strong>Boundary</strong><strong>Value</strong> <strong>Problem</strong>sSvatoslav StaněkPalacký University, Olomouc, Czech RepublicE-mail: svatoslav.stanek@upol.czWe discuss <strong>the</strong> set <strong>of</strong> <strong>the</strong> scalar fractional boundary value problemsc D α nu(t) + f(t, u(t), u ′ (t),c D µ nu(t)) = 0, n ∈ N, (1)u ′ (0) = 0, u(1) + au ′ (1) = 0, (2)where {α n } ⊂ (1, 2), {µ n } ⊂ (0, 1), limn→∞ α n = 2, limn→∞ µ n = 1, a ≥ 0, and f satisfies <strong>the</strong> conditions:(H 1 ) f ∈ C([0, 1] × D), D = R + × R 2 −, R + = [0, ∞), R − = (−∞, 0],(H 2 ) <strong>the</strong> estimate0 ≤ φ(t) ≤ f(t, x, y, z) ≤ ω(x, |y|, |z|),is fulfilled <strong>for</strong> (t, x, y, z) ∈ [0, 1] × D, where φ ∈ C[0, 1], φ(t 0 ) > 0 <strong>for</strong> some t 0 ∈ [0, 1],ω ∈ C(R 3 +), ω is nondecreasing in all its arguments, andω(x, x, x)lim= 0.x→∞ xHere c D is <strong>the</strong> Caputo fractional derivative. The Caputo fractional derivative c D γ x <strong>of</strong> order γ > 0<strong>of</strong> a function x : [0, 1] → R is defined as (see, e.g., [1], [2])⎧⎪⎨ 1 d n ∫tc D γ x(t) = Γ(n − γ) dt n (t − s) n−γ−1( n−1∑ x (k) (0)x(s) − s k) ds if γ ∉ N,k!0k=0⎪⎩x (γ) (t) if γ ∈ N,where n = [γ] + 1 and [γ] means <strong>the</strong> integral part <strong>of</strong> γ and where Γ is <strong>the</strong> Euler gamma function.We say that a function u ∈ C 1 [0, 1] is a positive solution <strong>of</strong> problem (1), (2) if u > 0 on [0, 1),c D αn u ∈ C[0, 1], u satisfies <strong>the</strong> boundary conditions (2) and equality (1) holds <strong>for</strong> t ∈ [0, 1].Toge<strong>the</strong>r with equation (1) we investigate <strong>the</strong> differential equationu ′′ (t) + f(t, u(t), u ′ (t), u ′ (t)) = 0. (3)A function u ∈ C 2 [0, 1] is called a positive solution <strong>of</strong> problem (3), (2) if u > 0 on [0, 1), u satisfies(2) and equality (3) is fulfilled <strong>for</strong> t ∈ [0, 1].The following result is proved by <strong>the</strong> Leray–Schauder nonlinear alternative [3].Theorem 1. Let conditions (H 1 ) and (H 2 ) hold. Then <strong>for</strong> each n ∈ N problem (1), (2) has asolution u n and <strong>the</strong>re exists a positive constant S independent <strong>of</strong> n such that <strong>the</strong> estimate(1 − t α∗−1 )Q ≤ u n (t) < (1 + a)S, 0 ≥ u ′ n(t) > −S, 0 ≥ c D µ u n (t) > − S ∆(4)is fulfilled <strong>for</strong> t ∈ [0, 1], whereQ = 1Γ(α)∫ 10(1 − s)φ(s) ds, ∆ = min{Γ(s) : 1 ≤ s ≤ 2}, α ∗ = inf{α n : n ∈ N}.76


Let ∥x∥ = max{|x(t)| : t ∈ [0, 1]} be <strong>the</strong> norm in C[0, 1] and let ∥x∥ C 1 = max{∥x∥, ∥x ′ ∥}. Thefollowing <strong>the</strong>orem states <strong>the</strong> relation between positive solutions <strong>of</strong> problem (1), (2) and positivesolutions <strong>of</strong> problem (3), (2).Theorem 2. Let (H 1 ) and (H 2 ) hold. Let u n be a positive solution <strong>of</strong> problem (1), (2) satisfyinginequality (4). Then <strong>the</strong>re exist a subsequence {u kn } <strong>of</strong> {u n } and a positive solution u <strong>of</strong> problem(3), (2) such thatlim ∥u kn→∞ n− u∥ C 1 = 0,limn→∞ ∥c D µ kn ukn − u ′ ∥ = 0,limn→∞ ∥c D α kn un − u ′′ ∥ = 0.References[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications <strong>of</strong> fractional differentialequations. North-Holland Ma<strong>the</strong>matics Studies, 204. Elsevier Science B.V., Amsterdam,2006.[2] K. Die<strong>the</strong>lm, The analysis <strong>of</strong> fractional differential equations. An application-oriented expositionusing differential operators <strong>of</strong> Caputo type. Lecture Notes in Ma<strong>the</strong>matics, 2004. Springer-Verlag, Berlin, 2010.[3] K. Deimling, Nonlinear functional analysis. Springer-Verlag, Berlin, 1985.77


Optimization <strong>of</strong> Initial Data <strong>for</strong> Nonlinear DelayFunctional-Differential Equations with <strong>the</strong> MixedInitial ConditionTamaz TadumadzeI. Javakhishvili Tbilisi State University, Tbilisi, GeorgiaE-mail: tamaztad@yahoo.comAbdeljalil NachaouiJean Leray Laboratory <strong>of</strong> Ma<strong>the</strong>matics, University <strong>of</strong> Nantes, Nantes, FranceE-mail: Abdeljalil.Nachaoui@univ-nantes.frNika GorgodzeA. Tsereteli State University, Kutaisi, GeorgiaE-mail: nika − gorgodze@yahoo.comIn <strong>the</strong> present paper, <strong>for</strong> initial data, <strong>the</strong> necessary conditions <strong>of</strong> optimality are obtained. Underinitial data we imply <strong>the</strong> collection <strong>of</strong> initial moment and constant delays, initial vector and function.Let Rx n be an n-dimensional vector space <strong>of</strong> points x = (x 1 , . . . , x n ) T , where T means transpose;P ⊂ Rp k and Z ⊂ Rzm be open sets and O = (P, Z) T = {x = (p, z) T ∈ Rx n : p ∈ P, z ∈ Z}, withk + m = n; next t 01 < t 02 < t 1 , 0 < τ 1 < τ 2 , 0 < σ 1 < σ 2 be given numbers, with t 1 − t 02 > τ 2 ; <strong>the</strong>n-dimensional function f(t, x, p, z) be continuous on <strong>the</strong> set [t 01 , t 1 ] × O × P × Z and continuouslydifferentiable with respect to x, p, z; let P 0 ⊂ P be a compact convex set <strong>of</strong> initial vectors p 0 ; Φ andG be sets <strong>of</strong> continuous initial functions φ(t) ∈ P 1 , t ∈ [̂τ, t 02 ] and g(t) ∈ Z 1 , t ∈ [̂τ, t 02 ], respectively,where ̂τ = t 01 −max{τ 2 , σ 2 }, P 1 ⊂ P , Z 1 ⊂ Z are convex and compact sets. Suppose that functionsq i (t 0 , τ, σ, p, z, x), i = 0, l are continuously differentiable with respect to all arguments t 0 ∈ [t 01 , t 02 ],τ ∈ [τ 1 , τ 2 ], σ ∈ [σ 1 , σ 2 ], p ∈ P , z ∈ Z, x ∈ O.To each element w = (t 0 , τ, σ, p 0 , φ, g) ∈ W = (t 01 , t 02 ) × (τ 1 , τ 2 ) × (σ 1 , σ 2 ) × P 0 × Φ × G, weassign <strong>the</strong> delay functional-differential equationwith <strong>the</strong> mixed initial conditionẋ(t) = f ( t, x(t), p(t − τ), z(t − σ) ) (1)x(t) = (φ(t), g(t)) T , t ∈ [̂τ, t 0 ), x(t 0 ) = (p 0 , g(t 0 )) T . (2)Definition 1. Let w = (t 0 , τ, σ, p 0 , φ, g) ∈ W . A function x(t) = x(t; w) = (p(t; w), z(t; w)) T ∈O, t ∈ [̂τ, t 1 ], is called a solution <strong>of</strong> Eq. (1) with <strong>the</strong> initial condition (2) if it satisfies condition(2) and is absolutely continuous on <strong>the</strong> interval [t 0 , t 1 ] and satisfies Eq. (1) almost everywhere on[t 0 , t 1 ].Definition 2. An element w ∈ W is said to be admissible if <strong>the</strong> solution x(t) = x(t; w) isdefined on <strong>the</strong> interval [̂τ, t 1 ] and satisfies <strong>the</strong> conditionsWe denote <strong>the</strong> set <strong>of</strong> admissible elements by W 0 .q i( t 0 , τ, σ, p 0 , g(t 0 ), x(t 1 ) ) = 0, i = 1, l.Definition 3. An element w 0 = (t 00 , τ 0 , σ 0 , p 00 , φ 0 , g 0 ) ∈ W 0 is said to be optimal if <strong>for</strong> anyw = (t 0 , τ, σ, p 0 , φ, g) ∈ W 0 we haveq 0( t 00 , τ 0 , σ 0 , p 00 , g 0 (t 00 ), x 0 (t 1 ) ) ≤ q 0( t 0 , τ, σ, p 0 , g(t 0 ), x(t 1 ) ) , x 0 (t) = x(t; w 0 ).78


Theorem. Let w 0 = (t 00 , τ 0 , σ 0 , p 00 , φ 0 , g 0 ) be an optimal element and <strong>the</strong> following conditionhold: <strong>the</strong> functions φ 0 (t), g 0 (t) are continuously differentiable. Then <strong>the</strong>re exist a non-zero vectorπ = (π 0 , . . . , π l ), where π 0 ≤ 0 and <strong>the</strong> solution Ψ(t) to <strong>the</strong> equation{ ()˙Ψ(t) = −Ψ(t)fx [t] − Ψ(t + τ 0 )f p [t + τ 0 ], Ψ(t + σ 0 )f z [t + σ 0 ] , t ∈ [t 00 , t 1 ],Ψ(t 1 ) = πQ 0x , Ψ(t) = 0, t > t 1such that <strong>the</strong> conditions listed below hold: <strong>the</strong> conditions <strong>for</strong> <strong>the</strong> function Ψ(t) = (ψ(t), χ(t)) =(ψ 1 (t), . . . , ψ k (t), χ 1 (t), . . . , χ m (t)) and vectors p 00 , g 0 (t 00 )(πQ 0p0 + ψ(t 00 ))p 00 = maxp 0 ∈P 1(πQ0p0 + ψ(t 00 ) ) p 0 ,(πQ 0z + χ(t 00 ))g 0 (t 00 ) = maxg∈Z 1(πQ0z + χ(t 00 ) ) g,where Q 0p0 = Q p0(t00 , τ 0 , σ 0 , p 00 , x 0 (t 1 ) ) , Q = (q 0 , . . . , q l ) T ;<strong>the</strong> integral maximum principles <strong>for</strong> <strong>the</strong> optimal initial functions φ 0 (t) and g 0 (t)∫t 00t 00 −τ 0∫t 00t 00 −σ 0Ψ(t + τ 0 )f p [t + τ 0 ]φ 0 (t) dt = maxΨ(t + σ 0 )f z [t + σ 0 ]g 0 (t) dt = max∫t 00φ(·)∈Φt 00 −τ 0∫t 00g(·)∈Gt 00 −σ 0Ψ(t + τ 0 )f p [t + τ 0 ]φ(t) dt,Ψ(t + σ 0 )f z [t + σ 0 ]g(t) dt;<strong>the</strong> condition <strong>for</strong> <strong>the</strong> optimal initial moment t 00πQ 0t0 + ( πQ 0z + χ(t 00 ) ) ġ(t 00 ) ={}= Ψ(t 00 )f[t 00 ] + Ψ(t 00 + τ 0 ) f[t 0 + τ 0 ; p 00 ] − f[t 0 + τ 0 ; φ 0 (t 00 )] ;<strong>the</strong> conditions <strong>for</strong> <strong>the</strong> optimal delays τ 0 , σ 0Here{}πQ 0τ = Ψ(t 00 + τ 0 ) f[t 0 + τ 0 ; p 00 ] − f[t 0 + τ 0 ; φ 0 (t 00 )] +πQ 0σ =∫ t 1t 00Ψ(t)f z [t]ż 0 (t − σ 0 ) dt.∫ t 1t 00Ψ(t)f 0p [t]ṗ 0 (t − τ 0 ) dt,f x [t] = f x (t, x 0 (t), p 0 (t − τ 0 ), z 0 (t − σ 0 )), f[t] = f(t, x 0 (t), p 0 (t − τ 0 ), z 0 (t − σ 0 )),f[t; p 0 ] = f(t, x 0 (t), p 0 , z 0 (t − σ 0 )).AcknowledgementsThe work was supported by <strong>the</strong> Shota Rustaveli National Science Foundation (Georgia), GrantNo. GNSF/STO8/3-399 and Centre National de la Recherche Scientifique CNRS (France), PICS-4962.79


<strong>On</strong> Asymptotics <strong>of</strong> Solutions <strong>of</strong> Cyclic <strong>Systems</strong> <strong>of</strong>Differential EquationsO. S. VladovaI. I. Mechnikov Odessa National University, Odessa, UkraineE-mail: lena@gavrilovka.com.uaWe consider <strong>the</strong> system <strong>of</strong> differential equations{y ′ i = α ip i (t)φ i+1 (y i+1 ) (i = 1, n − 1),y ′ n = α n p n (t)φ 1 (y 1 ),(1)where α i ∈ {−1, 1} (i = 1, n), p i : [a, ω[ → ]0, +∞[ (i = 1, n) are continuous functions, −∞ < a


where limits <strong>of</strong> integration A i ∈ {ω, a} are chosen in such a way that corresponding integral I i aimsei<strong>the</strong>r to zero, or to ∞ as t ↑ ω.{A ∗ 1, if A i = a,i =(i = 1, . . . , n).−1, if A i = ωTheorem. Let Λ i ∈ R\{0} (i = 1, n) and l = min I. Then <strong>for</strong> <strong>the</strong> existence <strong>of</strong> P ω (Λ 1 , . . . , Λ n )-solutions <strong>of</strong> (1) it is necessary and, if algebraic equationn∏i=1( i−1∏j=1)Λ j + ν −n∏i=1(σ ii−1∏ )Λ j = 0 (3)does not have roots with zero real part, it is also sufficient that <strong>for</strong> each i ∈ {1, . . . , n}j=1I i (t)I i+1 ′ lim(t)t↑ω Ii ′(t)I i+1(t) = Λ β i+1iβ iand following conditions are satisfied A ∗ i β i > 0 if Yi 0 = ±∞, A ∗ i β i < 0 if Yi 0 = 0, sign [ α i A ∗ i β i]=µ i . Moreover, components <strong>of</strong> each solution <strong>of</strong> that type admit following asymptotic representationwhen t ↑ ω:y i (t)φ i+1 (y i+1 (t)) = α iβ i I i (t)[1 + o(1)], when i ∈ I,y i (t)φ i+1 (y i+1 (t)) = α I i (t)iβ i [1 + o(1)], when i ∈ I,I l (t)and <strong>the</strong>re exists <strong>the</strong> whole k- parametric family <strong>of</strong> <strong>the</strong>se solutions if <strong>the</strong>re are k positive roots(including multiple roots) among <strong>the</strong> solutions <strong>of</strong> (3) with signs <strong>of</strong> real parts different from those<strong>of</strong> <strong>the</strong> number A ∗ l β l.References[1] E. Seneta, Regularly varying functions. (Russian) Nauka, Moscow, 1985.[2] T. A. Chanturia, Oscillatory properties <strong>of</strong> systems <strong>of</strong> nonlinear ordinary differential equations.(Russian) Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 14 (1983), 163–206.[3] D. D. Mirzov, Asymptotic properties <strong>of</strong> solutions <strong>of</strong> a system <strong>of</strong> Emden-Fowler type. (Russian)Differentsial’nye Uravneniya 21 (1985), No. 9, 1498–1504, 1649.[4] D. D. Mirzov, Some asymptotic properties <strong>of</strong> <strong>the</strong> solutions <strong>of</strong> a system <strong>of</strong> Emden-Fowler type.(Russian) Differentsial’nye Uravneniya 23 (1987), No. 9, 1519–1532, 1651.[5] D. D. Mirzov, Asymptotic properties <strong>of</strong> solutions <strong>for</strong> systems <strong>of</strong> nonlinear non-autonomousordinary differential equations. Adygeen Book Publ. Maikop, 1993.[6] V. M. Evtukhov, Asymptotic representations <strong>of</strong> regular solutions <strong>of</strong> a two-dimensional system<strong>of</strong> differential equations. (Russian) Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki2002, No. 4, 11–17.[7] V. M. Evtukhov, Asymptotic representations <strong>of</strong> regular solutions <strong>of</strong> a semilinear twodimensionalsystem <strong>of</strong> differential equations. (Russian) Dopov. Nats. Akad. Nauk Ukr. Mat.Prirodozn. Tekh. Nauki 2002, no. 5, 11–17.[8] V. M. Evtukhov, <strong>On</strong> solutions vanishing at infinity <strong>of</strong> real nonautonomous systems <strong>of</strong> quasilineardifferential equations. (Russian) Differ. Uravn. 39 (2003), No. 4, 441–452, 573; translationin Differ. Equ. 39 (2003), No. 4, 473–484.81


C o n t e n t sM. Ashordia<strong>On</strong> <strong>the</strong> <strong>Two</strong> <strong>Point</strong> <strong>Boundary</strong> <strong>Value</strong> <strong>Problem</strong> <strong>for</strong> <strong>Systems</strong> <strong>of</strong> <strong>Linear</strong> GeneralizedDifferential Equations with Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3I. AstashovaUni<strong>for</strong>m Estimates and Existence <strong>of</strong> Solution with Prescribed Domain to aNonlinear Third-Order Differential Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5G. Berikelashvili<strong>On</strong> <strong>the</strong> Convergence <strong>of</strong> Difference Schemes <strong>for</strong> Generalized BBM Equation . . . . . . . . . . . . . . 8M. O. BilozerovaAsymptotic Behavior <strong>of</strong> Solutions <strong>of</strong> Differential Equations<strong>of</strong> <strong>the</strong> Type y (n) = α 0 p(t) n−1 ∏φ i (y (i) ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10A. Domoshnitskyi=0<strong>On</strong> Stability <strong>of</strong> Delay <strong>Systems</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Ph. Dvalishvili<strong>On</strong> Well-Posedness with Respect to Functional <strong>for</strong> an Optimal Control <strong>Problem</strong>with Distributed Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15V. M. Evtukhov and A. M. KlopotAsymptotic Representations <strong>of</strong> Solutions <strong>of</strong> Ordinary Differential Equations<strong>of</strong> N-th Order with Regularly Varying Nonlinears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17J. Gvazava<strong>On</strong> Mixed Type Quasi-<strong>Linear</strong> Equations with General Integrals,Represented by Superposition <strong>of</strong> Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19R. HaklFredholm Type Theorem <strong>for</strong> <strong>Systems</strong> <strong>of</strong> Functional-Differential Equationswith Positively Homogeneous Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21R. Hakl and M. ZamoraPeriodic Solution to <strong>Two</strong>-Dimensional Half-<strong>Linear</strong> System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2482


M. IordanishviliNecessary Conditions <strong>of</strong> Optimality <strong>for</strong> Optimal <strong>Problem</strong>s with General VariableDelays and <strong>the</strong> Mixed Initial Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26N. A. Izobov and S. A. MazanikAsymptotic Equivalence <strong>of</strong> <strong>Linear</strong> <strong>Systems</strong> <strong>for</strong> Small <strong>Linear</strong> Perturbations . . . . . . . . . . . . . . 27O. JokhadzeThe Initial-Characteristic <strong>Problem</strong>s <strong>for</strong> Wave Equationswith Nonlinear Damping Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30S. KharibegashviliThe Multidimensional Darboux <strong>Problem</strong> <strong>for</strong> a Class <strong>of</strong> Nonlinear Wave Equations . . . . . . 32I. Kiguradze<strong>On</strong> <strong>Two</strong>-<strong>Point</strong> <strong>Boundary</strong> <strong>Value</strong> <strong>Problem</strong>s <strong>for</strong> Higher Order Quasi-HalflinearDifferential Equations with Strong Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34T. Kiguradze<strong>On</strong> Conditional Well-Posedness <strong>of</strong> Nonlocal <strong>Problem</strong>s <strong>for</strong> Fourth OrderSingular <strong>Linear</strong> Hyperbolic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36A. Yu. Kolesov and N. Kh. RozovRelaxational Oscillations and Diffusive Chaos in Belousov’s Reaction . . . . . . . . . . . . . . . . . . . 38A. V. Kostin, L. L. Kol’tsova, T. Yu. Kosetskaya, and T. V. Kondratenko<strong>On</strong> Three <strong>Problem</strong>s <strong>of</strong> <strong>the</strong> Qualitative Theory <strong>of</strong> Differential Equations . . . . . . . . . . . . . . . . 40A. A. LevakovInvestigation <strong>of</strong> Stability <strong>of</strong> Stochastic Differential Equationsby Using Lyapunov Functions <strong>of</strong> Constant Signs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42E. Litsyn, Yu. V. Nepomnyashchikh, and A. Ponosov<strong>On</strong> Hybrid Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45A. Lomtatidze and J. Šremr<strong>On</strong> Oscillation and Nonoscillation <strong>of</strong> <strong>Two</strong>-Dimensional <strong>Linear</strong> Differential <strong>Systems</strong> . . . . . 4783


E. K. Makarov and E. A. ShakhAn Infinite Dimensional Generalization <strong>of</strong> Weak Exponents <strong>for</strong> Solutions<strong>of</strong> Equations in Total Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50K. Mamsa and Yu. PerestyukA Certain Class <strong>of</strong> Discontinuous Dynamical <strong>Systems</strong> in <strong>the</strong> Plane . . . . . . . . . . . . . . . . . . . . . 51G. A. Monteiro and M. TvrdýGeneralized <strong>Linear</strong> Differential Equations in a Banach Space:Continuous Dependence on a Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52S. Mukhigulashvili<strong>Two</strong>-<strong>Point</strong> <strong>Boundary</strong> <strong>Value</strong> <strong>Problem</strong>s <strong>for</strong> Strongly Singular Higher-Order<strong>Linear</strong> Differential Equations with Deviating Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55V. V. NikonenkoAsymptotics <strong>of</strong> Solutions <strong>of</strong> a <strong>Linear</strong> Homogeneous System <strong>of</strong> Differential Equationsin <strong>the</strong> Case <strong>of</strong> Asymptotically Equivalent, as t → +∞,Roots <strong>of</strong> a Characteristic Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Z. Opluštil and J. Šremr<strong>On</strong> Oscillations <strong>of</strong> Solutions to Second-Order <strong>Linear</strong> Delay Differential Equations . . . . . . . 59N. PartsvaniaSolvability and Well-Posedness <strong>of</strong> <strong>Two</strong>-<strong>Point</strong> Weighted Singular<strong>Boundary</strong> <strong>Value</strong> <strong>Problem</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62M. Perestyuk and P. Feketa<strong>On</strong> Invariant Sets <strong>of</strong> Impulsive Multi-Frequency <strong>Systems</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64B. Půža and Z. Sokhadze<strong>On</strong> <strong>the</strong> Well-Possedness <strong>of</strong> <strong>the</strong> Weighted Cauchy <strong>Problem</strong> <strong>for</strong> Nonlinear SingularDifferential Equations <strong>of</strong> Higher Orders with Deviating Arguments . . . . . . . . . . . . . . . . . . . . . 66I. RachůnkováThree Types <strong>of</strong> Solutions <strong>of</strong> Some Singular Nonlinear Differential Equation . . . . . . . . . . . . . 68A. Rontó and V. PylypenkoSlowly Growing Solutions <strong>of</strong> Singular <strong>Linear</strong> Functional Differential <strong>Systems</strong> . . . . . . . . . . . 7084


S. A. Shchogolev<strong>On</strong> <strong>the</strong> Existence <strong>of</strong> Special Class Solutions <strong>of</strong> a Quasi-<strong>Linear</strong> Differential Systemin <strong>On</strong>e Particular Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72O. R. ShlyepakovAsymptotic Representation <strong>for</strong> Solutions <strong>of</strong> <strong>Systems</strong> <strong>of</strong> Differential Equationswith Regularly and Fast Varying Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74S. StaněkLimit Properties <strong>of</strong> Positive Solutions <strong>of</strong> Fractional <strong>Boundary</strong> <strong>Value</strong> <strong>Problem</strong>s . . . . . . . . . . 76T. Tadumadze, A. Nachaoui, and N. GorgodzeOptimization <strong>of</strong> Initial Data <strong>for</strong> Nonlinear Delay Functional-Differential Equationswith <strong>the</strong> Mixed Initial Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78O. S. Vladova<strong>On</strong> Asymptotis <strong>of</strong> Solutions <strong>of</strong> Cyclic <strong>Systems</strong> <strong>of</strong> Differential Equations . . . . . . . . . . . . . . . . 8085

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!