24.11.2012 Views

application of chitosan in medical devices design - Step itn

application of chitosan in medical devices design - Step itn

application of chitosan in medical devices design - Step itn

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Institute <strong>of</strong> Security<br />

Technologies<br />

“MORATEX”<br />

M. Skłodowskiej-Curie 3<br />

90-965 Łódź/Poland<br />

FP7 Marie Curie Initial Tra<strong>in</strong><strong>in</strong>g Network<br />

Shap<strong>in</strong>g and Transformation <strong>in</strong> the Eng<strong>in</strong>eer<strong>in</strong>g <strong>of</strong> Polysaccharides (STEP)<br />

APPLICATION OF CHITOSAN<br />

IN MEDICAL DEVICES DESIGN<br />

Marc<strong>in</strong> H. Struszczyk


1. Chit<strong>in</strong> and <strong>chitosan</strong> – ma<strong>in</strong> def<strong>in</strong>itions;<br />

2. EU general requirements for <strong>medical</strong> <strong>devices</strong>;<br />

3. EU requirements for <strong>medical</strong> <strong>devices</strong> utiliz<strong>in</strong>g animal<br />

tissue derived substances;<br />

4. Sterilization aspects;<br />

5. Quality aspect;<br />

6. Biocompatibility aspects;<br />

7. Examples <strong>of</strong> commercial <strong>medical</strong> <strong>devices</strong> utiliz<strong>in</strong>g<br />

chit<strong>in</strong> or <strong>chitosan</strong>;<br />

8. Conclusions.


CHITIN<br />

Chit<strong>in</strong> is a copolymer:<br />

poly[b-(1-4)-2-acetamido-2-deoxy-<br />

D-glucopyranose] conta<strong>in</strong><strong>in</strong>g a<br />

low percentage <strong>of</strong><br />

2-am<strong>in</strong>o-2-deoxy-b-glucopyranose<br />

residual units.<br />

Chit<strong>in</strong> possesses a highly ordered<br />

structure with an excess <strong>of</strong><br />

crystall<strong>in</strong>e regions and appears <strong>in</strong><br />

three polymorphic forms.


CHITOSAN<br />

Chitosan is chemically def<strong>in</strong>ed as a<br />

copolymer <strong>of</strong> two residues:<br />

• 2-acetamido-2-deoxy-b-Dglucopyranose<br />

and<br />

• 2-am<strong>in</strong>o-2-deoxy-b-glucopyranose.<br />

The proportion <strong>of</strong> glucosam<strong>in</strong>e is<br />

higher than N-acetylglucosam<strong>in</strong>e,<br />

produc<strong>in</strong>g much better solubility <strong>in</strong> an<br />

aqueous solution <strong>of</strong> organic and<br />

numerous <strong>in</strong>organic acids.<br />

The difference between chit<strong>in</strong> and<br />

<strong>chitosan</strong> lies <strong>in</strong> the degree <strong>of</strong><br />

deacetylation (DD), usually def<strong>in</strong>ed as<br />

the ratio <strong>of</strong> the number <strong>of</strong><br />

glucosam<strong>in</strong>e to the total amount<br />

<strong>of</strong> N-acetylglucosam<strong>in</strong>e and<br />

glucosam<strong>in</strong>e, be<strong>in</strong>g the most<br />

important parameter determ<strong>in</strong>ed for<br />

<strong>chitosan</strong> and chit<strong>in</strong>.


OCCURRENCE OF CHITIN IN NATURE<br />

ARTHOPODA<br />

Crustacea, Insecta<br />

POGONOPHORA<br />

MOLLUSCA<br />

Polyplacophora, Gastropoda, Cephlopoda,<br />

Lamellibranchia<br />

ANNELIDA<br />

Polychaeta<br />

FUNGI<br />

Ascomyceta, Basidiomyceta, Phycomyceta,<br />

Imperfectii<br />

ALGAE<br />

Chlorophyceae<br />

PROTOZOA<br />

Rhizopoda, Ciliata, C<strong>in</strong>daria, Hydrozoa,<br />

Anthozoa, Scyphozoa<br />

BRACHIPODA<br />

Articulata, Inarticulata<br />

• Occurence: calcified cuticles, <strong>in</strong>tersegments membranes, hardened cuticle;<br />

• Chit<strong>in</strong> fractions [%]: 20.0 - 85.0;<br />

• Crystal polymorphic form: a.<br />

• Occurence: tubes;<br />

• Chit<strong>in</strong> fractions [%]: 33.0;<br />

• Crystal polymorphic form: b.<br />

• Occurence: shell plates, mantle bristles redula, shell, redula, jaws, stomacal<br />

plates, calcified shell, pen, jaws, redula, shells;<br />

• Chit<strong>in</strong> fractions [%]: 0.1 - 36.8;<br />

• Crystal polymorphic form: a, b, g.<br />

• Occurence: chaetae, jaws;<br />

• Chit<strong>in</strong> fractions [%]: 0.28 - 38.0;<br />

• Crystal polymorphic form: b.<br />

• Occurence: cell walls and structural membranes <strong>of</strong> mycelia stalks and spores;<br />

• Chit<strong>in</strong> fractions [%]: traces - 45.0;<br />

• Crystal polymorphic form: a.<br />

• Occurence: cell wall components;<br />

• Chit<strong>in</strong> fractions [%]: traces;<br />

• Crystal polymorphic form: a.<br />

• Occurence: cyst wall, shell, perisarc, coenosteum, skeleton, podocyst;<br />

• Chit<strong>in</strong> fractions [%]: 3.2 - 30.3;<br />

• Crystal polymorphic form: a.<br />

• Occurence: stalk cuticle, stalk cuticle, shell;<br />

• Chit<strong>in</strong> fractions [%]: 3.8 - 29.0;<br />

• Crystal polymorphic form: b, g.<br />

Roberts G. A. F., Chit<strong>in</strong> Chemistry, Houndmills. MacMillan Press Ltd., 1992, 1-5


EU REQUIREMENTS<br />

Four European Directives regulate the<br />

requirements for market<strong>in</strong>g and putt<strong>in</strong>g <strong>in</strong>to<br />

service <strong>medical</strong> <strong>devices</strong>:<br />

• Active Implantable Medical Devices (AIMDD)<br />

Directive 90/385/EEC - OJ L189/ 20.7.90<br />

• Medical Devices Directive (MDD) Directive<br />

93/42/EEC - OJ 169/ 12.7.93<br />

• In Vitro Diagnostic Directive (IVDD) Directive<br />

98/79/EC - OJ331/ 7.12.98<br />

• Directive 2007/47/EC amend<strong>in</strong>g Council Directive<br />

90/385/EEC on the approximation <strong>of</strong> the laws <strong>of</strong> the Member States<br />

relat<strong>in</strong>g to active implantable <strong>medical</strong> <strong>devices</strong>, Council Directive<br />

93/42/EEC concern<strong>in</strong>g <strong>medical</strong> <strong>devices</strong> and Directive 98/8/EC<br />

concern<strong>in</strong>g the plac<strong>in</strong>g <strong>of</strong> biocidal products on the market<br />


GENERAL REQUIRMENTS<br />

Materials used for <strong>design</strong> <strong>of</strong> <strong>medical</strong> device and coat<strong>in</strong>gs,<br />

<strong>in</strong>clud<strong>in</strong>g biological materials, shall be acceptably<br />

compatible <strong>in</strong> their useable state.<br />

The compatibility <strong>of</strong> possible wear and degradation products<br />

shall also be acceptable. The acceptability <strong>in</strong> the particular<br />

<strong>application</strong> shall be demonstrated either:<br />

• by documented assessment <strong>in</strong> accordance with the<br />

pr<strong>in</strong>ciples <strong>of</strong> EN ISO 10993-1:2009 Standard, or<br />

• by selection from the materials found suitable by<br />

proven cl<strong>in</strong>ical use <strong>in</strong> similar <strong>application</strong>s.


CRITICAL ASPECTS OF CHITINOUS DERIVATIVES USE<br />

FOR DESIGN OF MEDICAL DEVICES<br />

The most crucial aspects affect<strong>in</strong>g the safety and performance <strong>of</strong><br />

<strong>medical</strong> device made <strong>of</strong> chit<strong>in</strong> and its derivatives its:<br />

• purity (<strong>medical</strong> grade <strong>chitosan</strong> processes the chit<strong>in</strong> under<br />

clean-room conditions <strong>in</strong> a series <strong>of</strong> verifiable purification<br />

steps);<br />

• re-productivity <strong>of</strong> chit<strong>in</strong> sources;<br />

• absence <strong>of</strong> European Standards regulat<strong>in</strong>g directly requirements<br />

for chit<strong>in</strong> and its derivatives <strong>in</strong> <strong>design</strong> <strong>of</strong> <strong>medical</strong> <strong>devices</strong>;<br />

• compliance with the European Standards, e.g. EN ISO 22442-1/2/3<br />

Standards;<br />

• sterilization <strong>of</strong> <strong>medical</strong> <strong>devices</strong> conta<strong>in</strong><strong>in</strong>g chit<strong>in</strong> or its<br />

derivatives – critical process may affected their biocompatibility.


CRITICAL ASPECTS OF CHITINOUS DERIVATIVES USE<br />

FOR DESIGN OF MEDICAL DEVICES<br />

Chit<strong>in</strong> and its derivatives are derived from the animals.<br />

Accord<strong>in</strong>g <strong>of</strong> the 17 th rule <strong>of</strong> MDD all <strong>medical</strong> <strong>devices</strong><br />

conta<strong>in</strong><strong>in</strong>g chit<strong>in</strong> or its derivatives are <strong>in</strong>corporated <strong>in</strong><br />

the III class.


MEDICAL DEVICES UTILIZING ANIMAL TISSUES<br />

OR DERIVATIVES OF ANIMAL TISSUES<br />

For <strong>medical</strong> <strong>devices</strong> that utilize animal tissues or<br />

derivatives <strong>of</strong> animal tissues, controls shall be<br />

applied <strong>in</strong> accordance with the requirements <strong>of</strong>:<br />

• EN ISO 12442-1:2008 Standard (analysis and<br />

management <strong>of</strong> risk),<br />

• EN ISO 22442-2:2008 Standard (controls on<br />

sourc<strong>in</strong>g, collection and handl<strong>in</strong>g) and<br />

• EN ISO 22442-3:2008 Standard (validation <strong>of</strong> the<br />

elim<strong>in</strong>ation and/or <strong>in</strong>activation <strong>of</strong> viruses and<br />

transmissible agents).


STERILIZATION ASPECTS<br />

EU standardized methods <strong>of</strong> sterilization<br />

<strong>in</strong>clude:<br />

• exposition to dry heat or saturated steam at<br />

various temperature (126 o C or 131 o C);<br />

• ethylene oxide (EO) or<br />

• irradiation (g – irradiation or accelerated<br />

electrons).


ETHYLENE OXIDE STERILIZATION<br />

EO sterilization generates cross-l<strong>in</strong>k<strong>in</strong>g, by-products<br />

and residues, such as:<br />

• Ethylene oxide residue;<br />

• Ethylene chlorhydr<strong>in</strong> residue;<br />

• Ethylene glycol residue.<br />

Above-mentioned residues are able to be absorbed<br />

<strong>in</strong>to sterilized <strong>medical</strong> <strong>devices</strong>.


ETHYLENE OXIDE STERILIZATION<br />

Ethylene oxide (EO):<br />

• is irritat<strong>in</strong>g to body surfaces and highly reactive;<br />

• is mutagenic under many conditions;<br />

• has fetotoxic and teratogenic properties;<br />

• can adversely affect testicular function and<br />

• can produce <strong>in</strong>jury to many organ systems <strong>in</strong> the<br />

body.


ETHYLENE OXIDE STERILIZATION<br />

Porous <strong>medical</strong> <strong>devices</strong> could conta<strong>in</strong> ethylene<br />

oxide residue affect<strong>in</strong>g:<br />

• cytotoxicity;<br />

• irritation;<br />

• mutagenicty and<br />

• genotoxicity.


ETHYLENE OXIDE STERILIZATION<br />

Ethylene chlorhydr<strong>in</strong>:<br />

• is irritat<strong>in</strong>g to body surfaces;<br />

• is acutely toxic;<br />

• is readily absorbed through the sk<strong>in</strong> <strong>in</strong> toxic<br />

amounts;<br />

• has weak mutagenic potential;<br />

• has some potential to produce fetotoxic and<br />

teratogenic changes;<br />

• can produce <strong>in</strong>jury to several organ systems <strong>in</strong> the<br />

body <strong>in</strong>clud<strong>in</strong>g lungs, kidneys, central nervous<br />

system and cardiovascular system.


STEAM STERILIZATION<br />

Exposure to dry heat <strong>of</strong> <strong>chitosan</strong> (<strong>in</strong> solid state)<br />

resulted <strong>in</strong>:<br />

• lower aqueous solubility,<br />

• <strong>in</strong>solubility <strong>in</strong> acidic aqueous media<br />

Saturated steam was also found to:<br />

• <strong>in</strong>crease <strong>in</strong> <strong>in</strong>solubity <strong>of</strong> <strong>chitosan</strong>,<br />

• reduction <strong>in</strong> the tensile strength


IRRADIATION STERILIZATION<br />

A g - irradiation caused <strong>in</strong> <strong>chitosan</strong>:<br />

• ma<strong>in</strong> cha<strong>in</strong> scission events;<br />

• <strong>in</strong>crease <strong>in</strong> tensile strength;<br />

• cross-l<strong>in</strong>k<strong>in</strong>g;<br />

• decrease <strong>in</strong> the swell<strong>in</strong>g <strong>in</strong>dex.<br />

Apply<strong>in</strong>g anoxic conditions dur<strong>in</strong>g irradiation<br />

significantly reduced the changes <strong>in</strong> <strong>chitosan</strong><br />

properties.<br />

On the basis <strong>of</strong> these f<strong>in</strong>d<strong>in</strong>gs, it may be concluded<br />

that g -irradiation under anoxic conditions provides<br />

the best means <strong>of</strong> sterilization for <strong>medical</strong> <strong>devices</strong><br />

conta<strong>in</strong><strong>in</strong>g <strong>chitosan</strong>.


STERILIZATION – QUESTION


QUALITY CHARACTERIZATION AND IDENTIFICATION OF CHITOSAN PURITY<br />

FOR APPLICATION IN THE MEDICAL DEVICES<br />

- He<strong>in</strong> S., Ng C.H., Chandrkrachang S., Stevens W.F., A Systematic Approach to<br />

Quality Assessment System <strong>of</strong> Chitosan. Chit<strong>in</strong> and Chitosan: Chit<strong>in</strong> and<br />

Chitosan <strong>in</strong> Life Science, Yamaguchi, 2001, 327-335<br />

- Struszczyk M.H., Struszczyk K.J., Medical Applications <strong>of</strong> Chit<strong>in</strong> and Its<br />

Derivatives, Progress on Chemistry and Application <strong>of</strong> Chit<strong>in</strong> and Its<br />

Derivatives, Vol. XII, ed. M. Jaworska, 2007, ISSN 1896-5644, 139-148<br />

- Struszczyk M.H., Global requirements for <strong>medical</strong> <strong>application</strong>s <strong>of</strong> chit<strong>in</strong> and its<br />

derivatives, Polish Chit<strong>in</strong> Society, Monograph XI, 2006, 95-102


BIOCOMPATIBILITY ASPECTS<br />

There are relatively low numbers <strong>of</strong> validated studies<br />

published <strong>in</strong> peer review journals describ<strong>in</strong>g<br />

biocompatibility <strong>of</strong> chit<strong>in</strong> or its derivatives.<br />

The absence <strong>of</strong> above-mentioned studies yielded <strong>in</strong> the<br />

absence <strong>of</strong> manufacturers' <strong>in</strong>terest for <strong>application</strong>s <strong>of</strong><br />

chit<strong>in</strong> or its derivatives <strong>in</strong> the <strong>design</strong> <strong>of</strong> <strong>medical</strong> <strong>devices</strong>.<br />

Several publications and research works us<strong>in</strong>g chit<strong>in</strong> or<br />

<strong>chitosan</strong> for <strong>design</strong> <strong>of</strong> <strong>medical</strong> <strong>devices</strong> are not validated<br />

and present some <strong>in</strong>dividual aspects <strong>of</strong> biocompatibility,<br />

usually some implantation or cytotoxicity without<br />

acceptable control group or statistical sampl<strong>in</strong>g.


MEDICAL APPLICATION OF CHITIN AND ITS DERIVATIVES<br />

MEDICAL DEVICES<br />

UTILIZING CHITIN<br />

OR ITS DERIVATIVES<br />

WOUND<br />

DRESSINGS<br />

IMPLANTS<br />

PRIMARY WOUND DRESSINGS<br />

SECONDARY WOUND DRESSINGS<br />

HAEMOSTATIC TOPICAL AGENTS<br />

HERNIA TERATEMENTS<br />

VASCULAR AND CARDIOVASCULAR<br />

PROSTHESIS<br />

REGENERATION OF NERVE<br />

ORTHOPEDIC APPLICATIONS


WOUND DRESSINGS<br />

WOUND DRESSING<br />

UTILIZING CHITIN<br />

OR ITS DERIVATIVES<br />

PRIMERY WOUND DRESSING<br />

SECONDARY WOUND DRESSING<br />

HAEMOSTATIC TOPICAL AGENTS<br />

NON-WOVENS<br />

HYDROGELS<br />

SEMIPERMEABLE FILMS<br />

TOPICAL GELS<br />

SPONGES<br />

DRESSING CONTAINING<br />

BIOACTIVE AGENTS<br />

NON-WOVENS<br />

GAUZE<br />

SEMIPERMEABLE FILMS<br />

SPONGES<br />

POWDERS<br />

BANDAGES<br />

MULITLAYERED STRUCTURES<br />

GAUZE


COMMERCIAL WOUND DRESSING FOR DERMIS REGENERATION UTILIZING<br />

CHITIN OR ITS DERIVATIVES<br />

Choriochit®<br />

Beschit<strong>in</strong>®<br />

Unitika<br />

ChitiPack® S<br />

Eisai Co.<br />

ChitiPack® P<br />

Eisai Co.<br />

Chitopack®C<br />

Eisai Co.<br />

Chitod<strong>in</strong>e®<br />

IMS<br />

Vulnsorb®<br />

Tesla<br />

Trade name Description<br />

Biological dress<strong>in</strong>g manufactured by the lyophilization <strong>of</strong> human placenta blended with<br />

microcrystall<strong>in</strong>e <strong>chitosan</strong>. ChorioChit® was characterized by good handl<strong>in</strong>g, good wound isolation<br />

and the ability to the reduction <strong>of</strong> the pathogens growth. The wound dress<strong>in</strong>g was not CE-certificated<br />

and did not agree by FDA. Available <strong>in</strong> Poland till 2004.<br />

The wound dress<strong>in</strong>g <strong>in</strong> form <strong>of</strong> non-woven manufactured us<strong>in</strong>g chit<strong>in</strong>. It accelerates granulation<br />

phase and affects no scar formation. The wound dress<strong>in</strong>g was not CE-certificated and did not agree<br />

by FDA. Available only <strong>in</strong> Japan.<br />

The wound dress<strong>in</strong>g made by the freeze-dry<strong>in</strong>g <strong>of</strong> squid pen chit<strong>in</strong> dispersion. The usable form <strong>of</strong><br />

wound dress<strong>in</strong>g is sponge-like product. The wound dress<strong>in</strong>g favors the acceleration <strong>of</strong> wound<br />

heal<strong>in</strong>g and no scar formation. The wound dress<strong>in</strong>g was not CE-certificated and did not agree by<br />

FDA. Available only <strong>in</strong> Japan.<br />

The wound dress<strong>in</strong>g is <strong>design</strong>ed by the drift<strong>in</strong>g the chit<strong>in</strong> suspension onto poly-[ethylene<br />

terephthalate] non-woven fabric. The recommended range <strong>of</strong> <strong>application</strong> is: the large sk<strong>in</strong> defects,<br />

especially with difficulty to suture. The wound dress<strong>in</strong>g was not CE-certificated and did not agree by<br />

FDA. Available only <strong>in</strong> Japan.<br />

The fibrous wound dress<strong>in</strong>g made by sp<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>chitosan</strong> acetate solution coagulated <strong>in</strong> bath<br />

conta<strong>in</strong><strong>in</strong>g mixture <strong>of</strong> ethylene glycol (humectant), cold water and sodium or potassium hydroxide.<br />

The <strong>application</strong> range considers the regeneration and reconstruction <strong>of</strong> body tissue, subcutaneous<br />

tissue as well as sk<strong>in</strong>. The wound dress<strong>in</strong>g was not CE-certificated and did not agree by FDA.<br />

Available only <strong>in</strong> Japan.<br />

Powdered <strong>chitosan</strong> conta<strong>in</strong><strong>in</strong>g elementary iod<strong>in</strong>e. Applicable for dis<strong>in</strong>fection and clean<strong>in</strong>g <strong>of</strong><br />

wounded sk<strong>in</strong> and as a primary wound dress<strong>in</strong>g. Wound dress<strong>in</strong>g has got CE-mark.<br />

The composition <strong>of</strong> collagen and <strong>chitosan</strong> <strong>in</strong> form <strong>of</strong> freeze-dried sponges. Wound dress<strong>in</strong>g has got<br />

CE-mark s<strong>in</strong>ce 1996.


COMMERCIAL HAEMOSTATIC TOPICAL AGENTS UTILIZING<br />

CHITIN OR ITS DERIVATIVES<br />

Trade name/Company Description<br />

HemCon® Bandage<br />

ChitoFleX® Hemostatic<br />

Dress<strong>in</strong>g<br />

HemCon Medical<br />

Technologies<br />

Syvek® Patch<br />

Mar<strong>in</strong>e Polymer<br />

Technologies<br />

Clo-Sur® PAD<br />

Scion Cardio-Vascular<br />

ChitoSeal®<br />

Abbott Vascular Devices<br />

Traumastat®<br />

Ore-Medix<br />

ExcelArrest®<br />

Hemostasis LLC Co.<br />

Tromboguard®<br />

TRICOMED SA<br />

Hemcon products are made <strong>of</strong> positively charged <strong>chitosan</strong> (<strong>chitosan</strong> acetate) by lyophilization<br />

process. Positively charged <strong>chitosan</strong> salt has strong aff<strong>in</strong>ity to bond with red blood cells, activates the<br />

platelets and forms a clot that stops massive blood bleed<strong>in</strong>g. HemCon® Bandage was approved by<br />

FDA <strong>in</strong> 2002, whereas ChitoFleX® Hemostatic Dress<strong>in</strong>g <strong>in</strong> 2007.<br />

Syvatek® Patch has been implemented for the control <strong>of</strong> bleed<strong>in</strong>g at vascular access sites <strong>in</strong><br />

<strong>in</strong>terventional cardiology and radiology procedures. It consists <strong>of</strong> poly-N-acetylglucosam<strong>in</strong>e<br />

(pGlcNAc) isolated <strong>in</strong> a unique fiber crystall<strong>in</strong>e structural form. It is able to significantly reduce the<br />

fibr<strong>in</strong> clot formation time and has the ability to cause aggregation <strong>of</strong> red blood cells form. Approved<br />

by FDA and CE-certificated.<br />

Clo-Sur® Pad is made as a non-woven sealed by soluble form <strong>of</strong> <strong>chitosan</strong>. Approved by FDA and<br />

CE-certificated.<br />

ChitoSeal® is made on soluble <strong>chitosan</strong> salt. It is <strong>in</strong>tended for external temporary use to control<br />

moderate to severe bleed<strong>in</strong>g. Approved by FDA and CE-certificated.<br />

Traumastat® is made on the non-woven substrate comprised <strong>of</strong> porous polyethylene fibers highly<br />

filled with precipitated silica. This substrate is coated with <strong>chitosan</strong> (ChitoClearTM ). It is <strong>in</strong>tended for<br />

external temporary use to control moderate to severe bleed<strong>in</strong>g. Approved by FDA and CEcertificated.<br />

ExcelArrest® is comprised <strong>of</strong> modified chit<strong>in</strong> particles and polysaccharide b<strong>in</strong>ders. Hemostat is<br />

manufactured <strong>in</strong> form <strong>of</strong> foam by lypholization process from the chit<strong>in</strong> and polysaccharides<br />

suspension. Approved by FDA <strong>in</strong> 2007.<br />

Multifunctional Tromboguard® shows multifunctional behavior: local hemostasis, antibacterial and<br />

acceleration <strong>of</strong> wound heal<strong>in</strong>g. Dur<strong>in</strong>g CE-certification.


CHARACTERIZATION OF MULTIFUNCTIONAL TROMBOGUARD®<br />

WOUND DRESSINGS – ASSUMPTION DATE


PRECLINICAL STUDIES – ACCELERATED AGEING<br />

acc. ASTM 1998F:2002 STANDARD<br />

CHANGES IN MECHANICAL AS WELL AS PHYSICAL<br />

PARAMETERS [%]<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

-20%<br />

-40%<br />

-60%<br />

-80%<br />

-100%<br />

CHANGE IN PARAMETER [%]<br />

CORRESPONDING TO 1 YEAR<br />

CHANGE IN PARAMETER [%]<br />

CORRESPONDING TO 2 YEAR<br />

-6%<br />

-4%<br />

EXTENSIBILITY<br />

AT<br />

LONGITUDINAL<br />

DIRECTION<br />

[N/cm]<br />

-4%<br />

0%<br />

EXTENSIBILITY<br />

AT VERTICAL<br />

DIRECTION<br />

[N/cm]<br />

0%<br />

17%<br />

PERMANENT<br />

SET AT<br />

LONGITUDINAL<br />

DIRECTION [%]<br />

PERMANENT<br />

SET AT<br />

VERTICAL<br />

DIRECTION [%]<br />

WATER-<br />

PROOFNESS<br />

-6% -4% 0% 7% 0%<br />

-4% 0% 17% 29% 0%<br />

7%<br />

29%<br />

0%<br />

0%


PRECLINICAL STUDIES – ACCELERATED AGEING<br />

acc. ASTM 1998F:2002 STANDARD<br />

Antiseptic activity<br />

Bacteriostatic activity<br />

2,2<br />

3,9<br />

4,8<br />

S. aureous<br />

E. coli<br />

6,3<br />

0 2 4 6 8<br />

CHANGES IN ANTIBACTERIAL BEHAVOUR [%]<br />

10.0%<br />

8.0%<br />

6.0%<br />

4.0%<br />

2.0%<br />

0.0%<br />

-2.0%<br />

-4.0%<br />

-6.0%<br />

-8.0%<br />

-10.0%<br />

0.0%<br />

Bacteriostatic<br />

activity for<br />

Escherichia coli<br />

-0.8%<br />

Antiseptic activity<br />

for Escherichia<br />

coli<br />

-0.2%<br />

Bacteriostatic<br />

activity for<br />

Staphylococcus<br />

aureus<br />

-1.1%<br />

Antiseptic activity<br />

for<br />

Staphylococcus<br />

aureus<br />

CORRESPONDING TO 1 YEAR 0.0% -0.8% -0.2% -1.1%


PRECLINICAL STUDIES<br />

BIOCOMPATYBILITY ACC. EN ISO 10993-1:2003<br />

BIOCOMPATYBILITY TEST STANDARD RESULTS<br />

CYTOTXICITY<br />

(IN DIRECT TEST)<br />

PN-EN ISO 10993-5:2001 ABSENCE<br />

IRRITATION PN-EN ISO 10993-10:2003 ABSENCE<br />

SUBACUTOUS REACTIVITY PN-EN ISO 10993-10:2002 LIGHT<br />

DELAYED-TYPE<br />

HYPERSENSITIVITY<br />

(ALLERGENICITY)<br />

HEMOACTIVITY<br />

ABSORPTION OF BLOOD PLASMA<br />

WOUND HEALING<br />

IN VIVO<br />

AMOUNT OF BACTERIAL<br />

ENDOTOXINE<br />

PN-EN ISO 10993-10:2003 ABSENCE<br />

PN-EN ISO 10993-4:2002<br />

IN VIVO AND IN VITRO TESTS<br />

ASPECTS OF PN-EN ISO 10993-<br />

6:2007<br />

POLISH PHARMACOPOEIA<br />

ed. VIII<br />

- CLOTTING ACTIVATION,<br />

- HIGH ABSORPTION OF<br />

BLOOD PLASAMA<br />

REDUCTION IN TIME OF<br />

WOUND HEALING<br />

�12,5 EU<br />

PIROGENICITY EUROPEAN PHARMACOPOEIA ABSENCE<br />

• Zakład Chirurgii Eksperymentalnej i Badania Biomateriałów, AM, Wrocław;<br />

• Instytut Medycyny Pracy, Łódź;<br />

• TZMO, Toruń.


CLINICAL STUDIES<br />

acc. EN ISO 14155-1/2:2003<br />

Aim <strong>of</strong> cl<strong>in</strong>ical study<br />

Primary: estimation <strong>of</strong> the safety and performance:<br />

effectiveness <strong>of</strong> hemostatic and antibacterial behavior<br />

<strong>of</strong> multifunctional wound dress<strong>in</strong>g for short time after<br />

use (5 days) and for long-term (estimation <strong>of</strong> place <strong>of</strong><br />

<strong>application</strong> after 1 and 3 months).<br />

Secondary: comparison <strong>of</strong> action effectiveness<br />

(TROMBOGUARD � vs. control wound dress<strong>in</strong>gs<br />

consists <strong>in</strong> Surgicel � supplemented with Medisorb �<br />

Silver Pad).<br />

Cl<strong>in</strong>ical study was performed <strong>in</strong> Military Institute <strong>of</strong> Medic<strong>in</strong>e (Warszawa)<br />

under supervis<strong>in</strong>g płk dr n. med. Wojciech WITKOWSKI


CLINICAL STUDIES – performance<br />

acc. EN ISO 14155-1/2:2003<br />

C<br />

C<br />

T<br />

T<br />

3 m<strong>in</strong>. after <strong>application</strong><br />

T - TROMBOGUARD �<br />

C – control wound dress<strong>in</strong>g<br />

15 m<strong>in</strong>. after <strong>application</strong><br />

T - TROMBOGUARD �<br />

C – control wound dress<strong>in</strong>g


CLINICAL STUDIES – performance<br />

acc. EN ISO 14155-1/2:2003<br />

C<br />

C<br />

T<br />

T<br />

24 h after <strong>application</strong><br />

T - TROMBOGUARD �<br />

C – control wound dress<strong>in</strong>g<br />

5 days after <strong>application</strong><br />

T - TROMBOGUARD �<br />

C – control wound dress<strong>in</strong>g


PRECLINICAL STUDIES OF TROMBOGUARD � CONFIRMED ITS:<br />

• HIGH CHEMICAL AND MICROBILOGICAL PURITY;<br />

• ABSENCE OF CYTOTOXICITY;<br />

• ABSANECE OF THE IRRITATION AND ALLERGENICITY;<br />

• REDUCTION IN TIME OF WOUND HEALING;<br />

• HEMOSTATIC AND ANTIBACTERIAL MODE OF ACTION.<br />

CLINICAL STUDIES OF TROMBOGUARD � CONFIRMED ITS:<br />

• HIGH HEMOSTATIC EFFECTIVENESS: repeatable (100% patients), quick<br />

hemostasis (till 3 m<strong>in</strong>.);<br />

• HIGH ANTIBACTERIAL EFFECTIVENESS: protection <strong>of</strong> wounds aga<strong>in</strong>st<br />

<strong>in</strong>fection till 5 days;<br />

• CLINICAL UNIVERSALITY: mode <strong>of</strong> action is <strong>in</strong>dependent on hematopexis<br />

and synergistic with blood clott<strong>in</strong>g pathway;<br />

• SAFETY: absence <strong>of</strong> allergenicity, adverse affects connect<strong>in</strong>g to hematology,<br />

biochemistry, ur<strong>in</strong>e analysis, microbiology).<br />

M. KUCHARSKA, M. H. STRUSZCZYK, A. NIEKRASZEWICZ, D.<br />

CIECHAŃSKA, E. WITCZAK, S. TARKOWSKA, K. FORTUNIAK, A.<br />

GULBAS-DIAZ, A. ROGACZEWSKA, I. PŁOSZAJ,<br />

HAEMOSTATIC DRESSING AND METHOD OF MANUFACTURE OF<br />

HAEMOSTATIC DRESSING,<br />

PATENT APPL. NO. P 390253, 2010


IMPLANTABLE MEDICAL DEVICES<br />

PARTIALLY-RESORBABLE FASCIA PROSTHESIS FOR HERNIA TREATMENT (HERNIA MESH)<br />

Hernia mesh made <strong>of</strong><br />

polypropylene and <strong>chitosan</strong><br />

yarns<br />

Mechanical coat<strong>in</strong>g by <strong>chitosan</strong><br />

film to cover both side <strong>of</strong> nonresorbable<br />

polypropylene knit<br />

NIEKRASZEWICZ A., KUCHARSKA M., STRUSZCZYK M.H., GRUCHAŁA B.,<br />

MALCZEWSKA-BRZOZA K.,<br />

COMPOSITE HERNIA MESH AND METHOD OF MANUFACTURE OF<br />

COMPOSITE HERNIA MESH,<br />

PATENT APPL. NO. P 380861, 2006<br />

Polypropylene hernia mesh<br />

coated by <strong>chitosan</strong><br />

Non-resorbable knit made <strong>of</strong><br />

polypropylene mon<strong>of</strong>ilament:<br />

- high pore surface 3,3 – 7,6 mm 2<br />

- low surface weight


FUTURE TRENDS IN CHITIN AND IT DERIVATIVES IN MEDICINE<br />

The crucial limitations <strong>in</strong> the use <strong>of</strong> chit<strong>in</strong> and its<br />

derivatives for <strong>design</strong> <strong>of</strong> <strong>medical</strong> <strong>devices</strong> are:<br />

• collection <strong>of</strong> the appropriate quality raw materials;<br />

• difficulty to receive reproducible product batches with<br />

various sources <strong>of</strong> raw materials or various collection<br />

times;<br />

• cost <strong>of</strong> the manufacture is still too high however the<br />

efficiency should be improved <strong>in</strong> future;<br />

• absence <strong>of</strong> the knowledge on the exact physiological<br />

mechanism <strong>of</strong> <strong>chitosan</strong> sources requir<strong>in</strong>g for advanced<br />

<strong>application</strong>s <strong>in</strong> medic<strong>in</strong>e;<br />

• absence <strong>of</strong> the standardization for chit<strong>in</strong>ous raw<br />

materials <strong>in</strong> aspects <strong>of</strong> their use <strong>in</strong> <strong>medical</strong> <strong>application</strong>s;


FUTURE TRENDS IN CHITIN AND IT DERIVATIVES IN MEDICINE<br />

The crucial limitations <strong>in</strong> the use <strong>of</strong> chit<strong>in</strong> and its<br />

derivatives for <strong>design</strong> <strong>of</strong> <strong>medical</strong> <strong>devices</strong> are:<br />

•absence <strong>of</strong> validated process <strong>of</strong> biopolymers<br />

manufacture;<br />

• unavailability <strong>of</strong> a good quality assessment system for<br />

chit<strong>in</strong>ous derivatives manufactures (such as: ISO 9001) or<br />

manufactures implemented the <strong>design</strong>ed <strong>medical</strong> <strong>devices</strong><br />

(such as: ISO 13485 Standards);<br />

• absence <strong>of</strong> standardization <strong>of</strong> product quality and<br />

product assay methods for chit<strong>in</strong> and its derivatives <strong>in</strong><br />

scope <strong>of</strong> <strong>medical</strong> <strong>application</strong>;<br />

• high cost <strong>of</strong> biocompatibility studies as well as cl<strong>in</strong>ical<br />

assessment (<strong>in</strong>clud<strong>in</strong>g cl<strong>in</strong>ical studies) with high risk <strong>of</strong><br />

defeat.


THANK YOU FOR ATTENTION<br />

Institute <strong>of</strong> Security<br />

Technologies<br />

“MORATEX”<br />

M. Skłodowskiej-Curie 3<br />

90-965 Łódź/Poland

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!