Lecture on Application to Composite Fracture Mechanics

Lecture on Application to Composite Fracture Mechanics Lecture on Application to Composite Fracture Mechanics

11.07.2015 Views

ong>Lectureong> onApplication to Composite Fracture MechanicsProf. F. G. YuanMars Mission Research CenterDepartment of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleigh, NC 27695July 28-31, 1998Mechanics of Materials BranchNASA Langley Research CenterHampton, VA 23681

<str<strong>on</strong>g>Lecture</str<strong>on</strong>g> <strong>on</strong>Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>Prof. F. G. YuanMars Missi<strong>on</strong> Research CenterDepartment of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleigh, NC 27695July 28-31, 1998<strong>Mechanics</strong> of Materials BranchNASA Langley Research CenterHampt<strong>on</strong>, VA 23681


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>Table of C<strong>on</strong>tentsChapter1. C<strong>on</strong>stitutive Law and Transformati<strong>on</strong> of Axes2. The Lekhnitskii Formalism3. The Stroh Formalism4. Determinati<strong>on</strong> of Stress Coefficient Terms in Cracked Solids forM<strong>on</strong>oclinic Materials with Plane Symmetry at x 3 = 0N.C. State Univ., Raleigh, NC F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>Chapter 1 C<strong>on</strong>stitutive Law and Transformati<strong>on</strong> of Axes1.1 C<strong>on</strong>stitutive law in terms of stress and strain tensors1.2 C<strong>on</strong>tracted matrix notati<strong>on</strong> of c<strong>on</strong>stitutive law and stress and engineering strain comp<strong>on</strong>ents1.3 Some properties of Q1.4 Laws of transformati<strong>on</strong> for C and s1.5 Rotati<strong>on</strong> between the x 3 - axis and invariants1.6 Elastic symmetry1.7 Properties of reduced elastic and compliance c<strong>on</strong>stants s’1.8 Problems1.9 ReferencesAppendix A: Matrices1.1 C<strong>on</strong>stitutive law in terms of stress and strain tensorsReferring <strong>to</strong> a fixed rectangular coordinate system x i , the stress tensor, σij, and straintensor, eij, for a homogeneous linearly anisotropic elastic material are related through stressstrainlaw byσ = C e , (1.1)ijijklklwhere i, j, k, l = 1, 2, or 3. The repeated indices imply summati<strong>on</strong> andstiffness tensors.Cijklare the elasticThe inverse of (1.1) is written ase= σ , (1.2)ijs ijklklwhere s ijklare the elastic compliance tensors.Eq. (1.1) is the general form of the linear c<strong>on</strong>stitutive relati<strong>on</strong> for an elastic solid and is knownas the generalized Hooke’s law. As the equati<strong>on</strong>s (1.1) and (1.2) indicate, these are 3 4 = 81stiffnesses and compliances. Based <strong>on</strong> the symmetry of stress and strain tensors, the elasticstiffness tensors have the following symmetry propertiesC = C = C(1.3)ijkljiklThe equalities <strong>on</strong> the first two and the last two suffixes reduce the independent stiffnesses andcompliances <strong>to</strong> 36.If a strain energy density functi<strong>on</strong> W exists which is defined byWand it is independent of the path e ij , then=epq∫ ijdeij=0∫epqijlkσ C e de(1.4)0ijklklijN.C. State Univ., Raleigh, NC 1-1 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>∂WdW = deij= C∂eijijklekldeij∂W∂eij= Cijklekl=σij∂ 2 W = Cijkl(1.5)∂e∂eThe differentiati<strong>on</strong>s <strong>on</strong> the right sides of (1.4) are interchangeable. ThusijklCijkl= C klij(1.6)Same relati<strong>on</strong>s hold for s ijkl . The relati<strong>on</strong> in (1.6) further reduces the number <strong>to</strong> 21 in the mostgeneral case.Suppose there is a point P in a Cartesian coordinate system Ox1, Ox2, Ox3, thecoordinates of P with respect <strong>to</strong> the system being x1, x2, x3. The numbers x1, x2, x3thatrepresent the coordinates of the point P in Fig. 1.1 are also the comp<strong>on</strong>ents of the vec<strong>to</strong>r OP .Then <strong>on</strong> transforming <strong>to</strong> a sec<strong>on</strong>d Cartesian system O x1 , Ox2, Ox3shown in Fig. 1,x 3_x3 P_x 2ox 2_x 1x 1Fig. 1.1 Rotati<strong>on</strong> between two coordinate systemsthe coordinates of P in the new coordinate system xi, related <strong>to</strong> x i byxi= Ωijxjor x = Ω x(1.7)where Ωij= cos( xiOxj) , i.e., Ωijare the directi<strong>on</strong> cosines of the axes. Ω is an orthog<strong>on</strong>almatrix.Ω Ω = Ω Ω = δ(1.8)where δ ik is the Kr<strong>on</strong>ecker delta,or in matrix notati<strong>on</strong>:ijikjikijkN.C. State Univ., Raleigh, NC 1-2 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>TTΩ Ω = Ω Ω = I ,−1whence Ω T = Ω .The transformed stresses, strains and stiffnesses following tensor transformati<strong>on</strong> are given byσ = Ω Ω σ(1.9)An equati<strong>on</strong> similar <strong>to</strong> (1.11) can be written for s ijkl.Cijkleijijipipjqjqpq= Ω Ω e(1.10)ipjqkrpq= Ω Ω Ω Ω C(1.11)1.2 C<strong>on</strong>tracted matrix notati<strong>on</strong> of c<strong>on</strong>stitutive law and stress and engineering straincomp<strong>on</strong>entsIt is obvious from the fact that (1.1) or (1.2) is a set of linear homogeneous equati<strong>on</strong>srelating the six independent stress comp<strong>on</strong>ents <strong>to</strong> the six independent strain comp<strong>on</strong>ents. Thestress and strain comp<strong>on</strong>ents are frequently written in c<strong>on</strong>tracted notati<strong>on</strong> of σ and ε in acolumn formΤ Τσ = σ , σ , σ , σ , σ , ) , ε = e , e , e , 2e, 2e, 2 ) (1.12)(11 22 33 23 13σ12lspqrs(11 22 33 23 13e12The superscript T stands for the transpose. Note that the occurrence of the fac<strong>to</strong>r 2 in theabove strain expressi<strong>on</strong> defines ε i as engineering strains. It is also worth noting that theengineering strains do not form the comp<strong>on</strong>ents of a tensor as eij. Eqs (1.1) and (1.2) can beexpressed in matrix notati<strong>on</strong> asσp= Cpqεqor σ = C ε(1.13)ε = or ε = sσ(1.14)pspqσqwhere p, q = 1, 2, 3,···, 6 and Cs = sC = I. Note that, by comparing eqs (1.13) and (1.14) with(1.1) and (1.2), the strains in the c<strong>on</strong>tracted notati<strong>on</strong> are engineering strains. In the s ijkland theC ijkl the first two suffixes are abbreviated in<strong>to</strong> a single <strong>on</strong>e running from 1 <strong>to</strong> 6, and the lasttwo are abbreviated in the same way, according <strong>to</strong> the scheme:tensor notati<strong>on</strong>matrix notati<strong>on</strong>11122233323,32431,13512,216Besides the brevity in replacing two suffices (i,j) and (k,l) by single suffices p and q, thisexpressi<strong>on</strong> has an advantage that it enables the c<strong>on</strong>tracted variables, C pq or s pq , <strong>to</strong> bec<strong>on</strong>sidered as the elements of a matrix, but has the disadvantage that the c<strong>on</strong>tracted variablesare not tensors so cannot be manipulated by the rule of tensor transformati<strong>on</strong>. In the sequel,either four suffix notati<strong>on</strong> C ijkl or s ijkl or two suffix notati<strong>on</strong> C pq or s pq will be used according <strong>to</strong>which is the more c<strong>on</strong>venient in each case.In the following, the relati<strong>on</strong>s between the C ijkl, s ijkl and C pq , s pq are derived. If weexpand (1.1) for i = j = 1, we getN.C. State Univ., Raleigh, NC 1-3 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>σ = C1+ C= C111111231111eee112311+ C+ C11121131ee11121231+ C12+ C11131132ee13321113+ C+ C131121113321331122221122+ 2Ce + 2Ce + C e + 2Ce + C eee+ C+e221123+23113333(1.15)Introducing the c<strong>on</strong>tracted stress and strain notati<strong>on</strong> in (1.12), we have1 11σ1= C1111ε1+ 2C1112ε6+ 2C1113ε5+ C1122ε2+ 2C1123ε4+ C1113ε3(1.16)2 22Comparing with the expanded form of (1.13)σ = (1.17)1C11ε1+ C12ε2+ C13ε3+ C14ε4+ C15ε5+ C16ε6we find C1111= C11, C1122= C12, , C1112= C16, (1.18)and by similar expansi<strong>on</strong> and comparis<strong>on</strong> for other values of i, j, it can be shown thatCijkl= C pq(1.19)On the other hand, expanding (1.2) for i = j = 1 and c<strong>on</strong>tracting by (1.12), we getε = s + 2s+ s + s + s σ + s σ(1.20)1 1111σ1 1112σ621113σ5 1122σ22Comparing this with the expanding form of (1.14), we find thats1111= s 11,1122s12112341133s = , , 2s 1112= s16(1.21)By similar expansi<strong>on</strong> and comparis<strong>on</strong> for other values i, j, it can be shown that3sijkl2s4sijklijkl= spq= s= spqpqif both p and q ≤ 3if either p or q ≤ 3if both p and q > 3(1.22)From (1.19) and (1.22), it is clearly seen that C and s are symmetric matrices.The strain energy density functi<strong>on</strong> W in (1.4) can be rewritten asW1212= C pqεpεqor W = s pqσpσqThe positive definiteness of W impliesW11C pqεpεq= spqσpσ > 0(1.23)22=qprovided not all theε pare zero. This indicates that matrices C pq and s pq are both positivedefinite. From (1.23), the determinant Cpq, spq, and their principal minors of all orders arepositive.N.C. State Univ., Raleigh, NC 1-4 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>In the new coordinate system xi, we haveσ = C ε(1.24)iiijijjjε = s σ(1.25)Using the c<strong>on</strong>tracted notati<strong>on</strong> of (1.12a), (1.9) can be written in matrix formσ = Qσ(1.26)where Q is the 6 × 6 transformati<strong>on</strong> matrix (not symmetric) which can be subdivided in<strong>to</strong> four3 × 3 matrices as⎡K12K2⎤Q = ⎢ ⎥(1.27)⎣K3K4 ⎦The expressi<strong>on</strong>s of the four sub-matrices are2 2 2⎡Ω11Ω12Ω13⎤⎢ 2 2 2 ⎥K1= ⎢Ω21Ω22Ω23⎥(1.28a)2 2 2⎢⎥⎣Ω31Ω32Ω33⎦⎡Ω12Ω13Ω13Ω11Ω11Ω12⎤K⎢Ω Ω Ω Ω Ω Ω⎥2=⎢22 23 23 21 21 22(1.28b)⎥⎢⎣Ω32Ω33Ω33Ω31Ω31Ω32⎥⎦⎡Ω21Ω31Ω22Ω32Ω23Ω33⎤K⎢Ω Ω Ω Ω Ω Ω⎥3=⎢31 11 32 12 33 13(1.28c)⎥⎢⎣Ω11Ω21Ω12Ω22Ω13Ω23⎥⎦⎡Ω22Ω33+ Ω23Ω32Ω23Ω31+ Ω21Ω33Ω21Ω32+ Ω22Ω31⎤K⎢Ω Ω + Ω Ω Ω Ω + Ω Ω Ω Ω + Ω Ω⎥4=⎢32 13 33 12 33 11 31 13 31 12 32 11(1.28d)⎥⎢⎣Ω12Ω23+ Ω13Ω22Ω13Ω21+ Ω11Ω23Ω11Ω22+ Ω12Ω21⎥⎦Notice that the elements of K 1 , K 2 , K 3 , K 4 can be written in compact form as( ) 2K1 ij= Ωij( K2) = Ω Ω , i not summed, j ≠ k ≠ p ,ijijikrjip( K 3) = Ω Ω , j not summed, i ≠ r ≠ s , (1.29)ijrksj( K 4) = Ω Ω + Ω Ω , j ≠ k ≠ p , i ≠ r ≠s .spSince Ω ij is an orthog<strong>on</strong>al matrix and hence, by (1.8),rpskN.C. State Univ., Raleigh, NC 1-5 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>3∑i=1( K32)ij0 = ∑j=1= ( K3)ij3∑i=131)ij1 = ∑j=1( K = ( K )(1.30)For the transformati<strong>on</strong> of ε, (1.26) cannot be used simply because the definiti<strong>on</strong> of ε isdifferent from that of σ. However, if we define1ije T = e , e , e , e , e , )(1.31)(11 22 33 23 31e12we then have the same stress transformati<strong>on</strong> matrix for ee = Q e(1.32)We generalize the 3 × 3 matrix introduced by Reuter <strong>to</strong> the following 6 × 6 matrix⎡I0 ⎤R = ⎢ ⎥(1.33)⎣02I⎦in which I is the 3 × 3 unit matrix. We haveε = R e , ε = R e(1.34)and (1.32) becomes−1ε = R Q R ε(1.35)A more compact form of the transformati<strong>on</strong> for strain comp<strong>on</strong>ents (eq. (1.35)) will be shownin eq. (1.42). It should be pointed out that the dissimilar definiti<strong>on</strong>s of σ and ε given by (1.12)have <strong>on</strong>e advantage. With the symmetry properties of C ijkl given by (1.3), the 6 × 6 matrices Cand s are symmetric. If we had used the same definiti<strong>on</strong> for the column matrices σ and ε, thenC and s would not be symmetric.1.3 Some properties of QThe inverse of (1.26) is−1σ = Q σ(1.36)−1PhysicallyQalso characterizes a negative rotati<strong>on</strong> of axes. Instead of actually performing theinversi<strong>on</strong> of Q given by (1.27), we write the inverse of the tensor transformati<strong>on</strong> (1.9) asσ = Ω Ω σ(1.37)and rewrite this in the form of (1.36) using (1.12). In this way we obtainijN.C. State Univ., Raleigh, NC 1-6 F. G. Yuan, July 28-31, 1998piT T-1= ⎡K12K3⎤Q ⎢ T ⎥(1.38)⎣KT2K4 ⎦It can be seen that Q -1 is the transpose of Q defined in (1.27) except that the fac<strong>to</strong>r 2 remainsin the same place.qjpq


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>or crack axes not coinciding with principal material axes, material properties with respect <strong>to</strong>x 1 , x 2 are required for modeling the crack behavior. Let θ be the angle of rotati<strong>on</strong> about thex 3 - axis shown in Fig. 2,_x 2x 2_x 3 (x 3 )θx 1_x 1then (1.7) givesFig. 1.2 Rotati<strong>on</strong> counterclockwise by θ angle with respect <strong>to</strong> x 3 - axiswhere m = cos θ, n = sin θ.The transformati<strong>on</strong> matrix Q given by (1.28) becomesand from (1.38),⎡ m n 0⎤Ω⎢ ⎥ij= − n m 0(1.48)⎢ ⎥⎢⎣0 0 1⎥⎦2 2⎡ m n 0 0 0 2mn⎤⎢ 2 2⎥⎢n m 0 0 0 − 2mn⎥⎢ 0 0 1 0 0 0 ⎥Q ( θ ) = ⎢⎥(1.49)⎢ 0 0 0 m − n 0 ⎥⎢ 0 0 0 n m 0 ⎥⎢2 2⎥⎢⎣− mn mn 0 0 0 m − n ⎥⎦2 2⎡mn 0 0 0 − 2mn⎤⎢ 2 2⎥⎢ n m 0 0 0 2mn⎥⎢⎥-10 0 1 0 0 0Q ( θ ) = Q(−θ) = ⎢⎥ (1.50)⎢ 0 0 0 m n 0 ⎥⎢ 0 0 0 − n m 0 ⎥⎢⎥2 2⎢⎣mn − mn 0 0 0 m − n ⎥⎦From (1.44) and (1.45) or (1.47), the transformed elastic and compliance c<strong>on</strong>stants can beexpressed in the following tablesN.C. State Univ., Raleigh, NC 1-8 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>s11 ss1216s22s26 s66( C 11) ( C 12) ( 2C16) ( C22) ( 2C26) ( 4C66)s 11( C 11) m 4 2m 2 n 2 2m 3 n n 4 2mn 3 m 2 n 2s 12( C 12) m 2 n 2 m 4 +n 4 mn 3 -m 3 n m 2 n 2 m 3 n-mn 3 -m 2 n 2s 2 ) -2m 3 n 2(m 3 n-mn 3 ) m 4 -3m 2 n 2 2mn 3 3m 2 n 2 -n 4 m 3 n-mn 316( C16s (22) n 4 2m 2 n 2 -2mn 3 m 4 -2m 3 n m 2 n 222C26( C26s 2 ) -2mn 3 2(mn 3 -m 3 n) 3m 2 n 2 -n 4 2m 3 n m 4 -3m 2 n 2 mn 3 -m 3 ns 4 ) 4m 2 n 2 -8m 2 n 2 4(mn 3 -m 3 n) 4m 2 n 2 4(m 3 n-mn 3 ) (m 2 -n 2 ) 266( C66s13( C13)s23( C23)s2C36(36s 13( C 13) m 2 n 2 mns23( C23)n 2 m 2 -mns 2 ) -2mn 2mn m 2 -n 236( C36)s44( C44)s45( C45)s55( C55)s44( C44 ) m 2 -2mn n 2s45( C45)mn m 2 -n 2 -mns55( C55)n 2 2mn m 2s34( C34)s35( C35)s34( C34 ) m -ns35( C35)n ms14( C14)s15( C15)s24( C24)s25( C25)s46(2C 46)s56( 2C56s ( 14) m 3 -m 2 n mn 2 -n 3 m 2 n -mn 214Cs 15( C 15) m 2 n m 3 n 3 mn 2 mn 2 m 2 ns24( C24 ) mn 2 -n 3 m 3 -m 2 n -m 2 n mn 2s25( C25)n 3 mn 2 m 2 n m 3 -mn 2 -m 2 ns 2 ) -2m 2 n 2mn 2 2m 2 n -2mn 2 m 3 -mn 2 n 3 -m 2 n46( C46s 2 ) -2mn 2 -2m 2 n 2mn 2 2m 2 n m 2 n-n 3 m 3 -mn 256( C56)N.C. State Univ., Raleigh, NC 1-9 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>s33( C33)= s33(C33)With the above equati<strong>on</strong>s, a number of invariants of the elastic c<strong>on</strong>stants can bec<strong>on</strong>structed. For example,IIII1234= s= s11= s= s664413+ s22− 4s+ s+ s5523+ 2s12= s= s441312= s66= s552311− 4s+ s+ s+ s1222+ 2s12(1.51)2 2 2 2I5= s34+ s35= s34+ s35are all invariant with respect <strong>to</strong> rotati<strong>on</strong> about the x 3- axis. Corresp<strong>on</strong>ding invariants exist forrotati<strong>on</strong> about the other axis, for example,I ′1= s11+ s33+ 2s13= s11+ s33+ 2s13(1.52)I1′′= s22+ s33+ 2s23= s22+ s33+ 2s23are invariant for rotati<strong>on</strong> about the x 2and x 1axes respectively. The cubic compressibilityβ = s11+ s22+ s33+ 2(s12+ s13+ s23)(1.53)is invariant for all rotati<strong>on</strong>s.In the next chapters, several important anisotropic parameters are related between therotated and original coordinates:Eigenvalue:µ =kµkcosθ− sinθµ sinθ+ cosθkand furthermore, the Stroh eigenvec<strong>to</strong>rs A and B transform like a vec<strong>to</strong>r, namelyAij= ΩikAkj, Bij= ΩikBkj1.6 Elastic symmetryA body that permits certain transformati<strong>on</strong>s of reference axes without change inproperties al<strong>on</strong>g these axes is said <strong>to</strong> possess certain types of symmetry. If the body allowsreflecti<strong>on</strong> in a plane, this plane is called a plane of symmetry. If its properties are independen<strong>to</strong>f rotati<strong>on</strong> about an axis, this axis is an axis of symmetry. Further, when symmetries are usedin structural mechanics, three fac<strong>to</strong>rs have <strong>to</strong> be taken in<strong>to</strong> c<strong>on</strong>siderati<strong>on</strong>: geometry, loading,and material. In terms of material symmetry in linear materials, the symmetry is generallycalled elastic symmetry.If the x i axes are referred <strong>to</strong> Cartesian coordinates (x, y, z) or ( x1, x2, x3), the materialanisotropy is called rectilinear anisotropy, Similarly, the axes are expressed by cylindrical (r, θ,z) or spherical coordinates (ρ, θ, ϕ), the material possesses cylindrical anisotropy or sphericalanisotropy respectively.N.C. State Univ., Raleigh, NC 1-10 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>⎡s11⎢s⎢12⎢s13⎢⎢0⎢ 0⎢⎣ 0sss122223000sss132333000s0004400s00005500 ⎤0⎥⎥0 ⎥⎥0⎥0 ⎥⎥s66⎦(1.62)In general, the engineering c<strong>on</strong>stants are defined based <strong>on</strong> the above equati<strong>on</strong> in theorthog<strong>on</strong>al coordinate. The coordinate which exhibits three planes of elastic symmetry is oftencalled material principal axes. If the comp<strong>on</strong>ents of stress and strain are defined in terms ofcoordinate axes (say, structural axes) other than material principal axes, the transformati<strong>on</strong>equati<strong>on</strong>s corresp<strong>on</strong>ding <strong>to</strong> (1.62) will change the form back <strong>to</strong> that of (1.61), indicating thata shear stress will produce a normal comp<strong>on</strong>ent of strain, and vice versa.are:The compliance c<strong>on</strong>stants in terms of engineering c<strong>on</strong>stants for orthotropic material(1) Cartesian coordinate:⎡ 1⎢ E1⎢⎢ ν−⎢ E⎢ ν⎢−⎢ E⎢⎢0⎢⎢ 0⎢⎢⎢ 0⎣121131ν−E1E2ν−E000212232ν−Eν−E1E32300031330001G230000001G130000001G12⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(1.63)(2) Cylindrical coordinate:N.C. State Univ., Raleigh, NC 1-13 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>⎡ 1 νθrνzr⎤⎢− − 0 0 0E⎥rEθEz⎢⎥⎢ νrθ1 νzθ−− 0 0 0 ⎥⎢ ErEθEz⎥⎢ ν ν⎥rz θz1⎢−−0 0 0 ⎥⎢ ErEθEz⎥(1.64)⎢1⎥⎢0 0 0 0 0G⎥θz⎢⎥⎢10 0 0 0 0 ⎥⎢Grz⎥⎢1 ⎥⎢ 0 0 0 0 0 ⎥⎣Grθ ⎦(2) Spherical coordinate:⎡ 1 νθρνϕρ⎤⎢ − − 0 0 0E⎥⎢ρEθEϕ⎥⎢ νρθ 1 νϕθ⎥⎢−− 0 0 0E⎥ρEθEϕ⎢⎥⎢ νρϕνθϕ 1− −0 0 0⎥⎢ E⎥ρEθEϕ⎢⎥(1.65)⎢10 0 00 0 ⎥⎢Gθϕ⎥⎢1 ⎥⎢ 0 0 0 0 0 ⎥⎢Gρϕ⎥⎢1 ⎥⎢ 0 0 0 0 0 ⎥⎣Gρθ⎦νijνjiFrom symmetry of the matrix, = . The material independent c<strong>on</strong>stants reduce <strong>to</strong> 9.EiEj(c) A Plane of Isotropy (Transversely isotropic material)If the x 1 x 2- plane is isotropic, then⎡s11⎢s⎢12⎢s13⎢⎢0⎢ 0⎢⎣ 0The independent material c<strong>on</strong>stants reduce <strong>to</strong> 5.(d) Isotropysss121113000sss131333000s0004400s00005502( s110 ⎤0⎥⎥0 ⎥⎥0⎥0 ⎥⎥− s12) ⎦(1.66)N.C. State Univ., Raleigh, NC 1-14 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>Thus1 0′)− .( s = CSince the strain energy density is1 T 1 ~ T ~ 1 ~ TW = σ ε = σ ε = σ s′~ σ > 0 ,2 2 2s′ is positive definite. In the above equati<strong>on</strong>, the two-dimensi<strong>on</strong>al deofmati<strong>on</strong>, ε 3 = 0 hasbeen assumed. From (1.73), C 0 is also positive definite.For m<strong>on</strong>oclinic material with plane of elastic symmetry x 3 = 0, the C 0 and s′ can berearranged in the two separate matrix forms:C0⎡C⎢C⎢= ⎢C⎢⎢0⎢⎣0111216CCC12222600CCC16266600000CC44450 ⎤0⎥⎥ ⎡C10 ⎥ = ⎢⎥ ⎣ 0C45⎥C ⎥55⎦0 ⎤C⎥2 ⎦(1.74)⎡s′′ ′11s12s160 0 ⎤⎢s′′ ′ ⎥⎢12s22s260 0⎥ ⎡s1′0 ⎤s′= ⎢s′′ ′16s26s660 0 ⎥ = ⎢ ⎥⎢⎥ ⎣0s2′⎦⎢0 0 0 s44′ s45′⎥⎢⎣0 0 0 s′′ ⎥45s55⎦It can be easily proved that the subsets of elastic stiffnesses and subsets of reducedcompliances are the inverses of each otherC ′ ′1s1= s1C1= IC s′= s′C = I2222(1.75)(1.76)The subscripts 1 and 2 represent the in-plane and antiplane deformati<strong>on</strong> respectively.For in-plane deformati<strong>on</strong>, let C ) 1be the adjoint of C 1 so thatC 1C ) 1= J I ,It follows from (1.76) 1 that)C1= J s 1′~From (1.77) and (1.78) the comp<strong>on</strong>ents of C1areJ = detC= s′(1.77)−11(det1)(1.78)N.C. State Univ., Raleigh, NC 1-16 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>)C)C)C)C)C)C112266121626= C= C= C= C= C= C221111161212CCCCCC666622262616− C− C− C− C− C− C)Similarly, if s′1 is the adjoint of s′1, we haves ′ s) ′ = JComparing with (1.76) 2 ,orCCCCCC11226612162611)′ J226216212121611= J s′CCC−166222611= J s′22= J s′I−1s 1= C1= ( s′22s′= ( s′s′11= ( s′s′11= ( s′s′16= ( s′s′12= ( s′s′12666622262616− s′226− s′216− s′212) J) J) J− s′s′12− s′s′16− s′s′1166= J s′12= J s′16= J s′662226) J) J) J26(1.79)(1.80)(1.81)Eq. (1.78) provides s′ 1in terms of the comp<strong>on</strong>ents of C 1 while (1.80) gives C 1 in terms ofcomp<strong>on</strong>ents of s′1. Using (1.79) the expressi<strong>on</strong> γ(µ) in terms of C’s can be transformed in<strong>to</strong>reduced compliance c<strong>on</strong>stantsγ ( µ ) = ( C16C= J ( s′1226− C) − ( C2− s′µ + s′µ )1612C661112C26− C16C22) µ + ( C22C66− C2262) µ(1.82)From the identity in the Lekhnitskii formulati<strong>on</strong>432s ′ µ − 2s′16µ+ (2s′′12+ s66)µ − 2s′′26µ+ s2211=shown in the next chapter and (1.82), it can be readily proven that the relati<strong>on</strong> betweenreduced compliances and elastic stiffnesses0( s′122− s′µ + s′µ ) γ ( µ ) = J ( s′16Similarly,1112= J[(s′= −(C2− s′µ + s′µ )2166616− s′s′11+ 2C2666112) µ + 2( s′s′µ + C222112µ )26− s′s′−1′22− s′26+ s′2µ) γ ( µ ) = C16+ ( C12+ C66)1216) µ + ( s′2( s µ µ + C µ21226− s′s′1122)](1.83)(1.84)N.C. State Univ., Raleigh, NC 1-17 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>From Lekhnitskii’s formulati<strong>on</strong>, (1.83) and (1.84) are written asorand2p = −(C + 2Cµ + C µ ) / γ ( µ )(1.85)k66 26 k 22 k k22pk = −(C + 2Cµk+ C µk) / J6626222q = [ C + ( C + C ) µ + C µ ]/ γ ( µ )(1.86)k16 12 66 k 26 k kwhere p k and q k are the displacement coefficients in the Lekhnitskii formulati<strong>on</strong>.1.8 Problems1. For a thick composite coup<strong>on</strong> shown below, derive the matrices Cijand sijin terms of x 1and x 2 , angle α, and engineering material c<strong>on</strong>stants._x (x 3 3)_x 2x 1x 2Fiber Orientati<strong>on</strong>α_x 1Fig. 3 A composite coup<strong>on</strong> with off-axis angle αAns:a. Determine orthotropic compliance c<strong>on</strong>stants sijfrom engineering c<strong>on</strong>stants w.r.t.material principal axes xi;b. Using tables <strong>to</strong> determine transformed compliance c<strong>on</strong>stants s ij with rotati<strong>on</strong> angle –α;c. For thick composite specimens, calculate the reduced compliance c<strong>on</strong>stants s′ij.−12. Prove Q using linear algebra.3. Are the following terms are invariant ?2 2 1 2s13+ s23+ s3622 2 2 2 2 1 2s11+ s22+ 2s12+ s16+ s26+ s6644. If the body has elastic symmetry for θ = 60 o , which of compliance terms are zero?N.C. State Univ., Raleigh, NC 1-18 F. G. Yuan, July 28-31, 1998


1.9 ReferencesAnisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>1. R. F. S. Hearm<strong>on</strong>, An Introducti<strong>on</strong> <strong>to</strong> Applied Anisotropic Elasticity, Oxford UniversityPress, Great Britain, 1961.2. J. F. Nye, F. R. S., Physical Properties of Crystals, Clarend<strong>on</strong> Press, Oxford, 1985.3. S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body, Mir Publishers, Moscow,1981.4. R. C. Reuter, "C<strong>on</strong>cise Property Transformati<strong>on</strong> Relati<strong>on</strong>s for an Anisotropic Lamina",Journal of <strong>Composite</strong> Materials, Vol. 5, pp. 270-271, 1971.5. E. Prince, Mathematical Techniques in Crystallography and Material Science, Springer-Verlag New York, Inc., 1982.5. A. Kelly and N. H. Macmillan, Str<strong>on</strong>g Solids, Oxford Science Publicati<strong>on</strong>s, 1986.6. T. C. T. Ting, “Effects of Change of Reference Coordinates <strong>on</strong> the Stress Analyses ofAnisotropic Elastic Materials”, Internati<strong>on</strong>al Journal of Solids and Structures, Vol. 18,No. 2, pp. 139-152, 1982.7. T. C. T. Ting, “Invariants of Anisotropic Elastic C<strong>on</strong>stants”, Quarterly Journal of<strong>Mechanics</strong> and Applied Mathematics, Vol. 40, Pt. 3, pp. 431-448. 1987.Appendix A: MatricesA number of matrices have their special characteristics. Some definiti<strong>on</strong>s are givenbelow:Matrix A is calledifrealA = AsymmetricA T = AantisymmetricHermitianA T= − AA T = Aorthog<strong>on</strong>alT -1A = Aunitary-1 TA = Adiag<strong>on</strong>al A = 0 for i ≠ jidempotentA 2 = AijFor a n<strong>on</strong>singular matrix A, its inverse is expressed by)A T−1A =ATwhere A ) is the adjoint matrix.A few relati<strong>on</strong>s involving products of square matrices are listed :N.C. State Univ., Raleigh, NC 1-19 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>( ABC )− 1= −1−1A −1C BT T T T( ABC ) = C B ATr ( AB)= Tr(BA)Tr A = ∑iA iidet( AB ) = (det A)(detB)= det( BA)c<strong>on</strong>judgate ( AB ) =AB11Re( A )Re( B)= Re[( A + A)B]= Re[ A(B + B)]22N.C. State Univ., Raleigh, NC 1-20 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>A composite with material properties:E L = 11.773 Msi, E T = 5.162 Msi, E Z = 1.53 MsiG LT = 2.479 Msi, G LZ = 0.64 Msi, G TZ = 0.57 Msiν LT = 0.401, ν LZ = 0.22, ν TZ = 0.29For θ = -α = -45 o ,sij=⎡1⎢⎢4⎢1⎢⎢4⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡1−2νLT1 1 ⎤⎢ + + ⎥⎣ ELETGLT⎦⎡1−2νLT1 1 ⎤⎢ + − ⎥⎣ ELETGLT⎦1 ⎡νLTνTZ⎤− ⎢ +2⎥⎣ ELET⎦001 ⎡ 1 1 ⎤⎢ − ⎥2 ⎣ ELET⎦−1′s = C⎡ 0.151⎢− 0.05⎢= ⎢ 0⎢⎢0⎢⎣− 0.0521 ⎡1−2νLT1 1 ⎤⎢ + −4⎥⎣ ELETGLT⎦1 ⎡1−2νLT1 1 ⎤⎢ + +4⎥⎣ ELETGLT⎦1 ⎡νLTνTZ⎤− ⎢ +2⎥⎣ ELET⎦⎡8.352⎢3.395⎢C = ⎢ 0⎢⎢0⎢⎣1.781001 ⎡ 1 1 ⎤⎢ − ⎥2 ⎣ ELET⎦− 0.050.15100− 0.0523.3948.352001.7811 ⎡νLTνTZ⎤− ⎢ +2⎥⎣ ELET⎦1 ⎡νLTνTZ⎤− ⎢ +2⎥⎣ ELET⎦1Eν−ELZL00Z001.658ν+E− 0.0960000.6050.0350TZT0001 ⎡ 1 1 ⎤⎢ +2⎥⎣GTZGLZ⎦1 ⎡ 1 1 ⎤− ⎢ − ⎥2 ⎣GTZGLZ⎦000− 0.096000.0350.60501.65800001 ⎡ 1 1 ⎤− ⎢ −2⎥⎣GTZGLZ⎦1 ⎡ 1 1 ⎤⎢ + ⎥2 ⎣GTZGLZ⎦− 0.052⎤− 0.052⎥⎥0 ⎥ (1/Msi)⎥0⎥0.345 ⎥⎦1.781⎤1.781⎥⎥0 ⎥ Msi⎥0⎥3.441⎥⎦01 ⎡ 1⎢ −2 ⎣ EL1 ⎡ 1⎢ −2 ⎣ ELνLZ− +E1+2νELL00LT1 ⎤ ⎤⎥E⎥T ⎦ ⎥1 ⎤ ⎥⎥E⎥T ⎦ ⎥ν ⎥TZ⎥ET⎥⎥⎥⎥⎥⎥⎥1 ⎥+ ⎥ET⎦N.C. State Univ., Raleigh, NC 1-21 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>2.1 Basic equati<strong>on</strong>s2.2 General soluti<strong>on</strong>s for the in-plane deformati<strong>on</strong> fieldChapter 2 The Lekhnitskii Formalism2.1 Basic equati<strong>on</strong>sA two-dimensi<strong>on</strong>al deformati<strong>on</strong> means that the displacements or stresses are functi<strong>on</strong>sof x 1 and x 2 <strong>on</strong>ly. Beginning with stress and assuming that they depend <strong>on</strong> x 1 and x 2 <strong>on</strong>ly,Lekhnitskii was the first <strong>to</strong> formulate the anisotropic problem with stress functi<strong>on</strong>s similar <strong>to</strong>the Airy’s stress functi<strong>on</strong> approach for isotropic solids. Under the framework of the stressfuncti<strong>on</strong> approach, the strain compatibility equati<strong>on</strong>s need <strong>to</strong> be satisfied. Therefore theLekhnitskii formalism is in terms of reduced compliance c<strong>on</strong>stants, while the Strohformulati<strong>on</strong> (<strong>to</strong> be discussed in Ch. 3) is formulated in terms of elastic c<strong>on</strong>stants. The mainobjective of this chapter is <strong>to</strong> briefly derive the general soluti<strong>on</strong>s using stress functi<strong>on</strong>s F andΨ and <strong>to</strong> provide a link with Stroh formalsim.Since the stresses are independent of x 3 - axis, the equilibrium equati<strong>on</strong>s in therectangular Cartesian coordinates are∂σ11∂σ12∂σ12∂σ22∂σ13∂σ23+ = 0 , + = 0 , + = 0(2.1)∂x∂x∂x∂x∂x∂xor in a simple index form121∂σ i∂σ i∂x1 2+ =1∂x2Introducing potential functi<strong>on</strong>s φi22120 , (i = 1, 2, 3) (2.2)∂φi∂iσi1= − , σi2= φ (i = 1, 2, 3) (2.3)∂x∂xThe eq. (2.2) are au<strong>to</strong>matically satisfied. Since σ 21 = σ 12 ,1∂φ∂φ+∂x∂x1 2=120(2.4)In order <strong>to</strong> satisfy eq. (2.4), an Airy stress functi<strong>on</strong> F is introduced∂Fφ1= − ,∂x2∂Fφ2=(2.5)∂x1Combining (2.3) and (2.5) and setting φ3= −Ψ, we obtainN.C. State Univ., Raleigh, NC 2-1 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>σ112∂ F= ,∂xσ2213σ22∂Ψ= ,∂x22∂ F= ,∂xσ2123σ12∂Ψ= −∂x12∂ F= −∂x∂x12,(2.6)The two stress functi<strong>on</strong>s F and Ψ are the foundati<strong>on</strong> for the Lekhnitskii formulati<strong>on</strong>.Assuming u i are independent of x 3 , the strain comp<strong>on</strong>ents are∂uε1=∂x11ε,4∂uε2=∂x∂u=∂x32,22,∂uε5=∂x∂uε6=∂x3112∂u+∂x21(2.7)The strain compatibility equati<strong>on</strong>s for (2.7) are∂ ε ∂ ε+∂ ∂212x2222x12∂ ε6−∂x∂x12= 0,∂ε4∂x1∂ε5−∂x2= 0(2.8)For m<strong>on</strong>oclinic materials with a plane of material symmetry at x 3 = 0, the c<strong>on</strong>stitutive lawreduces <strong>to</strong>ε = s′σ (i, j = 1, 2, 4, 5, 6) (2.9)iijjwhere s′ ij= sij− s3 is3j/ s33(i, j = 1, 2, 4, 5, 6) are reduced elastic compliances and0 0s′ C = C s′= I from eq. (1.73). σ3is determined by σ3= −s3jσj/ s33(j = 1, 2, 4, 5, 6). Therelati<strong>on</strong> (2.9) can be written in a more explicit form:⎧ε1⎫ ⎡s′⎪ε⎪ ⎢ ′⎪2s⎪ ⎢⎨ε4 ⎬ = ⎢ 0⎪ ⎪ ⎢ε5⎪ ⎪ ⎢0⎪⎩ε ⎪⎭⎢⎣′6s111216s′12s′2200s′2600s′44s′45000s′45s′550s16′ ⎤ ⎧σ1 ⎫s⎥ ⎪ ⎪26′ σ⎥ ⎪2⎪0 ⎥ ⎨σ4 ⎬⎥0 ⎪ ⎪⎥σ5⎪ ⎪s′⎥66 ⎦ ⎪⎩σ6⎪⎭(2.10)It is worth noting that for plane stress problems, σ 0 , reduced elastic c<strong>on</strong>stants0 0C′ = C − C (i, j = 1, 2, 4, 5, 6) and C′ s = s C′= I should be used.ijij3 iC3j/ C33Substituting (2.6) in<strong>to</strong> (2.10), the compatibility equati<strong>on</strong>s (2.8) in terms of stress functi<strong>on</strong>s Fand Ψ lead <strong>to</strong>3=whereL F = and L Ψ 0(2.11)402=L∂∂4444= s22′ − 2s26′ + (2s4312′ + s66′ ) − 2s2 2 16′∂x1∂x1∂x2∂x1∂x2∂4∂∂x∂x132+ s′11∂∂x442N.C. State Univ., Raleigh, NC 2-2 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>L∂22= s44′ − 22∂x1s′452∂∂x∂x12+ s′552∂∂x22From eq. (2.11), it is clear the in-plane deformati<strong>on</strong> and antiplane deformati<strong>on</strong> aredecoupled.2.2 General soluti<strong>on</strong>s for the in-plane deformati<strong>on</strong> fieldIn the following, <strong>on</strong>ly in-plane deformati<strong>on</strong> case is c<strong>on</strong>sidered. The c<strong>on</strong>stitutive law canbe written in a more compact form:⎧ε⎡ ′ ′ ′1 ⎫ s11s12s16⎤ ⎡σ1 ⎤⎪ ⎪ ⎢ ′ ′ ′ ⎥ ⎢ ⎥⎨ε2 ⎬ = s⎢12s22s26σ⎥ ⎢2(2.12)⎥⎪ ⎪⎩ε⎭ ⎢⎣′ ′ ′6s16s26s66⎥⎦⎢⎣σ12⎥⎦The general soluti<strong>on</strong> of F is expressed asF x , x ) = F()(2.13)(1 2zwhere z = x 1+ µ x2Substituting (2.13) in<strong>to</strong> (2.11) 1 , eigenvalues µ can be determined by432s ′ µ − s′µ + (2s′+ s′) µ − 2s′µ + s′0(2.14)1121612 6626 22=Clearly, the four roots are dependent <strong>on</strong> the material properties <strong>on</strong>ly, independent of geometryof the solids and boundary c<strong>on</strong>diti<strong>on</strong>s. The roots associated with (2.14) are arranged so thatµ 1 and µ 2 have positive imaginary parts and µ3= µ1and µ4= µ2.Similarly for anti-plane deformati<strong>on</strong>, the eigenvalue can be obtained from L Ψ 0,s ′ ′ µ s′The functi<strong>on</strong> of F can be written as:255µ − 2s45+44=021, x2) = 2∑ReF kz k)k=1where zk = x 1+ µkx2. The stress comp<strong>on</strong>ents are[ ( ]2=F ( x(2.15)222[ µkFk′′( zk)],σ2= 2∑Re[ Fk′′( zk)],σ6= 2∑Re[ ( −µk) Fk′′( zk]21= 2∑Re)k=1k=1k=1σ (2.16)and the displacements are221= 2∑Re)k=1k=1[ p ′ ] = ∑ [ ′kFk( zk) , u22 Re qkFk( zk]u (2.17)2where pk = s′11µ k− s′16µk+ s′12, qk= s′12µk− s′26+ s′22/ µkIf the two functi<strong>on</strong>s φ1and φ2, instead of F, are used, from (2.5) we obtainN.C. State Univ., Raleigh, NC 2-3 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>221= 2∑Re ()k = 1k=1[ −µk) Fk′( zk)],φ2= 2∑Re[ Fk′( zk]φ (2.18)Assuming for each k, F′ k( z k) has the same functi<strong>on</strong> form, we letF ′k( zk) ≡ f ( zk) qk(2.19)Then the displacements, (2.17), and potential functi<strong>on</strong> φ , (2.18), can be expressed in a matrixformu = 2 Re[ A f q](2.20)φ = 2 Re[ B f q]wheref is a diag<strong>on</strong>al matrix defined as f = diag f ( z ), f ( )][1z2⎡ p1p2⎤A = [ a1 , a2] = ⎢ ⎥ , (2.21)⎣q1q2⎦⎡−µ1− µ2 ⎤B = [ b1, b2] = ⎢ ⎥ , (2.22)⎣ 1 1 ⎦B −11 ⎡−1− µ2⎤=µ −⎢ ⎥1µ2 ⎣ 1 µ(2.23)1 ⎦The simple form of the complex matrices A and B will be used <strong>to</strong> derive some importanttensors in the next chapter based <strong>on</strong> Stroh formulati<strong>on</strong>.For a given problem, the unknowns in (2.20) remain <strong>to</strong> be solved are:(1) determine the complex-valued functi<strong>on</strong> form f(z) from loading (point force),dislocati<strong>on</strong>, geometry (wedge, crack);(2) determine the complex vec<strong>to</strong>r q from the boundary c<strong>on</strong>diti<strong>on</strong>s.N.C. State Univ., Raleigh, NC 2-4 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>Chapter 3 The Stroh Formalism3.1 Stroh’s formalsim3.2 Eigenvalues µ3.3 The Sextic formalism of Stroh3.4 Normalizati<strong>on</strong> of A and B3.5 Explicit expressi<strong>on</strong>s of S, H, L3.6 Tracti<strong>on</strong>s, resultant forces and moments in terms of stress functi<strong>on</strong>s3.7 Example 1: Uniform stress soluti<strong>on</strong>3.8 Example 2: Green’s functi<strong>on</strong> of a point force and a dislocati<strong>on</strong>3.9 Example 3: Green’s functi<strong>on</strong> of a point force applied at the crack tip3.10 Example 4: Energy release rate expressi<strong>on</strong>3.11 Example 5: A crack subjected <strong>to</strong> a uniform load at infinity3.12 Example 6: An elliptical hole subjected <strong>to</strong> uniform load at infinity3.13 Example 7: An elliptical hole subjected <strong>to</strong> bending load at infinity3.14 Problems3.15 ReferencesAppendix A: J-integralAppendix B: Energy release rate gIn the previous chapter, Lekhnitskii formulati<strong>on</strong> can directly derive the eigenvalues µ k ,and A, B matrices in terms of compliance c<strong>on</strong>stants and present in a simpler expressi<strong>on</strong>.However, Stroh formulati<strong>on</strong> for treating two-dimensi<strong>on</strong>al anisotropic elasticity problems forgeneral anisotropic solids in a rectangular coordinate system possesses several unique featuresover Lekhnitskii formulati<strong>on</strong>:(1) The formulati<strong>on</strong> starts with displacement formulati<strong>on</strong>. Thus there is no need <strong>to</strong>c<strong>on</strong>sider strain compatibility c<strong>on</strong>diti<strong>on</strong>s;(2) The formulati<strong>on</strong> utilizes the stress functi<strong>on</strong>s φ which have the same order as thedisplacement expressi<strong>on</strong> u;(3) Using matrix notati<strong>on</strong>, the coefficients A and B associated with u and φ have richorthog<strong>on</strong>ality and closure relati<strong>on</strong>s which can simplify the calculati<strong>on</strong> significantlyand make results in a very compact form;(4) If the physical parameters can be related <strong>to</strong> Barnett-Lothe tensors, S, H, L, therelati<strong>on</strong>s can directly apply <strong>to</strong> degenerate cases such as isotropic solids;(5) The formulati<strong>on</strong> is mathematically elegant and has been proved a very powerfultechnique in the two-dimensi<strong>on</strong>al deformati<strong>on</strong> of anisotropic elasticity problems;(6) The formulati<strong>on</strong> has potential in solving wave equati<strong>on</strong>s, bending in anisotropicplate, three-dimensi<strong>on</strong>al anisotropic elasticity problems, etc.3.1 Stroh’s FormalismIn a fixed Cartesian coordinate system x i, (i = 1, 2, 3), c<strong>on</strong>sider a two-dimensi<strong>on</strong>aldeformati<strong>on</strong> of an anisotropic linear elastic body in which the deformati<strong>on</strong> field is independen<strong>to</strong>f the x 3coordinate. This class of the problems was first introduced by Eshelby et al., (1953).The stresses σijare related <strong>to</strong> displacements u i by the generalized Hooke’s lawij= Cijkluk, lσ (3.1)N.C. State Univ., Raleigh, NC 3-1 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>where C ijkl are the elastic stiffness tensor. The equilibrium equati<strong>on</strong>s in the absence of bodyforces expressed in terms of displacements areC u ijkl k , lj= 0(3.2)Let the displacement be assumed <strong>to</strong> be in the following form:whereui = aif (z) or u = a f (z)(3.3)z = x 1+ µ x 2(3.4)In the above f is an arbitrary functi<strong>on</strong> of z, and µ and ai are unknown c<strong>on</strong>stants <strong>to</strong> bedetermined. Usingu = ( δ + µδ2) a f ( )(3.5)and substituting (3.5) in<strong>to</strong> (3.2) gives′k , l l1l kzorC+ µδ ) ( δ + ) a f ′′ijkl( δj1 j2l1µδl2k=2[ C ( C + C ) µ + C µ ] a 0(3.6)i1 k1+i1k2 i2k1i2k2 k=0(3.6) can be written in matrix notati<strong>on</strong> asT2[ Q + ( R + R ) µ + Tµ ] a = 0(3.7)where Q, R, and T are 3 × 3 matrices whose comp<strong>on</strong>ents areQ = C=(3.8)iki1 k1, Rik= Ci1k 2, TikCi2k2For a n<strong>on</strong>trivial soluti<strong>on</strong> of a, we haveT2Q + ( R + R ) µ + Tµ= 0(3.9)The determinant gives six roots for the eigenvalue µ. The associated eigenvec<strong>to</strong>r a isdetermined from (3.7). The stresses σijare obtained by inserting (3.5) in<strong>to</strong> (3.1) and areexpressed by two vec<strong>to</strong>rsτ1= [ σ11, σ12, σ13](3.10)τ2= [ σ12, σ22, σ23]andσi1= ( Qik+ Rikµ) a f ′k( z)(3.11)σ = ( R + T µ ) a f ′(z)i2kiikIt can be proved that µ of (3.9) cannot be real for the strain energy density being positivedefinite. Since the coefficients of the sextic equati<strong>on</strong> for µ arising from (3.9) are real there arekN.C. State Univ., Raleigh, NC 3-2 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>three pairs of complex c<strong>on</strong>jugates for µ. If µ k, ak(k = 1, 2, …, 6) are the eigenvalues and theassociated eigenvec<strong>to</strong>rs, we can rearrange the first three eigenvalues have positive imaginaryparts andµ µ a = a ( 1, 2 , 3)(3.12)k+ 3=k,k+3 kk =where the overbar denotes the complex c<strong>on</strong>jugate. Assuming that µ are distinct, the generalsoluti<strong>on</strong> obtained by superposing six soluti<strong>on</strong>s of the form (3.3) is3[kfk k k k+3k=1u = ∑ a ( z ) + a f ( z )](3.13)where f k (k = 1, 2, …, 6) are arbitrary functi<strong>on</strong>s of their arguments andzk= x 1+kx 2(3.14)kµSimilarly, the general soluti<strong>on</strong> for the stresses obtained from (3.10) can be written asτ =τ12=3∑k=13∑k=1[( Q + µ R)a[( RTk+ µ T)akkf ′(zkkf ′(zkk) + ( Q + µ R)ak) + ( RTk+ µ T)akkf ′k+3k( zf ′kk+3)]( zk)](3.15)The stress comp<strong>on</strong>ent σ3is determined from σ3is determined by σ3= −s3jσj/ s33(j = 1, 2,4, 5, 6), which is the plane strain c<strong>on</strong>diti<strong>on</strong>, ε3= 0.3.2 Eigenvalues µFor m<strong>on</strong>oclinic materials with the symmetry plane at x 3= 0, employing the c<strong>on</strong>tractednotati<strong>on</strong> for C ijkl introduced in Secti<strong>on</strong> 1.2 the three matrices Q, R, and T defined in (3.8)have the expressi<strong>on</strong>s⎡C11C160 ⎤ ⎡C16C120 ⎤ ⎡C66C260 ⎤Q =⎢C⎥⎢16C660 , R =⎢C⎥⎥ ⎢66C260 , T =⎢C⎥⎥ ⎢26C220 (3.16)⎥⎢⎣0 0 C55⎥⎦⎢⎣0 0 C45⎥⎦⎢⎣0 0 C44⎥⎦Eq. (3.9) reduces <strong>to</strong>⎡⎢⎢C⎢⎣16C11+ ( C+ 2C1216+ Cµ + C066662µ2) µ + C µ26C16+ ( CC6612+ C+ 2C260662) µ + C µµ + C µ22262C55+ 2C0045µ + C44⎤⎥⎥a=02µ ⎥⎦(3.17)µ 1 and µ 2 are the roots ofN.C. State Univ., Raleigh, NC 3-3 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>222 2( C + 2Cµ + C µ ) ( C + 2Cµ + C µ ) − [ C + ( C + C ) µ + C µ ] 0 (3.18)11 16 66 66 26 2216 12 66 26=µ 3 is the root of a quadratic equati<strong>on</strong>2C55+ 2C45µ + C44µ= 0Recall from the Lekhnitskii formulati<strong>on</strong> (2.14), a more compact form can be written in term ofreduced compliance c<strong>on</strong>stantsand432s ′ µ − s′µ + (2s′+ s′) µ − 2s′µ + s′0(3.19)1121612 6626 22=s ′ ′ µ s′255µ − 2s45+44=03.3 The Sextic formalism of StrohIntroducing a new vec<strong>to</strong>r b1b = ( R T + Tµ ) a = − ( Q + Rµ) a(3.20)µthe stresses in (3.11) can be rewritten asσ = −µf ( ), σ = f ( )(3.21)i 1b i′ zi 2b i′ zThe sec<strong>on</strong>d equality in (3.20) follows from (3.7). Defining the stress functi<strong>on</strong>φ i= b if (z) or φ = b f (z)(3.22)(3.21) are equivalent <strong>to</strong>σ = −φσ = φ(3.23)i1 i,2,i2i,1Therefore, it is sufficient <strong>to</strong> c<strong>on</strong>sider the stress functi<strong>on</strong> φ because the stresses can beobtained from (3.23) through differentiati<strong>on</strong>.From (3.23), σ21= σ12impliesand, by (3.22),φ + φ 0(3.24)1 ,1 2,2=(1 2=b ) + µ ( b)0(3.25)where () k defines as the kth comp<strong>on</strong>ent of the associated vec<strong>to</strong>r. The general soluti<strong>on</strong> for thestress functi<strong>on</strong> φ is obtained by superposing six soluti<strong>on</strong>s of the form (3.22) associated withsix eigenvalues µ k. Together with (3.13) we haveN.C. State Univ., Raleigh, NC 3-4 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>u =φ =3∑k=13∑k=1[ ak[ bkf ( zkkkk) + af ( z ) + b fkkfk+3k+3( z( zkk)])](3.26)In the above b kis related <strong>to</strong> a kthrough (3.20) andb = ( 1, 2 , 3)(3.27)k+ 3b kk =The vec<strong>to</strong>rs a k , b k are the Stroh eigenvec<strong>to</strong>rs. The displacements are given by (3.26) 1 whilethe stresses are obtained from (3.26) 2 and (3.23) by differentiati<strong>on</strong>.In most applicati<strong>on</strong>s the arbitrary functi<strong>on</strong>s f k appearing in (3.26) have the samefuncti<strong>on</strong>s form for each k. We may therefore letf ( z ) = f ( z ) q , f+ 3( z ) = f ( z ) q(3.28)kkkkkkkk(k = 1, 2, 3) where q kare arbitrary complex c<strong>on</strong>stants. The sec<strong>on</strong>d equati<strong>on</strong> is useful forobtaining real form soluti<strong>on</strong>s for u and φ. Equati<strong>on</strong>s (3.26) can then be written asu = 2 Re[ Aφ = 2 Re[ Bffq]q](3.29)where A and B are complex matrices,z[ ]f () z = diag f ( z1), f ( z2), f ( z3 ).= x 1+kx 2, Im[µ k ] > 0 , k = 1, 2, 3.kµA = [ a , a a ] , [ b , b b ]1 2,3B = (3.30)1 2,3In the above, f(z) is an arbitrary functi<strong>on</strong>, q is a unknown complex c<strong>on</strong>stant vec<strong>to</strong>r <strong>to</strong> bedetermined. µ k , a k , and b k are the Stroh eigenvalues and eigenvec<strong>to</strong>rs which depend <strong>on</strong> theelastic c<strong>on</strong>stants <strong>on</strong>ly. Hence, regardless of the problems <strong>to</strong> be solved, Stroh eigenvalues andeigenvec<strong>to</strong>rs µ k , a k , and b k form the basic elements in the Stroh formulati<strong>on</strong>. Although thesoluti<strong>on</strong>s <strong>to</strong> an anisotropic elasticity problem is, in general, expressed in terms of the Stroheigenvalues and eigenvec<strong>to</strong>rs are complex, there are identities which express certaincombinati<strong>on</strong> of the eigenvalues and eigenvec<strong>to</strong>rs in terms of real matrices, such as N i andBarnett-Lothe tensors, S, H, and L.When q is replaced by− i q , (3.29) is expressed in an alternative formu = 2 Im[ Aφ = 2 Im[ Bffq]q](3.31)N.C. State Univ., Raleigh, NC 3-5 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>It has been shown by Stroh (1962) and Ingebrigtsen and T<strong>on</strong>ning (1969), that the entireproblem can be recast in<strong>to</strong> a six-dimensi<strong>on</strong>al framework and the unknowns µ k, , a k , and b k maybe simultaneously determined from the six-dimensi<strong>on</strong>al eignevalue problem from (3.20)N ξ = µ ξ(3.32)whereN NN = ⎡ ⎣ ⎢ 1 2 ⎤ ⎡a⎤TN N⎥ , ξ = ⎢ ⎥ (3.33)3 1 ⎦ ⎣ b⎦ −1T−1−1TN =− T R , N = T , N = RT R −Q(3.34)1ξ spans a six-dimensi<strong>on</strong>al space. It has been shown that the vec<strong>to</strong>rs2⎡a⎤⎡b⎤ξ = ⎢ ⎥ and η =⎣ b⎢ ⎥⎦ ⎣ a⎦ associated with same eigenvalue µ are the right and left eigenvec<strong>to</strong>rs of the unsymmetricmatrix N, respectively. The orthog<strong>on</strong>ality between the right and left eigenvec<strong>to</strong>rs leads <strong>to</strong>i.e., in the matrix form:η T = 0 , α ≠ β , α, β = 1, 2, ⋅⋅⋅, 6αξ β3⎡b⎢⎣aTα ⎤α⎡a⎥ ⎢⎦ ⎣bββ⎤⎥ = [ b⎦Tα, aTα⎡a] ⎢⎣bββ⎤⎥ = 0 ,⎦µ ≠ µαβ(3.35)T⎡b1⎢ T⎢b2T⎢b3⎢ T⎢b1⎢Tb2⎢T⎢⎣b3aaaaT1T2T3T1T2T3aa⎤⎥⎥⎥ ⎡a⎥ ⎢⎥ ⎣b⎥⎥⎥⎦11ab22ab33ab11ab22⎡*⎢0⎢a3⎤⎢0⎥ = ⎢b3⎦ ⎢0⎢0⎢⎣00*000000*000000*000000*00⎤0⎥⎥0⎥⎥0⎥0⎥⎥* ⎦or⎡B⎢⎣BTTAATT⎤ ⎡A⎥ ⎢⎦ ⎣B⎡*⎢0⎢A⎤⎢0⎥ = ⎢B⎦⎢0⎢0⎢⎣00*000000*000000*000000*00⎤0⎥⎥0⎥⎥0⎥0⎥⎥* ⎦N.C. State Univ., Raleigh, NC 3-6 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>where the * symbol denotes a possible n<strong>on</strong>zero element.Since the eigenvec<strong>to</strong>rs a α , b α are unique up <strong>to</strong> a multiplicative c<strong>on</strong>stant, the eigenvec<strong>to</strong>rs a α ,b α can be normalized under the assumpti<strong>on</strong> of µ α being distinct such thatThusTTb a + a b = δ(3.36)α β α β αβ⎡B⎢⎣BTTAATT⎤ A⎥ ⎡ ⎦ ⎣ ⎢ BA⎤⎥ = ⎡ I 0B⎦⎣ ⎢⎤0 I⎥⎦(3.37)orT TT TB A + A B = I = B A + A B(3.38)T TT TB A + A B = 0 = B A + A B(3.38) are called orthog<strong>on</strong>ality relati<strong>on</strong>s. Since the two matrices are inverse <strong>to</strong> each other,then⎡A⎢⎣BA⎤⎡B⎥ ⎢B⎦⎣BTTAATT⎤ ⎡⎥ = I⎢⎦ ⎣00⎤I⎥⎦(3.39)orT TT TAB + AB = I = BA + BA(3.40)T TT TAA + AA = 0 = BB + BB(3.40) are called closure relati<strong>on</strong>s. (3.40) imply Re[AB T ] = I/2, AA T and BB T are pureimaginary. Hence the Barnett-Lothe tensors S, H, and L defined byS 2TTT= i( 2AB− I ) , H = 2iAA , L = − i BB(3.41)are real. It can be shown that they are positive definite and tensors of rank two. The matrixproducts, AB T , AA T , and BB T , appeared in the final soluti<strong>on</strong>s of the two-dimensi<strong>on</strong>alanisotropic elasticity problems can be often replaced by the real tensors, S, H, and L.Moreover, S, H, L are related byHL − SS = I(3.42)Another two tensors, impedance tensor M and its inverse M -1 defined byM−1−1−1−1−1−1= −iB A , M = ( −i)( BA ) = i A BM and M -1 Tare positive definite, Hermitian ( M = M ), and tenor of sec<strong>on</strong>d order. Barnett(1985) has shown that M is c<strong>on</strong>venient for use in problems involving dislocati<strong>on</strong>s and cracksal<strong>on</strong>g the interface. In general, the Stroh formulati<strong>on</strong> can not be directly applied <strong>to</strong> degeneratematerials where µ have repeated roots (3.18) or (3.19). However, if the final soluti<strong>on</strong> requires<strong>on</strong>ly S, H, L, then the soluti<strong>on</strong> also holds for degenerate materials (Barnett and Lothe, 1973).N.C. State Univ., Raleigh, NC 3-7 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>The eigenrelati<strong>on</strong> (3.32) can be combined in<strong>to</strong> a matrix form⎡AN ⎢⎣BA⎤⎡A⎥ = ⎢B⎦⎣BA⎤⎡µ⎥B⎢⎦ ⎣00 ⎤µ⎥⎦where µ = µ = diag µ , µ , ] .[1 2µ3By (3.39), we obtain3.4 Normalizati<strong>on</strong> of A and BT T⎡AA⎤⎡µ0 ⎤ ⎡BA ⎤N = ⎢ ⎥ ⎢ ⎥ ⎢ T T ⎥(3.43)⎣BB⎦⎣0µ ⎦ ⎣BA ⎦In order <strong>to</strong> satisfy the normalizati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong> in (3.36), normalized fac<strong>to</strong>rs k 1 , k 2 , andk 3 for A and B need <strong>to</strong> be quantified. In this procedure, we determine B first and A. Form<strong>on</strong>oclinic materials, it is easily seen that both A and B have the structure:⎡*⎢*⎢⎢⎣0Therefore, the determinati<strong>on</strong> of k 1 and k 2 can be separated from that of k 3 . The in-planedeformati<strong>on</strong>, B from (2.22) or from (3.25) can be written with normalizati<strong>on</strong> fac<strong>to</strong>rs as**0⎡−k1µ1− k2µ2 ⎤B = ⎢⎥(3.44)⎣ k1k2⎦From (3.17), a 1 and a 2 can be written as0⎤0⎥⎥* ⎥⎦2k ⎡ − ( C66+ 2C26µ+ C22µ) ⎤a = ⎢2 ⎥(3.45)γ ( µ ) ⎣C16+ ( C12+ C66)µ + C26µ⎦where γ(µ) is a functi<strong>on</strong> of µ <strong>to</strong> be determined. Substituting in<strong>to</strong> (3.20), we obtain b 1 and b 2shown in (3.44) ifγ ( µ ) = ( C16C= J ( s′1226− C) − ( C2− s′µ + s′µ )1612C661112C26− C16C22) µ + ( CThe above equality hae been shown in (1.82). From (1.85) and (1.86) with (3.45) or directlyfrom (2.21) without going these intermediate steps,⎡k1p1k2p2⎤A = ⎢ ⎥(3.46)⎣k1q1k2q2⎦The normalizati<strong>on</strong> fac<strong>to</strong>rs which satisfy (3.36) are obtained from the following relati<strong>on</strong>s22C66− C2262) µN.C. State Univ., Raleigh, NC 3-8 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>2k2k2122( q1( q2− µ p ) = 1121− µ p2) = 1(3.47)3.5 Explicit expressi<strong>on</strong>s of S, H, LFrom the inverse of B -1 in (3.44),we have−1−1B −1 1 ⎡−k1− µ2k1⎤= ⎢ −1−1⎥µ1− µ2 ⎣ k2µ1k, (3.48)2 ⎦−1 1 ⎡ p1− p2p1µ2− p2µ1⎤− AB =−⎢⎥(3.49)µ1µ2 ⎣ q1− q2q1µ2− q2µ1 ⎦Clearly the normalizati<strong>on</strong> fac<strong>to</strong>rs are cancelled out for the multiplicati<strong>on</strong>. Using2p = s′µ − s′µ + and qk= s′12µk− s′26+ s′22/ µkfrom Lekhntskii formulati<strong>on</strong>11 16s′k k k 12⎡ ′′ ′ ′−1s11(µ1+ µ2) − s16s11µ1µ2− s12⎤− AB = ⎢⎥ (3.50)⎣ s12′ − s22′ / µ1µ2s26′ − s22′ ( µ1+ µ2) / µ1µ2 ⎦Further, employing the relati<strong>on</strong>s between µiand the coefficients of the quartic equati<strong>on</strong> in(3.19), we can obtain the following form through some manipulati<strong>on</strong>s⎡ ′′ ′−1is11Im( µ1+ µ2) s11µ1µ2− s12⎤- AB = ⎢⎥(3.51)⎣ s12′ − s11′ µ1µ2is11′ Im[ µ1µ2( µ1+ µ2)] ⎦(3.51) can be used <strong>to</strong> calculate the inverse impedance tensor M -1 1 −1( M − = i A B ) and can beapplied <strong>to</strong> degenerated materials. Sinceusing (3.41), we have−−1T T −1AB = −(AB )( BB )(3.52)−−1 −1−1AB = SL + i L(3.53)−1Therefore the real and imaginary parts of - AB are SL -1 and L -1 , respectively. With SL -1 andL -1 determined, L and S are then obtained. Finally H is determined from (3.42)The compact form of S, H, and L matrices are1 −1H = L− + S(SL )(3.54)s′s′− ⎡ − ⎤=)2( / d b11c[( s′′ − ⎡bd12 12/ s11)c]⎤S2be − d⎢ ⎥ , H = s11′ ( 1 −)⎣e− d⎢ ⎥ (3.55)2⎦be − d ⎣de ⎦N.C. State Univ., Raleigh, NC 3-9 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>−1⎡bd⎤1 ⎡ e − d ⎤L = s11′ ⎢ ⎥ , L =′ −⎢ ⎥(3.56)2⎣de⎦s11(be d ) ⎣−d b ⎦µ + µ = a + ib,µ µ = c + id12e = ad − bc = Im[ µ µ ( µ + µ )]In the isotropic solids under in-plane deformati<strong>on</strong>, the Barnett-Lothe tensors are112212L =12s′I,(3 − 4ν)(1 + ν )H =I,2E(1−ν)1 − 2ν⎡0S =2(1 − )⎢⎣111ν−1⎤0⎥⎦(3.57)2where s′ = ( 1−ν )/ E .113.6 Tracti<strong>on</strong>s, resultant forces and moments in terms of stress functi<strong>on</strong>sThe tracti<strong>on</strong> vec<strong>to</strong>r t at a point <strong>on</strong> a curved surface Γ with unit outward normal n = [n 1 ,n 2 , 0] T is given byt = σ n(3.58)i ij jLet s be an arc length measured counter-clockwise al<strong>on</strong>g Γ as shown in Fig. 3.1,Using (3.23) and (3.59),dx1= ,dsn2dx= , n3= 0(3.59)ds1n2 −d dx1dx2φi= φi,1+ φi,2ds ds ds= −σn − σ n = −σni11i22ijjHence, t i can be expressed asddti= − φior t = − φ(3.60)ds dsThus if the boundary Γ is tracti<strong>on</strong>-free surface, thenφ = 0 <strong>on</strong> Γ (3.61)N.C. State Univ., Raleigh, NC 3-10 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>x 2tnΓsFig. 3.1 The surface tracti<strong>on</strong> t <strong>on</strong> a curved boundary Γ with a unit outward normal vec<strong>to</strong>r n.x 1areThe resultant force due <strong>to</strong> the surface tracti<strong>on</strong> t acting <strong>on</strong> Γ between s 1 and s 2 (s 2 > s 1)s2∫ t ( s)ds = φ ( s1) − φ(s2) = −∆φ(3.62)s1If Γ encloses a regi<strong>on</strong> and there exists a c<strong>on</strong>centrated force f inside the regi<strong>on</strong>, theequilibrium of the solid gives∫ Γt(s) ds= − f∆φ = f(3.63)This implies that if we traverse Γ counter-clockwise <strong>on</strong>e complete circle, φ increases by theamount f. Therefore φ must be a multiple-valued functi<strong>on</strong>. A Riemann surface with a propercut has <strong>to</strong> be introduced <strong>to</strong> maintain a unique soluti<strong>on</strong> for φ. If there is no c<strong>on</strong>centrated forceinside the enclosed regi<strong>on</strong> Γ, φ is a single-valued functi<strong>on</strong>.The moment about the x 3-axis due <strong>to</strong> the surface tracti<strong>on</strong> t acting <strong>on</strong> Γ between s 1 ands 2 (s 2 > s 1) arewheres2s2∫ ( x1t2− x2t1) ds = −[x1φ2− x2φ1− χ ](3.64)ss11∫χ z)= z φ ( λ)dλ(2As illustrated before, using Stroh formulati<strong>on</strong>, the two-dimensi<strong>on</strong>al anisotropic problemsrequire f(z) and q (complex c<strong>on</strong>stant) <strong>to</strong> be solved. The following example dem<strong>on</strong>strates howf(z) is selected for a specific problem and q is then determined from boundary c<strong>on</strong>diti<strong>on</strong>s.3.7 Example 1: Uniform stress soluti<strong>on</strong>N.C. State Univ., Raleigh, NC 3-11 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>The displacement u and the stress functi<strong>on</strong> φ for a uniform stress soluti<strong>on</strong> can bewritten asu = x ε∞1 1φ = x τ∞1 2+ x ε2− x τ∞2∞2 1(3.65)where τ ∞ 1= [ σ ∞ ∞ ∞11, σ 12, σ 13] T ∞ ∞ ∞ ∞, τ 2= [ σ 21, σ 22, σ 23]ε ∞ 1ε∞ 110 2ε∞13= [ , , ] T, ε ∞ 2= [ 2ε ∞ ∞ 12, ε 22, 2ε∞23]σ ij∞are the stresses at infinity. The equivalent strainsε ij∞applied at infinity can be obtained fromthe stress-strain law.The uniform stress soluti<strong>on</strong> can also be expressed byTTwhereu = 2 Re[ Aφ = 2 Re[ Bzzq]q](3.66)T Tq = A g + B h(3.67)g ,∞= τ 2h . (3.68)∞= ε 1The proof of equivalence between (3.65) and (3.66) with (3.67) and (3.68) is givenbelow:byFirst, let g and h be real c<strong>on</strong>stant vec<strong>to</strong>rs <strong>to</strong> be determined, (3.66) can be representedu = x [( AB12φ = x [( BB12T+ x [( AµBT+ ABT+ x [( BµB+ AµB+ BBTTT+ BµB) h + ( AAT) h + ( AµA) h + ( BATTT+ AA+ BA) h + ( BµATTTT) g]+ AµA) g]+ BµATT) g]) g](3.69)Comparing (3.69) with (3.65) yields⎡h⎤⎡AB⎢ ⎥ = ⎢⎣g⎦⎣BBTT+ AB+ BBTTAABATT+ AA+ BATT⎤⎥⎦−1∞⎡ε1⎤⎢ ∞ ⎥⎣τ2 ⎦(3.70)∞⎡ ε2⎤ ⎡A⎢ ⎥ = ⎢⎣−τ∞1 ⎦ ⎣BA⎤⎡µ⎥B⎢⎦ ⎣00 ⎤ ⎡Bµ⎥ ⎢⎦ ⎣BTTAATT⎤ ⎡h⎤⎥ ⎢ ⎥⎦ ⎣g⎦orN.C. State Univ., Raleigh, NC 3-12 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>∞⎡ ε ⎤ ⎡h2 ⎤⎢ ⎥ = N ⎢ ⎥⎣−τ∞⎦ ⎣g1 ⎦where (3.43) has been used in deriving (3.71). By virtue of (3.40),(3.71)ABT+ ABT= I = BAT+ BATAAT+ AAT= 0 = BBT+ BBT(3.70) becomes∞⎡h⎤⎡ε1⎤⎢ ⎥ = ⎢ ∞ ⎥⎣g⎦⎣τ2 ⎦Thus, the uniform stress soluti<strong>on</strong> expressi<strong>on</strong>, (3.66) - (3.68), is c<strong>on</strong>firmed.∞ε2andτ∞ 1are determined by (3.71). i.e.,∞∞⎡ ε2⎤ ⎡ε1⎤⎢ ⎥ = N∞ ⎢ ∞ ⎥⎣−τ1 ⎦ ⎣τ2 ⎦3.8 Example 2: Green’s functi<strong>on</strong> of a point force and a dislocati<strong>on</strong>For an infinite plane subjected <strong>to</strong> a line force f and a line dislocati<strong>on</strong> with Burgersvec<strong>to</strong>r b both located at x 1 = x 2 = 0, the soluti<strong>on</strong> can be written as1u = Im[ A ln zπq1φ = Im[ B ln zπq00]](3.72)where q 0 is a complex c<strong>on</strong>stant <strong>to</strong> be determined. Since lnz is a multi-valued functi<strong>on</strong>, weintroduce a branch cut al<strong>on</strong>g the negative x 1 -axis. In the polar coordinate system x 1 = rcosθ,x 2 = rsinθ, the above soluti<strong>on</strong> applies <strong>to</strong>Therefore− π ≤ θ ≤ π , r > 0± iπln z = ln( x + µαx = re = r ± iπθ = ± π 1 2) ln( ) ln at θ = ± π , for α = 1, 2, 3θ =± πEqs. (3.72) must satisfy the c<strong>on</strong>diti<strong>on</strong>s(ln z)θ = π − (ln z)θ = −π= 2πiu ( r,π ) − u(r,−π) = b , φ ( r,π ) − φ(r,−π) = f(3.73)The first equati<strong>on</strong> satisfies the displacement disc<strong>on</strong>tinuity due <strong>to</strong> dislocati<strong>on</strong>; while thesec<strong>on</strong>d equati<strong>on</strong> arises from (3.63).N.C. State Univ., Raleigh, NC 3-13 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>(3.74) can be written as20Re( Aq0) = b , 2 Re( Bq ) = f(3.74)⎡A⎢⎣BFrom orthog<strong>on</strong>ality relati<strong>on</strong>s (3.37),A⎤⎡q⎥B⎢⎦ ⎣q00⎤ ⎡b⎤⎥ = ⎢ ⎥⎦ ⎣ f ⎦(3.75)Hence⎡q⎢⎣q00⎤ ⎡B⎥ = ⎢⎦ ⎣BTTAATT⎤ ⎡b⎤⎥ ⎢ ⎥⎦ ⎣ f ⎦(3.76)T Tq0 = A f + B b ←(3.77)3.9 Example 3: Green’s functi<strong>on</strong> of a point force applied at the crack tipThe above soluti<strong>on</strong> form can be utilized <strong>to</strong> c<strong>on</strong>struct the soluti<strong>on</strong> of a wedge subjected<strong>to</strong> a point force at the wedge apex. If the wedge angle equals 2π, the soluti<strong>on</strong> for a cracksubjected <strong>to</strong> a line force at the tip can be obtained.The infinite plane subjected <strong>to</strong> a line force f and a line dislocati<strong>on</strong> with Burgers vec<strong>to</strong>r bboth located at x 1 = x 2 = 0, the soluti<strong>on</strong> can be c<strong>on</strong>verted in<strong>to</strong> a real formwhereln r2u= − h − S(θ ) h − H(θ ) gπln rT2φ= − g + L(θ ) h − S ( θ ) gπ(3.78)h = Sb + Hf ,g = STf− LbTTS = i( 2AB− I ), H = 2iAA , L = −22TS(θ ) = Re[ A ln(cosθ+ µ sinθ) B ]π2TH(θ ) = Re[ A ln(cosθ+ µ sinθ) A ]π2TL(θ ) = − Re[ B ln(cosθ+ µ sinθ) B ]πS, H, L, S(θ), H(θ), and L(θ) are real matrices.i BBIn a cylindrical coordinate system (r, θ, x 3 ), let t r and t θ be the tracti<strong>on</strong> vec<strong>to</strong>rs <strong>on</strong> acylindrical surface r = c<strong>on</strong>stant and <strong>on</strong> a radial plane θ = c<strong>on</strong>stant, thenTN.C. State Univ., Raleigh, NC 3-14 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>1φ,θtr= − , tθ= φ , rrTT Tσrr= n tr, σr θm tr= n tθTTwhere n = [cosθ, sinθ] and m = [ − sinθ, cosθ]For the real form soluti<strong>on</strong> (3.78),= , σθθ= m T tθtθ1= −2πrgThe equati<strong>on</strong> indicates that t θ is independent of θ. Hence if t θ vanishes at a particular θ, itvanishes for all θ. The soluti<strong>on</strong> for a crack subjected <strong>to</strong> a line force f at the crack tip may beobtained from the real form soluti<strong>on</strong> (3.78) by setting g = 0, i.e.,⎡lnr ⎤2u= −⎢I + S(θ ) h⎣ π ⎥⎦2φ= L(θ ) h(3.79)The c<strong>on</strong>centrated force f requires thatφ ( π ) − φ(−π) =forh = 2[ L(π ) − L(−π)]−1fSinceL( π ) = L,L(−π) = −L−1h = L f(3.80)The following example dem<strong>on</strong>strates that using <strong>on</strong>e of the Barnett-Lothe tensors, L,the energy release rate can be written in a compact form and can be applied <strong>to</strong> degeneratematerials.3.10 Example 4: Energy release rate expressi<strong>on</strong>As shown in the Appendices, the energy release rate for a crack in an anisotropic solidcan be expressed by1 −T 1G = k L k(3.81)2where k = [k II , k I , k III ] T . For isotropic solids, using augmented form (3.57) for 3 × 3 matrix L -1 ,N.C. State Univ., Raleigh, NC 3-15 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>L−1⎡⎢122(1 −ν)= ⎢0E ⎢⎢0⎣0100⎤⎥0 ⎥1 ⎥1 + ν⎥⎦we obtain21 −ν2 2 1 2G = ( kI+ kII) + kIIIfor plane strain (3.82)E2GE(1+ 2ν)For plane stress, E and ν are replaced by and2(1 + ν )νfor Mode I and II respectively.1+ ν1 2 2 1 2G = ( kI+ kII) + kIIIfor plane stress (3.83)E2GIn the following three examples, two real matrices G1(θ ) and G3(θ ) are introduced indescribing stress terms al<strong>on</strong>g the hole or crack boundary.From (3.32),N ξ =where µ = µ = diag µ , µ , ] .µ ξ , the equati<strong>on</strong> can be written in an explicit matrix form[1 2µ3Post-multipling [B T , A T ], we have⎡A⎤⎡Aµ⎤N ⎢ ⎥ = ⎢ ⎥(3.84)⎣B⎦⎣Bµ⎦T T⎡N1N2 ⎤ ⎡ABAA ⎤ ⎡Aµ B⎢ ⎥ ⎢ ⎥ =T T T ⎢⎣N3N1⎦ ⎣BBBA ⎦ ⎣Bµ BUsing definiti<strong>on</strong> of Barnett-Lothe tensors,TTTA µ A ⎤T ⎥B µ A ⎦(3.85)⎡ S⎢⎣−Leq. (3.85) can be expressed byT TH ⎤ ⎡ABAA ⎤⎥ = 2 i ⎢− i IT T ⎥(3.86)TS ⎦ ⎣BBBA ⎦⎡Aµ B2⎢⎣Bµ BTTTA µ A ⎤ ⎡N⎥ =TB µ A⎢⎦ ⎣N13N2 ⎤ ⎡N1⎥ − iTN⎢1 ⎦ ⎣N3N2 ⎤ ⎡ STN⎥ ⎢1 ⎦ ⎣−LH ⎤TS⎥⎦(3.87)One of these eqs. in (3.87) is expressed byTTB µ B = N − i(N S − N )(3.88)23 3 1LUsingB−1T T −1T −1T −= B ( BB ) = −2i B L leads <strong>to</strong> B = i B1 L / 2. (3.88) becomesN.C. State Univ., Raleigh, NC 3-16 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>B−1T-1−1µ B = ( N1- N3SL) − iN3L(3.89)The real and imaginary parts of (3.89) is defined as G 1 (0) and G 3 (0)−1B µ B = G1( 0) + iG3(0)(3.90)whereG 3SL-11( 0)= N T1- N ,−1G3 (0)= −N 3L.Referring <strong>to</strong> a new coordinate system obtained by rotating x i about the x 3 - axis an angleθ, the dependence of µ (θ ) <strong>on</strong> θ isµ cosθ− sinθµ ( θ ) = (3.91)µ sinθ+ cosθWe can definewhereG−1B µ ( θ ) B ≡ G1(θ ) + i G3(θ )µ ( θ ) = diag[µ1(θ ), µ2(θ ), µ3(θ )]−11( θ ) Re[ B µ ( θ ) B ] = N T 1( θ ) − N3(θ )1= SL−1(3.92)G−13( ) Im[ B µ ( θ ) B ] = −3(θ )θ = N L−It can be shown that G 1 (θ) and G 3 (θ) for specific angles have the following structures⎡ * * * ⎤ ⎡**G =⎢−⎥1(0) 1 0 0 , G⎢⎢ ⎥ 3(0) = 0 0⎢⎢⎣* * * ⎥⎦⎢⎣* *G i( π / 2) = G i( −π/ 2) , i = 1, 3⎡01 0⎤⎡0G =⎢ ⎥1(π / 2) * * * , G⎢⎢ ⎥3(π / 2) = *⎢⎢⎣* * * ⎥⎦⎢⎣** ⎤0⎥⎥* ⎥⎦0 0⎤* *⎥⎥* * ⎥⎦For m<strong>on</strong>oclinic materials,−1B µ ( θ ) B =⎡(µ1µ2−1)mn + ( µ1+ µ2) m1 ⎢⎢− 1ς1ς2⎢⎣0where m = cosθ, n = sinθ, ςThe real G 1 and G 3 matrices areα2= cos θ + µ sinθ.αµ1µ2( µ µ − 1) mn − ( µ + µ ) n1201220 ⎤⎥0⎥µ ⎥3(θ ) ς1ς2 ⎦(3.93)N.C. State Univ., Raleigh, NC 3-17 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>⎡ a c 0 ⎤G⎢ ⎥1(0)= G1= −10 0 ,⎢ ⎥⎢⎣0 0 µ ′3⎥⎦and µ3= µ ′3+ i µ ′3For isotropic materials,⎡bd 0 ⎤G⎢ ⎥3(0)= G3= 0 0 0(3.94)⎢ ⎥⎢⎣0 0 µ ′′3⎥⎦⎡ sin 2θ− cos2θ0⎤⎡1+ cos2θsin 2θ0⎤G ( ) =⎢− cos2 − sin 2 0⎥1θ θ θ , G⎢⎥⎢⎥3(θ ) = sin 2θ1−cos2θ0 (3.95)⎢⎥⎢⎣0 0 0⎥⎦⎢⎣0 0 1⎥⎦3.11 Example 5: A crack subjected <strong>to</strong> a uniform load at infinityσ 22∞σ 23∞σ 12∞x 2σ 13∞σ 13∞σ 11∞2ax 1σ 11∞σ 12∞σ 23∞σ 22∞Fig. 3.2 A crack subjected <strong>to</strong> uniform remote load at infinityReferring <strong>to</strong> a fixed coordinate system $x i, c<strong>on</strong>sider a crack of length 2a centrallylocated at $x 2= 0 in a homogeneous anisotropic material. A uniform stress σ ij∞is applied atinfinity. The crack surfaces are tracti<strong>on</strong>-free. The soluti<strong>on</strong> c<strong>on</strong>sists of a uniform stress soluti<strong>on</strong>due <strong>to</strong> the uniform loading σ ij∞and a disturbed soluti<strong>on</strong> due <strong>to</strong> the presence of the crack. It iseasily shown that the soluti<strong>on</strong> is given byu = Re[ Aφ = Re[ Bf ( zˆ)f ( zˆ)BB−1−1] τ] τ∞2∞2+ xˆε∞1 1+ xˆτ∞1 2+ xˆε2− xˆτ∞2∞2 1(3.96)wheref ( z$) = diag[ f ($ z1), f ($ z2), f ($ z3 )], zˆα = xˆ1 + µ α xˆ2f ( z$) = z$ 2 −a 2 −z$(3.97)N.C. State Univ., Raleigh, NC 3-18 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>Using τ1= −φ , 2, τ2= φ , 1, andτ ∞ 1σ ∞ 11σ ∞ ∞12σ 13= [ , , ] T ∞ ∞ ∞ ∞, τ 2= [ σ 21, σ 22, σ 23]ε ∞ 1ε∞ 110 2ε∞13= [ , , ] T, ε ∞ 2= [ 2ε ∞ ∞ 12, ε 22, 2ε∞23]TTz2− a2⎪⎧2 2± x1− a ,= ⎨2 2⎪⎩ ± i a − x1,at xat x22= 0, ± x= ± 0, x11> a< ait can be shown that⎫⎪2 2 −1∞ ∞u = ± [ xˆ1− xˆ1− a ] SL τ2+ xˆ1ε1⎪xˆ⎪1 ∞τ2= τ ⎬2 22xˆ1− a⎪xˆ⎪1∞ ∞ ∞τ1= − G1τ2+ G1τ2+ τ1 ⎪2 2xˆ1− a⎪⎭for xˆ2= 0, ± xˆ1> a(3.98)⎫−12 2 −1∞ ∞u = [ xˆa x x⎪1SL± − ˆ1L ] τ2+ ˆ1ε1⎪τ2= 0⎬ forxˆ⎪1∞ ∞ ∞τ1= m G3τ2+ G1τ2+ τ1 ⎪2 2a − xˆ1⎪⎭xˆ2= ± 0,xˆ1< a(3.99)Note that τ2is independent of material property. The crack opening displacement ∆uand thestress intensity fac<strong>to</strong>r k arewhere k = [ k , k , k ]III+−2 2 −1∞∆u( ˆ1)= u(xˆ1,0) − u(xˆ1,0) = 2 a − xˆ1L τ2IIITx (3.100)k ˆ(3.101)∞= lim 2π( x1− a ) τ2= π a τ2xˆ1 →aIntroducing a new coordinate system (x1, x2) at the right crack tip such thatf ( z$ ) can be expanded asαx$ = x + a, x$= x1 1 2 2(3.102)where3/ 2 5/ 2⎡ zαzαzα⎤f ( zˆα) = f ( zα+ a)= −a+ 2a⎢ zα− + − + O(z22a4a32a⎥⎣⎦zα= x + x = (cosθ+ µ sinθ),1µα 2rα− π ≤ θ ≤ π7 / 2α)N.C. State Univ., Raleigh, NC 3-19 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>Therefore the asymp<strong>to</strong>tic crack tip stress fields are expressed asτ1= −φ,2= −1 ⎡ µ 3µ5µ3/ 2 −1⎤∞ ∞ 5/ 2Re⎢B+ z − z B +1 2+1+ O ( r )22 z 4a32a⎥ k G τ τπ ⎣⎦orτ1= −3/ 21 ⎡ a 3µz 5µ⎛ z ⎞ ⎤−1∞ ∞ 5/ 2Re⎢Bµ + − ⎜ ⎟ B ⎥ k + G1τ2+ τ1+ O ( r )2πa⎢ z 4 a 32 a⎣⎝ ⎠ ⎥⎦(3.103)1 ⎡ 1 3 5 3/ 2 −1⎤5/ 2τ2= φ,1= Re⎢B+ z − z B + O ( r )22 z 4a32a⎥ kπ ⎣⎦(3.104)wheref ( z;µ ) = diag[f ( z1 , µ1) , f ( z2, µ2) , f ( z3, µ3)]and f(z; µ) is a given functi<strong>on</strong> with µ being a parameter. From the above expressi<strong>on</strong>s, thestress distributi<strong>on</strong> does not have z n terms, n = 1, 2, 3, ⋅⋅⋅, for the infinite plane under remoteuniform loading.It is clear that the sec<strong>on</strong>d-order terms, T-stress terms, areFor m<strong>on</strong>oclinic materials(2) ∞τ1= G1τ2+ τ(2)τ = 02∞1(3.105)(2)∞ ∞ ∞⎧σ11⎫ ⎧σ12s16′ + σ22c+ σ11⎫(2) ⎪ (2) ⎪ ⎪⎪τ1= ⎨σ12 ⎬ = ⎨ 0 ⎬(3.106)⎪ (2) ⎪ ⎪ ∞∞ ⎪⎩σ⎭ ⎩′ ′13σ23s45/ s55+ σ13 ⎭where c = Re( µ 1µ2) .For orthotropic materials, T-stress terms reduce <strong>to</strong>τ⎧σ⎪= ⎨σ⎪⎩σ∞⎫ ⎧ − σ22s22′ / s11′ + σ⎪ ⎪⎬ = ⎨⎪ ⎪∞⎭ ⎩σ13(2)11(2) (2)1 120(2)13∞11⎫⎪⎬⎪⎭3.12 Example 6: An elliptical hole subjected <strong>to</strong> uniform load at infinityN.C. State Univ., Raleigh, NC 3-20 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>x 2t mmt n= 0 t Γnθ ΓBσ nnaAσ nnbΓx 1Fig. 3.3 Tracti<strong>on</strong>s and stresses al<strong>on</strong>g the boundary of the elliptical holeTo c<strong>on</strong>sider this problem with elliptical hole, it is c<strong>on</strong>venient <strong>to</strong> express all the functi<strong>on</strong>sin terms of transformed variables ζ α instead of z α . The soluti<strong>on</strong> form is suggested as:u = Re[ A ζ−1B-1−1-1φ = Re[ B ζ B q]q]+ u+ φ∞∞(3.107)whereandu x x x x , (3.108)∞ ∞ ∞ ∞ ∞ ∞=1ε1+2ε2, φ =1τ2−2τ1ζα=zα+z2α− ( a2a − i µ bα2 2+ µ b )αζz−z− ( a2+ µ b2 22− 1 α αα)α=a + i µαbIn the above, the infinite plane with an ellipse opening has been transformed <strong>to</strong> the ζ-planeiψwith an opening of a unit circle, ζ = e . The mapping functi<strong>on</strong> isczcd−1α=αζα+αζα11= ( a − iµ αb),dα= ( a + i22α µ αwhere 2a and 2b are the major and minor axes of the ellipse. This mapping functi<strong>on</strong> maps theouter ellipse <strong>on</strong><strong>to</strong> the exterior of a unit circle.The ellipse boundary Γ can be parameterized byThe infinitesimal arc length of the ellipse isb)x1= a cosψ , x2= bsinψ(3.109)ds = ρ dψN.C. State Univ., Raleigh, NC 3-21 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>2 2 2 2ρ = a sin ψ + b cos ψ(3.110)The parameter ψ can be related <strong>to</strong> θ Γ , which is the angle directed from the x 1 -axis <strong>to</strong> thetangent n, byρ cosθΓ= a sinψ, ρ sinθΓ= −bcosψ(3.111)The unit vec<strong>to</strong>rs tangential and normal <strong>to</strong> the ellipse as shown in the Fig. 3.3 areTTn ( θΓ) = [cosθΓ, sinθΓ, 0] , m ( θΓ) = [ −sinθΓ, cosθΓ, 0](3.112)The stress functi<strong>on</strong> φ at the elliptic boundary Γ , x 1 = acosψ and x 2 = bsinψ, isφΓ− ∞ ∞= Re[ e iψ ( aτ2− ibτ1+ q)](3.113)For the tracti<strong>on</strong>-free <strong>on</strong> the surface of the elliptic hole, setting φ = 0 , we obtain∞ ∞= −aτ 2+ ibτ1Γq (3.114)If t n is the tracti<strong>on</strong> <strong>on</strong> a surface whose unit normal vec<strong>to</strong>r n(θ) and unit tangentialm(θ) areTn ( θ ) = [cosθ, sinθ, 0] ,Tm ( θ ) = [ −sinθ, cosθ, 0], (3.115)then from (3.60), we havet= φ φ m( θ θ φ θ φn−, m= −∇ ⋅ ) = sin,1− cos,2(3.116)The subscripts m followed by a comma denote differentiati<strong>on</strong> in directi<strong>on</strong> of m. The normalstress σ nn and the shear σ nm and σ n3 <strong>on</strong> the surface are determined fromσ = n θ t σ m θ t σ = t(3.117)Notice that <strong>on</strong> the boundary, it can be shown thatnnTT( )n,nm= ( )n,n3 (n) 3dζζ = (3.118)iψαζ α = e , α , mzα , mdzαiψdζ= i e dψ, dz = −ρ(cosθµ sinθ) dψ(3.119)ααΓ+αz = ( θ )(cosθµ sinθ)(3.120)α , mµ α Γ Γ+ α ΓUtilizing (3.118)-(3.120), the tracti<strong>on</strong> t n acting <strong>on</strong> the surface normal <strong>to</strong> the ellipse boundary,which is called hoop stress vec<strong>to</strong>r, can be derived from (3.107) 2 and (3.116)1 −iψ− ∞tn = Im[ e B µ ( θ1 Γ) B q]− φ,m(3.121)ρand the hoop stress σ nn is determined from σnn= n T ( θ Γ) tn.Since−1B µ θ ) B = G ( θ ) i G ( θ )(3.122)(Γ 1 Γ+3ΓΓN.C. State Univ., Raleigh, NC 3-22 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>t n and σ nn can be expressed as, after substituting (3.122), (3.114), and (3.108) in<strong>to</strong> (3.121)tn= cosθ[( τΓ+ sinθ[( τσnnΓ= nT− mT∞1∞2+ G ( θ ) τ1− G ( θ ) τ1ΓΓ(0)[ G ( θ ) τ1(0)[ G ( θ ) τ1ΓΓ∞2∞1∞2∞1+ bG3+ a G+ bG3− a G( θ ) τ3Γ( θ ) τΓ( θ ) τ3Γ( θ ) τΓ∞1∞2∞1∞2/ a)]/ a]/ b)]/ b](3.123)(3.124)C<strong>on</strong>sider a special case of uniform tensi<strong>on</strong> σ applied at infinity, we have∞∞ ∞τ1= 0,τ2= σ22m(0)andσσ∞22= [ G ( θ )] + a[G ( θ )] b(3.125)∞nn/22 1 Γ 12 3 Γ 22/In the above, [ ] ij denotes the (ij) elements of the matrix.3.13 Example 7: An elliptical hole subjected <strong>to</strong> bending load at infinityx*2x 2 x1 *Mbaαx 1MFig. 3.4 An elliptical hole under bendingC<strong>on</strong>sider the body subjected <strong>to</strong> pure bending M in a directi<strong>on</strong> at an angle α with thepositive x 1 – axis shown in Fig. 3.4. The soluti<strong>on</strong> isu = Re[ A ζ−2B-1−2-1φ = Re[ B ζ B q]q]+ u∞∞+ φ(3.126)where n(α) = [cosα, sinα, 0] T ,∞ M2φ = ( −x1 sin α + x2cos α)n(α),2IN.C. State Univ., Raleigh, NC 3-23 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>u ∞ can be determined from φ ∞ through c<strong>on</strong>stitutive relati<strong>on</strong> and (3.23). q is a c<strong>on</strong>stant vec<strong>to</strong>r<strong>to</strong> be determined, I is the moment inertia of the cross secti<strong>on</strong> normal <strong>to</strong> the loading axis.The stress functi<strong>on</strong> φ at the elliptical boundary Γ is−2ψ M2 M 2 2 2 2φ Re{ e i Γ= [ q + ( a sin α − ib cos α ) n(α )]} + ( a sin α + b cos α)n(α ) (3.127)4I4ITracti<strong>on</strong>-free c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> the surface of the elliptical hole φΓ= c<strong>on</strong>stant leads <strong>to</strong>M2q = − ( a sin α − ib cosα) n(α)(3.128)4IFollowing the same procedure as the case of uniform loading, the hoop stress vec<strong>to</strong>r t nand hoop stress, σ nn , at the elliptical opening can be written ast2ρ−i2ψ−1∞n= Im[ e B µ ( θΓ)B q]− φ,m(3.129)σ = θ t(3.130)nnTn ( Γ)The hoop stress al<strong>on</strong>g the opening boundary can also be expressed by− σwheressccsnn*0**22c =*** 2 ac Tas T/( Ma / I ) = s0 cos ( θΓ− α)− n ( θΓ) G3(θΓ)n(α)+ n ( θΓ) G1(θΓ) n(α)2ρ2ρ(3.131)= sin( ψ − α)− (1 − c)cosαsinψ= −2(c sin 2ψ+ s cos2ψ)= −2(s sin 2ψ+ c cos2ψ)1 2= [1 − c − (1 + c4c= − sin 2α2ba22222) cos2α]This case can be reduced <strong>to</strong> a crack when b = 0. Then we have2 2222 ˆ 2 ˆ ˆ−za− a − zαzaα=2N.C. State Univ., Raleigh, NC 3-24 F. G. Yuan, July 28-31, 1998n2− aξ (3.132)aM 2 2q = − a sin α n(α)4IIntroducing a coordinate system at the right crack tip such that


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>and expandingφ near the crack tip1= xˆ1+ a , x2xˆ2x =M ⎡a⎤φ ⎢ˆ ˆ ˆ ⎥ )4I⎢⎣2⎥⎦222−1∞= − sin α Re B − (2a)3/ z + 4az+ 5 z3/ + ⋅⋅⋅ B n(α + φ(3.133)and T has the structure1 ⎡ 1 −1⎤τ2= φ,x ˆ = Re+ O(zˆ)1 ⎢BB2 zˆ⎥ k(3.134)π ⎣ ⎦1 ⎡−1⎤τ1= −φ, ˆ = − Re+ O(zˆ)x 2 ⎢B µ B ⎥ k T2πzˆ+(3.135)⎣ ⎦k = limTr→0π aa M 22πrτ 2= sin α n(α)(3.136)θ = 0 2 IM= a sinα(sinαG1 + cosαI)n(α )Iz ˆ = xˆµ+2 21+ xˆ2, r = xˆ1xˆ2⎡*⎤T =⎢0⎥⎢ ⎥⎢⎣* ⎥⎦(3.137)3.14 Problems1. For m<strong>on</strong>oclinic materials with plane of symmetry at x 2 = 0, the matrix in determining µ kand a is22⎡ C11+ C66µ( C12+ C66)µ C15+ C46µ⎤⎢2⎥⎢( C12+ C66)µ C66+ C22µ( C25+ C46)µ ⎥a = 022⎢15 46(25 46)⎥⎣C + C µ C + C µ C55+ C44µ⎦The in-plane and antiplane deformati<strong>on</strong> are coupled.2. For a thick composite specimen made of AS4 carb<strong>on</strong> warp-knit fabric under tensi<strong>on</strong>, thematerial properties are:E1= 10.4 Msi,E2= 5.22 Msi,ν12= 0.403, GE = 1.45Msi, ν = ν = 0.493132312= 2.54 MsiIf the crack is parallel <strong>to</strong> x 1 – axis or oriented 45 0 from the x1-axis and the stiffer directi<strong>on</strong> isal<strong>on</strong>g the x2-axis, determineN.C. State Univ., Raleigh, NC 3-25 F. G. Yuan, July 28-31, 1998


(a)Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>µk(k = 1, 2)(b) A and B(c) k 1 and k 2 (normalized fac<strong>to</strong>rs)(d) Barnett-Lothe tensors, S, H, Lx _2 x 2x 145 οx 2x 1_x 1Fig. 3.2 A crack with inclined angle 0 0 and 45 0 in a thick composite coup<strong>on</strong>TTT3. Prove HL − SS = I [ S = i( 2AB− I), H = 2iAA , L = −2iBB]= 2 i − i =TTHL AA ( 2 BB ) 4AATBBTTTT TSS = [ i(2AB− I)][i(2AB− I)]= −4ABAB + 4ABT− ITHL - SS = 4AABB= 4A(AT= 4ABTTB + BT− 4ABT+ 4ABABTA)BT+ I = IT− 4AB− 4ABTT+ I+ I3.15 References1. D. M. Barnett and R. J. Asaro, “The <strong>Fracture</strong> <strong>Mechanics</strong> of Slit-like Cracks in AnisotropicElastic Media”, Journal of <strong>Mechanics</strong> Physics and Solids, Vol. 20, pp. 353-366, 1972.2. D. M. Barnett, “” Structural and Deformati<strong>on</strong> of Boundaries, Eds. K. A. Subramanian andM. A. Imam, pp. 31, AIME, 1985.3. J. D. Eshelby, W. T. Read, and W. Shockley, “Anisotropic Elasticity with Applicati<strong>on</strong>s <strong>to</strong>Dislocati<strong>on</strong> Theory”, Acta Metall., Vol. 1, pp. 251, 1953.N.C. State Univ., Raleigh, NC 3-26 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>4. G. R. Irwin, “Analysis of Stresses and Strains near the End of Crack Traversing a Plate”,ASME, Journal of Applied <strong>Mechanics</strong>, Vol. 24, pp. 361-364, 1957.5. A. N. Stroh, “Dislocati<strong>on</strong>s and Cracks in Anisotropic Elasticity”, Phil. Mag. Vol. 3, pp.625-646, 1958.6. A. N. Stroh, “Steady State problems in Anisotropic Elasticity”, J. Math. Phys., Vol. 41,pp. 77-103, 962.7. K. A. Ingerbrigtsen and A. T<strong>on</strong>ning, “Elastic Surface Waves in Crystal”, Physics Review,Vol. 184, pp. 942-, 1969.Appendix AJ-integralnx 2r 2r 1x 1crackΓThe J-integral can be written asFig. 3.5 A cracked body and a c<strong>on</strong><strong>to</strong>ur around a crackJ=∫Γ( W n − t u11 dui= (itiui) ds2∫ σ2−,1(A1)Γ ds1 T T= (2du− t u,1) ds2∫ τΓSubstituting the expressi<strong>on</strong>s for τ 2 , u and t and using the orthog<strong>on</strong>ality relati<strong>on</strong>sii,1) dsBTTT TA + A B = I , B A + A B = 0(A2)J can be further expressed byJ1 δ⎡Re4⎢⎣It can be readily shown thatT −T= ∑∑gmB∫mnδ δzα m + n∫ dzα= ln( r2 / r1) + i 2Γδ⎤m + n −1( δm+ 1) ( δn+ 1) z dz B gnΓ⎥ (A3)⎦π1δ m= δ n= −(A4)2N.C. State Univ., Raleigh, NC 3-27 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>The term c<strong>on</strong>tributing <strong>to</strong> J is the first term andT −T−1{[ln(r / r ) + i 2 g B B g }1J = Re2 1π ]1116(A5)By the use of the identity−T−1−1B B = −2iL(A6)eq. (A5) becomes1T −11 T −1J = Im{ [ln( r2/ r1) + i 2π ] g1L g1} = g1L g184(A7)The above derivati<strong>on</strong> has used the real values of g 1 and L -1 . Sincewe have2g1 = k(A8)π1 −T 1J = k L k(A9)2Appendix BEnergy Release Rate Gx 2u(r,+π )x 1∆arx 2∆a-rx 1τ (∆a-r,0)2Fig. 3.6 Crack opening displacements for the extended crack and stress distributi<strong>on</strong> ahead ofthe crack tip prior <strong>to</strong> crack extensi<strong>on</strong>.N.C. State Univ., Raleigh, NC 3-28 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>Irwin (1957) realized that if a crack extends by a small amount ∆ a , the energyabsorbed in the process is equal <strong>to</strong> the work required <strong>to</strong> close the crack <strong>to</strong> its original length.Using a polar coordinate system with the origin at the extended crack tip, the energy releasedfor a unit area <strong>to</strong> extend is written as1 aG = lim σi2(∆a− r,0)[ui( r,π ) − ui( r,−π)] dra 0 2∆a∫ ∆(B1)∆ → 0where Gis the energy release rate; ∆ais the crack extensi<strong>on</strong> at the crack tip;σi2(∆a− r,0)are the stresses prior <strong>to</strong> the crack extensi<strong>on</strong>; u i( r,± π ) are the displacementsdue <strong>to</strong> extensi<strong>on</strong>. (B1) can be rewritten by1 aTG = lim2( ∆a− r,0)[( r,π ) − ( r,−π )] dra 0 2∆a∫ ∆τu u(B2)∆ → 0By Stroh formulati<strong>on</strong>, the stress vec<strong>to</strong>r τ 2 is written asδm−1τ2( r.θ ) = φ,1= Re ∑ B ( δm+ 1)z B gmAl<strong>on</strong>g the crack plane, θ = 0,τ ( ∆a− r,0)=2==∑mm=1,3,5, ⋅⋅⋅∑j=0,1,2, ⋅⋅⋅m=1,2,3, ⋅⋅⋅mm=1,2,3, ⋅⋅⋅( δ∑( j +( δ+ 1)( ∆a− r)1)(2+ 1)( ∆a− r)∆a− r)N.C. State Univ., Raleigh, NC 3-29 F. G. Yuan, July 28-31, 1998δmgmj−1/2δgmRe[ gNote that g m is pure imaginary for m = 2, 4, 6, ⋅⋅⋅. For the displacement vec<strong>to</strong>r u,At the crack flanks, θ = ± π ,Thus= 2= 2= 2u = Re[z = r )= Re{= Re{n=1,3,5, ⋅⋅⋅n=1,3,5, ⋅⋅⋅l=0,1,2, ⋅⋅⋅∑An=1,2,3, ⋅⋅⋅± iπcos( ± π = re ,∆u= u(r,π ) − u(r,−π)n=1,2,3, ⋅⋅⋅n=1,2,3, ⋅⋅⋅∑∑∑∑∑rδ n + 1( −1)[ A rrδn+ 1( −1)( n−1) / 2l( −1)Lδn+ 1 i(δ n + 1) π−1e( n−1)/2−1l+1/ 22l+1zδ n + 1zRe[ LB−1rgn2 j+1]emδ n + 1 δ n + 1 ± i(δn+ 1)π=− r−1δn+ 1 −i(δ n + 1) π2isin[( δ + 1) π ] ABgLgrnrδn+ 1ne−1− iSL−1 −1−1where the identity − AB = SL + iLhas been used in deriving eq. (B4).−1gn] g}nB−1g]n]}(B3)(B4)


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>Substituting (B3), (B4) in<strong>to</strong> (B2)11−∑∑∫ ∆ al T 1lj rG = lim 2( j + ) ( −1)g2j+1L g2l+1r ( ∆a− r)dr (B5)∆a→02∆a 0j l 2∆a− rIntroducing a n<strong>on</strong>dimensi<strong>on</strong>al variable, x = r / ∆a111l T −1j+l+1 l j xG = lim ∑∑2(j + ) ( −1)g2j+1L g2l+1(∆a)∫ x (1 − x)dx∆a→0 2∆a0j l 21 − xIn the integrand, the linear term of ∆a corresp<strong>on</strong>ds <strong>to</strong> the first term or j = l = 01 T −1πG = lim [ g1L g1∆a+ o(∆a)]∆a→02∆a2(B6)1 T −1= k L k2For the m<strong>on</strong>oclinic solid with plane of symmetry at x 3 = 0, L -1 under in-plane deformati<strong>on</strong> canbe expressed by−1⎡bd⎤L = s 11′ ⎢ ⎥(B7)⎣de⎦G =12s′111= s′11[ek21= s11′2[ k , k ]212µ + µ = a + ib,µ µ = c + id12e = ad − bc = Im[ µ µ ( µ + µ )]112{ Im[ µ µ ( µ + µ )] k + 2 Im( µ µ ) k k + Im( µ + µ ) k }11+ 2dkk2⎡b⎢⎣d121d⎤⎡k2⎤e⎥ ⎢k⎥⎦ ⎣ 1 ⎦+ bk222]1This expressi<strong>on</strong> can be reduced <strong>to</strong> orthotropic solids without cross term of k 1 and k 2 in eq.(B8). This special case has been formulated from Lekhnitskii formulati<strong>on</strong> and the results are ineq. (26) of a paper entitled “On Cracks in Rectlinearly Anisotropic Bodies” by G. C. Sih, P.C. Paris, and G. R. Irwin, Internati<strong>on</strong>al Journal of <strong>Fracture</strong>, Vol. 1, pp. 189-203, 1965.22112122122 2(B8)N.C. State Univ., Raleigh, NC 3-30 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>Chapter 4 Determinati<strong>on</strong> of Stress Coefficient Terms in Cracked Solidsfor M<strong>on</strong>oclinic Materials with Plane Symmetry at x 3 = 04.1 Abstract4.2 Introducti<strong>on</strong>4.3 Mathematical formulati<strong>on</strong>4.4 Crack-tip fields4.5 Auxiliary fields associated with the crack tip fields4.6 J-integral4.7 Betti’s reciprocal theorem4.8 ReferencesAppendix A: Determining the unknown coefficients in the crack field using the J-integralAppendix B: Determining the unknown coefficients in the crack field using Betti’s theoremAppendix C: Deformati<strong>on</strong> field for degenerate materials4.1 AbstractDeterminati<strong>on</strong> of all the coefficients in the crack tip field expansi<strong>on</strong> for m<strong>on</strong>oclinicmaterials under two-dimensi<strong>on</strong>al deformati<strong>on</strong> is presented in this paper. For m<strong>on</strong>oclinic materialswith a plane of material symmetry at x 3 = 0, the in-plane deformati<strong>on</strong> is decoupled from the antiplanedeformati<strong>on</strong>. In the case of in-plane deformati<strong>on</strong>, utilizing c<strong>on</strong>servati<strong>on</strong> laws of elasticityand Betti’s reciprocal theorem, <strong>to</strong>gether with selected auxiliary fields, T-stress and third-orderstress coefficients near the crack tip are evaluated first from path-independent line integrals. Todetermine the T-stress terms using the J-integral and Betti’s reciprocal work theorem, auxiliaryfields under a c<strong>on</strong>centrated force and moment acting at the crack tip are used respectively.Through the use of the Stroh formalism in anisotropic elasticity, analytical expressi<strong>on</strong>s for all thecoefficients including the stress intensity fac<strong>to</strong>rs are derived in a compact form that hassurprisingly simple structure in terms of <strong>on</strong>e of the Barnett-Lothe tensors, L. The soluti<strong>on</strong> formsfor degenerated materials, orthotropic, and isotropic materials are also presented.4.2 Introducti<strong>on</strong>The use of fracture mechanics <strong>to</strong> assess the failure behavior in a flawed structure requiresthe identificati<strong>on</strong> of critical parameters which govern the severity of stress and deformati<strong>on</strong> fieldin the vicinity of the flaw, and which can be evaluated using informati<strong>on</strong> obtained from the flawgeometry, loading, and material properties. In the linear elastic solids, stress intensity fac<strong>to</strong>rs, k i (i= I, II, III), represent the leading singular terms in the Williams eigenfuncti<strong>on</strong> expansi<strong>on</strong> seriesnear a crack tip. k i are often assumed <strong>to</strong> be unique parameters associated with crack extensi<strong>on</strong>.The physical implicati<strong>on</strong>s of the higher-order n<strong>on</strong>-singular terms have been noted by Cotterell(1966). Especially, the so-called T-stress, sec<strong>on</strong>d term of the crack tip stress field whichrepresents the c<strong>on</strong>stant normal stress parallel <strong>to</strong> the crack surfaces, has been found as anadditi<strong>on</strong>al parameter in characterizing the behavior of a crack (Larss<strong>on</strong> and Carlss<strong>on</strong>, 1973; Rice,1974). Cotterell and Rice (1980) showed that T-stress substantially influences the fracture pathstability of a mode-I crack. The stress biaxiality parameter (Leevers and Rad<strong>on</strong>, 1982; Sham,1989 and 1991) has been tabulated as a functi<strong>on</strong> of relative crack lengths and overall geometry inmany fracture test specimens for the isotropic solid using computati<strong>on</strong>al techniques (e.g., Kfouri,1986 and Sham, 1991). Kardomateas et al. (1993) examined the third-term of the Williamssoluti<strong>on</strong> and c<strong>on</strong>cluded its significance in the center-cracked and single-edge specimens with shortcrack lengths.N.C. State Univ., Raleigh, NC 4-1 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>In anisotropic linear elastic solids, Gao and Chiu (1992) examined the T-stress term of acrack in infinite orthotropic solids under mode-I loading. Because of the material anisotropyinvolved, the T-stress term is affected by the material properties. It is also expected that, ingeneral, mixed-mode crack behavior and the biaxiality parameter are also dependent <strong>on</strong> thematerial anisotropy. Thus, it is essential <strong>to</strong> develop efficient computati<strong>on</strong>al techniques <strong>to</strong>determine T-stress term coefficients including the stress intensity fac<strong>to</strong>rs in anisotropic crackedmaterials with finite geometry. In this paper, two methods based <strong>on</strong> the J-integral and Betti’sreciprocal theorem are proposed <strong>to</strong> obtain compact forms in calculating all the stress coefficientterms in the crack tip field expansi<strong>on</strong> for m<strong>on</strong>oclinic materials with a plane of material symmetryat x 3 = 0. To determine T-stress term using the J-integral, the method by Kfouri (1986) isextended <strong>to</strong> anisotropic solids. The closed form soluti<strong>on</strong> of the auxiliary field, a point force actingat the crack tip, is derived for this purpose. A path-independent integral based <strong>on</strong> the Betti’sreciprocal work c<strong>on</strong>cept has been used for determining the stress intensity fac<strong>to</strong>rs by Stern,Becker, and Dunham (1976), H<strong>on</strong>g and Stern (1978), Sinclair, Okajima, and Griffin (1984) forisotropic materials; S<strong>on</strong>i and Stern (1976) for orthotropic materials; and An (1987) forrectlinearly anisotropic materials. This path-independent line integral is also extended <strong>to</strong> determineall the stress coefficient terms with auxiliary fields.4.3 Mathematical Formulati<strong>on</strong>In a fixed Cartesian coordinate system x i , (i = 1, 2, 3), c<strong>on</strong>sider a two-dimensi<strong>on</strong>aldeformati<strong>on</strong> of an anisotropic elastic body in which the deformati<strong>on</strong> field is independent of the x 3coordinate. In this paper, attenti<strong>on</strong> focuses <strong>on</strong> the m<strong>on</strong>oclinic material having three mutuallyperpendicular symmetry planes and <strong>on</strong>e of the planes coinciding with the coordinate plane x 3 = 0.In this case, the in-plane and out-of-plane deformati<strong>on</strong>s are uncoupled. For in-plane deformati<strong>on</strong>the strain and stress relati<strong>on</strong>s can be written asTwhere ε = [ ε1 , ε2, γ12] , σ = [ σ11, σ22, σ12]orε = s ′ σ(4.1)Tε = s′ σ , i, j = 1, 2, 6i ij jwhere s′= s′are reduced compliance coefficients defined by s ′= s − s s / s .ij jiij ij i3 j3 33Throughout this paper, all indices range from 1 <strong>to</strong> 2 and the summati<strong>on</strong> c<strong>on</strong>venti<strong>on</strong> isapplied <strong>to</strong> repeated Latin index unless otherwise noted. The bold-face letters are used <strong>to</strong> representmatrices or vec<strong>to</strong>rs. A comma stands for differentiati<strong>on</strong>; overbar denotes complex c<strong>on</strong>jugate. Asymbol Re stands for real part; Im for imaginary part.In the absence of body forces, general soluti<strong>on</strong>s of the displacement vec<strong>to</strong>r u, the stressfuncti<strong>on</strong> φ, and stresses σ , for in-plane deformati<strong>on</strong>, according <strong>to</strong> Stroh formalism (Ting, 1996),can be represented byN.C. State Univ., Raleigh, NC 4-2 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>oru = Re[φ = Re[2∑α=12∑u = Reφ = Reabααα = 1ddααf ( zf ( zαα[ A f ( z)d][ B f ( z)d])])](4.2)(4.3)σ =− φ , σ = φ(4.4)i1 i, 2 i2 i,1wheref ( z)= diag[f ( z1),f ( z2)]zα= x1 + µ αx, Im[µ 2 α ] > 0f(z) is an arbitrary functi<strong>on</strong>, d is a unknown complex c<strong>on</strong>stant vec<strong>to</strong>r <strong>to</strong> be determined. µ α ,a α , and b α are the Stroh eigenvalues and corresp<strong>on</strong>ding eigenvec<strong>to</strong>rs determined by elasticc<strong>on</strong>stants <strong>on</strong>ly. For in-plane deformati<strong>on</strong>, µ α are given by the roots of the characteristics equati<strong>on</strong>:( )432s′ µ − 2s′ µ + 2s′ + s′ µ − 2s′ µ + s′ = 0(4.5)111612 6626 22with positive imaginary parts. From energy c<strong>on</strong>siderati<strong>on</strong>, Lekhnitskii (1963) showed that theroots are either complex or purely imaginary and cannot be real. A and B are Stroh matrices givenbyA= [ a a ] = ⎡ p⎣ ⎢ 1p2⎤1 2q⎥1q2⎦(4.6)⎡−µ1− µ2 ⎤ −11 ⎡−1 − µ2 ⎤B = [ b1,b2] = ⎢ ⎥ , B =−⎢ ⎥ (4.7)⎣ 1 1 ⎦ µ1µ2 ⎣ 1 µ1 ⎦p = ′ ′ ′ ′ ′ ′ . (4.8)2αs11µ α− s16µα+ s12, qα= s12µα− s26+ s22/ µαThe eigenvec<strong>to</strong>rs a α and b α are unique <strong>to</strong> an arbitrary multiplier. Introducing normalizati<strong>on</strong>fac<strong>to</strong>rs k α , we haveThe values of k α satisfy the c<strong>on</strong>diti<strong>on</strong>s⎡k1p1k2p2⎤ ⎡−k1µ1− k2µ2 ⎤A = ⎢ ⎥ , B =⎣k1q1k2q⎢⎥ (4.9)2 ⎦ ⎣ k1k2⎦2a Tαbβ= δαβN.C. State Univ., Raleigh, NC 4-3 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>Based <strong>on</strong> the Stroh formalism, the matrices A and B defined in eq. (4.9) satisfyorthog<strong>on</strong>ality relati<strong>on</strong>s. For in-plane deformati<strong>on</strong>, these relati<strong>on</strong>s can be expressed byBTTA + A B = I(4.10)whereIt can be proved thatT TB A + A B = 0 (4.11)222 k ( q1− p1µ 1)= 1, 2 k2( q2− p2µ2)1=1B− TB− 112i−= − L, L −1 = − Im[ AB−1 ](4.12)where L is a real, symmetric, and positive definite matrix which will be used frequently in thesequel.Note that the normalizati<strong>on</strong> fac<strong>to</strong>rs cancel each other for the term AB -1 in the sec<strong>on</strong>dequati<strong>on</strong> of (4.12). Therefore there is no need <strong>to</strong> introduce the normalizati<strong>on</strong> fac<strong>to</strong>rs in computingL -1 . From eq. (4.12) 2 , it is easy <strong>to</strong> getL−1= ′ ⎡ b dL⎣ ⎢ ⎤1 ⎡ e − d⎤s11⎥ , =⎦ ′ −2d e s⎢⎣−⎥(4.13)11( be d ) d b ⎦µ + µ = a+ ib, µ µ = c+id,1 2 1 2e = ad − bc = Im[ µ1µ 2( µ1+ µ2)](4.14)For crack problems, it may be c<strong>on</strong>venient <strong>to</strong> introduce a complex potential functi<strong>on</strong> Φ(Guo, 1991) such thatΦ = B-1f () z B g(4.15)where g = Bd, then the displacement expressi<strong>on</strong> in eq. (4.3) and stresses in eq. (4.4) can berewritten in terms of the potential functi<strong>on</strong> Φσu= Re[ AB -1 Φ ](4.16)=− Re[ Φ ], σ = Re[ Φ ](4.17)i1 i, 2 i2 i,1The tracti<strong>on</strong> vec<strong>to</strong>r t at a point <strong>on</strong> a curve Γ with unit outward normal n is given by⎡dΦi⎤ ⎡dΦ⎤ti=−Re ⎢⎣ ds ⎥ , t =−Re⎦ ⎣⎢ ds ⎦⎥(4.18)where s is an arc length measured al<strong>on</strong>g Γ as shown in Fig. 4.1. Thus, without loss of generality,the tracti<strong>on</strong> free boundary c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> a boundary may be written asRe[ Φ ] = 0 <strong>on</strong> Γ (4.19)N.C. State Univ., Raleigh, NC 4-4 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>x 2tnΓsFig. 4.1 The surface tracti<strong>on</strong> t <strong>on</strong> a curved boundary Γ with a unit outward normal vec<strong>to</strong>r n.The resultant force and moment about the x 3 axis due <strong>to</strong> the surface tracti<strong>on</strong> t acting <strong>on</strong> Γbetween s 1 and s 2 (s 2 > s 1 ) arex 1s2∫ t( sds ) = Re[ Φ( s1) −Φ( s2)]s1(4.20)s2s2∫ ( xt1 2− xt2 1) ds= −Re[ x1Φ2 −x2Φ1−χ ](4.21)ss11wherezχ() z = ∫ Φ 2( λ)dλIf Γ encloses a regi<strong>on</strong> and there are c<strong>on</strong>centrated force f and moment M inside the regi<strong>on</strong>, then theequilibrium of the body demands that− ∫ t()sds=Γf(4.22)−∫ ( xt − )1 2xt2 1ds=MΓ(4.23)4.4 Crack-tip fieldsC<strong>on</strong>sider a crack in the anisotropic body. Let a coordinate system be attached <strong>to</strong> the cracktip and crack plane lies <strong>on</strong> the x 1 - x 3 coordinate plane. The c<strong>on</strong>figurati<strong>on</strong> is shown in Fig. 4.2. Thecrack faces are assumed <strong>to</strong> be tracti<strong>on</strong>-free. Note that the crack plane may not coincide with thesymmetry plane of the material.N.C. State Univ., Raleigh, NC 4-5 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>nx 2r 2r 1x 1crackΓFig. 4. 2 A cracked body and a c<strong>on</strong><strong>to</strong>ur around a crackTo find the soluti<strong>on</strong> for the crack tip field, employing eq. (4.15) and (4.16) withf ( zδ) = z, we take the soluti<strong>on</strong>s u and Φ in the formα α α+ -1u=Re[ A z δ 1 B g] (4.24)Φ = B+ -1z δ 1 B g(4.25)where the complex variable z α is defined byzα= r(cosθ + µ sin θ) , −π ≤θ ≤παg is a complex c<strong>on</strong>stant vec<strong>to</strong>r and δ is the complex c<strong>on</strong>stant. We seek admissible values of δsubjected <strong>to</strong> a restricti<strong>on</strong> in which the strain energy is bounded as r → 0, that is− 1


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>orWith eq. (4.30), from eq. (4.26) or (4.27), we haveSince g is a c<strong>on</strong>stant, from eq. (4.31), (4.30),Re( δ ) = ( n −2) / 2, n = 1, 2, 3, ⋅⋅⋅ (4.30)i 2 Im( δ )g = −r cos[2πRe( δ )] g(4.31)Im( δ ) = 0 , δ = ( n −2)/2 (4.32)⎪⎧g,g = ⎨⎪⎩ − g,1 1 3δ = − , , , ⋅⋅⋅2 2 2δ = 0 , 1, 2 , ⋅⋅that is, δ is real, the vec<strong>to</strong>r g associated with δ is real if δ = -1/2, ½, 3/2, …; and g is pureimaginary if δ = 0, 1, 2, …. It is clear from the determinant given in eq. (4.29) that each of theeigenvalues δ is a root of multiplicity two. Since g has two arbitrary comp<strong>on</strong>ents, we have twoindependent eigenfuncti<strong>on</strong>s associated with the double eigenvalues δ. Therefore the assumedforms of u and Φ given by eq. (4.24) and (4.25) are justified; no logarithmic type of soluti<strong>on</strong> formexists.Superimposing all the soluti<strong>on</strong>s with different orders of r, the crack tip field can bec<strong>on</strong>structed asu =Φ =∑n=1∑n=1Re[ A zBzδn+ 1δn+ 1B−1Bg−1ngn](4.33)where δ n= ( n −2)/2. gnis real for n = 1, 3, 5, ⋅⋅⋅, gnis pure imaginary for n = 2, 4, 6,⋅⋅⋅, and gnare dependent <strong>on</strong> the geometry of the cracked body, material properties, and loading c<strong>on</strong>diti<strong>on</strong>s.Similarly, there is no need <strong>to</strong> introduce k α in calculating σ ij and u i from eq. (4.33).Performing algebraic calculati<strong>on</strong> and defining gcomp<strong>on</strong>ents can be written asσσσ112212===n=T[ gn1 , gn2], the stress and displacementδ ⎧ 1n2 δ n 2 δ nδ n δn∑ ( δn+ 1) r Re⎨[ gn1( µ2ς2− µ1ς1) + gn2µ1µ2( µ2ς2− µ1ς1)]n=1⎩µ1− µ2δ ⎧ 1nδnδ nδ n δ n∑ ( δn+ 1) r Re⎨[ gn1( ς2− ς1) + gn2( µ1ς2− µ2ς1)]n=1⎩µ1− µ2δ ⎧ 1nδ n δ nδnδ n∑ ( δn+ 1) r Re⎨[ gn1( µ1ς1− µ2ς2) + gn2µ1µ2( ς1− ς2)]n=1⎩µ1− µ2⎫⎬⎭⎫⎬⎭⎫⎬⎭(4.34)N.C. State Univ., Raleigh, NC 4-7 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>uu21==∑n=1∑n=1rr⎧Re⎨⎩µ1− µ2δ + 1 1n⎧Re⎨⎩µ1− µ2δ + 1 1nδ n + 1 δ n + 1δ n + 1δn+ 1[ g ( p ς − p ς ) + g ( µ p ς − µ p ς )]n12211δ n + 1 δ n + 1δ n + 1δn+ 1[ g ( q ς − q ς ) + g ( µ q ς − µ q ς )]n12211n2n2112222221111⎫⎬⎭⎫⎬⎭(4.35)where ςα= cos θ + µ sinθ.αFor the leading-order term, δ 1 = -1/2, letting g1 = 2 / π k , the singular soluti<strong>on</strong> and T-stress term for the m<strong>on</strong>oclinic solids can be written in the form:⎡1⎤(1) (1)1/( k σ + k ) + T⎢0⎥O()1 21 I+ rσ =IIσII2πr⎢ ⎥⎢⎣0⎥⎦111 21 I 12+ r(1) (1)1/( k ε + k ) + T⎢s′⎥O()ε =IIεII2πr⎡s′⎤⎢ ⎥⎢⎣s′16⎥⎦(4.36)(4.37)ε = s′ ,(1) (1)Iσ Iε = s′(1) (1)IIσ II2r(1)(1 ⎡s11′ cos s16′)θ + sinθ⎤ ⎡− sinθ⎤ 3 / 2u = ( kIuI+ kIIuII) + T r ⎢+ r + O(r )s12sin⎥ ω ⎢cos⎥ (4.38)π⎣ ′ θ ⎦ ⎣ θ ⎦( n)( n)where σ , u , ⋅⋅⋅,are the n-th order terms of the crack tip field; the subscripts I or II indicatesthe distributi<strong>on</strong> associated with mode-I or mode-II. k = [ k k ]T ; k I and k II are stress intensityfac<strong>to</strong>rs for mode-I and mode-II respectively, ω is a c<strong>on</strong>stant representing rigid body rotati<strong>on</strong>, andII ,I( σ )( σ1122( σ )12)III⎡ µ ⎛1µ2= Re⎢⎜⎢⎣µ1− µ2 ⎝⎡ 1 ⎛= Re⎢⎜⎢⎣µ1− µ2 ⎝⎡ µ ⎛1µ2= Re⎢⎜⎢⎣µ1− µ2 ⎝µ2ς2−µ1ς2−1−ς1µ ⎞⎤1 ⎟⎥ς1 ⎠⎥⎦µ ⎞⎤2 ⎟⎥,ς1 ⎠⎥⎦1 ⎞⎤⎟⎥ς2 ⎠⎥⎦( σ )( σ11 II22( σ )12)IIII⎡ 1 ⎛= Re⎢⎜⎢⎣µ1− µ2 ⎝⎡ 1 ⎛= Re⎢⎜⎢⎣µ1− µ2 ⎝⎡ 1 ⎛= Re⎢⎜⎢⎣µ1− µ2 ⎝2µ2ς2−1ς2−µ1−ς12µ ⎞⎤1 ⎟⎥ς1 ⎠⎥⎦1 ⎞⎤⎟⎥ς1 ⎠⎥⎦µ ⎞⎤2 ⎟⎥ς2 ⎠⎥⎦N.C. State Univ., Raleigh, NC 4-8 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>( u )1( u2)II⎡ 1= Re⎢⎣µ1− µ2⎡ 1= Re⎢⎣µ1− µ2( µ p ς − µ p ς )1⎤( µ q ς − µ q ς ) ⎥⎦12222221111⎤⎥⎦,( u )1( u2)IIII⎡ 1= Re⎢⎣µ1− µ2⎡ 1= Re⎢⎣µ1− µ2( p ς − p ς )2⎤⎥⎦⎤( q ς − q ς ) ⎥⎦2221111For the sec<strong>on</strong>d-order term, δ 2 = 0,⎡ ′ ′(2)s11cosθ+ s16sin θ ⎤ ⎡− sin θ ⎤u = T r ⎢⎥ + ωr⎢ ⎥(4.39)⎣ s12′ sin θ ⎦ ⎣ cos θ ⎦(2) (2)σ = T , σ = σ 0(4.40)(2)11where ω represents the rigid body rotati<strong>on</strong>, and22 12=T = −ig b + g d), ω = −is′( g d + g )(4.41)(21 2211 21 22eClearly the T-stress term is dependent <strong>on</strong> the material properties in anisotropic solids.For orthotropic materials where x 1 and x 2 coincide with the material symmetry axes, the T-terms become⎡ ′(2)s11cosθ⎤ ⎡− sinθ⎤ (2)u = Tr ⎢ ⎥ + ωr⎢ ⎥ , σ11= T⎣s12′ sinθ⎦ ⎣ cosθ⎦In isotropic solids, the sec<strong>on</strong>d-order terms are(2) T r ⎡ cosθ⎤ ⎡− sinθ⎤ (2)u = ⎢ ⎥ + ωr⎢ ⎥ , σ11= T for plane stressE ⎣−νsinθ⎦ ⎣ cosθ⎦( 1 −ν)(2) T (1 + ν ) r ⎡ cosθ⎤ ⎡− sinθ⎤ (2)u = ⎢ ⎥ + ωr⎢ ⎥ , σ11= T for plane strainE ⎣ −νsinθ⎦ ⎣ cosθ⎦For the degenerate materials, the crack tip fields are derived in Appendix C.4.5 Auxiliary Fields associated with the Crack Tip FieldsSome auxiliary fields with higher-order singularities are needed in order <strong>to</strong> determine thecoefficients in the expansi<strong>on</strong> of the crack tip field by the use of c<strong>on</strong>servati<strong>on</strong> laws of elasticity andBetti’s reciprocal theorem. Since the negative integers are also the eigenvalues of the crackproblem which satisfy zero tracti<strong>on</strong> <strong>on</strong> the crack surfaces and satisfy the field governing equati<strong>on</strong>sof the anisotropic solids, the associated eigenfuncti<strong>on</strong>s can be c<strong>on</strong>veniently used as auxiliary(pseduo) fields. Note that each eigenfuncti<strong>on</strong> with higher-order singularity has unbounded energynear the crack tip and thus corresp<strong>on</strong>ds <strong>to</strong> some c<strong>on</strong>centrated source at the tip. This eigenfuncti<strong>on</strong>can be imagined as a self-equilibrated soluti<strong>on</strong> <strong>to</strong> the crack problem under some specified loads.These auxiliary fields may be obtained by choosing the values of n in eq. (4.33) as negativeintegers, that is,N.C. State Univ., Raleigh, NC 4-9 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>mu a ∆ + 1= Re[ A za ∆m+ 1 −1Φ= BzBBh−1mhm](4.42)aσa=− Re[ Φ ], σ = Re[ Φ ](4.43)i1 i, 2 i2 i,1∆ m=− m /2, m = 1, 3, 4, ⋅⋅⋅, (4.44)hm=[m1, hm2h ]Twhere h m are arbitrary c<strong>on</strong>stant vec<strong>to</strong>rs. h mis real for m = 1, 3, 5, ⋅⋅⋅; h mis pure imaginary for m =4, 6, 8,⋅⋅⋅, Utilizing eq. (4.22-4.23), the auxiliary fields, except m = 4, defined by eq. (4.42) yieldzero resultant force <strong>on</strong> any c<strong>on</strong><strong>to</strong>ur Γ which encloses the crack tip shown in Fig. 4.2. Thecorresp<strong>on</strong>ding resultant moment about the x 3-axis, produced by the tracti<strong>on</strong>s acting <strong>on</strong> thec<strong>on</strong><strong>to</strong>ur Γ is also zero for the auxiliary fields in eq. (4.42). The special case of ∆ m = -2 or m = 4Tcan be also directly explained from eq. (4.23). In this case, the functi<strong>on</strong> associated with [ 0, h42]corresp<strong>on</strong>ds <strong>to</strong> the particular soluti<strong>on</strong> for a crack under a c<strong>on</strong>centrated moment about x 3 -Taxis, ( −2π ih42), applied at the crack tip; the functi<strong>on</strong> associated with [ h 41, 0]corresp<strong>on</strong>ds <strong>to</strong>the homogeneous soluti<strong>on</strong> which satisfies zero c<strong>on</strong>centrated force and moment at the crack tip.From eq. (4.42)-(4.44), the stress and displacement comp<strong>on</strong>ents of the auxiliary fields areσσσ( a )11( a )22( a )12uu= ( ∆= ( ∆= ( ∆mmm+ 1) r+ 1) r+ 1) r∆m∆m∆m⎧ 1Re⎨⎩µ1− µ2⎧ 1Re⎨⎩µ1− µ2⎧ 1Re⎨⎩µ1− µ2⎧Re⎨⎩µ1− µ22 ∆m2 ∆m∆m∆m[ h ( µ ς − µ ς ) + h µ µ ( µ ς − µ ς )]m1∆m∆m∆m∆m[ h ( ς − ς ) + h ( µ ς − µ ς )]m1∆m∆m∆m∆m[ h ( µ ς − µ ς ) + h µ µ ( ς − ς )]m12121212121m21m22m2∆m+ 1 ∆m+ 1∆m+ 1∆m+[ h ( p ς − p ς ) + h ( µ p ς − µ p )]a ∆ + 1 1m11= rm12 2 1 1m21 2 2 2 1ς1⎧Re⎨⎩µ1− µ2∆m+ 1 ∆m+ 1∆m+ 1∆m+[ h ( q ς − q ς ) + h ( µ q ς − µ q )]a ∆ + 1 1m12= rm12 2 1 1m21 2 2 2 1ς1112221122⎫⎬⎭21⎫⎬⎭1⎫⎬⎭⎫⎬⎭⎫⎬⎭(4.45)(4.46)In the following two secti<strong>on</strong>s, stress intensity fac<strong>to</strong>rs, T-stress term, and coefficients ofhigher-order terms are determined using the J-integral and the Betti’s reciprocal theoremincluding the use of above auxiliary fields.4.6 J-Integral(a) T-stress TermN.C. State Univ., Raleigh, NC 4-10 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>J i c<strong>on</strong>servati<strong>on</strong> laws (Knowles and Sternberg, 1972) for a plane anisotropic elasticityproblem may be written as( )Jk = ∫ Wnk − tiui, kds = 0 , k = 1, 2 (4.47)Cfor an arbitrary closed c<strong>on</strong><strong>to</strong>ur C that encloses no defects, cracks, or material inhomogeneities. Inthe above equati<strong>on</strong>s, W is the strain energy density, W = σijε ij/2, where σ ij and ε ij are the stressesand strains respectively; t i are the tracti<strong>on</strong> comp<strong>on</strong>ents defined al<strong>on</strong>g the c<strong>on</strong><strong>to</strong>ur, t i = σ ij n j; n k arethe unit outward vec<strong>to</strong>r normal <strong>to</strong> the c<strong>on</strong><strong>to</strong>ur path. Letting k = 1, the c<strong>on</strong>servati<strong>on</strong> law isreduced <strong>to</strong> the Rice’s path-independent J-integral or the rate of energy release rate per unit ofcrack extensi<strong>on</strong> al<strong>on</strong>g the x 1 - axis, which is given by( )TT/ 2 t u,J = ∫ σ εn 1− 1dsΓ(4.48)where Γ is an arbitrary path which starts <strong>on</strong> the straight lower face of the crack, encloses thecrack tip and ends <strong>on</strong> the upper straight face with the positive directi<strong>on</strong> in a counterclockwisedirecti<strong>on</strong> shown in Fig. 4.2. Here, the crack surfaces are assumed <strong>to</strong> be tracti<strong>on</strong>-free.C<strong>on</strong>sider a cracked body under the two-dimensi<strong>on</strong>al deformati<strong>on</strong>. The stress, strain, anddisplacement fields are represented by σ ij , ε ij , and u i , respectively. As r → 0, the asymp<strong>to</strong>tic fieldsincluding the c<strong>on</strong>stant T-stress terms are given before. Now the coefficients of the T-stress termsand third-order terms are derived using c<strong>on</strong>servati<strong>on</strong> laws.In general, for the purpose of determining the coefficients g n of the term r δ n ( δ n≥−1/ 2 ) inthe actual crack tip stress field, we may employ the J-integral method and follow the followingprocedure:(i) find an auxiliary (pseudo) field that has singularity σ a −δn−ij~ r 1 as r → 0. It is c<strong>on</strong>venient <strong>to</strong>select auxiliary stress field which gives zero tracti<strong>on</strong> <strong>on</strong> the crack surfaces and c<strong>on</strong>tains <strong>on</strong>ly−the stress singular term rn −δ 1 ;(ii) superimpose the actual field (the mixed-mode boundary value problem, in general) <strong>on</strong> theauxiliary field and represent the J-integral for the superimposed state aswhereJs = J + Ja + JM(4.49)a T aa TaJs= ∫ σ + σ ) ( ε + ε ) n / 2 − ( t + t ) ( u + )] dsΓ[(1 ,1u,1TTJa= ∫ [( σ a ) ε an / − ( a) a]12 t u ,1dsΓandJM= Js − J − JaT a a T T a a T= ∫ {[ σ ε + ( σ ) ε] n1 / 2 −t u,1−( t ) u,1}dsΓN.C. State Univ., Raleigh, NC 4-11 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>= ∫ [ σ T εa − T a− ( a ) Tn]1t u,1t u,1dsΓ(4.50)= ∫ ( aa aσ − − )iju i , jn1 tiui, 1tiui,1dsΓwhere the superscript or subscript “a” denote quantities referred <strong>to</strong> the auxiliary field; Js is the J-integral for the superimposed state; J for the actual state; and J a for the auxiliary field and J M is theinteracti<strong>on</strong> integral. In the sequel, we assume that the J-integral is path-independent for both theactual field and the selected auxiliary fields, denoted by J and J a . Then the integral J s for thesuperimposed state, thus J M , is also path-independent. If the auxiliary fields given by eq. (4.42)are used, it is readily proved thatJJ aa≠ 0, for ∆ = −1/2= 0 m ; (4.51), for ∆ < −1/2m(iii) evaluate J M as Γ → 0. For simplicity, Γ may be taken as a circle with radius r, as r → 0, the<strong>on</strong>ly terms in the integrand that c<strong>on</strong>tribute <strong>to</strong> J M are the cross terms between r δnin the actual−δ stress field and the auxiliary stress term with order rn − 1 ;(iv) carry out the routine manipulati<strong>on</strong>, the exact expressi<strong>on</strong> for J M can be obtained asJ = J ( g ) when r → 0;M M n(v) evaluate J M for a finite c<strong>on</strong><strong>to</strong>ur Γ using the computed actual field and the exact auxiliarysoluti<strong>on</strong>; and determine the coefficients g n from the value of J M and the expressi<strong>on</strong> ofJ = J ( g ) as r → 0.M M nIn extracting the T-stress in eq. (33) or g 2 , we make use of another auxiliary field, that is thea −1soluti<strong>on</strong> <strong>to</strong> a point force f (per unit thickness) applied at the crack tip. In this case, σij∝ r . Notethat the point force f must be resisted by tracti<strong>on</strong> t applied <strong>to</strong> some boundary C in achievingequilibrium. In the Stroh formalism (Ting, 1996), the real form soluti<strong>on</strong>s due <strong>to</strong> the point-forceapplicati<strong>on</strong> can be written asa ⎡lnr⎤2u= −⎢+ S(θ )⎥h⎣ π I⎦(4.52)a2φ = L ( θ )h(4.53)where−1h = L f ,f=[1 2f , f ]T2TS(θ ) = Re[ A ln(cosθ+ µ sinθ) B ]π2TL(θ ) = − Re[ B ln(cosθ+ µ sinθ) B ]πx 1 = rcosθ, x 2 = rsinθ.It assumes the valuesN.C. State Univ., Raleigh, NC 4-12 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>⎧ 0 θ = 0ln(cos θ + µ α sinθ) = ⎨⎩±iπθ = ± πIn a cylindrical coordinate system (r, θ, x 3 ), let t r and t θ be the tracti<strong>on</strong> vec<strong>to</strong>rs <strong>on</strong> acylindrical surface r = c<strong>on</strong>stant and <strong>on</strong> a radial plane θ = c<strong>on</strong>stant, then1 atr= − φ, θ ,ratθ(4.54)= φ ,ra T a T Tσr= n tr, σr θm tr= n tθTTwhere n = [cosθ, sinθ] and m = [ − sinθ, cosθ].It follows from eq. (4.52) and (4.53) that= , σa θ= m T tθatθ= φ, r= 0 , σθσθ= 0σ φ ,θ= a ra T ar= −n /roraσr[( µ µ −1) sinθ+ ( µ + µ ) cosθ]2f ⎧⎫1 1 21 2cos θ − sinθ= − Im⎨⎬2πr ⎩ς1ς2⎭f ⎧⎪− Im⎨2πr⎩⎪[( 1) ( ) ]2µµ − cosθ − µ + µ sinθ sin θ + µµ ⎫1 2cosθ⎪⎬ςς1 2⎭⎪2 1 2 1 2(4.55)andauf ⎪⎧⎡ b1= − ⎨ s11′ ln r2π⎢⎪⎩ ⎣ df ⎪⎧2⎡ d− ⎨ s ′11ln r2π⎢⎪⎩ ⎣ e⎤⎥⎦⎤⎥⎦−−ImIm⎡⎢⎣⎡⎢⎣1µ − µ111µ − µ22⎡⎢⎣pq22⎡ µ1⎢⎣ µ1ln ςln ςpq2222ln ςln ς−−22p ⎪⎫1ln ς1 ⎤ ⎤⎥ ⎥ ⎬q1ln ς1 ⎦ ⎦ ⎪⎭− µ2p− µ q211ln ς ⎪⎫1 ⎤ ⎤⎥ ⎥ ⎬ln ς1 ⎦ ⎦ ⎪⎭(4.56)For isotropic materials,a = aa 1σrθσθ= 0, σr= − ( f1 cosθ+ f2sinθ)(4.57)π r2⎪⎧⎪⎫a 1 ⎡(κ + 1) ln r − ( κ −1)θ ⎤ ⎡− 2sin θ sin 2θ⎤ ⎡ f1⎤u = − ⎨⎢⎥ − ⎢2 ⎥⎬⎢⎥ (4.58)8πG ⎪⎩ ⎣ ( κ −1)θ ( κ + 1)ln r⎦⎣ sin 2θ2sin θ ⎦⎪⎭⎣ f2⎦κ = 3 − 4νN.C. State Univ., Raleigh, NC 4-13 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>By superimposing the actual field <strong>on</strong> the auxiliary field, and using the path-independent J-integral for the m<strong>on</strong>oclinic elastic cracked body, it can be proved thatJs = J + Ts′ f + ω f11 1 2JM= Ts11 ′ f1 + ω f2(4.59)Note that because σ ija∝r u r−1 a −1,i,j∝a a( i i )a,Ja= ∫ W n1 − t u1ds = 0ΓKfouri (1986) used the method <strong>to</strong> calculate the T-term for isotropic materials. Wang et al.(1980) and Wu (1989) applied the J-integral <strong>to</strong> determine the stress intensity fac<strong>to</strong>rs forrectilinear anisotropic solids and general anisotropic materials respectively. In this paper, themethod is extended <strong>to</strong> determine all the coefficients in the crack tip field expansi<strong>on</strong> for m<strong>on</strong>oclinicmaterials. From eq. (4.59), it follows thatT =JMs′f 2 = 0f11 1and ω =JM f1 = 0f2Detailed proof of eq. (4.59) is given below:For general anisotropic linear elastic solids, we have the following relati<strong>on</strong>swhere c ijkl = c klij. From eq. (4.50),aa aaσε = c εε = σε and σ ε σ uijijijkl kl ijijijijija=ij i , jaaa aduiaJM= ∫ ( σij ui, jn −tiui, − tiui, ) ds= ∫ ( σi−tiui,) dsΓ1 1 1Γ2 1(4.60)dswhere dua / ids is the tangential derivative of u a . As r → 0, we evaluate J and note that thei M<strong>on</strong>ly terms that c<strong>on</strong>tribute <strong>to</strong> J M are the cross terms between T and f. After substituting these fieldsin<strong>to</strong> the integral and performing the routine algebra, the integral J M may be evaluated asJMaduia= limi−tiuids→∫ ( σ,)Γ Γ2 10 dsa( 2)duia ( 2)= ∫ ( σi−tiui,) dsΓ21ds( 2)a=− u t ds=−∫∫ΓΓi,1( 2)=−( u )( 2)= ( u ), 1TTi( 2)( u ), 1, 1f∫TΓttaadsds(4.61)In the above derivati<strong>on</strong>, eq. (4.22) has been used. From eq. (4.33) and (4.39) via (4.12) 2 ,N.C. State Univ., Raleigh, NC 4-14 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>⎡ ′(2) −1Ts11⎤u,1= −iL g2= ⎢ ⎥(4.62)⎣ ω ⎦Inserti<strong>on</strong> eq. (4.62) in<strong>to</strong> (4.61) leads <strong>to</strong>−1T −1J = −iL f = −if L g(4.63)Mg T 2and J M= T s′11f1+ ω f2(4.64)Eq. (4.63) and (4.64) can be used <strong>to</strong> calculate g 2 and T. As f is arbitrary, it is c<strong>on</strong>venient <strong>to</strong>choose f <strong>to</strong> be the following valuesT[ 1, 0] ≡ eT1, [ 0 , 1] ≡ e2respectively. Note that e k has a dimensi<strong>on</strong> force/length. Corresp<strong>on</strong>dingly, eq. (4.63) yields twolinear equati<strong>on</strong>s and they are, in matrix notati<strong>on</strong>,~-1JM=−i L g2where~ () 1 ( 2)TJ M= [ J M, J M]2( k )and J Mis the value of J M when f = e k . Therefore,~g 2= i LJ M(4.65)Using eq. (4.64), The T-stress and ω can be obtained as(1)T J / s′M 11= ,(2)ω = J M(4.66)However, the choice of auxiliary field is not unique. For instance, we may choose theauxiliary fields as the sum of the field ( σ ′, u ′)for the point force f and a field ( σ ′′, u′′) which is aknown soluti<strong>on</strong> for the same cracked body under some loads <strong>on</strong> the outer boundary, thenaσ = σ′ + σ′′au = u′+ u ′′,Superimposing the actual field <strong>on</strong> the new auxiliary field, we haveFrom the definiti<strong>on</strong> of J M ,aaaJ [ σ + σ ] = J[ σ] + J [ σ ] + J [ σ, σ ](4.67)saaJ [σ, σ ] = J [ σσ , ′+ σ′′ ] = J [ σσ , ′] + J [ σσ , ′′](4.68)MM M MMJ [ σ , σ ′′] = J [ σ + σ ′′] − J[ σ ] − J[ σ ′′](4.69)MsIn elastic materials, J is equal <strong>to</strong> the energy release rate G in the absence of body forces anddislocati<strong>on</strong>s and is related <strong>to</strong> the stress intensity fac<strong>to</strong>rs throughN.C. State Univ., Raleigh, NC 4-15 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>Therefore, eq. (4.69) leads <strong>to</strong>G = k21 T −1LkJ M[ , ]T −σσ′′ = k L k′′1 (4.70)where k is the stress intensity fac<strong>to</strong>r for the state ( σ ,u), and k ′′ for ( σ ′′ ,u′′).Using eq. (4.70) and (4.64), eq. (4.68) can be expressed byJMaT −1[ σ , σ ] = T s′f + ω f + k L k ′′(4.71)Inserting eq. (4.71) in<strong>to</strong> (4.67) and utilizing eq. (4.13) yield1112aaJ [ σ + σ ] = J[ σ] + J [ σ ] + Ts′ f + ω fsFor isotropic case,a11 1 2[ µ µII IIµµII I II Iµµ µ µI I ]+ s′ Im ( + ) k k′′ + ( k k′′+ k′′ k ) + ( + ) k k′′11 1 2 1 2 1 2 1 2(4.72)aaJ [ σ + σ ] = J[ σ] + J [ σ ] + Ts′ f + ω f ++ 2s′ ( k k′′ + k k′′) (4.73)sa11 1 2 11II II I IFor plane strain under mode-I loading, if f = (f 1 , 0), then eq. (4.64) and (4.73) reduce <strong>to</strong> the2results given by Kfouri (1986) and s ′ = (1 − ) / E(b) The third term11νThe third-term coefficient in the asymp<strong>to</strong>tic soluti<strong>on</strong> can be also obtained from the J-a2integral method. An auxiliary field with singularity σ ~ O(r−3/ij) can be introduced by selecting m= 3 in eq. (4.42). By superimposing the actual field (the mixed mode boundary value problem) <strong>on</strong>the auxiliary field, the interacti<strong>on</strong> integral J M may be evaluated asFollowing in a similar manner,3= −2hLgT 1J −Mπ3 3(4.74)g32 ~= − L J M(4.75)3π~ )(1) (2 Twhere JM= [ JM, JM] andof force/(length) 1/2 .J is the value of J M when h = , ( k 1, 2)(k )M3e k=. ekhas a dimensi<strong>on</strong>In general, superimposing of an auxiliary field with σ a ij∝ r ∆ n <strong>on</strong> the actual field andapplying the J-integral <strong>to</strong> this combined state with derivati<strong>on</strong>s proved in Appendix A for n ≠ 2, wecan get the interacti<strong>on</strong> integral J M denoted by J Mn, that isThen=− 2πδ( δ + 1)h L g , n = 1, 3, 4, 5, ⋅⋅⋅. (4.76)T −1J Mn n n n nN.C. State Univ., Raleigh, NC 4-16 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>gn⎧~LJMn−n = ⋅⋅⋅⎪n( n+ ) , 1 , 3 , 52πδδ 1,= ⎨ ~⎪i LJMnn = ⋅⋅⋅⎩⎪ 2n( n+ 1) , 4 , 6 , 8πδ δ,(4.77)where~ (1) (2JM n= [M n, J)M nJ ]T( k )and J Mnis the value of J Mn whenhn⎧ e= ⎨⎩iekk, n = 1, 3, 5,⋅⋅⋅, n = 4, 6, 8,⋅⋅⋅Here, e k possesses dimensi<strong>on</strong> force /( length) 1−δ n. For the first singular term, introducing stressTintensity fac<strong>to</strong>rs, k = [ kII, kI] = π / 2 g 1for the actual field and k a = a a T[ k , k ] =II Iπ / 2h 1forthe auxiliary field, J M1 and k can be rewritten from eq. (4.76), (4.77) asa T −1J M 1= ( k ) L kk= LJ$ M1(4.78)whereJ ˆ = (1) (2)TM1 [ JM1, JM1] and J ( k )M1is the value of J M1whenak = ek.4.7 Betti’s Reciprocal Theorem(a) T-stress TermFor a linear elastic plane problem, Betti’s reciprocal theorem can be stated as∫Ca( t u t a u)⋅ − ⋅ ds = 0 (4.79)where C is an any closed c<strong>on</strong><strong>to</strong>ur enclosing a simple c<strong>on</strong>nected regi<strong>on</strong> in the elastic body; u is thedisplacement vec<strong>to</strong>r and t the tracti<strong>on</strong> <strong>on</strong> C corresp<strong>on</strong>ding <strong>to</strong> the soluti<strong>on</strong> of any particular elasticboundary value problem for the elastic body; u a and t a are corresp<strong>on</strong>ding quantities of the soluti<strong>on</strong>of any other problem for the body. C<strong>on</strong>sidering a crack in an anisotropic linear elastic material,and suppose the crack surfaces are free of tracti<strong>on</strong>s for both elastic states. If the closed c<strong>on</strong><strong>to</strong>ur Cencloses the crack tip and extends al<strong>on</strong>g the crack surfaces, then it can be shown that the integrala a( )I = ∫ t⋅u −t ⋅udsΓ(4.80)is path independent where Γ is an any path which starts from the lower crack face and ends <strong>on</strong> theupper. Let (t, u) be an actual state for the crack under c<strong>on</strong>siderati<strong>on</strong>, then eq. (4.80) providessufficient informati<strong>on</strong> for determining the amplitude for each term in the asymp<strong>to</strong>tic crack-tipfields if proper auxiliary soluti<strong>on</strong>s (t a , u a ) are provided. In this secti<strong>on</strong> the Betti’s reciprocal workc<strong>on</strong><strong>to</strong>ur integral is used for computing stress intensity fac<strong>to</strong>rs, T-stress and other higher-orderN.C. State Univ., Raleigh, NC 4-17 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>coefficients for m<strong>on</strong>oclinic materials. The procedure can be evaluated from the analysis asfollows.δFor determining the coefficients g n of the term r n ( δn≥−1/ 2)in the actual crack tip stressfield, an auxiliary (pseudo) field with σ a ij∝ − δrn −2anor u ∝ r−δ−1can be chosen. As r → 0, take aΓ as a circle around the crack tip and evaluate integral I. When r → 0, the <strong>on</strong>ly product betweengn and the auxiliary terms in the integrand given above can c<strong>on</strong>tribute <strong>to</strong> the integral I. Therefore,the expressi<strong>on</strong> for I = I(g n) can be obtained as r → 0. The value of I for a finite c<strong>on</strong><strong>to</strong>ur Γ shownin Fig. 4.2 is available from the numerical soluti<strong>on</strong>s for t and u of the boundary value problemsand the exact auxiliary soluti<strong>on</strong>. The g n can be computed from the expressi<strong>on</strong> for I = I(g n) and thevalue of I.To determine the T-stress or g 2 for the crack-tip field from eq. (4.34), the auxiliary elastica −2field with stress singularity σij∝ r as r → 0 is used and can be obtained from the eq. (4.42) bychoosing m = 4, that is, in Stroh formalism,iuaΦ= Re[ A za= B z−1−1B−1Bh−14h ]4(4.81)The moment about x 3-axis applied at the crack tip, using eq. (4.23) and (4.81), is given byM=−2π i h42When Γ shrinks <strong>to</strong> the crack tip, it is clear that <strong>on</strong>ly those parts of the integrand in eq. (4.80)which behaves like O(1/r) as r → 0 can c<strong>on</strong>tribute this porti<strong>on</strong> of the integral. Substituting thesefields of the two states in<strong>to</strong> eq. (4.80), performing the integrati<strong>on</strong> for the circle surrounding thecrack tip and evaluating the results in the limit of vanishing radius, the results may be derived, andr→0a aT −1( t ⋅ u − t ⋅ u) ds = −2h4L g2I = lim ∫π (4.82)Γg2i ~= L I(4.83)2π~ )(1) (2where I = [ I , I ] and I ( k ) is the value of I when h = i 4e , (k = 1, 2). (Dimensi<strong>on</strong> of e k k isforce).From eq. (4.13), (4.41), and (4.83),(1)IT = ,2 π s′11(2)Iω = (4.84)2 πFor isotropic materials, the auxiliary displacement vec<strong>to</strong>r and stress functi<strong>on</strong>s can be modified assinθ⎡1+ cos2θ=r⎢⎣ sin 2θsin 2θ⎤1 − cos2θ⎥⎦[ h ]aΦ Im4(4.85)N.C. State Univ., Raleigh, NC 4-18 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>a⎡σ11⎤⎢ a ⎥ 1⎢σ22 ⎥ =2ar⎢ ⎥⎣σ12 ⎦⎡−2 cos3θcosθ⎢− 2sin 3θsinθ⎢⎢⎣− sin 4θ− sin 4θ⎤2(cos2θ−1)sin 2θ⎥Im⎥− 2sin 3θsinθ⎥⎦[ h ]4(4.86)⎡u⎢⎣ua1a2⎤ 1 ⎡−( κ + 1) cosθ+ 2sin 2θsinθ⎥ = −4⎢⎦ Gr ⎣ ( κ −1)sinθ− cos2θsinθ− ( κ − 1) sinϑ− cos2θsinθ⎤Im− ( κ + 1) cosθ− 2sin 2θsinθ⎥⎦[ h ]4(4.87)Then the path-independent integral I has the same form as eq. (4.82). Eq. (4.83) and (4.84) arestill valid.(b) The Third TermThe coefficients of the third term in the eigenfuncti<strong>on</strong> expansi<strong>on</strong> of the stress field can alsobe obtained using Betti’s theorem. Selecting m = 5 in eq. (4.42), an auxiliary field with stress2singularity σ ~ r−5/ desired for this purpose can be obtained. Applying the Betti theorem ofaijreciprocity <strong>to</strong> the actual field and the auxiliary field and evaluating the integral I as Γ → 0 near thecrack tip, we obtainI = − π (4.88)T 13 h5L− g3Eq. (4.88) will be used <strong>to</strong> calculate g 3 for mixed-mode problem when the two proper auxiliaryfield soluti<strong>on</strong>s are provided. g 3 can be expressed in the form1 ~g3= − L I(4.89)3πApplying Betti’s reciprocal theorem <strong>to</strong> the actual fields and auxiliary fields withσ a ∆ij∝ + 2, the path independent I denoted by I n+2 can be evaluated byr nIt follows from eq. (4.90)whereT −1I n + 2=− 2π ( δ n+ 1) h n + 2L g n(4.90)~⎧ LIn+2⎪−, n = 1, 3 , 5 , ⋅⋅⋅2π( δn+ 1)gn= ⎨ ~(4.91)⎪iLIn+2, n = 2 , 4 , 6 , ⋅⋅⋅⎪⎩2π( δn+ 1)= [ I , I ]I ( 1) ( 2)Tj j j( k )and I jis the value of I j whenhn⎧ e= ⎨⎩iekk, n = 1, 3, 5,⋅⋅⋅, n = 2, 4, 6,⋅⋅⋅N.C. State Univ., Raleigh, NC 4-19 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>Here, e k possesses dimensi<strong>on</strong> force × ( length) δ n. The detailed proof is shown in Appendix B.For the first singular term from eq. (4.90) and (4.91), I3 and k can be written asπT −1T −1I 3=− h 3L g1 =− 2 h3L kπ(4.92)4.8 Referencesk =− 1 ~L I2π3(4.93)1. D. An, “Weight Functi<strong>on</strong> Theory for a Rectilinear Anisotropic Body”, Internati<strong>on</strong>al Journalof <strong>Fracture</strong>, Vol. 34, pp. 85-109, 1987.2. B. Cotterell, “Notes <strong>on</strong> the Paths and Stability of Cracks”, Internati<strong>on</strong>al Journal of <strong>Fracture</strong>,Vol. 2, pp. 526-533, 1966.3. B. Cotterell and J. R. Rice, “Slightly Curved or Kinked Cracks”, Internati<strong>on</strong>al Journal of<strong>Fracture</strong>, Vol. 16, No. 2, pp. 155-169, 1980.4. H. Gao and C. H. Chiu, “Slightly Curved or Kinked Cracks in Anisotropic Elastic Solids”,Internati<strong>on</strong>al Journal of Solids and Structures, Vol. 29, No. 8, pp. 947-972, 1992.5. C. C. H<strong>on</strong>g, and M. Stern, “The Computati<strong>on</strong> of Stress Intensity Fac<strong>to</strong>rs in DissimilarMaterials”, Journal of Elasticity, Vol. 8, No. 1, pp. 21-34, 1978.6. G. A. Kardomateas, R. L. Carls<strong>on</strong>, A. H. Soedi<strong>on</strong>o and D. P. Schrage, “Near Tip Stress andStrain Fields for Short Elastic Cracks”, Internati<strong>on</strong>al Journal of <strong>Fracture</strong>, Vol. 62, pp. 219-232, 1993.7. A. P. Kfouri, “Some Evaluati<strong>on</strong>s of the Elastic T-term using Eshelby’s Method”,Internati<strong>on</strong>al Journal of <strong>Fracture</strong>, Vol. 30, pp. 301-315, 1986.8. J. K. Knowles and E. Sternberg, “On a Class of C<strong>on</strong>servati<strong>on</strong> Laws in Linearized and FiniteElas<strong>to</strong>statics”, Archive for Rati<strong>on</strong>al <strong>Mechanics</strong> and Analysis, Vol. 44, pp. 187-211, 1972.9. S. G. Larss<strong>on</strong> and A. J. Carlss<strong>on</strong>, “Influence of N<strong>on</strong>-Singular Stress Terms and SpecimenGeometry <strong>on</strong> Small-Scale Yielding at Crack Tips in Elastic-Plastic Materials”, Journal of<strong>Mechanics</strong> Physics and Solids, Vol. 21, pp. 263-277, 1973.10. P. S. Leevers and J. C. Rad<strong>on</strong>, “Inherent Stress Biaxiality in Various <strong>Fracture</strong> SpecimenGeometries”, Internati<strong>on</strong>al Journal of <strong>Fracture</strong>, Vol. 19, pp. 311-325, 1982.11. S. G. Lekhnitskii, Theory of an Anisotropic Elastic Body, Holden-Day, San Francisco, 1963.12. J. R. Rice, “Limitati<strong>on</strong>s <strong>to</strong> the Small-Scale Yielding Approximati<strong>on</strong> for Crack-Tip Plasticity”,”, Journal of <strong>Mechanics</strong> Physics and Solids, Vol. 22, pp. 17-26, 1974.13. T. L. Sham, “The Theory of Higher Order Weight Functi<strong>on</strong>s for Linear Elastic PlaneProblems”, Internati<strong>on</strong>al Journal of Solids and Structures, Vol. 25, No. 4, pp. 357-380,1989.N.C. State Univ., Raleigh, NC 4-20 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>14. T. L. Sham, “The Determinati<strong>on</strong> of the Elastic T-term using Higher Order Weight Functi<strong>on</strong>s”,Internati<strong>on</strong>al Journal of <strong>Fracture</strong>, Vol. 48, pp. 81-102, 1991.15. G. B. Sinclair, M. Okajima, and J. H. Griffin, “Path-Independent Integrals for ComputingStress Intensity Fac<strong>to</strong>rs at Sharp Notches in Elastic Plates”, Internati<strong>on</strong>al Journal forNumerical Methods in Engineering, Vol. 20, pp. 999-1008, 1984.16. M. S<strong>on</strong>i and M. Stern, “On the Computati<strong>on</strong> of Stress Intensity Fac<strong>to</strong>rs in Fiber <strong>Composite</strong>Media Using a C<strong>on</strong><strong>to</strong>ur Integral Method, Internati<strong>on</strong>al Journal of <strong>Fracture</strong>, Vol. 12, No. 3,pp. 331-344, 1976.17. M. Stern, E. B. Becker, and R. S. Dunham, “A C<strong>on</strong><strong>to</strong>ur Integral Computati<strong>on</strong> of Mixed-Mode Stress Intensity Fac<strong>to</strong>rs”, Internati<strong>on</strong>al Journal of <strong>Fracture</strong>, Vol. 12, No. 3, pp. 359-368, 1976.18. T. C. T, Ting, Anisotropic Elasticity: Theory and Applicati<strong>on</strong>s, Oxford University Press,Oxford, 1996.19. S. S. Wang, J. F. Yau, and H. T. Corten, “A Mixed-Mode Crack Analysis of RectilinearAnisotropic Solids using C<strong>on</strong>servati<strong>on</strong> Laws of Elasticity”, Internati<strong>on</strong>al Journal of<strong>Fracture</strong>, Vol. 16, No. 3, pp. 247-259, 1980.20. K. C. Wu, “Representti<strong>on</strong>s of Stress Inetnsity Fac<strong>to</strong>rs by Path-Independent Integrals”, ASME,Journal of Applied <strong>Mechanics</strong>, Vol. 56, pp. 780-785, 1989.Appendix ADetermining the Unknown Coefficients in the Crack Field Using the J-integralThe path-independent integral J M from eq. (4.60) isLet the actual and auxiliary crack fieldsJMadui= ∫ ( σi−t aiuidsds)Γ 2 , 1(A1)Φ =∑Β f n() zn−B g n1 (A2)Φ a=fa −Β () z B h1 (A3)whereδn+f ()= z z1 , δ n= ( n −2)/2 , n = 1, 2, 3, ⋅⋅⋅.na∆ m +f ()= z z1 , ∆ m=− m / 2 , m = 1, 3, 4, ⋅⋅⋅.From the identity11Re( C) Re( D) = Re[( C + C) D] = Re[ C( D+D)]22where C and D are complex matrices, we have(A4)N.C. State Univ., Raleigh, NC 4-21 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>anda aa Tσ i 2du i= duiΦi, 1= d u Φ,1−1a T= d [Re( AB Φ ) ]Re[ Φ,1]1Re[( AB ) ( cc . .)]2−1a T= dΦ Φ,1+Re[ ] ( ) Re[ ](A5)aadΦitiui, 1ds=−Re( ) ui,1dsdsa T−1=−Re( dΦ) Re[ AB Φ,1]1a T −1=− Re[( dΦ) (AB Φ,1+ c. c.)]2where c.c. denotes the complex c<strong>on</strong>jugate of the preceding term, i.e.,(A6)ThereforeF + c. c.= F + F1a T a TJM=⎧−1−1Re d + c c + d + c c⎫⎨⎩∫[( AB Φ ) ( Φ,1. .) ( Φ ) ( AB Φ . .)] ⎬2 Γ,1⎭1 ⎡T −T a T−1 T −T a T−1= Re ⎢ ∑∫ ( h B df A B fn′ B gn+ h B df A B fn′B gn2Γ⎣ nT −T a T−1 T −T a T−1+ h B df B A fn′ B gn+ h B df B A fn′B gn)]1 ⎡T −T a T T−1= Re ( h B A B+ B A B g2⎢ ∑∫ df ( ) fn′n⎣ ΓnT −T a T T−1+ h B df ( A B + B A)f ′ B g )Using the orthog<strong>on</strong>ality relati<strong>on</strong>s in eq. (4.10) and (4.11),nn]J M can be further rewritten asT TA B + B A =T TI and A B + B A= 0, (A7)Defining1 ⎡T −T a−1⎤JM= Re⎢∑∫h B df fn′B gn2Γ⎥⎣ n⎦1 ⎡T −Ta −1⎤= Re ⎢∑h B ∫ fn′() z df () z B gn2Γ⎥⎣ n⎦aδn+∆mR ≡ f ′( z ) df ( z ) = ( δ + 1)( ∆ + 1 ) z dzmn∫Γnα α n mΓα∫α(A8)it is readily shown that(a) n = m or δ n+ ∆ m+ 1=0,N.C. State Univ., Raleigh, NC 4-22 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>R(b) n ≠ m orδ n+ ∆ m+ 1≠0,i.e.RmnRmndz= ( δ + 1)( ∆ + 1) ∫α = − δ ( δ + 1)[ln( r2 / r1) + i2π];Γ zmn n m m mα( δn + 1)( 2−m) n m n m n m n m={[ r ( − )/ 2−r ( − )/ 2 ]cos(− −n− m ) / + i [ r ( )/ 2+ r ( )/ 221π 221 ]sin( n−m) π / 2 }n−m⎧ j( δn + 1)( 2−m) n−m n−m⎪( − )[( )/ 2 ( )/ 21r2−r1]for n− m=2 j= ⎨n−mj( δn + 1)( 2−m) n−m n−m⎪ i ( − )[( )/ 2 ( )/ 21r2+ r1]for n− m= 2j+ 1⎩n−mUsing R mn and the identitydenoting J M as J Mm, h as h m , eq. (A8) becomesT[ m ]TB B =−2i L− − 1 − 11 ⎡T −T−1⎤J Mm= Re⎢∑RmnhmB B gn2⎥⎣ n⎦1 ⎡T −1 ⎤= ⎢n⎥ n⎣⎦= ⎡T −1⎤Re ∑Rmn( -2i)hmL g Im⎢∑RmnhmL g2⎥n⎣ n⎦= Im R h L g + Im( R ) h L g + Im( R h L g )∑−1 T −1 T −1mm m mn m n mn m nnnn=m+2j,n≠mn=m+2j+1The last two terms of the above equati<strong>on</strong> are zero. Thus the term c<strong>on</strong>tributing <strong>to</strong> the J Mm is theterm between g m and h m <strong>on</strong>ly, andorT −1[ RmmhmL gm]JMm= ImT −1= hmL gmIm{ − δm( δm+ 1)[ln( r2 / r1) + i2π]}, n ≠ 0T −1=−2πδ ( δ + 1) h L gm m mm∑J Mn−1=−2πδ( δ + 1) h L g(A9)Tn n nnAs h n is arbitrary, we choosehn⎧ e= ⎨⎩iekk, n = 1, 3, 5,⋅⋅⋅, n = 4, 6, 8,⋅⋅⋅Here, e k (k = 1, 2) possesses dimensi<strong>on</strong> force() 1two different values of J Mndenoted by J Mneq. (A9) leads <strong>to</strong>/( length) 1−δ n. Therefore, for a given n, there will be(and J 2 )Mncorresp<strong>on</strong>dingly. For the two choices of h n ,N.C. State Univ., Raleigh, NC 4-23 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>wheregn⎧~LJMn−n = ⋅⋅⋅⎪n( n+ ) , 1352πδδ 1, , ,= ⎨ ~⎪i LJMnn = ⋅⋅⋅⎩⎪ 2n( n+ 1) , 4 , 6 , 8πδ δ,~ (1) (2JM n= [M n, J)M nJ ]T(A10)Appendix BDetermining the Unknown Coefficients in the Crack Field Using Betti’s TheoremFollowing arguments similar <strong>to</strong> those presented for the J M integral in Appendix A, <strong>on</strong>e canget the expressi<strong>on</strong> for the integral I. The path-independent integral from Betti’s theorem isIT= ∫ [( u a ) t − ( t a )T u]dsΓ(B1)Using the complex potential functi<strong>on</strong>s, Φ and Φ a and identity eq. (A4),a−1a T( u ) t ds =−Re( AB Φ ) ]Re[ dΦ]1−1aT=− Re[( AB dΦ + cc . .) dΦ]2a Ta T−1( t ) u ds =−Re( dΦ) Re[ AB Φ]1aT −1=− Re{[ d( Φ + c. c.) ] AB Φ}21a T −1 a T −1=− Re{ d[( Φ + c. c.) AB Φ] − ( Φ + c. c.) AB dΦ}2(B2)(B3)∫Γ( r , π )2a 1( t ) Ta TaTu ds=− + cc AB − 1 −1Re{[( Φ . .) Φ] − ∫ ( Φ + cc . .) AB d Φ}(B4)2Γ( r1, −π)According <strong>to</strong> eq. (4.19), the tracti<strong>on</strong> free c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the crack faces for the auxiliary field maybe written asRe[ Φ a ( z )] = 0 or Φ a + c. c. = 0 at θ =± π .Therefore the first term <strong>on</strong> the right hand side of (B4) vanishes and∫Γ1( t a ) T u dsa c cT −1= Re[ ∫ ( Φ + . .) AB d Φ](B5)2 ΓSubstituting (B2) and (B5) in<strong>to</strong> (B1) and using the expressi<strong>on</strong>s for Φ and Φ a (eq. (A2) and (A3))yieldN.C. State Univ., Raleigh, NC 4-24 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>1a T a TI =−⎧ −1 −1Re + c c d + + c c d⎫⎨⎩∫( AB Φ . .) Φ ( Φ . .) AB Φ⎬2 Γ⎭1 ⎡T −T a T−1 T −T a T−1=− Re⎢ ∑∫ h B f A B dfnB gn+ h B f A B dfnB g2Γ⎣ nT −T a T−1 T −T a T−1+ h B f B A df B g + h B f B A df B gn1 ⎡T −T a T T−1I =− Re ⎢∑∫h B f ( A B+ B A)dfnB gn+2Γ⎣ nUsing the orthog<strong>on</strong>ality relati<strong>on</strong>s, eq. (A7),nT −T a T T−1[ h B f ( A B+ B A)dfnB gn]]1 ⎡T −Ta−1⎤I =− Re⎢∑∫h B f dfnB gn2Γ⎥⎣ n⎦nn]nwhereDefining1 ⎡T −T a−1⎤=− Re ⎢∑h B2∫ f () z dfn()z B gΓn⎥⎣ n⎦a∆ m +f ()= z z1 , ∆ m=− m /2, m = 1, 3, 4, ⋅⋅⋅.aδn+ ∆m+1Q ≡ f ( z ) df ( z ) = ( δ + 1)z dzmn∫Γα n α nΓα∫α(B6)it is readily shown that(a) n = m - 2 or δ n+ ∆ m+ 2=0Q(b) n ≠ m -2 or δ n+ ∆ m+ 2 ≠ 0dz, −2 = ( δ−2 + 1) ∫α = ( δ−2 + 1)(ln r2 / r1+ i2π);Γ zm m m mαQmnδn + 1n− m+ 2 2 n− m+ 2 2n− m+ 2 2 n− m+2 2=−2[( r −r n− m 2 + i r + r ( n−m)21) cos[( ) π / ] (21) sin[ π / 2]}n− m+2( )/ ( )/ ( )/ ( )/ ,⎧ j+ 1( δn + 1) n− m+ n− m+⎪( − )(( 2)/ 2 ( 2)/21 2 r2−r1) for n− m=2 ji.e. Q n mmn= ⎨− + 2j+ 1( δn + 1) n− m+ n− m+⎪ i ( − )(( 2)/ 2 ( 2)/22 1r2+ r1) for n− m= 2 j+1⎩ n− m+2Using Q mn and expressi<strong>on</strong> for L -1 , writing I as I m , and h as h m , the I -integral from eq. (B6), for agiven ∆m, becomesN.C. State Univ., Raleigh, NC 4-25 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>1T −T−1Im=− Re{ ∑QmnhmB B gn}2 n1T −1 T −1=− Re{ ∑Qmn( − 2i) hmL gn} =−Im[ ∑QmnhmL gn]2 nnT −1T −1 T −1=−Im{ Q h L g } −Im { Q h L g } −Im { Q h L g }∑m,m−2m m−2mn m nnnn= m+ 2 j , n≠m− 2 m= m+ 2 j+1Since the last two terms of the above equati<strong>on</strong> are equal <strong>to</strong> zero, it can be clearly seen that theterm c<strong>on</strong>tributing <strong>to</strong> the I is the cross terms between g m-2 and h m <strong>on</strong>ly.∑mnmnThusT −1[ m m−2]T −1I =− Im Q m,m-2h L g =− h L g Im{( δ + 1)[ln( r / r ) + i2π]}m=−2π δ 1)T −1(m-2+ hmL gm−2mm−2 m−2 2 1T −1or I n=−2π( δ + 1) h L g(B7)+ 2n n+2From eq. (B7), following a similar procedure as before, g n can be expressed bywhere( k )I n +2gis the value of I n+2 whenn⎧~LIn+2−n = ⋅⋅⋅⎪ (n+ ) , 1 , 3 , 52π δ 1,= ⎨ ~⎪i LIn+2n = ⋅⋅⋅⎩⎪2 (n+ 1) , 2 , 4 , 6π δ,~ (1) (2In[n, I)+ 2=+ 2 n+2I ]Tn(B8)hn⎧ e= ⎨⎩iekk, n = 1, 3, 5,⋅⋅⋅, n = 2, 4, 6,⋅⋅⋅Here, e k possesses dimensi<strong>on</strong> force × ( length) δ n .Appendix CDeformati<strong>on</strong> Field for Degenerate MaterialsThe soluti<strong>on</strong>s for the n<strong>on</strong>generate materials can be modified so that they can be applied fordegenerate materials. We write the general soluti<strong>on</strong>s for n<strong>on</strong>generate materials aswhereu = ReΦ = X(z)g-1[ AB X(z)g]X() z = B f () z B−1N.C. State Univ., Raleigh, NC 4-26 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>In the limit µ1= µ2= µ , it can be proved that the matrix reduces <strong>to</strong>where z = x 1 + µ x 2 ;X() z = f () z I + x f ′()z V2⎡ µ µ ⎤V = ⎢ ⎥⎣ − 1 − µ ⎦Hence, for isotropic materials, we can obtain1u= Re () E− ′()V g2Gwhere{[ f z ix2f z ] }[ f () z I x2f () z V]gΦ = + ′21 ⎡ − i2s11 ′ s11 ′ + s12′ ⎤ ⎡ iE =s ′ − ′⎢⎣− ′ + ′ − 2 ′⎥ , V =11s12( s11 s12)i s⎢11 ⎦ ⎣−1− 1⎤−i⎥⎦For a crack in isotropic materials, choosing f(z) = z δ+1 and performing routine manipulati<strong>on</strong>s, thecrack tip fields can be represented as⎡σ11 ⎤⎢σ⎥=⎢22⎥⎢⎣σ12⎥⎦∑n( δ + 1) rnδni⎧⎡2e⎪⎢Re⎨⎢⎪ i⎢⎩⎣e( δ nθ−π/2)δ θn− δ en+ δ eni(δn−1)θiδnθi[ π / 2+( δn−1)θ ]+ δ+⎤ ⎫nesinθe δnesinθi(δ −1)ii[ /2+(−1)] ⎥ ⎡gn1⎤⎪ n θδ nθπ δnθsinθe − δnesinθ⎥ ⎢ ⎥ ⎬i[ π / 2+( δ −1)θ ] i(δ −1)θgn2⎪⎭nsinθ− δ ennsinθ⎥ ⎣⎦⎦⎡u1⎤⎢ ⎥ =⎣u2 ⎦∑nr−i[⎪⎧⎡ ( κ + 1) eRe⎨⎢i(⎪⎩ ⎣−( κ − 1) e+ 2( δ + 1) esinθ( κ − 1) e+ 2( δ + 1) esinθ⎤ ⎡g⎥sinθ⎢⎦ ⎣gδ n + 1π / 2−(δ n + 1) θ ]iδnθi(δ n + 1) θi(π / 2+δ nθ)nnn1δ n + 1) θi(π / 2+δ nθ)−i[π / 2−(δ n + 1) θ ]iδnθ4G+ 2( δ + 1) e sinθ( κ + 1) e − 2( δ + 1) ennn 2where κ = 3 −4 ν for plane strain; κ = ( 3− ν)/( 1+ν)for plane stress.⎤⎪⎫⎥⎬⎦⎪⎭N.C. State Univ., Raleigh, NC 4-27 F. G. Yuan, July 28-31, 1998


Anisotropic Elasticity: Applicati<strong>on</strong> <strong>to</strong> <strong>Composite</strong> <strong>Fracture</strong> <strong>Mechanics</strong>References <strong>on</strong> Anisotropic Bodies1. S. A. Ambartsumyan, Theory of Anisotropic Plates, Technomic Publishing Co., Inc., 1970.2. S. A. Ambartsumian, Fragments of theTheory of Anisotropic Shells, World ScientificPublishing Co., Singapore, 1991.3. R. F. S. Hearm<strong>on</strong>, Applied Anisotropic Elasticity, Oxford University Press, 1961.4. S. G. Lekhnitskii, Theory of Elastcity of an Anisotropic Elastic Body, Holden-Day, SanFrancisco, California, 1963, (translati<strong>on</strong> of 1950 Russian editi<strong>on</strong>).5. S. G. Lekhnitskii, Anisotropic Plates, Gord<strong>on</strong> and Breach Science Publishers, New York,1968, (translati<strong>on</strong> of 1957 Russian editi<strong>on</strong>).6. G. N. Savin, Stress C<strong>on</strong>centrati<strong>on</strong> Around Holes, Pergam<strong>on</strong> Press, 1961, (translcati<strong>on</strong> ofamended 1951 Russian editi<strong>on</strong>).7. T. C. T. Ting, Anisotropic Elasticity, Theory and Applicati<strong>on</strong>s, Oxford University Press,Oxford, 1996.8. J. M. Whitney, Structural Analysis of Laminated Anisotropic Plates, Technomic PublishingCo., Lancaster, Pennsylania, 1987.N.C. State Univ., Raleigh, NC 4-28 F. G. Yuan, July 28-31, 1998

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!