Planck Pre-Launch Status Papers - APC - Université Paris Diderot ...

Planck Pre-Launch Status Papers - APC - Université Paris Diderot ... Planck Pre-Launch Status Papers - APC - Université Paris Diderot ...

apc.univ.paris7.fr
from apc.univ.paris7.fr More from this publisher
11.07.2015 Views

A&A 520, A6 (2010)compression effect in the BEMs. The FEM is assumed to have aconstant gain and noise temperature{ Gain = GFEM0FEM:(B.1)Noise = TN FEM .The BEM (Artal et al. 2009) showsanoverallgain(includingthe detector diode), which depends on the BEM input power asfollows:{ Gain = G BEM =BEM:Noise = TN BEM ,G BEM01+b·G BEM0 ·p(B.2)where p is the power entering the BEM and b is a parameterdefining the non-linearity of the BEM. For b = 0theradiometeris linear; for b = ∞ the BEM has a null-gain for any input power;for p = ∞ the BEM is completely compressed and G BEM = 0forany value of the non-linearity parameter.The power entering the BEM (we here neglect the attenuationof the waveguides whose effect can be modeled as a smallreduction of the FEM gain and a small increase of the FEM noisetemperature) can be written asp = k · B · G FEM0 · (T A + T N ) , (B.3)whereT N = T FEMN+ T NBEM· (B.4)G FEM0The voltage at each output BEM detector (the detector diodeconstant is included in the BEM gain) can be written asV out = k · B · G FEM0 ·[1= G 0G BEM0· (T A + T N )1 + b · G BEM0· (T A + T N )]· (T A + T N ) , (B.5)1 + b · G 0 · (T A + T N )whereG 0 = G FEM0· G BEM0· k · B. (B.6)In a compact way Eq. (B.6)canbewrittenasV out = G tot · (T A + T N ) ,(B.7)[]1G tot = G 0 , (B.8)1 + b · G 0 · (T A + T N )where the G tot is the total gain of the radiometer, which dependson the input antenna temperature; G 0 is the radiometer lineargain and it coincides with the overall gain in case of perfect linearity(b = 0).ReferencesArtal, E., Aja, B., de la Fuente, M. L., et al. 2009, JINST, 4, T12003Bersanelli, M., Mandolesi, N., Butler, R. C., et al. 2010, A&A, 520, A4Cuttaia, F. 2005, Ph.D. Thesis, University of BolognaCuttaia, F., Mennella, A., Stringhetti, L., et al. 2009, JINST, 4, T12013D’Arcangelo, O., Figini, L., Simonetto, A., et al. 2009a, JINST, 4, T12007D’Arcangelo, O., Simonetto, A., Figini, L., Pagana, E., Villa, F., Pecora,M., Battaglia, P., Bersanelli, M., Butler, R. C., Garavaglia, S., Guzzi, P.,Mandolesi, N., & Sozzi, C. 2009b, JINST, 4, T12005Davis, R. J., Wilkinson, A., Davies, R. D., et al. 2009, JINST, 4, T12002Daywitt, W. C. 1989, NIST Tech. Note, 1327De Nardo, S. 2008, Master’s Thesis, Univeristà degli Studi di MilanoHoyland, R. 2004, US patent 6, 803, 838 B2Malaspina, M., Franceschi, E., Battaglia, P., et al. 2009, JINST, 4, T12017Mennella, A., Bersanelli, M., Seiffert, M., et al. 2003, A&A, 410, 1089Mennella, A., Villa, F., Terenzi, L., et al. 2009, JINST, 4, T12011Mennella, A., Bersanelli, M., Butler, R. C., et al. 2010, A&A, 520, A5Seiffert, M., Mennella, A., Burigana, C., et al. 2002, A&A, 391, 1185Terenzi, L., Cuttaia, F., De Rosa, A. L. V., et al. 2009a, JINST, submittedTerenzi, L., Lapolla, M., Laaninen, M., et al. 2009b, JINST, 4, T12015Terenzi, L., Salmon, M. J., Colin, A., et al. 2009c, JINST, 4, T12012Valenziano, L., Cuttaia, F., De Rosa, A., et al. 2009, JINST, 4, T12006Varis, J., Hughes, N. J., Laaninen, M., et al. 2009, JINST, 4, T12001Villa, F., D’Arcangelo, O., Pecora, M., et al. 2009, JINST, 4, T12004Zonca, A., Franceschet, C., Battaglia, P., et al. 2009, JINST, 4, T120101 INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica, via P.Gobetti, 101, 40129 Bologna, Italye-mail: villa@iasfbo.inaf.it2 Department of Physics, University of California, Santa Barbara,93106-9530, USA3 University of Helsinki, Department of Physics, PO Box 64, 00014Helsinki, Finland4 Helsinki Institute of Physics, PO Box 64, 00014 Helsinki, Finland5 Metsähovi Radio Observatory, Helsinki University of Technology,Metsähovintie 114, 02540 Kylmälä, Finland6 Thales Alenia Space Italia S.p.A., S.S. Padana Superiore 290, 20090Vimodrone (MI), Milano, Italy7 Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy8 DA-Design Oy. (aka Ylinen Electronics), Keskuskatu 29, 31600Jokioinen, Finland9 IFP-CNR, via Cozzi 53, 20125 Milano, Italy10 INAF - Osservatorio Astronomico di Trieste, 11 via Tiepolo, 34143Trieste, Italy11 University of Trieste, Department of Physics, 2 via Valerio, 34127Trieste, Italy12 Jodrell Bank Centre for Astrophysics, Alan Turing Building, TheUniversity of Manchester, Manchester, M13 9PL, UK13 Planck Science Office, European Space Agency, ESAC, PO box 78,28691 Villanueva de la Cañada, Madrid, Spain14 INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica, via E.Bassini 15, 20133 Milano, Italy15 Universidad de Cantabria, Dep. De Ingenieria de Comunicaciones.Av. Los Castros s/n, 39005, Santander-Spain16 Instituto de Fisica de Cantabria (CSIC-UC), Av. Los Castros s/n,39005 Santander, Spain17 Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena,California 91109, USA18 Instituto de Astrofísica de Canarias C/, ViaLacteas/n, 38205 LaLaguna (Tenerife), Spain19 National Radio Astronomy Observatory, Stone hall, University ofVirginia, 520 Edgemont road, Charlottesville, USA20 MilliLab, VTT Technical Research Centre of Finland, Tietotie 3,Otaniemi, Espoo, FinlandPage 14 of 14

A&A 520, A7 (2010)DOI: 10.1051/0004-6361/200912891c○ ESO 2010Pre-launch status of the Planck missionAstronomy&AstrophysicsSpecial featurePlanck pre-launch status: Low Frequency Instrument opticsM. Sandri 1 ,F.Villa 1 ,M.Bersanelli 2 ,C.Burigana 1 ,R.C.Butler 1 ,O.D’Arcangelo 3 ,L.Figini 3 ,A.Gregorio 4,5 ,C. R. Lawrence 6 ,D.Maino 2 ,N.Mandolesi 1 ,M.Maris 4 ,R.Nesti 7 ,F.Perrotta 8 ,P.Platania 3 ,A.Simonetto 3 ,C.Sozzi 3 ,J. Tauber 9 ,andL.Valenziano 11 INAF-IASF Bologna, via Gobetti 101, 40129 Bologna, Italye-mail: [sandri;villa;burigana;butler;mandolesi;valenziano]@iasfbo.inaf.it2 Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italye-mail: [marco.bersanelli;davide.maino]@mi.infn.it3 IFP-CNR, via Cozzi 53, Milano, Italye-mail: [darcangelo;platania;simonetto;sozzi]@ifp.cnr.it4 INAF-OATS, via Tiepolo 11, 34143 Trieste, Italye-mail: maris@oats.inaf.it5 University of Trieste, Department of Physics, via Valerio 2, 34127 Trieste, Italye-mail: anna.gregorio@ts.infn.it6 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena CA 91109, USAe-mail: Charles.R.Lawrence@jpl.nasa.gov7 Osservatorio Astrofisico di Arcetri, INAF, Largo E. Fermi 5, 50125 Florence, Italye-mail: nesti@arcetri.astro.it8 SISSA, via Beirut 4, 34014 Trieste, Italye-mail: perrotta@sissa.it9 ESA ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlandse-mail: jtauber@rssd.esa.intReceived 14 July 2009 / Accepted 1 October 2009ABSTRACTWe describe the optical design and optimisation of the Low Frequency Instrument (LFI), one of two instruments onboard the Plancksatellite, which will survey the cosmic microwave background with unprecedented accuracy. The LFI covers the 30–70 GHz frequencyrange with an array of cryogenic radiometers. Stringent optical requirements on angular resolution, sidelobes, main beam symmetry,polarization purity, and feed orientation have been achieved. The optimisation process was carried out by assuming an ideal telescopeaccording to the Planck design and by using both physical optics and multi-reflector geometrical theory of diffraction. This extensivestudy led to the flight design of the feed horns, their characteristics, arrangement, and orientation, while taking into account theopto-mechanical constraints imposed by complex interfaces in the Planck focal surface.Key words. cosmic microwave background – space vehicles: instruments – instrumentation: detectors –submillimeter: general – telescopes1. IntroductionThe Planck 1 Satellite was developed to measure the temperatureand polarization of the cosmic microwave background (CMB)over the entire sky with unprecedented sensitivity and angularresolution. The Low Frequency Instrument (LFI), operatingin the 30–70 GHz frequency range, is an array of cryogenicpseudo-correlation radiometers (Bersanelli et al. 2010) sharingthe focal surface of a 1.5 m off-axis dual reflector telescopewith the High Frequency Instrument (HFI) (see Lamarre et al.2010). This unique optical layout, with one instrument (LFI) surroundingthe other (HFI), leads to potentially significant off-axis1 Planck (http://www.esa.int/Planck) isanESAprojectwithinstrumentsprovided by two scientific Consortia funded by ESA memberstates (in particular the lead countries: France and Italy) with contributionsfrom NASA (USA), and telescope reflectors provided in a collaborationbetween ESA and a scientific Consortium led and funded byDenmark.aberrations in the LFI beams that must be accurately controlledin the telescope and instrument design optimization phases.The requirements on the LFI beams were originally set in termsof angular resolution (33 ′ ,24 ′ ,and14 ′ ,respectivelyat30GHz,44 GHz, and 70 GHz) and straylight contamination (lower than3 µK). The aim of this paper is to describe the complex processof design and optimization of the LFI optics, leading to the currentflight configuration, which in some cases achieves angularresolutions superior to the requirements.ACMBexperimentshouldideallyhaveanopticalsystemproducing symmetric Gaussian beam responses to avoid distortioneffects, and without spillover, to avoid straylight enteringthe detectors through the sidelobes producing signals that maybe indistinguishable from fluctuations in the CMB. In real systems,however, residual non-idealities in the optical system mayintroduce serious limitations to the scientific return if not wellunderstood and controlled. The systematic effects induced by theoptics can be divided into two main areas: (i) the aberrations ofArticle published by EDP Sciences Page 1 of 12

A&A 520, A7 (2010)DOI: 10.1051/0004-6361/200912891c○ ESO 2010<strong>Pre</strong>-launch status of the <strong>Planck</strong> missionAstronomy&AstrophysicsSpecial feature<strong>Planck</strong> pre-launch status: Low Frequency Instrument opticsM. Sandri 1 ,F.Villa 1 ,M.Bersanelli 2 ,C.Burigana 1 ,R.C.Butler 1 ,O.D’Arcangelo 3 ,L.Figini 3 ,A.Gregorio 4,5 ,C. R. Lawrence 6 ,D.Maino 2 ,N.Mandolesi 1 ,M.Maris 4 ,R.Nesti 7 ,F.Perrotta 8 ,P.Platania 3 ,A.Simonetto 3 ,C.Sozzi 3 ,J. Tauber 9 ,andL.Valenziano 11 INAF-IASF Bologna, via Gobetti 101, 40129 Bologna, Italye-mail: [sandri;villa;burigana;butler;mandolesi;valenziano]@iasfbo.inaf.it2 Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italye-mail: [marco.bersanelli;davide.maino]@mi.infn.it3 IFP-CNR, via Cozzi 53, Milano, Italye-mail: [darcangelo;platania;simonetto;sozzi]@ifp.cnr.it4 INAF-OATS, via Tiepolo 11, 34143 Trieste, Italye-mail: maris@oats.inaf.it5 University of Trieste, Department of Physics, via Valerio 2, 34127 Trieste, Italye-mail: anna.gregorio@ts.infn.it6 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena CA 91109, USAe-mail: Charles.R.Lawrence@jpl.nasa.gov7 Osservatorio Astrofisico di Arcetri, INAF, Largo E. Fermi 5, 50125 Florence, Italye-mail: nesti@arcetri.astro.it8 SISSA, via Beirut 4, 34014 Trieste, Italye-mail: perrotta@sissa.it9 ESA ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlandse-mail: jtauber@rssd.esa.intReceived 14 July 2009 / Accepted 1 October 2009ABSTRACTWe describe the optical design and optimisation of the Low Frequency Instrument (LFI), one of two instruments onboard the <strong>Planck</strong>satellite, which will survey the cosmic microwave background with unprecedented accuracy. The LFI covers the 30–70 GHz frequencyrange with an array of cryogenic radiometers. Stringent optical requirements on angular resolution, sidelobes, main beam symmetry,polarization purity, and feed orientation have been achieved. The optimisation process was carried out by assuming an ideal telescopeaccording to the <strong>Planck</strong> design and by using both physical optics and multi-reflector geometrical theory of diffraction. This extensivestudy led to the flight design of the feed horns, their characteristics, arrangement, and orientation, while taking into account theopto-mechanical constraints imposed by complex interfaces in the <strong>Planck</strong> focal surface.Key words. cosmic microwave background – space vehicles: instruments – instrumentation: detectors –submillimeter: general – telescopes1. IntroductionThe <strong>Planck</strong> 1 Satellite was developed to measure the temperatureand polarization of the cosmic microwave background (CMB)over the entire sky with unprecedented sensitivity and angularresolution. The Low Frequency Instrument (LFI), operatingin the 30–70 GHz frequency range, is an array of cryogenicpseudo-correlation radiometers (Bersanelli et al. 2010) sharingthe focal surface of a 1.5 m off-axis dual reflector telescopewith the High Frequency Instrument (HFI) (see Lamarre et al.2010). This unique optical layout, with one instrument (LFI) surroundingthe other (HFI), leads to potentially significant off-axis1 <strong>Planck</strong> (http://www.esa.int/<strong>Planck</strong>) isanESAprojectwithinstrumentsprovided by two scientific Consortia funded by ESA memberstates (in particular the lead countries: France and Italy) with contributionsfrom NASA (USA), and telescope reflectors provided in a collaborationbetween ESA and a scientific Consortium led and funded byDenmark.aberrations in the LFI beams that must be accurately controlledin the telescope and instrument design optimization phases.The requirements on the LFI beams were originally set in termsof angular resolution (33 ′ ,24 ′ ,and14 ′ ,respectivelyat30GHz,44 GHz, and 70 GHz) and straylight contamination (lower than3 µK). The aim of this paper is to describe the complex processof design and optimization of the LFI optics, leading to the currentflight configuration, which in some cases achieves angularresolutions superior to the requirements.ACMBexperimentshouldideallyhaveanopticalsystemproducing symmetric Gaussian beam responses to avoid distortioneffects, and without spillover, to avoid straylight enteringthe detectors through the sidelobes producing signals that maybe indistinguishable from fluctuations in the CMB. In real systems,however, residual non-idealities in the optical system mayintroduce serious limitations to the scientific return if not wellunderstood and controlled. The systematic effects induced by theoptics can be divided into two main areas: (i) the aberrations ofArticle published by EDP Sciences Page 1 of 12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!