Beam on Winkler foundation method for piles in laterally spreading ...

Beam on Winkler foundation method for piles in laterally spreading ... Beam on Winkler foundation method for piles in laterally spreading ...

11.07.2015 Views

BEAM ON WINKLER FOUNDATION METHOD FOR PILESIN LATERALLY SPREADING SOILSAkihiro Takahashi, M.ASCE 1 , Hideki Sugita 1 and Shunsuke Tanimoto 1ABSTRACTThe paper presents application of beam on non-linear Winkler foundation methodto piles in laterally spreading liquefied soils. In many cases, parameters used in themethod are determined to fit particular case studies and are hardly applicable to theother separate cases, due to difficulties in the modelling of complicated phenomenawith the simplified method. In this study, variation of p-y curve parameters for pilesin laterally spreading liquefied soils is systematically examined by numerically analysingphysical model tests undertaken by independent researchers.INTRODUCTIONOne of the major sources of earthquake-induced damage to pile foundations is lateralspreading of liquefied soils. In practice, to assess performance of piles subjectedto kinematic loading due to large ground deformation, the beam on non-linearWinkler foundation method is used in simplified design procedures and has been introducedin some of practical design codes in Japan (JSCE 2000). This involvespseudo-static analysis of a pile foundation subjected to a superstructure inertial force(if applicable) and soil movement through Winkler springs that model soil-pile interaction.When this technique is applied to a problem on a foundation in laterallyspreading soils, accumulation of displacements in cyclic loading may be modelled in‘monotonic’ way, which involves considerable uncertainties and makes it difficult todetermine appropriate parameters for non-linear Winkler springs (p-y curves).1Public Works Research Institute, Tsukuba, Japan.1

BEAM ON WINKLER FOUNDATION METHOD FOR PILESIN LATERALLY SPREADING SOILSAkihiro Takahashi, M.ASCE 1 , Hideki Sugita 1 and Shunsuke Tanimoto 1ABSTRACTThe paper presents applicati<strong>on</strong> of beam <strong>on</strong> n<strong>on</strong>-l<strong>in</strong>ear <strong>W<strong>in</strong>kler</strong> foundati<strong>on</strong> <strong>method</strong>to <strong>piles</strong> <strong>in</strong> <strong>laterally</strong> spread<strong>in</strong>g liquefied soils. In many cases, parameters used <strong>in</strong> the<strong>method</strong> are determ<strong>in</strong>ed to fit particular case studies and are hardly applicable to theother separate cases, due to difficulties <strong>in</strong> the modell<strong>in</strong>g of complicated phenomenawith the simplified <strong>method</strong>. In this study, variati<strong>on</strong> of p-y curve parameters <strong>for</strong> <strong>piles</strong><strong>in</strong> <strong>laterally</strong> spread<strong>in</strong>g liquefied soils is systematically exam<strong>in</strong>ed by numerically analys<strong>in</strong>gphysical model tests undertaken by <strong>in</strong>dependent researchers.INTRODUCTIONOne of the major sources of earthquake-<strong>in</strong>duced damage to pile foundati<strong>on</strong>s is lateralspread<strong>in</strong>g of liquefied soils. In practice, to assess per<strong>for</strong>mance of <strong>piles</strong> subjectedto k<strong>in</strong>ematic load<strong>in</strong>g due to large ground de<strong>for</strong>mati<strong>on</strong>, the beam <strong>on</strong> n<strong>on</strong>-l<strong>in</strong>ear<strong>W<strong>in</strong>kler</strong> foundati<strong>on</strong> <strong>method</strong> is used <strong>in</strong> simplified design procedures and has been <strong>in</strong>troduced<strong>in</strong> some of practical design codes <strong>in</strong> Japan (JSCE 2000). This <strong>in</strong>volvespseudo-static analysis of a pile foundati<strong>on</strong> subjected to a superstructure <strong>in</strong>ertial <strong>for</strong>ce(if applicable) and soil movement through <strong>W<strong>in</strong>kler</strong> spr<strong>in</strong>gs that model soil-pile <strong>in</strong>teracti<strong>on</strong>.When this technique is applied to a problem <strong>on</strong> a foundati<strong>on</strong> <strong>in</strong> <strong>laterally</strong>spread<strong>in</strong>g soils, accumulati<strong>on</strong> of displacements <strong>in</strong> cyclic load<strong>in</strong>g may be modelled <strong>in</strong>‘m<strong>on</strong>ot<strong>on</strong>ic’ way, which <strong>in</strong>volves c<strong>on</strong>siderable uncerta<strong>in</strong>ties and makes it difficult todeterm<strong>in</strong>e appropriate parameters <strong>for</strong> n<strong>on</strong>-l<strong>in</strong>ear <strong>W<strong>in</strong>kler</strong> spr<strong>in</strong>gs (p-y curves).1Public Works Research Institute, Tsukuba, Japan.1


In many cases, determ<strong>in</strong>ati<strong>on</strong> of parameters used <strong>in</strong> the <strong>method</strong> are made us<strong>in</strong>g thelimited number of physical model test simulati<strong>on</strong>s or case studies and are hardly applicableto the other separate cases (e.g. Brandenberg et al., 2001), due to difficulties<strong>in</strong> the modell<strong>in</strong>g of complicated phenomena with the simplified <strong>method</strong>. For <strong>in</strong>stance,effects of cyclic load<strong>in</strong>g and nature of <strong>in</strong>put earthquake moti<strong>on</strong> cannot be explicitlyc<strong>on</strong>sidered <strong>in</strong> the m<strong>on</strong>ot<strong>on</strong>ic load<strong>in</strong>g numerical analysis. This k<strong>in</strong>d of effects<strong>in</strong> the m<strong>on</strong>ot<strong>on</strong>ic load<strong>in</strong>g analysis has not been fully understood yet and is hidden <strong>in</strong>the model parameters.To assess sensitivity of parameters <strong>for</strong> the <strong>method</strong> <strong>on</strong> foundati<strong>on</strong> resp<strong>on</strong>ses <strong>in</strong> <strong>laterally</strong>spread<strong>in</strong>g liquefied soils, many case studies are required. For such purpose, bothfield observati<strong>on</strong>s and physical model tests may be utilised with careful regard totheir advantages and limitati<strong>on</strong>s: Data themselves are very useful but always <strong>in</strong>volveuncerta<strong>in</strong>ty <strong>in</strong> cause of events <strong>for</strong> the <strong>for</strong>mer, while foundati<strong>on</strong> resp<strong>on</strong>ses dur<strong>in</strong>g anearthquake are clear but the tests are always c<strong>on</strong>ducted under unpreferable sideboundary c<strong>on</strong>diti<strong>on</strong>s <strong>for</strong> the latter. When predicti<strong>on</strong> <strong>method</strong>s <strong>for</strong> ground de<strong>for</strong>mati<strong>on</strong>are assessed, the <strong>for</strong>mer may be preferable, while it is the latter <strong>for</strong> the n<strong>on</strong>-l<strong>in</strong>ear p-ycurve parameters. In this study, variati<strong>on</strong> of p-y curve parameters <strong>for</strong> <strong>piles</strong> <strong>in</strong> <strong>laterally</strong>spread<strong>in</strong>g liquefied soils is systematically exam<strong>in</strong>ed by numerically analys<strong>in</strong>g physicalmodel tests undertaken by <strong>in</strong>dependent researchers us<strong>in</strong>g the beam <strong>on</strong> n<strong>on</strong>-l<strong>in</strong>ear<strong>W<strong>in</strong>kler</strong> foundati<strong>on</strong> <strong>method</strong> with hyperbolic type p-y curves.PHYSICAL MODEL TEST RESULTS USEDThe target situati<strong>on</strong> is that a pile foundati<strong>on</strong> located <strong>in</strong> loose sand deposit beh<strong>in</strong>dgravity type quay wall moves seaward dur<strong>in</strong>g earthquake due to lateral liquefied soilspread<strong>in</strong>g <strong>in</strong>itiated by quay <strong>in</strong>stability. Schematic view of the problem to be solved isillustrated <strong>in</strong> Fig. 1. Data of physical model tests <strong>on</strong> the target problem were collectedfrom well-documented technical papers and reports.Summary of the physical model tests used are listed <strong>in</strong> Table 1 <strong>in</strong> ascend<strong>in</strong>g orderof the model pile diameter. Data of six different series of physical model tests areused: Half of them are ord<strong>in</strong>ary shak<strong>in</strong>g table tests and the others are dynamic centrifugetests. (All the values <strong>for</strong> the centrifuge tests are presented <strong>in</strong> the prototypescale.) The selected physical models have various c<strong>on</strong>figurati<strong>on</strong>s of soil layers (H NL& H L ) and distance between foundati<strong>on</strong> and quay wall (s). Test numbers 1 to 17 arethe tests <strong>on</strong> s<strong>in</strong>gle pile and the last test number 18 is <strong>on</strong> a pile group. The pile foundati<strong>on</strong><strong>in</strong> No. 18 c<strong>on</strong>sists of four <strong>piles</strong> rigidly fixed to the foot<strong>in</strong>g hav<strong>in</strong>g a pile spac<strong>in</strong>gof 2.5D. All the <strong>piles</strong> used <strong>in</strong> the physical model tests do not reach their elasticlimits and behave as elastic beams.NUMERICAL PROCEDUREThe beam <strong>on</strong> n<strong>on</strong>-l<strong>in</strong>ear <strong>W<strong>in</strong>kler</strong> foundati<strong>on</strong> <strong>method</strong> with hyperbolic type p-ycurves is used. The vertical beam models the pile and the horiz<strong>on</strong>tal spr<strong>in</strong>gs c<strong>on</strong>nect-2


<strong>in</strong>g the beam and support<strong>in</strong>g ground model soils. The govern<strong>in</strong>g differential equati<strong>on</strong><strong>for</strong> the model can be expressed as4d yEI4dz= −Dpand the p-y spr<strong>in</strong>gs modelled by a hyperbolic functi<strong>on</strong> can be written askhrp = Ci1+yyrywhere EI=flexural rigidity of pile, y=relative displacement between pile (u) and soils<strong>in</strong> free field (u g ), z=depth from the pile head, D=width of pile (or width of foot<strong>in</strong>g, B),p=horiz<strong>on</strong>tal subgrade reacti<strong>on</strong>, C i =scal<strong>in</strong>g factor <strong>for</strong> the p-y curve at i-th layer,k hr =coefficient of <strong>in</strong>itial subgrade reacti<strong>on</strong> parameter, and y r =reference relative displacement.As p = ky hry= ∞ rwhen C i =1, y r may be def<strong>in</strong>ed as follow us<strong>in</strong>g theBroms’s ultimate pile resistance (1964):y = 3 K σ ′rPkhrwhere K P =coefficient of passive earth pressure, and σ v′ =effective overburden pressure.In order to systematically determ<strong>in</strong>e the soil parameters <strong>for</strong> various test c<strong>on</strong>diti<strong>on</strong>s,the follow<strong>in</strong>g assumpti<strong>on</strong>s are made:・ φ ′ <strong>for</strong> all the sands used is assumed as 40 degrees, as materials used <strong>in</strong> the physicalmodel tests are ma<strong>in</strong>ly clean sand. As a result, K P =4.6 <strong>for</strong> all the cases.・ Shear modulus of sands is assumed to be expressed as G ()( ) 0. 400= 75F e σ ′vpawhere G 0 =shear modulus at very small stra<strong>in</strong> (<strong>in</strong> MPa), e=void ratio,2F () e = ( 2.17 − e) ( 1 + e), and p a =atmosphere pressure. This relati<strong>on</strong>ship is obta<strong>in</strong>edfrom bender element tests <strong>on</strong> Toyoura sand <strong>in</strong> a triaxial cell (Takahashi,E = 2 + ν G .2004). By assum<strong>in</strong>g ν=0.3, Young’s modulus,0( 1 )0・ k hr is estimated by (JRA, 2002):khr−34Es⎛ BE⎞= αi ⎜ ⎟ = αik0.3 ⎝ 0.3⎠h0where α i =additi<strong>on</strong>al scal<strong>in</strong>g factor <strong>for</strong> the coefficient of <strong>in</strong>itial subgrade reacti<strong>on</strong>parameter at i-th layer, E s =soil’s Young’s modulus, and B E =effective width offoundati<strong>on</strong> (=B (width of foundati<strong>on</strong>) <strong>for</strong> foot<strong>in</strong>g, and = D β <strong>for</strong> pile where β=stiffness ratio of soil to pile (= 4 k h 0D4EI , <strong>in</strong> 1/m)). k0<strong>for</strong> β is the averageh3


value of k h0 from the depth of pile head to 1/β. S<strong>in</strong>ce it is comm<strong>on</strong> to choose k h at10 -2 m order of displacement (stra<strong>in</strong> level of 10 -2 ) as the coefficients of the <strong>in</strong>itialsubgrade reacti<strong>on</strong> <strong>in</strong> the practical pile design procedure, E s is assumed to beE 0 /10.S<strong>in</strong>ce the analyses presented here are per<strong>for</strong>med at a snapshot <strong>in</strong> time, selecti<strong>on</strong> ofthe target time <strong>in</strong> an earthquake is crucial. In this study, the time just after shak<strong>in</strong>g isselected and the measured soil displacement profile at the time is <strong>in</strong>put, s<strong>in</strong>ce (1) ourma<strong>in</strong> c<strong>on</strong>cern <strong>in</strong> this paper is assessment of p-y curve parameters <strong>for</strong> predict<strong>in</strong>g permanentfoundati<strong>on</strong> de<strong>for</strong>mati<strong>on</strong> due to liquefacti<strong>on</strong>-<strong>in</strong>duced lateral spread<strong>in</strong>g of soils,and (2) the horiz<strong>on</strong>tal pile displacement m<strong>on</strong>ot<strong>on</strong>ically <strong>in</strong>creases with shak<strong>in</strong>g andceases to <strong>in</strong>crease at the end of shak<strong>in</strong>g <strong>for</strong> all the physical model tests. (No superstructure<strong>in</strong>ertial <strong>for</strong>ce is c<strong>on</strong>sidered.) The other boundary c<strong>on</strong>diti<strong>on</strong>s such as c<strong>on</strong>stra<strong>in</strong>tc<strong>on</strong>diti<strong>on</strong>s of the beam-ends corresp<strong>on</strong>d<strong>in</strong>g to the pile head and pile tip are setaccord<strong>in</strong>gly.dpdyIn the above equati<strong>on</strong>s, C i and α i are fitt<strong>in</strong>g parameters: asy=0= α C kiih0p σ ′max= C i3K P vand, C i can be used <strong>for</strong> scal<strong>in</strong>g of overall p-y curve and α i can give additi<strong>on</strong>alreducti<strong>on</strong> to the <strong>in</strong>itial subgrade reacti<strong>on</strong>. These may be governed by magnitudeof accumulated excess pore water pressure <strong>for</strong> the liquefiable layer and probablyloosen<strong>in</strong>g of soil <strong>for</strong> the surface n<strong>on</strong>-liquefiable layer as well as effects of accumulati<strong>on</strong>of displacements <strong>in</strong> cyclic load<strong>in</strong>g <strong>in</strong> the m<strong>on</strong>ot<strong>on</strong>ic load<strong>in</strong>g analysis.C i and α i are estimated by m<strong>in</strong>imis<strong>in</strong>g follow<strong>in</strong>g residual error (∆E):∆E=N∑i=1*⎛ Mi− M⎜⎝ Mii2⎞⎟ wi⎠*where N=number of bend<strong>in</strong>g moment measurement po<strong>in</strong>ts, M i =estimated bend<strong>in</strong>gmoment at i-th measurement po<strong>in</strong>t, Mi=measured bend<strong>in</strong>g moment, and22w = M M (weight<strong>in</strong>g factor).ii∑ANALYSIS RESULTSiIn the first trial (Case 1), estimati<strong>on</strong> of C i is made with α i =1. From now <strong>on</strong>ward, parametersof i=L represents those <strong>for</strong> the liquefiable layer and i=NL is <strong>for</strong> the surfacen<strong>on</strong>-liquefiable layer. Estimated comb<strong>in</strong>ati<strong>on</strong>s of scal<strong>in</strong>g factors (C * i) satisfy<strong>in</strong>g∆E


oth the n<strong>on</strong>-liquefiable and liquefiable layers (µ NL (UCL) & µ L (UCL) ) , et cetera. M maxcan be reas<strong>on</strong>ably predicted as the mean scal<strong>in</strong>g factors do when the lower c<strong>on</strong>fidencelimit value is not used <strong>for</strong> the liquefiable layer. These calculati<strong>on</strong>s <strong>in</strong>dicate that(1) the parameter change <strong>for</strong> the surface n<strong>on</strong>-liquefiable layer is less sensitive to thepile resp<strong>on</strong>se than that <strong>for</strong> the liquefiable layer, and (2) c<strong>on</strong>servative predicti<strong>on</strong> of themaximum bend<strong>in</strong>g moment <strong>in</strong> a pile can be reas<strong>on</strong>ably made with the scal<strong>in</strong>g factorgreater than the expected mean value determ<strong>in</strong>ed <strong>for</strong> the liquefiable layer and thosewith<strong>in</strong> a range of its c<strong>on</strong>fidence limits determ<strong>in</strong>ed <strong>for</strong> the surface layer when <strong>on</strong>ly thek<strong>in</strong>ematic load<strong>in</strong>gs due to large horiz<strong>on</strong>tal movement of soils are c<strong>on</strong>sidered.In the calculati<strong>on</strong>s made <strong>in</strong> this study, <strong>on</strong>ly the k<strong>in</strong>ematic load<strong>in</strong>gs due to large horiz<strong>on</strong>talmovement of soils are c<strong>on</strong>sidered and c<strong>on</strong>servative predicti<strong>on</strong> of maximumbend<strong>in</strong>g moment can be made us<strong>in</strong>g stiffer/str<strong>on</strong>ger p-y curves. However, it may benot the case when the superstructure <strong>in</strong>ertial <strong>for</strong>ces are also c<strong>on</strong>sidered. Expectedmean values <strong>for</strong> the scal<strong>in</strong>g factors would be appropriate <strong>for</strong> the pile resp<strong>on</strong>se assessmentswhen both the k<strong>in</strong>ematic and <strong>in</strong>ertial load<strong>in</strong>gs are c<strong>on</strong>sidered.Further exam<strong>in</strong>ati<strong>on</strong>s <strong>for</strong> <strong>piles</strong> <strong>in</strong> <strong>laterally</strong> spread<strong>in</strong>g soils hav<strong>in</strong>g various boundaryc<strong>on</strong>diti<strong>on</strong>s, e.g., <strong>piles</strong> located beh<strong>in</strong>d different types of quay wall, those subjected tohoriz<strong>on</strong>tal movement of soils hav<strong>in</strong>g various displacement profiles, etc., may beneeded to expand scope of applicati<strong>on</strong>.CONCLUSIONSVariati<strong>on</strong> of p-y curve parameters <strong>for</strong> <strong>piles</strong> <strong>in</strong> <strong>laterally</strong> spread<strong>in</strong>g liquefied soils issystematically exam<strong>in</strong>ed by numerically analys<strong>in</strong>g physical model tests undertakenby <strong>in</strong>dependent researchers us<strong>in</strong>g the beam <strong>on</strong> n<strong>on</strong>-l<strong>in</strong>ear <strong>W<strong>in</strong>kler</strong> foundati<strong>on</strong> <strong>method</strong>with hyperbolic type p-y curves. Estimated best-fit parameters <strong>for</strong> p-y curve arewidely scattered as expected. Key f<strong>in</strong>d<strong>in</strong>gs obta<strong>in</strong>ed are; (1) the parameter change <strong>for</strong>the surface n<strong>on</strong>-liquefiable layer is less sensitive to the pile resp<strong>on</strong>se than that <strong>for</strong> theliquefiable layer, and (2) c<strong>on</strong>servative predicti<strong>on</strong> of the maximum bend<strong>in</strong>g moment <strong>in</strong>a pile can be reas<strong>on</strong>ably made with the scal<strong>in</strong>g factor greater than the expected meanvalue determ<strong>in</strong>ed <strong>for</strong> the liquefiable layer and those with<strong>in</strong> a range of its c<strong>on</strong>fidencelimits determ<strong>in</strong>ed <strong>for</strong> the surface layer when <strong>on</strong>ly the k<strong>in</strong>ematic load<strong>in</strong>gs due to largehoriz<strong>on</strong>tal movement of soils are c<strong>on</strong>sidered. Further exam<strong>in</strong>ati<strong>on</strong>s <strong>for</strong> <strong>piles</strong> <strong>in</strong> <strong>laterally</strong>spread<strong>in</strong>g soils hav<strong>in</strong>g various boundary c<strong>on</strong>diti<strong>on</strong>s may be needed to expandscope of applicati<strong>on</strong>.ACKNOWLEDGEMENTThe authors are grateful to Prof S. Yasuda and Dr T. Tanaka of Tokyo Denki University<strong>for</strong> allow<strong>in</strong>g them to use unpublished physical model tests data.REFERENCES6


Brandenberg, S.J., S<strong>in</strong>gh, P., Boulanger, R.W., and Kutter, B.L. (2001). “Behavior of<strong>piles</strong> <strong>in</strong> <strong>laterally</strong> spread<strong>in</strong>g ground dur<strong>in</strong>g earthquakes.”, Proc. 6 th Caltrans SeismicResearch Workshop, CA, Paper 02-106.Broms, B.B. (1964). “Lateral resistance of <strong>piles</strong> <strong>in</strong> cohesi<strong>on</strong>less soils.” J. Soil Mech.Found., ASCE, Vol.90, No.SM3, 123-156.Fujiwara, T., Horikoshi, K. and Sueoka, T. (1997). “Centrifuge model tests <strong>on</strong> gravitytype quay wall.” Proc. Sym. Liquefacti<strong>on</strong>-<strong>in</strong>duced lateral Spread<strong>in</strong>g of Soils, Tokyo,Japan, 235-240 (<strong>in</strong> Japanese).Fujiwara, T., Horikoshi, K. and Sueoka, T. (1998). “Dynamic behavior of gravitytype quay wall and surround<strong>in</strong>g soil dur<strong>in</strong>g earthquake.” Proc. Centrifuge 98, Tokyo,Japan, 359-364.Horikoshi, K., Tateishi, A. and Fujiwara, T. (1998). “Centrifuge model<strong>in</strong>g of a s<strong>in</strong>glepile subjected to liquefacti<strong>on</strong>-<strong>in</strong>duced lateral spread<strong>in</strong>g.” Special Issue of Soils.Found., No.2, 193-208.Japan Road Associati<strong>on</strong> (2002). Specificati<strong>on</strong> <strong>for</strong> Highway Bridges, Part IV, JRA,Tokyo, Japan.Japan Society of Civil Eng<strong>in</strong>eers (2000). Earthquake Resistant Design Codes <strong>in</strong> Japan,JSCE, Tokyo, Japan.Public Works Research Institute (1998a). “Shak<strong>in</strong>g table tests <strong>on</strong> <strong>piles</strong> subjected toliquefacti<strong>on</strong>-<strong>in</strong>duced <strong>laterally</strong> spread<strong>in</strong>g soils.” Internal Report, PWRI, Tsukuba,Japan (<strong>in</strong> Japanese).Public Works Research Institute (1999b). “Dynamic centrifuge model tests <strong>on</strong> liquefacti<strong>on</strong>remediati<strong>on</strong> <strong>for</strong> mitigati<strong>on</strong> of damage of <strong>piles</strong> subjected to liquefacti<strong>on</strong><strong>in</strong>duced<strong>laterally</strong> spread<strong>in</strong>g soils.” Internal Report, PWRI, Tsukuba, Japan (<strong>in</strong>Japanese).Sento, N, Yanagisawa, E., and Fujiki, H. (1998). “1g shak<strong>in</strong>g table tests <strong>on</strong> differentflexural rigidity <strong>piles</strong> <strong>in</strong> liquefacti<strong>on</strong>-<strong>in</strong>duced lateral spread<strong>in</strong>g of soils.” Proc.33 rd Japan Nati<strong>on</strong>al C<strong>on</strong>f. Geotech. Eng., Yamaguchi, Japan, 1003-1004 (<strong>in</strong>Japanese).Takahashi, A. (2004). “TC29 bender element round rob<strong>in</strong> test results.” Soil MechanicsSecti<strong>on</strong> Internal Report, Imperial College L<strong>on</strong>d<strong>on</strong>, UK.Yasuda, S., Tanaka, T. and Ishii, T. (2004). “Adaptability of pile <strong>in</strong>stallati<strong>on</strong> <strong>method</strong>as a countermeasure aga<strong>in</strong>st liquefacti<strong>on</strong>-<strong>in</strong>duced flow.” Proc. 15 th SoutheastAsian Geotech. C<strong>on</strong>f., Bangkok, Thailand, 917-922.Yasuda, S. and Tanaka, T. (2005). Pers<strong>on</strong>al communicati<strong>on</strong>.7


No. CASoilsSurface layerTable 1: Summary of physical model testsH NLLiquefiable layerH LBase layerInput moti<strong>on</strong>1 1LooseToyoura sand Toyoura sand S<strong>in</strong>usoidal waves0.100.30f<strong>in</strong>e gravel(Dr=50%)(H=0.25m, Dr=65%) (0.15G, 10Hz, n=20)2 1LooseToyoura sand Toyoura sand S<strong>in</strong>usoidal waves0.100.30f<strong>in</strong>e gravel(Dr=50%)(H=0.25m, Dr=65%) (0.15G, 10Hz, n=20)3 1LooseNikko silicaNikko silica sand S<strong>in</strong>usoidal waves0.100.40f<strong>in</strong>e gravelsand (Dr=50%) (H=0.27m, Dr=50%) (0.40G, 3Hz, n=20)4 1LooseNikko silicaNikko silica sand S<strong>in</strong>usoidal waves0.000.50f<strong>in</strong>e gravelsand (Dr=50%) (H=0.27m, Dr=50%) (0.40G, 3Hz, n=20)5 1LooseNikko silicaNikko silica sand S<strong>in</strong>usoidal waves0.100.40f<strong>in</strong>e gravelsand (Dr=50%) (H=0.27m, Dr=50%) (0.40G, 3Hz, n=20)6 1LooseNikko silicaNikko silica sand S<strong>in</strong>usoidal waves0.100.40f<strong>in</strong>e gravelsand (Dr=50%) (H=0.27m, Dr=50%) (0.40G, 8Hz, n=20)7 1Toyoura sand Toyoura sand Toyoura sand S<strong>in</strong>usoidal waves0.501.00(Dr=50%)(Dr=50%)(H=0.3m, Dr=85%) (0.50G, 5Hz, n=20)8 50Toyoura sand Toyoura sandS<strong>in</strong>usoidal waves0.007.25 --(Dr=55%)(Dr=55%)(0.15G, 1Hz, n=60)9 50Toyoura sand Toyoura sandS<strong>in</strong>usoidal waves0.007.25 --(Dr=55%)(Dr=55%)(0.15G, 1Hz, n=60)10 50Toyoura sand Toyoura sandS<strong>in</strong>usoidal waves0.007.25 --(Dr=55%)(Dr=55%)(0.15G, 1Hz, n=60)11 50Toyoura sand Toyoura sandS<strong>in</strong>usoidal waves3.254.00 --(Dr=55%)(Dr=55%)(0.15G, 1Hz, n=60)12 50Toyoura sand Toyoura sandS<strong>in</strong>usoidal waves3.254.00 --(Dr=55%)(Dr=55%)(0.15G, 1Hz, n=60)13 50Toyoura sand Toyoura sandS<strong>in</strong>usoidal waves1.505.75 --(Dr=55%)(Dr=55%)(0.15G, 1Hz, n=60)14 50Toyoura sand Toyoura sandPort Island-NS1.505.75 --(Dr=55%)(Dr=55%)@GL-16.4m (0.26G)15 50Toyoura sand Toyoura sandPort Island-NS1.754.25 --(Dr=40%)(Dr=40%)@GL-16.4m (0.26G)16 50Toyoura sand Toyoura sandS<strong>in</strong>usoidal waves1.754.25 --(Dr=40%)(Dr=40%)(0.19G, 1Hz, n=20)17 50Toyoura sand Toyoura sandS<strong>in</strong>usoidal waves1.754.25 --(Dr=40%)(Dr=40%)(0.10G, 1Hz, n=20)18 * 50Silica sandSilica sandSilica sand No.7 S<strong>in</strong>usoidal waves3.007.00No.7 (Dr=60%) No.7 (Dr=60%) (H=10m, Dr=90%) (0.24G, 1.5Hz, n=24)CA : Centrifugal accelerati<strong>on</strong> (G)H NL : Thickness of surface n<strong>on</strong>-liquefiable layer (m)H L : Thickness of liquefiable layer (m)* Foundati<strong>on</strong> c<strong>on</strong>sists of 4 <strong>piles</strong> rigidly fixed to the foot<strong>in</strong>g (Pile spac<strong>in</strong>g=2.5D)8


No.Table 1: Summary of physical model tests (c<strong>on</strong>t<strong>in</strong>ued)Foundati<strong>on</strong> Test results p-y model † p-y model ‡D EI βL s/H u q /H u g /D u/D C * NL C * L α * NL C * LSource1 0.018 1.23E-5 7.33 0.88 --Sento et al.0.94 1.28 0.00 0.145 0.300 0.100(1998, Small EI)2 0.025 9.22E-4 2.60 0.88 --Sento et al.0.72 0.07 0.65 0.070 0.026 0.070(1998, Large EI)3 0.030 2.13E-5 7.98 0.80 0.26 ** Yasuda et al.4.37 4.13 0.00 0.180 0.000 0.185(2004, Case 1)4 0.030 2.13E-5 9.06 0.80 0.29 ** 8.27 1.33 -- 0.060 --Yasuda & Tanaka0.060(2005., Case 2)5 0.030 1.70E-4 4.85 0.80 0.32 ** Yasuda & Tanaka5.13 1.77 1.00 0.325 0.670 0.325(2005, Case 3)6Yasuda & Tanaka0.030 2.13E-5 7.98 0.80 0.14 1.47 1.83 0.00 0.120 0.000 0.120(2005, Case 4)7 0.060 5.54E-2 3.01 0.33 0.19 4.58 -- 1.00 0.075 0.670 0.085 PWRI(1998a, Case 6)8 0.325 8.26E+0 5.11 0.28 0.14 3.48 0.83 -- 0.090 --Horikoshi et al.0.090(1998, Case A)9 0.325 8.26E+0 5.11 1.31 0.12 2.68 0.89 -- 0.095 --Horikoshi et al.0.095(1998, Case B)10 0.325 8.26E+0 5.11 2.00 0.10 2.14 0.38 -- 0.075 --Horikoshi et al.0.075(1998, Case C)11Horikoshi et al.0.325 8.26E+0 4.93 0.28 0.09 1.74 1.46 0.10 0.040 0.003 0.055(1998, Case E)12Horikoshi et al.0.325 8.26E+0 4.93 2.00 0.09 1.20 1.51 0.00 0.245 0.000 0.260(1998, Case F)13Horikoshi et al.0.325 8.26E+0 4.58 0.28 0.10 2.14 0.55 0.15 0.030 0.002 0.025(1998, Case G)14Horikoshi et al.0.325 8.26E+0 4.58 0.28 0.04 0.63 0.48 0.00 0.070 0.002 0.060(1998, Case H)15Fujiwara et al.0.400 5.25E+1 2.41 1.88 0.18 0.99 0.15 0.15 0.180 0.005 0.185(1998, Case A)16Overturned(1997, Case B')Fujiwara et al.0.400 5.25E+1 2.41 1.88 1.90 0.20 0.25 0.135 0.003 0.15017Fujiwara et al.0.400 5.25E+1 2.41 1.88 0.23 0.45 0.08 0.15 0.050 0.008 0.070(1998, Case B)18 * 0.500 3.70E+2 5.08 0.98 0.13 2.00 0.56 0.40 0.005 0.012 0.005 PWRI(1998b, Case 1)D : Pile diameter (m)EI : Flexural rigidity of pile (MN.m 2 )βL : Dimensi<strong>on</strong>less length of pile (β=stiffness ratio of soil to pile & L=pile length)s : Distance of foundati<strong>on</strong> from quay wall (m)H : H NL + H L (m)u q : Horiz<strong>on</strong>tal displacement of top of quay wall (m)u g : Horiz<strong>on</strong>tal displacement of ground surface at foundati<strong>on</strong> locati<strong>on</strong> (m)u : Horiz<strong>on</strong>tal displacement of foundati<strong>on</strong> (m)C * NL : Estimated scal<strong>in</strong>g factor <strong>for</strong> n<strong>on</strong>-liquefiable layer <strong>in</strong> p-y modelC * L : Estimated scal<strong>in</strong>g factor <strong>for</strong> liquefiable layer <strong>in</strong> p-y modelα * ΝL : Estimated scal<strong>in</strong>g factor <strong>for</strong> k hr <strong>for</strong> n<strong>on</strong>-liquefiable layer** Heal settlement of quay wall is greater than that at the toe.† Best-fit parameters with α NL =1 and α L =1 (Case 1).‡ Best-fit parameters with C NL =1 and α L =1 (Case 2).9


Table 2: Summary of expected parameters <strong>for</strong> p-y curvesCase 1 Case 2C NL α NL C L α L C NL α NL C L α L(mean)µ i 3.0E-1 1 8.2E-2 1 1 1.9E-2 8.3E-2 1LND(UCL)µ i 5.9E-1 -- 1.3E-1 -- -- 8.3E-2 1.3E-1 --(LCL)µ i 1.6E-1 -- 5.1E-2 -- -- 4.2E-3 5.2E-2 --(mean)µ i 2.8E-1 1 1.1E-1 1 1 1.2E-1 1.1E-1 1ND(UCL)µ i 4.8E-1 -- 1.5E-1 -- -- 2.6E-1 1.5E-1 --(LCL)µ i 7.0E-2 -- 7.1E-2 -- -- (-1.9E-2) 7.1E-2 --LND: Logarithm of parameters is assumed to be normally distributed.ND: Parameters are assumed to be normally distributed.µ (mean) i : Mean value of parameterµ (UCL) i : Upper c<strong>on</strong>fidence limit with risk degree of 0.05 (c<strong>on</strong>fidence coefficient of 0.95)µ (LCL) i : Lower c<strong>on</strong>fidence limit with risk degree of 0.05 (c<strong>on</strong>fidence coefficient of 0.95)Lateral spread<strong>in</strong>g of soilsSoil movementimpositi<strong>on</strong>PileSurface layerLiquefiablelayerBase layerQuaywall<strong>W<strong>in</strong>kler</strong> foundati<strong>on</strong><str<strong>on</strong>g>Beam</str<strong>on</strong>g> modell<strong>in</strong>g pileTarget pile foundati<strong>on</strong> <strong>in</strong> <strong>laterally</strong> spread<strong>in</strong>g soilsSchematic view of analytical model usedFigure 1: Schematic view of problem to be solvedScal<strong>in</strong>g factor <strong>for</strong> p-y curve<strong>in</strong> liquefiable layer, C* L0.50.40.30.20.10No.01 No.02 No.03 No.05No.06 No.07 No.11 No.12No.13 No.14 No.15 No.16No.17 No.18C L =C NLResidual error:∆ E < 0.010 0.2 0.4 0.6 0.8 1Scal<strong>in</strong>g factor <strong>for</strong> p-y curve <strong>in</strong> n<strong>on</strong>-liquefiable layer, C* NLFigure 2: Comb<strong>in</strong>ati<strong>on</strong>s of scal<strong>in</strong>g factors <strong>for</strong> p-y curve whose residual error,∆E


1No.7No.5Scal<strong>in</strong>g factor <strong>for</strong> p-y curve0.80.60.40.2No.2Estimated scal<strong>in</strong>g factors:C* NLC* L(Filled markers <strong>for</strong> centrifuge tests.)00 2 4 6Average normalised relative displacement between pile and soil <strong>in</strong> free field, | y average |/DFigure 3: Best-fit p-y curve scal<strong>in</strong>g factors (C * NL & C * L) change with average relativedisplacement between pile and free-field soil (Case 1)Scal<strong>in</strong>g factor <strong>for</strong> p-y curve10 010 -110 -210 -310 -410 -510 -610 -7No.1No.6No.12No.3No.7No.5Estimated scal<strong>in</strong>g factors:α* NL with C NL =1C* L(Filled markers <strong>for</strong> centrifuge tests.)0 2 4 6Average normalised relative displacement between pile and soil <strong>in</strong> free field, | y average |/DFigure 4: Best-fit p-y curve scal<strong>in</strong>g factors (α ∗ NL & C * L) change with average relativedisplacement between pile and free-field soil (Case 2)5Error <strong>in</strong> maximum bend<strong>in</strong>g moment (%)400Use of stiffer/str<strong>on</strong>gersoil spr<strong>in</strong>gs 300Use of softer/weakersoil spr<strong>in</strong>g(mean)200µ NL (LND)(mean)µ L (LND)(mean)Overestimati<strong>on</strong>µ NL (ND)100(mean)µ L (ND)No.18180Under--estimati<strong>on</strong> No.3 0 7 27No.735 5-100No.5Difference between best-fit and mean scal<strong>in</strong>g factor, ( C* NL −µ NL (mean) )/σ NL or (C* L −µ L (mean) )/σ LFigure 5: Errors <strong>in</strong> maximum bend<strong>in</strong>g moment with mean scal<strong>in</strong>g factors (Case 1)11


Error <strong>in</strong> maximum bend<strong>in</strong>g moment (%)No.181813400No.133002001000-2 0 2-1005(mean)µ NL(mean)µ L(mean)µ NL(mean)µ LNo.5(LND)(LND)(ND)(ND)Difference between best-fit and mean scal<strong>in</strong>g factor, ( α* NL −µ NL (mean) )/σ NL or (C* L −µ L (mean) )/σ LFigure 6: Errors <strong>in</strong> maximum bend<strong>in</strong>g moment with mean scal<strong>in</strong>g factors (Case 2)400300µ NL(UCL)µ L(UCL)400300µ NL(UCL)µ L(LCL)200200Error <strong>in</strong> maximum bend<strong>in</strong>g moment (%)No.1810000-4 -2 No.7 0 7 2 4 -4 -2 0 2 4-100400300200No.5µ NL(LCL)µ L(UCL)100-100400300200µ NL(LCL)µ L(LCL)No.181000-4 -2 0 2 4No.77-100 No.5 5100-4 -200 2 4-100Difference between best-fit and expected scal<strong>in</strong>g factor, ( C* NL −µ NL )/σ NL or (C* L −µ L )/σ LFigure 7: Errors <strong>in</strong> maximum bend<strong>in</strong>g moment with expected scal<strong>in</strong>g factors (Case 1,Logarithm of parameters is assumed to be normally distributed.)12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!