11.07.2015 Views

Characteristic Scales in Galaxy Formation

Characteristic Scales in Galaxy Formation

Characteristic Scales in Galaxy Formation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Characteristic</strong> <strong>Scales</strong><strong>in</strong> <strong>Galaxy</strong> <strong>Formation</strong>Avishai DekelHU Jerusalemvisit<strong>in</strong>g IAP & Observatoire de ParisParis, December 2003


Four Observed <strong>Scales</strong>• galaxies V < 300 km/s• Bi-modality: M *crit ≈3x10 10 M ʘ ~L *V~ 100 km/s- discs, blue star-form<strong>in</strong>g, LSB, …- spheroids, red old-pop, HSB, AGNs, …


Bi-modality: Age vs Stellar MassSDSS Kauffmann et al. 03


Transition Scale <strong>in</strong> MetallicitySDSS Tremonti et al.


Transition <strong>in</strong> Surface Brightnessµ *SDSS Kauffmann et al. 03M * /M ʘ


Observed <strong>Scales</strong>• galaxies V < 300 km/s• Bi-modality: M *crit ≈3x10 10 M ʘ ~L *V~ 100 km/s- discs, blue star-form<strong>in</strong>g, LSB, …- spheroids, red old-pop, HSB, AGNs, …• dark-dark halos (and dSph) V < 30 km/s


Dark-Dark Halos at V < 30 km/sTF: L~V 4Virial: M~V 3ψ(M) ~ M -2φ(L) ~ L -1Cannot bereconciled !#observedgalaxiespredictedhalos10 100 1000Velocity (km/s)


Observed <strong>Scales</strong>• galaxies V < 300 km/s• Bi-modality: M *crit ≈3x10 10 M ʘ ~L *V~ 100 km/s- discs, blue star-form<strong>in</strong>g, LSB, …- spheroids, red old-pop, HSB, AGNs, …• dark-dark halos (and dSph) V < 30 km/s• dwarfs V > 10 km/s


Lower Bound?LG DwarfsV~10 km/sDekel & Woo 03


Observed <strong>Scales</strong>• galaxies V < 300 km/s• Bi-modality: M *crit ≈3x10 10 M ʘ ~L *V~ 100 km/s- discs, blue star-form<strong>in</strong>g, LSB, …- spheroids, red old-pop, HSB, AGNs, …• dark-dark halos (and dSph) V < 30 km/s• dwarfs V > 10 km/s


Theoretical <strong>Scales</strong>: Outl<strong>in</strong>eV (km/s)M * (M ʘ )M(M ʘ )Cool<strong>in</strong>g (Brems.)30010 1210 13Shock heat<strong>in</strong>g1003x10 103x10 11Supernovae1003x10 103x10 11Photoionization3010 83x10 9Cool<strong>in</strong>g (H)105x10 55x10 7


Simulations


Toy Model<strong>in</strong>g


Analytic Model<strong>in</strong>g


Semi-Analytic Model<strong>in</strong>g


Theoretical <strong>Scales</strong>: Outl<strong>in</strong>eV (km/s)M * (M ʘ )M(M ʘ )Cool<strong>in</strong>g (Brems.)30010 1210 13Shock heat<strong>in</strong>g1003x10 103x10 11Supernovae1003x10 103x10 11Photoionization3010 83x10 9Cool<strong>in</strong>g (H)105x10 55x10 7


1. Cool<strong>in</strong>g <strong>Scales</strong>


Standard Picture of Infall to a DiscRees & Ostriker 77, Silk 77, White & Rees 78, …Perturbed expansionHalo virializationGas <strong>in</strong>fall, shock heat<strong>in</strong>gat the virial radiusRadiative cool<strong>in</strong>gAccretion to disc if t cool


Cool<strong>in</strong>g vs Free FallRees & Ostriker 77, Silk 77, White & Rees 78T10 4 10 5 10 6 10 7+3log gasdensity+1dark m<strong>in</strong>i-halos-1-3lower boundtoo small-5H 2dwarfsCDMt cool


2. Shock-Heat<strong>in</strong>g ScaleIs there a virial shock?Birnboim & Dekel 03


10000Growth of a Massive <strong>Galaxy</strong>T ° K1e+007100010 11 M 10 12 M 1e+006100000radius [kpc]10010shock-heated gas1000010001“disc”1000.1100 1 2 3 4 5 6 7 8time [Gyr]Spherical hydro simulation Birnboim & Dekel 03


A Less Massive <strong>Galaxy</strong>T ° K10001e+00710010 11 M 1e+006radius [kpc]101cold <strong>in</strong>fallshocked“disc”1000001000010000.11000.010 1 2 3 4 5 6 7 8time [Gyr]10Spherical hydro simulation Birnboim & Dekel 03


Hydro Simulation: ~Massive M=3x10 11z=4M=3x10 11T vir =1.2x10 6R vir =34 kpcvirialshockKravtsov et al.


Less Massive M=1.8x10 10z=9M=1.8x10 10T vir =3.5x10 5R vir =7 kpccold<strong>in</strong>fallKravtsov et al.


Cold Streams M=3x10 11z=4M=3x10 11T vir =1.2x10 6R vir =34 kpccoldstreamsKravtsov et al.


Cold Streams M=3x10 11z=4M=3x10 11T vir =1.2x10 6R vir =34 kpccoldstreamsKravtsov et al.


Cold Streams M=3x10 11z=4M=3x10 11T vir =1.2x10 6R vir =34 kpccoldstreamsKravtsov et al.


SPH: Less Massive M=1.4x10 11z=5.5M=1.4x10 11T vir =9x10 5R vir =24 kpchotstarsCold flowsalways


Gravitational Instability Below the ShockEq. of state:Adiabatic:γ =P⎛ ∂⎜⎝ ∂= ( γ −1)ρeγ = 5 / 3lnlnP ⎞ ⎟⎠ρsstable:γ > 4 / 3radius [kpc]1000010001001011e+0071e+006100000100001000100With cool<strong>in</strong>g (rate q):γeffd(lnP)ρ ⎛ P&⎞≡ =d ρ P⎜& ρ⎟(ln ) ⎝ ⎠= γ −ρ q& ρ e0.10 1 2 3 4 5 6 7 8time [Gyr]t dynt coolBirnboim & Dekel 03e&= −PV&− q10In pre-shock quantities:γeff= γ −64( γ + 1)( γ −1)2ρ r Λ0s3u0( T )1T1=µk NBA2γ−1( γ + 1)2u20


Perturbation analysisr→r+ δrrestor<strong>in</strong>g force: δ & r / δr = ?Assume homologous <strong>in</strong>fall:ruδtur1δ = =srδt1 GMEq. of motion (sub-sonic): && r = − ∇P− = 02ρ rδr4 2−& ∝ γ − − ( γ −γeff)δr3 γStable if >0effγeff= γ −ttdyncoolStabilitycriterion:γeff2γ> γcrit= = 1.42 ( γ =γ + 2 / 35 / 3)Birnboim & Dekel 03


Gravitational Instability Below the ShockBirnboim & Dekel 03Effectiveconstant:γeff≡d(lnP)d(lnρ)= γ −ρ q& ρ e≈ γ −ttdyncoolStabilitycriterion:γeff2γ> γcrit= = 1.42 ( γ =γ + 2 / 35/ 3)


]δ(1011)=0.093timeSpherical Simulation vs Model1000 10010001052z11e+007100flow l<strong>in</strong>es1e+006radius [kpc]radius [kpc]10010101virialshock1000001000010000.1 1’disc’1000.010.10 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8time [Gyr] [Gyr]2γ crit =1.42101γ critγ eff0at <strong>in</strong>fallγ eff-1shock formation


Model vs. 3D simulations0.2Temperature1e+0060.2γeffPost-shock Temperature"xy" u 4:5:11e+007 1.70.150.151.6Y (/h Mpc)0.10.050-0.05-0.110000010000Y (/h Mpc)Temperature (K)0.10.050-0.05-0.11e+0061.51.41000001.31.210000-0.15-0.151.1-0.21000-0.21000 1-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2-0.2 -0.15 -0.1 -0.05 00 0.05 0.1 0.1 0.15 0.15 0.2 0.2X (/h Mpc)X (/h Mpc)


Model vs. 3D simulations0.2Temperature1e+0060.2γeff1.70.150.151.6Y (/h Mpc)0.10.050-0.05-0.110000010000Y (/h Mpc)Temperature (K)0.10.050-0.05-0.11.51.41.31.2-0.15-0.151.1-0.21000-0.21-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2X (/h Mpc)X (/h Mpc)


Critical mass for shock heat<strong>in</strong>g:Low Z high ZM halo ≈ (1-3) x 10 11 M ⊙M * ~(1-3)x10 10 M ⊙~ <strong>in</strong>sensitive to redshiftAt z ≥ 2 most halos are M


Fraction of cold/hot accretionZ=0Z=3ffMMKeres, Katz, We<strong>in</strong>berg, Dav’e 2004


Accretion Rate at Different TemperaturesZ=0Z=3 Z=5MT max /T virKeres, Katz, We<strong>in</strong>berg, Dav’e 2004


Shock-heat<strong>in</strong>g ScaleBirnboim & Dekel 03T10 4 10 5 10 6 10 7+3M * ~3x10 10 M ʘlog gasdensity+1-1-3H 2cold <strong>in</strong>fall<strong>in</strong>to discsCDMBrems.shock heat<strong>in</strong>gt cool


Implications of Cold InfallModify SFR & SN feedback. Bursts?X-rayReduce soft X-ray flux.hot gasExpla<strong>in</strong> the miss<strong>in</strong>g background?Enhance Ly-α emission.Ly-α emitters?Ly-αStromgrensphereX-rayHIIcold <strong>in</strong>fall


Effect of no virial shocksBefore: after:Creates too much soft xNaturally expla<strong>in</strong>sLyα emittersHot, diffuse,ionized–emits soft XCold, dense, neutral-emits LyαPen 1999, Wu et al. 2001, Benson et al 2000


Miss<strong>in</strong>g Soft X-ray Backgroundmodels assum<strong>in</strong>gshock heat<strong>in</strong>gobservedL x -T <strong>in</strong> clustersWu, Fabian & Nulsen 01


Ly-α EmittersLy-α Emittersskystargalaxy: cont<strong>in</strong>uum & l<strong>in</strong>eMann<strong>in</strong>g et al. 00


Ly-α at z=4.1Miley et al.


3. Supernova Feedback ScaleDekel & Silk 86Dekel & Woo 03


Simulation of supernova blowouttimeMori et al.


Galactic w<strong>in</strong>d M82


Supernova Feedback Scale(Dekel & Silk 86)Energy fed to the ISM dur<strong>in</strong>g the “adiabatic” phase:ESN≈νεM&∗trad∝M*( tradtff)M&∗ ≈ M * t ff≈ 0.01for Λ ∝ T−1atT~ 105KEnergy required for blowout:E ≈ MSNgasV2→V10crit ≈100 km/s → M∗crit≈ 3×10 M o


Supernova Feedback ScaleDekel & Silk 86T10 4 10 5 10 6 10 7+3log gasdensity+1-1-3H 2dwarfst cool


Dekel & Silk 86LSB vs HSB


LSB vs HSBSDSSµ *M * /M ʘLocal Groupdwarfsµ *M * /M ʘM *crit ~10 10 M ʘMateo 98, Woo & Dekel 03


The “Fundamental L<strong>in</strong>e” ofLSB/Dwarf Galaxies


Bright Galaxies• virial haloGMV ∝R• Mtop hatM3R∝ 200ρ2 u∗∝M• disk sizeµ<strong>in</strong>itialgas ∝fbarMR∗≈ λRsp<strong>in</strong>→λ ≈ const.2 −21 / 3* ∝ M * / R*∝ λ M ∗M→∝V3∝RM ∝ V∗→ µ ∝ M * *331/3• Z ∝ M * / M gas→ Z ∝const.


Model: fundamental l<strong>in</strong>e of LSB/Dwarfs(Dekel & Woo 03)• Energy:ESNM∝MgasV2M* / M Vgas ∝2• Virial halo:V3∝M∝R3


“Fundamental L<strong>in</strong>e” of LSB/DwarfsSurfaceBrightnessSDSSLocal Groupdwarfsµ * ∝ M *0.6µ *M * /M ʘM *crit ~10 10 M ʘµ *M * /M ʘWoo & Dekel 03


MetallicityZ∝M *0.4SDSS Tremonti et al.


LG Dwarfs: MetallicitySDSSZ ∝ M *0.4datamodel


LG Dwarfs: VelocityV ∝ M *0.2TFV>10 km/sdatamodel


Summary: SN feedbackCould be responsible for thetransition scale at M * =3x10 10 ,and the “fundamental l<strong>in</strong>e” ofLSB/dwarf galaxies, M*/M∝V 2 .


Shock Scale ≈ Supernova ScaleT10 4 10 5 10 6 10 7+3log gasdensity+1-1-3H 2dwarfsHSBLSBcold <strong>in</strong>fall<strong>in</strong>to discsM *shock ~3x10 10CDMBrems.shock heat<strong>in</strong>g-5t cool


vs M for halos <strong>in</strong> 2dFSupernovafeedbackShock heat<strong>in</strong>gAGN feedbackUs<strong>in</strong>g conditional lum<strong>in</strong>osity function: Van den Bosch, Mo, Yang 03


vs M for halos <strong>in</strong> 2dFM/LSupernovafeedbackShock heat<strong>in</strong>gAGN feedback10 11 12 13 14MUs<strong>in</strong>g conditional lum<strong>in</strong>osity function:Van den Bosch, Mo, Yang 03


Bi-Modality at M *crit ~ 3x10 10 M ʘMM critcold <strong>in</strong>fall → discs (bursts?)hi-z progenitors < M crit → discsmerge to spheroids → red, oldhot gas (+ cold flows)SN feedback regulates SFR→ blue, young popM * /M∝V 2 →LSB fundamental l<strong>in</strong>eAGN feedback prevents cool<strong>in</strong>g?Ly-α emitters?some X-ray?


4. Photoionization ScaleEvaporation byThermal W<strong>in</strong>dsShaviv & Dekel 2003


Theory: Many Sub-HalosSimulation by Moore et al.


CDM model: many dwarf satellitesMoore et al


Only a few fa<strong>in</strong>t dwarf satellitesM31Leo I (dSph)NGC 205 (dE)Antlia (Tr)FGC 227 (LSB)


It isn’t that simple to turn on the light


Search for Dark-Dark Halos


Dark-Dark Halos V


Complete removal of gas from proto-halos?By SN outflow? unlikelyBy ram pressure due to outflow from anearby galaxy (Scannapieco, Ferrara & Broadhurst 00) ?By radiative feedback?


Radiative FeedbackReionization of H by UV flux from stars and AGNby z ion ~10 → heat<strong>in</strong>g gas to T ≈(1-2)×10 4 KJeans scale – no <strong>in</strong>fall <strong>in</strong>to halos of V


Evaporation of hot gasρ gasrρ gasrkTφkTφcold gas hot gasMass loss from top of potential wellIt is cont<strong>in</strong>uously replenished and losttevap≈ tCont<strong>in</strong>uous energy <strong>in</strong>put by the ioniz<strong>in</strong>g flux→ steady w<strong>in</strong>ddyneφ / kT


Evaporated Mass FractionBarkana &Loeb 99<strong>in</strong>stantShaviv &Dekel 03w<strong>in</strong>dz ion =8z end =2


Summary Dwarf HalosDark halos must exist at V


<strong>Scales</strong> SummaryT10 4 10 5 10 6 10 7log gasdensity+3+1-1-3H 2V ionization ~30totalgaslossdwarfsHSBLSBcold <strong>in</strong>fall<strong>in</strong>to discsM *shock ~3x10 10CDMBrems.shock heat<strong>in</strong>g-5t cool


Summary: <strong>Characteristic</strong> <strong>Scales</strong>V (km/s)M * (M ʘ )M(M ʘ )Cool<strong>in</strong>g (Brems.)30010 1210 13clusters{Shock heat<strong>in</strong>gSupernovae1001003x10 103x10 103x10 113x10 11L * ,discsLSBPhotoionization3010 83x10 9dSph darkCool<strong>in</strong>g (H)105x10 55x10 7


Thank you


The Turkish astronomer (The Little Pr<strong>in</strong>ce)


What do scientists really like?


E<strong>in</strong>ste<strong>in</strong> predicts Hi-Tech


Newton?


Search for Dark Matter


CDM model: many dwarf satellitesMoore et al


A Low-Surface-Brightness <strong>Galaxy</strong>


Dark-Dark Halos must exist !virial, top-hat:M ∝ V3Tully Fisher:L∝Mx 3xx−1∝ V3x≈ 5→ dL / dM∝Mlum<strong>in</strong>osity function:mass function:∝ − αϕ( L)L α ≈1.2ψ ( M ) ∝ M− β ≈1.8⇒ ( α−1)x =β−1−γ0 →γ .2∗≈0 5/3.5≠−0.8Cannot reconcile TF with lum<strong>in</strong>osity and mass functions !βαx−β + γ( M ) dM = ϕ(L)dL → dL / dM ∝ Mf ( M )ψ ( M ) dM = ϕ(L)dL → dL / dML∝Mfraction of halos with lum<strong>in</strong>ous component:γf L ∝ M→f L∝ M0.5−0.8∝ V2L / M ∝ Vcompletely dark halos SN feedback2


Caveats• supernova feedback is a complex process:- asymmetric- thermal energy, bulk motion, turbulence• several bursts of star formation• blowout >> the escape velocity• gas miss<strong>in</strong>g also <strong>in</strong> big galaxies• do dwarfs have very massive halos?• can radiative feedback elim<strong>in</strong>ate big dwarfs?• can outflows elim<strong>in</strong>ate big nearby dwarfs?


Cool<strong>in</strong>g rate-21log Λ mic [erg cm 3 /s]-22-23Z=0.05Z=0L<strong>in</strong>e emissionZ=0.3Bremsstrahlung-244 5 6 7 8log T [K]


Observed <strong>Scales</strong>• galaxies V < 300 km/s• Bi-modality: M *crit ≈3x10 10 M ʘ ~L *V~ 100 km/s- discs, blue star-form<strong>in</strong>g, LSB, …- spheroids, red old-pop, HSB, AGNs, …• dark-dark halos (and dSph) V < 30 km/s• dwarfs V > 10 km/s


TalksOct 03 Venice 30 m<strong>in</strong>Dec 03 IAP EARA workshop 30Dec 03 Meudon 45Dec 03 IAP 45Jan 04 ETH Zurich 45

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!