11.07.2015 Views

Circuit Quantum Electrodynamics - CoQuS

Circuit Quantum Electrodynamics - CoQuS

Circuit Quantum Electrodynamics - CoQuS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Circuit</strong><strong>Quantum</strong> <strong>Electrodynamics</strong>Johannes Majer


Motivation


Overview• Cavity: Transmission Line Resonator• “Atom”: Superconducting Qubits,Josephson junctionssolid-state physicsmicrowave engineering• Experimentscavity quantumelectrodynamics


circuit QEDThe ChipNb on a sapphire7 mm 2 mm


Transmission Line ResonatorCoplanar WaveguideWaveguideTE/TM ModesE-B+ + -TEM Modes


Numberslength ~ 20mmwidth ~ 10µmfrequency 6 GHzsuperconductivityQmax~5 10 5single photonenergy 10 -24 Jelectrical field 0.1 V/mmagnetic field 40 µGaussmode volume reduced by dλ 2Q/V mode =2· 10 13 (λ −3 )


Coupling Capacitor‘mirror’The ChipQubit‘Atom’


Josephson junctionCooper PairSISϕ 1 ϕ 2Josephson lawI = I 0 sin(∆ϕ)Capacitanceq = CVcharge and phase are conjugate variables[q/e, ϕ] = 1


Josephson Effectfirst Josephson lawI = I 0 sin(∆ϕ)tunnel current is proportional to thesin of the phase differencesecond Josephson lawV = φ 02π∂γ∂tJosephson energyE =IV dt = I 0φ 02πE = E J (1 − cos(γ))∆ϕ = ϕ 2 − ϕ 1changing phase leads to a voltageφ 0 = h 2e =2· 10−15 Wbsuperconducting flux quantumsin(γ) dγdt dt E J = I 0φ 02π


Josephson JunctionCooper pairJosephson effectI = I 0 sin(∆ϕ)SISϕ 1 ϕ 2Josephson energyE J = I 0Φ 02πcharge and phaseare conjugate variables[Φ,Q]=icapacitanceE c = e22CJosephson energy and charging energy can be engineered• size of the junction• oxide thickness


Josephson junctionL J = Φ 02πI 01cos(ϕ)L effC JR


Other Superconducting QubitsCooper-PairBoxNakamura, NECDevoret, Estève, SaclayTransmonSchoelkopf, YaleFlux QubitMooij, DelftPhase QubitMartinis, Santa Barbara


Cavity QEDgκγvacuum Rabifrequencycavity decayrateatom decayrateH = ω r a † a + 1 2quantizedfieldstrong couplingg γ, κ+ ω q2 σz + g(a † σ − + aσ + ) +Hγ + H κqubit‘atom’electric dipolinteraction


circuit QEDDriveAmplifier~6 GHz n 1number of photons in theresonatorphase and amplitudeT noise ≈ 5K


Measurement Setup


Dilution Refrigeratorbase temperature15mKhν = k B T5GHz ≡ 240mK


Resonator Transmission


Vacuum Rabi Splitting|↓ |1 − |↑ |0 |↓ |1 + |↑ |0qutonphobit


Vacuum Rabi SplittingDrive Frequency (GHz)magnetic field2g = 2π · 350MHzsplitting =300 x linewidthTransmission6.8 6.9Frequency (GHz)7.0


Dispersive Measurement


Coupled Qubitshomodynedetectiontransmon qubitcoupling capacitor


Spectroscopy


Avoided Qubit-Qubit Crossing|1, −1|↓↑ − |↑↓|0, 0|↓↑ + |↑↓ν = 8E J E C|1, 0ν = ν max| cos(πφ/φ 0 )|2 g |↑↑1g 2∆|1, +126MHz2 g 1g 2∆ = 26 MHz (σ1 x − σ2 x ) (|↓↑ + |↑↓) = 0


Dispersive Coupling2J = 2 g 1g 2∆coupling strength= 26 MHz < κ = 33 MHzvirtual photonscavity decay rate


State Transferno Stark pulseTextJwith Stark pulseJ. Majer, et. al. Nature 2007MA. Sillanpaa, et. al. Nature (2007)


Two-Qubit <strong>Quantum</strong>AlgorithmsDeutsch-JoszaGroverL. DiCarlo, ..., J. M, ..., and R. J. Schoelkopf, Demonstration of twoqubitalgorithms with a superconducting quantum processor, Nature460, 240-244 (2009)


Generating Fock States√N2gMax Hofheinz, E. M. Weig, M. Ansmann, Radoslaw C. Bialczak, ErikLucero, M. Neeley, A. D. O/'Connell, H. Wang, John M. Martinis, andA. N. Cleland,Generation of Fock states in a superconducting quantum circuit,Nature 454, 310--314 (2008)


Outlookn spine spinatoms moleculesRydbergatomssuperconductingqubitsmallSizelarge10 -16 m1Å100nm1µmslowCoupling Ratefast0.1Hz100Hz10kHz 100kHz10MHz 100MHzlongCoherence Timeshort1h1sec1µs


Hybrid <strong>Quantum</strong> Systemspolar moleculesmechanical resonatorA. Andre, et. al., Nature Physics 2, 636--642 (2006)electrons, ions, C60,...A. D. Connell, ... John M. Martinis, and A. N. Cleland,Nature 464, 697--7ultracold Rb atomsdiamond color centersJ. Verdu, ...PRL. 103, 043603 (2009)arXiv:1006.0251, Y. Kubo, et. alarXiv:1006.0242 Schuster et. al


LiteratureR. J. Schoelkopf and S. M. Girvin, Wiring up quantum systems, Nature, 2008M. H. Devoret and J. M. Martinis, Implementing Qubits with SuperconductingIntegrated <strong>Circuit</strong>s, <strong>Quantum</strong> Information Processing, SpringerNetherlands,Volume 3, Numbers 1-5 / October, 2004J. Q. You and F. Nori, Superconducting <strong>Circuit</strong>s and <strong>Quantum</strong> Information,Physics Today, 2005J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature 453,1031-1042TU Wien VO 141.246

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!