11.07.2015 Views

Effects of Light Absorption and Scattering in Water Samples on OBS ...

Effects of Light Absorption and Scattering in Water Samples on OBS ...

Effects of Light Absorption and Scattering in Water Samples on OBS ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Light</str<strong>on</strong>g> <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>Water</str<strong>on</strong>g> <str<strong>on</strong>g>Samples</str<strong>on</strong>g> <strong>on</strong> <strong>OBS</strong> ® Measurements<str<strong>on</strong>g>Light</str<strong>on</strong>g> transmissi<strong>on</strong> through a water sample is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by physical properties such as particle size, shape,suspended solids c<strong>on</strong>centrati<strong>on</strong> (SSC), <str<strong>on</strong>g>and</str<strong>on</strong>g> compositi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical properties such as the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> near<str<strong>on</strong>g>in</str<strong>on</strong>g>frared(NIR) absorb<str<strong>on</strong>g>in</str<strong>on</strong>g>g dissolved matter. There is enormous variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> these properties <str<strong>on</strong>g>in</str<strong>on</strong>g> the envir<strong>on</strong>ment,result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a nearly <str<strong>on</strong>g>in</str<strong>on</strong>g>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite number <str<strong>on</strong>g>of</str<strong>on</strong>g> unique optical characteristics for natural <str<strong>on</strong>g>and</str<strong>on</strong>g> man-<str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced water,however, c<strong>on</strong>sistent light transmissi<strong>on</strong> through a water sample is essential for precise measurements. Suspendedsediment c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> particle size span a 1000-fold range while NIR reflectivity varies by a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> about10. The absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> light by dissolved matter can affect light-scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g measurements by 10% to 50% <str<strong>on</strong>g>in</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>ffrom m<str<strong>on</strong>g>in</str<strong>on</strong>g>e tail<str<strong>on</strong>g>in</str<strong>on</strong>g>gs. Lack <str<strong>on</strong>g>of</str<strong>on</strong>g> underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> these properties can lead to mis<str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SSC valuesdeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with an optical sensor. This applicati<strong>on</strong> note reviews their effects <str<strong>on</strong>g>and</str<strong>on</strong>g> addresses answers to questi<strong>on</strong>sabout size, color, <str<strong>on</strong>g>and</str<strong>on</strong>g> disaggregati<strong>on</strong> effects.OverviewKnow<str<strong>on</strong>g>in</str<strong>on</strong>g>g some basics about light transmissi<strong>on</strong> through water samples will enhanceyour underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> how <strong>OBS</strong> ® sensors operate <str<strong>on</strong>g>and</str<strong>on</strong>g> help you select the bestsystem/<str<strong>on</strong>g>in</str<strong>on</strong>g>strument for an applicati<strong>on</strong>. It will also help you recognize technical<str<strong>on</strong>g>and</str<strong>on</strong>g> operati<strong>on</strong>al limitati<strong>on</strong>s that can reduce the value <str<strong>on</strong>g>of</str<strong>on</strong>g> your data <str<strong>on</strong>g>and</str<strong>on</strong>g> challengethe success <str<strong>on</strong>g>of</str<strong>on</strong>g> your m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g program. <str<strong>on</strong>g>Light</str<strong>on</strong>g> transfer through a water sample isaffected <str<strong>on</strong>g>in</str<strong>on</strong>g> complex ways by water molecules, material dissolved <str<strong>on</strong>g>in</str<strong>on</strong>g> the water, <str<strong>on</strong>g>and</str<strong>on</strong>g>scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g by suspended particles. All light-transfer processes depend <strong>on</strong> wavelengthas <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated by the symbol <str<strong>on</strong>g>in</str<strong>on</strong>g> the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g discussi<strong>on</strong>.<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Coefficient [a()]<str<strong>on</strong>g>Light</str<strong>on</strong>g> is an ensemble <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>sthat are absorbed <str<strong>on</strong>g>and</str<strong>on</strong>g> scattered bywater, suspended particles, <str<strong>on</strong>g>and</str<strong>on</strong>g>dissolved matter as they travelthrough a sample. The absorpti<strong>on</strong>coefficient, a(), is a measure <str<strong>on</strong>g>of</str<strong>on</strong>g>the c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radiant energyto heat <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical energy. It isnumerically equal to the fracti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> energy absorbed from a lightbeam per unit <str<strong>on</strong>g>of</str<strong>on</strong>g> distance traveled<str<strong>on</strong>g>in</str<strong>on</strong>g> an absorb<str<strong>on</strong>g>in</str<strong>on</strong>g>g medium.As Figure 1 shows, the absorpti<strong>on</strong>coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> pure, particle-free,water ranges from 0.03 to 0.06 cm -1<str<strong>on</strong>g>in</str<strong>on</strong>g> the 760 to 1000 nm b<str<strong>on</strong>g>and</str<strong>on</strong>g>. <strong>OBS</strong>sensors operate <str<strong>on</strong>g>in</str<strong>on</strong>g> the near <str<strong>on</strong>g>in</str<strong>on</strong>g>fraredspectral b<str<strong>on</strong>g>and</str<strong>on</strong>g> (780 <str<strong>on</strong>g>and</str<strong>on</strong>g> 860 nm)to limit their resp<strong>on</strong>se to direct<str<strong>on</strong>g>and</str<strong>on</strong>g> reflected sunlight, the NIRc<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> which is str<strong>on</strong>glyabsorbed by water.Figure 1. Graph <str<strong>on</strong>g>of</str<strong>on</strong>g> a shows that the absorpti<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> pure, particlefree,water ranges from 0.03 to 0.06 cm -1 <str<strong>on</strong>g>in</str<strong>on</strong>g> the 760 to 1000 nm b<str<strong>on</strong>g>and</str<strong>on</strong>g>.Copyright © 2005, 2008 Campbell Scientifi c, Inc. 1815 W. 1800 N., Logan, UT 84321-1784 (435) 753-2342 App. Note: 2Q-Q


<str<strong>on</strong>g>Light</str<strong>on</strong>g> <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> & <str<strong>on</strong>g>Scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>Water</str<strong>on</strong>g> <str<strong>on</strong>g>Samples</str<strong>on</strong>g><str<strong>on</strong>g>Scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g</str<strong>on</strong>g> Coefficient [b()]Written by John Down<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>Light</str<strong>on</strong>g> scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g changes the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> transport, “dispers<str<strong>on</strong>g>in</str<strong>on</strong>g>g” them asthey penetrate a sample, without chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g their wavelength. The scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>gcoefficient, b(), is equal to the fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy dispersed from a light beam perunit <str<strong>on</strong>g>of</str<strong>on</strong>g> distance traveled <str<strong>on</strong>g>in</str<strong>on</strong>g> a scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g medium, <str<strong>on</strong>g>in</str<strong>on</strong>g> cm -1 . For example, water withb() = 1 cm -1 will scatter 63% <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy out <str<strong>on</strong>g>of</str<strong>on</strong>g> a light beam over a distance <str<strong>on</strong>g>of</str<strong>on</strong>g>1 cm whereas another sample with b() = 0.1 cm -1 will scatter the same proporti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> energy <str<strong>on</strong>g>in</str<strong>on</strong>g> 10 cm. Both absorpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g reduce the light energy <str<strong>on</strong>g>in</str<strong>on</strong>g> abeam as it travels through a sample <str<strong>on</strong>g>and</str<strong>on</strong>g> larger values <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate str<strong>on</strong>ger effects.The scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> pure water is less than 0.003 cm -1 so light scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g has animmeasurably small <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> an <strong>OBS</strong> sensor compared to absorpti<strong>on</strong>. Pure water is scarce<str<strong>on</strong>g>and</str<strong>on</strong>g> particles are ubiquitous <str<strong>on</strong>g>in</str<strong>on</strong>g> the envir<strong>on</strong>ment <str<strong>on</strong>g>and</str<strong>on</strong>g> light scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g from a m<str<strong>on</strong>g>in</str<strong>on</strong>g>iscule amount(< 100 gl -1 ) will cause c<strong>on</strong>sistent resp<strong>on</strong>se from an <strong>OBS</strong> sensor.Attenuati<strong>on</strong> Coefficient [c()]The attenuati<strong>on</strong> coefficient, c(), is a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the light loss from the comb<str<strong>on</strong>g>in</str<strong>on</strong>g>edeffects <str<strong>on</strong>g>of</str<strong>on</strong>g> scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> absorpti<strong>on</strong> over a unit length <str<strong>on</strong>g>of</str<strong>on</strong>g> travel <str<strong>on</strong>g>in</str<strong>on</strong>g> an attenuat<str<strong>on</strong>g>in</str<strong>on</strong>g>gmedium. The unit for c() is cm -1 . An easy way to remember the relati<strong>on</strong>shipam<strong>on</strong>g these properties is to recall that a() + b() = c(). It is also important toremember that a(), b(), <str<strong>on</strong>g>and</str<strong>on</strong>g> c() are <str<strong>on</strong>g>in</str<strong>on</strong>g>herent optical properties (IOP) that do notdepend <strong>on</strong> how a sample is illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ated. They are the same dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the day <str<strong>on</strong>g>and</str<strong>on</strong>g>night <str<strong>on</strong>g>and</str<strong>on</strong>g> when a sample is measured with turbidity meter A or sediment meter B.<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g processes can be illustrated by us<str<strong>on</strong>g>in</str<strong>on</strong>g>g an overhead projecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> petridishes c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>ky water <str<strong>on</strong>g>and</str<strong>on</strong>g> skim milk. The projected images <str<strong>on</strong>g>of</str<strong>on</strong>g> both dishes will be graybecause their c<strong>on</strong>tents attenuate light, however, the milky sample does so ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly by scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>gwhereas the <str<strong>on</strong>g>in</str<strong>on</strong>g>ky <strong>on</strong>e ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly absorbs light.<str<strong>on</strong>g>Light</str<strong>on</strong>g> <str<strong>on</strong>g>Scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g</str<strong>on</strong>g>We elaborate a bit <strong>on</strong> light scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g because <str<strong>on</strong>g>of</str<strong>on</strong>g> its central importance <str<strong>on</strong>g>in</str<strong>on</strong>g> underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>ghow <strong>OBS</strong>' resp<strong>on</strong>d <str<strong>on</strong>g>in</str<strong>on</strong>g> the envir<strong>on</strong>ment. The angular distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> light<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity scattered from a beam by a water sample is called the volume scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>gfuncti<strong>on</strong>, VSF. The angle between this beam <str<strong>on</strong>g>and</str<strong>on</strong>g> scattered light rays is the scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>gangle. Forward-scattered radiati<strong>on</strong> occupies the hemisphere surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<str<strong>on</strong>g>in</str<strong>on</strong>g>cident beam <str<strong>on</strong>g>and</str<strong>on</strong>g> oriented away from the source <str<strong>on</strong>g>and</str<strong>on</strong>g> back scattered radiati<strong>on</strong> fillsthe opposite hemisphere. Figure 2 shows VSFs computed from Mie theory for airbubbles, m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> biological material as well as the forward- (0° to 90°)<str<strong>on</strong>g>and</str<strong>on</strong>g> back-scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g (> 90°) VSF regi<strong>on</strong>s.2 Copyright © 2005, 2008 Campbell Scientifi c, Inc.App. Note: 2Q-Q 815 W. 1800 N., Logan, UT 84321-1784 (435) 753-2342


Written by John Down<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>Light</str<strong>on</strong>g> <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> & <str<strong>on</strong>g>Scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>Water</str<strong>on</strong>g> <str<strong>on</strong>g>Samples</str<strong>on</strong>g>Figure 2. Graph shows VSFs computed from Mie theory for airbubbles, m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> biological material as well as the forward-(0° to 90°) <str<strong>on</strong>g>and</str<strong>on</strong>g> back-scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g (> 90°) VSF regi<strong>on</strong>s.The VSF for bubbles is str<strong>on</strong>gly peaked <str<strong>on</strong>g>in</str<strong>on</strong>g> the forward directi<strong>on</strong> relative to the othermaterials <str<strong>on</strong>g>and</str<strong>on</strong>g> biological material back scatters 10 to 50% less light than the otherparticles. Like the material properties <str<strong>on</strong>g>of</str<strong>on</strong>g> water samples, the variety <str<strong>on</strong>g>of</str<strong>on</strong>g> VSFs is huge.Their shape depends, am<strong>on</strong>g other th<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, <strong>on</strong> particle size <str<strong>on</strong>g>and</str<strong>on</strong>g> refractive <str<strong>on</strong>g>in</str<strong>on</strong>g>dex. Thesize factor, x = D -1 , where D is particle diameter, measures the important relativeeffects <str<strong>on</strong>g>of</str<strong>on</strong>g> the operat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spectrum <str<strong>on</strong>g>and</str<strong>on</strong>g> the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g particles <strong>on</strong> the resp<strong>on</strong>se<str<strong>on</strong>g>of</str<strong>on</strong>g> a meter to a particular sample. For example, the VSF for 100 µm sphericalparticles when illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by red light (650 nm) would be similar to <strong>on</strong>e causedby illum<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g 131 µm particles with 850 nm light, other th<str<strong>on</strong>g>in</str<strong>on</strong>g>gs be<str<strong>on</strong>g>in</str<strong>on</strong>g>g equal.Most suspended particles <str<strong>on</strong>g>in</str<strong>on</strong>g> streams, lakes, <str<strong>on</strong>g>and</str<strong>on</strong>g> the ocean are larger than the wavelength<str<strong>on</strong>g>of</str<strong>on</strong>g> a meters’ illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> system, <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently they scatter about halfthe <str<strong>on</strong>g>in</str<strong>on</strong>g>cident light energy <str<strong>on</strong>g>in</str<strong>on</strong>g>to a 10-degree forward-directed c<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> less than 2.5%<str<strong>on</strong>g>of</str<strong>on</strong>g> it <str<strong>on</strong>g>in</str<strong>on</strong>g> the backward directi<strong>on</strong>. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the many comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> particle size,shape, <str<strong>on</strong>g>and</str<strong>on</strong>g> color, similar turbidity read<str<strong>on</strong>g>in</str<strong>on</strong>g>gs can be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from samples c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>gphysically dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct particles. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment properties <str<strong>on</strong>g>and</str<strong>on</strong>g> sample-h<str<strong>on</strong>g>and</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>gprocedures <strong>on</strong> the values <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated by our meters are discussed the "Particle Size<str<strong>on</strong>g>Effects</str<strong>on</strong>g>", "NIR Reflectivity & Particle Color", <str<strong>on</strong>g>and</str<strong>on</strong>g> "<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Effects</str<strong>on</strong>g>" applicati<strong>on</strong> notes.The scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> pure water is less than 0.003 cm -1 so light scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g has animmeasurably small <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> an <strong>OBS</strong> sensor compared to absorpti<strong>on</strong>. Pure water isscarce <str<strong>on</strong>g>and</str<strong>on</strong>g> particles are ubiquitous <str<strong>on</strong>g>in</str<strong>on</strong>g> the envir<strong>on</strong>ment <str<strong>on</strong>g>and</str<strong>on</strong>g> light scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g from a m<str<strong>on</strong>g>in</str<strong>on</strong>g>isculeamount (< 100 gl -1 ) will cause c<strong>on</strong>sistent resp<strong>on</strong>se from an <strong>OBS</strong> sensor.Copyright © 2005, 2008 Campbell Scientifi c, Inc. 3815 W. 1800 N., Logan, UT 84321-1784 (435) 753-2342 App. Note: 2Q-Q


<str<strong>on</strong>g>Light</str<strong>on</strong>g> <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> & <str<strong>on</strong>g>Scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>Water</str<strong>on</strong>g> <str<strong>on</strong>g>Samples</str<strong>on</strong>g>ReferencesWritten by John Down<str<strong>on</strong>g>in</str<strong>on</strong>g>gSmith, R.C. <str<strong>on</strong>g>and</str<strong>on</strong>g> K.S. Baker. 1981. Optical Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the Clearest Natural <str<strong>on</strong>g>Water</str<strong>on</strong>g>s(200-800 nm). Applied Optics, Vol. 20 (177).Petzold, T.J. 1972. Volume <str<strong>on</strong>g>Scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g</str<strong>on</strong>g> Functi<strong>on</strong>s for Selected Ocean <str<strong>on</strong>g>Water</str<strong>on</strong>g>s. SIO 72-28,Scripps Instituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Oceanography, La Jolla, California, 79 pages.Bohren, C.F. <str<strong>on</strong>g>and</str<strong>on</strong>g> D.R. Huffman. 1983. <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Light</str<strong>on</strong>g> by SmallParticles. John Wiley & S<strong>on</strong>s. 530 pages..4 Copyright © 2005, 2008 Campbell Scientifi c, Inc.App. Note: 2Q-Q 815 W. 1800 N., Logan, UT 84321-1784 (435) 753-2342

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!