11.07.2015 Views

a case study on house sparrows - Ghent Ecology - Universiteit Gent

a case study on house sparrows - Ghent Ecology - Universiteit Gent

a case study on house sparrows - Ghent Ecology - Universiteit Gent

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Relating phenotypic and genetic variati<strong>on</strong> to urbanizati<strong>on</strong>in avian species:a <str<strong>on</strong>g>case</str<strong>on</strong>g> <str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>on</strong> <strong>house</strong> <strong>sparrows</strong> (Passer domesticus)Fenotypische en genetische variatie in relatie toturbanizatie bij vogelsoorten:de huismus (Passer domesticus) als <str<strong>on</strong>g>case</str<strong>on</strong>g>‐<str<strong>on</strong>g>study</str<strong>on</strong>g>Carl Vangestel<strong>Universiteit</strong> <strong>Gent</strong>, 2011Thesis submitted to obtain the degree of Doctor in Sciences (Biology)Proefschrift voorgelegd tot het behalen van de graad van Doctor in deWetenschappen, Biologie


Supervisor: prof. dr. Luc Lens (<strong>Ghent</strong> University)Co‐supervisor: dr. Joachim Mergeay (INBO)Reading committee:dr. Ruud Foppen (SOVON, Netherlands)prof. dr. Erik Matthysen (Antwerp University)prof. dr. Frederik Hendrickx (KBIN)Exam committee:prof. dr. Luc Lens (<strong>Ghent</strong> University, supervisor)dr. Joachim Mergeay (INBO, co‐supervisor)prof. dr. Koen Sabbe (<strong>Ghent</strong> University, president)prof. dr. Tom Moens (<strong>Ghent</strong> University)dr. Eduardo de la Peña (<strong>Ghent</strong> University)Please refer to this work as:Vangestel, C. (2011). Relating phenotypic and genetic variati<strong>on</strong> to urbanizati<strong>on</strong> inavian species: a <str<strong>on</strong>g>case</str<strong>on</strong>g> <str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>on</strong> House Sparrows (Passer domesticus). PhD thesis,<strong>Ghent</strong> University.ISBN 978‐94‐9069‐571‐2


C<strong>on</strong>tentsDankwoordGeneral introducti<strong>on</strong> 1Chapter 1C<strong>on</strong>straints <strong>on</strong> home range behaviour affect nutriti<strong>on</strong>alc<strong>on</strong>diti<strong>on</strong> in urban <strong>house</strong> <strong>sparrows</strong> (Passer domesticus) 33Chapter 2Does fluctuating asymmetry c<strong>on</strong>stitute a sensitive biomarkerof nutriti<strong>on</strong>al stress in <strong>house</strong> <strong>sparrows</strong> (Passer domesticus)? 53Chapter 3Developmental stability covaries with genome‐wide andsingle‐locus heterozygosity in <strong>house</strong> <strong>sparrows</strong> 71Chapter 4Characterizing spatial genetic structure in c<strong>on</strong>temporary<strong>house</strong> sparrow populati<strong>on</strong>s al<strong>on</strong>g an urbanizati<strong>on</strong> gradient 97Chapter 5Spatial heterogeneity in genetic relatedness am<strong>on</strong>g <strong>house</strong><strong>sparrows</strong> al<strong>on</strong>g an urban gradient: a plea for individualbasedanalysis....... 125General discussi<strong>on</strong> 149Summary 165Samenvatting 169


DankwoordHet leek steeds zo ver weg, maar nu is het er eindelijk: de ‘laatstepagina’, tijd om iedereen een welgemeende ‘Dank U’ te zeggen.In de eerste plaats wil ik mijn promotor Luc bedanken. Luc, ik kanme moeilijk een betere promotor inbeelden dan diegene die jij geweestbent. Je st<strong>on</strong>d altijd klaar voor mijn vragen en bekommernissen en altijdhad ik het gevoel dat ik de enige was die een meeting met je had die dag(maar we weten beiden wel beter...). Bedankt ook voor de ruimte die je meliet om mijn eigen <strong>on</strong>derzoekslijnen te kiezen en ‘tussen de soep en depatatten’ nog cursussen statistiek te volgen, de talloze revisies vanhoofdstukken en manuscripten, je nooit aflatend enthousiasme, maarvooral voor de aangename en relaxte manier van samenwerken. BedanktLuc.Mijn co-promotor Joachim wil ik vooral bedanken voor zijnkritische revisies van mijn hoofdstukken, zijn uiteenzettingen over degevaren die bij ‘n<strong>on</strong>equilibrium populati<strong>on</strong>s’ om de hoek komen kijken enenorme hulp bij het genetisch scoren van allelen.Fre, bedankt voor de geweldige momenten tijdens de stage (en hetsoms verliezen van de weg), de excursies (en het soms verliezen van deweg) en de practica (en...vreemd genoeg hebben we nooit de weg verlorenin de Ledeganck). Bedankt voor het geduld wanneer ik voor de duizendstemaal je bureau op ’t 9 de zomaar binnenviel, een hypothetisch grafiekje<strong>on</strong>der je neus duwde en een statistisch “maar-wat-als” vraagje op jeafvuurde. Je kan werkelijk als geen ander complexe zaken reduceren totiets simpels.I want to express my great appreciati<strong>on</strong> for the tremendous‘genetic’ support provided by Deborah Daws<strong>on</strong>, Terry Burke, Andy Krupaand Gavin Horsburgh (University of Sheffield).Dank ook aan alle leden van de lees- en examencommissie voor huncorrecties en nuttige suggesties.Z<strong>on</strong>der de hulp van Viki en Hans zou deze doctoraatsscriptie nooittot stand zijn gekomen. Viki, bedankt voor de duizende PCR’s, het testenvan primers, het optimaliseren van protocols en zoveel andere dingen.Z<strong>on</strong>der jou st<strong>on</strong>d ik nu nog in het labo. Hans, wie had ooit gedacht dat wij


nog samen <strong>on</strong>derzoek zouden doen. Merci voor de vele en langevangdagen, het ‘zoeken’ naar gezenderde vogels, het willen meedenkenmet mijn <strong>on</strong>derzoek, mijn perso<strong>on</strong>lijke helpdesk te willen zijn voor alle PCproblemen(bij wijlen een full-time job), mij slechts eenmaal toe te lateneen mistnet te plaatsen voor een prikkeldraad <strong>on</strong>der stroom,... bedankt hemoat!Verder wil ik ook alle Master studenten bedanken die op een ofandere manier een bijdrage hebben geleverd bij het vergaren van data:Christophe, Boris, Sophie, Marieke, Hanna, Lies en Patricia. Specialthanks to Danielo, it has been and will always be a pleasure to work withyou. Thanks for all the work and fun times in <strong>Ghent</strong> and Leicester and themany delicious self-made tortillas.Tevens mag ik zeker Angelica, Fien en Jasmin niet vergeten vooralle hulp bij het ‘prepareren’ van veerstalen voor DNA <strong>on</strong>derzoek en ganshet 9 de en 10 de voor de fantastische werksfeer: Johan, Lynda, Jean-Pierre,Dries, Eduardo, Rein, Val, To<strong>on</strong>, Boris, Tom, Eva, Debbie, Martijn, Bramen Brambo, Charlotte, Greet, Liesbeth, Kevin, Nathalie, Leen, Els,Vanessa, Thijs, Kay, Dirk en de ‘nieuwe lichting’.Tom Cammaer, bedankt voor het bijvangen van huismussen envervolledigen van de datasets.Jenny bedankt voor je interesse in mijn <strong>on</strong>derzoek en je logistiekehulp in de beginjaren.Ook Andy Vierstraete en Bart Braeckman wil ik langs deze wegbedanken voor respectievelijk alle genetische hulp en het schrijven van debeeldverwerkingssoftware (inclusief bijbehorend vogelgeluidje).Ik zou ook een aantal mensen willen bedanken voor het inlassen vanenkele <strong>on</strong>tspannende momenten tussen het schrijven door. De‘Bioloogskes’, oftewel Mie & Jer, Lena & Stoffe, Karin & Robrecht (aliasRudolf, Georges, ...) en Sofie & Reinout: we zien elkaar ietsje minder delaatste tijd, maar geen paniek, we vinden wel een manier om diebabyboom van 10 klein mannen te ‘overleven’. Het ‘raft-team’ oftewelGert, Jov, Tom C., Tom V.G., Thijs en Maarten: bedankt om me eropattent te maken dat mijn c<strong>on</strong>ditie ook niet meer dat is wat het geweest is.De ‘Mitchie Mitch’ oftewel Michel: bedankt voor alles en dat tripke naarNepal komt er echt wel van... met of z<strong>on</strong>der krukken. Het ‘Boazeke’ oftewelTom: merci voor de vriend te zijn die iedereen zoekt maar zelden vindt.


Ik wil mijn beide ouders van harte bedanken voor de talloze kerendat zij zich om Lars bekommerden zodat ik k<strong>on</strong> verder werken aan dezescriptie en mij steeds gesteund hebben in mijn studiekeuzes. Ook mijnzussen San en Kikke, Oma Veerle en Opa Frank en alle tantes en n<strong>on</strong>kelsvan Lars en Boris wil ik bedanken: Frankie en Wim, Lies en ‘k<strong>on</strong>kel’ Joris,Marie en Peter. Bedankt om er steeds te zijn wanneer <strong>on</strong>s gezinnetje jullienodig had.San en Wim, <strong>on</strong>gelooflijk bedankt voor de layout van deze scriptie,een welgekome verlichting in deze toch wel drukke tijden.Fien, mijn grootste dank gaat natuurlijk naar jou uit. Z<strong>on</strong>der jouzou er nooit sprake geweest zijn van dit ‘boekje’. Hoogzwanger, in vrijwelje eentje een gans gezin en huishouden runnen, een drukke job, ... je deedhet allemaal en zelden hoorde ik je klagen. Bedankt zoetie!!Als laatste, eerder een belofte dan wel een dankbetuiging. Lars,twee jaar en een papa die tracht te doctoreren, het was zeker niet altijdeven makkelijk voor je (Boris, gelukkig was jij nog veel te klein). Maar ikbeloof jullie beiden: vanaf nu is het ‘Lars en Boris’ time!!


General introducti<strong>on</strong>©Chantal Deschepper1


General introducti<strong>on</strong>As metropolitan areas are currently sprawling at unprecedented rates,urban species are expected to comprise a significant comp<strong>on</strong>ent of globalbiodiversity in the future (Chace and Walsh 2006). While this phenomen<strong>on</strong> hasnourished a fast‐growing scientific interest in urban ecology, our understandingof ecological and evoluti<strong>on</strong>ary c<strong>on</strong>sequences of urban sprawl is yet rudimentary(Marzluff et al. 2001). Urbanizati<strong>on</strong> affects the distributi<strong>on</strong> and abundance ofspecies as it tends to homogenize urban avifauna by reducing both speciesrichness and evenness. While this has been true for most native species, oppositetrends have been reported for densities of n<strong>on</strong>‐native <strong>on</strong>es (Marzluff et al. 2001).For l<strong>on</strong>g, the <strong>house</strong> sparrow (Passer domesticus) has represented <strong>on</strong>e ofthe rare excepti<strong>on</strong>s to this pattern of declining native biodiversity in urbanizedareas. Traditi<strong>on</strong>ally, <strong>house</strong> <strong>sparrows</strong> have been forming commensal 1 relati<strong>on</strong>shipswith mankind allowing them to invade numerous habitats in various parts of theworld (Summers‐Smith 1963). While they initially thrived well in resp<strong>on</strong>se tourbanizati<strong>on</strong>, in recent decades this species has suddenly suffered massivedeclines most pr<strong>on</strong>ounced in highly urbanized city centers (Chamberlain et al.2007, De Laet and Summers‐Smith 2007). The universal decline of <strong>house</strong><strong>sparrows</strong> in a c<strong>on</strong>stantly changing urban envir<strong>on</strong>ment is not merely an intriguingbiological phenomen<strong>on</strong> per se, but could potentially be a forerunner of a largerecological problem, ultimately affecting entire urban ecosystems.The combinati<strong>on</strong> of its almost obligate relati<strong>on</strong>ship with humans(Anders<strong>on</strong> 2006), its appearance in a range of diverse habitats and the suddenbut heterogeneous collapse of <strong>house</strong> sparrow numbers provides an excellentopportunity to explore how phenotypic and genetic characteristics of this speciesresp<strong>on</strong>d to urban gradients. Here, I investigate whether two morphologicalmeasurements could functi<strong>on</strong> as bioindicators for the detecti<strong>on</strong> andquantificati<strong>on</strong> of presumed stress 2 associated with increased urbanizati<strong>on</strong>. Suchidentificati<strong>on</strong> and implementati<strong>on</strong> of cost‐efficient indicators of envir<strong>on</strong>mentaland/or genetic stresses before populati<strong>on</strong>s become irreversible affected (‘earlywarning systems’ sensu Clarke et al. 1986, Clarke and McKenzie 1992, Clarke1995) would be highly beneficial for c<strong>on</strong>servati<strong>on</strong> purposes. Next, using highlypolymorphic microsatellite markers I explore how, and to what extent, genetic1 Commensalism is defined as the interacti<strong>on</strong> between two species in which <strong>on</strong>e speciesbenefits from the relati<strong>on</strong>ship while the other is unaffected by it (Anders<strong>on</strong> 2006).2 We define ‘stress’ as the c<strong>on</strong>sequence of any factor that alters an organism’s energybudget in terms of energy acquisiti<strong>on</strong> or allocati<strong>on</strong> to maintenance and reproducti<strong>on</strong> (Grime1989, Beyers et al. 1999).2


General introducti<strong>on</strong>variati<strong>on</strong> covaries with urbanizati<strong>on</strong> in c<strong>on</strong>temporary <strong>house</strong> sparrow populati<strong>on</strong>sand whether putative detrimental genetic effects have already emerged.AN OVERVIEW OF THE HOUSE SPARROW DECLINEUntil recently <strong>house</strong> <strong>sparrows</strong> were am<strong>on</strong>g the most comm<strong>on</strong> birds inEurope (Summers‐Smith 1988). Numbers of breeding pairs in the UK in the early1970’s were estimated between 12 and 15 milli<strong>on</strong> (Crick et al. 2002). To myknowledge, little informati<strong>on</strong> <strong>on</strong> <strong>house</strong> sparrow numbers is available for Flanders.Although rather rough approximati<strong>on</strong>s, the number of breeding pairs wereestimated at 715,000 pairs in the mid 1970’s and 500,000 at 1985 (VLAVICO1989). Throughout history <strong>house</strong> <strong>sparrows</strong> have been regarded as pest speciesdamaging standing crops, transmitting diseases and negatively affecting nativeavifauna after (un)voluntary human introducti<strong>on</strong>s (Anders<strong>on</strong> 2006). However,nowadays it is widely acknowledged that this species has suffered major declines,shifting its ‘pest status’ to a ‘near threatened’ <strong>on</strong>e (Birdlife Internati<strong>on</strong>al 2006).Yet, while the majority of observed trends describe a substantial decline, thispattern is far from c<strong>on</strong>sistent. For instance, census counts suggest that not <strong>on</strong>lythe <strong>on</strong>set of the rural decline preceded the urban <strong>on</strong>e, but that the strength andoutcome of the decline, too, differ between both regi<strong>on</strong>s. In the rural area thedecline has stabilized whereas the urban decline has been more dramatic andseems to be still in progress, transforming (some parts of) city centers into‘sparrow free’ areas (Robins<strong>on</strong> et al. 2005; De Laet and Summers‐Smith 2007).Finally, in suburban areas (i.e., c<strong>on</strong>sisting of outskirts of the city and its suburbsand characterized by lower building density and larger quantity of vegetati<strong>on</strong>;Heij 1985), numbers have been less affected showing <strong>on</strong>ly minimal signs ofpopulati<strong>on</strong> reducti<strong>on</strong>s (figure 1).This coarse‐grained heterogeneity in populati<strong>on</strong> dynamics becomes evenmore complicated as deviating trends have been reported both between andwithin city centers (Summers‐Smith 2003). One of the best documented declinesis the <strong>on</strong>e in Kensingt<strong>on</strong> Gardens where autumn counts go back as far as 1925(Sanders<strong>on</strong> 1996, Vincent 2005). While the local populati<strong>on</strong> size was estimated at2603 birds in 1925, numbers gradually declined to 885 in 1948, most likely due toa reducti<strong>on</strong> in food availability following the replacement of horses by motorizedvehicles (Summers‐Smith 1988, Anders<strong>on</strong> 2006). In the 1980’s, this gradualpopulati<strong>on</strong> decline was complemented by a sudden populati<strong>on</strong> collapse whichresulted in a census count of <strong>on</strong>ly eight (!) birds in 2000. Other l<strong>on</strong>g‐term3


General introducti<strong>on</strong>Fig. 1. House sparrow populati<strong>on</strong> trends based <strong>on</strong> census counts between 1970 and 2000 inthree different habitats. Rural abundances are based <strong>on</strong> the BTO Farmland Populati<strong>on</strong> Indices;suburban <strong>on</strong>es represent census data from four suburban villages in the UK (Stockt<strong>on</strong>,Crewkerne, Tranent and Guisborough); urban abundances are based <strong>on</strong> counts performed inL<strong>on</strong>d<strong>on</strong>, Edinburgh, Glasgow, Hamburg and Dublin (source: De Laet 2007).m<strong>on</strong>itoring schemes showed broadly similar trends in the greater L<strong>on</strong>d<strong>on</strong> area(De Laet and Summers‐Smith 2007). Likewise, <strong>house</strong> <strong>sparrows</strong> have shown a 90%decline in the center of Edinburgh (Dott and Brown 2000) and numbers havebeen declining by more than 50% in Hamburg during the last three decades(Mitschke et al. 2000). Notably, most populati<strong>on</strong>s in Berlin and Paris seem to lacksuch a decline (Summers‐Smith 2003) while, in general, sparrow populati<strong>on</strong>s inScotland and Wales even seem to have increased in numbers (Crick et al. 2002)(table 1). Such a complex pattern complicates the identificati<strong>on</strong> of an overalldriving force behind the urban collapse but rather suggests a combinati<strong>on</strong> ofcausal factors. Moreover, this urges for detailed studies c<strong>on</strong>ducted at a smallscale to allow subtle differences within habitats to be detected.PUTATIVE CAUSES OF THE HOUSE SPARROW DECLINEPredati<strong>on</strong>The two most cited candidate predators that could substantially affect<strong>house</strong> sparrow numbers are the domestic cat (Felis catus) and the sparrowhawk(Accipiter nisus). Depending <strong>on</strong> the distance from human settlements, <strong>sparrows</strong>comprised between 9.2% and 35% of the diet of sparrowhawks, where lowerpercentages were associated with more remote areas (Tinbergen 1946, Opdam1979, Frimer 1989). During field work c<strong>on</strong>ducted within the framework of this4


General introducti<strong>on</strong>Table 1. Overview of European populati<strong>on</strong> trends (source: Shaw et al. 2008).City Overall trendBerlin StableBristol DeclineDublin DeclineEdinburgh DeclineHamburg DeclineLisb<strong>on</strong> IncreaseL<strong>on</strong>d<strong>on</strong> DeclineManchester StableMoscow DeclineNorwich DeclineParis StablePrague DeclineRotterdam DeclineSt. Petersburg DeclineWarsaw Slight declinethesis, multiple predati<strong>on</strong> events of <strong>house</strong> <strong>sparrows</strong> by sparrowhawks have beenobserved (see discussi<strong>on</strong> Chapter 1). While in the past, the possibility ofsparrowhawks as a causal factor of the sparrow decline has generally beendismissed (Newt<strong>on</strong> et al. 1997, Thoms<strong>on</strong> et al. 1998), recent papers (MacLeod etal. 2006, Bell et al. 2010) advocate such c<strong>on</strong>clusi<strong>on</strong>s may have beenprematureFirstly, sparrowhawks, like many other raptors, have shown a markedincrease in populati<strong>on</strong> numbers over the last 30 years thanks to legal protecti<strong>on</strong>and banning of pesticides like DDT (Lensink 1997, Anders<strong>on</strong> 2006). Sec<strong>on</strong>dly, the<strong>on</strong>set of the urban <strong>house</strong> sparrow decline corresp<strong>on</strong>ds to the timing at whichsparrowhawks have started to col<strong>on</strong>ize the urban habitats (Anders<strong>on</strong> 2006, Bellet al. 2010). Prior to the urban invasi<strong>on</strong> of sparrowhawks, large periods ofpredator release may have allowed natural selecti<strong>on</strong> to select against behavioralstrategies associated with anti‐predator defence in urban <strong>house</strong> <strong>sparrows</strong>(Blumstein and Daniel 2005) rendering them incapable of instantaneouslyadjusting their behavior in resp<strong>on</strong>se to a sudden predator introducti<strong>on</strong>(Steadman 2006). Hence, this sudden arrival of a new predator may havedisproporti<strong>on</strong>ally increased the vulnerability of urban <strong>house</strong> <strong>sparrows</strong>. Thirdly,difference in timing between urban and rural sparrowhawk recovery matchespatterns of urban and rural <strong>house</strong> sparrow decline (Bell et al. 2010). Based <strong>on</strong> alogistic model, Bell et al. (2010) showed that <strong>house</strong> sparrow numbers were <strong>on</strong>average stable or increasing prior to the return of sparrowhawks, but declined5


General introducti<strong>on</strong>str<strong>on</strong>gly afterwards. While the authors focused <strong>on</strong> predati<strong>on</strong> per se, increasedoccurrence of predators can also have indirect detrimental effects <strong>on</strong> <strong>house</strong>sparrow behavior and physiology. For instance, foraging theory predicts that birdswill tend to build up fat reserves at times of unpredictable food supply to lowerthe risk of starvati<strong>on</strong> (Lima 1986, Houst<strong>on</strong> et al. 1993). MacLeod et al. (2006)performed a comparative <str<strong>on</strong>g>study</str<strong>on</strong>g> am<strong>on</strong>g six islands, halve of which c<strong>on</strong>tained nosparrowhawks while in the other halve this raptor was resident. While <strong>sparrows</strong>in ‘predator‐free’ islands behaved in a predictable fashi<strong>on</strong> and gained body massearly at the day and during winter, such behavior was absent in predatordominated islands. MacLeod et al. (2006) argued that <strong>house</strong> <strong>sparrows</strong> did notregulate fat reserves in a manner to minimize the starvati<strong>on</strong> risk but ratherresp<strong>on</strong>ded to mass‐dependent predati<strong>on</strong> risk, with a trade‐off between flightperformance and starvati<strong>on</strong> risk that rendered them highly susceptible tochanges in the predictability of food supply. While both studies are correlativeand hence <strong>on</strong>ly provide suggestive evidence for a link between the <strong>house</strong> sparrowdecline and predator incidence, these results emphasize that predator effectsmight be variable and complex.Domestic cats have also been identified as potential predators of <strong>house</strong><strong>sparrows</strong> (Churcher and Lawt<strong>on</strong> 1987; Woods et al. 2003) as it has beenpresumed that cats may kill up to 27 milli<strong>on</strong> birds in the UK in a span of 5 m<strong>on</strong>ths<strong>on</strong>ly (Woods et al. 2003). In additi<strong>on</strong>, Baker et al. (2005) reported predati<strong>on</strong> ratesof cats in an English village that were within the order of magnitude to havepotentially detrimental demographic effects. However, such generalizati<strong>on</strong>assumes that preys brought in by cats c<strong>on</strong>stitute a random sample of the total<strong>house</strong> sparrow populati<strong>on</strong>. Mortality may not be driven by compensatorymechanisms such as age or disease in which <str<strong>on</strong>g>case</str<strong>on</strong>g> preys would merely represent a“doomed surplus” (Erringt<strong>on</strong> 1946), individuals which would have died anyway. Insuch instances, predati<strong>on</strong> will be incapable of affecting overall populati<strong>on</strong> trends.Support for such a scenario was recently provided by Moller and Erritzoe (2000)who showed that immunocompetence of preyed birds were lower than that ofn<strong>on</strong>‐preyed birds undermining the importance of cat predati<strong>on</strong> as a causalcomp<strong>on</strong>ent of the sparrow decline.Lack of nest sites and change in habitat structureHouse <strong>sparrows</strong> show a marked preference for dense vegetati<strong>on</strong>(Wilkins<strong>on</strong> 2006). The decline of <strong>house</strong> <strong>sparrows</strong> has recently been linked toareas with high socio‐ec<strong>on</strong>omic status (Summers‐Smith 2003, Vincent 2005, Shawet al. 2008) as in the past, affluent areas have witnessed a substantial6


General introducti<strong>on</strong>transformati<strong>on</strong> in habitat structure with loss of greenery and brownfield sites and‘tidier’ gardens with higher proporti<strong>on</strong> of paving and n<strong>on</strong>‐native ornamentalshrubs (Shaw et al. 2008). Such increasing development and c<strong>on</strong>comitant loss offoraging habitat has had an impact <strong>on</strong> the availability of both weedy areas as wellas invertebrate food. Insects provide chicks an essential protein boost a few daysafter fledging and the absence of insect food can have devastating effects <strong>on</strong>breeding success when availability is limited (see below) (Vincent 2005). Surveyshave further shown a str<strong>on</strong>g correlati<strong>on</strong> between <strong>house</strong> sparrow abundance andthe level of social deprivati<strong>on</strong> with lowest numbers found in wealthy residentialareas (Robins<strong>on</strong> et al. 2005). It has been speculated that such habitat changecould be compounded by a lack of available nesting sites. House <strong>sparrows</strong>typically prefer holes or small crevices near roofs as a nesting site but modern orrenovated buildings often lack such opportunities (Vincent 2005, Shaw et al.2008). A nati<strong>on</strong>wide survey held in the UK indicated <strong>house</strong> <strong>sparrows</strong> wereavoiding newer buildings (build after 1985) or those that had undergo extensiveroof repairs the last decade (Shaw et al. 2008).DiseasesWhile the trajectory of a massive and sudden decline in <strong>house</strong> sparrownumbers is suggestive for an epidemic disease, little is known about the impact ofdiseases <strong>on</strong> this species, and in bird populati<strong>on</strong>s in general. One of the few welldescribed examples of how epidemics can regulate populati<strong>on</strong> numbers is the<str<strong>on</strong>g>study</str<strong>on</strong>g> of mycoplasmal c<strong>on</strong>junctivitis in <strong>house</strong> finches (Carpodacus mexicanus) inthe eastern half of North America. House finches experienced dramatic declinesafter the arrival of the epizootic but numbers have stabilized recently (HochachkaWM and Dh<strong>on</strong>dt 2000). A myriad of pathogens have been identified in <strong>house</strong><strong>sparrows</strong> (see Anders<strong>on</strong> 2006 for a detailed list) of which bacteria from the genusSalm<strong>on</strong>ella and single‐cell parasites from the genus Isospora have beenfrequently reported (Anders<strong>on</strong> 2006). While there has been anecdotal evidencethat epidemic outbursts do occur in nature and can locally result in substantialpopulati<strong>on</strong> losses or lower nestling c<strong>on</strong>diti<strong>on</strong> (Kruszewicz 1991), to date there isno str<strong>on</strong>g support that disease is the culprit of the large‐scale <strong>house</strong> sparrowcollapse.Food shortageIn c<strong>on</strong>trast to the proximate causes of the urban decline which are mostlyhypothetical, those of the rural decline are well established. Substantial evidencehas accumulated that the rural <strong>house</strong> sparrow decline can be attributed to lack of7


General introducti<strong>on</strong>overwinter food availability. Am<strong>on</strong>g other farmland bird species, <strong>house</strong> <strong>sparrows</strong>have suffered severely from agricultural intensificati<strong>on</strong> such as the switch fromspring to autumn sowing, thereby reducing the availability of winter stubbles, andmore efficient grain storage (Chamberlain et al. 2000). Support was given by a<str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>on</strong> the populati<strong>on</strong> ecology of rural <strong>house</strong> <strong>sparrows</strong> in Oxfordshire (Hole2001, Hole et al. 2002). Their comparative <str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>on</strong> stable populati<strong>on</strong>s and adeclined <strong>on</strong>e (numbers decreased with 81% since 1971) indicated no variati<strong>on</strong> inbreeding performance am<strong>on</strong>g <str<strong>on</strong>g>study</str<strong>on</strong>g> plots while a significantly decreased m<strong>on</strong>thlyoverwinter survival rate was <strong>on</strong>ly apparent in the declining populati<strong>on</strong>.Experimental support was further provided by the positive resp<strong>on</strong>se of survivalrates to supplementary feeding in the populati<strong>on</strong> that suffered a severe decline in<strong>house</strong> sparrow numbers while rates remained unaffected in the other <strong>on</strong>es.While such a scenario is unlikely to account for the urban <strong>house</strong> sparrow decline,evidence has mounted that in the urban area summer, rather than winter, foodsupply may be problematic, more specifically the availability of invertebrates foryoung chicks. Vincent (2005) measured reproductive success al<strong>on</strong>g anurbanizati<strong>on</strong> gradient in Leicester, UK and reported high rates of chick and wholebroodstarvati<strong>on</strong> during June and July in the highly urbanized habitat. A stochasticsimulati<strong>on</strong> revealed that in two out of three years juvenile recruitment did notreach the threshold required to sustain populati<strong>on</strong> viability due to low chicksurvival and body mass at fledging (a well‐established predictor of post‐fledgingsurvival (Hole 2001)). High levels of vegetable material in the diet, low aphiddensities or high levels of NO 2 from traffic polluti<strong>on</strong> were highly associated withreproductive failure (Peach et al. 2008). They argued that reduced reproductiveoutput due to low aphid abundance in the immediate vicinity of nesting sites wasa plausible underlying mechanism of the urban decline. Other studies in thecenter of Hamburg have provided further support that brood starvati<strong>on</strong> due to ashortage of insects may cause populati<strong>on</strong> declines (Bower 1999, Mitschke et al.2000).Hole (2001) further argued that populati<strong>on</strong>s subjected to such str<strong>on</strong>g foodc<strong>on</strong>straints might become ‘demographic sinks’, i.e. depending <strong>on</strong> emigrati<strong>on</strong> fromnearby source populati<strong>on</strong>s with a demographic excess. He further c<strong>on</strong>tended thatdue to the sedentary nature of <strong>house</strong> <strong>sparrows</strong>, insufficient movement betweenadjacent populati<strong>on</strong>s may result in local extincti<strong>on</strong> causing increased isolati<strong>on</strong> ofremnant populati<strong>on</strong>s. Such a self‐reinforcing spiral of local‐extincti<strong>on</strong> and loss ofc<strong>on</strong>nectivity could then “spread as a’c<strong>on</strong>tagi<strong>on</strong>’ through the landscape” (Hole2001).8


General introducti<strong>on</strong>Envir<strong>on</strong>mental polluti<strong>on</strong>Several authors have evaluated the associati<strong>on</strong> between electromagneticpolluti<strong>on</strong> from mobile ph<strong>on</strong>e base stati<strong>on</strong>s and <strong>house</strong> sparrow abundance(Everaert and Bauwens 2007, Balmori and Hallberg 2007, Balmori 2009). Whiledirect effects <strong>on</strong> avian reproducti<strong>on</strong> or survival cannot be excluded, a more likelyeffect of mobile ph<strong>on</strong>e radiati<strong>on</strong> is the reducti<strong>on</strong> of the reproductive capacity ofinsects (Balmori 2009). Census counts revealed low abundance of <strong>house</strong> <strong>sparrows</strong>with increasing intensity of envir<strong>on</strong>mental radiati<strong>on</strong> and a general avoidance ofhigh radiati<strong>on</strong> areas (Everaert and Bauwens 2007, Balmori and Hallberg 2007).However, as the decline has been most severe in highly urbanized areas and thenumber of mobile base stati<strong>on</strong> masts has been increased especially in the mostdensely populated habitats, such c<strong>on</strong>founding associati<strong>on</strong>s may give rise to theobserved correlati<strong>on</strong> without any causal link between them. Other envir<strong>on</strong>mentalpollutants related to increased traffic such as vehicle exhaust emissi<strong>on</strong>s (NO 2 )have been linked to sparrow declines as well (see above). In additi<strong>on</strong>, the shiftfrom leaded to unleaded petrol coincided with the <strong>on</strong>set of the sparrow declinein the eighties (Robins<strong>on</strong> et al. 2005). Lead‐free petrol c<strong>on</strong>tains the knowncarcinogen and volatile oxygenate methyl tertiary‐butyl ether (MTBE, Summers‐Smith 2003, Robins<strong>on</strong> et al. 2005, Vincent 2005) and while both MTBE and NO 2are unlikely to affect higher organisms in a direct way (Summers‐Smith 2003), itmay have an indirect impact through its detrimental effect <strong>on</strong> aphid densities(Summers‐Smith 2003, Vincent 2005, Peach et al. 2008). However, to date sucheffects <strong>on</strong> insects are not yet fully understood (Bignal et al. 2004) and it remainsunclear why other species such as tits that also feed <strong>on</strong> aphids were not affected(Robins<strong>on</strong> et al. 2005), apart from the fact that species may differ in theirplasticity to shift to alternative prey (Vincent 2005).While speculati<strong>on</strong>s over the exact cause(s) remain an open debate, there islittle, if any, doubt about the existence of an urban <strong>house</strong> sparrow decline. Thedriving agent(s) behind the declines will undeniably increase experienced levels ofstress and may therefore be accompanied with phenotypic changes(physiological, immunological) at the individual level. In additi<strong>on</strong>, as populati<strong>on</strong>sizes become smaller, populati<strong>on</strong>s will inevitably be exposed to increasing levelsof genetic threat. As such this may result, together with phenotypic changes, inthe presence of a phenotypic and genetic signature in the populati<strong>on</strong>. In thefollowing secti<strong>on</strong>s I briefly review two phenotypic biomarkers of stress(fluctuating asymmetry and ptilochr<strong>on</strong>ology) which have become popular tools inornithological studies due to their ease of applicati<strong>on</strong>. Subsequently I outline9


General introducti<strong>on</strong>some of the genetic c<strong>on</strong>sequences and threats which declining populati<strong>on</strong>s mayface.INDIVIDUAL‐BASED BIOMARKERS OF STRESSOne of the main focuses of many ecologists and c<strong>on</strong>servati<strong>on</strong> biologists isto find a quantitative metric that allows the early identificati<strong>on</strong> of populati<strong>on</strong>sunder severe stress. The possibility to detect detrimental changes beforepopulati<strong>on</strong>s have become irreversibly affected (‘early warning system’, Clarke etal. 1986) will make such tools an invaluable asset to c<strong>on</strong>servati<strong>on</strong> managers as itwill allow them to assess whether or not situati<strong>on</strong>s urge for remedial acti<strong>on</strong>.Ptilochr<strong>on</strong>ology and fluctuating asymmetry are two stress indices which havebeen used and evaluated extensively in the literature. C<strong>on</strong>servati<strong>on</strong> biologistshave c<strong>on</strong>veniently used these measures to document differences betweenindividuals and populati<strong>on</strong>s, allowing them to approach their health in a n<strong>on</strong>invasivemanner and link these stress indicators to envir<strong>on</strong>mental quality,reproductive output and survival probabilities in an attempt to assistmanagement policies.Ptilochr<strong>on</strong>ologyThe c<strong>on</strong>cept of ‘ptilochr<strong>on</strong>ology’ was first introduced by Grubb (1989) andis best described as the <str<strong>on</strong>g>study</str<strong>on</strong>g> of growth bar size in feathers to infer individualbody c<strong>on</strong>diti<strong>on</strong>. Much similarity exists with dendrochr<strong>on</strong>ology or the analysis oftree‐rings which uses patterns of light and dark rings to estimate the age of trees.Likewise, growth bars are alternating dark and light bars, perpendicular to therachis of a feather (figure 2).Fig. 2. Alternating dark (black arrow) and light (white arrow) growth bars <strong>on</strong> a tail feather.While the exact underlying mechanism of such a pattern remains to bedetermined (Grubb 2006), it has been proposed that a shift from a dark to a lightband is associated with a reduced blood pressure during sleep and c<strong>on</strong>comitant10


General introducti<strong>on</strong>nutriti<strong>on</strong>al change of the feather follicle (Riddle 1908, Jovani et al. 2010). Jovaniet al. (2010) showed that the transiti<strong>on</strong> from light to dark and vice versa wasirrespective of the photoperiod under which the feather was grown, but rathermimics changes in physiological activity.Growth bar size has been used as a proxy of an individual’s nutriti<strong>on</strong>alc<strong>on</strong>diti<strong>on</strong> 3 where narrower growth bars reflect periods of poor nutriti<strong>on</strong> (Grubb2006). Birds are c<strong>on</strong>sidered to be very vulnerable to predati<strong>on</strong> during moult andare expected to reduce such periods to the minimum (Grubb 2006). Afterallocating energy to vital processes such as thermoregulati<strong>on</strong> and immuneresp<strong>on</strong>se, birds in better nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> will be able to translate theirsurplus of energy into a faster regenerati<strong>on</strong> rate compared to those in a poorc<strong>on</strong>diti<strong>on</strong>. Measuring growth bars <strong>on</strong> original or induced feathers thereforeallows researchers to obtain a blueprint of the energetic regime endured by thebird at the time the feather was grown. This has opened a range of opportunitiesand growth bar analyses have been used in c<strong>on</strong>juncti<strong>on</strong> with various topics likehabitat quality, social behavior and reproductive effort (Grubb 2006). However,some essential premises need to be met to allow inferring body c<strong>on</strong>diti<strong>on</strong> fromgrowth bars. Firstly, exactly <strong>on</strong>e pair of growth bars must resemble a 24h‐periodof feather growth (Murphy and King 1991). This assumpti<strong>on</strong> was c<strong>on</strong>firmed in anelegant experiment of Brodin (1993) who used radioactive cystine as a foodsupplement, which is incorporated into the keratin matrix of feathers as theygrow, and allowed him to rec<strong>on</strong>struct the growth patterns <strong>on</strong> a daily basis.Recently, other authors have also ascertained the relati<strong>on</strong>ship by measuringgrowing feathers <strong>on</strong> a daily basis in a variety of species (Grubb 2006, Jovani et al.2010). Sec<strong>on</strong>dly, variati<strong>on</strong> in growth bar size between individuals needs toaccurately reflect relative differences in net energy intake. Such a negativeassociati<strong>on</strong> between growth bar size and food deprivati<strong>on</strong> has been supported byvarious laboratory and field experiments (Grubb 1989, Grubb and Cimprich 1990).Body mass, or derivatives thereof, have likewise been used as proxies for bodyc<strong>on</strong>diti<strong>on</strong>. Grubb (2006) argued that such indices may be more ambiguous thandaily feather growth because they are more pr<strong>on</strong>e to c<strong>on</strong>founding factors such asdaily fluctuati<strong>on</strong>s or adaptive foraging strategies. As menti<strong>on</strong>ed before, bodymass in <strong>house</strong> <strong>sparrows</strong> may sometimes better predict predati<strong>on</strong> pressure rather3 “Nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> is defined as the state of body comp<strong>on</strong>ents c<strong>on</strong>trolled bynutriti<strong>on</strong> and which, in turn, influences an animal’s fitness. I c<strong>on</strong>sider nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> to besyn<strong>on</strong>ymous with c<strong>on</strong>diti<strong>on</strong>, body c<strong>on</strong>diti<strong>on</strong> and nutriti<strong>on</strong>al state” (Grubb 2006).11


General introducti<strong>on</strong>than individual c<strong>on</strong>diti<strong>on</strong> (MacLeod et al. 2006), while in willow tits sociallysubordinate, and not dominant, birds maintained the highest weight (Ekman andLilliendahl 1993). Subordinates gained more weight in resp<strong>on</strong>se to lower foodpredictability but became much lighter if dominant birds were removed. In both<str<strong>on</strong>g>case</str<strong>on</strong>g>s, inferring nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> from body mass would most likely result inspurious outcomes.Fluctuating asymmetrySymmetry is a ubiquitous feature of living animals although perfectsymmetry will often <strong>on</strong>ly be approximated and seldom reached. Although manydifferent forms of symmetry exist in nature, bilateral and radial symmetry havebeen studied most extensively in the past (Graham et al. 2010). Under the mostbenign c<strong>on</strong>diti<strong>on</strong>s, a developmental trajectory results in the exact geneticallypredetermined phenotypic value, but under stressful c<strong>on</strong>diti<strong>on</strong>s mechanisms thatneed to stabilize this pathway loose efficiency and this results in aberrantphenotypes (Clarke 1995). Developmental stability refers to the potency of anorganism to correct for minor deviati<strong>on</strong>s from its pathway and to restore it to theoriginal <strong>on</strong>e. A way of estimating developmental stability is to measure thec<strong>on</strong>verse, developmental instability 4 by examining the extent of random variati<strong>on</strong>between left and right sides in a bilateral symmetrical trait. As both sides areunder the c<strong>on</strong>trol of a single genome and have experienced the sameenvir<strong>on</strong>ment, the phenotypic outcome of both sides should be identical.However, envir<strong>on</strong>mental or genetic perturbati<strong>on</strong>s can cause random (i.e. withrespect to side) fluctuati<strong>on</strong>s around the developmental pathway and the inabilityof individuals to withstand such perturbati<strong>on</strong> may result in deviati<strong>on</strong>s from leftrightsymmetry without directi<strong>on</strong>al comp<strong>on</strong>ent at populati<strong>on</strong> level, termed“fluctuating” asymmetry (FA)(Palmer and Strobeck 1986, Palmer 1996, Polak2003, Graham et al. 2010). The underlying mechanism of developmentalhomeostasis still remains largely unknown (Lens and Eggerm<strong>on</strong>t 2008), but somepreliminary work suggests perturbati<strong>on</strong>s may affect inter‐cell communicati<strong>on</strong> andrates of cell growth and el<strong>on</strong>gati<strong>on</strong> (Palmer 1994, McAdams and Arkin 1999,Fiering et al. 2000). Since the activity range of such random cellular processes is4 Developmental homeostasis refers to the stabilized flow al<strong>on</strong>g a developmentalpathway within a particular envir<strong>on</strong>ment. Developmental instability (=developmental noise) isthe process that disrupts development al<strong>on</strong>g the developmental trajectory within a particularenvir<strong>on</strong>ment and is what is being measured as fluctuating asymmetry. Canalizati<strong>on</strong> is theprocess by which a target phenotype develops under different genetic and envir<strong>on</strong>mentalc<strong>on</strong>diti<strong>on</strong>s (Polak 2003).12


General introducti<strong>on</strong>rather limited (McAdams and Arkin 1999), effects at each side would be largelyindependent and give rise to left‐right asymmetries (Lens et al. 2002). Besidesfluctuating asymmetry other forms of bilateral asymmetry can be distinguished inan animal or plant. Directi<strong>on</strong>al asymmetry reflects a c<strong>on</strong>sistent larger value at <strong>on</strong>eside such as the asymmetry in flatfish. This should however not be c<strong>on</strong>fused withplasticity in vertebrate b<strong>on</strong>es causing between‐side differences due to differentialuse. Antisymmetry arises when asymmetry is the norm but the largest valuevaries am<strong>on</strong>g sides, for example the larger signaling claw in male fiddler crabswhich appears either <strong>on</strong> the right or left side but with equal frequency (Leary andAllendorf 1989, Polak 2003). Both antisymmetry and directi<strong>on</strong>al asymmetry arethe outcome of a normal development and are therefore not applicable as astress indicator (Leary and Allendorf 1989). Experimental and empirical work hassuggested that increasing levels of stress, both genetic as well as envir<strong>on</strong>mental,have resulted in a c<strong>on</strong>comitant increase in levels of fluctuating asymmetry(Palmer and Strobeck 1986, Lens et al. 2002, Lens and Eggerm<strong>on</strong>t 2008) andtherefore fluctuating asymmetry has been a popular tool to draw inferencesabout developmental homeostasis (Palmer 1996). Fluctuating asymmetry derivedmuch of its appeal from having an ideal outcome, e.g. perfect symmetry, andeven more important, from the belief that it c<strong>on</strong>stitutes a more sensitive stressindicator than more traditi<strong>on</strong>al fitness estimates (Clarke and McKenzie 1992,Clarke 1995, Lens et al. 2002). The opportunity to identify populati<strong>on</strong>s at riskbefore the <strong>on</strong>set of stress‐mediated changes in fitness has gained wide approvalby many c<strong>on</strong>servati<strong>on</strong> biologists (Leary and Allendorf 1989, Lens et al. 2002).Unfortunately, results <strong>on</strong> relati<strong>on</strong>ships between fluctuating asymmetry, stressand fitness have not always been c<strong>on</strong>sistent in the past which may hamper theutility of fluctuating asymmetry as a universal biomarker of stress. Instead,associati<strong>on</strong>s with stress have been highly variable and seem to be species, stressand trait specific (Bjorksten et al. 2000, Lens et al. 2002, Knierim et al. 2007,Hopt<strong>on</strong> et al. 2009). For instance, traits under sexual selecti<strong>on</strong> <strong>on</strong> average showenhanced levels of FA, while natural selecti<strong>on</strong> will enhance the efficiency ofbuffering mechanisms c<strong>on</strong>trolling the developmental pathways of traits directlyrelated to functi<strong>on</strong>al performance and thereby reduce levels of fluctuatingasymmetry (Balmford et al. 1993, Kodric‐Brown 1997). Despite recent advance,statistical issues may also have been an important source of the observedinc<strong>on</strong>sistencies in literature. True effect sizes in FA relati<strong>on</strong>ships have beentypically very small (Moller and Jenni<strong>on</strong>s 2002) while measurement error maybias FA estimates. Therefore several authors recommend to increase the numberof measurements per trait and to combine multiple traits in a single analysis in13


General introducti<strong>on</strong>attempt to acquire an acceptable level of power (Van D<strong>on</strong>gen 1999, Lens et al.2002).GENETIC THREATS OF SMALL POPULATIONSAs populati<strong>on</strong>s become smaller and more isolated as a result ofdeterministic factors such as food shortage or predati<strong>on</strong>, stochastic demographicand/or envir<strong>on</strong>mental processes may become more important and further reducereproducti<strong>on</strong> rates or increase mortality rates (Lande 1988, Smith et al. 2006).Furthermore, because not all individuals c<strong>on</strong>tribute equally to the nextgenerati<strong>on</strong> in natural populati<strong>on</strong>s, census numbers are sometimes more than tentimes larger than the genetic effective populati<strong>on</strong> size 5 allowing genetic factors toaffect populati<strong>on</strong>s while demographic risks remain negligible (Spielman et al.2004, Smith et al. 2006, but see Lande 1988). Here I focus <strong>on</strong> stochastic geneticprocesses that may reinforce the rate of a populati<strong>on</strong> decline and hencec<strong>on</strong>tribute to the so‐called extincti<strong>on</strong> vortex (figure 3) (Gilpin and Soule 1986).Firstly, as populati<strong>on</strong>s become smaller, some alleles will become fixed via geneticdrift while others will be lost, reducing the overall genetic diversity. Preservinggenetic diversity is <strong>on</strong>e the major goals of the World C<strong>on</strong>servati<strong>on</strong> Uni<strong>on</strong> (IUCN)and based <strong>on</strong> two arguments: (i) genetic variati<strong>on</strong> allows populati<strong>on</strong>s to resp<strong>on</strong>dand adapt to changing envir<strong>on</strong>ments, and is presumed to be positively associatedwith fitness (Reed and Frankham 2003); (ii) in small populati<strong>on</strong>s genetic drift mayoutperform selective forces and allow detrimental mutati<strong>on</strong>s to become fixed. Asa c<strong>on</strong>sequence, mean populati<strong>on</strong> fitness can decrease which further decreasespopulati<strong>on</strong> size and increases the extent of genetic drift. Such a synergisticinterplay between mutati<strong>on</strong> accumulati<strong>on</strong> and populati<strong>on</strong> size produces adownward spiral called a mutati<strong>on</strong>al meltdown (Lynch et al. 1995) and hasrecently been suggested as a potential candidate for populati<strong>on</strong> bottlenecks innatural populati<strong>on</strong>s (Rowe and Beebee 2003). In c<strong>on</strong>trast to previous factors (e.g.drift and mutati<strong>on</strong>) which will affect populati<strong>on</strong>s <strong>on</strong>ly in the l<strong>on</strong>g‐term, inbreedingimposes an immediate threat to populati<strong>on</strong> persistence (Hedrick 2001, Keller andWaller 2002, Smith et al. 2006). Small populati<strong>on</strong>s promote mating between close5 The effective populati<strong>on</strong> size is defined as the size of an idealized Wright‐Fisherpopulati<strong>on</strong> which would result in exactly the same value of a specific genetic property as in thepopulati<strong>on</strong> in questi<strong>on</strong>. Different measures of effective populati<strong>on</strong> size have been described inthe literature but two most comm<strong>on</strong>ly used are inbreeding effective populati<strong>on</strong> size and varianceeffective populati<strong>on</strong> size. Inbreeding effective populati<strong>on</strong> size predicts the rate of decrease inheterozygosity while the variance effective populati<strong>on</strong> size measures the variance of change ingene frequency resulting from <strong>on</strong>e generati<strong>on</strong> of genetic sampling (Wang 2005).14


General introducti<strong>on</strong>relatives which increases the probability that two deleterious homologous geneswithin an individual will become homozygous and thus phenotypically expressed.Inbreeding depressi<strong>on</strong> refers to the c<strong>on</strong>comitant loss of fitness in resp<strong>on</strong>se toinbreeding and has been dem<strong>on</strong>strated for many species (Keller and Waller2002). Perhaps counter‐intuitively, lower levels of inbreeding depressi<strong>on</strong> areexpected in populati<strong>on</strong>s which have been small for a l<strong>on</strong>g time as most of thedetrimental alleles will have been purged by natural selecti<strong>on</strong>. However, such asafety‐mechanism will be less efficient or remain absent in populati<strong>on</strong>s whichhave suffered a recent and sudden collapse (Hedrick 2001, Reed 2009). As thepattern of the <strong>house</strong> sparrow decline rather corresp<strong>on</strong>ds to the latter, thisspecies may be particularly vulnerable to immediate genetic threats. In additi<strong>on</strong>,at least <strong>on</strong> islands, inbreeding has been shown to be high in wild <strong>house</strong> sparrowpopulati<strong>on</strong>s causing a reducti<strong>on</strong> in recruitment rates of progeny when parentswere closely related (Jensen et al. 2007).Dispersal patterns shape the genetic structure of populati<strong>on</strong>s. Asmenti<strong>on</strong>ed earlier, <strong>house</strong> <strong>sparrows</strong> are remarkably sedentary as they revisit thesame breeding col<strong>on</strong>y year after year, forage close to roosting and breeding sitesand disperse over short distances (Vincent 2005, Anders<strong>on</strong> 2006). Dispersal isalmost exclusively d<strong>on</strong>e by juveniles and they tend to settle within a fewkilometers of their natal col<strong>on</strong>y (Anders<strong>on</strong> 2006). Anders<strong>on</strong> (1994) measureddispersal distance as the difference between natal nest site and the locati<strong>on</strong> <strong>on</strong>which an individual was actually breeding. Mean natal dispersal distances weresomewhat larger of females (arithmetic mean = 1.15 km ‐ geometric mean = 0.29km) compared to those of males (arithmetic mean = 0.69 km ‐ geometric mean =0.17 km). Using banding records Paradis et al. (1998) determined dispersaldistances of 531 <strong>house</strong> <strong>sparrows</strong> that were banded as nestlings and recoveredduring a subsequent breeding period. The arithmetic mean dispersal distance was1.7 km and the geometric mean was 0.21 km.STUDY AREAThis <str<strong>on</strong>g>study</str<strong>on</strong>g> was carried out between 2003‐2009 in and around the city of<strong>Ghent</strong> and the village of Zomergem, c. 12 km north‐west of <strong>Ghent</strong>, in Belgium. Agrid, each cell measuring 300m x 300m, was placed over the <str<strong>on</strong>g>study</str<strong>on</strong>g> area in Arcgisv9.2. Using a digital layer which c<strong>on</strong>tained an exact outline of all <strong>house</strong>s the ratiobetween built‐up surface and grid size was calculated for each cell. I divided theseratios into three classes ranging from smaller than 0.10, 0.11‐0.30 and larger than0.30. Throughout this thesis we will refer to these classes as respectively rural,15


General introducti<strong>on</strong>suburban and urban <strong>on</strong>es. Depending <strong>on</strong> the research hypotheses formulated, Ihave applied different sampling schemes to select populati<strong>on</strong>s. For the first twochapters I applied a stratified randomized design and selected four 50‐ha ruralplots, five 50‐ha suburban plots (eastern and northern populati<strong>on</strong>s were omittedfor logistic reas<strong>on</strong>s), and four 50‐ha urban plots. For all thirteen selected plots Iadditi<strong>on</strong>ally obtained digitized maps of landcover using a combinati<strong>on</strong> of highresoluti<strong>on</strong> aerial photographs and ground truthing (figure 4). For a detaileddescripti<strong>on</strong> of each <str<strong>on</strong>g>study</str<strong>on</strong>g> plot I refer to Chapter 1. In the last three chapters, Iused a different approach. Here, I selected the most central urban <str<strong>on</strong>g>study</str<strong>on</strong>g> plot andsampled populati<strong>on</strong>s with increasing distance from this center. To do this, Iplotted six circles with increasing radius (each increment of approximately 700m)over our <str<strong>on</strong>g>study</str<strong>on</strong>g> area and sampled, as much as possible, two populati<strong>on</strong>s <strong>on</strong> eachof these circles. This design was replicated in the rural area (figure 5). AnFig. 3. Schematic view of the extincti<strong>on</strong> vortex. Open arrows decrease populati<strong>on</strong> size, whileshaded arrows stimulate populati<strong>on</strong> recovery (source: Smith et al. 2006).16


General introducti<strong>on</strong>overview of all locati<strong>on</strong>s sampled is given in table 3. While sampling individualswe obtained the approximate populati<strong>on</strong> size for all suburban and ruralpopulati<strong>on</strong>s (table 3). Within the city center of <strong>Ghent</strong> we have used a moredetailed mapping‐based survey technique to record <strong>house</strong> sparrow numbers. Thissurvey was repeated three times during this <str<strong>on</strong>g>study</str<strong>on</strong>g> (June 2005, 2006 and 2009).The area was divided into four blocks and each block was surveyed as a ‘wholearea search’. During these counting sessi<strong>on</strong>s all accessible routes, streets, parksand backyards (if possible) were covered. While such short‐term m<strong>on</strong>itoringschemes do not allow us to draw firm c<strong>on</strong>clusi<strong>on</strong>s <strong>on</strong> whether or not <strong>house</strong><strong>sparrows</strong> have shown marked reducti<strong>on</strong>s, we were able to obtain a roughestimate of <strong>house</strong> sparrow density within the area. The number of birds/ha wasestimated as 0.57 <strong>sparrows</strong>/ha which is comparable to those of other large cities,such as L<strong>on</strong>d<strong>on</strong> and Hamburg, which have well documented <strong>house</strong> sparrowdeclines (0.1‐0.8 birds/ha) (Summers‐Smith 2000). Populati<strong>on</strong> sizes varied slightlyover the years but a preliminary explorati<strong>on</strong> revealed no clear associati<strong>on</strong>between populati<strong>on</strong> numbers and meteorological data (mean temperature of thepreceding summer (June‐August), winter (December‐February) and spring(March‐May)) (see table 2). Figure 6 shows the spatial distributi<strong>on</strong> of <strong>house</strong>sparrow populati<strong>on</strong>s within the city center. Populati<strong>on</strong> sizes were larger al<strong>on</strong>g theedge of the city center although even in these areas numbers were often muchsmaller compared to those of suburban or rural populati<strong>on</strong>s (see table 3) andespecially in the innermost and southern part of the city center betweenpopulati<strong>on</strong>distances were largest.Table 2. Mean temperature (SE) of the preceding summer, winter and spring of each censusperiod (June).Year Temperature (°C) Year Temperature (°C) Year Temperature (°C) Year Temperature (°C)Summer 2004 22.23 (0.65) Winter 2005 6.23 (0.79) Spring 2005 15.92 (1.16) June 2005 23.50 (2.50)2005 22.53 (0.93) 2006 4.92 (0.57) 2006 13.77 (1.44) 2006 22.5 (0.86)2008 21.29 (0.52) 2009 4.83 (0.84) 2009 15.71 (1.01) 2009 22.25 (1.79)17


General introducti<strong>on</strong>Fig. 4. Example landcover maps for two locati<strong>on</strong>s per urbanizati<strong>on</strong> class ‐ ’Urban’ (upper) and’Suburban’ (lower).18


General introducti<strong>on</strong>Fig. 4. Example landcover maps for two locati<strong>on</strong>s per urbanizati<strong>on</strong> class ‐ ‘Rural’.19


General introducti<strong>on</strong>Fig. 5. Sampling design used for Chapters 1‐2 (A) en Chapter 3‐5 (B). Inner c<strong>on</strong>tour encompasses<strong>Ghent</strong> city centre and outer c<strong>on</strong>tour encompasses surrounding municipalities. Filled circlesrepresent urban populati<strong>on</strong>s, open circles suburban <strong>on</strong>es and filled triangles rural populati<strong>on</strong>s.Abbreviati<strong>on</strong>s refer to populati<strong>on</strong>s described in table 3.20


General introducti<strong>on</strong>Fig. 6. Survey of <strong>house</strong> sparrow numbers within the city center of <strong>Ghent</strong> performed <strong>on</strong> June2005 (left), 2006 (middle) and 2009 (right). The diameter of each point is proporti<strong>on</strong>al to thenumber of <strong>house</strong> <strong>sparrows</strong>. Abbreviati<strong>on</strong>s refer to populati<strong>on</strong>s described in table 3.21


General introducti<strong>on</strong>Table 3. An overview of all <str<strong>on</strong>g>study</str<strong>on</strong>g> plots, their abbreviati<strong>on</strong> used throughout this thesis, thedesignated urbanizati<strong>on</strong> class (U= urban, SU= suburban, R= rural), the approximated populati<strong>on</strong>size (based up<strong>on</strong> observati<strong>on</strong>s while sampling), the type of data obtained from each plot, andthe respective chapter(s) in which they occur.Locati<strong>on</strong> Abbreviati<strong>on</strong> Urbanizati<strong>on</strong> Populati<strong>on</strong> size Home range Ptilochr<strong>on</strong>ology FADNAclass (individuals) Ch.1 Ch.1,2 Ch.2 Ch.3 Ch.3,4,5Olmweg OW R 30‐100Meirlare DB R >100Eiland EI R >100Kouterken GB R >100Haagstraat HS R >100Meienbroek ME R >100Merendreesesteenweg HY R >100Moerstraat MS R >100Petend<strong>on</strong>ckstraat PD R 30‐100Poeckstraat PS R 30‐100R<strong>on</strong>selestraat RS R >100Kruisstraat VM R 30‐100Rostraat RO R 30‐100Schoordam SD R 30‐100Frans De Mildedreef FM SU >100Hoogmeers DR SU >100Houtemlaan HL SU >100Maaltebruggestraat MB SU 30‐100Schipperke SC SU 30‐100Staakskensstraat SS SU >100Watersportbaan WB SU >100W<strong>on</strong>delgem WO SU 30‐100Moerlandstraat ML SU >100Papiermolenstraat PM SU >100Duifhuisstraat DU SU 30‐100Emile Braunplein EB U


General introducti<strong>on</strong>extent of daily movements are associated to levels of urbanizati<strong>on</strong> and/or levelsof nutriti<strong>on</strong>al stress, ii) urbanizati<strong>on</strong> covaries with phenotypic characteristics ofenvir<strong>on</strong>mental and genetic stress, iii) different urbanizati<strong>on</strong> classes representdifferent genetic entities and iv) populati<strong>on</strong>s al<strong>on</strong>g an urbanizati<strong>on</strong> gradient arecharacterized by small‐scale spatial variati<strong>on</strong> in populati<strong>on</strong> structure.To answerthese questi<strong>on</strong>s we integrated data <strong>on</strong> behavioral radio‐tracking (chapter 1) withmorphological stress indicators (chapter 1‐3) and genetic markers (chapter 3‐5) in<strong>house</strong> <strong>sparrows</strong> sampled al<strong>on</strong>g an urbanizati<strong>on</strong> gradient. This thesis is essentiallya compilati<strong>on</strong> of five chapters which were either published or submitted tovarious journals. Therefore, to some extent duplicati<strong>on</strong> may be presentthroughout this thesis (genetic protocols, figures of the <str<strong>on</strong>g>study</str<strong>on</strong>g> sites, …) although Ihave tried to keep this to a minimum. Table 3 visualizes the complementary datasets collected from each locati<strong>on</strong>.In Chapter 1 I use radio‐telemetry to explore how and to what extenthome range sizes vary am<strong>on</strong>g different urbanizati<strong>on</strong> classes. I subsequentlycombine this informati<strong>on</strong> with high‐resoluti<strong>on</strong> maps of landcover and indirectestimates of body c<strong>on</strong>diti<strong>on</strong> (obtained from ptilochr<strong>on</strong>ological data). In Chapter 2I evaluate the utility of fluctuating asymmetry as a biomarker for envir<strong>on</strong>mentalstress. Here, I perform a correlative <str<strong>on</strong>g>study</str<strong>on</strong>g> between an a priori defined nutriti<strong>on</strong>alstress (Chapter 1) and levels of developmental instability. In additi<strong>on</strong>, I discusspotential pitfalls related to the applicati<strong>on</strong> of such individual‐based proxies ofstress. Analyses are c<strong>on</strong>ducted at individual and populati<strong>on</strong> level and replicatedfor two morphological traits. Chapter 3 highlights the associati<strong>on</strong> betweenfluctuating asymmetry and genetic diversity. The heterzygosity hypothesis statesthat high levels of genomic diversity result in a broader range of biochemicalsubstances which prohibit developmental pathways over a wider range ofc<strong>on</strong>diti<strong>on</strong>s from being distorted through random perturbati<strong>on</strong>s. In this chapter Iassess whether there is local or genome‐wide evidence for such a hypothesis andwhether the strength of associati<strong>on</strong> is related to the level of urbanizati<strong>on</strong>. InChapter 4 I investigate the genetic populati<strong>on</strong> structure of 26 <strong>house</strong> sparrowpopulati<strong>on</strong>s and explore how genetic variati<strong>on</strong> is hierarchically partiti<strong>on</strong>ed am<strong>on</strong>gpopulati<strong>on</strong>s and regi<strong>on</strong>s. Chapter 5 describes the fine‐scale relatedness structurein both the urban and rural area. I therefore use simulated distributi<strong>on</strong>s of knownrelatedness categories to estimate proporti<strong>on</strong>s of close kin and assess thegeographical variati<strong>on</strong> in kinship distributi<strong>on</strong>s. In a closing (General Discussi<strong>on</strong>)chapter, I integrate the results presented in chapters 1‐5, discuss potentialimplicati<strong>on</strong>s for the c<strong>on</strong>servati<strong>on</strong> of <strong>house</strong> <strong>sparrows</strong>, and highlight topics thatneed further investigati<strong>on</strong>.23


General introducti<strong>on</strong>REFERENCESAnders<strong>on</strong> TR. 1994. Breeding biology of <strong>house</strong> <strong>sparrows</strong> in northern lowerMichigan. Wils<strong>on</strong> Bulletin 106, 537‐548.Anders<strong>on</strong> TR. 2006. Biology of the ubiquitous House Sparrow. Oxford UniversityPress.Baker PJ, Bentley AJ, Ansell RJ and Harris S. 2005. Impact of predati<strong>on</strong> bydomestic cats Felis catus in an urban area. Mammal Review 35, 302‐312.Balmford A, J<strong>on</strong>es IL and Thomas ALR. 1993. On avian asymmetry ‐ evidence ofnatural‐selecti<strong>on</strong> for symmetrical tails and wings in birds. Proceedings ofthe Royal Society of L<strong>on</strong>d<strong>on</strong> Series B‐Biological Sciences 252, 245‐251.Balmori A. 2009. Electromagnetic polluti<strong>on</strong> from ph<strong>on</strong>e masts. Effects <strong>on</strong> wildlife.Pathophysiology 16, 191‐199.Balmori A and Hallberg O. 2007. The urban decline of the <strong>house</strong> sparrow (Passerdomesticus): a possible link with electromagnetic radiati<strong>on</strong>.Electromagnetic Biology and Medicine 26, 141‐151.Bell CP, Baker SW, Parkes NG, Brooke MD and Chamberlain DE. 2010. The role ofthe Eurasian sparrowhawk (Accipiter nisus) in the decline of the <strong>house</strong>sparrow (Passer domesticus) in Britain. Auk 127, 411‐420.Beyers DW, Rice JA and Clements WH. 1999. Evaluating biological significance ofchemical exposure to fish using a bioenergetics‐based stressor‐resp<strong>on</strong>semodel. Canadian Journal of Fisheries and Aquatic Science 56, 823‐829.Bignal K, Ashmore M and Power S. 2004. The ecological effects of diffuse airpolluti<strong>on</strong> from road traffic. English Nature Research Report 580,Peterborough, UK.Birdlife Internati<strong>on</strong>al. 2006. Birds in Europe. Available from:http://www.birdlife.org/dataz<strong>on</strong>e/userfiles/file/Species/BirdsInEuropeII/BiE2004Sp8367.pdfBjorksten TA, Fowler K and Pomiankowski A. 2000. What does sexual trait FA tellus about stress? Trends in <strong>Ecology</strong> & Evoluti<strong>on</strong> 15, 163‐166.Bl<strong>on</strong>del J, Thomas DW, Charmantier A, Perret P, Bourgault P and Lambrechts MM.2006. A thirty‐year <str<strong>on</strong>g>study</str<strong>on</strong>g> of phenotypic and genetic variati<strong>on</strong> of blue tits inMediterranean habitat mosaics. Bioscience 56, 661‐673.24


General introducti<strong>on</strong>Blumstein DT and Daniel JC. 2005. The loss of anti‐predator behaviour followingisolati<strong>on</strong> <strong>on</strong> islands. Proceedings of the Royal Society of L<strong>on</strong>d<strong>on</strong> 272, 1663‐1668.Bower S. 1999. Breeding, habitat use and populati<strong>on</strong> structure of a <strong>house</strong>sparrow flock in Hamburg. Hamburger Avifauna Beitr. 30, 91‐128.Brodin A. 1993. Radio‐ptilochr<strong>on</strong>ology‐ tracing radioactively labeled food infeathers. Ornis Scandinavica 24, 167‐173.Chamberlain DE, Fuller RJ, Bunce RGH, Duckworth JC and Shrubb M. 2000.Changes in the abundance of farmland birds in relati<strong>on</strong> to the timing ofagricultural intensificati<strong>on</strong> in England and Wales. Journal of Applied<strong>Ecology</strong> 37, 771‐788.Chamberlain DE, Toms MP, Cleary‐Mcharg R and Banks AN. 2007. House Sparrow(Passer domesticus) habitat use in urbanized landscapes. Journal ofOrnithology 148, 453‐462.Chace JF and Walsh JJ. 2006. Urban effects <strong>on</strong> native avifauna: a review.Landscape and Urban Planning 74, 46‐69.Churcher PB and Lawt<strong>on</strong> JH. 1987. Predati<strong>on</strong> by domestic cats in an Englishvillage. Journal of Zoology 212, 439‐455.Clarke GM, Brand GW and Whitten MJ. 1986. Fluctuating asymmetry ‐ atechnique for measuring developmental stress caused by inbreeding.Australian Journal of Biological Sciences 39, 145‐153.Clarke GM and McKenzie LJ. 1992. Fluctuating asymmetry as a quality‐c<strong>on</strong>trolindicator for insect mass rearing processes. Journal of Ec<strong>on</strong>omicEntomology 85, 2045‐2050.Clarke GM. 1995. Relati<strong>on</strong>ships between developmental stability and fitness ‐applicati<strong>on</strong> for c<strong>on</strong>servati<strong>on</strong> biology. C<strong>on</strong>servati<strong>on</strong> Biology 9, 18‐24.Crick H, Robins<strong>on</strong> R, Applet<strong>on</strong> G, Clark N and Richard A. 2002. Investigati<strong>on</strong> intothe causes of the decline of Starlings and House Sparrows in Great‐Britain.BTO Report Number 290 (BTO/DEFRA).De Laet J and Summers‐Smith JD. 2007. The status of the urban <strong>house</strong> sparrowPasser domesticus in North‐Western Europe: a review. Journal ofOrnithology 148, S275‐S278.De Laet J. 2007. De status van de huismus (Passer domesticus) of de ene mus is deandere niet. ‘t Groene Waasland 151, 22‐26.25


General introducti<strong>on</strong>Dott HEM and Brown AW. 2000. A major decline in <strong>house</strong> <strong>sparrows</strong> in centralEdinburgh. Scottish Birds 26, 61‐68.Ekman J and Lilliendahl KJ. 1993. Using priority to food access: fatteningstrategies in dominance‐structured willow tit (Parus m<strong>on</strong>tanus) flocks.Behavioral <strong>Ecology</strong> 4, 232‐238.Erringt<strong>on</strong> PL. 1946. Predati<strong>on</strong> and vertebrate populati<strong>on</strong>s. Quarterly Review ofBiology 21, 144‐177, 221‐245.Everaert J and Bauwens D. 2007. A possible effect of electromagnetic radiati<strong>on</strong>from mobile ph<strong>on</strong>e base stati<strong>on</strong>s <strong>on</strong> the number of breeding <strong>house</strong><strong>sparrows</strong> (Passer domesticus). Electromagnetic Biology and Medicine 26,63‐72.Fiering S, Whitelaw E and Martin DIK. 2000. To be or not to be active: thestochastic nature of enhancer acti<strong>on</strong>. Bioessays 22, 381‐387.Frimer O. 1989. Food and predati<strong>on</strong> in suburban sparrowhawks Accipiter nisusduring the breeding seas<strong>on</strong>. Dansk Ornithologisk Forenings Tidsskrift 83,35‐44.Gilpin ME and Soule ME. 1986. C<strong>on</strong>servati<strong>on</strong> biology, the science of scarcity anddiversity. Sinauer Associates, Sunderland, Massachusetts.Graham JH, Raz S, Hel‐Or H and Nevo E. 2010. Fluctuating asymmetry: methods,theory and applicati<strong>on</strong>s. Symmetry 2, 466‐540.Grime JP. 1989. The stress debate: symptom of impeding synthesis? BiologicalJournal of the Linnean Society 37, 3‐17.Grubb TC. 1989. Ptilochr<strong>on</strong>ology ‐ feather growth bars as indicators of nutriti<strong>on</strong>alstatus. Auk 106, 314‐320.Grubb TC and Cimprich DA. 1990. Supplementary food improves the nutriti<strong>on</strong>alc<strong>on</strong>diti<strong>on</strong> of wintering woodland birds ‐ evidence from ptilochr<strong>on</strong>ology.Ornis Scandinavica 21, 277‐281.Grubb TC. 2006. Ptilochr<strong>on</strong>ology: feather time and the biology of birds. New York:Oxford University Press (Oxford Ornithological Series).Hedrick PW. 2001. C<strong>on</strong>servati<strong>on</strong> genetics: where are we now? Trends in <strong>Ecology</strong>and Evoluti<strong>on</strong> 16, 629‐636.Heij CJ. 1985. Comparative ecology of the <strong>house</strong> sparrow Passer domesticus inrural, suburban and urban situati<strong>on</strong>s. PhD thesis, Vrije <strong>Universiteit</strong>Amsterdam, Nederland.26


General introducti<strong>on</strong>Hochachka WM and Dh<strong>on</strong>dt AA. 2000. Density‐dependent decline of hostabundance resulting from a new infectious disease. Proceedings of theNati<strong>on</strong>al Academy of Sciences of the United States of America 97, 5303‐5306.Hole GD. 2001. The populati<strong>on</strong> ecology and ecological genetics of the <strong>house</strong>sparrow Passer doemsticus <strong>on</strong> farmland in Oxfordshire. PhD thesis,University of Oxford, UK.Hole DG, Whittingham MJ, Bradbury RB, et al. 2002. Widespread local <strong>house</strong>sparrow extincti<strong>on</strong>s ‐ agricultural intensificati<strong>on</strong> is blamed for theplummeting populati<strong>on</strong>s of these birds. Nature 418, 931‐932.Hopt<strong>on</strong> ME, Camer<strong>on</strong> GN, Cramer MJ, Polak M and Uetz GW. 2009. Live animalradiography to measure developmental instability in populati<strong>on</strong>s of smallmammals after a natural disaster. Ecological Indicators 9, 883‐891.Houst<strong>on</strong> AI, McNamara JM and Hutchins<strong>on</strong> JMC. 1993. General results c<strong>on</strong>cerningthe trade‐off between gaining energy and avoiding predati<strong>on</strong>.Philosophical Transacti<strong>on</strong>s of the Royal Society of L<strong>on</strong>d<strong>on</strong> ‐ BiologicalSciences 341, 375‐397.Jensen H, Bremset EM, Ringsby TH and Saether BE. 2007. Multilocusheterozygosity and inbreeding depressi<strong>on</strong> in an insular <strong>house</strong> sparrowmetapopulati<strong>on</strong>. Molecular <strong>Ecology</strong> 16, 4066‐4078.Jovani R, Blas J, Navarro C and Mougeot F. 2010. Feather growth bands andphotoperiod. Journal of Avian Biology 42, 1‐4.Keller LF and Waller DM. 2002. Inbreeding effects in wild populati<strong>on</strong>s. Trends in<strong>Ecology</strong> and Evoluti<strong>on</strong> 17, 230‐241.Knierim U, Van D<strong>on</strong>gen S, Forkman B, Tuyttens FAM, Spinka M, Campo JL andWeissengruber GE. 2007. Fluctuating asymmetry as an animal welfareindicator ‐ A review of methodology and validity. Physiology & Behavior 92,398‐421.Kodric‐Brown A. 1997. Sexual selecti<strong>on</strong>, stabilizing selecti<strong>on</strong> and fluctuatingasymmetry in two populati<strong>on</strong>s of pupfish (Cyprinod<strong>on</strong> pecosensis).Biological Journal of the Linnean Society 62, 553‐566.Kruszewicz AG. 1991. The effect of Isospora lacazei <strong>on</strong> the development ofnestling <strong>house</strong> sparrow (Passer domesticus). In Nestling mortality ofgranivorous birds due to microorganisms and toxic substances. Eds.Pinowski Kavanaugh and Gorski, Polish Scientific Press, Warsaw.27


General introducti<strong>on</strong>Lande R. 1988. Genetics and demography in biological c<strong>on</strong>servati<strong>on</strong>. Science 241,1455‐1460.Leary RF and Allendorf FW. 1989. Fluctuating Asymmetry as an Indicator of Stress‐ Implicati<strong>on</strong>s for C<strong>on</strong>servati<strong>on</strong> Biology. Trends in <strong>Ecology</strong> & Evoluti<strong>on</strong> 4,214‐217.Lens L, Van D<strong>on</strong>gen S, Kark S and Matthysen E. 2002. Fluctuating asymmetry as anindicator of fitness: can we bridge the gap between studies? BiologicalReview 77, 27‐38.Lens L and Eggerm<strong>on</strong>t H. 2008. Fluctuating asymmetry as a putative marker ofhuman‐induced stress in avian c<strong>on</strong>servati<strong>on</strong>. Bird C<strong>on</strong>servati<strong>on</strong>Internati<strong>on</strong>al 18, S125‐S143.Lensink R. 1997. Range expansi<strong>on</strong> of raptors in Britain and the Netherlands sincethe 1960s: testing an individual‐based diffusi<strong>on</strong> model. Journal of Animal<strong>Ecology</strong> 66, 811‐826.Lima SL. 1986. Predati<strong>on</strong> risk and unpredictable feeding c<strong>on</strong>diti<strong>on</strong>s‐determinantsof body mass in birds. <strong>Ecology</strong> 67, 377‐385.Lynch M, C<strong>on</strong>nery J and Bürger R. 1995. Mutati<strong>on</strong> accumulati<strong>on</strong> and theextincti<strong>on</strong> of small populati<strong>on</strong>s. American Naturalist, 146, 489‐518.Macleod R, Barnett P, Clark J and Cresswell W. 2006. Mass‐dependent predati<strong>on</strong>risk as a mechanism for <strong>house</strong> sparrow declines? Biology Letters 2, 43‐46.Marzluff JM, Bowman R and D<strong>on</strong>nelly R. 2001. Avian <strong>Ecology</strong> and C<strong>on</strong>servati<strong>on</strong> inan Urbanizing World. Kluwer Academic Publishers.McAdams HH and Arkin A. 1999. It's a noisy business! Genetic regulati<strong>on</strong> at thenanomolar scale. Trends in Genetics 15, 65‐69.Mitschke A, Rathje H and Baumung S. 2000. House <strong>sparrows</strong> in Hamburg:populati<strong>on</strong> habitat choice and threats. Hamburger Avifauna Beitr. 30, 129‐204.Moller AP and Erritzoe J. 2000. Predati<strong>on</strong> against birds with lowimmunocompetence. Oecologia 122, 500‐504.Moller AP and Jenni<strong>on</strong>s MD. 2002. How much variance can be explained byecologists and evoluti<strong>on</strong>ary biologists? Oecologia 132, 492‐500.Murphy ME and King JR. 1991. Ptilochr<strong>on</strong>ology ‐ a critical evaluati<strong>on</strong> ofassumpti<strong>on</strong>s and utility. Auk 108, 695‐704.28


General introducti<strong>on</strong>Newt<strong>on</strong> I, Dale L and Rothery P. 1997. Apparent lack of impact of sparrowhawks<strong>on</strong> the breeding densities of some woodland s<strong>on</strong>gbirds. Bird Study 44, 129‐135.Opdam P. 1979. Feeding ecology of a sparrowhawk populati<strong>on</strong> (Accipiter nisus).Ardea 66, 137‐155.Palmer AR and Strobeck C. 1986. Fluctuating asymmetry ‐ measurement, analysis,patterns. Annual Review of <strong>Ecology</strong> and Systematics 17, 391‐421.Palmer AR. 1994. Fluctuating asymmetry: a primer. In: T. Markow (Ed.),Developmental instability‐Its origins and evoluti<strong>on</strong>ary implicati<strong>on</strong>s.Dordrecht Kluwer Academic Publishers.Palmer AR. 1996. Waltzing with asymmetry. Bioscience 46, 518‐532.Paradis E, Baillie SR, Sutherland WJ and Gregory RD. 1998. Patterns of natal andbreeding dispersal in breeding birds. Journal of Animal <strong>Ecology</strong> 67, 518‐536.Peach WJ, Vincent KE, Fowler JA and Grice PV. 2008. Reproductive success of<strong>house</strong> <strong>sparrows</strong> al<strong>on</strong>g an urban gradient. Animal C<strong>on</strong>servati<strong>on</strong> 11, 493‐503.Polak M. 2003. Developmental Instability: Causes and C<strong>on</strong>sequences. OxfordUniversity Press, Oxford.Reed DH and Frankham R. 2003. Correlati<strong>on</strong> between fitness and geneticdiversity. C<strong>on</strong>servati<strong>on</strong> Biology 17, 230‐237.Reed DH. 2009. When it comes to inbreeding: slower is better. Molecular <strong>Ecology</strong>18, 4521‐4522.Riddle O. 1908. The genesis of fault‐bars in feathers and the cause of alternati<strong>on</strong>of light and dark fundamental bars. Biological Bulletin 14, 328‐370.Robins<strong>on</strong> RA, Siriwardena GM and Crick HQP. 2005. Size and trends of the <strong>house</strong>sparrow Passer domesticus populati<strong>on</strong> in Great Britain. Ibis 147, 552‐562.Rowe G and Beebee TJC. 2003. Populati<strong>on</strong> <strong>on</strong> the verge of a mutati<strong>on</strong>almeltdown? Fitness costs of genetic load for an amphibian in the wild.Evoluti<strong>on</strong> 57, 177‐181.Sanders<strong>on</strong> RF. 1996. Autumn Bird Counts in Kensingt<strong>on</strong> Gardens. L<strong>on</strong>d<strong>on</strong> BirdReport. Report Number 60.Shaw LM, Chamberlain D and Evans M. 2008. The <strong>house</strong> sparrow Passerdomesticus in urban areas: reviewing a possible link between post‐decline29


General introducti<strong>on</strong>distributi<strong>on</strong> and human socioec<strong>on</strong>omic status. Journal of Ornithology 149,293‐299.Smith NM, Keller LF, Marr AB and Arcese P. 2006. C<strong>on</strong>servati<strong>on</strong> and biology ofsmall populati<strong>on</strong>s. The s<strong>on</strong>g <strong>sparrows</strong> of Mandarte Island. OxfordUniversity Press.Spielman D, Brook BW and Frankham R. 2004. Most species are not driven toextincti<strong>on</strong> before genetic factors impact them. Proceedings of the Nati<strong>on</strong>alAcademy of Sciences 101, 15261‐15264.Steadman DW. 2006. Extincti<strong>on</strong> and biogeography of tropical Pacific birds.University of Chicago Press, Chicago Illinois.Summers‐Smith JD. 1963. The House Sparrow. Collins, L<strong>on</strong>d<strong>on</strong>.Summers‐Smith JD. 1988. The Sparrows: a <str<strong>on</strong>g>study</str<strong>on</strong>g> of the genus Passer. T & ADPoyser.Summers‐Smith JD. 2000. Decline of <strong>house</strong> <strong>sparrows</strong> in large towns. British Birds96, 256‐257.Summers‐Smith JD. 2003. The decline of the <strong>house</strong> sparrow: a review. BritishBirds 96, 439‐446.Thoms<strong>on</strong> DL, Green RE, Gregory RD and Baillie SR. 1998. The widespread declinesof s<strong>on</strong>gbirds in rural Britain do not correlate with the spread of their avianpredators. Proceedings of the Royal Society of L<strong>on</strong>d<strong>on</strong> 265, 2057‐2062.Tinbergen L. 1946. The sparrowhawk (Accipiter nisus L.) as a predator of Passerinebirds. Ardea 34, 1‐213.Van D<strong>on</strong>gen S. 1999. Accuracy and power in fluctuating asymmetry studies:effects of sample size and number of within‐subject repeats. Journal ofEvoluti<strong>on</strong>ary Biology 12, 547‐550.Vincent K. 2005. Investigating the causes of the decline of the urban <strong>house</strong>sparrow Passer domesticus populati<strong>on</strong> in Britain. PhD thesis, De M<strong>on</strong>tfortUniversity, UK.VLAVICO 1989. Vogels in Vlaanderen. Voorkomen en verspreiding. I.M.P., Bornem.Wang J. 2005. Estimati<strong>on</strong> of effective populati<strong>on</strong> sizes from data <strong>on</strong> geneticmarkers. Philosophical Transacti<strong>on</strong>s of the Royal Society ‐ BiologicalSciences 360, 1395‐1409.30


General introducti<strong>on</strong>Wilkins<strong>on</strong> N. 2006. Factors influencing the small‐scale distributi<strong>on</strong> of <strong>house</strong><strong>sparrows</strong> Passer domesticus in a suburban envir<strong>on</strong>ment. Bird Study 53, 39‐46.Woods M, McD<strong>on</strong>ald RA and Harris S. 2003. Predati<strong>on</strong> by domestic cats Feliscatus in Great Britain. Mammal Review 33, 174.31


Chapter 1C<strong>on</strong>straints <strong>on</strong> home range behaviour affect nutriti<strong>on</strong>alc<strong>on</strong>diti<strong>on</strong> in urban <strong>house</strong> <strong>sparrows</strong> (Passer domesticus)Carl VANGESTEL, Bart P. BRAECKMAN, Hans MATHEVE, and Luc LENSBiological Journal of the Linnean Society (2010) 101: 41–50©Chantal Deschepper33


Chapter 1ABSTRACTIn human‐dominated landscapes, (semi)natural habitats are typically embeddedin tracts of unsuitable habitat. Under such c<strong>on</strong>diti<strong>on</strong>s, habitat characteristics andgrain size of the surrounding landscape may affect how much food, and at whatcost, is available for sedentary species with low home range plasticity. Here wecombine behavioural radio‐tracking, feather ptilochr<strong>on</strong>ology and landscapeanalysis to test how nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> varies with home range size in 13 <strong>house</strong>sparrow [Passer domesticus (Linnaeus, 1758)] populati<strong>on</strong>s al<strong>on</strong>g an urbangradient. Urban individuals occupied smaller home ranges than c<strong>on</strong>specifics fromrural areas, most distinctly if key cover was highly scattered. In urban plots, patchc<strong>on</strong>nectivity, home range sizes and activity areas were positively correlated,indicating that individual ranging behaviour was related to the spatial distributi<strong>on</strong>of suitable habitat. Urban <strong>house</strong> <strong>sparrows</strong> also showed the smallest feathergrowth bars, which were positively related to home range size at plot level. Inc<strong>on</strong>trast, growth bar widths and home range sizes were negatively related in ruralpopulati<strong>on</strong>s, while in suburban <strong>on</strong>es, both variables varied independently. Wec<strong>on</strong>clude that individuals from progressively more built‐up areas show arestricted ability to adjust their daily ranging behaviour to the scattereddistributi<strong>on</strong> of critical resources. This may complement other putative causes ofthe widespread populati<strong>on</strong> decline of urban <strong>house</strong> <strong>sparrows</strong>.INTRODUCTIONIn human‐dominated landscapes, patches of natural or semi‐naturalhabitat are typically embedded in tracts of unsuitable habitat. Depending <strong>on</strong> thequality and area of these patches and the grain size of the surrounding landscape,individuals of habitat‐restricted species may move frequently am<strong>on</strong>g spatiallyisolated habitat patches (patchy populati<strong>on</strong>s sensu Harris<strong>on</strong>, 1991; Ovaskainen &Hanski, 2004) or populati<strong>on</strong>s may become spatially‐dissected and showcharacteristics of a metapopulati<strong>on</strong> structure (Hanski & Gilpin, 1991; Hanski,1999). Habitat fragmentati<strong>on</strong>, which is ultimately driving these populati<strong>on</strong>processes, is c<strong>on</strong>sidered a key pressure <strong>on</strong> biodiversity (e.g. Vitousek et al., 1997;Erikss<strong>on</strong> & Ehrlén, 2001) often in synergy with other human‐driven effects such asclimate change (Travis, 2003; Opdam & Wascher, 2004). Species may resp<strong>on</strong>d tohabitat fragmentati<strong>on</strong> by genetic or physiological adaptati<strong>on</strong>s, or by adaptingtheir ranging behaviour to the distributi<strong>on</strong> of critical resources (Opdam &Wascher, 2004). Both <strong>on</strong> theoretical and empirical grounds, more sedentaryspecies (With, Gardner & Turner, 1997; Sekercioglu, Daily & Ehrlich, 2004;Murgui, 2009) are expected to be most affected by shifts in resource distributi<strong>on</strong>.For instance, n<strong>on</strong>‐vagile behaviour and reluctance to cross habitat gaps arec<strong>on</strong>sidered prime reas<strong>on</strong>s why neotropical insectivorous birds (Sekercioglu et al.,34


C<strong>on</strong>straints <strong>on</strong> home range behaviour affect nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>2004) and British butterflies (Thomas, 2000; Warren et al., 2001) are mostextincti<strong>on</strong>‐pr<strong>on</strong>e in human‐altered landscapes.Intense human activity in str<strong>on</strong>gly urbanized landscapes typically createsfine‐grained and highly‐complex mosaics of semi‐natural and built‐up areas(Rebele, 1994; Blair, 2004). In Europe, such landscape mosaics traditi<strong>on</strong>allyc<strong>on</strong>stituted populati<strong>on</strong> str<strong>on</strong>gholds for urban species such as the <strong>house</strong> sparrow[Passer domesticus (Linnaeus, 1758)], which, in c<strong>on</strong>trast to many other species,was l<strong>on</strong>g assumed to resp<strong>on</strong>d positively, rather than negatively, to urban sprawl(Earle, 1988). During the last decades, however, urban <strong>house</strong> <strong>sparrows</strong> haveshown steep populati<strong>on</strong> declines for reas<strong>on</strong>s that are not yet fully understood(Tucker & Heath, 2004; Balmori & Hallberg, 2007). Rural populati<strong>on</strong>s, too,declined precipitously in much of Europe (Gregory & Baillie, 1998; Fuller, Tratalos& Gast<strong>on</strong>, 2009), however, urban <strong>on</strong>es have not yet shown recent signs ofrecovery (De Laet & Summers‐Smith, 2007) and inverse relati<strong>on</strong>ships betweenthe degree of urbanizati<strong>on</strong> and individual body mass, size and c<strong>on</strong>diti<strong>on</strong> (e.g. Likeret al., 2008) support the believe that urban areas currently c<strong>on</strong>stitute a stressfulenvir<strong>on</strong>ment for this species. Because <strong>house</strong> <strong>sparrows</strong> rank am<strong>on</strong>g the mostsedentary species of birds (Heij & Moeliker, 1990; Hole et al., 2002; Anders<strong>on</strong>,2006), it can be hypothesized that low plasticity in home range behaviourprevents individuals from adaptively resp<strong>on</strong>ding to rapid changes in thedistributi<strong>on</strong> of critical resources in urban areas, which may lead to reducednutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> in areas with str<strong>on</strong>gly scattered resources. Home ranges, i.e.the area with a defined probability of occurrence of an individual during a specificperiod of time (Millspaugh & Marzluff, 2001), determine how many and whichindividuals have access to limited resources and, as such, are positi<strong>on</strong>ed at theinterplay between individual energetic demands and the spatial distributi<strong>on</strong> ofsuch resources (McNab, 1963; Mitchell & Powell, 2004).Here we test if, to what extent, and in which directi<strong>on</strong> body c<strong>on</strong>diti<strong>on</strong>varies with home range size in 13 Belgian <strong>house</strong> sparrow populati<strong>on</strong>s al<strong>on</strong>g anurban gradient, by tracking individuals equipped with light‐weight radiotransmittersand measuring alternating dark and light growth‐bars <strong>on</strong> individualtail feathers (ptilochr<strong>on</strong>ology sensu Grubb, 1995). Relati<strong>on</strong>ships between the sizeand structure of home ranges and estimates of body c<strong>on</strong>diti<strong>on</strong> reflect whether,and to what extent, individuals can adjust their daily ranging behaviour to thedistributi<strong>on</strong> of critical resources, i.e. to minimize energetic or predati<strong>on</strong> costsassociated with movements across a hostile matrix (McNab, 1963; Relyea,Lawrence & Demarais, 2000; Bruun & Smith, 2003; Mitchel & Powel, 2004).35


Chapter 1Estimates of daily feather growth rate obtained from ptilochr<strong>on</strong>ologicalmeasurements offer a powerful tool for assessing the body c<strong>on</strong>diti<strong>on</strong> of freerangingbirds (Grubb & Cimprich, 1990; Carb<strong>on</strong>ell, Perez‐Tris & Telleria, 2003; Hayet al., 2004). The method is based <strong>on</strong> the assumpti<strong>on</strong>s that each pair of growthbars c<strong>on</strong>stitutes a 24‐hour period of feather growth, that narrower growth barsreflect periods of poor nutriti<strong>on</strong>, and that any change in nutriti<strong>on</strong>al status isindicated in the width of the growth bars (Grubb, 1995).MATERIAL AND METHODSStudy designHouse <strong>sparrows</strong> were studied in urban and adjacent suburban areas of thecity of <strong>Ghent</strong>, Belgium (156 km²; 237.000 inhabitants of which 82.584 within the7.64 km² city centre) and in a rural area near the village of Zomergem (38.8 km²;8.150 inhabitants) ca. 12 km NW of <strong>Ghent</strong> (figure 1.1). The ratio of built‐up areato total area of grid cells in a GIS model (each grid cell measuring 90000 m²<strong>on</strong> the ground) in <strong>Ghent</strong> and Zomergem ranged between 0‐0.10 (henceforwardreferred to as ‘rural’), 0.11‐0.30 (‘suburban’) and larger than 0.30 (‘urban’) (Arcgisver. 9.2). By applying a stratified randomized design, we selected four 50 ha ruralplots, five 50 ha suburban plots (adjacent eastern and northern populati<strong>on</strong>s wereomitted for logistic reas<strong>on</strong>s) and four 50 ha urban plots in which all patches ofsuitable habitat were digitized by a combinati<strong>on</strong> of high resoluti<strong>on</strong> aerialphotographs and ground truthing (see Appendix 1.1 for a detailed descripti<strong>on</strong> ofthe different <str<strong>on</strong>g>study</str<strong>on</strong>g> plots).Radio­telemetryRadio‐telemetry was carried out from October to December during threec<strong>on</strong>secutive years (2004‐2006). A total of 26 females and 23 males were tracked,distributed as follows: 2004: 8 females, 8 males; 2005: 8 females, 6 males; 2006:10 females, 9 males (table 1.1). Six tagged birds were replaced during radiotracking,three of which were killed by Sparrowhawks [Accipiter nisus (Linnaeus,1758)] and three others carrying a failing transmitter. House <strong>sparrows</strong> werecaught using mistnets operated during daytime, standard measurements andblood samples were taken and <strong>on</strong>e adult female and <strong>on</strong>e adult male per <str<strong>on</strong>g>study</str<strong>on</strong>g>plot were equipped with a light‐weight Pip‐3 radio‐transmitter (Biotrack, UK)glued <strong>on</strong> a harness (Rappole & Tipt<strong>on</strong>, 1991). The combined weight of transmitterand harness did not exceed 3% of the minimum body mass measured across all36


C<strong>on</strong>straints <strong>on</strong> home range behaviour affect nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>Fig. 1.1. Spatial locati<strong>on</strong> of urban (filled circles), suburban (open circles) and rural (filledtriangles) <str<strong>on</strong>g>study</str<strong>on</strong>g> plots within and near the city of <strong>Ghent</strong> (Belgium). The inner c<strong>on</strong>tourencompasses the city centre of <strong>Ghent</strong>, the outer c<strong>on</strong>tour encompasses surroundingmunicipalities, the dashed line encompasses suburban area of equivalent size as the city centre.Vi=Visserij, Sp=Spanjaardstraat, Em=Emile Braunplein, Ph=Patershol, Du=Duifhuisstraat,Wa=Watersportbaan, Ho=Houtemlaan, Pm=Papiermolenstraat, Pe=Petendockstraat, Ei=Eiland,Ro=Rostraat, Ha=Haagstraat, Fm=Frans De Milde Dreef. Suitable habitat (grey shading), radiotelemetricpoint fixes (black dots), OEC range (dashed line) and SIP range (solid line) are shownfor a single individual (upper left box). See text for details. Abbreviati<strong>on</strong>s refer to populati<strong>on</strong>sdescribed in table 3 (Introducti<strong>on</strong>).37


Chapter 1populati<strong>on</strong>s. After release, each tagged individual was allowed 24 hours ofhabituati<strong>on</strong> before radio‐tracking started with TR4 receivers (Tel<strong>on</strong>ics, Ariz<strong>on</strong>a,USA) and three‐element Yagi antennas. Prior to the start of this <str<strong>on</strong>g>study</str<strong>on</strong>g>, 13individuals had been captured, tagged with the same type of transmitter andtracked at 15 minute intervals to determine the minimal sampling intervalbetween two independent point fixes (Swihart & Slade, 1985). Based <strong>on</strong> theSchoener’s ratio (r²/t²) (Schoener, 1981) calculated in RANGES 8 (Kenward et al.,2008), time‐to‐independence was c<strong>on</strong>servatively estimated at 90 min, and thisinterval was retained during this <str<strong>on</strong>g>study</str<strong>on</strong>g>. Individuals were tracked during 41 ± 9(SD) days <strong>on</strong> average, and a total of 1926 point fixes were recorded, with anaverage of 40 ± 5 (SD) fixes per individual. All fixes were plotted <strong>on</strong> a highresoluti<strong>on</strong>, digital map of the <str<strong>on</strong>g>study</str<strong>on</strong>g> area. To assess the minimum number of pointfixes required to obtain accurate home range estimates, incremental area plotswere drawn for each individual. As all home ranges c<strong>on</strong>tained more than thethreshold value of 20 point fixes required to reach a stable size, all were retainedin subsequent statistical analysis.Table 1.1. Home range estimates of 49 radio‐tagged <strong>house</strong> <strong>sparrows</strong> sampled in urban,suburban and rural areas near <strong>Ghent</strong>, Belgium (see text for details). Patch c<strong>on</strong>nectivity (PPI) andnutriti<strong>on</strong>al stress (growth bar size) are given for each <str<strong>on</strong>g>study</str<strong>on</strong>g> plot.OEC (ha)SIP (ha)PPI Growth bar size (mm)Study plot N females N males Mean±SD Range Mean±SD Range Mean±SD Mean±SDUrbanEmile Braunplein 2 2 0.0039±0.0078 0.0032‐0.0049 0.58 ±0.75 0.037‐1.63 28.01±7.52 16.26±0.37Patershol 3 2 0.091 ±0.043 0.053‐0.13 0.86 ±0.56 0.43 ‐ 1.64 76.63±12.76 16.93±0.18Spanjaardstraat 2 2 0.030 ±0.038 0.0034‐0.086 0.29 ±0.28 0.060‐0.67 75.23±14.64 NAVisserij 2 1 0.013 ±0.0011 0.012‐0.014 0.11 ±0.029 0.078‐0.14 77.88±16.48 16.59±0.026SuburbanFrans De Mildedreef 1 1 0.099 ±0.041 0.070‐0.13 0.39 ±0.019 0.38‐0.40 115.85±29.07 16.88±0.15Houtemlaan 2 2 0.10 ±0.19 0.0041‐0.39 0.73 ±1.24 0.62‐2.59 156.39±46.31 17.02±0.35Duifhuisstraat 2 2 0.032±0.046 0.0046‐0.10 0.29 ±0.11 0.19‐0.42 130.58±3.88 16.82±0.10Papiermolenstraat 2 2 0.032±0.027 0.0053‐0.059 0.32 ±0.29 0.028‐0.71 106.33±10.07 17.16±0.54Watersportbaan 2 2 0.35 ±0.53 0.012‐1.13 2.38 ±3.75 0.30‐7.99 152.44±13.85 16.80±0.25RuralPetend<strong>on</strong>ckstraat 2 1 0.22 ±0.24 0.036‐0.49 1.17 ±1.48 0.13‐2.86 91.13±27.96 16.71±0.25Eiland 2 2 0.10 ±0.056 0.046‐0.18 1.24 ±0.72 0.80‐2.32 105.81±49.38 16.69±0.12Haagstraat 3 1 0.052±0.046 0.018‐0.10 0.77 ±0.21 0.53‐0.90 68.46±2.20 16.66±0.24Rostraat 2 2 0.036±0.031 0.015‐0.081 0.70 ±0.21 0.42‐0.93 68.88±4.78 17.02±0.16Home range estimatesWe c<strong>on</strong>ducted a telemetric pilot <str<strong>on</strong>g>study</str<strong>on</strong>g> (see above) to select home rangemodels (reviewed by Wort<strong>on</strong>, 1989) that best fit the ecology of <strong>house</strong> <strong>sparrows</strong>.Since individuals largely restricted their movements within a limited number ofdisjunct locati<strong>on</strong>s, resulting in discrete clumps of point fixes, we applied clusteranalysis with nearest‐neighbour distances in RANGES 8 (Kenward et al., 2008) to38


C<strong>on</strong>straints <strong>on</strong> home range behaviour affect nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>estimate objective multinuclear outlier‐exclusive core areas (OEC) for eachindividual (rati<strong>on</strong>ale and details in Kenward et al., 2001). OEC values quantify theamount of habitat effectively used by the individuals during radio‐tracking, andseveral authors recommended to focus <strong>on</strong> the central part of home ranges incomparative studies as outer c<strong>on</strong>tours are based <strong>on</strong> fewer data and thereforemore str<strong>on</strong>gly affected by single outliers (Seaman et al., 1999). Next, wecalculated single inclusive polyg<strong>on</strong>s (SIP) encompassing all OEC clusters. A habitatpreference analysis performed in RANGES 8 (Kenward et al., 2008) indicated that74.8% of all radio‐telemetric observati<strong>on</strong>s of <strong>house</strong> <strong>sparrows</strong> fell within thehabitat categories “hedge” and “dense bush” (see Summers‐Smith, 1963;Wilkins<strong>on</strong>, 2006 for similar findings <strong>on</strong> habitat preference) compared to <strong>on</strong>ly 2.6%within “urban park” and “lawn” (two other habitat types that are c<strong>on</strong>sideredimportant for <strong>house</strong> <strong>sparrows</strong>; Chamberlain et al., 2007; Murgui, 2009) (Appendix1.1). To estimate the total area of preferred habitat within each plot as a functi<strong>on</strong>of patch size and distance from the home range, we therefore summed the totalarea of “hedges” and “dense bushes” within a radius of 300 m around thecentroid of each home range (value based <strong>on</strong> the size of the largest home range)and calculated a distance‐weighted, area‐based isolati<strong>on</strong> metric ∑ , withi=1,...n suitable habitat patches, A i = area of suitable habitat patch i and D i =nearest neighbour distance i (PPI, patch proximity index sensu Bender, Tischendorf& Fahrig, 2003).Ptilochr<strong>on</strong>ologyIndividual nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> of 206 <strong>house</strong> <strong>sparrows</strong> was inferred fromhigh‐resoluti<strong>on</strong> measurement of a standardized number of growth bars <strong>on</strong> theirleft and right fifth rectrices (counting outward) that were plucked up<strong>on</strong> capture.Assumpti<strong>on</strong>s underlying the technique of ptilochr<strong>on</strong>ology (Grubb, 1989) are thateach pair of growth bars denotes a 24 hour time interval and that healthy birdsgrow their feathers faster and hence show larger growth bars. Growth bar widthis therefore believed to reflect the daily nutriti<strong>on</strong>al regime a bird experiencedwhile growing its feather (Grubb, 1989; 1995) and can be used as a proxy ofnutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>. Because ptilochr<strong>on</strong>ology provides a measure of bodyc<strong>on</strong>diti<strong>on</strong> spanning a number of days, it eliminates the problem of c<strong>on</strong>diti<strong>on</strong>varying with time of day, as occurs with body mass (Gosler, 1996). Causalrelati<strong>on</strong>ships between access to food resources during feather development andptilochr<strong>on</strong>ological feather marks have been supported by c<strong>on</strong>trolled laboratoryand field experiments in a wide suite of bird species (Grubb, 1989; Grubb &Cimprich, 1990; but see Murphy & King, 1991). After collecti<strong>on</strong>, each rectrix was39


Chapter 1pinned <strong>on</strong> a separate white card and the total feather length was measured tothe nearest 0.01 mm with a digital calliper. Next, we marked each feather at adistance of 7/10 from its proximal end, and subsequently marked the proximateand distal ends of five c<strong>on</strong>secutive growth bars with an ultrafine mounting pin.Each marked card was then scanned (Océ OP1130) and growth bar sizes wereautomatically measured with image analysis software (KS400 Zeiss). Analysis of asubsample of 108 feathers showed high statistical repeatability between twoindependent measurements of the same rectrix (r=0.94, p=0.0001). To avoidbiases in flight performance (hence home range behaviour) by plucking tailfeathers of radio‐tagged individuals, nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> was estimated fromgrowth bars collected <strong>on</strong> 9 ± 1 (SE) individuals of the same age and sex that werecaught at the same locati<strong>on</strong> during the same seas<strong>on</strong> as the tagged individual.Growth bar widths of individuals within each of these clusters were str<strong>on</strong>gly,positively correlated (Intraclass correlati<strong>on</strong> coefficient = 0.2; p


C<strong>on</strong>straints <strong>on</strong> home range behaviour affect nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>were natural log transformed. All statistical analyses were performed in Statxact5 (Cytel Software Corporati<strong>on</strong>, 2001) and SAS (versi<strong>on</strong> 9.2., SAS Institute 2008,Cary, NC, USA).RESULTSHedges and dense bushes were most str<strong>on</strong>gly scattered in urban plots,intermediately scattered in rural plots and most str<strong>on</strong>gly c<strong>on</strong>nected in suburbanplots (P c r s =0.9975, k=3, p=0.001). Home range estimates ranged between 0.0032 ‐0.49 ha (OEC) and 0.028‐2.86 ha (SIP), respectively (table 1.1). SIP ranges did notsignificantly differ between sexes (S N =11, p=0.83) nor between years (χ²=3.5,df=2, p=0.17). OEC ranges differed between sexes (S N =4, p=0.0062) and years(χ²=10.2, df=2, p=0.0061), with larger values in males than in females. SIP ranges(corrected for year and sex effects where relevant) did not significantly varyam<strong>on</strong>g plots in urban, suburban and rural areas. OEC ranges did not vary am<strong>on</strong>gplots in suburban and rural areas either (all p>0.05), however, they did so am<strong>on</strong>gurban plots (χ²=17.3, df=1, p=0.001).Home range sizes differed significantly between urban classes (SIPF 2,12.3 =6.38, p=0.013; OEC F 2,45 =4.46, p=0.017). Rural home ranges weresignificantly larger than urban <strong>on</strong>es (SIP t 45 =2.97, B<strong>on</strong>ferr<strong>on</strong>i corrected p=0.015;OEC t 12.2 =3.57, B<strong>on</strong>ferr<strong>on</strong>i corrected p=0.011), while urban‐suburban homeranges (SIP t 45 =1.21, p=0.23; OEC t 10.8 =1.58, p=0.14) and suburban‐rural homeranges (SIP t 45 =1.88, p=0.066; OEC t 16.5 =2.01, p=0.061) did not mutually differ.OEC ranges were positively correlated with SIP ranges in urban (F 1,39 =23.4,p


Chapter 1Fig. 1.2. Associati<strong>on</strong> between patch c<strong>on</strong>nectivity and individual home range size in urban <strong>house</strong><strong>sparrows</strong>.Fig. 1.3. Relati<strong>on</strong>ship between individual home range size and body c<strong>on</strong>diti<strong>on</strong> in urban (filledcircles, solid line), suburban (open circles, short‐dashed line) and rural (filled triangles, l<strong>on</strong>gdashedline) populati<strong>on</strong>s of <strong>house</strong> <strong>sparrows</strong> within and near the city of <strong>Ghent</strong> (Belgium).Ptilochr<strong>on</strong>ological data were not available for some birds (see text for details).42


C<strong>on</strong>straints <strong>on</strong> home range behaviour affect nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>Relati<strong>on</strong>ships were positive in urban populati<strong>on</strong>s (F 1,7.43 = 10.18, p = 0.014),negative in rural populati<strong>on</strong>s (F 1,27 =4.34, p=0.047) , and not significantly related insuburban <strong>on</strong>es (F 1,28 = 1.37, p = 0.25) (figure 1.3). Since OEC ranges wereindependent of body size (F 1,43 =1.07, p=0.31), relati<strong>on</strong>ships with growth bar widthwere not c<strong>on</strong>founded by variati<strong>on</strong> in body size.DISCUSSIONUrban <strong>house</strong> <strong>sparrows</strong> occupied significantly smaller home ranges thanc<strong>on</strong>specifics from rural areas, most distinctly in urban plots with highly scatteredand isolated patches of key cover habitat. In urban plots, levels of patchc<strong>on</strong>nectivity and the size of the ranging and activity areas of radio‐tagged <strong>house</strong><strong>sparrows</strong> were all positively correlated, indicating that their ranging behaviourwas related to the spatial distributi<strong>on</strong> of suitable habitat. Urban <strong>house</strong> <strong>sparrows</strong>also showed the smallest growth bars in their tail feathers, which were positivelyrelated to estimates of home range size. In c<strong>on</strong>trast, growth bar widths and homerange sizes were negatively related in rural <strong>house</strong> sparrow, while in suburbanpopulati<strong>on</strong>s, both variables varied independently of each other.Based <strong>on</strong> experimental evidence that growth bars in bird feathers reflectnutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> during feather growth (Grubb, 1989; Grubb & Cimprich,1990), results of this <str<strong>on</strong>g>study</str<strong>on</strong>g> imply that urban <strong>house</strong> <strong>sparrows</strong> experiencenutriti<strong>on</strong>al stress when hedges and dense bushes become progressively scatteredand isolated. In urban areas, distances between key cover habitat weresignificantly larger (this <str<strong>on</strong>g>study</str<strong>on</strong>g>), and mean flock sizes significantly smaller (C.Vangestel, unpubl.data) than in suburban areas, and both factors are known toincrease individual predati<strong>on</strong> risk (Lima, 1987; Kleindorfer, Sulloway & O'C<strong>on</strong>nor,2009). Although we did not systematically quantify predati<strong>on</strong> risk in this <str<strong>on</strong>g>study</str<strong>on</strong>g>, atotal of six <strong>house</strong> <strong>sparrows</strong> were killed by Sparrowhawks (Accipiter nissus) whenmoving am<strong>on</strong>g feeding sites, while several other unsuccessful attacks wereobserved (C. Vangestel, unpubl. data). Suitable cover against aerial (and possiblyground) predators is hence likely to offer direct fitness benefits in urban <strong>house</strong><strong>sparrows</strong>, similar to what is observed in species of more natural habitats (Lima &Dill, 1990; Zollner & Lima, 2005; Amo, Lopez & Martin, 2007). Indirectly, thepresence of suitable cover habitat has been shown to increase feeding time andfeeding efficiency in trade‐off with vigilance in <strong>house</strong> <strong>sparrows</strong> and other species(Lima, 1987; Whitfield, 2003; Barta, Liker & M<strong>on</strong>us, 2004). Such mechanism mayunderlie the positive relati<strong>on</strong>ship between body c<strong>on</strong>diti<strong>on</strong> and availability ofhedges and dense bushes which, themselves, are not particularly food‐rich for43


Chapter 1seed‐eaters. House <strong>sparrows</strong> from rural and suburban populati<strong>on</strong>s were in betternutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> than urban individuals, likely because of the str<strong>on</strong>gerclustering of suitable habitat patches and/or lower costs of moving am<strong>on</strong>g them.Apart from body c<strong>on</strong>diti<strong>on</strong> per se, the distributi<strong>on</strong> of critical resources suchas suitable cover may also affect individual ranging behaviour and the strength ordirecti<strong>on</strong> of relati<strong>on</strong>ships between home range size and body c<strong>on</strong>diti<strong>on</strong> (Relyea etal., 2000; Dussault et al., 2005). In rural populati<strong>on</strong>s, body c<strong>on</strong>diti<strong>on</strong> was inverselyrelated to home range size, which is expected if individuals inhabiting high qualityareas try to minimize the size of their home ranges to make them more ec<strong>on</strong>omicor safer to patrol (McNab, 1963; Relyea et al., 2000; Bruun & Smith, 2003;Mitchel & Powel, 2004). In urban populati<strong>on</strong>s, however, the str<strong>on</strong>g scatter ofsuitable habitat patches most likely hampered such adaptive ranging behaviour,resulting in positive, rather than negative, relati<strong>on</strong>ships between body c<strong>on</strong>diti<strong>on</strong>and home range size. Further (indirect) evidence for spatial c<strong>on</strong>straints <strong>on</strong> rangingbehaviour stemmed from the high level of variability in activity range am<strong>on</strong>gurban plots (hence high correlati<strong>on</strong> in home range size at plot level), as opposedto suburban and rural plots. Likewise, Canadian Moose (Alces alces) c<strong>on</strong>sistentlyoccupied smaller, not larger, home ranges when food was restricted and of lowquality during winter (Dussault et al., 2005), presumably because their mobilitywas temporarily c<strong>on</strong>strained by deep snow. In areas with more modest snow fall,moose occupied larger winter home ranges as predicted from optimal foragingtheory (Lynch & Morgantini, 1984; Tella et al., 1998; Whitaker et al., 2007).In suburban areas, where hedges and dense bushes were most str<strong>on</strong>glyaggregated, body c<strong>on</strong>diti<strong>on</strong> was independent of home range size. Underfavourable ambient c<strong>on</strong>diti<strong>on</strong>s, body c<strong>on</strong>diti<strong>on</strong> may vary independently of homerange size for two (n<strong>on</strong>‐exclusive) reas<strong>on</strong>s. First, home range sizes may notprimarily be driven by nutriti<strong>on</strong>al requirements but mainly reflect interspecific(e.g. predator avoidance) and/or intraspecific (e.g. flocking behaviour, territorialdefence) interacti<strong>on</strong>s (Dussault et al., 2005). Sec<strong>on</strong>d, if home ranges are small,energetic costs derived from patrolling or feeding movements are likely to be lowas well, and proxies of c<strong>on</strong>diti<strong>on</strong> that are based <strong>on</strong> energetic c<strong>on</strong>straints, such asdevelopmental rate (ptilochr<strong>on</strong>ology, this <str<strong>on</strong>g>study</str<strong>on</strong>g>) or developmental precisi<strong>on</strong>(fluctuating asymmetry; Lens & Van D<strong>on</strong>gen, 2002) are generally buffered inabsence of (str<strong>on</strong>g) energetic stress (Lens & Eggerm<strong>on</strong>t, 2008). Likewise, in twostudies that studied effects of dominance status <strong>on</strong> feather growth rates inpasserines (Grubb, 1989; Carrascal et al., 1998), differences in feather growth44


C<strong>on</strong>straints <strong>on</strong> home range behaviour affect nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong><strong>on</strong>ly occurred during harsh periods but not when food was supplemented or theclimate was milder.In highly‐sedentary species such as the <strong>house</strong> sparrow, small‐scale changesin the distributi<strong>on</strong> of critical resources such as key cover habitat (this paper) orprotein‐rich invertebrate food during early nestling stages (Peach et al., 2008),may complement other putative causes of urban populati<strong>on</strong> decline, such as lossof c<strong>on</strong>nectivity between traditi<strong>on</strong>al populati<strong>on</strong> sources and populati<strong>on</strong> sinks (Holeet al., 2002), increased predati<strong>on</strong> risk by domestic predators (Shaw, Chamberlain& Evans, 2008), the deteriorating effects of vehicle emissi<strong>on</strong>s (Bignal, Ashmore &Power, 2004) or electromagnetic polluti<strong>on</strong> from mobile ph<strong>on</strong>e masts (Balmori &Hallberg, 2007; Everaert & Bauwens, 2007; Balmori, 2009). High resoluti<strong>on</strong> data<strong>on</strong> ranging behaviour and body c<strong>on</strong>diti<strong>on</strong>, as presented in this <str<strong>on</strong>g>study</str<strong>on</strong>g>, may help tounderstand the underlying causes of populati<strong>on</strong> declines in species that aresubject to such multiple and synergistic stressors of natural and anthropogenicorigin, and to plan acti<strong>on</strong>s that may slow down and eventually reverse suchdeclines.ACKNOWLEDGEMENTSWe are grateful to S. S. Walls, B. Cresswell and two an<strong>on</strong>ymous reviewersfor providing helpful comments that greatly improved the manuscript. We alsowish to thank D. Ojeda De Vicente, J. Tavara Neves, M. De Vos and S. Boitsois forfield assistance. This <str<strong>on</strong>g>study</str<strong>on</strong>g> was financially supported by research project01J01808 of <strong>Ghent</strong> University to LL.REFERENCESAmo L, Lopez P, Martin J. 2007. Habitat deteriorati<strong>on</strong> affects body c<strong>on</strong>diti<strong>on</strong> oflizards: A behavioral approach with Iberolacerta cyreni lizards inhabiting skiresorts. Biological C<strong>on</strong>servati<strong>on</strong> 135: 77‐85.Anders<strong>on</strong> TR. 2006. Biology of the ubiquitous <strong>house</strong> sparrow. Oxford: OxfordUniversity Press.Balmori A. 2009. Electromagnetic polluti<strong>on</strong> from ph<strong>on</strong>e masts. Effects <strong>on</strong> wildlife.Pathophysiology 16: 191‐199.Balmori A, Hallberg O. 2007. The urban decline of the <strong>house</strong> sparrow (Passerdomesticus): a possible link with electromagnetic radiati<strong>on</strong>.Electromagnetic Biology and Medicine 26: 141‐151.45


Chapter 1Barta Z, Liker A, M<strong>on</strong>us F. 2004. The effects of predati<strong>on</strong> risk <strong>on</strong> the use of socialforaging tactics. Animal Behaviour 67: 301‐308.Benard A, van Elteren P. 1953. A generalizati<strong>on</strong> of the method of m rankings.Indagati<strong>on</strong>es Mathematicae 15: 358‐369.Bender DJ, Tischendorf L, Fahrig L. 2003. Using patch isolati<strong>on</strong> metrics to predictanimal movement in binary landscapes. Landscape <strong>Ecology</strong> 18: 17‐39.Bignal K, Ashmore M, Power S. 2004. The ecological effects of diffuse air polluti<strong>on</strong>from road traffic. English Nature Research Report 580, Peterborough, UK.Blair R. 2004. The effects of urban sprawl <strong>on</strong> birds at multiple levels of biologicalorganizati<strong>on</strong>. <strong>Ecology</strong> and Society 9. Avaiable at:http://www.ecologyandsociety.org/vol9/iss5/art2/.Bruun M, Smith HG. 2003. Landscape compositi<strong>on</strong> affects habitat use andforaging flight distances in breeding European Starlings. BiologicalC<strong>on</strong>servati<strong>on</strong> 114: 179‐187.Carb<strong>on</strong>ell R, Perez‐Tris J, Telleria JL. 2003. Effects of habitat heterogeneity andlocal adaptati<strong>on</strong> <strong>on</strong> the body c<strong>on</strong>diti<strong>on</strong> of a forest passerinie at the edge ofits distributi<strong>on</strong>al range. Biological Journal of the Linnean Society 78: 479‐488.Carrascal LM, Senar JC, Mozetich I, Uribe F, Domenech J. 1998. Interacti<strong>on</strong>sam<strong>on</strong>g envir<strong>on</strong>mental stress, body c<strong>on</strong>diti<strong>on</strong>, nutriti<strong>on</strong>al status, anddominance in Great Tits. Auk 115: 727‐738.Chamberlain DE, Toms MP, Cleary‐Mcharg R, Banks AN. 2007. House sparrow(Passer domesticus) habitat use in urbanized landscapes. Journal ofOrnithology 148: 453‐462.De Laet J, Summers‐Smith JD. 2007. The status of the urban <strong>house</strong> sparrow Passerdomesticus in North‐Western Europe: a review. Journal of Ornithology 148:S275‐S278.Dussault C, Courtois R, Ouellet JP, Girard I. 2005. Space use of moose in relati<strong>on</strong>to food availability. Canadian Journal of Zoology‐Revue Canadienne DeZoologie 83: 1431‐1437.Earle RA. 1988. Reproductive isolati<strong>on</strong> between urban and rural populati<strong>on</strong>s ofCape Sparrows and House <strong>sparrows</strong>. Acta XIX C<strong>on</strong>gressus Internati<strong>on</strong>alisOrnithologici 2: 1778‐1786.Erikss<strong>on</strong> O, Ehrlén J. 2001. Landscape fragmentati<strong>on</strong> and the viability of plant46


C<strong>on</strong>straints <strong>on</strong> home range behaviour affect nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>populati<strong>on</strong>s. In: Silvertown, J. & Ant<strong>on</strong>ovics, J., eds. Integrating ecologyand evoluti<strong>on</strong> in a spatial c<strong>on</strong>text. Blackwell Science, Oxford, pp. 157‐175.Everaert J, Bauwens D. 2007. A possible effect of electromagnetic radiati<strong>on</strong> frommobile ph<strong>on</strong>e base stati<strong>on</strong>s <strong>on</strong> the number of breeding <strong>house</strong> <strong>sparrows</strong>(Passer domesticus). Electromagnetic Biology and Medicine 26: 63‐72.Fuller RA, Tratalos J, Gast<strong>on</strong> KJ. 2009. How many birds are there in a city of half amilli<strong>on</strong> people? Diversity and Distributi<strong>on</strong>s 15: 328‐337.Gosler AG. 1996. Envir<strong>on</strong>mental and social determinants of winter fat storage inthe Great Tit Parus major. Journal of Animal <strong>Ecology</strong> 65: 1‐17.Gregory RD, Baillie SR. 1998. Large‐scale habitat use of some declining Britishbirds. Journal of Applied <strong>Ecology</strong> 35: 785‐799.Grubb TC. 1989. Ptilochr<strong>on</strong>ology ‐ feather growth bars as indicators of nutriti<strong>on</strong>alstatus. Auk 106: 314‐320.Grubb TC 1995. Ptilochr<strong>on</strong>ology. A review and prospectus. Current Ornithology12: 89‐114.Grubb TC, Cimprich DA. 1990. Supplementary food improves the nutriti<strong>on</strong>alc<strong>on</strong>diti<strong>on</strong> of wintering woodland birds ‐ evidence from ptilochr<strong>on</strong>ology.Ornis Scandinavica 21: 277‐281.Hanski I, Gilpin M. 1991. Metapopulati<strong>on</strong> dynamics ‐ brief‐history and c<strong>on</strong>ceptualdomain. Biological Journal of the Linnean Society 42: 3‐16.Hanski I. 1999. Habitat c<strong>on</strong>nectivity, habitat c<strong>on</strong>tinuity, and metapopulati<strong>on</strong>s indynamic landscapes. Oikos 87: 209‐219.Harris<strong>on</strong> S. 1991. Local extincti<strong>on</strong> in a metapopulati<strong>on</strong> c<strong>on</strong>text: an empiricalevaluati<strong>on</strong>. Biological Journal of the Linnean Society 42: 73‐88.Hay JM, Evans PR, Ward RM, Hamer KC. 2004. Poor nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> as ac<strong>on</strong>sequence of high dominance status in the Coal Tit Parus ater. Ibis 146:103‐107.Heij CJ, Moeliker CW. 1990. Populati<strong>on</strong> dynamics of dutch <strong>house</strong> <strong>sparrows</strong> inurban, suburban and rural habitats. In: Pinowski J, Summers‐Smith JD, eds.Granivorous birds in the agricultural landscape. Warszawa: Polish ScientificPublishers, 59‐85.Hole DG, Whittingham MJ, Bradbury RB, Anders<strong>on</strong> GQA, Lee PLM, Wils<strong>on</strong> JD,Krebs JR. 2002. Widespread local <strong>house</strong>‐sparrow extincti<strong>on</strong>s ‐ agriculturalintensificati<strong>on</strong> is blamed for the plummeting populati<strong>on</strong>s of these birds.47


Chapter 1Nature 418: 931‐932.Holm S. 1979. A simple sequential rejective multiple test procedure. ScandinavianJournal of Statistics 6: 65‐70.Hurlbert SH. 1984. Pseudoreplicati<strong>on</strong> and the design of ecological fieldexperiments. Ecological M<strong>on</strong>ographs 54: 187‐211.Kenward RE, Clarke RT, Hodder KH, Walls SS. 2001. Density and linkageestimators of home range: nearest‐neighbor clustering definesmultinuclear cores. <strong>Ecology</strong> 82: 1905‐1920.Kenward RE, Walls SS, South AB, Casey NM. 2008. Ranges8: For the analysis oftracking and locati<strong>on</strong> data. Anatrack Ltd. Wareham, UK.Kleindorfer S, Sulloway FJ, O'C<strong>on</strong>nor J. 2009. Mixed species nesting associati<strong>on</strong>s inDarwin's tree finches: nesting pattern predicts predati<strong>on</strong> outcome.Biological Journal of the Linnean Society 98: 313‐324.Lens L, Eggerm<strong>on</strong>t H. 2008. Fluctuating asymmetry as a putative marker ofhuman‐induced stress in avian c<strong>on</strong>servati<strong>on</strong>. Bird C<strong>on</strong>servati<strong>on</strong>Internati<strong>on</strong>al 18: S125‐S143.Lens L, Van D<strong>on</strong>gen S. 2002. Fluctuating asymmetry as a bio‐indicator in isolatedpopulati<strong>on</strong>s of the Taita thrush: a bayesian perspective. Journal ofBiogeography 29: 809‐819.Liker A, Papp Z, Bok<strong>on</strong>y V, Lendvai AZ. 2008. Lean birds in the city: body size andc<strong>on</strong>diti<strong>on</strong> of <strong>house</strong> <strong>sparrows</strong> al<strong>on</strong>g the urbanizati<strong>on</strong> gradient. Journal ofAnimal <strong>Ecology</strong> 77: 789‐795.Lima SL. 1987. Distance to cover, visual obstructi<strong>on</strong>s, and vigilance in <strong>house</strong><strong>sparrows</strong>. Behaviour 102: 231‐238.Lima SL, Dill LM. 1990. Behavioral decisi<strong>on</strong>s made under the risk of predati<strong>on</strong> ‐ areview and prospectus. Canadian Journal of Zoology‐Revue Canadienne DeZoologie 68: 619‐640.Littell RC, Milliken WW, Stroup WW, Wolfinger RD. 1996. SAS System for mixedmodels. SAS Institute Inc., Cary, NC, USA.Lynch GM, Morgantini LE. 1984. Sex and age differential in seas<strong>on</strong>al home‐rangesize of moose in northcentral Alberta, 1971‐1979. Alces 20: 61‐78.McNab BK. 1963. Bioenergetics and determinati<strong>on</strong> of home range size. AmericanNaturalist 97: 133‐140.48


C<strong>on</strong>straints <strong>on</strong> home range behaviour affect nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>Millspaugh JJ, Marzluff JM. 2001. Radio tracking and animal populati<strong>on</strong>s.Academic Press, L<strong>on</strong>d<strong>on</strong>.Mitchell MS, Powell RA. 2004. A mechanistic home range model for optimal useof spatially distributed resources. Ecological Modelling 177: 209‐232.Murgui E. 2009. Seas<strong>on</strong>al patterns of habitat selecti<strong>on</strong> of the <strong>house</strong> sparrowPasser domesticus in the urban landscape of Valencia (Spain). Journal ofOrnithology 150: 85‐94.Murphy ME, King JR. 1991. Ptilochr<strong>on</strong>ology ‐ a critical evaluati<strong>on</strong> of assumpti<strong>on</strong>sand utility. Auk 108: 695‐704.Opdam P, Wascher D. 2004. Climate change meets habitat fragmentati<strong>on</strong>: linkinglandscape and biogeographical scale levels in research and c<strong>on</strong>servati<strong>on</strong>.Biological C<strong>on</strong>servati<strong>on</strong> 117: 285‐297.Ovaskainen O, Hanski I. 2004. From individual behavior to metapopulati<strong>on</strong>dynamics: Unifying the patchy populati<strong>on</strong> and classic metapopulati<strong>on</strong>models. American Naturalist 164: 364‐377.Peach WJ, Vincent KE, Fowler JA, Grice PV. 2008. Reproductive success of <strong>house</strong><strong>sparrows</strong> al<strong>on</strong>g an urban gradient. Animal C<strong>on</strong>servati<strong>on</strong> 11: 493‐503.Rappole JH, Tipt<strong>on</strong> AR. 1991. New harness design for attachment of radiotransmitters to small Passerines. Journal of Field Ornithology 62: 335‐337.Rebele F. 1994. Urban ecology and special features of urban ecosystems. Global<strong>Ecology</strong> and Biogeography Letters 4: 173‐187.Relyea RA, Lawrence RK, Demarais S. 2000. Home range of desert mule deer:testing the body‐size and habitat‐productivity hypotheses. Journal ofWildlife Management 64: 146‐153.Rice WR, Gaines SD. 1994. Extending n<strong>on</strong>directi<strong>on</strong>al heterogeneity tests toevaluate simply ordered alternative hypotheses. Proceedings of theNati<strong>on</strong>al Academy of Sciences of the United States of America 91: 225‐226.Schoener TW. 1981. An empirically based estimate of home range. TheoreticalPopulati<strong>on</strong> Biology 20: 281‐325.Seaman DE, Millspaugh JJ, Kernohan BJ, Brundige GC, Raedeke KJ, Gitzen RA.1999. Effects of sample size <strong>on</strong> kernel home range estimates. Journal ofWildlife Management 63: 739‐747.Sekercioglu CH, Daily GC, Ehrlich PR. 2004. Ecosystem c<strong>on</strong>sequences of birddeclines. Proceedings of the Nati<strong>on</strong>al Academy of Sciences of the United49


Chapter 1States of America 101: 18042‐18047.Shaw LM, Chamberlain D, Evans M. 2008. The <strong>house</strong> sparrow Passer domesticusin urban areas: reviewing a possible link between post‐decline distributi<strong>on</strong>and human socioec<strong>on</strong>omic status. Journal of Ornithology 149: 293‐299.Summers‐Smith JD. 1963. The House sparrow. Collins, L<strong>on</strong>d<strong>on</strong>.Swihart RK, Slade NA. 1985. Testing for independence of observati<strong>on</strong>s in animalmovements. <strong>Ecology</strong> 66: 1176‐1184.Tella JL, Forero MG, Hiraldo F, D<strong>on</strong>azar JA. 1998. C<strong>on</strong>flicts between Lesser Kestrelc<strong>on</strong>servati<strong>on</strong> and european agricultural policies as identified by habitat useanalyses. C<strong>on</strong>servati<strong>on</strong> Biology 12: 593‐604.Thomas CD. 2000. Dispersal and extincti<strong>on</strong> in fragmented landscapes.Proceedings of the Royal Society of L<strong>on</strong>d<strong>on</strong> Series B‐Biological Sciences 267:139‐145.Travis JMJ. 2003. Climate change and habitat destructi<strong>on</strong>: a deadly anthropogeniccocktail. Proceedings of the Royal Society of L<strong>on</strong>d<strong>on</strong> Series B‐BiologicalSciences 270: 467‐473.Tucker GM, Heath MF. 2004. Birds in Europe: populati<strong>on</strong> estimates, trends andc<strong>on</strong>servati<strong>on</strong> status. BirdLife Internati<strong>on</strong>al 2004.Verbeke G, Molenberghs G. 2000. Linear mixed models for l<strong>on</strong>gitudinal data.Springer‐Verlag, New York.Vitousek PM, Mo<strong>on</strong>ey HA, Lubchenco J, Melillo JM. 1997. Human dominati<strong>on</strong> ofEarth's ecosystems. Science 277: 494‐499.Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG,Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex‐Davies JN, Moss D,Thomas CD. 2001. Rapid resp<strong>on</strong>ses of British butterflies to opposing forcesof climate and habitat change. Nature 414: 65‐69.Whitaker DM, Stauffer DF, Norman GW, Devers PK, Edwards J, Giuliano WM,Harper C, Igo W, Sole J, Spiker H, Tefft B. 2007. Factors associated withvariati<strong>on</strong> in home‐range size of Appalachian Ruffed Grouse (B<strong>on</strong>asaumbellus). Auk 124: 1407‐1424.Whitfield DP. 2003. Redshank Tringa totanus flocking behaviour, distance fromcover and vulnerability to sparrowhawk Accipiter nisus predati<strong>on</strong>. Journalof Avian Biology 34: 163‐169.Wilkins<strong>on</strong> N. 2006. Factors influencing the small‐scale distributi<strong>on</strong> of <strong>house</strong>50


C<strong>on</strong>straints <strong>on</strong> home range behaviour affect nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong><strong>sparrows</strong> Passer domesticus in a suburban envir<strong>on</strong>ment. Bird Study 53: 39‐46.With KA, Gardner RH, Turner MG. 1997. Landscape c<strong>on</strong>nectivity and populati<strong>on</strong>distributi<strong>on</strong>s in heterogeneous envir<strong>on</strong>ments. Oikos 78: 151‐169.Wort<strong>on</strong> BJ. 1989. Kernel methods for estimating the utilizati<strong>on</strong> distributi<strong>on</strong> inhome‐range studies. <strong>Ecology</strong> 70: 164‐168.Zollner PA, Lima SL. 2005. Behavioral tradeoffs when dispersing across a patchylandscape. Oikos 108: 219‐230.51


Chapter 1APPENDIX 1.1. Landscape variables within a 300 m radius around the centroid of <strong>house</strong> sparrowhome ranges and habitat preference expressed as the number of point fixes within a givenhabitat, in each of 13 <str<strong>on</strong>g>study</str<strong>on</strong>g> plots near <strong>Ghent</strong>, Belgium. Values expressed as mean percentage ±SD, preference values indicated between bracketsBuilt-up area (%) Bush (%) Lawn (%)UrbanEmile Braunplein 61.07 ± 1.77 (5.83 ± 2.95) 1.00 ± 0.046 (84.63 ± 11.81) 1.22 ± 0.088 (0)Patershol 42.12 ± 2.38 (30.40 ± 29.44) 3.03 ± 0.40 (66.86 ± 29.61) 6.77 ± 1.45 (0)Spanjaardstraat 31.9 ± 1.14 (0.58 ± 1.15) 2.23 ± 0.092 (59.70 ± 28.94) 5.80 ± 0.25 (4.3 ± 3.62)Visserij 41.43 ± 0.35 (2.30 ± 3.98) 1.92 ± 0.035 (67.16 ± 10.94) 8.43 ± 0.22 (2.56 ± 4.44)SuburbanFrans De Mildedreef 27.85 ± 9.12 (0) 3.87 ± 0.65 (63.35 ± 40.65) 13.18 ± 1.12 (0)Houtemlaan 28.22 ± 4.47 (0.65 ± 1.30) 3.96 ± 0.064 (85.05 ± 9.36) 14.19 ± 2.24 (0.93 ± 1.85)Duifhuisstraat 24.95 ± 1.13 (0) 3.71 ± 0.20 (77.53 ± 12.99) 9.39 ± 0.40 (0.65 ± 1.30)Papiermolenstraat 24.47 ± 2.46 (0.68 ± 1.35) 2.53 ± 0.082 (57.92 ± 8.83) 18.15 ± 1.90 (10.05 ± 16.87)Watersportbaan 16.7 ± 3.26 (1.50 ± 3.00) 5.80 ± 0.50 (88.45 ± 13.01) 16.74 ± 1.22 (0)RuralPetend<strong>on</strong>ckstraat 3.36 ± 0.057 (5.70 ± 5.34) 2.17 ± 0.11 (50.37 ± 27.36) 7.64 ± 0.55 (2.87 ± 2.48)Eiland 2.67 ± 0.25 (2.05 ± 1.50) 1.96 ± 0.38 (42.85 ± 9.93) 6.32 ± 1.03 (6.67 ± 5.09)Haagstraat 2.97 ± 0.17 (28.57 ± 28.60) 1.05 ± 0.062 (42.50 ± 22.87) 7.97 ± 0.74 (2.20 ± 2.15)Rostraat 1.75 ± 0.057 (33.45 ± 8.22) 1.76 ± 0.016 (30.30 ± 5.37) 3.07 ± 0.035 (3.28 ± 1.30)Hedge (%) Meadow (%) Scrub (%)UrbanEmile Braunplein 0 0 0Patershol 0.031 ± 0.0077 (0) 0 1.77 ± 0.039 (0)Spanjaardstraat 0.071 ± 0 (0) 0 4.17 ± 1.97 (0)Visserij 0.065 ± 0 (13.03 ± 9.58) 0 2.10 ± 0.16 (0)SuburbanFrans De Mildedreef 0.23 ± 0.081 (32.05 ± 41.64) 0 0Houtemlaan 2.76 ± 0.47 (11.2 ± 8.32) 0 2.59 ± 1.70 (0)Duifhuisstraat 0.0056 ± 0.057 (14.65 ± 7.87) 0 0Papiermolenstraat 0.0086 ± 0.052 (10.45 ± 11.03) 5.16 ± 1.12 (0) 1.81 ± 0.74 (0)Watersportbaan 0.0086 ± 0.073 (4.95 ± 8.37) 0 1.29 ± 1.11 (0)RuralPetend<strong>on</strong>ckstraat 0.0087 ± 0.00086 (16.16 ± 8.55) 50.93 ± 7.28 (2.97 ± 3.29) 1.86 ± 0.10 (0.80 ± 1.39)Eiland 0.0056 ± 0.00070 (36.32 ± 6.15) 63.59 ± 1.70 (0) 1.41 ± 0.61 (0)Haagstraat 0.013 ± 0.0011 (13.97 ± 12.62) 75.61 ± 1.51 (2.27 ± 0.06) 0.043 ± 0.0046 (0)Rostraat 0.0054 ± 0.000049 (8.75 ± 6.45) 88.21 ± 0.13 (0.53 ± 1.05) 0.32 ± 0.010 (0)Tree (%)Brief descripti<strong>on</strong>UrbanEmile Braunplein 1.28 ± 0.18 (8.95 ± 12.18) Mainly commercial buildingsPatershol 2.58 ± 0.43 (0.58 ± 1.30) Flats with lawns in between and terraced <strong>house</strong>sSpanjaardstraat 4.03 ± 0.12 (0.90 ± 1.80) Flats, terraced <strong>house</strong>s with small gardens, old abbeyVisserij 5.06 ± 0.048 (0) Terraced <strong>house</strong>s with gardensSuburbanFrans De Mildedreef 0.11 ± 2.82 (4.55 ± 1.06) Mixture of terraced, semidetached and detached <strong>house</strong>s with gardens, railwayHoutemlaan 0.070 ± 2.06 (0.60 ± 1.20) Deprived area, semidetached <strong>house</strong>s with gardensDuifhuisstraat 0.082 ± 0.59 (0.65 ± 1.30) Residential area, detached <strong>house</strong>s with large gardensPapiermolenstraat 0.15 ± 2.70 (18.38 ± 17.07) Semidetached and detached <strong>house</strong>s with gardens and derilict landWatersportbaan 0.060 ± 1.03 (0) Flats, commercial area, recreati<strong>on</strong>al area with lawnsRuralPetend<strong>on</strong>ckstraat 12.17 ± 0.99 (11.03 ± 15.14) Farm buildings and detached <strong>house</strong>s with gardens, and grass with livestock,Eiland 9.14 ± 1.01 (1.70 ± 2.13) Farm buildings, grass with livestock, arable farmlandHaagstraat 6.15 ± 0.094 (2.27 ± 3.93) Farm buildings and detached <strong>house</strong>s with gardens, and grass with livestockRostraat 1.82 ± 0.0093 (5.53 ± 2.91) Farm buildings and detached <strong>house</strong>sOEC, outlier-exclusive core area; SIP, single inclusive polyg<strong>on</strong>s; PPI, patch proximity index.52


Chapter 2Does fluctuating asymmetry c<strong>on</strong>stitute a sensitive biomarker ofnutriti<strong>on</strong>al stress in <strong>house</strong> <strong>sparrows</strong> (Passer domesticus)?Carl VANGESTEL & Luc LENSEcological Indicators, 2011, 11, 389–394©Chantal Deschepper53


Chapter 2ABSTRACTSmall random deviati<strong>on</strong>s from left‐right symmetry in bilateral traits, termedfluctuating asymmetry (FA), are theoretically predicted to increase withenvir<strong>on</strong>mental stress and believed to c<strong>on</strong>stitute a potential biomarker inc<strong>on</strong>servati<strong>on</strong>. However, reported relati<strong>on</strong>ships between FA and stress are generallyweak and variable am<strong>on</strong>g organisms, traits and stresses. Here we test if, and to whatextent, FA increases with nutriti<strong>on</strong>al stress, estimated from independent feathergrowth measurements, in free‐ranging <strong>house</strong> <strong>sparrows</strong> (Passer domesticus).Ptilochr<strong>on</strong>ological feather marks showed significant heterogeneity am<strong>on</strong>g <str<strong>on</strong>g>study</str<strong>on</strong>g> plots,indicating that <strong>house</strong> sparrow populati<strong>on</strong>s were exposed to variable levels ofnutriti<strong>on</strong>al stress during development. However, individuals from more stressedpopulati<strong>on</strong>s did not show increased levels of fluctuating asymmetry in tarsus orrectrix length, nor was there evidence for significant between‐trait c<strong>on</strong>cordance in FAat the individual or the populati<strong>on</strong> level. Lack of support for FA in tarsus and rectrixlength as estimator of nutriti<strong>on</strong>al stress in <strong>house</strong> <strong>sparrows</strong> may indicate thatdevelopmental instability is insensitive to nutriti<strong>on</strong>al stress in this species, poorlyreflected in patterns of fluctuating asymmetry due to ecological or statistical reas<strong>on</strong>s,or highly c<strong>on</strong>text‐specific. Such uncertainty c<strong>on</strong>tinues to hamper the use of FA as abiomarker tool in c<strong>on</strong>servati<strong>on</strong> planning.INTRODUCTIONC<strong>on</strong>servati<strong>on</strong> planners are in need of mechanistic insights into how habitat orlandscape change may drive populati<strong>on</strong>s of c<strong>on</strong>servati<strong>on</strong> c<strong>on</strong>cern (Soule, 1991;Arendt, 1996). Yet, traditi<strong>on</strong>al endpoints of populati<strong>on</strong> viability, such as survival andreproducti<strong>on</strong>, are mostly cumbersome, time‐c<strong>on</strong>suming and expensive to measureand hence remain unknown in most applied c<strong>on</strong>servati<strong>on</strong> studies. To overcome thisproblem, a broad range of individual‐based proxies of fitness have been applied, suchas body size, (residual) body mass, fat‐free mass, quality or quantity of horm<strong>on</strong>es andrate or precisi<strong>on</strong> of growth processes (Jakob et al., 1996; Takaki et al., 2001). Becausethe level of stress sensitivity of these, and other, biomarkers can <strong>on</strong>ly be assessedpost hoc, candidate markers should preferably be applicable to diverse biologicalsystems and organisms (Huggett, 1992), and stress‐mediated changes shouldpreferably be measurable before direct comp<strong>on</strong>ents of fitness, such as survival andreproductive success, are compromised (‘early warning system’; Clarke et al., 1986;Clarke and McKenzie, 1992; Clarke, 1995).Fluctuating asymmetry (FA, small random deviati<strong>on</strong>s from left‐right symmetryin bilateral traits: Ludwig, 1932) is widely believed to meet both c<strong>on</strong>diti<strong>on</strong>s. FA refersto a pattern of bilateral variati<strong>on</strong> in a sample of individuals, where the mean of rightminus left values of a trait is zero and the variati<strong>on</strong> is normally distributed aroundthat mean (Palmer, 1994; Polak, 2003). As corresp<strong>on</strong>ding body sides share a singlegenome and are exposed to identical envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s during development,54


Fluctuating asymmetry as a biomarker of nutriti<strong>on</strong>al stress?deviati<strong>on</strong>s from left‐right symmetry in bilateral traits cannot be due to genetic orenvir<strong>on</strong>mental effects (Reeve, 1960). Rather, observed asymmetries are believed toreflect the inability of individuals to buffer their development against small, randomperturbati<strong>on</strong>s (‘developmental noise’; Palmer, 1994; Auffray et al., 1999).Mechanisms underlying developmental noise are still poorly understood but likelyinvolve perturbati<strong>on</strong>s of cellular processes or random variati<strong>on</strong> in physiological rates(Palmer, 1994; McAdams and Arkin, 1999; Fiering et al., 2000). Despite this lack ofmechanistic understanding, FA has multiple potential assets as early warning systemfor c<strong>on</strong>servati<strong>on</strong> planners. First, FA is <strong>on</strong>e of few morphological attributes for whichthe norm, i.e. perfect symmetry, is known (Palmer, 1996). Sec<strong>on</strong>d, FA is believed tointegrate synergistic interacti<strong>on</strong>s am<strong>on</strong>g different stressors (Mayer et al., 1992;Clarke, 1993) and comprise a more sensitive marker of stress than more traditi<strong>on</strong>alfitness measures (Clarke and McKenzie, 1992; Lens et al., 2002). Third, FA <str<strong>on</strong>g>study</str<strong>on</strong>g> doesnot require laborious recaptures, destructive sampling, sophisticated equipment orthe fulfillment of stringent model assumpti<strong>on</strong>s.Yet, despite many informative <str<strong>on</strong>g>case</str<strong>on</strong>g>s where bilateral asymmetry increasedwhen individuals were exposed to exo‐ or endogenous stress (reviewed by Mollerand Swaddle, 1997), the utility of FA as a biomarker of stress remains highlyc<strong>on</strong>troversial as relati<strong>on</strong>ships with stress and fitness are generally weak (Leung andForbes, 1996; Gorur, 2006) and highly variable am<strong>on</strong>g organisms, traits and stresses(Lens et al., 2002 ; Freeman et al., 2005; Knierim et al., 2007; Carcamo et al., 2008;Hopt<strong>on</strong> et al. 2009). For example, a review of 21 experimental tests of relati<strong>on</strong>shipsbetween FA and envir<strong>on</strong>mental stress showed a c<strong>on</strong>sistent increase in FA in <strong>on</strong>e‐thirdof the <str<strong>on</strong>g>case</str<strong>on</strong>g> studies, a trait‐ or stress‐specific increase in another third, and no effect inthe remainder of the studies (Bjorksten et al., 2000). Moreover, while populati<strong>on</strong>asymmetry parameters have been supported in a number of <str<strong>on</strong>g>case</str<strong>on</strong>g>s (Clarke, 1998 ),between‐trait c<strong>on</strong>cordance of FA at the individual level is generally weak or absent(Leamy, 1993; Clarke, 1998; Gangestad and Thornhill, 1999). Given this heterogeneityin relati<strong>on</strong>ships with FA and the fact that results from laboratory studies cannotc<strong>on</strong>sistently be extrapolated to free‐ranging populati<strong>on</strong>s that may be subject tosynergistic stresses of envir<strong>on</strong>mental, genetic and anthropogenic origin (Baker, 1995;Manel and Debouzie, 1995, Ambo‐Rappe et al., 2008), the suitability of FA as abioassay in c<strong>on</strong>servati<strong>on</strong> planning requires further field validati<strong>on</strong>.As human populati<strong>on</strong>s become increasingly urban (e.g. ca 10% of humans livedin cities in 1900 whereas ca 70% are predicted to do so by 2050; Brown et al., 1998),cities cover progressively more area at rates that often exceed those of urbanpopulati<strong>on</strong> growth (O’Meara, 1999). While <strong>house</strong> <strong>sparrows</strong> were originally believed55


Chapter 2to resp<strong>on</strong>d positively, rather than negatively, to urban sprawl (Earle, 1988), urban<strong>house</strong> sparrow populati<strong>on</strong>s across Europe have steeply declined in recent times forreas<strong>on</strong>s that are not yet fully understood (Shaw et al., 2008) but may be related tolack of protein‐rich food for nestlings (Peach et al., 2008), loss of populati<strong>on</strong>c<strong>on</strong>nectivity (Hole et al., 2002), increased predati<strong>on</strong> by domestic species (Shaw et al.,2008) or deteriorating effects of vehicle emissi<strong>on</strong>s <strong>on</strong> invertebrate abundance (Bignalet al., 2004). By <str<strong>on</strong>g>study</str<strong>on</strong>g>ing individual variati<strong>on</strong> in home range size and tail feathergrowth (a measure of nutriti<strong>on</strong>al stress; Grubb, 1989, 2006), Vangestel et al. (2010)showed that <strong>house</strong> <strong>sparrows</strong> inhabiting str<strong>on</strong>gly built‐up habitat developed moreslowly than individuals from more open habitats, especially in areas with highlyscattered cover habitat and small home ranges. Apart from providing a mechanisticexplanati<strong>on</strong> for such retarded development in urban <strong>house</strong> sparrow populati<strong>on</strong>s, the<str<strong>on</strong>g>study</str<strong>on</strong>g> by Vangestel et al. (2010) also offers a str<strong>on</strong>g <str<strong>on</strong>g>case</str<strong>on</strong>g> to evaluate FA as a potentialbiomarker for stress effects in free‐ranging populati<strong>on</strong>s, given that (nutriti<strong>on</strong>al) stresseffects are being assessed independently (see Eggert and Sakaluk, 1994; Lens et al.,2002 for a discussi<strong>on</strong> <strong>on</strong> stress validati<strong>on</strong> in FA studies). Building <strong>on</strong> this and otherstudies (e.g. Nills<strong>on</strong>, 1994), we here test whether <strong>house</strong> <strong>sparrows</strong> from populati<strong>on</strong>sexposed to higher levels of nutriti<strong>on</strong>al stress show higher levels of growthasymmetry. Relati<strong>on</strong>ships between nutriti<strong>on</strong>al stress and fluctuating asymmetry arestudied in two phenotypic traits that can be measured accurately in a n<strong>on</strong>‐invasiveway (tarsus length and rectrix length) and statistically tested at an individual‐ andpopulati<strong>on</strong> level.MATERIAL AND METHODSStudy site and speciesHouse <strong>sparrows</strong> were studied in and around the city centre of <strong>Ghent</strong> (northernBelgium) and in a rural area near the village of Zomergem, ca. 12 km NW of <strong>Ghent</strong>. Inthis regi<strong>on</strong>, 13 plots were selected that maximize variati<strong>on</strong> in the ratio of built‐up tototal grid cell area (range: 0.02‐0.61, median value: 0.25, each cell measuring 90,000m² <strong>on</strong> the ground; Arcgis versi<strong>on</strong> 9.2.). Within these plots, a total of 684 adult <strong>house</strong><strong>sparrows</strong> were trapped by standard mist netting between 2003 and 2008. Up<strong>on</strong>capture, we sexed and aged each individual, placed <strong>on</strong>e unique metal ring (BelgianRinging Scheme) and a unique combinati<strong>on</strong> of three colour‐rings, and measured bodymass (to the nearest 0.1g), wing length (to the nearest 0.01mm) and length of the leftand right tarsus (to the nearest 0.01mm; three repeated measurements sequencedleft‐right‐left‐right‐left‐right or vice versa and with digital slide calliper reset to zerobetween two c<strong>on</strong>secutive measurements). Between‐capture repeatability of right56


Fluctuating asymmetry as a biomarker of nutriti<strong>on</strong>al stress?and left tarsus measurements estimated from 91 re‐trapped individuals equalledr=0.97 (p=0.001) for right tarsi and r=0.95 (p=0.001) for left tarsi. Before release, wecollected a small sample of body feathers for DNA analysis and the left and right fifthrectrix (counting outward) of 213 individuals for analysis of feather growth.Feather growth (ptilochr<strong>on</strong>ology) analysisIndividual nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> was estimated from the width of alternatingpairs of light and dark growth bars <strong>on</strong> left and right rectrices. Each pair of growth barsreflects a 24‐hour period of feather growth (Grubb, 1989, 2006; Grubb and Cimprich,1990) and c<strong>on</strong>trolled laboratory and field experiments c<strong>on</strong>firmed causal relati<strong>on</strong>shipsbetween access to food resources during feather development and growth bar width(Grubb, 1989; Grubb and Cimprich, 1990; but see Murphy and King, 1991). Tomeasure growth bars, each rectrix was pinned <strong>on</strong> a single cardboard strip and thetotal feather length was measured to the nearest 0.01 mm with a digital slide calliper.Next, we marked the proximate and distal ends of five c<strong>on</strong>secutive pairs of light anddark growth bars (starting at a distance of 7/10 from the proximate feather tip) andthe proximal and distal end of each feather, with a very fine mounting pin insertedthrough the rachis. Each strip was then scanned (Océ OP1130) and growth bar widthsand feather lengths were automatically measured with image analysis software(KS400 Zeiss). Individual feather growth rates were calculated by averaging growthbar widths <strong>on</strong> left and right rectrices. After measuring all feathers, each feather wasdetached and pinned to a new cardboard strip twice to independently re‐scoregrowth bar widths (subset of 108 feathers) and feather lengths (all feathers)following the methodology described above. Independent feather measurementsshowed high statistical repeatability for growth bar width (r=0.94, p=0.001) andrectrix length (r=0.89, p=0.001).Fluctuating asymmetry analysisTo estimate fluctuating asymmetry in tarsus and rectrix length at an individualand populati<strong>on</strong> level, we carried out mixed regressi<strong>on</strong> analysis by modelling Y = Xβ +Zµ + e where β, µ and e are unknown vectors of fixed effects parameters, randomeffects and random errors, respectively, while X and Z are known model matrices.Restricted maximum likelihood parameter estimati<strong>on</strong> (REML) was used to obtainindividual FA estimates that are unbiased with respect to measurement error (VanD<strong>on</strong>gen et al., 1999b). First, we separated ME from variance comp<strong>on</strong>ents of therandom side effect (FA), and tested for the presence of directi<strong>on</strong>al asymmetry (fixedside effect; DA) by F‐statistics, adjusting the denominator degrees of freedom bySatterthwaite's formula (Verbeke and Molenberghs, 2000). Sec<strong>on</strong>d, we tested the57


Chapter 2significance of FA by comparing the likelihood of models with and without randomside effect. Third, we calculated unbiased FA values for each individual as subjectspecificdeviati<strong>on</strong>s of the fixed regressi<strong>on</strong> line in the mixed regressi<strong>on</strong> model (Palmerand Strobeck, 1986; Van D<strong>on</strong>gen et al., 1999b). Fourth, we compared the kurtosislevels of the signed FA values to detect antisymmetry (Knierim et al., 2007). Finally,we calculated absolute values of the signed FA values (unsigned FA estimates, furtherreferred to as “FA”) for hypothesis testing.Statistical analysisA general linear mixed model was applied to <str<strong>on</strong>g>study</str<strong>on</strong>g> between‐plot variati<strong>on</strong> ingrowth bar width, FA, and relati<strong>on</strong>ships between both variables. Individual‐basedestimates or mean values per <str<strong>on</strong>g>study</str<strong>on</strong>g> plot were used when testing hypotheses atindividual and populati<strong>on</strong> level, respectively. Standardized FA values were modeledas repeated measurements in multiple‐trait analyses. Random effects models wereapplied to <str<strong>on</strong>g>study</str<strong>on</strong>g> individual‐ and populati<strong>on</strong>‐level correlati<strong>on</strong>s in trait asymmetry. Wetherefore calculated intraclass correlati<strong>on</strong> coefficients (ICC) from the ratio of thebetween‐individual or between‐populati<strong>on</strong> variance to the total variance (Lens andVan D<strong>on</strong>gen, 1999). To test whether the strength of between‐trait correlati<strong>on</strong>s in FAvaried with the level of nutriti<strong>on</strong>al stress, we divided the range of growth bar widthsinto four quartiles and tested whether ICCs differed am<strong>on</strong>g these quartiles. M<strong>on</strong>th,year and <str<strong>on</strong>g>study</str<strong>on</strong>g> plot were included as random effects to account for a clustered datastructure while trait size was added as a fixed covariate. All statistical analyses wereperformed with program SAS (versi<strong>on</strong> 9.2., SAS Institute 2008, Cary, NC, USA).RESULTSThe distributi<strong>on</strong> of signed FA in rectrix length did not show a significantdirecti<strong>on</strong>al comp<strong>on</strong>ent, whereas measurements of right tarsi were c<strong>on</strong>sistently largerthan those of left <strong>on</strong>es (table 2.1). Signed FA levels in tarsus and rectrix length wereTable 2.1. Variance comp<strong>on</strong>ents and the distributi<strong>on</strong> of signed and unsigned FA values for twophenotypic traits in 13 <strong>house</strong> sparrow populati<strong>on</strong>s near <strong>Ghent</strong>, Belgium. F‐statistics refer todirecti<strong>on</strong>al asymmetry, chi‐square statistics refer to separati<strong>on</strong> of FA from measurement error.F-test (numerator d.f.,trait N denominator d.f.) VFA VME χ2-test (d.f.=1) Kurtosisfeather 213 3.00 (1,177)NS 0,07 0,12 1815.40*** 1,50tarsus 684 194.13 (1,660)*** 0,04 0,01 3933.10*** 0,66Not significant (NS) P > 0.05; * P < 0.05; ** P < 0.01; *** P


Fluctuating asymmetry as a biomarker of nutriti<strong>on</strong>al stress?not significantly correlated, differences in the size of left and right trait sides (signedFA) could be significantly separated from variati<strong>on</strong> due to measurement error(repeated measures within each side) for both traits (LRT comparing models with andwithout random side‐effect: all p


Chapter 2significantly correlated with growth bar widths at the level of individual <strong>house</strong><strong>sparrows</strong> (tarsus: F 1,142 =0.28, p=0.59; rectrix: F 1,134 =0.01, p=0.92; multiple‐trait FA:F 1,117 =0.09, p=0.76) nor at the populati<strong>on</strong> level (tarsus: F 1,11 =1.35, p=0.27; rectrix:F 1,11 =0.39, p=0.54; multiple‐trait FA: F 1,11 =1.26, p=0.29, figure 2.3).Likewise, levels of FA in rectrix and tarsus length were not significantlycorrelated at the populati<strong>on</strong> level (i.e. no evidence for a Populati<strong>on</strong> AsymmetryParameter) or the individual level (i.e. no evidence for an Individual AsymmetryParameter) (table 2.2), nor did the strength of between‐trait correlati<strong>on</strong>s in FA at theindividual level vary with nutriti<strong>on</strong>al stress (χ²=5.9, d.f.=3, p=0.12) (table 2.3).Table 2.3. Individual‐level correlati<strong>on</strong> in signed and unsigned FA of tarsus and rectrix length inrelati<strong>on</strong> to nutriti<strong>on</strong>al stress. Individuals were assigned to <strong>on</strong>e of four quartiles based <strong>on</strong> the width oftheir rectrix growth bars, with classes I to IV reflecting decreasing levels of nutriti<strong>on</strong>al stress.signed FA unsigned FAcorrelati<strong>on</strong>correlati<strong>on</strong>Z-statistic p-valuecoefficientcoefficient Z-statistic p-valueclass I -0,11 -0,63 0,53 -0,10 -0,58 0,56class II -0,09 -0,47 0,64 -0,18 -0,94 0,35class III -0,02 -0,13 0,90 0,12 -0,84 0,40class IV -0,03 -0,14 0,89 -0,16 -0,89 0,37DISCUSSIONPtilochr<strong>on</strong>ological feather marks showed significant heterogeneity am<strong>on</strong>g<str<strong>on</strong>g>study</str<strong>on</strong>g> plots, indicating that <strong>house</strong> sparrow populati<strong>on</strong>s were exposed to variablelevels of nutriti<strong>on</strong>al stress during feather growth. C<strong>on</strong>trary to our expectati<strong>on</strong>,individuals from more stressed populati<strong>on</strong>s did not show increased levels offluctuating asymmetry in tarsus or rectrix length, nor was there evidence forsignificant between‐trait c<strong>on</strong>cordance in FA, also when testing correlati<strong>on</strong>s at thepopulati<strong>on</strong> level. Low c<strong>on</strong>gruence between both presumed markers ofdevelopmental stress in free‐ranging populati<strong>on</strong>s of <strong>house</strong> <strong>sparrows</strong> may havemultiple (n<strong>on</strong>‐exclusive) causes.First, relati<strong>on</strong>ships between nutriti<strong>on</strong>al stress and FA may have been presentbut masked by underlying populati<strong>on</strong> processes. Despite their highly sedentarylifestyle (Anders<strong>on</strong>, 2006), <strong>house</strong> <strong>sparrows</strong> show limited bi‐directi<strong>on</strong>al (postnatal)dispersal am<strong>on</strong>g adjacent populati<strong>on</strong>s (Vangestel et al., unpubl.). Dispersal away from60


Fluctuating asymmetry as a biomarker of nutriti<strong>on</strong>al stress?Fig. 2.2. Between‐plot variati<strong>on</strong> (mean value ± SE) in growth bar size (a), tarsus FA (b), and rectrix FA(c).61


Chapter 2Fig. 2.3. Pairwise relati<strong>on</strong>ships between average growth bar size and standardized FA values fortarsus length (filled circles) and rectrix length (open triangles).an individual’s natal site is expected to uncouple patterns of FA in tarsi, which arefully‐grown before fledging and related to nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>s during the nestlingphase, with patterns of FA in traits that reflect nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>s experiencedafter dispersal. Apart from dispersal, nest studies <strong>on</strong> <strong>house</strong> <strong>sparrows</strong> earlier revealedincreased rates of nestling mortality when levels of insect abundance were criticallylow (Peach et al., 2008). If nest mortality is selective in relati<strong>on</strong> to FA, i.e. if “lowquality” individuals show higher levels of FA and higher mortality rates, highnutriti<strong>on</strong>al stress experienced as a nestling may result in higher, rather than lower,proporti<strong>on</strong>s of individuals with more symmetric tarsi in adult cohorts. Likewise,absence of selective mortality under nutriti<strong>on</strong>ally favourable c<strong>on</strong>diti<strong>on</strong>s may causehigher relative proporti<strong>on</strong>s of low‐quality (i.e. more asymmetric) adults. Under suchscenario, the lowest levels of FA would be expected in intermediately‐stressedpopulati<strong>on</strong>s where the majority of individuals are born with low to intermediatelevels of FA and highly asymmetric <strong>on</strong>es suffer from increased mortality. Unlike tarsi,however, rectrices re‐grow after each (natural or induced) episode of feather moult,and rectrix FA can therefore be expected to be less biased due to differential survivalor dispersal and better reflect envir<strong>on</strong>mental stress effects at the site of capture.C<strong>on</strong>trary to our expectati<strong>on</strong>, however, growth bar width was not significantly62


Fluctuating asymmetry as a biomarker of nutriti<strong>on</strong>al stress?correlated with rectrix FA either. Finally, predicted relati<strong>on</strong>ships between FA andgrowth bar size were based <strong>on</strong> presumed nutriti<strong>on</strong>al stress effects <strong>on</strong> adults, whilenestlings might be stressed differently as they depend more str<strong>on</strong>gly <strong>on</strong> insect food.Given the results of the nest studies menti<strong>on</strong>ed above, however, it is unlikely thatnestlings in all populati<strong>on</strong>s were exposed to equal nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>s.Sec<strong>on</strong>d, relati<strong>on</strong>ships between nutriti<strong>on</strong>al stress and FA may have beenpresent but masked due to statistical problems. Rectrix FA in <strong>house</strong> <strong>sparrows</strong> showeda low signal (FA) to noise (ME) ratio, resulting in low statistical power to detectdifferences between treatments or relati<strong>on</strong>ships with other variables (Van Nuffel etal., 2007). Heterogeneity in signal‐to‐noise ratio of tarsus and rectrix FA and/orvariati<strong>on</strong> in “windows of opportunity” (Clarke, 1998) between nutriti<strong>on</strong>al stresseffects <strong>on</strong> tarsi (nestling, pre‐dispersal) and rectrices (post‐fledging, post‐dispersal)may be resp<strong>on</strong>sible for the low level of between‐trait correlati<strong>on</strong> in individual andpopulati<strong>on</strong> level FA measured in our <str<strong>on</strong>g>study</str<strong>on</strong>g>. Such low c<strong>on</strong>cordance is in line with mostempirical studies <strong>on</strong> natural, free‐living populati<strong>on</strong>s (Clarke, 1995; Gangestad andThornhill, 1999; Aparicio and B<strong>on</strong>al, 2002; Cuervo and Restrepo, 2007; but see Lensand Van D<strong>on</strong>gen, 1999; Van D<strong>on</strong>gen et al., 1999c) despite the fact that organismwideasymmetry is implicitly assumed in most evoluti<strong>on</strong>ary models of FA (Dufour andWeatherhead, 1996). More general, Moller and Jenni<strong>on</strong>s (2002) showed that effectsizes in FA studies do not differ from those in ecological and evoluti<strong>on</strong>ary studieswhere the amount of variance explained by the factor of interest is often as low as 5‐7%. Under such c<strong>on</strong>diti<strong>on</strong>s, hundreds of samples might be required to reject nullhypotheses with high statistical power (i.e. 80% or more). Since sample sizes in this<str<strong>on</strong>g>study</str<strong>on</strong>g> were more modest (i.e. within the range expected for ecological studies <strong>on</strong>free‐ranging populati<strong>on</strong>s), small effects may have remained undetected and n<strong>on</strong>significanteffects should be interpreted with cauti<strong>on</strong>.Apart from low statistical power, FA also comprises a relatively weak estimatorof the underlying developmental instability (Van D<strong>on</strong>gen, 1998; Whitlock, 1998),despite recent developments in the statistical analysis of DI (Van D<strong>on</strong>gen et al.,1999a, 1999b; Gangestad et al., 2001; Waldmann, 2004). This is particularly true forindividual‐level FA estimati<strong>on</strong>, where the level of developmental instability (variance)is estimated from two data points (left and right trait values) <strong>on</strong>ly (Whitlock, 1996).Due to sampling variability, <strong>house</strong> <strong>sparrows</strong> with equal intrinsic ability to buffer theirdevelopment against random perturbati<strong>on</strong>s may either show low or high levels of FA,which inevitably causes a downward bias in relati<strong>on</strong>ships with FA (Whitlock, 1996;Van D<strong>on</strong>gen, 1998). However, given the fact that a substantial number of <strong>house</strong><strong>sparrows</strong> were measured in each <str<strong>on</strong>g>study</str<strong>on</strong>g> plot (mean number ± SE per plot: FA rectrix63


Chapter 215 ± 2 ind; FA tarsus 49 ± 7 ind) and that each of these individuals c<strong>on</strong>stituted anindependent sampling unit in populati<strong>on</strong>‐level comparis<strong>on</strong>s (Whitlock, 1996), highsampling variability cannot explain the low Populati<strong>on</strong> Asymmetry Parameter (Soule,1967) measured in our <str<strong>on</strong>g>study</str<strong>on</strong>g>.Third, c<strong>on</strong>sistent relati<strong>on</strong>ships with fluctuating asymmetry may be absentbecause FA in rectrix and tarsus length does not c<strong>on</strong>stitute a sensitive indicator ofnutriti<strong>on</strong>al stress effects in <strong>house</strong> <strong>sparrows</strong>. As the sensitivity of homeostaticprocesses has been hypothesized to be positively related to the level of stressendured during <strong>on</strong>togeny (Pars<strong>on</strong>s, 1990, 1992; Kodric‐Brown, 1997; Shykoff andMoller, 1999), FA may be insensitive as index of envir<strong>on</strong>mental stress in populati<strong>on</strong>sexposed to low or intermediate levels of nutriti<strong>on</strong>al stress. Here, <strong>house</strong> <strong>sparrows</strong> areunlikely to face str<strong>on</strong>g energetic challenges, and all individuals ‐ including low quality<strong>on</strong>es ‐ may display low levels of FA. If this is the <str<strong>on</strong>g>case</str<strong>on</strong>g>, relati<strong>on</strong>ships with FA would beexpected to be more c<strong>on</strong>sistent in highly‐stressed populati<strong>on</strong>s, due to the unmaskingof low‐quality individuals. However, the strength of relati<strong>on</strong>ships with FA did notdepend <strong>on</strong> nutriti<strong>on</strong>al stress in our <str<strong>on</strong>g>study</str<strong>on</strong>g>. Alternatively, the development of tarsi andrectrices may be str<strong>on</strong>gly buffered in <strong>house</strong> <strong>sparrows</strong>, such that high energeticc<strong>on</strong>straints do not result in loss of developmental stability. Empirical evidence isgrowing that traits with high functi<strong>on</strong>al value are subject to str<strong>on</strong>g stabilizingselecti<strong>on</strong>, because small deviati<strong>on</strong>s from the expected phenotype may already resultin substantial fitness loss (Balmford and Thomas, 1992; Thomas, 1993), and to lowlevels of asymmetric development (Balmford et al., 1993; Clarke, 1995; Aparicio andB<strong>on</strong>al, 2002; Karv<strong>on</strong>en et al., 2003). By <str<strong>on</strong>g>study</str<strong>on</strong>g>ing traits that were directly or indirectlyrelated to mobility (i.e. hopping <strong>on</strong> the ground and maneuvering during flight), wemay unintenti<strong>on</strong>ally have c<strong>on</strong>strained the stress sensitivity of FA indices in our <str<strong>on</strong>g>study</str<strong>on</strong>g>.In c<strong>on</strong>clusi<strong>on</strong>, results of our <str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>on</strong> <strong>house</strong> <strong>sparrows</strong> do not support the useof FA in tarsus and rectrix length as a reliable estimator of nutriti<strong>on</strong>al stress inferredfrom feather growth rate (see Moller, 1996; Polo and Carrascal, 1999 and referencestherein for similar findings), nor do they support the existence of organism‐wideasymmetry. Rather, our results suggest that developmental instability is eitherinsensitive to nutriti<strong>on</strong>al stress in this species, or poorly reflected in patterns offluctuating asymmetry due to (populati<strong>on</strong>) ecological or statistical reas<strong>on</strong>s, or highlytrait‐ and c<strong>on</strong>text‐specific. Such uncertainty c<strong>on</strong>tinues to hamper the use of FA as arobust and universal bio‐indicator in urban planning.64


Fluctuating asymmetry as a biomarker of nutriti<strong>on</strong>al stress?ACKNOWLEDGEMENTWe wish to thank H. Matheve, T. Cammaer and C. Nuyens for field assistance,and two an<strong>on</strong>ymous reviewers for their helpful comments that c<strong>on</strong>siderablyimproved the quality of the manuscript. This <str<strong>on</strong>g>study</str<strong>on</strong>g> was financially supported byresearch project 01J01808 of <strong>Ghent</strong> University to LL.REFERENCESAmbo‐Rappe, R., Lajus, D.L., Schreider, M.J., 2008. Increased heavy metal andnutrient c<strong>on</strong>taminati<strong>on</strong> does not increase fluctuating asymmetry in theseagrass Halophila ovalis. Ecol. Ind. 8, 100‐103.Anders<strong>on</strong>, T.R., 2006. Biology of the ubiquitous <strong>house</strong> Sparrow. Oxford Univ. Press.Aparicio, J.M., B<strong>on</strong>al, R., 2002. Why do some traits show higher fluctuatingasymmetry than others? A test of hypotheses with tail feathers of birds.Heredity 89, 139‐144.Arendt, R.G., 1996. C<strong>on</strong>servati<strong>on</strong> design for subdivisi<strong>on</strong>. Island Press, Washingt<strong>on</strong> D.C.Auffray, J.C., Renaud, S., Alibert, P., Nevo, E., 1999. Developmental stability andadaptive radiati<strong>on</strong> in the Spalax ehrenbergi superspecies in the Near‐East. J.Evol. Biol. 12, 207‐221.Baker, M., 1995. Envir<strong>on</strong>mental comp<strong>on</strong>ent of latitudinal clutch‐size variati<strong>on</strong> in<strong>house</strong> <strong>sparrows</strong> (Passer domesticus). Auk 112, 249‐252.Balmford, A., J<strong>on</strong>es, I.L., Thomas, A.L.R., 1993. On avian asymmetry ‐ evidence ofnatural‐selecti<strong>on</strong> for symmetrical tails and wings in birds. Proc. R. Soc. L<strong>on</strong>d.252, 245‐251.Balmford, A., Thomas, A., 1992. Swallowing ornamental asymmetry. Nature 359, 487.Bignal, K., Ashmore, M., Power, S., 2004. The ecological effects of diffuse air polluti<strong>on</strong>from road traffic. English Nature Research Report 580, Peterborough, UK.Bjorksten, T.A., Fowler, K., Pomiankowski, A., 2000. What does sexual trait FA tell usabout stress? Trends Ecol. Evol.15, 163‐166.Brown, L.R., Gardner, G., Halweil, B., 1998. Bey<strong>on</strong>d Malthus: sixteen dimensi<strong>on</strong>s ofthe populati<strong>on</strong> problem. Worldwatch paper 143. Worldwatch Institute,Washingt<strong>on</strong>, D. C.65


Chapter 2Carcamo, H.A., Floate, K.D., Lee, B.L., Beres, B.L., Clarke, F.R., 2008. Developmentalinstability in a stem‐mining sawfly: Can fluctuating asymmetry detect planthost stress in a model system? Oecologia 156, 505‐513.Clarke, G.M., 1993. Fluctuating asymmetry of invertebrate populati<strong>on</strong>s as a biologicalindicator of envir<strong>on</strong>mental quality. Envir<strong>on</strong>. Pollut. 82, 207‐211.Clarke, G.M., 1995. Relati<strong>on</strong>ships between developmental stability and fitness ‐applicati<strong>on</strong> for c<strong>on</strong>servati<strong>on</strong> biology. C<strong>on</strong>serv. Biol. 9, 18‐24.Clarke, G.M., 1998. The genetic basis of developmental stability. IV. Individual andpopulati<strong>on</strong> asymmetry parameters. Heredity 80, 553‐561.Clarke, G.M., Brand, G.W., Whitten, M.J., 1986. Fluctuating asymmetry ‐ a techniquefor measuring developmental stress caused by inbreeding. Aust. J. Biol. Sci. 39,145‐153.Clarke, G.M., McKenzie, L.J., 1992. Fluctuating asymmetry as a quality‐c<strong>on</strong>trolindicator for insect mass rearing processes. J. Ec<strong>on</strong>. Entomol. 85, 2045‐2050.Cuervo, A.M., Restrepo, C. 2007. Assemblage and populati<strong>on</strong>‐level c<strong>on</strong>sequences offorest fragmentati<strong>on</strong> <strong>on</strong> bilateral asymmetry in tropical m<strong>on</strong>tane birds. Biol. J.Linn. Soc. 92, 119‐133.Dufour, K.W., Weatherhead, P.J., 1996. Estimati<strong>on</strong> of organism‐wide asymmetry inred‐winged blackbirds and its relati<strong>on</strong> to studies of mate selecti<strong>on</strong>. Proc. R.Soc. L<strong>on</strong>d. 263, 769‐775.Earle, R.A., 1988. Reproductive isolati<strong>on</strong> between urban and rural populati<strong>on</strong>s ofCape <strong>sparrows</strong> and <strong>house</strong> <strong>sparrows</strong>. Acta XIX C<strong>on</strong>gressus Internati<strong>on</strong>alisOrnithologici, 1778‐1786.Eggert, A.K., Sakaluk, S.K., 1994. Fluctuating asymmetry and variati<strong>on</strong> in the size ofcourtship food gifts in decorated crickets. Am. Nat. 144, 708‐716.Fiering, S., Whitelaw, E., Martin, D.I.K., 2000. To be or not to be active: the stochasticnature of enhancer acti<strong>on</strong>. Bioessays 22, 381‐387.Freeman, D.C., Brown, M.L., Duda, J.J., Graraham, J.H., Emlen, J.M., Krzysik, A.J.,Balbach, H., Kovacic, D.A., Zak, J.C., 2005. Leaf fluctuating asymmetry, soildisturbance and plant stress: a multiple year comparis<strong>on</strong> using two herbs,Ipomoea pandurata and Cnidoscolus stimulosus. Ecol. Ind. 5, 85‐95.Gangestad, S.W., Thornhill, R. 1999. Individual differences in developmental precisi<strong>on</strong>and fluctuating asymmetry: a model and its implicati<strong>on</strong>s. J. Evol. Biol. 12, 402‐416.66


Fluctuating asymmetry as a biomarker of nutriti<strong>on</strong>al stress?Gangestad, S.W., Bennett, K.L., Thornhill, R. 2001. A latent variable model ofdevelopmental instability in relati<strong>on</strong> to men's sexual behaviour. Proc. R. Soc.L<strong>on</strong>d. 268, 1677‐1684.Gorur, G., 2006. Developmental instability in cabbage aphid (Brevicoryne brassicae)populati<strong>on</strong>s exposed to heavy metal accumulated host plants. Ecol. Ind. 6, 743‐748.Grubb, T.C., 1989. Ptilochr<strong>on</strong>ology ‐ feather growth bars as indicators of nutriti<strong>on</strong>alstatus. Auk 106, 314‐320.Grubb, T.C., 2006. Ptilochr<strong>on</strong>ology: feather time and the biology of birds. OxfordUniversity Press, New York.Grubb, T.C., Cimprich, D.A., 1990. Supplementary food improves the nutriti<strong>on</strong>alc<strong>on</strong>diti<strong>on</strong> of wintering woodland birds ‐ evidence from ptilochr<strong>on</strong>ology. OrnisScand. 21, 277‐281.Hole, D.G., Whittingham, M.J., Bradbury, R.B., Anders<strong>on</strong>, G.Q.A., Lee, P.L.M., Wils<strong>on</strong>,J.D., Krebs, J.R., 2002. Widespread local <strong>house</strong> sparrow extincti<strong>on</strong>s ‐agricultural intensificati<strong>on</strong> is blamed for the plummeting populati<strong>on</strong>s of thesebirds. Nature 418, 931‐932.Hopt<strong>on</strong>, M.E., Camer<strong>on</strong>, G.N., Cramer, M.J., Polak, M., Uetz, G.W., 2009. Live animalradiography to measure developmental instability in populati<strong>on</strong>s of smallmammals after a natural disaster. Ecol. Ind. 9, 883‐891.Huggett, R.J., Kimerle, R.A., Mehrle, P.M.J., Bergman, H.L., 1992. Biomarkers:biochemical, physiological, and histological markers of anthropogenic stress.Boca Rat<strong>on</strong>, Lewis Publishers, Florida.Jakob, E.M., Marshall, S.D., Uetz, G.W., 1996. Estimating fitness: a comparis<strong>on</strong> ofbody c<strong>on</strong>diti<strong>on</strong> indices. Oikos 77, 61‐67.Karv<strong>on</strong>en, E., Merilä, J., Rintamäki, P.T., Van D<strong>on</strong>gen, S., 2003. Geography offluctuating asymmetry in the greenfinch, Carduelis chloris. Oikos 100, 507‐516.Knierim, U., Van D<strong>on</strong>gen S., Forkman, B., Tuyttens, F.A.M., Spinka, M., Campo, J.L.,Weissengruber, G.E., 2007. Fluctuating asymmetry as an animal welfareindicator ‐ A review of methodology and validity. Physiol. Behav. 92, 398‐421.Kodric‐Brown, A., 1997. Sexual selecti<strong>on</strong>, stabilizing selecti<strong>on</strong> and fluctuatingasymmetry in two populati<strong>on</strong>s of pupfish (Cyprinod<strong>on</strong> pecosensis). Biol. J. Linn.Soc. 62, 553‐566.67


Chapter 2Leamy, L., 1993. Morphological integrati<strong>on</strong> of fluctuating asymmetry in the mousemandible. Genetica 89, 139‐153.Lens, L., Van D<strong>on</strong>gen, S., 1999. Evidence for organism‐wide asymmetry in five birdspecies of a fragmented Afrotropical forest. Proc. R. Soc. L<strong>on</strong>d. 266, 1055‐1060.Lens, L., Van D<strong>on</strong>gen, S., Kark, S., Matthysen, E., 2002. Fluctuating asymmetry as anindicator of fitness: can we bridge the gap between studies? Biol. Rev. 77, 27‐38.Leung, B., Forbes, M.R., 1996. Fluctuating asymmetry in relati<strong>on</strong> to stress and fitness:effects of trait type as revealed by meta‐analysis. Ecoscience 3, 400‐413.Ludwig, W., 1932. Das rechts‐links‐problem im tierreich und beim menschen.Springer, Berlin.Manel, S., Debouzie, D., 1995. Predicti<strong>on</strong> of egg and larval development times in thefield under variable temperatures. Acta Oecol.‐Int. J. Ecol. 16, 205‐218.Mayer, F.L., Versteeg, D.J., Mckee, M.J., Folmar, L.C., Graney, R.L., McCume, D.C.,Rattner, B.A., 1992. Physiological and n<strong>on</strong>specific biomarkers, in: Huggett, R.J.,Kimerle, R.A., Mehrle, P.M.J., Bergman, H.L. (Eds.), Biomarkers: biochemical,physiological, and histological markers of anthropogenic stress. Boca Rat<strong>on</strong>,Lewis Publishers, Florida, pp. 5‐86.McAdams, H.H., Arkin, A., 1999. It's a noisy business! Genetic regulati<strong>on</strong> at thenanomolar scale. Trends Genet. 15, 65‐69.Moller, A.P., 1996. Development of fluctuating asymmetry in tail feathers of the barnswallow Hirundo rustica. J. Evol. Biol. 9, 677‐694.Moller, A.P., Swaddle, J.P., 1997. Asymmetry, developmental stability, and evoluti<strong>on</strong>.Oxford University Press, Oxford.Moller, A.P., Jenni<strong>on</strong>s, M.D. 2002. How much variance can be explained by ecologistsand evoluti<strong>on</strong>ary biologists? Oecologia 132, 492‐500.Murphy, M.E., King, J.R. 1991. Ptilochr<strong>on</strong>ology ‐ a critical evaluati<strong>on</strong> of assumpti<strong>on</strong>sand utility. Auk, 108, 695‐704.Nills<strong>on</strong>, J.‐A., 1994. Energetic stress and the degree of fluctuating asymmetry:implicati<strong>on</strong>s for a l<strong>on</strong>g‐lasting, h<strong>on</strong>est signal. Evol. Ecol. 8, 248‐255.O'Meara, M., 1999. Reinventing cities for people and the planet. Worldwatch paper147. Worldwatch Institute, Washingt<strong>on</strong>, D. C.68


Fluctuating asymmetry as a biomarker of nutriti<strong>on</strong>al stress?Palmer, A.R., 1994. Fluctuating asymmetry: a primer, in: Markow, T. (Ed.),Developmental instability‐ Its origins and evoluti<strong>on</strong>ary implicati<strong>on</strong>s. KluwerAcademic Publishers, Dordrecht, pp. 335‐364.Palmer, A.R., 1996. Waltzing with asymmetry. Bioscience 46, 518‐532.Palmer, A.R., Strobeck, C., 1986. Fluctuating asymmetry ‐ measurement, analysis,patterns. Annu. Rev. Ecol. Syst. 17, 391‐421.Pars<strong>on</strong>s, P.A., 1990. Fluctuating asymmetry and stress intensity. Trends Ecol. Evol. 5,97‐98.Pars<strong>on</strong>s, P.A., 1992. Fluctuating asymmetry ‐ a biological m<strong>on</strong>itor of envir<strong>on</strong>mentaland genomic stress. Heredity 68, 361‐364.Peach, W.J., Vincent, K.E., Fowler, J.A., Grice, P.V., 2008. Reproductive success of<strong>house</strong> <strong>sparrows</strong> al<strong>on</strong>g an urban gradient. Anim. C<strong>on</strong>serv. 11, 493‐503.Polak, M. 2003. Developmental instability: Causes and c<strong>on</strong>sequences. OxfordUniversity Press, Oxford.Polo, V., Carrascal, L.M., 1999. Ptilochr<strong>on</strong>ology and fluctuating asymmetry in tail andwing feathers in coal tits Parus ater. Ardeola 46, 195‐204.Reeve, E.C.R., 1960. Some genetic tests <strong>on</strong> asymmetry of sternopleural chaetanumber in Drophila. Genet. Res. 1, 151‐172.Shaw, L.M., Chamberlain, D., Evans, M., 2008. The <strong>house</strong> Sparrow Passer domesticusin urban areas: reviewing a possible link between post‐decline distributi<strong>on</strong> andhuman socioec<strong>on</strong>omic status. J. Ornithol. 149, 293‐299.Shykoff, J.A., Moller, A.P., 1999. Fitness and asymmetry under differentenvir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s in the barn swallow. Oikos 86, 152‐158.Soulé, M.E., 1967. Phenetics of natural populati<strong>on</strong>s. II. Asymmetry and evoluti<strong>on</strong> in alizard. Am. Nat. 101, 141‐159.Soulé, M.E., 1991. Land‐use planning and wildlife maintenance ‐ guidelines forc<strong>on</strong>serving wildlife in an urban landscape. J. Am. Plan. Assoc. 57, 313‐323.Takaki, Y., Eguchi, K., Nagata, H., 2001. The growth bars <strong>on</strong> tail feathers in the maleStyan's grasshopper warbler may indicate quality. J. Avian Biol. 32, 319‐325.Thomas, A.L.R., 1993. On the aerodynamics of bird tails. Philos. Trans. R. Soc. L<strong>on</strong>d.340, 361‐380.69


Chapter 2Van D<strong>on</strong>gen, S., 1998. The distributi<strong>on</strong> of individual fluctuating asymmetry: Why arethe coefficients of variati<strong>on</strong> of the unsigned FA so high? Ann. Zool. Fenn. 35,79‐85.Van D<strong>on</strong>gen, S., Lens, L., Molenberghs, G., 1999a. Mixture analysis of asymmetry:modelling directi<strong>on</strong>al asymmetry, antisymmetry and heterogeneity influctuating asymmetry. Ecol. Lett. 2, 387‐396.Van D<strong>on</strong>gen, S., Molenberghs, G., Matthysen, E., 1999b. The statistical analysis offluctuating asymmetry: REML estimati<strong>on</strong> of a mixed regressi<strong>on</strong> model. J. Evol.Biol. 12, 94‐102.Van D<strong>on</strong>gen, S., Sprengers, E., Löfstedt, C., 1999c. Correlated development,organism‐wide asymmetry and patterns of asymmetry in two moth species.Genetica 105, 81‐91.Vangestel, C., Braeckman, B. P., Matheve, H., Lens, L., 2010. C<strong>on</strong>straints <strong>on</strong> homerange behaviour affect nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> in urban <strong>house</strong> <strong>sparrows</strong> (Passerdomesticus). Biol. J. Linn. Soc., 101, 41–50.Van Nuffel, A., Tuyttens, F.A.M., Van D<strong>on</strong>gen, S., Talloen, W., Van Poucke, E., S<strong>on</strong>ck,B., Lens, L., 2007. Fluctuating asymmetry in broiler chickens: a decisi<strong>on</strong>protocol for trait selecti<strong>on</strong> in seven measuring methods. Poult. Sci. 86, 2555‐2568.Verbeke, G., Molenberghs, G., 2000. Linear mixed models for l<strong>on</strong>gitudinal data.Springer‐Verlag, New York.Waldmann, P. 2004. A quantitative genetic method for estimating developmentalinstability. Evoluti<strong>on</strong> 58, 238‐244.Whitlock, M., 1996. The heritability of fluctuating asymmetry and the genetic c<strong>on</strong>trolof developmental stability. Proc. R. Soc. L<strong>on</strong>d. 263, 849‐853.Whitlock, M., 1998. The repeatability of fluctuating asymmetry: a revisi<strong>on</strong> andextensi<strong>on</strong>. Proc. R. Soc. L<strong>on</strong>d. 265, 1429‐1431.70


Chapter 3Developmental stability covaries with genome‐wide and singlelocusheterozygosity in <strong>house</strong> <strong>sparrows</strong>Carl VANGESTEL, Joachim MERGEAY, Deborah A. DAWSON, Viki VANDOMME &Luc LENSPLoS ONE, in press©Chantal Deschepper71


Chapter 3ABSTRACTFluctuating asymmetry (FA), a measure of developmental instability, has beenhypothesized to increase with genetic stress. Despite numerous studies providingempirical evidence for associati<strong>on</strong>s between FA and genome‐wide propertiessuch as multi‐locus heterozygosity, support for single‐locus effects remains scant.Here we test if, and to what extent, FA co‐varies with single‐ and multilocusmarkers of genetic diversity in <strong>house</strong> sparrow (Passer domesticus) populati<strong>on</strong>sal<strong>on</strong>g an urban gradient. In line with theoretical expectati<strong>on</strong>s, FA was inverselycorrelated with genetic diversity estimated at genome level. However, thisrelati<strong>on</strong>ship was largely driven by variati<strong>on</strong> at a single key locus. C<strong>on</strong>trary to ourexpectati<strong>on</strong>s, relati<strong>on</strong>ships between FA and genetic diversity were not str<strong>on</strong>ger inindividuals from urban populati<strong>on</strong>s that experience higher nutriti<strong>on</strong>al stress. Wec<strong>on</strong>clude that loss of genetic diversity adversely affects developmental stability inP. domesticus, and more generally, that the molecular basis of developmentalstability may involve complex interacti<strong>on</strong>s between local and genome‐wideeffects. Further <str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>on</strong> the relative effects of single‐locus and genome‐wideeffects <strong>on</strong> the developmental stability of populati<strong>on</strong>s with different geneticproperties, is therefore needed.INTRODUCTIONDevelopmental stability refers to the ability of an organism to achieve aphenotypic endpoint, predetermined by its genotype and the envir<strong>on</strong>ment, al<strong>on</strong>ga developmental pathway in the face of random perturbati<strong>on</strong>s [1]. Becausedevelopmental stability has been shown to decrease with envir<strong>on</strong>mental andgenetic stress and to correlate with fitness traits such as fecundity, competitiveability, parasite resistance and survival (see reviews in for example [1, 2, 3]), it hasreceived much attenti<strong>on</strong> in ecology and c<strong>on</strong>servati<strong>on</strong> biology. Furthermore, asdevelopmental instability may increase morphological variati<strong>on</strong> and reveal crypticgenetic variati<strong>on</strong> (e.g. [4]), it can affect evoluti<strong>on</strong>ary processes, and possiblyspeciati<strong>on</strong>, too [5].Populati<strong>on</strong> and individual levels of developmental stability are mostcomm<strong>on</strong>ly estimated by corresp<strong>on</strong>ding levels of fluctuating asymmetry (FA), i.e.small, random deviati<strong>on</strong>s from perfect left‐right symmetry in bilateral traits [6].Developmental stability and FA are inversely related to <strong>on</strong>e another as high levelsof FA reflect poor developmental stability. Developmental theory assumes thatleft and right trait sides reflect two independent replicates of the samedevelopmental event and should therefore develop symmetrically in the absenceof random perturbati<strong>on</strong>s [3]. While empirical studies revealed positiverelati<strong>on</strong>ships between FA and genetic stress (reviewed by [7,8]), numerousinc<strong>on</strong>clusive examples nourish the debate over the generality of these72


Developmental stability covaries with heterozygosityrelati<strong>on</strong>ships [9,10]. Relati<strong>on</strong>ships between FA, stress and fitness have not alwaysbeen c<strong>on</strong>sistent in the past but seem to be highly variable and species, stress andtrait specific [2,3]. Heterogeneity in the strength or directi<strong>on</strong> of relati<strong>on</strong>ships withFA may result from complex genotype‐envir<strong>on</strong>ment interacti<strong>on</strong>s [11]. Forexample, the fact that relati<strong>on</strong>ships between FA and heterozygosity were <strong>on</strong>lysignificant under suboptimal rearing c<strong>on</strong>diti<strong>on</strong>s in the freshwater fish Gambusiaholbrooki [12], suboptimal foraging c<strong>on</strong>diti<strong>on</strong>s in the forest bird Turdus helleri[13], and suboptimal growing c<strong>on</strong>diti<strong>on</strong>s in the flowering plant Lychnis viscaria[14], suggests that developmental stability may be traded‐off against other vitallife‐history traits when individuals become energetically challenged [12,13,15].Based <strong>on</strong> developmental and genetic theory, at least two hypotheticalmechanisms underlying the genetic basis of developmental stability have beenput forward [7,9,]: (i) the heterozygosity hypothesis states that individuals withhigh levels of protein heterozygosity are developmentally stable as a result ofdominance or overdominance effects [8,16,17,18]. Genetic dominance refers toincreased expressi<strong>on</strong> of deleterious recessive alleles in homozygote individuals[19], whereas genetic overdominance refers to superior biochemical efficiency ofindividuals that are heterozygous for genes at marker loci (‘true overdominance’)or at n<strong>on</strong>‐neutral genes tightly linked to the latter (‘associative overdominance’)[7,20,21,22]. Both genetic dominance and ‘associative’ overdominance implygenetic disequilibria, however, the ecological c<strong>on</strong>diti<strong>on</strong>s under which thesedisequilibria occur, can differ. Genetic dominance is most str<strong>on</strong>gly associated withn<strong>on</strong>‐random associati<strong>on</strong> of diploid genotypes in zygotes (identity disequilibria)which is comm<strong>on</strong> under partial inbreeding [17]. Associative overdominance, inturn, is more str<strong>on</strong>gly associated with n<strong>on</strong>‐random associati<strong>on</strong>s of alleles atdifferent loci in gametes (linkage disequilibria), which typically occurs underrecent populati<strong>on</strong> bottlenecks followed by rapid populati<strong>on</strong> expansi<strong>on</strong> orintermixing of genetically differentiated populati<strong>on</strong>s; (ii) the genomic coadaptati<strong>on</strong>hypothesis states that balanced co‐adapted gene complexes result inhigher developmental stability because natural selecti<strong>on</strong> favours alleles at manydifferent loci that ‘harm<strong>on</strong>iously’ interact during the developmental process toproduce stable phenotypes [7,9,16]. Str<strong>on</strong>g selecti<strong>on</strong> or outbreeding has beenshown to break up such co‐adapted gene complexes [7,9].While numerous studies have provided empirical evidence for associati<strong>on</strong>sbetween developmental stability and genome‐wide processes such as multi‐locusheterozygosity, evidence for single locus effects (local effect hypothesis sensu[16,17,23]) is still scant. A <str<strong>on</strong>g>study</str<strong>on</strong>g> of inactive/null alleles at lactate dehydrogenase73


Chapter 3(LDH) loci in rainbow trout (Oncorhynchus mykiss) showed reduced levels ofdevelopmental stability in heterozygotes, probably due to a reducti<strong>on</strong> in enzymeactivity despite potential beneficial effects of chromosomal heterozygosity [24]. A<str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>on</strong> blowflies (Lucilia cuprina) showed that developmental stability in bristlenumbers (but not wing characters) initially decreased up<strong>on</strong> exposure to a newpesticide but restored after modificati<strong>on</strong> of the genetic background throughnatural selecti<strong>on</strong> [25]. While loss of developmental stability was first explained bya disrupti<strong>on</strong> of co‐adapted gene complexes, further <str<strong>on</strong>g>study</str<strong>on</strong>g> revealed direct effectsof single resistance and modifier genes [26]. Recently, transcripti<strong>on</strong>al knockdowntechniques dem<strong>on</strong>strated the involvement of heath shock protein genes in themolecular c<strong>on</strong>trol of developmental stability in Drosophila melanogaster andArabidopsis thaliana [27,28].Here we <str<strong>on</strong>g>study</str<strong>on</strong>g> how developmental stability in a metric trait co‐varies withindices of genome‐wide and single‐locus genetic diversity in microsatellitemarkers, within and am<strong>on</strong>g 26 <strong>house</strong> sparrow (Passer domesticus) populati<strong>on</strong>sal<strong>on</strong>g an urban gradient. Despite the wealth of analytic tools developed for n<strong>on</strong>codingneutral markers and their presumed suitability to test relati<strong>on</strong>ships withgenetic diversity, few studies have applied such markers to model single‐ andmulti‐locus relati<strong>on</strong>ships with developmental stability [29,30,31]. Based <strong>on</strong> thefollowing ecological and genetic evidence, relati<strong>on</strong>ships between developmentalstability and genetic diversity are predicted to be str<strong>on</strong>ger in more urbanizedareas. First, urban <strong>house</strong> <strong>sparrows</strong> are more str<strong>on</strong>gly, energetically challengedthan suburban and rural individuals [32,33]. A previous <str<strong>on</strong>g>study</str<strong>on</strong>g> c<strong>on</strong>firmed that asimilar stress gradient was apparent within our <str<strong>on</strong>g>study</str<strong>on</strong>g> area [34]. Sec<strong>on</strong>d, urbanpopulati<strong>on</strong>s are <strong>on</strong> average smaller than suburban and rural <strong>on</strong>es (C. Vangestel,unpublished data). Under reduced populati<strong>on</strong> sizes, variati<strong>on</strong> in inbreeding,estimates of genome‐wide diversity based <strong>on</strong> restricted numbers of markers [21],and statistical power to detect relati<strong>on</strong>ships with developmental stability, areexpected to increase. Individual‐level FA and genetic estimates of multi‐locusdiversity show high sampling variability. The former represents variances based<strong>on</strong> two data points (e.g. left and right) while the latter attempts to estimategenome‐wide characteristics using <strong>on</strong>ly a limited number of markers. As such,both estimates may become very noisy and are therefore regarded as weakestimates of complex biological processes such as respectively developmentalstability [35,36] and genome‐wide diversity [37]. C<strong>on</strong>sequently, associati<strong>on</strong>sbetween both estimates can be expected to be low (see [37] for a generaldiscussi<strong>on</strong>) while joint analysis of average values between groups can still bed<strong>on</strong>e with reas<strong>on</strong>able accuracy as l<strong>on</strong>g as the number of sampled individuals is74


Developmental stability covaries with heterozygosityhigh. As the strength of relati<strong>on</strong>ships between developmental stability andgenetic diversity may hence vary with the hierarchical level of statistical analysis[31,39,40], hypotheses are tested at the level of populati<strong>on</strong>s and individuals.MATERIAL AND METHODSEthics StatementAll procedures involving animals were reviewed and approved by theAnimal Ethics Committee of <strong>Ghent</strong> University (Permit Number ECP 08/05).Study siteHouse <strong>sparrows</strong> were sampled al<strong>on</strong>g an urban gradient ranging from thecity centre of <strong>Ghent</strong> (northern Belgium) and its suburban periphery to the ruralvillage of Zomergem, located ca. 12 km NW of <strong>Ghent</strong>. Urbanizati<strong>on</strong> was measuredas the ratio of built‐up to total grid cell area (each cell measuring 90,000 m² <strong>on</strong>the ground) and ranged between 0‐0.10 ( ‘rural’), 0.11‐0.30 (‘suburban’) andlarger than 0.30 (‘urban’) (Arcgis versi<strong>on</strong> 9.2.). We selected 26 plots al<strong>on</strong>g thisgradient (Figure 3.1) in which we captured a total of 690 adult <strong>house</strong> <strong>sparrows</strong> bystandard mist netting between 2003 and 2009 (equal sex ratios in majority ofplots; see Table 4.1 for a detailed outline of the number of individuals sampledper year per locati<strong>on</strong>). Up<strong>on</strong> capture, each individual was sexed and aged andbody mass (to the nearest 0.1g), wing length (to the nearest 0.5mm) and lengthof the left and right tarsus (to the nearest 0.01mm; three repeatedmeasurements sequenced left‐right‐left‐right‐left‐right or vice versa and withdigital slide calliper reset to zero between two c<strong>on</strong>secutive measurements) weremeasured. Before release, we collected a small sample of body feathers for DNAanalysis and the left and right fifth rectrix (counting outward) for feather growthanalysis [34].Fluctuating asymmetry analysisTo estimate FA in tarsus length at an individual and populati<strong>on</strong> level, wecarried out mixed regressi<strong>on</strong> analysis with restricted maximum likelihoodparameter estimati<strong>on</strong> (REML) to obtain unbiased individual FA estimates [41].“Side” was modelled as a fixed effect, while “individual” and “individual*side”were modelled as random effects. Individual FA estimates were obtained fromthe individual random effects (“individual*side”). First, we modelled separatevariances in measurement errors (ME) for each bird bander as the level of75


Chapter 3Fig. 3.1. Geographical locati<strong>on</strong> of urban (filled circles), suburban (open circles) and rural (filledtriangles) <str<strong>on</strong>g>study</str<strong>on</strong>g> plots within and near the city of <strong>Ghent</strong> (Belgium). Inner c<strong>on</strong>tour encompasses<strong>Ghent</strong> city centre, outer c<strong>on</strong>tour encompasses surrounding municipalities and grey shadingrepresents built‐up area.accuracy between banders might differ. Sec<strong>on</strong>d we tested for the presence ofdirecti<strong>on</strong>al asymmetry (fixed “side” effect; DA) by F‐statistics, adjusting thedenominator degrees of freedom by Satterthwaite's formula [42]. Thedistributi<strong>on</strong> of signed FA in tarsus length showed a significant directi<strong>on</strong>alcomp<strong>on</strong>ent in all bird banders as measurements of right tarsi were c<strong>on</strong>sistentlylarger than those of left <strong>on</strong>es. These differences were attributed to the specifichandling of a bird when measuring both tarsi and therefore do not compromisethe FA values as the mixed regressi<strong>on</strong> model corrects for this systemic bias byestimating subject‐specific deviati<strong>on</strong>s from the fixed regressi<strong>on</strong> slope. Third, wetested the significance of FA by comparing the likelihood of models with andwithout random “individual*side” effect. Variati<strong>on</strong> in length between repeated76


Developmental stability covaries with heterozygositymeasurements within each side (ME) was significantly separated from variati<strong>on</strong>between both trait sides (signed FA) (χ²= 8454.7, d.f.=1, p9.4). Fourth, we calculated unbiasedsigned FA values (subject specific slope deviati<strong>on</strong>s from the fixed regressi<strong>on</strong>represented the amount of asymmetry after correcting for DA and ME). Finally,we calculated absolute values of the signed FA values (unsigned FA estimates,further referred to as “FA”) for hypothesis testing. These individual estimateswere used for individual‐based analyses while populati<strong>on</strong> mean values were usedfor analyses c<strong>on</strong>ducted at the populati<strong>on</strong> level.Fifth, we compared the kurtosislevels of the signed FA values to detect antisymmetry [43]. Visual inspecti<strong>on</strong> ofsigned FA values did not indicate the presence of antisymmetry as platycurtoticdistributi<strong>on</strong>s were absent.DNA extracti<strong>on</strong>, PCR and genotypingGenomic DNA was extracted from ten plucked body feathers using aChelex resin‐based method (InstaGene Matrix, Bio‐Rad) [44]. Polymerase chainreacti<strong>on</strong>s were organized in four multiplex‐sets and included both traditi<strong>on</strong>al‘an<strong>on</strong>ymous’ microsatellites as well as those developed based <strong>on</strong> expressedsequence tags. For all loci full sequence length, chromosome locati<strong>on</strong> <strong>on</strong> thezebra finch genome and the nearest known zebra finch gene are given in anappendix 3.1. (genome locati<strong>on</strong>s were assigned using WU‐BLAST 2.0 software).The first multiplex reacti<strong>on</strong> c<strong>on</strong>tained Pdoµ1 [45], Pdo32, Pdo47 [46] and TG04‐012 [47]; the sec<strong>on</strong>d <strong>on</strong>e c<strong>on</strong>tained Pdoµ3 [45], Pdoµ5 [48], TG13‐017 and TG07‐022 [47]; the third multiplex reacti<strong>on</strong> c<strong>on</strong>tained Pdo10 [48], Pdo16, Pdo19, Pdo22[46] and TG01‐040 [47]; the last set c<strong>on</strong>sisted of Pdo9 [48], TG01‐148 and TG22‐001 [47]. PCR reacti<strong>on</strong>s were performed <strong>on</strong> a 2720 Thermal Cycler (AppliedBiosystems) in 9 µL volumes and c<strong>on</strong>tained approximately 3 µL genomic DNA, 3µL QIAGEN Multiplex PCR Mastermix (QIAGEN) and 3 µL primermix(c<strong>on</strong>centrati<strong>on</strong>s were 0.1 µM (Pdoµ1), 0.12 µM (TG01‐148), 0.16 µM (Pdo10,Pdo19, Pdo22, Pdo32, TG04‐012) and 0.2 µM (Pdoµ3, Pdoµ5, Pdo9, Pdo16,Pdo47, TG01‐040, TG07‐022, TG13‐017, TG22‐001)). The applied PCR profilec<strong>on</strong>tained an initial denaturati<strong>on</strong> step of 15 min at 95°C, followed by 35 cycli of 30s at 94°C, 90 s at 57°C and 60 s at 72°C. Finally, an additi<strong>on</strong>al el<strong>on</strong>gati<strong>on</strong> step of 30min at 60°C and an indefinite hold at 4°C was allowed. Prior to genotypingsamples were quantified using a ND1000 spectrometer (Nanodrop technologies)and adjusted to a final c<strong>on</strong>centrati<strong>on</strong> of 10 ng/µL. Negative and positive c<strong>on</strong>trolswere employed during extracti<strong>on</strong> and PCR to rule out c<strong>on</strong>taminati<strong>on</strong> of reagentsand ensure adequate primer aliquot working, respectively. PCR products were77


Chapter 3visualized <strong>on</strong> an ABI3730 Genetic Analyzer (Applied Biosystems), an internal LIZ‐600 size standard was applied to determine allele size, known standard sampleswere added to align different runs and fragments were scored using the softwarepackage GENEMAPPER 4.0. Only individuals for which at least 10 markerssuccessfully amplified were selected for subsequent analyses.Genetic data analysisBecause the genotyping of n<strong>on</strong>invasive DNA samples is potentially pr<strong>on</strong>eto artefacts [49,50] we tested for scoring errors due to stuttering or differentialamplificati<strong>on</strong> of size‐variant alleles that may cause drop‐out of large alleles usingMICRO‐CHECKER [51]. The same program was also used to assess the observedand expected frequency of null alleles by comparing frequencies of observed andM<strong>on</strong>te Carlo simulated homozygotes [52]. All microsatellite loci (n=16) werechecked for Hardy‐Weinberg and linkage equilibrium with GENEPOP 4.0 [53,54].Mean unbiased expected heterozygosity across all populati<strong>on</strong>s (H e [55]) wascomputed for each locus using FSTAT 2.9.3.2. [56]. Individual genetic diversitywas estimated by (i) standardized multilocus heterozygosity (hereafter calledMLH [57]), (ii) Ritland inbreeding coefficients ( f ) , [58]) and (iii) squareddifferences in allele size (d², [59,60]).(i) MLH was calculated as the ratio of the proporti<strong>on</strong> of typed loci for whicha given individual was heterozygote over the mean heterozygosity of those loci[57], thereby eliminating possible c<strong>on</strong>founding effects of unbalanced datasets.Individual MLH estimates were calculated using Rhh [61], an extensi<strong>on</strong> package ofR (http://www.r‐project.org), which also provides two additi<strong>on</strong>al heterozygositybasedindices, i.e. homozygosity by loci (HL [62]) and internal relatedness (IR[63]). HL weighs the c<strong>on</strong>tributi<strong>on</strong> of each locus and is calculated as HL =∑ ∑ ∑ ,where E h and E j represent the expected heterozygosities of the homozygous andheterozygous loci, respectively. IR <strong>on</strong> the other hand incorporates allelefrequencies to estimate levels of homozygosity. IR = 2 ∑ /(2N‐∑ ,where H represents the number of homozygous loci, N the total number of lociand f i the frequency of the ith allele in the genotype. Positive values reflect highlevels of homozygosity while negative values are indicative for highheterozygosity. As all three indices were str<strong>on</strong>gly correlated (all |r|>0.97;p


Developmental stability covaries with heterozygosityFig. 3.2. Correlati<strong>on</strong> matrix between multi‐locus (a) heterozygosity‐based indices (MLH, HL andIR; see text for details) and (b) genetic diversity indices (MLH, d² and f ) ).(ii) Ritland estimates were obtained from the software program MARK(available at http://genetics.forestry.ubc.ca/ritland/programs.html) and2Sil− pilcalculated as f ) = ∑ ( ) /i,l ∑ ( −1)plnl, where i and l represent alleles andilloci, respectively; S il equals 1 if both alleles are allele i or 0 otherwise, P il is thefrequency of allele i at locus l and n l denotes the number of alleles at locus l [58].This unbiased method‐of‐moment estimator is thought to be particularly usefulfor highly variable markers since precisi<strong>on</strong> of the estimate is proporti<strong>on</strong>al to thenumber of alleles per locus [64].(iii) Mean squared distances between two alleles within an individual werecalculated as meann2 ( i1− i2)²d = ∑ , where i 1 and i 2 are the length in repeat units of allele 1ni=1and allele 2 at locus i and n is the number of loci analyzed. By dividing all d² valuesby the maximum observed value at that locus, effects of highly variable loci wereaccounted for [63,65]. This estimator is thought to allow inference about the timesince coalescence of two alleles, given that alleles of more similar length are morelikely related by comm<strong>on</strong> ancestry [60,65] and has proven to be a valuablemeasure in the event of recent admixture of highly differentiated populati<strong>on</strong>s andsuperior fitness of hybrid descendant due to heterosis. Under such c<strong>on</strong>diti<strong>on</strong>s, d²is hypothesized to be the most optimal fitness predictor asit integrates themigrati<strong>on</strong> signature into its estimate [65], unlike the other heterozygosity‐basedindices.79


Chapter 3To test whether the number of genetic markers used in our <str<strong>on</strong>g>study</str<strong>on</strong>g> wassufficient to make valid inferences <strong>on</strong> genome‐wide heterozygosity, we dividedour marker set in two random subsets and calculated individual multilocusheterozygosity indices for each subset with the program Rhh [61]. In order tomake the claim of genome‐wide heterozygosity tenable, both subsets shouldyield comparable estimates of individual multilocus heterozygosity. Hence,individual multilocus heterozygosity estimates should be positively correlated andthis procedure was repeated 1000 times to obtain c<strong>on</strong>fidence intervals for meanheterozygosity‐heterozygosity correlati<strong>on</strong>s.Statistical analysisWe used Pears<strong>on</strong> correlati<strong>on</strong> coefficients to quantify the strength ofassociati<strong>on</strong>s between d², MLH and f ) , and general linear models with Gaussianerror structure to <str<strong>on</strong>g>study</str<strong>on</strong>g> between‐plot variati<strong>on</strong> in genetic diversity andrelati<strong>on</strong>ships with tarsus FA. Observer was added as a covariate to account forpossible c<strong>on</strong>founding effects of between‐observer heterogeneity and analyseswere tested at two hierarchical levels: am<strong>on</strong>g individuals and am<strong>on</strong>g populati<strong>on</strong>s(using mean values). Individual‐based analyses were c<strong>on</strong>ducted in two ways. First,associati<strong>on</strong>s between FA and genetic diversity were estimated for eachpopulati<strong>on</strong> using an ANCOVA model (populati<strong>on</strong>, genetic diversity and theirinteracti<strong>on</strong> were modelled as fixed factors). An average within‐populati<strong>on</strong> effectwas estimated using a c<strong>on</strong>trast statement. Sec<strong>on</strong>d, individuals were pooledacross all populati<strong>on</strong>s. While in the former model differences betweenpopulati<strong>on</strong>s are ignored, results from the latter model should resemble those ofthe populati<strong>on</strong>‐level analysis if str<strong>on</strong>g populati<strong>on</strong> effects are present. Initially,models were run for all markers combined (genome‐wide effects). Next, theprocedure was repeated per locus (unstandardized heterozygosity and d²estimates) and the relati<strong>on</strong>ship between genetic variability and strength,measured as total variance explained, of these (single‐locus) genotype‐FAassociati<strong>on</strong>s was assessed. Positive Spearman rank correlati<strong>on</strong> coefficients implythat more heterozygous markers are more informative [23]. Finally, we applied ageneral linear mixed model to test whether associati<strong>on</strong>s between FA and geneticdiversity varied with urbanizati<strong>on</strong>. Genetic diversity, urbanizati<strong>on</strong>, theirinteracti<strong>on</strong> and bird bander were included as fixed factors. Study plot and theinteracti<strong>on</strong> with each index of genetic variati<strong>on</strong> were modelled as random effects.Degrees of freedom were estimated by Satterthwaite formulas to account forstatistical dependence [66]. Per multi‐locus genetic diversity index a B<strong>on</strong>ferr<strong>on</strong>icorrecti<strong>on</strong> [67] was applied to account for multiple comparis<strong>on</strong>s. All statistical80


Developmental stability covaries with heterozygosityanalyses were performed with program SAS (versi<strong>on</strong> 9.2., SAS Institute 2008,Cary, NC, USA).RESULTSGenetic diversityAll loci were highly polymorphic and most locus by populati<strong>on</strong>combinati<strong>on</strong>s were in Hardy‐Weinberg equilibrium, yet some deviati<strong>on</strong>s reachedsignificance after B<strong>on</strong>ferr<strong>on</strong>i correcti<strong>on</strong> (three populati<strong>on</strong>s for Pdo47, twopopulati<strong>on</strong>s for Pdoµ5 and <strong>on</strong>e for resp. Pdo32, Pdo9 and TG13‐017). There wasno evidence that scoring errors due to large allele drop‐out or stutter c<strong>on</strong>tributedto this n<strong>on</strong>equilibrium. To ascertain that these deviati<strong>on</strong>s did not influence ourresults we ran all analyses with and without these five markers. Removing theseloci did not alter any of the overall c<strong>on</strong>clusi<strong>on</strong>s, hence <strong>on</strong>ly results based <strong>on</strong> thetotal dataset are reported. There was no evidence for linkage disequilibriumbetween any pair of loci. Standard statistics for each marker are presented inTable 3.1. Estimates of genetic diversity were significantly correlated at theindividual level, most str<strong>on</strong>gly between f ) and MLH ( f ) ‐MLH: r=‐0.77, p


Chapter 3F 1,24 =7.88, p=0.009, R²=0.25) (Figure 3.3; Table 3.2). In c<strong>on</strong>trast, d² was notcorrelated with FA at the individual nor populati<strong>on</strong> level (all p>0.15).Table 3.1. Locus specific descriptive statistics for 16 microsatellite markers.Locus N N A H o H e f nullTG01‐040 537 6 0.40 0.44 0.028 (0.01)TG01‐148 486 3 0.42 0.38 ‐0.023 (0.02)TG04‐012 549 5 0.53 0.59 0.039 (0.016)TG07‐022 493 5 0.37 0.41 0.026 (0.012)TG13‐017 547 8 0.52 0.64 0.074 (0.015)TG22‐001 478 11 0.34 0.41 0.054 (0.013)Pdoµ1 550 20 0.80 0.85 0.024 (0.009)Pdoµ3 515 19 0.83 0.85 0.015 (0.007)Pdoµ5 523 22 0.76 0.82 0.033 (0.011)Pdo9 442 31 0.65 0.75 0.052 (0.013)Pdo10 596 18 0.78 0.82 0.021 (0.011)Pdo16 549 17 0.81 0.84 0.016 (0.01)Pdo19 573 9 0.60 0.62 0.008 (0.011)Pdo22 578 16 0.73 0.72 ‐0.005 (0.011)Pdo32 491 20 0.59 0.75 0.093 (0.015)Pdo47 562 17 0.68 0.83 0.078 (0.013)Number of individuals genotyped (N), number of distinct alleles per locus (N A),observed (H o) and expected (H e) heterozygosity and null allele frequency (f null)Single­locus associati<strong>on</strong> between FA and genetic diversitySingle‐locus effects at the individual level were in c<strong>on</strong>cordance with thosebased <strong>on</strong> multiple loci, i.e. individual genotypes failed to explain variati<strong>on</strong> in FA ateach locus (all R²≤0.06). When analyzing each microsatellite locus separately, theassociati<strong>on</strong> between heterozygosity and FA at populati<strong>on</strong> level was str<strong>on</strong>gest atloci Pdoµ1, Pdo16 and TG04‐012, whereas mean differences in allelic size werestr<strong>on</strong>gest at locus Pdo16. After sequential B<strong>on</strong>ferr<strong>on</strong>i correcti<strong>on</strong> for multipletesting, the associati<strong>on</strong> at locus Pdoµ1 remained significant (Table 3.3).As all loci were in linkage equilibrium and heterozygosity‐heterozygositycorrelati<strong>on</strong>s were low, FA was modeled as a multiple regressi<strong>on</strong> with meanheterozygosity at each locus as independent variable. A model with all lociexplained 85% of the variance in FA, whereas 43% of the variance was explainedby a model with locus Pdoµ1 <strong>on</strong>ly, and 53% by a model with loci Pdoµ1 and82


Developmental stability covaries with heterozygosityFig. 3.3. Inverse relati<strong>on</strong>ship between standardized multilocus heterozygosity and fluctuatingasymmetry across 26 <strong>house</strong> sparrow populati<strong>on</strong>s.Pdo16 <strong>on</strong>ly. After removing <strong>on</strong>e or both loci, FA‐MLH relati<strong>on</strong>ships remainedsignificant (Pdoµ1 removed: F 1,24 =9.97, p=0.0043, R² MLH =0.29 ; Pdoµ1+Pdo16removed: F 1,24 =6.94, p=0.015, R² MLH =0.22). The strength of single‐locus FA‐d²relati<strong>on</strong>ships (16 loci) were positively correlated with expected heterozygosity atpopulati<strong>on</strong> level (r s =0.54, p=0.03) but not at individual level (r s =‐0.21, p=0.43). Inc<strong>on</strong>trast, FA‐MLH relati<strong>on</strong>ships did not significantly vary with genetic diversity (allp>0.58) (Figure 3.4).Effects of urbanizati<strong>on</strong> <strong>on</strong> FA­ genotype relati<strong>on</strong>shipsThe strength of FA‐MLH relati<strong>on</strong>ships tested at the individual levelsignificantly varied with urbanizati<strong>on</strong> (F 2,513 =4.25, p=0.01): both variables wereinversely related in rural populati<strong>on</strong>s (t 513 =‐3.73, p=0.002), but unrelated in urban(t 513 =‐0.45, p=0.65) and suburban (t 513 =0.95, p=0.34) <strong>on</strong>es. In c<strong>on</strong>trast, thestrength and directi<strong>on</strong> of FA‐ f ) (F 2,41.6 =0.79, p=0.46) and FA‐d² (F 2,507 =2.05,p=0.13) relati<strong>on</strong>ships did not vary with urbanizati<strong>on</strong>.83


Chapter 3Table 3.2. Relati<strong>on</strong>ship between fluctuating asymmetry and three multi‐locus genetic diversityestimates at three hierarchical levels of statistical analysis. Significant tests are indicated in bold.d²slope (SE) F num, den p R²Individual level across all individuals ‐1.20 (0.83) 2.11 1, 517 0.15 0.041Individual level within populati<strong>on</strong> ‐1.02 (0.94) 1.18 1, 467 0.28 ‐Populati<strong>on</strong> level ‐3.93 (3.12) 1.59 1, 24 0.22 0.062MLHslope (SE) F num, den p R²Individual level across all individuals ‐0.49 (0.19) 6.59 1, 517 0.01 0.049Individual level within populati<strong>on</strong> ‐0.30 (0.23) 1.73 1, 467 0.19 ‐Populati<strong>on</strong> level ‐1.88 (0.54) 12.31 1, 24 0.001 0.339Ritland estimatesslope (SE) F num, den p R²Individual level across all individuals 0.63 (0.29) 4.70 1, 517 0.03 0.046Individual level within populati<strong>on</strong> 0.33 (0.39) 0.70 1, 467 0.40 ‐Populati<strong>on</strong> level 2.18 (0.78) 7.88 1, 24 0.009 0.247F=F‐test, num,den= numerator and denumerator degrees of freedom, R²= amount of variati<strong>on</strong>in FA explained by heterozygosity.DISCUSSIONEstimates of genetic diversity and developmental stability, averaged acrossindividuals, significantly co‐varied in the directi<strong>on</strong> expected by populati<strong>on</strong> genetictheory, whereas individual estimates were <strong>on</strong>ly weakly associated. Both genomewideand locus‐specific estimates of genetic diversity str<strong>on</strong>gly correlated withdevelopmental stability at the populati<strong>on</strong> level, and this correlati<strong>on</strong> was mainlydriven by genetic variati<strong>on</strong> at two key loci <strong>on</strong>ly.Whether relati<strong>on</strong>ships between developmental stability and geneticvariability are driven by genome‐wide heterozygosity or local effect of key loci,remains a topic of much debate [7,9]. Relati<strong>on</strong>ships between proxies ofdevelopmental stability and genetic variability have typically been based <strong>on</strong>limited numbers of loci <strong>on</strong>ly, which were implicitly assumed to representgenome‐wide properties. Such assumpti<strong>on</strong>, however, is <strong>on</strong>ly justified whenrepeated random subsets of markers give rise to str<strong>on</strong>g heterozygosityheterozygositycorrelati<strong>on</strong>s [61], and this premise is often violated in randomlymating populati<strong>on</strong>s [61,68,69]. As levels of heterozygosity am<strong>on</strong>g markers withinindividuals were <strong>on</strong>ly moderately correlated in this <str<strong>on</strong>g>study</str<strong>on</strong>g>, our results do not fully84


Developmental stability covaries with heterozygositysupport the role of genome‐wide heterozygosity underlying relati<strong>on</strong>ships withdevelopmental stability. Rather, single‐locus effects at a few key loci, such asPdoµ1, are more likely to drive these relati<strong>on</strong>ships.Table 3.3. Relati<strong>on</strong>ship between fluctuating asymmetry and single‐locus genetic diversity at theindividual (across all individuals) and populati<strong>on</strong> level. Statistical significance levels before (bold)and after (underlined) B<strong>on</strong>ferr<strong>on</strong>i correcti<strong>on</strong> for multiple tests refer to a critical alpha‐value of0.05.Individual level analysisd² heterozygosityLocus He F num, p R² F num, p R²dendenTG01‐040 0,45 3,53 1, 495 0,06 0,045 6,8 1, 495 0,01 0,051TG01‐148 0,41 3,05 1, 374 0,08 0,049 1,77 1, 374 0,18 0,046TG04‐012 0,61 0,09 1, 474 0,77 0,039 0,48 1, 474 0,49 0,039TG07‐022 0,43 0,29 1, 433 0,59 0,031 0,21 1, 433 0,65 0,031TG13‐017 0,66 0,91 1, 469 0,34 0,033 0,38 1, 469 0,54 0,032TG22‐001 0,49 0,04 1, 369 0,84 0,027 2,40 1, 369 0,12 0,033Pdoµ1 0,87 0,46 1, 495 0,50 0,041 2,86 1, 495 0,09 0,046Pdoµ3 0,89 0,22 1, 400 0,64 0,025 0,55 1, 400 0,46 0,026Pdoµ5 0,85 0,71 1, 442 0,40 0,038 1,10 1, 442 0,29 0,039Pdo9 0,79 3,15 1, 378 0,08 0,043 0,62 1, 378 0,43 0,036Pdo10 0,84 0,14 1, 477 0,71 0,039 1,51 1, 477 0,22 0,042Pdo16 0,87 0,35 1, 482 0,56 0,042 0,02 1, 482 0,88 0,041Pdo19 0,64 10,81 1, 481 0,001 0,060 6,01 1, 481 0,01 0,051Pdo22 0,74 0,04 1, 500 0,84 0,042 1,19 1, 500 0,27 0,044Pdo32 0,78 1,01 1, 446 0,31 0,028 0,08 1, 446 0,78 0,026Pdo47 0,85 0,5 1, 476 0,48 0,037 0,78 1, 476 0,38 0,037Populati<strong>on</strong> level analysisd² heterozygosityLocus He F num, p R² F num, p R²TG01‐040 0,45 0,09 1, 24 0,76 0,004 0,47 1, 24 0,50 0,019TG01‐148 0,41 0,34 1, 24 0,57 0,014 0,78 1, 24 0,38 0,032TG04‐012 0,61 0,93 1, 24 0,34 0,037 5,09 1, 24 0,03 0,175TG07‐022 0,43 0,02 1, 24 0,90 0,001 0,99 1, 24 0,33 0,040TG13‐017 0,66 2,85 1, 24 0,10 0,106 0,21 1, 24 0,65 0,009TG22‐001 0,49 2,38 1, 24 0,14 0,090 3,13 1, 24 0,09 0,115Pdoµ1 0,87 3,26 1, 24 0,08 0,120 18,17 1, 24 0,001 0,431Pdoµ3 0,89 2,04 1, 24 0,17 0,078 0,02 1, 24 0,88 0,001Pdoµ5 0,85 0,12 1, 24 0,73 0,005 0,53 1, 24 0,47 0,022Pdo9 0,79 0,42 1, 24 0,52 0,017 0,01 1, 24 0,96 0,001Pdo10 0,84 0,59 1, 24 0,45 0,024 0,08 1, 24 0,78 0,003Pdo16 0,87 6,65 1, 24 0,02 0,217 7,33 1, 24 0,01 0,234Pdo19 0,64 0,23 1, 24 0,64 0,009 0,58 1, 24 0,45 0,024Pdo22 0,74 1,34 1, 24 0,26 0,053 0,67 1, 24 0,42 0,027Pdo32 0,78 1,06 1, 24 0,31 0,042 2,28 1, 24 0,14 0,087Pdo47 0,85 2,31 1, 24 0,14 0,088 1,95 1, 24 0,18 0,075F=F‐test, num,den= numerator and denumerator degrees of freedom, R²= amount of variati<strong>on</strong> in FAexplained by heterozygosity.85


Developmental stability covaries with heterozygositysupport the c<strong>on</strong>clusi<strong>on</strong> that heterozygosity‐based measures usually outperformthose based <strong>on</strong> allelic distances like d² to estimate inbreeding [73] and thenegative appraisal of the use of squared distances between alleles to modelrelati<strong>on</strong>ships with fitness or its proxies [74]. Under recent admixture ofgenetically divergent populati<strong>on</strong>s [65,75] or high variability at microsatellite loci[65,74,75,76], however, the use of mean d² may still be justified. While somestudies showed str<strong>on</strong>ger genotype‐fitness associati<strong>on</strong>s with increasing variabilityof the genetic marker under <str<strong>on</strong>g>study</str<strong>on</strong>g> [70,77], others failed to detect suchrelati<strong>on</strong>ship [69] despite the theoretical predicti<strong>on</strong> of such an effect [23]. Ourresults show that the effect of marker variability and relati<strong>on</strong>ships with proxies offitness can be marker‐dependent. The positive relati<strong>on</strong>ship in mean d², but not inboth other markers, may be explained by the fact that highly variable loci arethought to mutate in a step‐wise mode, which is the underlying model for d²basedmeasures [65,78,79]. Yet, even at the most variable loci, mean d² did notreach equal explanatory power compared to single‐locus heterozygosity.It has been hypothesized that the strength of relati<strong>on</strong>ships betweendevelopmental stability and genetic diversity may depend <strong>on</strong> other types ofstressors [2] and that relati<strong>on</strong>ships with genetic stress or fitness may be moreapparent under adverse c<strong>on</strong>diti<strong>on</strong>s, i.e. when individuals are energeticallychallenged [12,13,15,80]. Results of this <str<strong>on</strong>g>study</str<strong>on</strong>g> are not in c<strong>on</strong>cordance with thishypothesis since FA‐heterozygosity associati<strong>on</strong>s were str<strong>on</strong>gest in rural, noturban, populati<strong>on</strong>s. If juvenile mortality rates were higher in urban populati<strong>on</strong>sand selective in relati<strong>on</strong> to FA, highly asymmetric and homozygous adults mightbe locally underrepresented, possibly changing the directi<strong>on</strong> and/or strength ofassociati<strong>on</strong>s between FA and genetic variability. While nest studies <strong>on</strong> <strong>house</strong><strong>sparrows</strong> revealed increased rates of nestling mortality when levels of insectabundance were critically low [33], levels of FA were not significantly lower inurban compared to suburban or rural populati<strong>on</strong>s in our <str<strong>on</strong>g>study</str<strong>on</strong>g> area [81] andobserved proporti<strong>on</strong>s of homozygous individuals matched the expected <strong>on</strong>es aspopulati<strong>on</strong>s were in Hardy‐Weinberg equilibrium. Hence, lack of support forinteractive effects of nutriti<strong>on</strong>al stress and genetic diversity in the directi<strong>on</strong>predicted, more likely resulted from low statistical power of individual‐levelanalyses, although we cannot rule out that levels of stress during trait <strong>on</strong>togenyin our <str<strong>on</strong>g>study</str<strong>on</strong>g> area were lower than those reported in the literature [33] as we didnot quantitatively gauge the amount of perceived stress. Unfortunately, therestricted number of urban populati<strong>on</strong>s prevented us from testing the interactivestress hypothesis at the populati<strong>on</strong> level which would have assisted us in87


Chapter 3differentiating between low statistical power and an absence of stress as apossible explanati<strong>on</strong> of the observed individual‐level patterns.In c<strong>on</strong>clusi<strong>on</strong>, results of this <str<strong>on</strong>g>study</str<strong>on</strong>g> provide str<strong>on</strong>g evidence thatrelati<strong>on</strong>ships between developmental stability and heterozygosity can be drivenby local effects at a few key loci and/or by genome‐wide effects, the relativec<strong>on</strong>tributi<strong>on</strong> of which may depend <strong>on</strong> relative frequencies and fitness effects ofdeleterious genes [23]. Despite the fact that local linkage disequilibrium with keyloci is regarded as the most promising mechanism to explain associati<strong>on</strong>sbetween developmental stability and heterozygosity, empirical support for thelocal effect hypothesis remains scant. Further research is therefore needed tounravel the relative effects of single‐locus and genome‐wide processes <strong>on</strong>developmental stability of populati<strong>on</strong>s with different genetic properties. Whiledevelopmental stability earlier proved to be weakly associated with nutriti<strong>on</strong>alstress [81], relati<strong>on</strong>ships with heterozygosity appear str<strong>on</strong>ger at the populati<strong>on</strong>level, irrespective of the underlying genetic basis. This <str<strong>on</strong>g>study</str<strong>on</strong>g> emphasizes againthat the accuracy of developmental stability as a proxy for heterozygosity at theindividual level remains low and the applicati<strong>on</strong> of individual FA estimates ingeneral should be aband<strong>on</strong>ed.ACKNOWLEDGEMENTSWe are indebted to H. Matheve, T. Cammaer and C. Nuyens for fieldassistance and A. Krupa and G. Horsburgh for laboratory assistance. We aregreatful to two an<strong>on</strong>ymous reviewers for providing helpful comments that greatlyimproved the manuscript. Genotyping was performed at the NERC BiomolecularAnalysis Facility funded by the Natural Envir<strong>on</strong>ment Research Council, UK.Fieldwork and genetic analyses were funded by research grants G.0149.09 of theFund for Scientific Research ‐ Flanders (to S. Van D<strong>on</strong>gen and LL) and researchgrant 01J01808 of <strong>Ghent</strong> University (to LL).REFERENCES1. Polak M (2003) Developmental instability: Causes and c<strong>on</strong>sequences.Oxford University Press, Oxford.2. Lens L, Van D<strong>on</strong>gen S, Kark S, Matthysen E (2002) Fluctuating asymmetryas an indicator of fitness: can we bridge the gap between studies? Biol Rev77: 27‐38.88


Developmental stability covaries with heterozygosity3. Graham JH, Raz S, Hel‐Or H, Nevo E (2010). Fluctuating asymmetry:methods, theory and applicati<strong>on</strong>s. Symmetry 2: 466‐540.4. Breuker C, Debat V, K CP (2006) Functi<strong>on</strong>al evo‐devo. Trends Ecol Evol 21:488‐492.5. Badyaev AV, Foresman KR (2000). Extreme envir<strong>on</strong>mental change andevoluti<strong>on</strong>: stress‐induced morphological variati<strong>on</strong> is str<strong>on</strong>gly c<strong>on</strong>cordantwith patterns of evoluti<strong>on</strong>ary divergence in shrew mandibles. Proc R SocL<strong>on</strong>d B Biol Sci 267: 371‐377.6. Ludwig W (1932) Das rechts‐links‐problem im tierreich und beimmenschen. Springer, Berlin, Heidelberg, New York.7. Markow TA (1995) Evoluti<strong>on</strong>ary ecology and developmental instability.Annu Rev Entomol 40: 105‐120.8. Mitt<strong>on</strong> JB (1993) Enzyme heterozygosity, metabolism and developmentalstability. Genetica 89: 47‐65.9. Clarke GM (1993) The genetic‐basis of developmental stability . I.relati<strong>on</strong>ships between stability, heterozygosity and genomic coadaptati<strong>on</strong>.Genetica 89: 15‐23.10. Vollestad LA, Hindar K, Moller AP (1999) A meta‐analysis of fluctuatingasymmetry in relati<strong>on</strong> to heterozygosity. Heredity 83: 206‐218.11. Palmer AR, Strobeck C (1986) Fluctuating asymmetry ‐ measurement,analysis, patterns. Annu Rev Ecol Syst 17: 391‐421.12. Mulvey M, Keller GP, Meffe GK (1994) Single‐locus and multiple‐locusgenotypes and life‐history resp<strong>on</strong>ses of Gambusia‐holbrooki reared at 2temperatures. Evoluti<strong>on</strong> 48: 1810‐1819.13. Lens L, Van D<strong>on</strong>gen S, Galbusera P, Schenck T, Matthysen E (2000)Developmental instability and inbreeding in natural bird populati<strong>on</strong>sexposed to different levels of habitat disturbance. J Evol Biol 13: 889‐896.14. Siikamaki P, Lammi A (1998) Fluctuating asymmetry in central and marginalpopulati<strong>on</strong>s of Lychnis viscaria in relati<strong>on</strong> to genetic and envir<strong>on</strong>mentalfactors. Evoluti<strong>on</strong> 52: 1285‐1292.15. Talloen W, Lens L, Van D<strong>on</strong>gen S, Adriaensen F, Matthysen E (2010). Mildstress during development affects the phenotype of great tit Parus majornestlings: a challenge experiment. Biol J Linn Soc 100: 103‐110.89


Chapter 316. David P (1998) Heterozygosity‐fitness correlati<strong>on</strong>s: new perspectives <strong>on</strong>old problems. Heredity 80: 531‐537.17. Hanss<strong>on</strong> B, Westerberg L (2002) On the correlati<strong>on</strong> betweenheterozygosity and fitness in natural populati<strong>on</strong>s. Mol Ecol 11: 2467‐2474.18. Pertoldi C, Kristensen TN, Andersen DH, Loeschcke V (2006)Developmental instability as an estimator of genetic stress. Heredity 96:122‐127.19. Pars<strong>on</strong>s PA (1990) Fluctuating asymmetry ‐ an epigenetic measure ofstress. Biol Rev Camb Philos Soc 65: 131‐145.20. Lerner IM (1954) Genetic Homeostasis. Olivier and Boyd, Edinburgh.21. Mitt<strong>on</strong> JB (1997) Selecti<strong>on</strong> in Natural Populati<strong>on</strong>s. Oxford University Press,Oxford.22. Chapman JR, Nakagawa S, Coltman DW, Slate J, Sheld<strong>on</strong> BC (2009) Aquantitative review of heterozygosity‐fitness correlati<strong>on</strong>s in animalpopulati<strong>on</strong>s. Mol Ecol 18: 2746‐2765.23. Zouros E (1993) Associative overdominance ‐ evaluating the effects ofinbreeding and linkage disequilibrium. Genetica 89: 35‐46.24. Leary RF, Allendorf FW, Knudsen KL (1993) Null alleles at 2 lactatedehydrogenaseloci in rainbow‐trout are associated with decreaseddevelopmental stability. Genetica 89: 3‐13.25. Clarke GM (1997) The genetic and molecular basis of developmentalstability: the Lucilia story. Trends Ecol Evol 12: 89‐91.26. Clarke GM, Yen JL, McKenzie JA (2000) Wings and bristles: characterspecificity of the asymmetry phenotype in insecticide‐resistant strains ofLucilia cuprina. Proc R Soc L<strong>on</strong>d B Biol Sci 267: 1815‐1818.27. Rutherford SL, Lindquist S (1998). Hsp90 as a capacitor for morphologicalevoluti<strong>on</strong>. Nature 396: 336‐342.28. Takahashi KH, Rako L, Takano‐Shimizu T, Hoffman AA, Lee SF (2010) Effectsof small Hsp genes <strong>on</strong> developmental stability and microenvir<strong>on</strong>mentalcanalizati<strong>on</strong>. BMC Evol Biol 10: 284. Doi: 10.1186/1471‐2148‐10‐284.29. Kruuk LEB, Sheld<strong>on</strong> BC, Merila J (2002) Severe inbreeding depressi<strong>on</strong> incollared flycatchers (Ficedula albicollis). Proc R Soc L<strong>on</strong>d B Biol Sci 269:1581‐1589.90


Developmental stability covaries with heterozygosity30. Borrell YJ, Pineda H, McCarthy I, Vazquez E, Sanchez JA, et al. (2004)Correlati<strong>on</strong>s between fitness and heterozygosity at allozyme andmicrosatellite loci in the Atlantic salm<strong>on</strong>, Salmo salar L. Heredity 92: 585‐593.31. Zachos FE, Hartl GB, Suchentrunk F (2007) Fluctuating asymmetry andgenetic variability in the roe deer (Capreolus capreolus): a test of thedevelopmental stability hypothesis in mammals using neutral molecularmarkers. Heredity 98: 392‐400.32. Liker A, Papp Z, Bok<strong>on</strong>y V, Lendvai AZ (2008) Lean birds in the city: bodysize and c<strong>on</strong>diti<strong>on</strong> of <strong>house</strong> <strong>sparrows</strong> al<strong>on</strong>g the urbanizati<strong>on</strong> gradient. JAnim Ecol 77: 789‐795.33. Peach WJ, Vincent KE, Fowler JA, Grice PV (2008) Reproductive success of<strong>house</strong> <strong>sparrows</strong> al<strong>on</strong>g an urban gradient. Anim C<strong>on</strong>serv 11: 493‐503.34. Vangestel C, Braeckman BP, Matheve H, Lens L (2010) C<strong>on</strong>straints <strong>on</strong> homerange behaviour affect nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> in urban <strong>house</strong> <strong>sparrows</strong>(Passer domesticus). Biol J Linn Soc 101: 41‐50.35. Van D<strong>on</strong>gen S (1998) The distributi<strong>on</strong> of individual fluctuating asymmetry:Why are the coefficients of variati<strong>on</strong> of the unsigned FA so high? Ann ZoolFenn 35: 79‐85.36. Whitlock M (1998) The repeatability of fluctuating asymmetry: a revisi<strong>on</strong>and extensi<strong>on</strong>. Proc R Soc L<strong>on</strong>d B Biol Sci 265: 1429‐1431.37. Balloux F, Amos W, Couls<strong>on</strong> T (2004) Does heterozygosity estimateinbreeding in real populati<strong>on</strong>s? Mol Ecol 13: 3021‐3031.38. Moller AP, Jenni<strong>on</strong>s MD (2002) How much variance can be explained byecologists and evoluti<strong>on</strong>ary biologists? Oecologia 132: 492‐500.39. Hartl GB, Suchentrunk F, Willing R, Petznek R (1995) Allozymeheterozygosity and fluctuating asymmetry in the brown hare (Lepuseuropaeus): A test of the developmental homeostasis hypothesis. PhilosTrans R Soc L<strong>on</strong>d B Biol Sci 350: 313‐323.40. Karv<strong>on</strong>en E, Merila J, Rintamaki PT, van D<strong>on</strong>gen S (2003) Geography offluctuating asymmetry in the greenfinch, Carduelis chloris. Oikos 100: 507‐516.91


Chapter 341. Van D<strong>on</strong>gen S, Molenberghs G, Matthysen E (1999) The statistical analysisof fluctuating asymmetry: REML estimati<strong>on</strong> of a mixed regressi<strong>on</strong> model. JEvol Biol 12: 94‐102.42. Verbeke G, Molenberghs G (2000) Linear mixed models for l<strong>on</strong>gitudinaldata. Springer‐Verlag, New York.43. Knierim U, Van D<strong>on</strong>gen S, Forkman B, Tuyttens FAM, Spinka M, et al.(2007) Fluctuating asymmetry as an animal welfare indicator ‐ A review ofmethodology and validity. Physiol Behav 92: 398‐421.44. Walsh PS, Metzger DA, Higuchi R (1991) Chelex‐100 as a medium forsimple extracti<strong>on</strong> of dna for pcr‐based typing from forensic material.BioTechniques 10: 506‐513.45. Neumann K, Wett<strong>on</strong> JH (1996) Highly polymorphic microsatellites in the<strong>house</strong> sparrow Passer domesticus. Mol Ecol 5: 307‐309.46. Daws<strong>on</strong> DA, Horsburgh GJ, Krupa A, Stewart IRK, Skjelseth S et al. Apredicted microsatellite map of the <strong>house</strong> sparrow Passer domesticusgenome. (Re‐submitted to Mol Ecol Resour) (In preparati<strong>on</strong>).47. Daws<strong>on</strong> DA, Horsburgh GJ, Küpper C, Stewart IRK, Ball AD et al. (2010)New methods to identify c<strong>on</strong>served microsatellite loci and develop primersets of high cross‐species utility ‐ as dem<strong>on</strong>strated for birds. Mol EcolResour 10: 475‐494.48. Griffith SC, Daws<strong>on</strong> DA, Jensen H, Ockend<strong>on</strong> N, Greig C, et al. (2007)Fourteen polymorphic microsatellite loci characterized in the <strong>house</strong>sparrow Passer domesticus (Passeridae, Aves). Mol Ecol Notes 7: 333‐336.49. Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis.Heredity 93: 504‐509.50. Gebhardt KJ, Waits LP (2008) High error rates for avian molecular sexidentificati<strong>on</strong> primer sets applied to molted feathers. J Field Ornithol 79:286‐292.51. Van Oosterhout C, Hutchins<strong>on</strong> WF, Wills DPM, Shipley P (2004) Microchecker:software for identifying and correcting genotyping errors inmicrosatellite data. Mol Ecol Notes 4: 535‐538.52. Brookfield JFY (1996) A simple new method for estimating null allelefrequency from heterozygote deficiency. Mol Ecol 5: 453‐455.92


Developmental stability covaries with heterozygosity53. Rousset F (2008) Genepop ' 007: a complete re‐implementati<strong>on</strong> of theGenepop software for Windows and Linux. Mol Ecol Resour 8: 103‐106.54. Raym<strong>on</strong>d M, Rousset F (1995) GENEPOP (Versi<strong>on</strong> ‐1.2) ‐ populati<strong>on</strong>geneticssoftware for exact tests and ecumenicism. J Hered 86: 248‐249.55. Nei M (1978) Estimati<strong>on</strong> of average heterozygosity and genetic distancefrom a small number of individuals. Genetics 89: 583‐590.56. Goudet J (1995) FSTAT (Versi<strong>on</strong> 1.2): A computer program to calculate F‐statistics. J Hered 86: 485‐486.57. Coltman DW, Pilkingt<strong>on</strong> JG, Smith JA, Pembert<strong>on</strong> JM (1999) Parasitemediatedselecti<strong>on</strong> against inbred Soay sheep in a free‐living, islandpopulati<strong>on</strong>. Evoluti<strong>on</strong> 53: 1259‐1267.58. Ritland K (1996) Estimators for pairwise relatedness and individualinbreeding coefficients. Genet Res 67: 175‐185.59. Couls<strong>on</strong> T, Alb<strong>on</strong> S, Slate J, Pembert<strong>on</strong> J (1999) Microsatellite loci revealsex‐dependent resp<strong>on</strong>ses to inbreeding and outbreeding in red deercalves. Evoluti<strong>on</strong> 53: 1951‐1960.60. Pembert<strong>on</strong> JM, Coltman DW, Couls<strong>on</strong> TN, Slate J (1999) Usingmicrosatellites to measure fitness c<strong>on</strong>sequences of inbreeding andoutbreeding. In: Microsatellites Evoluti<strong>on</strong> and Applicati<strong>on</strong>s, Goldstein DB,Schlötterer C, eds., pp. 151‐164. Oxford University Press, Oxford.61. Alho JS, Välimäki K, Merilä J (2010) Rhh: an R extensi<strong>on</strong> for estimatingmultilocus heterozygosity and heterozygosity‐heterozygosity correlati<strong>on</strong>.Mol Ecol Resour 10: 720‐722.62. Aparicio JM, Ortego J, Cordero PJ (2006) What should we weigh toestimate heterozygosity, alleles or loci? Mol Ecol 15: 4659‐4665.63. Amos W, Wilmer JW, Fullard K, Burg TM, Croxall JP, et al. (2001) Theinfluence of parental relatedness <strong>on</strong> reproductive success. Proc R Soc L<strong>on</strong>dB Biol Sci 268: 2021‐2027.64. Sweigart A, Karoly K, J<strong>on</strong>es A, Willis JH (1999) The distributi<strong>on</strong> of individualinbreeding coefficients and pairwise relatedness in a populati<strong>on</strong> ofMimulus guttatus. Heredity 83: 625‐632.65. Hanss<strong>on</strong> B (2010) The use (or misuse) of microsatellite allelic distances inthe c<strong>on</strong>text of inbreeding and c<strong>on</strong>servati<strong>on</strong> genetics. Mol Ecol 19: 1082‐1090.93


Chapter 366. Littell RC, Milliken WW, Stroup WW, Wolfinger RD (1996) SAS system formixed models. SAS Institute Inc., Cary, NC, USA.67. Rice WR (1989) Analyzing tables of statistical tests. Evoluti<strong>on</strong> 43: 223‐225.68. Chakraborty R (1981) The distributi<strong>on</strong> of the number of heterozygous lociin an individual in natural‐populati<strong>on</strong>s. Genetics 98: 461‐466.69. Slate J, Pembert<strong>on</strong> JM (2002) Comparing molecular measures for detectinginbreeding depressi<strong>on</strong>. J Evol Biol 15: 20‐31.70. Hanss<strong>on</strong> B, Westerdahl H, Hasselquist D, Akess<strong>on</strong> M, Bensch S (2004) Doeslinkage disequilibrium generate heterozygosity‐fitness correlati<strong>on</strong>s in greatreed warblers? Evoluti<strong>on</strong> 58: 870‐879.71. Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, et al. (2001) Linkagedisequilibrium in the human genome. Nature 411: 199‐204.72. McRae AF, McEwan JC, Dodds KG, Wils<strong>on</strong> T, Crawford AM, et al. (2002)Linkage disequilibrium in domestic sheep. Genetics 160: 1113‐112273. Coltman DW, Slate J (2003) Microsatellite measures of inbreeding: A metaanalysis.Evoluti<strong>on</strong> 57: 971‐983.74. Tsitr<strong>on</strong>e A, Rousset F, David P (2001) Heterosis, marker mutati<strong>on</strong>alprocesses and populati<strong>on</strong> inbreeding history. Genetics 159: 1845‐1859.75. Couls<strong>on</strong> TN, Pembert<strong>on</strong> JM, Alb<strong>on</strong> SD, Beaum<strong>on</strong>t M, Marshall TC, et al.(1998) Microsatellites reveal heterosis in red deer. Proc R Soc L<strong>on</strong>d B BiolSci 265: 489‐495.76. Kretzmann M, Mentzer L, DiGiovanni R, Leslie MS, Amato G (2006)Microsatellite diversity and fitness in stranded juvenile harp seals (Phocagroenlandica). J Hered 97: 555‐560.77. Heath DD, Bryden CA, Shrimpt<strong>on</strong> JM, Iwama GK, Kelly J, et al. (2002)Relati<strong>on</strong>ships between heterozygosity, allelic distance (d²), andreproductive traits in chinook salm<strong>on</strong>, Oncorhynchus tshawytscha. Can JFish Aquat Sci 59: 77‐84.78. Schlotterer C (2000) Evoluti<strong>on</strong>ary dynamics of microsatellite DNA.Chromosoma 109: 365‐371.79. Lai YL, Sun FZ (2003) The relati<strong>on</strong>ship between microsatellite slippagemutati<strong>on</strong> rate and the number of repeat units. Mol Biol Evol 20: 2123‐2131.94


Developmental stability covaries with heterozygosity80. Kark S, Safriel UN, Tabarr<strong>on</strong>i C, Randi E (2001) Relati<strong>on</strong>ship betweenheterozygosity and asymmetry: a test across the distributi<strong>on</strong> range.Heredity 86: 119‐127.81. Vangestel C, Lens L (2011) Does fluctuating asymmetry c<strong>on</strong>stitute asensitive biomarker of nutriti<strong>on</strong>al stress in <strong>house</strong> <strong>sparrows</strong> (Passerdomesticus)? Ecol Ind 11:389‐394.82. Daws<strong>on</strong> DA, Burke T, Hanss<strong>on</strong> B, Pandhal J, Hale MC, et al. (2006) Apredicted microsatellite map of the passerine genome based <strong>on</strong> chickenpasserinesequence similarity. Mol Ecol 15: 1299‐1320.95


Chapter 3Appendix 3.1. Details of the 16 microsatellites used in this <str<strong>on</strong>g>study</str<strong>on</strong>g>, their locati<strong>on</strong> <strong>on</strong> the zebrafinch (Taeniopygia guttata) genome and the positi<strong>on</strong> of the nearest known zebra finch gene.Appendix. Details of the 16 microsatellites used in this <str<strong>on</strong>g>study</str<strong>on</strong>g>, there locati<strong>on</strong> <strong>on</strong> the zebra finch (Taeniopygia guttata ) genome and the positi<strong>on</strong> of the nearest known zebra finch gene.LocusaEMBLaccessi<strong>on</strong>numberFullsequencelengthLocati<strong>on</strong> in the zebra finch genome § ZF c<strong>on</strong>tig Nearest gene <strong>on</strong> ZF mapTgut name(Burt, Roslin)Descripti<strong>on</strong> geneTG01‐040 a,c DV576233 832 Chr 1A: 42,620,542 C<strong>on</strong>tig20.15 Chr 1A: 42,621,707‐42,624,796 reverse strand DUSP6 Dual specificity protein phosphatase 6TG01‐148 a,c CK301512 849 Chr 1: 65,237,140 C<strong>on</strong>tig3.570 Chr 1: 65,244,245‐65,244,574 reverse strand PDCH9‐1 Protocadherin‐9 precursorTG04‐012 a,c CK306810 657 Chr 4A: 17,044,573 (& unknown chr) C<strong>on</strong>tig15.1086 Chr 4A: 16,986,073‐17,044,190 forward strand ARHGEF9 Rho guanine nucleotide exchange factor 9TG07‐022 a,c DV948210 715 Chr 7: 11,940,140 & Chr7: 11,970,627 C<strong>on</strong>tig5.1386 Chr 7: 11,915,850‐11,964,575 reverse strand IFIH1 Interfer<strong>on</strong>‐induced heli<str<strong>on</strong>g>case</str<strong>on</strong>g> C domain‐c<strong>on</strong>taining protein 1TG13‐017 a,c CK313422 853 Chr 13: 18,542 C<strong>on</strong>tig147.4 Chr 13: 18,142‐21,075 reverse strand EGR1 Early growth resp<strong>on</strong>se protein 1TG22‐001 a,c CK317333 654 Chr 22: 1,428,098 (& unknown chr) C<strong>on</strong>tig117.57 Chr 22: 1,429,499‐1,460,562 reverse strand BNIP3L BCL2/adenovirus E1B 19 kDa protein‐interacting protein 3‐likePdoµ1 b,d AM287188 191 Chr 1A: 34,300,915 C<strong>on</strong>tig20.275 Chr 1A: 34,269,533‐34,271,134 forward strand DYRK2 Dual specificity tyrosine‐phosphorylati<strong>on</strong>‐regulated kinase 2Pdoµ3 b,d AM287190 277 Chr 8: 1,939,316 (& unknown chr) C<strong>on</strong>tig42.252 Chr 8: 1,951,927‐2,011,591 reverse strand PLA2G4A Cytosolic phospholipase A2Pdoµ5 b,d Y15126 390 Chr 4: 48,501,861 C<strong>on</strong>tig11.688 Chr 4: 48,579,775‐48,683,197 reverse strand TBC1D1 TBC1 domain family member 1Pdo9 b,d AF354423 518 Chr 24: 5,327,333 (& unknown chr) C<strong>on</strong>tig70.208 Chr 24: 5,258,154‐5,276,865 forward strand ATP21A Potassium‐transporting ATPase alpha chain 2Pdo10 b,d AF354424 311 Chr 1: 58,669,562 C<strong>on</strong>tig3.829 Chr 1: 58,299,864‐58,682,577 forward strand ENOX1 Ecto‐NOX disulfide‐thiol exchanger 1Pdo16 b,d AM158995 294 Chr 2: 96,827,816 C<strong>on</strong>tig34.193 Chr 2: 96,803,202‐96,810,698 forward strand ZADH1 Zinc‐binding alcohol dehydrogenase domain‐c<strong>on</strong>taining protein 2Pdo19 b,d AM158998 341 Chr 2: 33,983,679 C<strong>on</strong>tig4.1020 Chr 2: 33,910,198‐34,156,663 reverse strand not available no descripti<strong>on</strong>Pdo22 b,d AM159001 146 Chr 4: 9,128,968 C<strong>on</strong>tig92.145 Chr 4: 9,131,494‐9,150,548 forward strand IL15 Interleukin‐15 precursorPdo32 b,d AM159011 361 Chr 1: 41,865,024 C<strong>on</strong>tig8.931 Chr 1: 41,781,858‐42,261,992 reverse strand GPC6 Glypican‐6 precursorPdo47 b,d AM159027 282 Chr5: 54,452,777 C<strong>on</strong>tig1.2403 Chr 5: 54,573,873‐54,712,474 reverse strand BRF1 Transcripti<strong>on</strong> factor IIIB 90 kDa subunitEST based microsatellites, b An<strong>on</strong>ymous microsatellites, isolated via traditi<strong>on</strong>al cl<strong>on</strong>ingSource species: c zebra finch, d <strong>house</strong> sparrow§ Genome locati<strong>on</strong>s in the zebra finch were assigned using the WU GSC BLAST software provided by the Washingt<strong>on</strong> University server following [82]96


Chapter 4Characterizing spatial genetic structure in c<strong>on</strong>temporary <strong>house</strong>sparrow populati<strong>on</strong>s al<strong>on</strong>g an urbanizati<strong>on</strong> gradientCarl VANGESTEL, Joachim MERGEAY, Deborah A. DAWSON, Tom CALLENS, VikiVANDOMME and Luc LENS©Chantal Deschepper97


Chapter 4ABSTRACTHouse <strong>sparrows</strong> (Passer domesticus) have suffered major declines in urban as well asrural areas, while remaining relatively stable in suburban <strong>on</strong>es. The difference intiming, magnitude and progress of this urban and rural decline has suggested that therural area <strong>on</strong> the <strong>on</strong>e hand and the urban and suburban <strong>on</strong>es <strong>on</strong> the other hand, canbe regarded as two distinct and independent units. Here we use neutral DNA markersto <str<strong>on</strong>g>study</str<strong>on</strong>g> if and how genetic variati<strong>on</strong> can be partiti<strong>on</strong>ed in a hierarchical way am<strong>on</strong>gdifferent urbanizati<strong>on</strong> classes. Principal coordinate analyses seemed to c<strong>on</strong>firm thehypothesis that urban/suburban and rural populati<strong>on</strong>s comprise two distinct geneticclusters although the difference remained weak. Comparis<strong>on</strong> of D est values atdifferent hierarchical scales provided evidence for populati<strong>on</strong> differentiati<strong>on</strong> throughgenetic drift. Isolati<strong>on</strong> by distance was not observed in either the urban/suburban orrural area, but there was evidence of such a pattern when all populati<strong>on</strong>s wereincluded into a single analysis. Hence, the associati<strong>on</strong> between genetic andgeographical distance was most likely driven by genetic differences between theurban/suburban and rural areas. The results shown here can be used as baselineinformati<strong>on</strong> for future genetic m<strong>on</strong>itoring programmes and provide additi<strong>on</strong>alinsights into c<strong>on</strong>temporary <strong>house</strong> sparrow dynamics al<strong>on</strong>g an urbanizati<strong>on</strong> gradient.INTRODUCTIONPopulati<strong>on</strong> c<strong>on</strong>nectivity, mediated by dispersal, influences many key ecologicaland evoluti<strong>on</strong>ary features (R<strong>on</strong>ce, 2007). It affects populati<strong>on</strong> growth rates, spatialdistributi<strong>on</strong> of genetic diversity across populati<strong>on</strong>s, local adaptati<strong>on</strong> and globalpopulati<strong>on</strong> dynamics (R<strong>on</strong>ce, 2007; Lowe and Allendorf, 2010). C<strong>on</strong>nectivity am<strong>on</strong>gpopulati<strong>on</strong>s is <strong>on</strong>e of the key determinants of l<strong>on</strong>g‐term populati<strong>on</strong> viability andprofoundly affects resilience to demographic, genetic and envir<strong>on</strong>mentaldisturbances (Hanski, 1999). Although c<strong>on</strong>servati<strong>on</strong> biologists sometimes refer toc<strong>on</strong>nectivity as a phenomen<strong>on</strong> per se, genetic and demographic c<strong>on</strong>nectivity are twofundamentally distinct c<strong>on</strong>cepts which cannot be used interchangeably (Lowe andAllendorf, 2010). Genetic c<strong>on</strong>nectivity, the extent to which gene flow affectsevoluti<strong>on</strong>ary processes (Lowe and Allendorf, 2010) does not always provide insightsinto demographic c<strong>on</strong>nectivity, the degree to which immigrati<strong>on</strong> affects growth,survival and birth rates (Taylor and Diz<strong>on</strong>, 1999; Lowe and Allendorf, 2010), and viceversa. A solid understanding <strong>on</strong> populati<strong>on</strong> substructure and exchange of migrantsbetween populati<strong>on</strong>s has thus become a major goal of many ecological studies as itcan substantially facilitate management decisi<strong>on</strong>s. In the past such informati<strong>on</strong> waslimited to costly and time‐c<strong>on</strong>suming l<strong>on</strong>g‐term demographical studies, but with theemergence of modern advanced molecular techniques useful and complementaryend‐results can often be obtained simply by dint of sampling a fracti<strong>on</strong> of thepopulati<strong>on</strong> at a single moment in time. In additi<strong>on</strong>, according to the managementobjectives in questi<strong>on</strong>, use of genetic studies may complement other studies aiming98


Genetic structure in c<strong>on</strong>temporary <strong>house</strong> sparrow populati<strong>on</strong>sto delineate appropriate biological c<strong>on</strong>servati<strong>on</strong> units (Taylor and Diz<strong>on</strong>, 1996, 1999;Avise, 1995).House <strong>sparrows</strong> (Passer domesticus), <strong>on</strong>ce a thriving ubiquitous species(Anders<strong>on</strong> 2006), have suffered a dramatic decline in abundance and distributi<strong>on</strong> inbuilt‐up and rural habitats during the last decades (Hole et al. 2002; Chamberlain etal. 2007; De Laet and Summers‐Smith 2007). Within the built‐up envir<strong>on</strong>ment we candifferentiate between urban populati<strong>on</strong>s, which have suffered massive declines, andsuburban <strong>on</strong>es which have remained rather stable. Evidence has accumulated thatthese urban and rural reducti<strong>on</strong>s vary c<strong>on</strong>siderably both spatially as well astemporally (De Laet and Summers‐Smith 2007; Shaw et al. 2008). The <strong>on</strong>set of therural decline precedes the urban <strong>on</strong>e and while in the former numbers havestabilized, albeit at a lower level, they c<strong>on</strong>tinue to plummet in highly urbanized citycentres (De Laet and Summers‐Smith 2007). Agricultural intensificati<strong>on</strong>, inverselyrelated to survival rate as a c<strong>on</strong>sequence of reduced food availability, has generallybeen accepted as the proximate cause of the rural decline (Hole et al. 2002). Inc<strong>on</strong>trast, a myriad of putative hypotheses have been put forward in an attempt toexplain the decline in highly urbanized areas but n<strong>on</strong>e of them seem to beunanimously persuasive. Urban crashes have been linked to loss of source‐sinkdynamics (Hole 2001; Wils<strong>on</strong> 2004), increased predati<strong>on</strong> pressure (Shaw et al. 2008;Bell et al. 2010), detrimental effects of vehicle emissi<strong>on</strong>s (Bignal et al. 2004) andelectromagnetic polluti<strong>on</strong> from mobile ph<strong>on</strong>e masts (Balmori and Hallberg 2007;Everaert and Bauwens 2007; Balmori 2009). To date, the most compelling evidencestems from a nest‐box <str<strong>on</strong>g>study</str<strong>on</strong>g> c<strong>on</strong>ducted al<strong>on</strong>g an urban gradient, which suggestedreduced reproductive output due to insufficient invertebrate availability andsubsequent deficit in local recruitment as a major c<strong>on</strong>tributor of urban decline in<strong>house</strong> sparrow numbers (Peach et al. 2008).House <strong>sparrows</strong> are am<strong>on</strong>g the most sedentary of all passerine birds (Heij andMoeliker 1990; Anders<strong>on</strong> 2006). Estimates of mean postnatal dispersal distance forthis species are as low as 1‐1.7km (Cheke 1972; Paradis et al. 1998) and adults tend toremain faithful to the col<strong>on</strong>y in which they first breed (Summers‐Smith 1988). Thissedentary behaviour combined with the difference in timing, magnitude and progressof the decline have led to the general belief that urban and suburban populati<strong>on</strong>s <strong>on</strong>the <strong>on</strong>e hand and rural <strong>on</strong>es <strong>on</strong> the other hand, comprise two distinct andindependent units and hence call for separate c<strong>on</strong>servati<strong>on</strong> strategies (Anders<strong>on</strong>2006; De Laet and Summers‐Smith 2007; Shaw et al. 2008). This implicitly assumesthat both habitats are characterized by a high degree of isolati<strong>on</strong> and are to a largeextent self‐sustainable (Wils<strong>on</strong> 2004). This view has been challenged by Heij (1985)99


Chapter 4who c<strong>on</strong>cluded in his <str<strong>on</strong>g>study</str<strong>on</strong>g> that both urban and rural populati<strong>on</strong>s were highlydependent <strong>on</strong> suburban immigrants for their l<strong>on</strong>g‐term viability. In additi<strong>on</strong>, severalother studies revealed no (large) genetic dissimilarities between populati<strong>on</strong>s in theabsence of geographical barriers (Fleisher 1983; Parkin and Cole 1984; Kekk<strong>on</strong>en etal. 2010). However, all these studies share a comm<strong>on</strong> feature as they describedispersal and/or genetic structure well before the <strong>on</strong>set of the decline. Interestingly,Hole (2001) did report significant genetic structure and loss of c<strong>on</strong>nectivity betweenneighbouring farms in a rural area well after the decline has commenced. Localextincti<strong>on</strong> without recol<strong>on</strong>izati<strong>on</strong> may transform a c<strong>on</strong>tiguous distributi<strong>on</strong> of <strong>house</strong>sparrow populati<strong>on</strong>s into a patchy <strong>on</strong>e, a pattern currently observed (especially) inmany urban areas (Shaw et al. 2008; Vangestel unpublished data). As <strong>house</strong> <strong>sparrows</strong>most likely used to disperse according to a stepping‐st<strong>on</strong>e pattern (Kekk<strong>on</strong>en et al.2010), loss of intermediate ‘stepping‐st<strong>on</strong>es’ combined with their intrinsic sedentarynature (Anders<strong>on</strong> 2006) may have reduced or even inhibited c<strong>on</strong>temporary dispersalbetween adjacent col<strong>on</strong>ies (Hole 2001). Hole (2001) was am<strong>on</strong>g the first to suggestthat such loss of (intermediate) populati<strong>on</strong>s may gradually increase distancesbetween remaining source‐sink populati<strong>on</strong>s up to a point at which metapopulati<strong>on</strong>dynamics become c<strong>on</strong>strained and populati<strong>on</strong>s genetically diverge. He argued thatthis may ultimately result in an extincti<strong>on</strong>‐vortex that spreads throughout thelandscape. Particularly less vagile species such as <strong>house</strong> <strong>sparrows</strong> are expected toshow increased vulnerability to such landscape alterati<strong>on</strong>s (Hole 2001; Sekercioglu etal. 2002) and a tendency towards greater populati<strong>on</strong> structure (Stangel 1990). Hence,together with the observed large‐scale reducti<strong>on</strong>s in urban <strong>house</strong> sparrow numbers(De Laet and Summers‐Smith 2007), we could expect that c<strong>on</strong>temporary urban<strong>house</strong> sparrow populati<strong>on</strong>s are particularly susceptible to processes like genetic driftand that exchange of migrants between c<strong>on</strong>temporary populati<strong>on</strong>s may have becomeproblematic in this species.As such, historical estimates of genetic c<strong>on</strong>nectivity do not necessarilyresemble current <strong>on</strong>es as dispersal rates may have changed substantially over thecourse of time. Yet, no attempt has been made to obtain detailed informati<strong>on</strong> <strong>on</strong>small‐scale genetic structure in three different urbanizati<strong>on</strong> classes for this species inits post‐decline era. This paucity of informati<strong>on</strong> advocates for an urgent need tobridge this lacuna. In the current <str<strong>on</strong>g>study</str<strong>on</strong>g> we use genetic variati<strong>on</strong> across microsatelliteloci to identify small‐scale genetic differentiati<strong>on</strong> and changes in genetic diversityal<strong>on</strong>g an urban‐rural gradient and relate this to putative demographic changes. Theseresults may further c<strong>on</strong>tribute to our general understanding of c<strong>on</strong>temporarypopulati<strong>on</strong> dynamics of <strong>house</strong> <strong>sparrows</strong> in an urban‐rural landscape.100


Genetic structure in c<strong>on</strong>temporary <strong>house</strong> sparrow populati<strong>on</strong>sMATERIAL AND METHODSStudy site and speciesHouse <strong>sparrows</strong> were studied in and around the city centre of <strong>Ghent</strong> (northernBelgium) and in an adjacent rural area near the village of Zomergem, ca. 12km NW of<strong>Ghent</strong>. The degree of urbanizati<strong>on</strong> was measured as the ratio of built‐up to total gridcell area (each cell measuring 90,000 m² <strong>on</strong> the ground) and ranged between 0‐0.10(henceforward referred to as ‘rural’), 0.11‐0.30 (‘suburban’) and larger than 0.30(‘urban’) (Arcgis versi<strong>on</strong> 9.2). Within this range we selected 26 plots (figure 4.1), inwhich we captured a total of 690 adult <strong>house</strong> <strong>sparrows</strong> by standard mist nettingbetween 2003 and 2009 (table 4.1) and attempted to obtain an equal sex ratio ofmales and females within each plot. Although samples were collected over a timespan of 6 years there is no evidence that large changes in allele frequencies haveoccurred during this period so samples were pooled across years. Up<strong>on</strong> capture, wetook standard morphological measurements (see Vangestel et al. 2010 for details)and collected a small sample of body feathers for DNA analysis.DNA extracti<strong>on</strong>, PCR and genotypingWe applied a Chelex resin‐based method (InstaGene Matrix, Bio‐Rad) (Walshet al. 1991) to extract genomic DNA from a total of ten plucked body feathers.Sixteen microsatellite markers (both traditi<strong>on</strong>al ‘an<strong>on</strong>ymous’ microsatellites as wellas those developed based <strong>on</strong> expressed sequence tags (table 4.2)) were selectedbased <strong>on</strong> their polymorphism and stutter profile. Polymerase chain reacti<strong>on</strong>s wereorganized in four multiplex‐sets and compatibility between primer pairs was checkedusing AutoDimer (Vall<strong>on</strong>e and Butler 2004). The first multiplex reacti<strong>on</strong> c<strong>on</strong>tainedPdoµ1 (Neumann and Wett<strong>on</strong> 1996), Pdo32, Pdo47 (Daws<strong>on</strong> et al. in preparati<strong>on</strong>)and TG04‐012 (Daws<strong>on</strong> et al. 2010); the sec<strong>on</strong>d <strong>on</strong>e c<strong>on</strong>tained Pdoµ3 (Neumann andWett<strong>on</strong>, 1996), Pdoµ5 (Griffith et al. 1999), TG13‐017 and TG07‐022 (Daws<strong>on</strong> et al.2010); the third multiplex reacti<strong>on</strong> c<strong>on</strong>tained Pdo10 (Griffith et al. 2007), Pdo16,Pdo19, Pdo22 (Daws<strong>on</strong> et al. in preparati<strong>on</strong>) and TG01‐040 (Daws<strong>on</strong> et al. 2010); thelast set c<strong>on</strong>sisted of Pdo9 (Griffith et al. 2007), TG01‐148 and TG22‐001 (Daws<strong>on</strong> etal. 2010). PCR reacti<strong>on</strong>s were performed <strong>on</strong> a 2720 Thermal Cycler (AppliedBiosystems) in 9 µL volumes and c<strong>on</strong>tained approximately 3 µL genomic DNA, 3 µLQIAGEN Multiplex PCR Mastermix (QIAGEN) and 3 µL primer mix (c<strong>on</strong>centrati<strong>on</strong>swere 0.1 µM (Pdoµ1), 0.12 µM (TG01‐148), 0.16 µM (Pdo10, Pdo19, Pdo22, Pdo32,TG04‐012) and 0.2 µM (Pdoµ3, Pdoµ5, Pdo9, Pdo16, Pdo47, TG01‐040, TG07‐022,TG13‐017, TG22‐001)). The applied PCR profile c<strong>on</strong>tained an initial denaturati<strong>on</strong> stepof 15 min at 95°C, followed by 35 cycli of 30 s at 94°C, 90 s at 57°C and 60 s at 72°C.101


Chapter 4Finally, an additi<strong>on</strong>al el<strong>on</strong>gati<strong>on</strong> step of 30 min at 60°C and an indefinite hold at 4°Cwas allowed. Prior to genotyping sample DNA c<strong>on</strong>centrati<strong>on</strong>s were quantified using aND1000 spectrometer (Nanodrop Technologies) and adjusted to a final c<strong>on</strong>centrati<strong>on</strong>of 10 ng/µL. Negative c<strong>on</strong>trols were employed during extracti<strong>on</strong> and PCR to rule outc<strong>on</strong>taminati<strong>on</strong> of reagents. PCR products were visualized <strong>on</strong> an ABI3130 GeneticAnalyzer (Applied Biosystems), an internal LIZ‐600 size standard was applied todetermine allele size and fragments were scored using the software packageGENEMAPPER 4.0.Table 4.1. Schematic overview of the number of individuals sampled per year per locati<strong>on</strong>.Abbreviati<strong>on</strong>s refer to populati<strong>on</strong>s described in table 3 (Introducti<strong>on</strong>).Populati<strong>on</strong> (a) 2003 2004 2005 2006 2007 2008 2009OW‐R 5 25DB‐R 27EI‐R 19 9GB‐R 29HS‐R 6 10 3 6ME‐R 29HY‐R 23MS‐R 27 3PD‐R 3 14 12PS‐R 18 12RS‐R 23VM‐R 7 19SD‐R 12 4FM‐SU 2 16 11DR‐SU 12 12 5HL‐SU 1 7 17 5MB‐SU 2 20 6SC‐SU 2 7 6 8SS‐SU 8 5 17WB‐SU 2 12 14WO‐SU 23 7ML‐SU 20 3 6EB‐U 7 6 3 1PH‐U 7 5 10 4VI‐U 3 4 6 5 2 2SP‐U 7 9 4 1 3(a) Last letter refers to urbanizati<strong>on</strong> class (R=rural; SU= suburban; U= urban)102


Genetic structure in c<strong>on</strong>temporary <strong>house</strong> sparrow populati<strong>on</strong>sFig. 4.1. Map showing urban (filled circles), suburban (open circles) and rural (filled triangles) <str<strong>on</strong>g>study</str<strong>on</strong>g>plots within and near the city of <strong>Ghent</strong> (Belgium). Inner c<strong>on</strong>tour encompasses <strong>Ghent</strong> city centre,outer c<strong>on</strong>tour encompasses surrounding municipalities. Abbreviati<strong>on</strong>s refer to populati<strong>on</strong>s describedin table 3 (Introducti<strong>on</strong>).103


Chapter 4Microsatellite analysisWe used MICRO‐CHECKER (Van Oosterhout et al. 2004) to identify scoringerrors that could be attributed to stuttering, differential amplificati<strong>on</strong> of size‐variantalleles causing large allele drop‐out or the presence of null alleles. All microsatelliteloci were checked for Hardy‐Weinberg and linkage equilibrium with GENEPOP versi<strong>on</strong>4.0 (Raym<strong>on</strong>d and Rousset 1995, Rousset 2008) and a family‐wise error rate of 0.05was obtained by employing a sequential B<strong>on</strong>ferr<strong>on</strong>i correcti<strong>on</strong> as suggested by Weir(1990).Patterns of genetic diversity al<strong>on</strong>g urbanizati<strong>on</strong> classes.Genetic diversity for each locus‐populati<strong>on</strong> combinati<strong>on</strong> was quantified usingthree statistics: allelic richness (A [g] ), observed (H o ) and unbiased expectedheterozygosity (H e ; Nei 1978). Measures of heterozygosity were computed in FSTATversi<strong>on</strong> 2.9.3.2 (Goudet, 1995), while allelic richness was calculated using ARESversi<strong>on</strong> 1.2.2 (Van Lo<strong>on</strong> et al., 2007). This latter measure is highly dependent <strong>on</strong>sample size (Kalinowski 2004) and patterns of allelic diversity may be obscured oreven reversed when samples of different sizes are compared (Van Lo<strong>on</strong> et al., 2007).We used the rarefacti<strong>on</strong> method (Hurlbert 1971) to compensate for potentialc<strong>on</strong>founding effects of such variati<strong>on</strong> in sample numbers. Rather than using thesmallest observed sample size as a reference sample size which might result in a lossof informati<strong>on</strong> or decrease in accuracy (Van Lo<strong>on</strong> et al. 2007), the algorithmimplemented in the ARES package allows extrapolati<strong>on</strong> to a user‐predefined samplesize. The average number of gene copies (g) per populati<strong>on</strong> in our dataset was 40which we therefore used as the comm<strong>on</strong> sample size. The significance of spatialheterogeneity in genetic diversity indices between the three urbanizati<strong>on</strong> classes wascalculated using 1000 permutati<strong>on</strong>s. We used DEMEtics versi<strong>on</strong> 0.8.0 (Gerlach et al.2010) to calculate pair‐wise levels of genetic differentiati<strong>on</strong> am<strong>on</strong>g all populati<strong>on</strong>sand overall levels of genetic differentiati<strong>on</strong> within each urbanizati<strong>on</strong> class. Wepreferred to calculate D est instead of the more traditi<strong>on</strong>al F st values because theformer is independent of the level of loci polymorphism and therefore yields moresensible and easily interpretable estimates of populati<strong>on</strong> differentiati<strong>on</strong> (Jost 2008). Apermutati<strong>on</strong> approach with 1000 iterati<strong>on</strong>s was used to assess the level of statisticalsignificance. We tested whether isolati<strong>on</strong> by distance c<strong>on</strong>tributed substantially togenetic differentiati<strong>on</strong> by correlating genetic distance, D est /(1‐ D est ), with geographicaldistance (Boh<strong>on</strong>ak 2002).104


Genetic structure in c<strong>on</strong>temporary <strong>house</strong> sparrow populati<strong>on</strong>sTable 4.2. Locus specific summary statistics for 16 microsatellite markers.locus N N A H o H e D est f nullTG01‐040 a 537 6 0.40 0.44 0.019 (0.010 , 0.029) 0.028 (0.01)TG01‐148 a 486 3 0.42 0.38 ‐0.005 (‐0.016 , 0.007) ‐0.023 (0.02)TG04‐012 a 549 5 0.53 0.59 0.002 (‐0.016 , 0.020) 0.039 (0.016)TG07‐022 a 493 5 0.37 0.41 0.022 (0.012 , 0.031) 0.026 (0.012)TG13‐017 a 547 8 0.52 0.64 0.028 (0.008 , 0.049) 0.074 (0.015)TG22‐001 a 478 11 0.34 0.41 0.020 (0.005 , 0.034) 0.054 (0.013)pdoµ1 550 20 0.80 0.85 0.067 (0.032 , 0.102) 0.024 (0.009)pdoµ3 515 19 0.83 0.85 0.128 (0.078 , 0.178) 0.015 (0.007)pdoµ5 523 22 0.76 0.82 0.289 (0.243 , 0.335) 0.033 (0.011)pdo9 442 31 0.65 0.75 0.236 (0.193 , 0.279) 0.052 (0.013)pdo10 596 18 0.78 0.82 0.072 (0.037 , 0.107) 0.021 (0.011)pdo16 549 17 0.81 0.84 0.061 (0.025 , 0.097) 0.016 (0.01)Pdo19 573 9 0.60 0.62 0.039 (0.021 , 0.057) 0.008 (0.011)Pdo22 578 16 0.73 0.72 0.034 (0.015 , 0.053) ‐0.005 (0.011)pdo32 491 20 0.59 0.75 0.069 (0.038 , 0.100) 0.093 (0.015)pdo47 562 17 0.68 0.83 0.156 (0.118 , 0.194) 0.078 (0.013)aEST based microsatellitesNumber of individuals genotyped (N), number of distinct alleles per locus (N A), observed (H o) and expected (He)heterozygosity, genetic differentiati<strong>on</strong> (D est) and null allele frequency (f null)Inference of populati<strong>on</strong> structureWe explored multiple avenues for investigating the genetic populati<strong>on</strong>structure. First, we performed an individual‐based Bayesian analysis implemented inSTRUCTURE versi<strong>on</strong> 2.2 (Pritchard et al. 2000) to delineate clusters (K) of individualsbased <strong>on</strong> their multilocus genotypes. Without a priori knowledge of sourcepopulati<strong>on</strong>s the algorithm attempts to find groups of individuals that minimizedeviati<strong>on</strong>s from Hardy‐Weinberg and linkage disequilibrium (Pritchard et al. 2000).Ten independent runs of K= 1‐26 were run at 200 000 Markov Chain M<strong>on</strong>te Carlorepetiti<strong>on</strong>s and a burn‐in period of 100 000 under the admixture model withcorrelated allele frequencies and no prior placed <strong>on</strong> the populati<strong>on</strong> of origin. Weused the modal value of the ad hoc quantity ΔK, which is based <strong>on</strong> the sec<strong>on</strong>d orderrate of change of the likelihood functi<strong>on</strong> (ln Pr (X|K), as a model choice criteri<strong>on</strong> todetect the true K (Evanno et al. 2005). This approach overcomes difficulties inestimating the true K in <str<strong>on</strong>g>case</str<strong>on</strong>g> likelihood values increase with stepwise values of K(Pritchard et al. 2007). When ΔK failed to reveal an unambiguous signal we chose themost parsim<strong>on</strong>ious model having the highest mean value of ln Pr (X|K) as the mostoptimal model (Pritchard et al. 2007). We tested an alternative clustering algorithm105


Chapter 4using INSTRUCT (Gao et al. 2007) which is an extensi<strong>on</strong> of STRUCTURE but does notrequire Hardy‐Weinberg equilibrium within clusters and jointly estimates levels ofpopulati<strong>on</strong> inbreeding and populati<strong>on</strong> structure. Besides estimating a populati<strong>on</strong>inbreeding coefficient, identical settings as those for STRUCTURE were used inINSTRUCT. Replicate cluster analyses were aligned using CLUMPP versi<strong>on</strong> 1.1.2(Jakobss<strong>on</strong> and Rosenberg 2007) and displayed using the graphical programDISTRUCT versi<strong>on</strong> 1.0 (Rosenberg 2004). Next we applied a principal coordinateanalysis (PCoA) to summarize a matrix of pairwise D est values using GENALEX versi<strong>on</strong>6.4 (Peakall and Smouse 2006). This kind of multivariate dimensi<strong>on</strong>‐reducing methodis exploratory in nature and graphical displays of the most important principal axeswere used in an attempt to visualize genetic similarity am<strong>on</strong>g populati<strong>on</strong>s withinurbanizati<strong>on</strong> classes (Jombart et al. 2009). Finally, we applied an analysis of molecularvariance (AMOVA) as implemented in ARLEQUIN versi<strong>on</strong> 3.5.1.2 (Excoffier et al. 2005)to examine how genetic variati<strong>on</strong> was partiti<strong>on</strong>ed over three hierarchical scales:within populati<strong>on</strong>s, between populati<strong>on</strong>s within urbanizati<strong>on</strong> classes, and am<strong>on</strong>gurbanizati<strong>on</strong> classes. As neither the number of individuals nor loci determine thepower of a nested AMOVA but rather the number of populati<strong>on</strong>s that can bepermutated am<strong>on</strong>g higher hierarchical levels, we first applied the multinomialtheorem to our sampling scheme to ascertain the minimum P‐value was smallenough (Fitzpatrick 2009).Detecti<strong>on</strong> of recent bottleneck eventsStr<strong>on</strong>g reducti<strong>on</strong>s in effective populati<strong>on</strong> size (e.g. bottlenecks) result inc<strong>on</strong>trasting rates at which allelic diversity and heterozygosity at Hardy‐Weinbergequilibrium (H e ) are lost (Cornuet and Luikart 1996). During a bottleneck particularlyrare alleles are lost rapidly and while its impact <strong>on</strong> H e is minimal (Hedrick et al. 1986)it str<strong>on</strong>gly affects the expected heterozygosity at mutati<strong>on</strong>‐drift equilibrium (H eq ) asthe latter is highly dependent <strong>on</strong> the absolute number of alleles (Ewens 1972). Inbottlenecked populati<strong>on</strong>s this transient disrupti<strong>on</strong> of mutati<strong>on</strong>‐drift equilibriumtherefore generates an “excess in heterozygosity” (H e > H eq ) (Luikart and Cornuet,1998) and a distorti<strong>on</strong> in the characteristic allele frequency distributi<strong>on</strong> of n<strong>on</strong>bottleneckedpopulati<strong>on</strong>s. We c<strong>on</strong>ducted a graphical test as the <strong>on</strong>e implemented inBOTTLENECK versi<strong>on</strong> 1.2.02 (Cornuet and Luikart 1996; Piry et al. 1999) to detect forsuch recent bottleneck events. This test differentiates whether or not allelefrequency distributi<strong>on</strong>s show a mode shift from low to intermediate allele frequency.We did not use a formal test for ‘heterozygosity excess’ as the distributi<strong>on</strong> of H eqobtained through coalescence‐based simulati<strong>on</strong>s, and thus the results, often106


Genetic structure in c<strong>on</strong>temporary <strong>house</strong> sparrow populati<strong>on</strong>sprofoundly hinge <strong>on</strong> the chosen model of microsatellite evoluti<strong>on</strong> (Hawley et al.2006) and this is currently unknown in our <str<strong>on</strong>g>study</str<strong>on</strong>g> area.Detecting recent migrati<strong>on</strong> eventsTo quantify the extent of recent migrati<strong>on</strong> events between urbanizati<strong>on</strong>classes we pooled all urban populati<strong>on</strong>s into a single urban <strong>on</strong>e and performed asimilar grouping for suburban and rural populati<strong>on</strong>s. For each individual we used apartial Bayesian assignment technique (Rannala and Mountain 1997) to identify itsarea of origin. This algorithm computes and subsequently uses the posteriorprobability density of unknown populati<strong>on</strong> allele frequencies (Bayesian approach)rather than the observed sample allele frequencies when calculating individualmultilocus genotype probabilities (frequentist approach). Cornuet et al. (1999)further extended this methodology by adding a formal statistical ‘exclusi<strong>on</strong> test’. Foreach populati<strong>on</strong>, a likelihood distributi<strong>on</strong> for M<strong>on</strong>te Carlo simulated genotypes isgenerated and the populati<strong>on</strong> is excluded as a possible origin if the likelihood for thegenotype of the sampled individual falls in the tail‐end of this distributi<strong>on</strong>. As such, asource populati<strong>on</strong> can be identified when all but <strong>on</strong>e populati<strong>on</strong> is being excludedand assigning individuals to an area different from their sampling locati<strong>on</strong> wasinterpreted as a migrati<strong>on</strong> event. This method has the advantage over all others thatthe true populati<strong>on</strong> of origin does not need to be sampled (Cornuet et al. 1999).Assignment test will be statistically rigorous when putative source populati<strong>on</strong>s arestr<strong>on</strong>gly differentiated but imprecise for weakly differentiated populati<strong>on</strong>s (Paetkauet al. 2004). Assigning recent migrants to its populati<strong>on</strong> of origin is c<strong>on</strong>ducted at anecological timescale rather than an evoluti<strong>on</strong>ary <strong>on</strong>e and hence assumpti<strong>on</strong>s likedrift‐migrati<strong>on</strong> equilibrium are less stringent (Peery et al. 2008). Analyses wereperformed in GENECLASS2 versi<strong>on</strong> 2.0 (Piry et al. 2004) and the focal individual waseach time removed from the sample when allele frequencies were estimated (theleave‐<strong>on</strong>e‐out procedure).RESULTSSummary statisticsAll loci were highly polymorphic across populati<strong>on</strong>s and number of alleles perlocus ranged from 3 (locus TG01‐148) to 31 (locus Pdo9). Most locus by populati<strong>on</strong>combinati<strong>on</strong>s were in Hardy‐Weinberg equilibrium, yet some deviati<strong>on</strong>s reachedsignificance after B<strong>on</strong>ferr<strong>on</strong>i correcti<strong>on</strong> (three populati<strong>on</strong>s for Pdo47, twopopulati<strong>on</strong>s for Pdoµ5 and <strong>on</strong>e for resp. Pdo32, Pdo9 and TG13‐017). There was noevidence that scoring errors due to large allele drop‐out or stutter c<strong>on</strong>tributed to this107


Chapter 4n<strong>on</strong>equilibrium. To ascertain that these deviati<strong>on</strong>s did not influence our results weran all analyses with and without these five markers. Removing these loci did notalter any of the observed patterns, hence <strong>on</strong>ly results based <strong>on</strong> the total dataset arebeing presented here. There was no evidence for linkage disequilibrium between anypair of loci. Standard statistics for each marker are presented in table 4.2.Genetic diversity am<strong>on</strong>g urbanizati<strong>on</strong> classesMean number of alleles per locus ranged from 4.8‐7.9, allelic richness from5.86‐9.62 and expected heterozygosity from 0.60‐0.71. Permutati<strong>on</strong> tests did notdetect significant differences in these diversity indices between urbanizati<strong>on</strong> classes(all p>0.05). Pairwise levels of populati<strong>on</strong> differentiati<strong>on</strong> ranged from 0.002 to 0.076(mean D est ± SE: 0.037 ± 0.008). When respectively all urban, suburban and ruralpopulati<strong>on</strong>s were pooled pairwise D est values were 0.001 between the urban andrural group, 0.002 between the suburban and rural <strong>on</strong>e and 0.001 between the urbanand suburban group. Overall differentiati<strong>on</strong> between urban populati<strong>on</strong>s was 0.025,0.028 for suburban populati<strong>on</strong>s and 0.033 for rural <strong>on</strong>es. There was support for anisolati<strong>on</strong>‐by‐distance populati<strong>on</strong> structure as a Mantel test revealed a positivecorrelati<strong>on</strong> between genetic and geographic distance (Mantel r=0.19; p=0.001). Thesetrends were however absent when c<strong>on</strong>sidering the rural and urban/suburbanhabitats separately (both p>0.05). Mean populati<strong>on</strong>‐specific descriptors andpopulati<strong>on</strong> pairwise estimates are given in table 4.3.Populati<strong>on</strong> structure inferenceIndividual‐based Bayesian analyses failed to identify multiple clusters al<strong>on</strong>g theurbanizati<strong>on</strong> gradient and were c<strong>on</strong>sistent with aforementi<strong>on</strong>ed low levels of geneticdivergence between populati<strong>on</strong>s (figure 4.2). ΔK did not show a clear mode whenclustering was performed using STRUCTURE but posterior probabilities started togradually decline for K>7, hence we chose K=1 as the most parsim<strong>on</strong>ious and optimalmodel (figure 4.3 A‐D). When levels of inbreeding were accounted for, posteriorprobabilities incremented with increasing K’s and reached a plateau at approximatelyK=13. To overcome this problem we used ΔK to delineate the most appropriatemodel as suggested by Evanno et al. (2005), but no clear mode could be detectedalthough lower cluster numbers had the smallest ΔK values (respectively K=1 andK=2) (figure 4.3 E‐H). The lack of support for str<strong>on</strong>g populati<strong>on</strong> structurecorroborated with observed values of mean membership coefficients that werehighly admixed for all K, i.e. very few individuals showed str<strong>on</strong>g and unique affinity toa specific cluster (figure 4.2). The principal coordinate analysis revealed a tendency to108


Genetic structure in c<strong>on</strong>temporary <strong>house</strong> sparrow populati<strong>on</strong>sTable 4.3. (part 1) Summary of genetic descriptors at within‐ and between‐populati<strong>on</strong> level.Abbreviati<strong>on</strong>s refer to populati<strong>on</strong>s described in table 3 (Introducti<strong>on</strong>).Populati<strong>on</strong> (a) OW‐R DB‐R EI‐R GB‐R HS‐R ME‐R HY‐R MS‐R PD‐R PS‐R RS‐R VM‐R SD‐RN 30 27 28 29 25 29 23 30 29 30 23 26 16Dest , OW‐R *** *** *** *** *** *** *** *** *** *** *** ***Dest , DB‐R 0,035 ns *** * * ns *** * * ns *** nsDest , EI‐R 0,036 0,031 *** ns * ns *** * * * * ***Dest , GB‐R 0,039 0,031 0,019 ns *** *** *** *** * *** *** ***Dest , HS‐R 0,044 0,031 0,021 0,053 ns * *** ns ns ns ns nsDest , ME‐R 0,043 0,031 0,024 0,053 0,035 ns *** ns *** * ns ***Dest , HY‐R 0,041 0,039 0,026 0,054 0,039 0,027 *** ns ns ns *** nsDest , MS‐R 0,037 0,038 0,021 0,064 0,044 0,020 0,024 *** *** *** *** *Dest , PD‐R 0,036 0,039 0,023 0,060 0,043 0,027 0,024 0,052 * *** * nsDest , PS‐R 0,033 0,037 0,030 0,054 0,040 0,020 0,024 0,051 0,047 ns *** ***Dest , RS‐R 0,032 0,035 0,025 0,054 0,043 0,018 0,025 0,056 0,044 0,015 ns nsDest , VM‐R 0,027 0,030 0,025 0,051 0,041 0,025 0,029 0,057 0,046 0,015 0,058 *Dest , SD‐R 0,024 0,028 0,026 0,047 0,039 0,025 0,028 0,050 0,039 0,017 0,063 0,062Dest , FM‐SU 0,026 0,032 0,027 0,048 0,041 0,024 0,028 0,059 0,031 0,022 0,066 0,061 0,041Dest , DR‐SU 0,026 0,029 0,029 0,051 0,041 0,018 0,031 0,059 0,026 0,023 0,064 0,055 0,044Dest , HL‐SU 0,028 0,037 0,032 0,049 0,034 0,017 0,028 0,065 0,033 0,021 0,064 0,051 0,044Dest , MB‐SU 0,028 0,031 0,035 0,050 0,034 0,015 0,033 0,055 0,035 0,023 0,076 0,054 0,046Dest , SC‐SU 0,034 0,032 0,039 0,053 0,035 0,013 0,034 0,047 0,034 0,024 0,068 0,054 0,043Dest , SS‐SU 0,034 0,032 0,047 0,045 0,034 0,015 0,032 0,044 0,033 0,028 0,069 0,049 0,045Dest , WB‐SU 0,042 0,030 0,046 0,042 0,037 0,013 0,038 0,037 0,017 0,040 0,067 0,050 0,045Dest , WO‐SU 0,039 0,027 0,043 0,039 0,040 0,012 0,038 0,047 0,011 0,046 0,067 0,050 0,044Dest , ML‐SU 0,036 0,026 0,041 0,039 0,043 0,015 0,047 0,048 0,017 0,048 0,073 0,049 0,043Dest , EB‐U 0,048 0,020 0,040 0,038 0,037 0,016 0,048 0,042 0,017 0,048 0,073 0,039 0,042Dest , PH‐U 0,033 0,020 0,038 0,039 0,031 0,023 0,057 0,042 0,017 0,046 0,072 0,044 0,043Dest , VI‐U 0,033 0,020 0,043 0,038 0,032 0,019 0,052 0,041 0,013 0,053 0,074 0,042 0,047Dest , SP‐U 0,032 0,017 0,040 0,039 0,028 0,024 0,052 0,050 0,014 0,056 0,067 0,042 0,052N P 2 3 1 1 2 4 1 1 0 0 2 2 1N A 6,56 6,69 7,69 6,88 7,00 7,50 7,25 6,69 7,56 6,94 6,13 7,38 6,50A [40] 7,22 7,30 8,19 7,26 8,16 8,24 8,90 6,95 8,10 7,27 7,46 8,17 9,62He 0,60 0,70 0,68 0,66 0,68 0,67 0,67 0,60 0,70 0,67 0,66 0,67 0,70F is 0,026 0,265 0,112 0,236 0,162 0,092 0,053 0,017 0,125 0,051 0,207 0,078 0,214H‐W disequilibrium 1 locus 2 loci 1 locus n<strong>on</strong>e 2 loci n<strong>on</strong>e n<strong>on</strong>e n<strong>on</strong>e n<strong>on</strong>e n<strong>on</strong>e n<strong>on</strong>e n<strong>on</strong>e n<strong>on</strong>eMode shift no no no no no no no no no no no no nocluster urban and suburban populati<strong>on</strong>s <strong>on</strong> the <strong>on</strong>e hand and rural <strong>on</strong>es <strong>on</strong> the otherhand. The two main PCoA axes together explained 50% of total genetic variati<strong>on</strong>(figure 4.4). Finally, a hierarchical AMOVA indicated that no genetic variati<strong>on</strong> could beassigned to differences between urbanizati<strong>on</strong> classes, very little between populati<strong>on</strong>swithin urbanizati<strong>on</strong> classes (2.2%) and most of the variati<strong>on</strong> (97.8%) resided withinpopulati<strong>on</strong>s. The minimum p‐value for three groups of resp. 13, 9 and 4 populati<strong>on</strong>swas much smaller than 0.001 so absence of populati<strong>on</strong> structure at higherhierarchical levels could not be attributed to a lack of power.109


Chapter 4Table 4.3. (part 2) Summary of genetic descriptors at within‐ and between‐populati<strong>on</strong> level.Abbreviati<strong>on</strong>s refer to populati<strong>on</strong>s described in table 3 (Introducti<strong>on</strong>).Populati<strong>on</strong> (a) FM‐SU DR‐SU HL‐SU MB‐SU SC‐SU SS‐SU WB‐SUWO‐SU ML‐SU EB‐U PH‐U VI‐U SP‐UN 29 29 30 28 23 30 28 30 29 17 26 22 24Dest , OW‐R *** *** *** *** *** *** *** *** *** *** *** *** ***Dest , DB‐R *** *** * *** * ns *** * *** * ns ns ***Dest , EI‐R ns * ns *** ns * * ns *** *** ns ns nsDest , GB‐R *** *** *** *** *** *** *** *** *** *** *** * ***Dest , HS‐R ns ns ns * ns ns * ns *** * * ns ***Dest , ME‐R * * ns * ns ns ns *** *** *** ns ns ***Dest , HY‐R * * ns *** ns ns * *** ns *** ns ns *Dest , MS‐R *** *** * *** *** *** *** *** *** *** * * *Dest , PD‐R *** *** ns *** * ns ns *** *** *** * ns ***Dest , PS‐R ns *** *** *** *** * * *** *** *** ns ns ***Dest , RS‐R *** ns * *** ns *** *** * * *** * ns ***Dest , VM‐R *** * ns *** * * * * *** *** *** ns ***Dest , SD‐R * * ns * * *** * *** ns *** ns * nsDest , FM‐SU *** * *** ns * ns *** *** *** * ns ***Dest , DR‐SU 0,037 *** *** * * ns *** ns *** ns ns ***Dest , HL‐SU 0,038 0,055 *** ns * ns * *** *** ns ns *Dest , MB‐SU 0,038 0,054 0,056 *** *** *** *** *** *** *** *** ***Dest , SC‐SU 0,039 0,049 0,051 0,040 *** ns *** * *** * ns ***Dest , SS‐SU 0,039 0,048 0,045 0,040 0,036 * *** *** *** ns ns ***Dest , WB‐SU 0,039 0,056 0,045 0,038 0,035 0,026 *** *** * ns * ***Dest , WO‐SU 0,040 0,052 0,040 0,035 0,031 0,025 0,002 *** *** *** ns ***Dest , ML‐SU 0,041 0,052 0,039 0,032 0,026 0,025 0,002 0,008 *** ns ns ***Dest , EB‐U 0,042 0,053 0,038 0,032 0,024 0,023 0,002 0,008 0,020 *** * ***Dest , PH‐U 0,048 0,050 0,042 0,031 0,029 0,023 0,003 0,008 0,021 0,021 ns *Dest , VI‐U 0,048 0,055 0,034 0,036 0,023 0,023 0,006 0,013 0,019 0,052 0,061 ***Dest , SP‐U 0,051 0,053 0,037 0,036 0,024 0,022 0,004 0,013 0,021 0,055 0,059 0,059N P 1 1 1 1 3 0 2 0 1 0 1 0 2N A 7,31 7,56 7,31 7,06 7,06 7,88 7,38 6,75 7,63 4,81 7,31 6,13 6,69A [40] 7,81 7,99 7,82 7,79 8,24 8,40 8,04 7,14 8,30 5,86 8,33 7,06 8,04He 0,69 0,71 0,66 0,65 0,68 0,69 0,69 0,66 0,67 0,66 0,69 0,64 0,67F is 0,047 0,076 0,219 0,109 0,042 0,083 0,035 0,123 0,059 0,064 0,106 0,084 0,133H‐W disequilibrium n<strong>on</strong>e n<strong>on</strong>e 1 locus 1 locus n<strong>on</strong>e n<strong>on</strong>e n<strong>on</strong>e n<strong>on</strong>e n<strong>on</strong>e n<strong>on</strong>e n<strong>on</strong>e n<strong>on</strong>e n<strong>on</strong>eMode shift no no no no no no no no no yes no no no(a) Last letter refers to urbanizati<strong>on</strong> class (R=rural; SU= suburban; U= urban)N: number of individuals; N P : number of private alleles; N A : mean number of alleles per locus; A [40] : total allelicrichness across all loci at g= 40 genecopies; H e : unbiased expected heterozygosity (Nei, 1978); F is : fixati<strong>on</strong> index (Weir & Cockerham, 1984)Level of significance: ns=n<strong>on</strong> significant; *


Genetic structure in c<strong>on</strong>temporary <strong>house</strong> sparrow populati<strong>on</strong>sAn exhaustive characterizati<strong>on</strong> of recent migrati<strong>on</strong> events between differenturbanizati<strong>on</strong> classes was made impractical due to weak genetic structure at this scale.Only 10.1% of all individuals (31 rural, 32 suburban and 7 urban birds) could beassigned to a single and unique source. 61% of these 31 rural birds were residentswhile 39% were suburban migrants. The suburban subset c<strong>on</strong>sisted of 78% residentsand 22% rural immigrants, while the urban group c<strong>on</strong>tained <strong>on</strong>ly immigrants (43%originated from the suburban area and 57% from the rural <strong>on</strong>e). Most of the otherbirds showed mixed ancestry (73.9%) while a small fracti<strong>on</strong> (15.9%) resembledimmigrants from unknown sources (table 4.4).DISCUSSIONAlthough <strong>house</strong> <strong>sparrows</strong> are not extremely vagile by nature (Anders<strong>on</strong> 2006),analysis of microsatellite data did reveal high historical c<strong>on</strong>nectivity or recentcomm<strong>on</strong> ancestry between populati<strong>on</strong>s al<strong>on</strong>g an urbanizati<strong>on</strong> gradient. Principalcoordinate analyses provided evidence for a moderate distincti<strong>on</strong> betweensuburban/urban and rural populati<strong>on</strong>s but a hierarchical MANOVA could notcorroborate this. While tests for bottlenecks in most urban populati<strong>on</strong>s could notsubstantiate the well‐described massive decline of <strong>house</strong> sparrow numbers in largeEuropean cities (Crick et al. 2002, De Laet and Summers‐Smith 2007), a bottlenecksignature was present at the most central urban populati<strong>on</strong>. Preliminary explorati<strong>on</strong>of dispersal patterns suggests that peripheral urban populati<strong>on</strong>s may functi<strong>on</strong> assinks in which putative genetic erosive effects are countered by gene flow fromsource populati<strong>on</strong>s. House <strong>sparrows</strong> have experienced dramatic declines which havebeen particularly pr<strong>on</strong>ounced in large European city centers (De Laet and Summers‐Smith 2007). C<strong>on</strong>trary to our expectati<strong>on</strong>s, neutral microsatellite data did not supportthese trends although census counts revealed smaller urban populati<strong>on</strong> sizescompared to their rural and suburban counterparts (unpublished data). Either urbanpopulati<strong>on</strong> sizes have remained stable in the recent past, albeit at a lower level, orwe were unable to reveal the genetic c<strong>on</strong>sequences of a bottleneck. Geneticsignatures of populati<strong>on</strong> declines are highly ephemeral and become invisible ifinsufficient or too much time has elapsed since the <strong>on</strong>set of the populati<strong>on</strong> decline(Luikart et al. 1998; Keller et al. 2001). Unfortunately, lack of historical data preventsus from assessing the severity and timing of putative urban bottlenecks and to111


Chapter 4Fig. 4.2. Populati<strong>on</strong> structure inferred from microsatellite polymorphism. All samples show evidenceof highly mixed ancestry supporting a lack of populati<strong>on</strong> structure for 690 <strong>house</strong> <strong>sparrows</strong> al<strong>on</strong>g anurbanizati<strong>on</strong> gradient. The plot shows the average ancestry of 10 independent runs for K=3 clusters(plots for other K values show similar patterns). Upper panel: INSTRUCT analysis (Gao et al. 2007),lower panel: STRUCTURE analysis (Pritchard et al. 2000). Abbreviati<strong>on</strong>s refer to populati<strong>on</strong>sdescribed in table 3 (Introducti<strong>on</strong>).112


Genetic structure in c<strong>on</strong>temporary <strong>house</strong> sparrow populati<strong>on</strong>sFig. 4.3. Graphical display of the four steps to detect true number of cluster as outlined by Evanno etal. (2005). A and E: L(K), mean posterior likelihood (±SD) over 10 runs for each K value. B and F: L´(K),first order rate of change in the posterior likelihood (±SD). C and G: L´´(K), absolute value of thesec<strong>on</strong>d order rate of change in the posterior likelihood (±SD). D and H: ΔK, mean absolute values ofL´´(K) over standard deviati<strong>on</strong> of L(K). A‐D: INSTRUCT analysis (Gao et al. 2007), E‐H: STRUCTUREanalysis (Pritchard et al. 2000).113


Chapter 4Fig. 4.4. Scatterplot of the first two PCoA axes of genetic variati<strong>on</strong> (based <strong>on</strong> pairwise D est values)between <strong>house</strong> sparrow populati<strong>on</strong>s. Symbols represent different urbanizati<strong>on</strong> classes: filled circles(urban), open circles (suburban) and filled triangles (rural). Abbreviati<strong>on</strong>s refer to populati<strong>on</strong>sdescribed in table 3 (Introducti<strong>on</strong>).Table 4.4. Number of individuals that could be assigned to a single site (N unique ) and their most likelysite of origin (assigned site). Individuals were excluded from a site if its genotype likelihood was lessthan 0.01 when compared to a likelihood distributi<strong>on</strong> of 10000 simulated genotypes. Percentages aregiven in brackets.Assigned siteSampling site N Rural Suburban Urban N uniquelyRural 345 19 (0.61) 12 (0.39) 0 31 (0.09)Suburban 256 7 (0.22) 25 (0.78) 0 32 (0.13)Urban 89 4 (0.43) 3 (0.57) 0 7 (0.08)unambiguously exclude such c<strong>on</strong>founding effects. Failure to detect geneticbottlenecks can also be attributed to immigrati<strong>on</strong> of rare alleles into the populati<strong>on</strong>(Keller et al. 2001) and offers a plausible explanati<strong>on</strong> given the small scale <strong>on</strong> whichthis <str<strong>on</strong>g>study</str<strong>on</strong>g> was c<strong>on</strong>ducted. While genetic diversity may be depleted during the initialphase of a bottleneck, admixture events may result in a subsequent increase ofdiversity, obscuring and compromising tests to detect bottleneck events (Keller et al.114


Genetic structure in c<strong>on</strong>temporary <strong>house</strong> sparrow populati<strong>on</strong>s2001). Dispersal estimates indicated moderate site‐tenacity in suburban and ruralareas, reflecting the well‐known sedentary behavior of <strong>house</strong> <strong>sparrows</strong> (Anders<strong>on</strong>2006). More interestingly however was the complete lack of any urban immigrant inthese areas while the urban subgroup c<strong>on</strong>sisted of exclusively suburban and ruralemigrants, at least suggesting the urban habitat might functi<strong>on</strong> as a ‘dispersal sink’(Dias 1996) and thereby masking true bottleneck signatures. In c<strong>on</strong>trast, theinnermost urban populati<strong>on</strong> did not seem to be affected by such an influx of‘neighboring alleles’ as loss of genetic diversity was not entirely restored. PeripheralFig. 4.5. Allele frequency distributi<strong>on</strong>s of 16 microsatellites for each populati<strong>on</strong> c<strong>on</strong>formed to the L‐shaped frequency distributi<strong>on</strong> expected for neutral loci at mutati<strong>on</strong>‐drift equilibrium (Luikart et al.1998), with <strong>on</strong>e excepti<strong>on</strong> for the most central urban populati<strong>on</strong> EB‐U (mode shift indicated byarrow). Abbreviati<strong>on</strong>s refer to populati<strong>on</strong>s described in table 3 (Introducti<strong>on</strong>).115


Chapter 4urban populati<strong>on</strong>s may be fed by immigrati<strong>on</strong> but apparently the core <strong>on</strong>e lacksthese dynamics. Such a scenario may be even more pr<strong>on</strong>ounced in largermetropolitan cities as distances between core populati<strong>on</strong>s and potential sources willincrease by several orders of magnitude. The low amount of genetic structure at thisscale however did not allow us to c<strong>on</strong>duct a formal and exhaustive assessment ofmigrati<strong>on</strong> rates between urban, suburban and rural areas as the sensitivity of theanalysis hinges <strong>on</strong> the amount of differentiati<strong>on</strong> between putative sources. Hence,we c<strong>on</strong>tend that these results should be cautiously interpreted and urge for the needto c<strong>on</strong>duct an in‐depth evaluati<strong>on</strong> of the extent of (unidirecti<strong>on</strong>al) exchange ofmigrants between the urban area and its surroundings.Our data indicated low levels of differentiati<strong>on</strong> and equal measures of geneticdiversity al<strong>on</strong>g the urbanizati<strong>on</strong> gradient. It may be too premature to c<strong>on</strong>clude thatthis would indicate high dispersal rates between current populati<strong>on</strong>s. Indirectevidence suggests that genetic drift is not fully countered by migrati<strong>on</strong>. Geneticdifferentiati<strong>on</strong> between different urbanizati<strong>on</strong> classes (after pooling all populati<strong>on</strong>s)was an order of magnitude smaller than overall D est values between populati<strong>on</strong>swithin each urbanizati<strong>on</strong> class. If migrati<strong>on</strong> between populati<strong>on</strong>s were high, weexpected both measures to be of similar size. These results rather suggest thatgenetic drift is str<strong>on</strong>g enough to withstand the homogenizing effect of dispersal.Even under the assumpti<strong>on</strong> that historical estimates of genetic c<strong>on</strong>nectivity resemblecurrent <strong>on</strong>es, we could c<strong>on</strong>servatively claim demographic independence based up<strong>on</strong>genetic independence but not the opposite (Taylor and Diz<strong>on</strong> 1999). The influence of<strong>on</strong>ly a few immigrants may be sufficient to replenish genetic variati<strong>on</strong> and reduceinbreeding depressi<strong>on</strong> (‘genetic rescue’ sensu Ingvarss<strong>on</strong> (2001)), yet such numberswill often have <strong>on</strong>ly trivial demographic effects (Taylor and Diz<strong>on</strong> 1996). A <str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>on</strong>reproductive success of <strong>house</strong> <strong>sparrows</strong> al<strong>on</strong>g an urban gradient revealed insufficientlocal recruitment in two out of three years as it did not reach the predicted thresholdrequired for populati<strong>on</strong> stability (Peach et al 2008). Vincent (2005) showed that thisdeficit was not counterbalanced by immigrati<strong>on</strong> as populati<strong>on</strong> sizes declined overallby 28% during this three year. Unfortunately, no estimates <strong>on</strong> genetic differentiati<strong>on</strong>were available while our <str<strong>on</strong>g>study</str<strong>on</strong>g> lacked demographic data. We c<strong>on</strong>tend that in order tooptimize management schemes, additi<strong>on</strong>al studies integrating quantitative data <strong>on</strong>genetic and demographic c<strong>on</strong>nectivity are warranted.C<strong>on</strong>nectivity or lack thereof plays a crucial role in evoluti<strong>on</strong>ary processes.Although evoluti<strong>on</strong>ary theory predicts that high levels of gene flow mitigate localadaptive resp<strong>on</strong>ses, it does not necessarily eliminate the adaptive potential of apopulati<strong>on</strong>. The evoluti<strong>on</strong> of differences in body mass has been documented in birds116


Genetic structure in c<strong>on</strong>temporary <strong>house</strong> sparrow populati<strong>on</strong>sdue to n<strong>on</strong>‐random dispersal with respect to the phenotype (Garant et al. 2005; Storz2005; Postma and van Noordwijk 2005). A <str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>on</strong> <strong>house</strong> <strong>sparrows</strong> reported ac<strong>on</strong>sistent reducti<strong>on</strong> in body size and c<strong>on</strong>diti<strong>on</strong> of free‐living urban <strong>house</strong> <strong>sparrows</strong>compared to their rural c<strong>on</strong>specifics (Liker et al. 2008). Liker et al. (2008) suggestedthat these differences in body mass were genetically determined as differences didnot disappear when birds were placed in a comm<strong>on</strong> envir<strong>on</strong>ment. In the face ofsubstantial dispersal rates between both envir<strong>on</strong>ments such genetic differences maystill persist if dispersal is n<strong>on</strong>‐random with respect to body mass. In such a scenario,smaller birds will then be either forced or attracted to move to highly built‐up areas,while heavier birds tend to settle in the surrounding areas. However, in c<strong>on</strong>trast toLiker et al. (2008), we could not c<strong>on</strong>firm differences in body mass per se betweenurban and rural birds (data not shown) although we reported a reducti<strong>on</strong> ofnutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> in urban <strong>house</strong> <strong>sparrows</strong> earlier (Vangestel et al. 2010).This is the first <str<strong>on</strong>g>study</str<strong>on</strong>g>, to our knowledge, that investigates the populati<strong>on</strong>genetic structure of c<strong>on</strong>temporary <strong>house</strong> sparrow populati<strong>on</strong>s after the <strong>on</strong>set of thedecline. While we could identify to a certain extent urban/suburban and rural geneticclusters, small‐scale patterns were less distinct. As pointed out by previousresearchers (Kekk<strong>on</strong>en et al. 2010) our results could functi<strong>on</strong> as a baseline granting usthe opportunity to m<strong>on</strong>itor and evaluate future genetic changes in urban <strong>house</strong>sparrow populati<strong>on</strong>s.AcknowledgementWe wish to thank H. Matheve, T. Cammaer and C. Nuyens for field assistanceand A. Krupa and G. Horsburgh for laboratory assistance. This <str<strong>on</strong>g>study</str<strong>on</strong>g> was financiallysupported by research project 01J01808 of <strong>Ghent</strong> University to LL. Genotyping wasperformed at the NERC Biomolecular Analysis Facility funded by the NaturalEnvir<strong>on</strong>ment Research Council, UK. Fieldwork and genetic analyses were funded byresearch grants G.0149.09 of the Fund for Scientific Research ‐ Flanders (to S. VanD<strong>on</strong>gen and LL) and research grant 01J01808 of <strong>Ghent</strong> University (to LL).REFERENCESAnders<strong>on</strong> TR (2006). Biology of the ubiquitous House Sparrow. Oxford Univ Press.Avise JC (1995). Mitoch<strong>on</strong>drial‐dna polymorphism and a c<strong>on</strong>necti<strong>on</strong> betweengenetics and demography of relevance to c<strong>on</strong>servati<strong>on</strong>. C<strong>on</strong>serv Biol 9: 686‐690.117


Chapter 4Balmori A, Hallberg O (2007). The urban decline of the House sparrow (Passerdomesticus): a possible link with electromagnetic radiati<strong>on</strong>. ElectromagneticBiology and Medicine 26: 141‐151.Balmori A (2009). Electromagnetic polluti<strong>on</strong> from ph<strong>on</strong>e masts. Effects <strong>on</strong> wildlife.Pathophysiology 16: 191‐199.Bell CP, Baker SW, Parkes NG, Brooke MD, Chamberlain DE (2010). The role of theEurasian sparrowhawk (Accipiter nisus) in the decline of the <strong>house</strong> sparrow(Passer domesticus) in Britain. Auk 127: 411‐420.Bignal K, Ashmore M, Power S (2004). The ecological effects of diffuse air polluti<strong>on</strong>from road traffic. English Nature Research Report 580, Peterborough, UK.Boh<strong>on</strong>ak AJ (2002). IBD (Isolati<strong>on</strong> By Distance): a program for analyses of isolati<strong>on</strong> bydistance. J Hered 93: 153‐154.Chamberlain DE, Toms MP, Cleary‐Mcharg R, Banks AN (2007). House Sparrow(Passer domesticus) habitat use in urbanized landscapes. Journal ofOrnithology 148(4): 453‐462.Cheke AS (1972). Movement and dispersal am<strong>on</strong>g <strong>house</strong> <strong>sparrows</strong>, Passer domesticus(L.), at Oxford, England. In: Productivity, Populati<strong>on</strong> Dynamics and Systematicsin Granivorous birds. Eds. Kendeigh SC and Pinowski J, Polish ScientificPublishers.Cornuet JM, Luikart G (1996). Descripti<strong>on</strong> and power analysis of two tests fordetecting recent populati<strong>on</strong> bottlenecks from allele frequency data. Genetics144: 2001‐2014.Cornuet JM, Piry S, Luikart G, Estoup A, Solignac M (1999). New methods employingmultilocus genotypes to select or exclude populati<strong>on</strong>s as origins of individuals.Genetics 153: 1989‐2000.Crick H, Robins<strong>on</strong> R, Applet<strong>on</strong> G, Clark N and Richard A. 2002. Investigati<strong>on</strong> into thecauses of the decline of Starlings and House Sparrows in Great‐Britain. BTOReport Number 290 (BTO/DEFRA).Daws<strong>on</strong> DA, Horsburgh GJ, Kupper C, Stewart IRK, Ball AD, Durrant KL et a.l (2010).New methods to identify c<strong>on</strong>served microsatellite loci and develop primer setsof high cross‐species utility ‐ as dem<strong>on</strong>strated for birds. Mol Ecol Resour 10:475‐494.118


Genetic structure in c<strong>on</strong>temporary <strong>house</strong> sparrow populati<strong>on</strong>sDaws<strong>on</strong> DA, Horsburgh GJ, Krupa A, Stewart IRK, Skjelseth S et al. A predictedmicrosatellite map of the <strong>house</strong> sparrow Passer domesticus genome. (Resubmittedto Mol Ecol Resour) (In preparati<strong>on</strong>).De Laet J, Summers‐Smith JD (2007). The status of the urban <strong>house</strong> sparrow Passerdomesticus in North‐Western Europe: a review. J Ornithol 148: S275‐S278.Dias PC (1996). Sources and Sinks in Populati<strong>on</strong> Biology. Trends Ecol Evol 11: 326‐330.Evanno G, Regnaut S, Goudet J (2005). Detecting the number of clusters of individualsusing the software structure: a simulati<strong>on</strong> <str<strong>on</strong>g>study</str<strong>on</strong>g>. Mol Ecol 14: 2611‐2620.Everaert J, Bauwens D (2007). A possible effect of electromagnetic radiati<strong>on</strong> frommobile ph<strong>on</strong>e base stati<strong>on</strong>s <strong>on</strong> the number of breeding <strong>house</strong> <strong>sparrows</strong>(Passer domesticus). Electromagn Biol Med 26: 63‐72.Ewens WJ (1972). The sampling theory of selectively neutral alleles. Theor Popul Biol3: 87‐112.Excoffier L, Laval G, Schneider S (2005). An integrated software package forpopulati<strong>on</strong> genetics data analysis. Evol Bioinform 1: 47‐50.Fitzpatrick BM (2009). Power and sample size for nested analysis of molecularvariance. Mol Ecol 18: 3961‐3966.Fleisher RC (1983). A comparis<strong>on</strong> of theoretical and electrophoretic assessments ofgenetic structure in populati<strong>on</strong>s of the <strong>house</strong> sparrow (Passer domesticus).Evoluti<strong>on</strong> 37: 1001‐1009.Gao H, Williams<strong>on</strong> S, Bustamante CD (2007). An MCMC approach for joint inferenceof populati<strong>on</strong> structure and inbreeding rates from multi‐locus genotype data.Genetics (<strong>on</strong>line).Garant D, Kruuk LEB, Wilkin TA, McCleery RH, Sheld<strong>on</strong> BC (2005). Evoluti<strong>on</strong>arydifferentiati<strong>on</strong> within a wild bird populati<strong>on</strong> caused by differential dispersaland genetic architecture. Nature 433: 60‐65.Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P (2010). Calculati<strong>on</strong>sof populati<strong>on</strong> differentiati<strong>on</strong> based <strong>on</strong> G(ST) and D: forget G(ST) but not all ofstatistics! Mol Ecol 19: 3845‐3852.Goudet J (1995). FSTAT (Versi<strong>on</strong> 1.2): A computer program to calculate F‐statistics. JHered 86: 485‐486.Griffith SC, Stewart IRK, Daws<strong>on</strong> DA, Owens IPF, Burke T (1999). C<strong>on</strong>trasting levels ofextra‐pair paternity in mainland and island populati<strong>on</strong>s of the <strong>house</strong> sparrow(Passer domesticus): Is there an 'island effect'? Biol J Linn Soc 68: 303‐316.119


Chapter 4Griffith SC, Daws<strong>on</strong> DA, Jensen H, Ockend<strong>on</strong> N, Greig C, Neumann K et al. (2007).Fourteen polymorphic microsatellite loci characterized in the <strong>house</strong> sparrowPasser domesticus (Passeridae, Aves). Mol Ecol Notes 7: 333‐336.Hanski I (1999). Habitat c<strong>on</strong>nectivity, habitat c<strong>on</strong>tinuity, and metapopulati<strong>on</strong>s indynamic landscapes. Oikos 87: 209‐219.Hawley DM, Hanley D, Dh<strong>on</strong>dt AA, Lovette IJ (2006). Molecular evidence for afounder effect in invasive <strong>house</strong> finch (Carpodacus mexicanus) populati<strong>on</strong>sexperiencing an emergent disease epidemic. Mol Ecol 15: 263‐275.Hedrick PW, Brussard PF, Allendorf FW, Beardmore JA, Orzack S (1986). Proteinvariati<strong>on</strong>, fitness and captive propagati<strong>on</strong>. Zoo Biol 5: 91‐99.Heij CJ (1985). Comparative ecology of the <strong>house</strong> sparrow Passer domesticus in rural,suburban and urban situati<strong>on</strong>s. PhD thesis, Vrije <strong>Universiteit</strong> Amsterdam,Nederland.Heij CJ, Moeliker CW (1990). Populati<strong>on</strong> dynamics of dutch <strong>house</strong> Sparrows in urban,suburban and rural habitats. In: Granivorous birds in the agriculturallandscape. Eds. Pinowski J and Summers‐Smith JD, Polish Scientific Publishers.Hole GD (2001). The populati<strong>on</strong> ecology and ecological genetics of the <strong>house</strong> sparrowPasser doemsticus <strong>on</strong> farmland in Oxfordshire. PhD thesis, University ofOxford, UK.Hole DG, Whittingham MJ, Bradbury RB, Anders<strong>on</strong> GQA, Lee PLM, Wils<strong>on</strong> JD et al.(2002). Widespread local <strong>house</strong> sparrow extincti<strong>on</strong>s ‐ agriculturalintensificati<strong>on</strong> is blamed for the plummeting populati<strong>on</strong>s of these birds.Nature 418: 931‐932.Hurlbert SH (1971). The n<strong>on</strong>c<strong>on</strong>cept of species diversity: a critique and alternativeparameters. <strong>Ecology</strong> 52: 577‐586.Ingvarss<strong>on</strong> PK (2001). Restorati<strong>on</strong> of genetic variati<strong>on</strong> lost ‐ the genetic rescuehypothesis. Trends in <strong>Ecology</strong> and Evoluti<strong>on</strong> 16: 62‐63.Jakobss<strong>on</strong> M, Rosenberg NA (2007). CLUMPP: a cluster matching and permutati<strong>on</strong>program for dealing with label switching and multimodality in analysis ofpopulati<strong>on</strong> structure. Bioinformatics 23: 1801‐1806.Jombart T, P<strong>on</strong>tier D, Dufour AB (2009). Genetic markers in the playground ofmultivariate analysis. Heredity 102: 330‐341.Jost L (2008). G(St) and Its Relatives Do Not Measure Differentiati<strong>on</strong>. Mol Ecol 17:4015‐4026.120


Genetic structure in c<strong>on</strong>temporary <strong>house</strong> sparrow populati<strong>on</strong>sKalinowski ST (2004). Counting alleles with rarefacti<strong>on</strong>: Private alleles and hierarchicalsampling designs. C<strong>on</strong>serv Genet 5: 539‐543.Kekk<strong>on</strong>en J, Seppa P, Hanski I, Jensen H, Vaisanen RA, Brommer JE (2010). Lowgenetic differentiati<strong>on</strong> in a sedentary bird: <strong>house</strong> sparrow populati<strong>on</strong> geneticsin a c<strong>on</strong>tiguous landscape. Heredity: 1‐8.Keller LF, Jeffery KJ, Arcese P, Beaum<strong>on</strong>t MA, Hochachka WM, Smith JNM et al.(2001). Immigrati<strong>on</strong> and the ephemerality of a natural populati<strong>on</strong> bottleneck:evidence from molecular markers. Proc R Soc L<strong>on</strong>d B 268: 1387‐1394.Liker A, Papp Z, Bok<strong>on</strong>y V, Lendvai AZ (2008). Lean birds in the city: body size andc<strong>on</strong>diti<strong>on</strong> of <strong>house</strong> <strong>sparrows</strong> al<strong>on</strong>g the urbanizati<strong>on</strong> gradient. J Anim Ecol 77:789‐795.Lowe WH, Allendorf FW (2010). What can genetics tell us about populati<strong>on</strong>c<strong>on</strong>nectivity? Mol Ecol 19: 3038‐3051.Luikart G, Cornuet J‐M (1998). Empirical evaluati<strong>on</strong> of a test for identifying recentlybottlenecked populati<strong>on</strong>s from allele frequency data. C<strong>on</strong>serv Biol 12: 228‐237.Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998). Usefulness of molecularmarkers for detecting populati<strong>on</strong> bottlenecks via m<strong>on</strong>itoring genetic change.Mol Ecol 7: 963‐974.Nei M (1978). Estimati<strong>on</strong> of average heterozygosity and genetic distance from a smallnumber of individuals. Genetics 89: 583‐590.Neumann K, Wett<strong>on</strong> JH (1996). Highly polymorphic microsatellites in the <strong>house</strong>sparrow Passer domesticus. Mol Ecol 5: 307‐309.Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998). Patterns of natal andbreeding dispersal in breeding birds. J Anim Ecol 67: 518‐536.Parkin DT, Cole SR (1984). Genetic variati<strong>on</strong> in the <strong>house</strong> sparrow, Passer domesticus,in the East‐Midlands of England. Biol J Linn Soc 23: 287‐301.Paetkau D, Slade R, Burden M, Estoup A (2004). Genetic assignment methods for thedirect, real‐time estimati<strong>on</strong> of migrati<strong>on</strong> rate: a simulati<strong>on</strong>‐based explorati<strong>on</strong>of accuracy and power. Mol Ecol 13: 55‐65.Peach WJ, Vincent KE, Fowler JA, Grice PV (2008). Reproductive success of <strong>house</strong><strong>sparrows</strong> al<strong>on</strong>g an urban gradient. Anim C<strong>on</strong>serv 11: 493‐503.Peakall R, Smouse PE (2006). Genalex 6: Genetic analysis in excel. Populati<strong>on</strong> geneticsoftware for teaching and research. Mol Ecol Notes 6: 288‐295.121


Chapter 4Peery MZ, Beissinger SR, House RF, Berube M, Hall LA, Sellas A et al (2008).Characterizing source‐sink dynamics with genetic parentage assignments.<strong>Ecology</strong> 89: 2746‐2759.Piry S, Luikart G, Cornuet J‐M (1999). Bottleneck: a computer program for dedectingrecent reducti<strong>on</strong>s in the effective populati<strong>on</strong> size using allele frequency data. JHered 90: 502‐503.Piry S, Alapetite A, Cornuet J‐M, Paetkau D, Baudouin L, Estoup A (2004). GeneClass2:a software for genetic assignment and first‐generati<strong>on</strong> migrant detecti<strong>on</strong>. JHered 95: 536‐539.Postma E, Van Noordwijk AJ (2005). Gene flow maintains a large genetic difference inclutch size at a small spatial scale. Nature 433: 65‐68.Pritchard JK, Stephens M, D<strong>on</strong>nelly P (2000). Inference of populati<strong>on</strong> structure usingmultilocus genotype data. Genetics 155: 945‐959.Pritchard JK, Wen W, Falush D (2007). Documentati<strong>on</strong> for STRUCTURE Software:versi<strong>on</strong> 2.2 Available from http://pritch.bsd.uchicago.edu/software.Rannala B, Mountain JL (1997). Detecting immigrati<strong>on</strong> by using multilocus genotypes.Proc Natl Acad Sci USA 94: 9197‐9201.Raym<strong>on</strong>d M, Rousset F (1995). Genepop (versi<strong>on</strong>‐1.2) ‐ populati<strong>on</strong>‐genetics softwarefor exact tests and ecumenicism. J Hered 86(3): 248‐249.R<strong>on</strong>ce O (2007). How does it feel to be like a rolling st<strong>on</strong>e? Ten questi<strong>on</strong>s aboutdispersal evoluti<strong>on</strong>. Annu Rev Ecol Evol Syst 38: 231‐253.Rosenberg NA (2004). DISTRUCT: a program for the graphical display of populati<strong>on</strong>structure. Mol Ecol Notes 4: 137‐138.Rousset F (1997). Genetic differentiati<strong>on</strong> and estimati<strong>on</strong> of gene flow from F‐statisticsunder isolati<strong>on</strong> by distance. Genetics 145: 1219‐1228.Rousset F (2008). Genepop ' 007: a complete re‐implementati<strong>on</strong> of the Genepopsoftware for Windows and Linux. Mol Ecol Resour 8(1): 103‐106.Sekercioglu CH, Ehrlich PR, Daily GC, Aygen D, Goehring D, Sandi RF (2002).Disappearance of insectivorous birds from tropical forest fragments. Proc NatlAcad Sci U S A 99: 263‐267.Shaw LM, Chamberlain D, Evans M (2008). The <strong>house</strong> sparrow Passer domesticus inurban areas: reviewing a possible link between post‐decline distributi<strong>on</strong> andhuman socioec<strong>on</strong>omic status. J Ornithol 149: 293‐299.122


Genetic structure in c<strong>on</strong>temporary <strong>house</strong> sparrow populati<strong>on</strong>sStangel PW (1990). Genic differentiati<strong>on</strong> am<strong>on</strong>g avian populati<strong>on</strong>s. Acta XXC<strong>on</strong>gressus Internati<strong>on</strong>alis Ornithologici, Christburg, New Zealand, pp. 2442‐2453. New Zealand Ornithological C<strong>on</strong>gress Trust Board, Wellingt<strong>on</strong>.Storz JF (2005). N<strong>on</strong>random Dispersal and Local Adaptati<strong>on</strong>. Heredity 95: 3‐4.Summers‐Smith JD (1988). The Sparrows: a <str<strong>on</strong>g>study</str<strong>on</strong>g> of the genus Passer. T and ADPoyser.Taylor BL, Diz<strong>on</strong> AE (1996). The need to estimate power to link genetics anddemography for c<strong>on</strong>servati<strong>on</strong>. C<strong>on</strong>serv Biol 10: 661‐664.Taylor BL, Diz<strong>on</strong> AE (1999). First policy then science: why a management unit basedsolely <strong>on</strong> genetic criteria cannot work. Mol Ecol 8: S11‐S16.Vall<strong>on</strong>e PM, Butler JM (2004). Autodimer: a screening tool for primer‐dimer andhairpin structures. BioTechniques 37: 226‐231.Vangestel C, Braeckman BP, Matheve H, Lens L (2010). C<strong>on</strong>straints <strong>on</strong> homerange behaviour affect nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> in urban <strong>house</strong> <strong>sparrows</strong> (Passerdomesticus). Biol J Linn Soc 101: 41–50.Van Lo<strong>on</strong> EE, Cleary DFR, Fauvelot C (2007). ARES: software to compare allelicrichness between uneven samples. Mol Ecol Notes 7: 579‐582.Van Oosterhout C, Hutchins<strong>on</strong> WF, Wills DPM, Shipley P (2004). Micro‐checker:software for identifying and correcting genotyping errors in microsatellitedata. Mol Ecol Notes 4: 535‐538.Vincent K (2005). Investigating the causes of the decline of the urban <strong>house</strong> sparrowPasser domesticus populati<strong>on</strong> in Britain. PhD thesis, De M<strong>on</strong>tfort University,UK.Walsh PS, Metzger DA, Higuchi R (1991). Chelex‐100 as a medium for simpleextracti<strong>on</strong> of DNA for pcr‐based typing from forensic material. BioTechniques10: 506‐513.Weir B (1990). Genetic Data Analysis: Methods for Discrete Populati<strong>on</strong> Genetic Data.Sinauer Associates: Sunderland, MA, AUS.Wils<strong>on</strong> A (2004). The decline of the <strong>house</strong> <strong>sparrows</strong>. British Birds 97: 418‐419.123


Chapter 5Spatial heterogeneity in genetic relatedness am<strong>on</strong>g <strong>house</strong><strong>sparrows</strong> al<strong>on</strong>g an urban gradient: a plea for individual‐basedanalysisCarl VANGESTEL, Joachim MERGEAY, Deborah A. DAWSON, Viki VANDOMMEand Luc LENSMolecular <strong>Ecology</strong>, submitted©Chantal Deschepper125


Chapter 5ABSTRACTUnderstanding factors that shape patterns of kinship in sedentary species isimportant for evoluti<strong>on</strong>ary ecologists as well as c<strong>on</strong>servati<strong>on</strong> biologists. Yet, howpatterns of relatedness are hierarchically structured in space remains poorlyknown, also in comm<strong>on</strong> species. Here we use informati<strong>on</strong> from 16 polymorphicmicrosatellite DNA markers to <str<strong>on</strong>g>study</str<strong>on</strong>g> how small‐scale kinship structure variesam<strong>on</strong>g <strong>house</strong> <strong>sparrows</strong> (Passer domesticus) al<strong>on</strong>g an urban‐rural gradient.Average levels of relatedness were higher am<strong>on</strong>g urban individuals than am<strong>on</strong>gindividuals from rural areas, suggesting lower rates of dispersal in more built uphabitats. Comparis<strong>on</strong> of observed levels of relatedness with simulateddistributi<strong>on</strong>s of known kinship values showed that central urban individuals hadthe highest proporti<strong>on</strong> closely‐related c<strong>on</strong>specifics in their immediateneighbourhood. Spatial auto‐correlograms supported this small‐scale geneticstructure and further indicated str<strong>on</strong>ger effects of genetic drift and/or limiteddispersal in urban populati<strong>on</strong>s. Results of this <str<strong>on</strong>g>study</str<strong>on</strong>g> underscore the importanceof individual‐level analyses as a complementary approach to traditi<strong>on</strong>alpopulati<strong>on</strong>‐level analyses when <str<strong>on</strong>g>study</str<strong>on</strong>g>ing genetic populati<strong>on</strong> structure over smallspatial scales.INTRODUCTIONAssessing the proporti<strong>on</strong> of shared alleles that are identical by descent as ameasure of genetic relatedness between pairs of individuals (dyads) has proveninformative in a wide range of scientific disciplines (Blouin 2003). For instance,captive or in situ breeding programs can be optimized by implementinginformati<strong>on</strong> <strong>on</strong> the average degree of relatedness into artificial selecti<strong>on</strong> schemes(Lynch and Walsh 1998), quantitative geneticists can use the associati<strong>on</strong> betweengenetic and phenotypic similarity to <str<strong>on</strong>g>study</str<strong>on</strong>g> the extent of trait‐inheritance innatural populati<strong>on</strong>s (Ritland 1996), and knowledge of kin structure can helpevoluti<strong>on</strong>ary ecologists to unravel the evoluti<strong>on</strong>ary ecology of cooperativebehavior in social species (Danchin et al. 2008). Temporal or spatial variati<strong>on</strong> ingenetic relatedness can further inform ecologists <strong>on</strong> spatial dispersal scales orn<strong>on</strong>‐random and sex‐dependent dispersal events (Sweigart et al. 1999; Van deCasteele and Matthysen 2006; Zamudio and Wieczorek 2007), <strong>on</strong> local populati<strong>on</strong>dynamics (Ruzzante et al. 2001), and <strong>on</strong> the most appropriate managementstrategies for species of c<strong>on</strong>servati<strong>on</strong> c<strong>on</strong>cern.Often, c<strong>on</strong>servati<strong>on</strong> geneticists infer rates of dispersal and geneflow frompatterns of populati<strong>on</strong> genetic structure ‐ with ‘populati<strong>on</strong>s’ invariably comprisingthe smallest units of interest. Individual‐level genetic analyses are much lesscomm<strong>on</strong> in c<strong>on</strong>servati<strong>on</strong> biology (Blouin 2003), despite the fact that suchanalyses may reveal small‐scale patterns of genetic structure that remain cryptic126


Spatial heterogeneity in genetic relatedness distributi<strong>on</strong>sin populati<strong>on</strong>‐level <strong>on</strong>es (Zamudio and Wieczorek 2007). Increased aggregati<strong>on</strong> ofclose kin in small, isolated populati<strong>on</strong>s may foster loss of genetic variati<strong>on</strong> andinbreeding depressi<strong>on</strong>, and as such, compromise populati<strong>on</strong> persistence (Kellerand Waller 2002). M<strong>on</strong>itoring spatial heterogeneity in genetic relatedness cantherefore be informative when aiming to identifying populati<strong>on</strong>s susceptible to(future) genetic threats. Analytical tools to infer pairwise relatedness fromgenetic data in the absence of pedigree informati<strong>on</strong> have become readilyavailable (Blouin 2003), and access to large numbers of polymorphicmicrosatellite DNA markers mitigates the high sampling variance generallyassociated with estimates of relatedness (Lynch and Ritland 1999; Sweigart et al.1999).Here we <str<strong>on</strong>g>study</str<strong>on</strong>g> fine‐scale patterns of genetic relatedness am<strong>on</strong>g <strong>house</strong><strong>sparrows</strong> al<strong>on</strong>g an urban gradient. Urban <strong>house</strong> <strong>sparrows</strong> have shown str<strong>on</strong>glocal declines during recent decades (Chamberlain et al. 2007; De Laet andSummers‐Smith 2007), while local extincti<strong>on</strong> of small populati<strong>on</strong>s hastransformed uniformly distributed, panmictic populati<strong>on</strong>s (Kekk<strong>on</strong>en et al. 2010)into patchy populati<strong>on</strong> networks, most str<strong>on</strong>gly so in highly urbanized regi<strong>on</strong>s(Shaw et al. 2008; Vangestel unpublished data). Juvenile <strong>house</strong> <strong>sparrows</strong> dispersein a ‘stepping‐st<strong>on</strong>e’ manner, postnatal dispersal distances are typically short andadult birds exhibit high breeding site fidelity (Heij and Moeliker 1990; Anders<strong>on</strong>2006; Kekk<strong>on</strong>en et al. 2010). Such a sedentary lifestyle, in combinati<strong>on</strong> with localpopulati<strong>on</strong> extincti<strong>on</strong>, can be expected to distort historical levels of populati<strong>on</strong>c<strong>on</strong>nectivity and to result in accumulati<strong>on</strong> of close relatives within smallgeographical ranges. Yet, despite its l<strong>on</strong>g history as ecological model species inbehavioural and experimental studies (Lendvai et al. 2007; Nakagawa et al. 2007),surprisingly little is known <strong>on</strong> patterns of kinship structure in natural populati<strong>on</strong>sof the <strong>house</strong> sparrow.As part of a pilot <str<strong>on</strong>g>study</str<strong>on</strong>g> al<strong>on</strong>g an urban gradient near the city of <strong>Ghent</strong>,Belgium, urban <strong>house</strong> sparrow populati<strong>on</strong>s were genetically separated from rural<strong>on</strong>es through a Principal Coordinate Analysis, and genetic erosive effects wereshown to be restricted to the most central urban populati<strong>on</strong> (Vangestel et al.,unpublished). These results supported the hypothesis that urban and rural <strong>house</strong>sparrow populati<strong>on</strong>s act as independent demographic entities (De Laet andSummers‐Smith 2007). Building <strong>on</strong> these results, we here estimate individuallevels of pairwise relatedness to quantify genetic structuring at two hierarchicallyorderedspatial scales, i.e. a local scale (peripheral vs. central populati<strong>on</strong>s) and aregi<strong>on</strong>al scale (urban vs. rural populati<strong>on</strong>s), and address the following research127


Chapter 5questi<strong>on</strong>s: (i) Do observed distributi<strong>on</strong>s of relatedness coefficients differ fromsimulated <strong>on</strong>es under the assumpti<strong>on</strong> of panmixia?; (ii) Are average levels ofrelatedness lower am<strong>on</strong>g individuals from different locati<strong>on</strong>s than am<strong>on</strong>gindividuals from the same locati<strong>on</strong>?; (iii) Do mixed distributi<strong>on</strong>s of various kinshipcategories differ between locati<strong>on</strong>s?; and (iv) Does genetic distance correlatewith geographical distance.MATERIAL AND METHODSStudy site and speciesData were collected in the greater <strong>Ghent</strong> area (156 km²; 237.000inhabitants, of which 82.584 reside within the 7.64 km² city centre) and in anadjacent rural area near the village of Zomergem (38.8 km²; 8.150 inhabitants) ca.12 km north‐west of <strong>Ghent</strong> (figure. 5.1). Ratios of built‐up area to total area ofgrid cells (each GIS grid cell measuring 90 000 m² <strong>on</strong> the ground; Arcgis v9.2) inZomergem and <strong>Ghent</strong> were 0‐0.10 (rural) and >0.10 (urban), respectively(Vangestel et al. 2010). To <str<strong>on</strong>g>study</str<strong>on</strong>g> small‐scale variati<strong>on</strong> in patterns of kinship, ruraland urban areas (regi<strong>on</strong>al scale) were subdivided in a ‘central’ and ‘peripheral’z<strong>on</strong>e (local scale) each (figure 5.1). In the urban area, the central z<strong>on</strong>e comprisedthe area with the highest ratio of built‐up area to total area of grid cells (>0.30;compared to 0.11‐0.30 for the peripheral z<strong>on</strong>e), whereas central and peripheralz<strong>on</strong>es in the rural area were of comparable size and spatial c<strong>on</strong>figurati<strong>on</strong> as theurban z<strong>on</strong>es, yet did not differ in ratio of built‐up area (both 0‐0.10) (Vangestel etal. 2010). Between 2003‐2009, a total of 690 adult <strong>house</strong> <strong>sparrows</strong> from four‘central’ and nine ‘peripheral’ populati<strong>on</strong>s in urban and rural areas were capturedwith mist‐nets (figure 5.1). Populati<strong>on</strong>s were sampled over variable time‐spans.However, as the length of the sampling period was not correlated with average(r p =‐0.02,p= 0.93) or variati<strong>on</strong> (r p =0.08,p= 0.69) in pairwise relatedness,genotypes were pooled over years. Up<strong>on</strong> capture, standard morphologicalmeasurements were taken and a small sample of body feathers for DNA analysiswas collected (see Vangestel et al. 2010 for details).DNA extracti<strong>on</strong>, PCR and genotypingWe applied a Chelex resin‐based method (InstaGene Matrix, Bio‐Rad)(Walsh et al. 1991) to extract genomic DNA from ten body feathers per individual.Sixteen microsatellite markers (both traditi<strong>on</strong>al ‘an<strong>on</strong>ymous’ microsatellites andmarkers based <strong>on</strong> expressed sequence tags) were selected based <strong>on</strong> their128


Spatial heterogeneity in genetic relatedness distributi<strong>on</strong>sFig. 5.1. Central (filled symbols) and peripheral (open symbols) <str<strong>on</strong>g>study</str<strong>on</strong>g> plots within an urban(circles) and rural (triangles) area near the city of <strong>Ghent</strong>, Belgium. The inner c<strong>on</strong>tourencompasses the city centre of <strong>Ghent</strong>, the outer c<strong>on</strong>tour encompasses the surroundingmunicipalities. Abbreviati<strong>on</strong>s refer to populati<strong>on</strong>s described in table 3 (Introducti<strong>on</strong>).129


Chapter 5polymorphism and stutter profile (see details in Vangestel et al. submitted).Polymerase chain reacti<strong>on</strong>s were organized in four multiplex‐sets andcompatibility between primer pairs was checked with AutoDimer (Vall<strong>on</strong>e andButler 2004). The first multiplex reacti<strong>on</strong> c<strong>on</strong>tained Pdoµ1 (Neumann and Wett<strong>on</strong>1996), Pdo32, Pdo47 (Daws<strong>on</strong> et al. in preparati<strong>on</strong>) and TG04‐012 (Daws<strong>on</strong> et al.2010); the sec<strong>on</strong>d <strong>on</strong>e c<strong>on</strong>tained Pdoµ3 (Neumann and Wett<strong>on</strong>, 1996), Pdoµ5(Griffith et al. 1999), TG13‐017 and TG07‐022 (Daws<strong>on</strong> et al. 2010); the thirdmultiplex reacti<strong>on</strong> c<strong>on</strong>tained Pdo10 (Griffith et al. 2007), Pdo16, Pdo19, Pdo22(Daws<strong>on</strong> et al. in preparati<strong>on</strong>) and TG01‐040 (Daws<strong>on</strong> et al. 2010); the last setc<strong>on</strong>sisted of Pdo9 (Griffith et al. 2007), TG01‐148 and TG22‐001 (Daws<strong>on</strong> et al.2010). PCR reacti<strong>on</strong>s were performed <strong>on</strong> a 2720 Thermal Cycler (AppliedBiosystems) in 9 µL volumes and c<strong>on</strong>tained approximately 3 µL genomic DNA, 3µL QIAGEN Multiplex PCR Mastermix (QIAGEN) and 3 µL primermix(c<strong>on</strong>centrati<strong>on</strong>s were 0.1 µM (Pdoµ1), 0.12 µM (TG01‐148), 0.16 µM (Pdo10,Pdo19, Pdo22, Pdo32, TG04‐012) and 0.2 µM (Pdoµ3, Pdoµ5, Pdo9, Pdo16, Pdo47,TG01‐040, TG07‐022, TG13‐017, TG22‐001)). The PCR profile included an initialdenaturati<strong>on</strong> step of 15 min at 95°C, followed by 35 cycli of 30 s at 94°C, 90 s at57°C and 60 s at 72°C; followed by an additi<strong>on</strong>al el<strong>on</strong>gati<strong>on</strong> step of 30 min at 60°Cand an indefinite hold at 4°C. Prior to genotyping, samples were quantified usinga ND1000 spectrometer (Nanodrop Technologies) and adjusted to a standardc<strong>on</strong>centrati<strong>on</strong> of 10 ng/µL. Negative c<strong>on</strong>trols during extracti<strong>on</strong> and PCR wereincluded to rule out c<strong>on</strong>taminati<strong>on</strong> of reagents. PCR products were visualized <strong>on</strong>an ABI3730 Genetic Analyzer (Applied Biosystems), an internal LIZ‐600 sizestandard was applied to determine allele size, and fragments were scored usingthe software package GENEMAPPER v4.0. All loci under <str<strong>on</strong>g>study</str<strong>on</strong>g> were autosomal asinferred from the chromosomal locati<strong>on</strong> of their homologs <strong>on</strong> the genome of thezebra finch, Taeniopygia guttata (Vangestel et al. unpublished data).We used MICRO‐CHECKER software (Van Oosterhout et al. 2004) toidentify scoring errors that could be attributed to stuttering, differentialamplificati<strong>on</strong> of size‐variant alleles causing large allele drop‐out, or the presenceof null alleles. All microsatellite loci were checked for Hardy‐Weinberg andlinkage equilibrium with GENEPOP versi<strong>on</strong> 4.0 (Raym<strong>on</strong>d and Rousset 1995,Rousset 2008) and a family‐wise error rate of 0.05 was obtained by applyingsequential B<strong>on</strong>ferr<strong>on</strong>i correcti<strong>on</strong> (Weir 1990).Spatial kinship analysisKinship analyses can be assigned to two types of models: those thatestimate relatedness between individuals as a c<strong>on</strong>tinuous measure of genome‐130


Spatial heterogeneity in genetic relatedness distributi<strong>on</strong>swide identity by descent, and those that assign dyads to discrete relati<strong>on</strong>shipcategories (Weir et al. 2006). To date, there is no single best relatednessestimator that outperforms all others. Rather, their performance appearsc<strong>on</strong>text‐specific and to rely <strong>on</strong> the underlying true genetic populati<strong>on</strong> structure(Van de Casteele et al. 2001, Wang 2011). As recommended by Van de Casteeleet al. (2001), we performed M<strong>on</strong>te Carlo simulati<strong>on</strong>s using COANCESTRY Versi<strong>on</strong>1.0 (Wang 2011) to calculate correlati<strong>on</strong> coefficients between different estimatesand true simulated relatedness values (using observed allele frequencies). Based<strong>on</strong> these simulati<strong>on</strong>s, we selected the Queller‐Goodnight moment estimator (r QG ,Queller and Goodnight 1989) that yielded a str<strong>on</strong>g correlati<strong>on</strong> between true andestimated values (r=0.82, p


Chapter 5the presence of small‐scale genetic structure at the particular spatial scaleinvolved.Fig. 5.2. Associati<strong>on</strong> between relatedness estimates of simulated kinship categories (meanvalue=black dot, standard error=error bars) and expected theoretical relatedness values (dashedlines). 100 dyads were simulated for each of four relati<strong>on</strong>ship categories (U=unrelated, HS=halfsiblings, FS=full siblings and PO=parent‐offspring).Given local populati<strong>on</strong> structuring, we further expected individuals fromcomm<strong>on</strong> envir<strong>on</strong>ments (i.e. central/central) to be more str<strong>on</strong>gly related thandyads c<strong>on</strong>taining individuals from mixed envir<strong>on</strong>ments (i.e. central/peripheral).We therefore compared differences in mean relatedness between both dyadtypes and performed a bootstrap test of 1000 repetiti<strong>on</strong>s in COANCESTRY Versi<strong>on</strong>1.0 (Wang 2011) to assess the level of statistical significance. To test for ‘urbancenter’ effects, we compared mean levels of relatedness in urban and ruralcenters and assessed whether there was regi<strong>on</strong>al heterogeneity in differencesbetween dyads of comm<strong>on</strong> (central/central) versus mixed (central/peripheral)origin. Finally, individuals of urban and rural areas were pooled and mean levelsof relatedness of both z<strong>on</strong>es were compared.We compared the kin structure of comm<strong>on</strong> and mixed dyads byquantifying the relative c<strong>on</strong>tributi<strong>on</strong> of unrelated (U), half‐sibling (HS), full‐sibling132


Spatial heterogeneity in genetic relatedness distributi<strong>on</strong>s(FS) or parent‐offspring (PO) types of relatedness (true r respectively 0, 0.125, 0.5and 0.5; Blouin 2003). Based <strong>on</strong> observed allele frequencies within respectivelythe urban and rural area, we simulated 1000 pairs of each type with COANCESTRYVersi<strong>on</strong> 1.0 (Wang 2011) and estimated the proporti<strong>on</strong> of each type to theempirical distributi<strong>on</strong> using a finite Bayesian mixture analysis in which theobserved distributi<strong>on</strong> was modeled as a mix of normal distributi<strong>on</strong>s (all simulateddistributi<strong>on</strong>s reached normality). Proporti<strong>on</strong>s were drawn from a uniformDirichlet distributi<strong>on</strong> generating 100,000 posterior samples after discarding theinitial 50,000 (burn‐in) samples. Next, proporti<strong>on</strong>s of HS, FS and PO types werepooled into a single ‘close kin’ type, and differences in the proporti<strong>on</strong> of ‘closekin’ between comm<strong>on</strong> and mixed dyads were c<strong>on</strong>sidered significant if the 95%credibility interval did not c<strong>on</strong>tain zero. All analyses were performed in WinBUGSVersi<strong>on</strong> 1.4 (Lunn et al. 2000). For the Bayesian analysis, relatedness coefficientswere estimated within each area separately.Finally, we assessed patterns of fine‐scale genetic structure by quantifyingthe associati<strong>on</strong> between matrices of pairwise genetic/spatial distances (Smouseand Peakall 1999; Peakall et al. 2003; Vekemans and Hardy 2004) through spatialauto‐correlati<strong>on</strong> analysis in GenAlEx versi<strong>on</strong> 6.41 (Peakall and Smouse 2006).Under a restricted dispersal model, auto‐correlograms are predicted to yieldpositive correlati<strong>on</strong>s at short spatial distances, followed by a gradual decrease tozero with increasing geographical distance and a subsequent random fluctuati<strong>on</strong>of positive and negative values of the correlati<strong>on</strong> coefficient (Smouse and Peakall1999). The first x‐intercept is thereby regarded to estimate the extent ofn<strong>on</strong>random genetic structure, i.e. to reflect the point at which random stochasticdrift replaces geneflow as the key determinant of genetic structure. As thisintercept may depend <strong>on</strong> the true scale of genetic structure, the chosen distanceclass size and the sample size per distance class (Peakall et al. 2003), weperformed a sec<strong>on</strong>d auto‐correlati<strong>on</strong> analysis in which we plotted pairwisegenetic distances against increasing inclusive distance classes. Here, the distanceclass at which the auto‐correlati<strong>on</strong> coefficient no l<strong>on</strong>ger remains significant (using999 bootstraps) approximates the true extent of identifiable genetic structure(Peakall et al. 2003).133


Chapter 5RESULTSMicrosatellite dataLoci were highly polymorphic in all populati<strong>on</strong>s and there was no evidencefor linkage disequilibrium between any pair of loci. All locus‐by‐populati<strong>on</strong>combinati<strong>on</strong>s were in Hardy‐Weinberg equilibrium apart from Pdo47 whichdeviated from Hardy‐Weinberg equilibrium in three populati<strong>on</strong>s, Pdoµ5 in twopopulati<strong>on</strong>s, and Pdo9, Pdo32 and TG13‐017 in <strong>on</strong>e populati<strong>on</strong> each. There wasno evidence for scoring errors due to large allele drop‐out or stutter, and whenre‐running analyses without these five markers, inclusi<strong>on</strong> or exclusi<strong>on</strong> of Pdoµ5and Pdo9 had a minor effect <strong>on</strong> relatedness estimates in populati<strong>on</strong> OW, but notin any other marker‐by‐populati<strong>on</strong> combinati<strong>on</strong> (figure 5. 3). Since removal ofeither both loci or all genetic data from populati<strong>on</strong> OW did not affect anyc<strong>on</strong>clusi<strong>on</strong> of our <str<strong>on</strong>g>study</str<strong>on</strong>g>, results presented in this paper are based <strong>on</strong> informati<strong>on</strong>from all populati<strong>on</strong>s and loci.Hierarchical variati<strong>on</strong> in relatednessSome, but not all, populati<strong>on</strong>s showed mean relatedness coefficientsoutside the limits of the null distributi<strong>on</strong> generated by randomly permutinggenotypes over all populati<strong>on</strong>s. Pooling populati<strong>on</strong>s in either a central orperipheral z<strong>on</strong>e resulted in larger than expected pairwise relatedness am<strong>on</strong>gindividuals from the urban center <strong>on</strong>ly. When pooling populati<strong>on</strong>s in urban andrural areas, <strong>on</strong>ly the former showed evidence of a significant higher degree ofrelatedness than expected under complete panmixia (figure 5.3). While thesegenetic signatures were not c<strong>on</strong>sistent at the smallest spatial scale (populati<strong>on</strong>level), patterns at local and regi<strong>on</strong>al scales showed that individuals from theurban area were more str<strong>on</strong>gly related, especially so in the central urban z<strong>on</strong>e.Such pattern can be expected under the assumpti<strong>on</strong> of (semi)isolati<strong>on</strong> and lack ofample migrati<strong>on</strong> to counterbalance the effects of n<strong>on</strong>random mating.Relatedness in mixed and comm<strong>on</strong> dyadsNotwithstanding the low overall level of kinship in our <str<strong>on</strong>g>study</str<strong>on</strong>g> area, levels ofrelatedness significantly differed between dyads c<strong>on</strong>sisting of individuals from amixed (central‐peripheral) origin compared to those from the central z<strong>on</strong>e <strong>on</strong>ly,both in urban and rural populati<strong>on</strong>s (all p0.05). The134


Spatial heterogeneity in genetic relatedness distributi<strong>on</strong>sFig. 5.3. Mean relatedness values and 95% c<strong>on</strong>fidence limits are plotted. Gray bars represent95% upper and lower expected relatedness values under the assumpti<strong>on</strong> of panmixia across allpopulati<strong>on</strong>s. These values were c<strong>on</strong>trasted with relatedness estimates (a) within eachpopulati<strong>on</strong>, (b) central and peripheral z<strong>on</strong>es within each area, and (c) urban versus rural area,mean values outside these simulated 95% c<strong>on</strong>fidence intervals represent n<strong>on</strong>‐panmicticc<strong>on</strong>diti<strong>on</strong>s. Populati<strong>on</strong> OW with significantly higher r QG most likely comprises an outlier due tothe performance of loci Pdoµ5 and Pdo9. Abbreviati<strong>on</strong>s refer to populati<strong>on</strong>s described in table 3(Introducti<strong>on</strong>).135


Chapter 5higher level of relatedness am<strong>on</strong>g individuals from the urban compared to therural center (p


Spatial heterogeneity in genetic relatedness distributi<strong>on</strong>sComparis<strong>on</strong> of observed levels of relatedness with simulated distributi<strong>on</strong>s ofknown kinship values further showed that central urban <strong>sparrows</strong> had the highestproporti<strong>on</strong> of closely‐related c<strong>on</strong>specifics in their immediate neighbourhood.Spatial auto‐correlograms supported this small‐scale genetic structure andindicated str<strong>on</strong>ger effects of genetic drift and (or) more restricted dispersal inurban populati<strong>on</strong>s. Results of this <str<strong>on</strong>g>study</str<strong>on</strong>g> suggest that further loss of steppingst<strong>on</strong>e populati<strong>on</strong>s in urbanized areas may result in a substantial decrease ingenetic diversity in remnant populati<strong>on</strong>s of this highly sedentary species.Fig. 5.4. Genetic populati<strong>on</strong> structure at a local (central vs. peripheral) and a regi<strong>on</strong>al (urban vs.rural) scale. Mean levels of relatedness and error bars (SE) are plotted for several dyad groups:‘within UC’ and ‘within RC’ refer to comm<strong>on</strong> dyads comprising individuals from Urban Center orRural Center respectively; ‘between UC‐UP’ and ’between RC‐RP’ refer to mixed dyadscomprising <strong>on</strong>e individual from Urban Center or Rural Center, respectively, and <strong>on</strong>e individualfrom Urban Periphery or Rural Periphery, respectively; ‘within U’ and ‘within R’ refer to allpossible dyads within the Urban or Rural z<strong>on</strong>e, respectively.137


Chapter 5Fig. 5.5. Observed (solid line) versus expected (bars) patterns of relatedness in central urban<strong>house</strong> <strong>sparrows</strong> . U=unrelated (true r=0); HS=half siblings (true r=0.125); FS=full siblings (truer=0.5); PO=parent‐offspring (true r=0.5).Fig. 5.6. Posterior mean proporti<strong>on</strong>s of close kin obtained from a finite Bayesian mixture analysiswith error bars representing 95% credibility intervals. Significant differences between dyad typesin the urban or rural area are indicated by “*”; ‘within UC’ and ‘within RC’ refer to comm<strong>on</strong>dyads comprising individuals from Urban Center or Rural Center respectively; ‘between UC‐UP’and ’between RC‐RP’ refer to mixed dyads comprising <strong>on</strong>e individual from Urban Center or RuralCenter, respectively, and <strong>on</strong>e individual from Urban Periphery or Rural Periphery, respectively.138


Spatial heterogeneity in genetic relatedness distributi<strong>on</strong>sFig. 5.7. Spatial auto‐correlati<strong>on</strong> analysis in a urban and rural area. (a) Single correlogramdepicting the auto‐correlati<strong>on</strong> as a functi<strong>on</strong> of distance. (b) Multiple distance class plot depictingthe effect of different distance size classes <strong>on</strong> the extent of genetic autocorrelati<strong>on</strong>. Error barswere estimated using 999 bootstraps139


Chapter 5Populati<strong>on</strong>‐level genetic analysis based <strong>on</strong> Wright’s F‐statistics (orderivatives thereof) earlier provided <strong>on</strong>ly weak evidence for regi<strong>on</strong>al structuringof <strong>house</strong> sparrow populati<strong>on</strong>s in the same <str<strong>on</strong>g>study</str<strong>on</strong>g> area (Vangestel et al.unpublished). While results of the current <str<strong>on</strong>g>study</str<strong>on</strong>g> appear to c<strong>on</strong>tradict suchpanmictic pattern, F‐related statistics largely reflect evoluti<strong>on</strong>ary outcomes andassume equilibrium c<strong>on</strong>diti<strong>on</strong>s that are often not met in natural populati<strong>on</strong>s(Whitlock and McCauley 1999). In c<strong>on</strong>trast, patterns of kinship reflect <strong>on</strong>goinggenetic processes (Peakall et al. 2003) though it is currently unclear whether, andto what extent, distributi<strong>on</strong>s of relatedness are also affected by geneticdisequilibria. Relatedness based analyses identified small‐scale populati<strong>on</strong>structure as neighboring individuals were more related to each other than moredistant <strong>on</strong>es. Although such pattern was to be expected in species with smallpostnatal dispersal distances, mean levels of relatedness differed between urbanand rural areas. This suggests urban envir<strong>on</strong>ments pose str<strong>on</strong>ger c<strong>on</strong>straints <strong>on</strong><strong>house</strong> sparrow dispersal than less built‐up <strong>on</strong>es. Earlier, Liker et al. (2009) did notreveal significant variati<strong>on</strong> in kinship within and between winter feeding flocks of<strong>house</strong> <strong>sparrows</strong> in NW Hungary, nor were patterns related to geographicaldistance. Results from our <str<strong>on</strong>g>study</str<strong>on</strong>g> provide different, n<strong>on</strong>‐exclusive explanati<strong>on</strong>s forthis apparent lack of small‐scale genetic structure. First, Liker and colleaguesstudied <strong>house</strong> <strong>sparrows</strong> in a moderately urbanized area were genetic populati<strong>on</strong>structuring is predicted to be weak. Sec<strong>on</strong>d, as menti<strong>on</strong>ed by the authors, despitethe fact that their sampling design was most appropriate to relate feedingaggregati<strong>on</strong>s to genetic relatedness, the spatial scale of their <str<strong>on</strong>g>study</str<strong>on</strong>g> (most distantpopulati<strong>on</strong>s separated by ca. 1200 m, majority of the populati<strong>on</strong>s within 500 mrange) may have fallen below the threshold for detecting genetic structuring.Third, genetic differentiati<strong>on</strong> am<strong>on</strong>g populati<strong>on</strong>s and feeding flocks mayhave increased differences in estimates of relatedness between ‘comm<strong>on</strong>’ and‘mixed’ dyads. However, as allele frequencies did not str<strong>on</strong>gly vary am<strong>on</strong>g mostof our populati<strong>on</strong>s, we c<strong>on</strong>sider this explanati<strong>on</strong> less likely. Both Liker et al.(2009) and our <str<strong>on</strong>g>study</str<strong>on</strong>g> report low levels of relatedness am<strong>on</strong>g <strong>house</strong> <strong>sparrows</strong>.High juvenile mortality (± 50% annually for adults, Anders<strong>on</strong> (2006)) and/orpostnatal dispersal rates are suggested to cause such patterns (Liker et al. 2009),although the latter seems rather unlikely in our <str<strong>on</strong>g>study</str<strong>on</strong>g> area. High annual mortalityrates lower the probability that closely related individuals both survive for al<strong>on</strong>ger period of time (Liker et al. 2009).Use of auto‐correlati<strong>on</strong> analysis, revealed that proximate sparrow pairswere genetically more str<strong>on</strong>gly correlated than randomly chosen pairs, while thiswas not true for more distant <strong>on</strong>es. Average estimates of relatedness were higher140


Spatial heterogeneity in genetic relatedness distributi<strong>on</strong>sin urban populati<strong>on</strong>s, suggesting str<strong>on</strong>ger local populati<strong>on</strong> structure in highlybuilt‐up areas. Str<strong>on</strong>g genetic drift and/or weak geneflow may cause substantialgenetic correlati<strong>on</strong> between <strong>house</strong> <strong>sparrows</strong> within these areas. Positive geneticstructuring was detectable up to 1.5 – 2 km in urban populati<strong>on</strong>s, while rural<strong>sparrows</strong> showed genetic independence at 0.5 – 1 km already. However, as x‐intercepts of auto‐correlograms (representing shifts from geneflow to geneticdrift as main driver of populati<strong>on</strong> differentiati<strong>on</strong>) are believed to depend <strong>on</strong> thesampling scheme applied (Vekemans and Hardy 2004), it is recommendable touse multiple distance size plots to detect the true extent of genetic structure(Peakall et al. 2003), even if sampling schemes are more or less comparable as inour <str<strong>on</strong>g>study</str<strong>on</strong>g>. Based <strong>on</strong> this sec<strong>on</strong>d analysis, distances over which geneflow was stilldetectable tended to be larger for rural (5km) than for urban (3.5km) populati<strong>on</strong>s(no statistical test applied). Since genetic drift was expected to be str<strong>on</strong>ger inurban populati<strong>on</strong>s (characterized by lower census populati<strong>on</strong> sizes; C. Vangestel,unpublished), this may have caused the observed difference between bothcorrelograms, possibly in synergy with low dispersal rates. In the urban area, butnot in the rural <strong>on</strong>e, the proporti<strong>on</strong> of close kin (modeled as a dichotomousvariable) differed between comm<strong>on</strong> and mixed dyads, suggesting that ‘center’effects were str<strong>on</strong>ger in the former. However, no such pattern was apparent formean estimates of relatedness (if modeled as a c<strong>on</strong>tinuous variable) as ‘center’effects were present in both the urban and rural area and effect sizes did notdiffer. As overall level of relatedness was lowest in the rural area, shifting from ac<strong>on</strong>tinuous to a dichotomous variable may have reduced the level of variati<strong>on</strong> inkinship in this area, thereby causing the apparent discordance between bothanalyses. While analyzing relatedness as a c<strong>on</strong>tinuous measure could not c<strong>on</strong>firmthe a priori hypothesized str<strong>on</strong>ger urban ‘center’ effect, it did reveal higherrelatedness values in the urban area suggesting a higher degree of isolati<strong>on</strong>.With the excepti<strong>on</strong> of central urban dyads, proporti<strong>on</strong>s of close kin weresmaller than those reported in Liker et al. (2009) where all flock‐assemblagesexcept <strong>on</strong>e (0.056) had mean proporti<strong>on</strong> of close kin ranging from 0.11 to 0.19.Such difference may have been real or caused by differences in the <str<strong>on</strong>g>study</str<strong>on</strong>g> design(i.e. scale over which populati<strong>on</strong>s were sampled) or analytical methods applied.As opposed to Liker et al (2009) who assigned dyads to particular classes ofkinship based <strong>on</strong> likelihood algorithms (Milligan 2003), we applied a Bayesianmixture approach that exploited the full range of data and is c<strong>on</strong>sidered to be lesspr<strong>on</strong>e to large errors of inference associated with individual kinship estimates(Lynch and Ritland 1999; Sweigart et al. 1999). When applying a likelihoodmethod comparable to Liker et al. (2009), estimated proporti<strong>on</strong>s of close kin,141


Chapter 5increased to 0.15‐0.21 (data not shown), however, without affecting any of thec<strong>on</strong>clusi<strong>on</strong>s of our paper.To date, individual‐based analysis of relatedness remains a less populartool to <str<strong>on</strong>g>study</str<strong>on</strong>g> small‐scale populati<strong>on</strong> structure. Examples include the studies byRuzzante et al. (2001) and Sweigart et al. (1999) who inferred genetic populati<strong>on</strong>structure based <strong>on</strong> estimates of relatedness in brown trout (Salmo trutta) and thewildflower Mimulus guttatus, respectively. Van de Casteele and Matthysen (2006)used kinship informati<strong>on</strong> to identify small‐scale genetic structure in great titswhere clustering algorithms based <strong>on</strong> Hardy‐Weinberg and linkage disequilibria(Pritchard et al. 2000) earlier failed to do so. Likewise, individual‐based geneticanalyses showed substantial am<strong>on</strong>g‐patch movement in pikas (Ochot<strong>on</strong>aprinceps) while mark‐recapture analysis did not pick up such signal (Peacock1997; see Sp<strong>on</strong>g and Creel 2001 for an example where both methods providedc<strong>on</strong>sistent results). Despite these positive results, inferring small‐scale populati<strong>on</strong>structure from relatedness values needs to be d<strong>on</strong>e with cauti<strong>on</strong> as distributi<strong>on</strong>sof coefficients of relatedness are not exclusively shaped by the level ofc<strong>on</strong>nectivity am<strong>on</strong>g adjacent populati<strong>on</strong>s. For instance, sibling similarity indispersal which occurs in several species (Massot and Clobert 2000) can affect theextent of kinship assemblages in a populati<strong>on</strong>. For example, parents may c<strong>on</strong>troldispersal of their offspring as shown in great tits, resulting in str<strong>on</strong>g siblingsimilarity of dispersal directi<strong>on</strong>s (Matthysen et al. 2005, 2010). Spatial differencesin such family behavior may induce geographical variati<strong>on</strong> in fine‐scale kinshipstructure. As <strong>house</strong> <strong>sparrows</strong> show a str<strong>on</strong>g preference to reselect previousoccupied nesting locati<strong>on</strong>s (Vincent 2005), reduced annual variati<strong>on</strong> in familydispersal may promote aggregati<strong>on</strong>s of offspring. In marginal habitats suchdispersal may be str<strong>on</strong>gly canalized annually into <strong>on</strong>ly a limited number of‘attractive corridors’, while dispersal may be more random in optimal habitats.Spatial differences in quality of feeding areas, too, may affect these processes.Parents appear to make n<strong>on</strong>random behavioral decisi<strong>on</strong>s while foraging as shownby the lower incidence of aggressive scrounging towards kin relative to unrelatedindividuals (Tóth et al. 2009). As such, differences in access to high quality areasfor offspring from high and low dominant status parents, may affect <strong>on</strong> its turndifferential dispersal between family groups. At the moment it is unclear whethersuch kin‐based dispersal takes place in <strong>house</strong> <strong>sparrows</strong> and to what extent thisaffects the geographical distributi<strong>on</strong> of relatedness.This <str<strong>on</strong>g>study</str<strong>on</strong>g> provides new insights into patterns of spatial heterogeneity inrelatedness in a declining species, and underscores the importance of individual‐142


Spatial heterogeneity in genetic relatedness distributi<strong>on</strong>slevel genetic analysis as a complementary approach to populati<strong>on</strong>‐level analyseswhen <str<strong>on</strong>g>study</str<strong>on</strong>g>ing small‐scale populati<strong>on</strong> structuring.ACKNOWLEDGEMENTWe wish to thank H. Matheve, T. Cammaer and C. Nuyens for fieldassistance, and A. Krupa and G. Horsburgh for laboratory assistance. We thankTerry Burke for supporting this work and helpful discussi<strong>on</strong>s. We thank ErikMatthysen and Frederik Hendrickx for insightful comments <strong>on</strong> an earlier draft.Genotyping was performed at the NERC Biomolecular Analysis Facility funded bythe Natural Envir<strong>on</strong>ment Research Council, UK. Fieldwork and laboratory analyseswere financially supported by research projects 01J01808 (<strong>Ghent</strong> University) andG.0149.09 (Research Foundati<strong>on</strong>‐ Flanders).REFERENCESAnders<strong>on</strong> TR (2006) Biology of the ubiquitous House Sparrow. Oxford Univ. Press.Blouin MS (2003) DNA‐based methods for pedigree rec<strong>on</strong>structi<strong>on</strong> and kinshipanalysis in natural populati<strong>on</strong>s. Trends in <strong>Ecology</strong> and Evoluti<strong>on</strong> 18, 503‐511.Chamberlain DE, Toms MP, Cleary‐McHarg R, Banks AN (2007) House sparrow(Passer domesticus) habitat use in urbanized landscapes. Journal ofOrnithology 148, 453‐462.Danchin E, Giraldeau L‐A, Cézilly F (2008) Behavioural <strong>Ecology</strong>, Oxford.Daws<strong>on</strong> DA, Horsburgh GJ, Kupper C, et al. (2010) New methods to identifyc<strong>on</strong>served microsatellite loci and develop primer sets of high cross‐speciesutility ‐ as dem<strong>on</strong>strated for birds. Molecular <strong>Ecology</strong> Resources 10, 475‐494.Daws<strong>on</strong> DA, Horsburgh GJ, Krupa A, Stewart IRK, Skjelseth S et al. A predictedmicrosatellite map of the <strong>house</strong> sparrow Passer domesticus genome. (Resubmittedto Mol Ecol Resour) (In preparati<strong>on</strong>).De Laet J, Summers‐Smith JD (2007) The status of the urban House SparrowPasser domesticus in North‐Western Europe: a review. Journal ofOrnithology 148, S275‐S278.Griffith SC, Stewart IRK, Daws<strong>on</strong> DA, Owens IPF, Burke T (1999) C<strong>on</strong>trasting levelsof extra‐pair paternity in mainland and island populati<strong>on</strong>s of the <strong>house</strong>143


Chapter 5sparrow (Passer domesticus): is there an 'island effect'? Biological Journalof the Linnean Society 68, 303‐316.Griffith SC, Daws<strong>on</strong> DA, Jensen H, et al. (2007) Fourteen polymorphicmicrosatellite loci characterized in the <strong>house</strong> sparrow Passer domesticus(Passeridae, Aves). Molecular <strong>Ecology</strong> Notes 7, 333‐336.Heij CJ, Moeliker CW (1990) Populati<strong>on</strong> dynamics of dutch House Sparrows inurban, suburban and rural habitats. Pages 59‐85 in Granivorous birds in theagricultural landscape (Pinowski, J. and Summers‐Smith, J. D., Ed.). PolishScientific Publishers.Kekk<strong>on</strong>en J, Seppa P, Hanski I, et al. (2010) Low genetic differentiati<strong>on</strong> in asedentary bird: <strong>house</strong> sparrow populati<strong>on</strong> genetics in a c<strong>on</strong>tiguouslandscape. Heredity, 1‐8.Keller LF, Waller DM (2002) Inbreeding effects in wild populati<strong>on</strong>s. Trends in<strong>Ecology</strong> and Evoluti<strong>on</strong> 17, 230‐241.Lendvai AZ, Giraudeau M, Chastel O (2007). Reproducti<strong>on</strong> and modulati<strong>on</strong> of thestress resp<strong>on</strong>se: an experimental test in the <strong>house</strong> sparrow. Proceedings ofthe Royal Society B‐Biological Sciences 274, 391‐397.Liker A, Bok<strong>on</strong>y V, Kulcsar A, et al. (2009) Genetic relatedness in wintering groupsof <strong>house</strong> <strong>sparrows</strong> (Passer domesticus). Molecular <strong>Ecology</strong> 18, 4696‐4706.Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS ‐ a Bayesianmodelling framework: c<strong>on</strong>cepts, structure, and extensibility. Statistics andComputing 10, 325‐337.Lynch M, Walsh B (1998) Genetics and Analysis of Quantitative Traits. SinauerAssociates, Sunderland, MA.Lynch M, Ritland K (1999) Estimati<strong>on</strong> of pairwise relatedness with molecularmarkers. Genetics 152, 1753‐1766.Masot M, Clobert J (2000) Processes at the origin of similarities in dispersalbehaviour am<strong>on</strong>g siblings. Journal of Evoluti<strong>on</strong>ary Biology 13, 707‐719.Matthysen E, Van de Casteele T, Adriaensen F (2005) Do sibling tits (Parus major,P. caeruleus) disperse over similar distances and in similar directi<strong>on</strong>s?Oecologia 143, 301‐307.Matthysen E, Van Overveld T, Van de Casteele T, Adriaensen F (2010) Familymovements before independence influence natal dispersal in a territorials<strong>on</strong>gbird. Oecologia 162, 591‐597.144


Spatial heterogeneity in genetic relatedness distributi<strong>on</strong>sMilligan BG (2003) Maximum‐likelihood estimati<strong>on</strong> of relatedness. Genetics 163,1153‐1167.Nakagawa S, Ockend<strong>on</strong> N, Gillespie DOS, Hatchwell BJ and Burke T (2007)Assessing the functi<strong>on</strong> of <strong>house</strong> <strong>sparrows</strong>' bib size using a flexible metaanalysismethod. Behavioral <strong>Ecology</strong> 18, 831‐840.Neumann K, Wett<strong>on</strong> JH (1996) Highly polymorphic microsatellites in the <strong>house</strong>sparrow Passer domesticus. Molecular <strong>Ecology</strong> 5, 307‐309.Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelati<strong>on</strong> analysis offersnew insights into gene flow in the Australian bush rat, Rattus fuscipes.Evoluti<strong>on</strong> 57, 1182‐1195.Peakall R, Smouse PE (2006) Genalex 6: Genetic analysis in excel. Populati<strong>on</strong>genetic software for teaching and research. Molecular <strong>Ecology</strong> Notes 6,288‐295.Peacock MM (1997) Determining natal dispersal patterns in a populati<strong>on</strong> of NorthAmerican pikas (Ochot<strong>on</strong>a princeps) using direct mark‐resight and indirectgenetic methods. Behavioral <strong>Ecology</strong> 8, 340‐350.Pritchard JK, Stephens M, D<strong>on</strong>nelly P (2000) Inference of populati<strong>on</strong> structureusing multilocus genotype data. Genetics 155, 945‐959.Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers.Evoluti<strong>on</strong> 43, 258‐275.Raym<strong>on</strong>d M, Rousset F (1995) Genepop (versi<strong>on</strong>‐1.2) ‐ populati<strong>on</strong>‐geneticssoftware for exact tests and ecumenicism. Journal of Heredity 86, 248‐249.Ritland K (1996) A marker‐based method for inferences about quantitativeinheritance in natural populati<strong>on</strong>s. Evoluti<strong>on</strong> 50, 1062‐1073.Rousset F (2008) Genepop ' 007: a complete re‐implementati<strong>on</strong> of the Genepopsoftware for Windows and Linux. Molecular <strong>Ecology</strong> Resources 8, 103‐106.Ruzzante DE, Hansen MM, Meldrup D (2001) Distributi<strong>on</strong> of individual inbreedingcoefficients, relatedness and influence of stocking <strong>on</strong> native anadromousbrown trout (Salmo trutta) populati<strong>on</strong> structure. Molecular <strong>Ecology</strong> 10,2107‐2128.Shaw LM, Chamberlain D, Evans M (2008) The House Sparrow Passer domesticusin urban areas: reviewing a possible link between post‐decline distributi<strong>on</strong>and human socioec<strong>on</strong>omic status. Journal of Ornithology 149, 293‐299.145


Chapter 5Smouse PE, Peakall R (1999) Spatial autocorrelati<strong>on</strong> analysis of individualmultiallele and multilocus genetic structure. Heredity 82, 561–573.Sp<strong>on</strong>g G, Creel S (2001) Deriving dispersal distances from genetic data.Proceedings of the Royal Society of L<strong>on</strong>d<strong>on</strong> Series B‐Biological Sciences 268,2571‐2574.Sweigart A, Karoly K, J<strong>on</strong>es A, Willis JH (1999) The distributi<strong>on</strong> of individualinbreeding coefficients and pairwise relatedness in a populati<strong>on</strong> ofMimulus guttatus. Heredity 83, 625‐632.Tóth Z, Bok<strong>on</strong>y V, Lendvai AZ, et al. (2009) Effects of relatedness <strong>on</strong> socialforagingtactic use in <strong>house</strong> <strong>sparrows</strong>. Animal Behaviour 77, 337‐342.Vall<strong>on</strong>e PM, Butler JM (2004) Autodimer: a screening tool for primer‐dimer andhairpin structures. Biotechniques 37, 226‐231.Van de Casteele T, Calbusera P, Matthysen E (2001) A comparis<strong>on</strong> ofmicrosatellite‐based pairwise relatedness estimators. Molecular <strong>Ecology</strong>10, 1539‐1549.Van De Casteele T, Matthysen E (2006). Natal dispersal and parental escortingpredict relatedness between mates in a passerine bird. Molecular <strong>Ecology</strong>15, 2557‐2565.Vangestel C, Braeckman BP, Matheve H, Lens L (2010) C<strong>on</strong>straints <strong>on</strong> home rangebehaviour affect nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> in urban <strong>house</strong> <strong>sparrows</strong> (Passerdomesticus). Biological Journal of the Linnean Society 101, 41–50.Vangestel C, Mergeay J, Daws<strong>on</strong> DA, Vandomme V and Lens L. Developmentalstability covaries with genome‐wide and single‐locus heterozygosity in<strong>house</strong> <strong>sparrows</strong>. Plos One submitted.Van Oosterhout C, Hutchins<strong>on</strong> WF, Wills DPM, Shipley P (2004) Micro‐checker:software for identifying and correcting genotyping errors in microsatellitedata. Molecular <strong>Ecology</strong> Notes 4, 535‐538.Vekemans, X. and Hardy, OJ (2004) New insights from fine‐scale spatial geneticstructure analyses in plant populati<strong>on</strong>s. Molecular <strong>Ecology</strong> 13, 921‐935.Vincent K (2005) Investigating the causes of the decline of the urban <strong>house</strong>sparrow Passer domesticus populati<strong>on</strong> in Britain. PhD thesis, De M<strong>on</strong>tfortUniversity, UK.146


Spatial heterogeneity in genetic relatedness distributi<strong>on</strong>sWalsh PS, Metzger DA, Higuchi R (1991) Chelex‐100 as a medium for simpleextracti<strong>on</strong> of dna for pcr‐based typing from forensic material.BioTechniques 10, 506‐513.Wang JL (2011) COANCESTRY: a program for simulating, estimating and analysingrelatedness and inbreeding coefficients. Molecular <strong>Ecology</strong> Resources 11,141‐145.Weir B (1990) Genetic Data Analysis: Methods for Discrete Populati<strong>on</strong> GeneticData. Sinauer Associates: Sunderland, MA, AUS.Weir BS, Anders<strong>on</strong> AD, Hepler AB (2006) Genetic relatedness analysis: moderndata and new challenges. Nature Review Genetics 7, 771‐780.Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migrati<strong>on</strong>:Fst ≠1/(4Nm+1). Heredity 82, 117‐125.Zamudio KR, Wieczorek AM (2007) Fine‐scale spatial genetic structure anddispersal am<strong>on</strong>g spotted salamander (Ambystoma maculatum) breedingpopulati<strong>on</strong>s. Molecular <strong>Ecology</strong> 16, 257‐274.147


General discussi<strong>on</strong>©Chantal Deschepper149


General discussi<strong>on</strong>In this final chapter I recapitulate the main c<strong>on</strong>clusi<strong>on</strong>s, integrate andcompare results of different chapters and make suggesti<strong>on</strong>s of how these mayc<strong>on</strong>tribute to c<strong>on</strong>servati<strong>on</strong> management. Lastly, I outline possible future researchdirecti<strong>on</strong>s that may help clarify some questi<strong>on</strong>s that remain unresolved in thisthesis.OVERVIEW OF THE MAIN CONCLUSIONSi. Urban <strong>house</strong> <strong>sparrows</strong> occupied, <strong>on</strong> average, the smallest home rangesal<strong>on</strong>g the urban‐rural gradient and activity ranges were inversely related toscatter of key vegetati<strong>on</strong> (bushes, hedges). Similar patterns were notobserved in suburban or rural areas. Nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>, as assessedfrom ptilochr<strong>on</strong>ological feather marks, was lowest in urban populati<strong>on</strong>sand showed a positive relati<strong>on</strong> with home range size in this habitat. Based<strong>on</strong> these results, scatter of key vegetati<strong>on</strong> in str<strong>on</strong>gly built‐up areas isbelieved to hamper urban <strong>house</strong> <strong>sparrows</strong> in occupying optimally‐sizedhome ranges, which <strong>on</strong> its turn results in lower nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>.ii.Levels of fluctuating asymmetry in tarsus length did not covary with levelsof presumed envir<strong>on</strong>mental stress, and results of this <str<strong>on</strong>g>study</str<strong>on</strong>g> therefore addto the growing evidence that relati<strong>on</strong>ships between envir<strong>on</strong>mental stressand fluctuating asymmetry are species‐, trait‐ and/or c<strong>on</strong>text‐dependent.This pleads for prudent use of fluctuating asymmetry as a biomarker ofstress in evoluti<strong>on</strong>ary‐ecological or c<strong>on</strong>servati<strong>on</strong> studies.iii.As opposed to envir<strong>on</strong>mental stress, fluctuating asymmetry was inverselyrelated to estimates of genetic diversity at populati<strong>on</strong> level, as predictedfrom the heterozygosity hypothesis. While relati<strong>on</strong>ships at populati<strong>on</strong> levelaccounted for more than 34% of the observed variati<strong>on</strong>, this was notcorroborated by analyses c<strong>on</strong>ducted at the individual level, most likely dueto the large error of inference generally associated with individual‐basedestimates. Genome‐wide estimates of heterozygosity at the populati<strong>on</strong>level were also inversely related to levels of fluctuating asymmetry,however, this associati<strong>on</strong> was driven to a large extent by patterns at twoloci. Based <strong>on</strong> these results, local linkage disequilibrium with key loci isproposed as the most likely explanati<strong>on</strong> for the observed relati<strong>on</strong>ships,possibly in synergy with genome‐wide effects.150


General discussi<strong>on</strong>iv.While census‐based density estimates indicated that the size of the urban<strong>house</strong> sparrow populati<strong>on</strong> in this <str<strong>on</strong>g>study</str<strong>on</strong>g> was of the same order as thosereported in other large European cities, genetic analyses did not provideevidence for a genetic bottleneck. Only the most central urban populati<strong>on</strong>showed signs of a depauperate genetic richness, although exchange ofmigrants may have obscured bottleneck signatures in other urbanpopulati<strong>on</strong>s. Principal coordinate analyses further revealed that(sub)urban and rural populati<strong>on</strong>s tended to cluster into two separategenepools.v. As hypothesized, kinship analyses revealed n<strong>on</strong>‐random spatial patterns ofgenetic similarity, indicative for small‐scale populati<strong>on</strong> structure. Results ofthis <str<strong>on</strong>g>study</str<strong>on</strong>g> supported a str<strong>on</strong>ger local populati<strong>on</strong> structure in urban areascompared to rural <strong>on</strong>es. Average relatedness and proporti<strong>on</strong> of nearbyclose kin was highest in highly urbanized areas, possibly due to lower ratesof dispersal. Autocorrelograms provided further evidence for the presenceof small‐scale populati<strong>on</strong> structure in <strong>house</strong> <strong>sparrows</strong> and str<strong>on</strong>gest effectsof genetic drift and/or isolati<strong>on</strong> in urban areas.Due to logistic and time c<strong>on</strong>straints it was impossible to replicate our <str<strong>on</strong>g>study</str<strong>on</strong>g>design for multiple urban‐rural gradients (i.e. by <str<strong>on</strong>g>study</str<strong>on</strong>g>ing populati<strong>on</strong>s in andaround multiple cities). Therefore, the observed relati<strong>on</strong>ships with urbanizati<strong>on</strong>(Chapter 1, 4, and 5) may not be generalized to all urban habitats in astraightforward manner as this would be a classic example of pseudoreplicati<strong>on</strong>(Hurlbert 1984). Strictly spoken, statistical inferences are therefore restricted tothe sampled populati<strong>on</strong>s and can c<strong>on</strong>stitute a specific effect of the city of <strong>Ghent</strong>,rather than a true urban effect. Therefore, future studies are needed whichprovide true replicates and allow valid generalizati<strong>on</strong>s of observed patterns.Notably, sample sizes of such studies need not necessarily to be as high as thoseused in this thesis. Spatial autocorrelati<strong>on</strong> using <strong>on</strong>ly four peripheral populati<strong>on</strong>sinstead of nine provided enough statistical power to detect similar patterns as the<strong>on</strong>es reported using the complete dataset (using 118680 pairwise relatednessestimates).151


General discussi<strong>on</strong>BIOMONITORING TOOLS FOR HOUSE SPARROWS: FLUCTUATING ASYMMETRY ORPTILOCHRONOLOGY?Due to the presumed stress sensitivity of bilateral trait asymmetry thatallows researchers to identify populati<strong>on</strong>s under stress before fitness isirreversibly affected, and because FA relati<strong>on</strong>ships are expected to be str<strong>on</strong>gestunder adverse c<strong>on</strong>diti<strong>on</strong>s (which is often the <str<strong>on</strong>g>case</str<strong>on</strong>g> for threatened species), FA hasaroused large expectati<strong>on</strong>s in c<strong>on</strong>servati<strong>on</strong> biology. Yet, empirical studies areplagued by large inc<strong>on</strong>sistencies in the strength (and even directi<strong>on</strong>) ofrelati<strong>on</strong>ships between FA, stress and fitness. In this thesis, I related FA topresumed envir<strong>on</strong>mental (Chapter 1) and genetic (Chapter 3) stress, and showedthat associati<strong>on</strong>s were lacking in the former while being relatively str<strong>on</strong>g in thelatter.Fluctuating asymmetry has been suggested to integrate the effect ofvarious synergistic stressors into a single phenotypic endpoint, and whileresearchers promote this as an asset, it may in turn also be a major source ofheterogeneity in reported relati<strong>on</strong>ships. For instance, while different stressorsmight act synergistically in the development of some traits, this may not be the<str<strong>on</strong>g>case</str<strong>on</strong>g> in others, or the level of synergy may also vary between species orpopulati<strong>on</strong>s for a single trait.If various stressors affect populati<strong>on</strong>s in a complex pattern of antag<strong>on</strong>isticand synergistic ways the eventual outcome may be hard to interpret withoutprior knowledge of the specific effect of each stressor. As fluctuating asymmetryin <strong>house</strong> <strong>sparrows</strong> was affected by levels of heterozygosity (Chapter 3), positiveFA‐envir<strong>on</strong>mental stress relati<strong>on</strong>ships require genetic diversity to covary withlevels of nutriti<strong>on</strong>al stress (Chapter 1) which is not an evident claim. Loss ofgenetic variati<strong>on</strong> may be affected by processes independent of the level ofnutriti<strong>on</strong>al stress. For instance, str<strong>on</strong>g genetic drift or n<strong>on</strong>‐random mating withina populati<strong>on</strong> may be expected to increase FA also under low levels ofenvir<strong>on</strong>mental stress. As a result, studies relating FA to a particularenvir<strong>on</strong>mental stressor (such as studied in Chapter 2) may then find it difficult todetect patterns or explain lack thereof. In their <str<strong>on</strong>g>study</str<strong>on</strong>g> <strong>on</strong> FA in the flower Lychnisviscaria, Siikamaki and Lammi (1998) dem<strong>on</strong>strated both genetic andenvir<strong>on</strong>mental effects <strong>on</strong> levels of FA but both acted in a synergistic way.Marginal populati<strong>on</strong>s also turned out to be most homozygous, and while theauthors used evidence from a comm<strong>on</strong>‐garden experiment to c<strong>on</strong>clude thatenvir<strong>on</strong>mental effects were most dominant, they cauti<strong>on</strong>ed to interpret FAenvir<strong>on</strong>mentalstress relati<strong>on</strong>ships without prior knowledge of the genetic152


General discussi<strong>on</strong>properties of each populati<strong>on</strong>. In our <str<strong>on</strong>g>study</str<strong>on</strong>g>, spatial variati<strong>on</strong> in nutriti<strong>on</strong>al stressmay not have co‐varied with levels of genetic stress, possibly c<strong>on</strong>foundingrelati<strong>on</strong>ships between FA and envir<strong>on</strong>mental stress. However, such c<strong>on</strong>foundingeffect would then be expected to also mask relati<strong>on</strong>ships between FA andhomozygosity in <str<strong>on</strong>g>case</str<strong>on</strong>g> nutriti<strong>on</strong>al stress would have a str<strong>on</strong>g effect <strong>on</strong> FA. Sincethis was not the <str<strong>on</strong>g>case</str<strong>on</strong>g>, nutriti<strong>on</strong>al stress seemed not, or at most very weakly,associated with FA in our populati<strong>on</strong> of <strong>house</strong> <strong>sparrows</strong>.Hence, while it can be instructive to have an integrated measure of stress, Ibelieve c<strong>on</strong>servati<strong>on</strong> biologists would benefit more from tools linking cause andresult in a more straightforward way. Ptilochr<strong>on</strong>ology (Chapter 1) might be such atool, although this technique is certainly not flawless either. Studies thatimplemented both biomarkers simultaneously tended to detect more c<strong>on</strong>sistentand str<strong>on</strong>ger stress associati<strong>on</strong>s with growth bar size than with FA (Carb<strong>on</strong>ell andTelleria 1999, Polo and Carrascal 1999, Talloen et al. 2008). Our results (Chapter1‐2) further supported these trends as we found variati<strong>on</strong> in levels of nutriti<strong>on</strong>alstress in a predictable way which could in additi<strong>on</strong> be linked to a potential causalagent. In c<strong>on</strong>trast, FA remained unaffected by differences in nutriti<strong>on</strong>al state. Inadditi<strong>on</strong>, feather growth can be induced by pulling and subsequently collectingregrown feathers, which would allow researchers to obtain many replicates froma single individual in order to obtain more accurate estimates. This has proven tobe a valid procedure in <strong>house</strong> <strong>sparrows</strong>, as follicle history does not appear toinfluence growth bar size, i.e. series of repetitively induced rectrices all hadsimilar growth bar sizes when exposed to c<strong>on</strong>stant stress regimes (Grubb andPravosudov 1994). In c<strong>on</strong>trast, FA of bilateral traits such as tarsus length provides<strong>on</strong>ly a single phenotypic outcome per individual. Furthermore, in smallpopulati<strong>on</strong>s in particular, it might be impossible to increase statistical power byincrementing the number of sampled individuals while, as menti<strong>on</strong>ed previously,ptilochr<strong>on</strong>ology suffers less from these c<strong>on</strong>straints as repetitive sampling offeathers rather than individuals can be used to increase power.DETECTING POPULATION STRUCTURE: INTEGRATING INDIVIDUAL AND POPULATION‐LEVEL ANALYSESTraditi<strong>on</strong>al populati<strong>on</strong> genetic analyses, such as F‐statistics or geneticdistances, still remain the first choice when characterizing populati<strong>on</strong> structure(Latch et al. 2006). Yet, new advanced statistical methods have emerged and thepossibility to obtain large numbers of markers for n<strong>on</strong>‐model species now allowsto implement individual multi‐locus informati<strong>on</strong> when analyzing genetic data.153


General discussi<strong>on</strong>Such individual‐based approaches allow greater precisi<strong>on</strong> than previous methodsthat str<strong>on</strong>gly rely <strong>on</strong> summary statistics (e.g. F ST , Pearse and Crandall 2004, Planesand Lemer 2011). The assets of such individual‐oriented analyses have been mostclearly dem<strong>on</strong>strated in the c<strong>on</strong>text of detecting dispersal events. Severalindividual‐based studies have unraveled dispersal patterns which remainedundetected by allele frequency‐based methods. For instance, Castric andBernatchez (2004) showed that individual assignment was biased towardsspatially proximate locati<strong>on</strong>s indicative for an ‘isolati<strong>on</strong> by distance’ pattern intwo fish species, while such signatures remained cryptic when traditi<strong>on</strong>almeasures of genetic differentiati<strong>on</strong> were used. Kraaijveld‐Smit et al. (2002) wasable to identify philopatry in female antechinus (Antechinus agilis), a smallmarsupial, and male‐biased dispersal using individual‐based assignment testswhile genetic structure, as assessed from F ST values, was lacking.In Chapter 5 we presented a specific applicati<strong>on</strong> of such an individualbasedmethod. While based <strong>on</strong> the same genetic dataset, individual‐level(Chapter 5) and populati<strong>on</strong>‐level (Chapter 4) genetic analysis revealed markeddifferences in the ability to detect small‐scale genetic patterns. Populati<strong>on</strong>‐levelanalyses (Chapter 4) revealed a moderate distincti<strong>on</strong> between urban/suburbanand rural populati<strong>on</strong>s which was further supported by an ‘isolati<strong>on</strong> by distance’pattern (presumably driven by the two separate clusters, e.g. urban/suburbanversus rural). Within each z<strong>on</strong>e (urban/suburban and rural, respectively) therewas no pattern of n<strong>on</strong>random aggregati<strong>on</strong> of genotypes (pairwise D est values didnot increase with distance nor was any specific spatial pattern observed).C<strong>on</strong>trasting D est values at different hierarchical levels (within and between thedifferent urbanizati<strong>on</strong> classes) further indicated that genetic drift was notcounterbalanced by low rates of migrati<strong>on</strong>, however, the evidence was fairlyweak. In c<strong>on</strong>trast, spatial variati<strong>on</strong> in individual relatedness estimates (Chapter 5)revealed str<strong>on</strong>ger evidence for local populati<strong>on</strong> structure. In additi<strong>on</strong>, autocorrelogramsc<strong>on</strong>firmed str<strong>on</strong>g effects of genetic drift in distant populati<strong>on</strong>s andsuggested that genetic similarity between individuals decreased with increasingdistance at a small geographical scale. Str<strong>on</strong>ger drift effects in urban areas, mostlikely due to small populati<strong>on</strong> sizes as observed from census counts(Introducti<strong>on</strong>), caused this pattern to disappear at a smaller scale. Such detailedinformati<strong>on</strong> was not obtained from traditi<strong>on</strong>al populati<strong>on</strong> genetic analysis inChapter 4. Differences in the capacity to detect small‐scale populati<strong>on</strong> structuremight be reflected in the way genetic data is analyzed as both approaches usedifferent kinds of informati<strong>on</strong>. F ST values (or derivatives thereof) summarize allthe available genetic informati<strong>on</strong> over all alleles, loci and individuals into a single154


General discussi<strong>on</strong>estimate of genetic differentiati<strong>on</strong> which is easy to interpret and to use insubsequent analyses. However, the gain in both simplicity and ease might comewith a cost. Individual‐based methods, like the <strong>on</strong>es used in Chapter 5, takeadvantage of the multilocus structure of the data and use each multilocusindividual genotype as an independent unit of informati<strong>on</strong>. This <str<strong>on</strong>g>study</str<strong>on</strong>g> highlightspotential insights that can be obtained by integrating both individual andpopulati<strong>on</strong> based methods to <str<strong>on</strong>g>study</str<strong>on</strong>g> populati<strong>on</strong> structure at a small geographicalscale. Results from chapters 4 and 5 do not justify to c<strong>on</strong>clude that <strong>on</strong>e methodshould be replaced by another. Rather, both approaches should be used inc<strong>on</strong>cert as they allow complementary insights.IMPLICATIONS FOR CONSERVATIONSince the first reports <strong>on</strong> the urban sparrow decline were published, therehas been a genuine and growing interest of the general public into this species.Such public c<strong>on</strong>cern has prompted many research institutes to commence studies<strong>on</strong> <strong>house</strong> <strong>sparrows</strong> in an attempt to elucidate the causes of the sparrow collapse.The goal of this thesis was not explicitly c<strong>on</strong>servati<strong>on</strong> oriented, but rather to<str<strong>on</strong>g>study</str<strong>on</strong>g> fundamental ecological c<strong>on</strong>cepts in an urban envir<strong>on</strong>ment by using <strong>house</strong><strong>sparrows</strong> as a model species. However, insights gained from results presented inthis thesis may provide useful informati<strong>on</strong> for local c<strong>on</strong>servati<strong>on</strong> initiatives forthis species in particular, and for urban biodiversity in general.As outlined in the introducti<strong>on</strong>, the current urban landscape ischaracterized by an increase in pavements and n<strong>on</strong>‐native ornamental shrubs,often at the expense of native vegetati<strong>on</strong> (Shaw et al. 2008). This has been linkedto low aphid abundance, high nestling mortality and lack of sufficient juvenilerecruitment in urban <strong>sparrows</strong> (Vincent 2005, Peach et al. 2008). Noteworthy,great tits (Parus major) and other urban species such as blackbirds (Turdusmerula) provide their young with insects as well. But notwithstanding somestudies dem<strong>on</strong>strated reduced breeding success in great tits and other passerinesin the urban habitat (Cowie and Hinsley 1987, Sol<strong>on</strong>en 2001, Chamberlain et al.2009), these species have not witnessed populati<strong>on</strong> declines of the samemagnitude as those observed in <strong>sparrows</strong> (Luniak et al. 1990, Summers‐Smith2005). One of the key differences that distinguish <strong>house</strong> <strong>sparrows</strong> from otherurban birds, is their extreme sedentary behavior (Anders<strong>on</strong> 2006) and this mightprovide a plausible explanati<strong>on</strong> of why this species struggles to persist in modernurban landscapes. In Chapter 1, I described an additi<strong>on</strong>al effect of habitat lossthat may c<strong>on</strong>tribute to the urban decline: further loss of suitable vegetati<strong>on</strong> for155


General discussi<strong>on</strong>foraging or hiding may scatter remnant patches to such an extent that <strong>house</strong><strong>sparrows</strong> are no l<strong>on</strong>ger able to cover critical amounts within their daily homerange movements, in particular during the breeding seas<strong>on</strong> when daily distancescovered decrease substantially (Mitschke et al. 2000, Shaw 2009). This may putthe less vagile sparrow at a disadvantage if other species are less reluctant toexplore larger areas in times of food deprivati<strong>on</strong>. Loss of vegetati<strong>on</strong> maytherefore adversely affect fitness comp<strong>on</strong>ents of urban <strong>house</strong> sparrow, both asnestling (Peach et al. 2008) and as adult (this thesis). Protecti<strong>on</strong> of these smalllandscape elements seems imperative for any c<strong>on</strong>servati<strong>on</strong> plan that aims toprevent <strong>house</strong> <strong>sparrows</strong> from disappearing from urban areas. Not <strong>on</strong>ly the areabut also the c<strong>on</strong>figurati<strong>on</strong> of small landscape elements appears important, i.e.inter‐patch distances should be kept short enough. In this respect it might bemore beneficial to c<strong>on</strong>centrate <strong>on</strong> redeveloping fewer locati<strong>on</strong>s but whichharbour sufficient vegetati<strong>on</strong> in a c<strong>on</strong>centrated way than <strong>on</strong> numerous, butuniformly and less densely distributed vegetati<strong>on</strong> patches throughout the urbanlandscape. Chamberlain et al. (2004) already reported the importance of spatialc<strong>on</strong>figurati<strong>on</strong> of suitable habitat as the occurrence of bird species in gardens wasmainly determined by the surrounding habitat matrix rather than the gardenhabitat per se.These findings could be easily incorporated into the c<strong>on</strong>cept of a ‘lobecity’,i.e. green ‘wedges’ or ‘fingers’ that lie in between lobes of heavily built‐uparea and where each of these radial green fingers c<strong>on</strong>nects the rural area with apart of the city center (Rombaut 2008). This idea originated in the first half of the20 th century and provided an alternative to the traditi<strong>on</strong>al c<strong>on</strong>centric growthmodel in which city centers and its inhabitants become more and more isolatedfrom the ecological infrastructure of rural areas (Rombaut 2008). Such growth hasshown to have repercussi<strong>on</strong>s <strong>on</strong> both biodiversity in general and <strong>on</strong> humanwellbeing (Marzluff 2001, Shaw 2009). In his doctoral thesis, Tjallingii (1996)advocated the idea of a ‘lobe‐city’ to mitigate the detrimental c<strong>on</strong>sequences ofc<strong>on</strong>centric urban sprawl. Recently, the EU (2004) has promoted the lobe citymodel as a good example of sustainable urban development, creatingopportunities for cities to expand while offering sports and leisure infrastructureand the opportunity to attract biodiversity into the city center. As home rangesizes of <strong>sparrows</strong> in general are comparatively small (Chapter1), implementing arelatively small amount of hedges, thick bushes and native vegetati<strong>on</strong> at theborder of these wedges would provide <strong>sparrows</strong> with the required seeds andcover. It seems feasible that such small‐scale networks of vegetati<strong>on</strong> patchescould be integrated into any pre‐existing developmental plan without too much156


General discussi<strong>on</strong>difficulty. Most likely, these networks will also attract invertebrates which in itsturn will positively affect the breeding performance of urban <strong>house</strong> <strong>sparrows</strong>.Finally, as ‘city‐lobe’ models result into a l<strong>on</strong>ger fringe between the built‐up lobesand green spaces compared to the much shorter circumference of the c<strong>on</strong>centricexpanded city (Rombaut 2008), larger numbers of <strong>sparrows</strong> could be sustained,which would reduce the impact of demographic and genetic stochastic processesassociated with small populati<strong>on</strong> sizes. Although such an urban redevelopment(‘lobe‐city’) will be hard to accomplish in current large cities, it might be an opti<strong>on</strong>for more moderate‐sized cities which are expected to grow in the future.A further incentive to promote such green wedges is their potential tofuncti<strong>on</strong> as corridors between suburban and urban populati<strong>on</strong>s. Suburban areasare regarded as the most optimal sparrow habitat supporting higher densities(Chamberlain et al. 2007, Vangestel unpublished data) and birds in betterc<strong>on</strong>diti<strong>on</strong> (Chapter 1) than their urban counterparts. Heij (1985) assumed thatsuburban <strong>house</strong> sparrow populati<strong>on</strong>s might serve as source populati<strong>on</strong>s andtherefore maintain multiple sink populati<strong>on</strong>s. However, this <str<strong>on</strong>g>study</str<strong>on</strong>g> was performedprior to the collapse of urban populati<strong>on</strong>s and it is currently unclear whethersuburban populati<strong>on</strong>s still show a demographic excess. In our <str<strong>on</strong>g>study</str<strong>on</strong>g>, we did findevidence of small‐scale populati<strong>on</strong> structure (Chapter 5). Most notably, we foundevidence that populati<strong>on</strong> structure was higher in an urban envir<strong>on</strong>mentcompared to a rural c<strong>on</strong>trol area. The urban center showed str<strong>on</strong>gest aggregati<strong>on</strong>of close kin, most likely due to lower dispersal rates and this has, to ourknowledge, never been shown in this species. At the moment it remains hard topredict if and to what extent these differences in kinship structure have fitnessrepercussi<strong>on</strong>s and affect populati<strong>on</strong> viability.In c<strong>on</strong>clusi<strong>on</strong>, since urban sprawl is expected to increase, rather thandecrease, in future, it is crucial to look at how we can fully exploit a city’spotential to c<strong>on</strong>serve biodiversity, particularly as these habitats are home to anumber of species that may become of c<strong>on</strong>servati<strong>on</strong> c<strong>on</strong>cern. Ecological studiesshould therefore c<strong>on</strong>stitute an integral part of urban redevelopment planning.FUTURE AREAS FOR RESEARCHM<strong>on</strong>itoring populati<strong>on</strong> trendsTo date, no baseline informati<strong>on</strong> is available for our <str<strong>on</strong>g>study</str<strong>on</strong>g> area which doesnot allow us to test for negative populati<strong>on</strong> trends or to quantify spatialdifferences in the strength of such declines. At a meeting held in February 2009 in157


General discussi<strong>on</strong>Newcastle (UK), the Working Group <strong>on</strong> Urban Sparrows provided a detailedoutline of a census methodology to m<strong>on</strong>itor <strong>house</strong> sparrow abundances in urbanhabitats using a standardized protocol meant to facilitate comparative analysesbetween different countries. They proposed a mapping‐based survey (similar tothe <strong>on</strong>e used in this <str<strong>on</strong>g>study</str<strong>on</strong>g>; General Introducti<strong>on</strong>) c<strong>on</strong>sisting of three c<strong>on</strong>secutivecounts during the early breeding seas<strong>on</strong>. Yet, even the most standardized censusdesign does not solve the problems intrinsically associated with m<strong>on</strong>itoring urbanpopulati<strong>on</strong>s: low detectability due to visual and auditive c<strong>on</strong>straints and largeinaccessible area may bias estimates of populati<strong>on</strong> size substantially. M<strong>on</strong>itoringgenetic changes may therefore be a useful complement to such surveys.Detecting bottlenecks using tests for ‘heterozygosity excess’ (see Chapter 4)(Luikart and Cornuet 1998, Piry et al. 1999) seem less applicable for our <str<strong>on</strong>g>study</str<strong>on</strong>g>design as estimates are most likely c<strong>on</strong>founded by immigrati<strong>on</strong>. Keller et al.(2001) showed that low levels of immigrati<strong>on</strong> were sufficient to neutralizesignatures of a genetic bottleneck as genetic outcomes were very different fromthose predicted from mutati<strong>on</strong>s <strong>on</strong>ly. In additi<strong>on</strong>, in these models mutati<strong>on</strong> playsan important role in shaping observed patterns of genetic variati<strong>on</strong> whileinteracti<strong>on</strong>s between drift and migrati<strong>on</strong> may c<strong>on</strong>stitute more important drivers.To overcome these problems, it would be recommendable to sample populati<strong>on</strong>srepeatedly in time, preferably separated by a few generati<strong>on</strong>s. Such a samplingdesign allows to disentangle effects of genetic drift from effects of migrati<strong>on</strong>, andto estimate changes in effective populati<strong>on</strong> size through time (see footnote 5 inGeneral Introducti<strong>on</strong>).M<strong>on</strong>itoring phenotypic trendsMuseum specimens grant a w<strong>on</strong>derful opportunity to take a look in thepast, when <strong>house</strong> sparrow populati<strong>on</strong>s were still thriving well in both urban andrural habitats. By c<strong>on</strong>trasting such historical populati<strong>on</strong>s with their c<strong>on</strong>temporarycounterparts we could evaluate whether morphological measurements such asfluctuating asymmetry and ptilochr<strong>on</strong>ology, mimic such temporal patterns.Experimental researchOne of the main weaknesses of this <str<strong>on</strong>g>study</str<strong>on</strong>g> is its correlative nature, whichhampers the <str<strong>on</strong>g>study</str<strong>on</strong>g> of causal relati<strong>on</strong>ships. Yet, this <str<strong>on</strong>g>study</str<strong>on</strong>g> has highlighted severalwindows of opportunity to transform the correlative design to an experimental<strong>on</strong>e in the future. : (i) The positive correlati<strong>on</strong> between homerange size andnutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> suggests that high scatter of suitable vegetati<strong>on</strong> causesfailure of urban <strong>house</strong> <strong>sparrows</strong> to adjust their home ranges to their energetic158


General discussi<strong>on</strong>needs (Chapter 1). One could experimentally manipulate the (in)accessibility ofkey vegetati<strong>on</strong> by either providing supplementary vegetati<strong>on</strong> or making existing<strong>on</strong>e temporarily unavailable. M<strong>on</strong>itoring how home range sizes and nutriti<strong>on</strong>alc<strong>on</strong>diti<strong>on</strong> would vary in resp<strong>on</strong>se to such a manipulative treatment could give amore decisive answer of the causal relati<strong>on</strong>ship between key vegetati<strong>on</strong> andnutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> in adult <strong>house</strong> <strong>sparrows</strong>; (ii) Absence of relati<strong>on</strong>shipsbetween nutriti<strong>on</strong>al stress and FA (Chapter 2) might result from the fact thatindividuals did not experience energetic c<strong>on</strong>straints (stress levels were notexperimentally manipulated nor directly measured, but rather indirectly inferedfrom feather marks). This part of the <str<strong>on</strong>g>study</str<strong>on</strong>g> could be improved by <str<strong>on</strong>g>study</str<strong>on</strong>g>ing <strong>house</strong><strong>sparrows</strong> al<strong>on</strong>g a well‐defined stress gradient with known fitness effects. Such agradient has been dem<strong>on</strong>strated in a <str<strong>on</strong>g>study</str<strong>on</strong>g> in Leicester, UK (Vincent 2005, Peachet al. 2008) where lack of invertebrate food caused substantial mortality and lossof body c<strong>on</strong>diti<strong>on</strong> in juvenile <strong>house</strong> <strong>sparrows</strong>. Manipulating food availability(providing supplementary insects) al<strong>on</strong>g this gradient would allow (i) to evaluatewhether growth bar size and levels of FA reflect food stress in <strong>house</strong> sparrowchicks, and (ii) to verify whether there is evidence for selective mortality, e.g. apositive associati<strong>on</strong> between mortality rates and levels of FA. The first steps ofsuch a collaborati<strong>on</strong> with The Royal Society for the Protecti<strong>on</strong> of Birds (UK) havebeen taken.Mechanisms underlying the ‘heterozygosity theory’As predicted from theory, fluctuating asymmetry decreased withincreasing levels of heterozygosity either due to local or genome‐wide effects(Chapter 3). In this thesis, I was not able to unambiguously differentiate betweenboth mechanisms although single‐locus effects seem to provide a plausibleexplanati<strong>on</strong>. To evaluate whether single key loci could cause the observedpatterns through linkage with key loci, FA‐heterozygosity relati<strong>on</strong>ships should bestudied in a captive breeding populati<strong>on</strong> of <strong>house</strong> <strong>sparrows</strong>. In doing so, <str<strong>on</strong>g>study</str<strong>on</strong>g>ingfull siblings would allow us to c<strong>on</strong>trol for variati<strong>on</strong> in inbreeding and to excludegenome‐wide effects whilst standardizing envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s as much aspossible. Such analyses would increase our understanding of the mechanismsunderlying relati<strong>on</strong>ships between heterozygosity and fluctuating asymmetry, inparticular if multiple phenotypic traits could be a priori screened and modeled asrepeated measurements. By using x‐ray measurements, standardizedmeasurements from virtually any pair of bilateral b<strong>on</strong>es could be collected anddigital image software could be used to further reduce measurement errors.Finally, future research should also attempt to unravel the underlying cellular159


General discussi<strong>on</strong>mechanism of developmental stability as such a breakthrough will be crucial tointerpret and explain patterns observed in nature.MobilityEvidence is growing that food shortage during the breeding seas<strong>on</strong> isproblematic for urban birds. Tracking adult birds during these intense periods offeeding may increase our knowledge <strong>on</strong> urban activity patterns and allow us toquantify mobility c<strong>on</strong>straints similar or different from those observed during then<strong>on</strong>‐breeding period (Chapter 1). Likewise, it might be enlightening to includeother species which forage <strong>on</strong> insects as well, but did not suffer from a similarpopulati<strong>on</strong> crash.Tracking juvenile birds might be the <strong>on</strong>ly soluti<strong>on</strong> to fully understandpatterns, distances and rates of dispersal within the urban envir<strong>on</strong>ment. Geneticmethods may not meet all the necessary requirements needed to provide reliableestimates, while low probabilities of resighting /retrapping may hamper the useof traditi<strong>on</strong>al capture‐recapture methods. Although first year survival rates arepresumed to be low (Ringsby et al. 2002) and researchers may therefore face asubstantial drop‐out from their original sample, all transmitters from predatedindividuals were retrieved in this <str<strong>on</strong>g>study</str<strong>on</strong>g>. However, the limited l<strong>on</strong>gevity oftransmitter batteries c<strong>on</strong>tinues to challenge the <str<strong>on</strong>g>study</str<strong>on</strong>g> of post‐fledging dispersal,resulting in poor knowledge <strong>on</strong> the timing of dispersal as well as settlement.REFERENCESAnders<strong>on</strong> TR. 2006. Biology of the ubiquitous <strong>house</strong> sparrow. Oxford UniversityPress.Carb<strong>on</strong>ell R and Telleria JL. 1999. Feather traits and ptilochr<strong>on</strong>ology as indicatorsof stress in iberian blackcaps Sylvia atricapilla. Bird Study 46, 243‐248.Castric V and Bernatchez L. 2004. Individual assignment test reveals differentialrestricti<strong>on</strong> to dispersal between two salm<strong>on</strong>ids despite no increase ofgenetic differences with distance. Molecular <strong>Ecology</strong> 13, 1299‐1312.Chamberlain DE, Cann<strong>on</strong> A and Toms M. 2004. Associati<strong>on</strong>s of garden birds withgradients in garden habitat and local habitat. Ecography 27, 589‐600.Chamberlain DE, Toms MP, Cleary‐Mcharg R and Banks AN. 2007. House Sparrow(Passer domesticus) habitat use in urbanized landscapes. Journal ofOrnithology 148, 453‐462.160


General discussi<strong>on</strong>Chamberlain DE, Cann<strong>on</strong> AR, Toms MP, Leech DI, Hatchwell BJ and Gast<strong>on</strong> KJ.2009. Avian productivity in urban landscapes: a review and meta‐analysis.Ibis 151, 1‐18.Cowie R and Hinsley S. 1987. Breeding success of Blue Tits and Great Tits insuburban gardens. Ardea 75, 81‐90.EU. 2004. Thematic strategy <strong>on</strong> the urban envir<strong>on</strong>ment <strong>on</strong> the basis of reports byEU working groups <strong>on</strong> four thematic areas: sustainable urbanmanagement, sustainable urban transport, sustainable urban design andsustainable urban Germany.http://www.eaue.de/Publikati<strong>on</strong>/AnalysisReport.pdfGrubb TC and Pravosudov VV. 1994. Ptilochr<strong>on</strong>ology ‐ follicle history fails toinfluence growth of an induced feather. C<strong>on</strong>dor 96, 214‐217.Heij CJ. 1985. Comparative ecology of the <strong>house</strong> sparrow Passer domesticus inrural, suburban and urban situati<strong>on</strong>s. PhD thesis, Vrije <strong>Universiteit</strong>Amsterdam, Nederland.Hurlbert SH. 1984. Pseudoreplicati<strong>on</strong> and the design of ecological fieldexperiments. Ecological M<strong>on</strong>ographs 54, 187‐211.Keller LF, Jeffery KJ, Arcese P, Beaum<strong>on</strong>t MA, Hochachka WM, Smith JNM andBruford MW. 2001. Immigrati<strong>on</strong> and the ephemerality of a naturalpopulati<strong>on</strong> bottleneck: evidence from molecular markers. Proceedings ofthe Royal Society of L<strong>on</strong>d<strong>on</strong> ‐Biological Sciences 268, 1387‐1394.Kraaijeveld‐Smit FJL, Lindenmayer DB and Taylor AC. 2002. Dispersal patterns andpopulati<strong>on</strong> structure in a small marsupial, Antechinus agilis, from twoforests analysed using microsatellite markers. Australian Journal of Zoology50, 325–338.Latch EK, Dharmarajan G, Glaubitz JC and Rhodes OE. 2006. Relative performanceof Bayesian clustering software for inferring populati<strong>on</strong> substructure andindividual assignment at low levels of populati<strong>on</strong> differentiati<strong>on</strong>.C<strong>on</strong>servati<strong>on</strong> Genetics 7, 295‐302.Luikart G and Cornuet J‐M. 1998. Empirical evaluati<strong>on</strong> of a test for identifyingrecently bottlenecked populati<strong>on</strong>s from allele frequency data.C<strong>on</strong>servati<strong>on</strong> Biology 12, 228‐237.Luniak M, Mulsow R and Walasz K. 1990. Urbanizati<strong>on</strong> of the EuropeanBlackbird—expansi<strong>on</strong> and adaptati<strong>on</strong>s of urban populati<strong>on</strong>. In: Luniak M(ed) Urban ecological studies in Central and Eastern Europe. Internati<strong>on</strong>al161


General discussi<strong>on</strong>symposium Warsaw, Poland. Polish Academy of Sciences, Warsaw, pp.187–198.Marzluff JM, Bowman R and D<strong>on</strong>nelly R. 2001. Avian <strong>Ecology</strong> and C<strong>on</strong>servati<strong>on</strong> inan Urbanizing World. Kluwer Academic Publishers.Mitschke A, Rathje H and Baumung S. 2000. House <strong>sparrows</strong> in Hamburg:populati<strong>on</strong> habitat choice and threats. Hamburger Avifauna Beitr 30, 129‐204.Peach WJ, Vincent KE, Fowler JA and Grice PV. 2008. Reproductive success of<strong>house</strong> <strong>sparrows</strong> al<strong>on</strong>g an urban gradient. Animal C<strong>on</strong>servati<strong>on</strong> 11, 493‐503.Pearse DE and Crandall KA. 2004. Bey<strong>on</strong>d F ST : analysis of populati<strong>on</strong> genetic datafor c<strong>on</strong>servati<strong>on</strong>. C<strong>on</strong>servati<strong>on</strong> Genetics 5, 585‐602.Piry S, Luikart G and Cornuet J‐M. 1999. Bottleneck: a computer program fordedecting recent reducti<strong>on</strong>s in the effective populati<strong>on</strong> size using allelefrequency data. The Journal of Heredity 90, 502‐503.Planes S and Lemer S. 2011. Individual‐based analysis opens new insights intounderstanding populati<strong>on</strong> structure and animal behaviour. Molecular<strong>Ecology</strong> 20, 187‐189.Polo V and Carrascal LM. 1999. Ptilochr<strong>on</strong>ology and fluctuating asymmetry in tailand wing feathers in coal tits Parus ater. Ardeola 46, 195‐204.Ringsby TH, Saether BE, Tufto J, Jensen H and Solberg EJ. 2002. Asynchr<strong>on</strong>ousspatiotemporal demography of a <strong>house</strong> sparrow metapopulati<strong>on</strong> in acorrelated envir<strong>on</strong>ment. <strong>Ecology</strong> 83, 561‐569.Rombaut EPC. 2008. Urban planning and biodiversity: thoughts about anecolpolis, plea for a lobe‐city. Case‐<str<strong>on</strong>g>study</str<strong>on</strong>g> of the Belgian cities Sint‐Niklaasand Aalst. Commemorative Internati<strong>on</strong>al C<strong>on</strong>ferenceof the occasi<strong>on</strong> of the4 th Cycle Anniversary of KMUTT Sustainable Development to Save theEarth: Technologies and Strategies Visi<strong>on</strong> 2050, 1‐8.Ruzzante DE, Hansen MM and Meldrup D. 2001. Distributi<strong>on</strong> of individualinbreeding coefficients, relatedness and influence of stocking <strong>on</strong> nativeanadromous brown trout (Salmo trutta) populati<strong>on</strong> structure. Molecular<strong>Ecology</strong> 10, 2107‐2128.Shaw LM, Chamberlain D and Evans M. 2008. The <strong>house</strong> sparrow Passerdomesticus in urban areas: reviewing a possible link between post‐decline162


General discussi<strong>on</strong>distributi<strong>on</strong> and human socioec<strong>on</strong>omic status. Journal of Ornithology 149,293‐299.Shaw LM. 2009. Investigating the role of socioec<strong>on</strong>omic status in determiningurban habitat quality for the <strong>house</strong> sparrow, Passer domesticus. PhD thesis,Exeter University, UK.Siikamaki P and Lammi A. 1998. Fluctuating asymmetry in central and marginalpopulati<strong>on</strong>s of Lychnis viscaria in relati<strong>on</strong> to genetic and envir<strong>on</strong>mentalfactors. Evoluti<strong>on</strong> 52, 1285‐1292.Sol<strong>on</strong>en T. 2001. Breeding of the great tit and blue tit in urban and rural habitatsin southern Finland. Ornis Fennica 78, 49‐60.Summers‐Smith JD. 2005. Changes in the <strong>house</strong> sparrow populati<strong>on</strong> in Britain.Internati<strong>on</strong>al Studies <strong>on</strong> Sparrows 30, 23‐37.Sweigart A, Karoly K, J<strong>on</strong>es A and Willis JH. 1999. The distributi<strong>on</strong> of individualinbreeding coefficients and pairwise relatedness in a populati<strong>on</strong> ofMimulus guttatus. Heredity 83, 625‐632.Talloen W, Lens L, Van D<strong>on</strong>gen S and Matthysen E. 2008. Feather developmentunder envir<strong>on</strong>mental stress: lead exposure effects <strong>on</strong> growth patterns ingreat tits Parus major. Bird Study 55, 108‐117.Tjallingii S. 1996. Ecological c<strong>on</strong>diti<strong>on</strong>s. Strategies and structures in envir<strong>on</strong>mentalplanning. PhD thesis, Delft University of Technology, Netherlands.Vincent K. 2005. Investigating the causes of the decline of the urban <strong>house</strong>sparrow Passer domesticus populati<strong>on</strong> in Britain. PhD thesis, De M<strong>on</strong>tfortUniversity, UK.163


SummaryUrbanizati<strong>on</strong> is expected to increase at staggering rates in the near futureunderpinning the importance of the urban habitat as a source of biodiversity. Asthese habitats already accommodate several avian species of c<strong>on</strong>servati<strong>on</strong>c<strong>on</strong>cern, urban habitats have started to draw the attenti<strong>on</strong> of c<strong>on</strong>servati<strong>on</strong>biologists and ecologists. One of these species, the <strong>house</strong> sparrow, has alwaysbeen living and thriving well in highly built‐up areas. Yet, since a few decades thiscommensal of man has showed marked reducti<strong>on</strong>s in populati<strong>on</strong> size andnumbers to such an extent that it has been vanished from sight in many largeEuropean cities. Under growing public interest many research institutes havepromoted studies <strong>on</strong> <strong>house</strong> <strong>sparrows</strong> in an attempt to elucidate the causes ofthese declines, but to date many of the putative answers still remainhypothetical.In this thesis I aim to expand our current knowledge <strong>on</strong> how genetic andphenotypic variati<strong>on</strong> is distributed al<strong>on</strong>g an urban‐rural gradient in <strong>house</strong>sparrow populati<strong>on</strong>s using high‐resoluti<strong>on</strong> data <strong>on</strong> behavioral radio‐tracking,morphological stress indicators and neutral microsatellite markers. To quantifypresumed envir<strong>on</strong>mental or genetic stress we used a combinati<strong>on</strong> of fluctuatingasymmetry and ptilochr<strong>on</strong>logy. The former refers to small random deviati<strong>on</strong>sbetween both sides of a bilateral trait (here we used both tarsi and tail featherlength) and estimates the underlying developmental instability. Ptilochr<strong>on</strong>ologyuses the size of growth bars, alternating dark and light bars perpendicular to therachis of a feather, as a proxy for nutriti<strong>on</strong>al stress where smaller growth barsresp<strong>on</strong>d to poor nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>. From a c<strong>on</strong>servati<strong>on</strong> point of view, suchbiomarkers would be most valuable if they are able to detect subtle differences ingenetic and/or envir<strong>on</strong>mental stress before adverse fitness effects arise (e.g.‘early warning systems’).In Chapter 1 I related home range behavior with high‐resoluti<strong>on</strong> landcovermaps and ptilochr<strong>on</strong>ological data. In general, home range sizes of <strong>house</strong> <strong>sparrows</strong>were extremely small rendering them very susceptible to small‐scale humaninduced habitat alterati<strong>on</strong>s. In additi<strong>on</strong>, home range size varied significantly al<strong>on</strong>gan urban‐rural gradient where urban <strong>house</strong> <strong>sparrows</strong> were characterized by thesmallest home ranges. Home range size in the urban habitat was linked to the165


Summaryspatial distributi<strong>on</strong> of key vegetati<strong>on</strong> (bushes, hedges), e.g. home range sizedecreased with increased scatter of cover. In c<strong>on</strong>trast, patch c<strong>on</strong>nectivity did notaffect home range size in neither suburban nor rural areas. Finally, urban<strong>sparrows</strong> were in poorest nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> and these indices were positivelyassociated with estimates of home range size, e.g. urban birds able to maintain alarge home range were characterized by less worse body c<strong>on</strong>diti<strong>on</strong>s. In summary,these results suggest home range behavior in urban <strong>house</strong> <strong>sparrows</strong> wasc<strong>on</strong>strained due to the scattered distributi<strong>on</strong> of critical resources which led tosuboptimal home range size and impoverished nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>. Furtherexperimental prove is however warranted.In Chapter 2 I assess the utility of fluctuating asymmetry as a proxy forenvir<strong>on</strong>mental stress. Levels of nutriti<strong>on</strong>al stress (Chapter 1) did not covary withlevels of fluctuating asymmetry, neither at the individual nor populati<strong>on</strong> level.This further supports the noti<strong>on</strong> that FA relati<strong>on</strong>ships remain inc<strong>on</strong>sistent and theutmost cauti<strong>on</strong> is necessary when applying FA as a proxy for envir<strong>on</strong>mental stressin c<strong>on</strong>servati<strong>on</strong> biology.In Chapter 3 I evaluate whether fluctuating asymmetry relates to levels ofheterozygosity. According to the heterzygosity hypothesis genetic diversitypromotes homeostatic mechanisms to buffer developmental pathways againstrandom perturbati<strong>on</strong>s. Our results corroborated this hypothesis as, in c<strong>on</strong>trast toenvir<strong>on</strong>mental stress, FA was inversely related to levels of heterozygosity.Heterozygosity at populati<strong>on</strong>‐level was able to explain as much as 34% of theobserved variati<strong>on</strong> in FA but a single key locus was the main driver underlying thispattern, although we could not entirely rule out genome‐wide effects. Theseresults suggest local linkage disequilibrium with key loci and/or genome‐wideeffects as the potential molecular basis of developmental stability. Presumablythe large error of inference associated with individual estimates of FA precludedindividual‐based analyses from obtaining an equivalent statistical power as the<strong>on</strong>e obtained in populati<strong>on</strong>‐based analyses.In Chapter 4 I explore how genetic variati<strong>on</strong> of <strong>house</strong> sparrow populati<strong>on</strong>sis partiti<strong>on</strong>ed al<strong>on</strong>g different urbanizati<strong>on</strong> classes using 16 neutral microsatellitemarkers. With the excepti<strong>on</strong> of the most central urban populati<strong>on</strong>, <strong>house</strong>sparrow populati<strong>on</strong>s in our <str<strong>on</strong>g>study</str<strong>on</strong>g> area did not reveal str<strong>on</strong>g bottleneck signaturesalthough these could have been masked by <strong>on</strong>going dispersal events. Principalcoordinate analyses showed a moderate distincti<strong>on</strong> between either theurban/suburban populati<strong>on</strong>s and the rural <strong>on</strong>es. Hierarchical D est values furthersuggested genetic drift as an important determinant of spatial genetic variati<strong>on</strong>.166


SummaryIn Chapter 5 I apply an individual‐based approach to detect small‐scalegeographical variati<strong>on</strong> in kinship distributi<strong>on</strong>s. As predicted, spatial patterns ofgenetic similarity were n<strong>on</strong>random distributed. Urban areas were characterizedby a higher average relatedness and higher proporti<strong>on</strong> of close kin. Spatialautocorrelograms further supported small‐scale populati<strong>on</strong> structure but alsoreported a smaller extent of positive genetic structure in highly urbanized areas,suggesting genetic drift might be str<strong>on</strong>ger here due to small populati<strong>on</strong> sizes.These results advocate to integrate both individual and populati<strong>on</strong>‐basedanalyses when attempting to visualize small‐scale populati<strong>on</strong> structures.Although not the primary aim of this thesis, some of these results mayhave implicati<strong>on</strong>s for future c<strong>on</strong>servati<strong>on</strong> schemes. Evidence is mounting that lossof native vegetati<strong>on</strong> may have str<strong>on</strong>g repercussi<strong>on</strong>s <strong>on</strong> <strong>house</strong> sparrow bodyc<strong>on</strong>diti<strong>on</strong>, both for nestlings as well as adults (Chapter 1). C<strong>on</strong>siderable attenti<strong>on</strong>should therefore be given to the protecti<strong>on</strong> of these small landscape elements ifwe aim to stop or even reverse the current urban sparrow decline. In additi<strong>on</strong>,behavioral tracking data (Chapter 1) suggested that the focus should be <strong>on</strong> bothincreasing the volume as well as optimizing the spatial c<strong>on</strong>figurati<strong>on</strong> of keyvegetati<strong>on</strong> patches, e.g. reducing inter‐patch distances to the minimal.167


SamenvattingSamenvattingWereldwijd zien we een toename van de mate van urbanisatie ofverstedelijking wat enkel maar het belang en potentieel van het urbane habitatals br<strong>on</strong> voor biodiversiteit <strong>on</strong>derstreept. Deze habitats herbergen bovendien nureeds enkele bedreigde vogelsoorten en hebben bijgevolg de aandacht getrokkenvan ecologen en c<strong>on</strong>servatiebiologen. Een van deze soorten, de huismus, is vanoudsher nauw geassocieerd met de mens en het urbane milieu maar verto<strong>on</strong>tsinds een aantal decennia een opmerkelijke daling in populatiegroottes enaantallen. Onder invloed van een steeds goeiende publieke interesse hebben talvan <strong>on</strong>derzoeksinstellingen studies opgestart in een poging de <strong>on</strong>derliggendeoorzaken van de achteruitgang van de huismus te verklaren. Echter, tot op hedenis geen enkele van de vooruitgeschoven hypotheses omtrent de achteruitgangvan de huismus als <strong>on</strong>omstotelijk bewezen geacht.In deze doctoraatsscriptie bestudeer ik fenotypische en genetische variatiein huismussenpopulaties langsheen een urbane‐rurale gradiënt en tracht dehierover nog bestaande lacunes in <strong>on</strong>ze huidige kennis op te vullen. Hierbijintegreer ik data over zowel dagelijkse bewegingspatr<strong>on</strong>en, morfologischestressindicatoren als neutrale genetsiche variatie. Omgevings‐ en genetischestress werden gekwantificeerd aan de hand van een combinatie van fluctuerendeasymmetrie (FA) en ptilochr<strong>on</strong>ologie. Fluctuerende asymmetrie refereert naar dekleine willekeurige deviaties tussen beide zijden van een bilateraal kenmerk(zowel tarsus‐ als staartpenlengte werden hiervoor aangewend) en weerspiegeltde <strong>on</strong>derliggende mate van <strong>on</strong>twikkelingsinstabiliteit. Ptilochr<strong>on</strong>ologie gebruiktde grootte van groeibanden, alternerende lichte en d<strong>on</strong>kere banden loodrecht opde schacht van een veer, als proxy voor nutriti<strong>on</strong>ele stress, waarbij kleineregroeibanden representatief staan voor een lagere nutriti<strong>on</strong>ele c<strong>on</strong>ditie van hetindividu.In Hoofdstuk 1 integreer ik dagelijkse verplaatsingsafstanden,ptilochr<strong>on</strong>ologie en landschapskarakteristieken. Globaal genomen warenhomeranges uitermate klein, waardoor deze soort mogelijk zeer gevoelig is aankeinschalige landschapsveranderingen, al dan niet geïnduceerd door de mens. Deomvang van homeranges varieerde langsheen het urbane‐rurale c<strong>on</strong>tinuum,waarbij urbane huismussen gekarakteriseerd werden door de kleinste169


Samenvattinghomeranges. Bovendien was enkel in het urbane habitat de grootte van eenhomerange gerelateerd aan de spatiale distributie van vegetatie (struiken enhagen werden als meest belangrijke vegetatie voor huismussen geïdentificeerd).Urbane huismussen verto<strong>on</strong>den de laagste nutriti<strong>on</strong>ele c<strong>on</strong>ditie en deze waspositief geassocieerd met de omvang van de homerange, m.a.w. binnen heturbane milieu bleken huismussen met de grootste homerange gekarakteriseerdte worden door de hoogste nutriti<strong>on</strong>ale c<strong>on</strong>ditie. Samenvattend, deze resultatensuggereren dat de omvang van urbane homeranges gelimiteerd werd door eensterke fragmentatie van beschikbare vegetatie wat uiteindelijk resulteerde in eenverlaagde nutriti<strong>on</strong>ele c<strong>on</strong>ditie. Verder experimentaal <strong>on</strong>derzoek is echteraangewezen.In Hoofdstuk 2 <strong>on</strong>derzoek ik de bruikbaarheid van FA als maat vooromgevingsstress. Nutriti<strong>on</strong>ele stress (Hoofdstuk 1) was niet geassocieerd met demate van asymmetrie, noch op individueel noch op populatieniveau. Dezeresultaten roepen op tot enige voorzichtigheid bij het gebruiken en interpreterenvan FA als proxy voor omgevingsstress.In Hoofdstuk 3 associeer ik FA met de mate van genetisch diversiteit(heterozygositeit). Volgens de heterozygositeitshypothese promoot genetischediversiteit de homeostatische mechanismen die de <strong>on</strong>twikkeling van een kenmerktegen willekeurige perturbaties bufferen en aldus de mate van asymmetrieminimaliseren. Onze resultaten <strong>on</strong>dersteunden deze hypothese en to<strong>on</strong>den aandat, in tegenstelling tot omgevingsstress (Hoofdstuk 2), genetische stressgeassocieerd was met FA. Op populatieniveau verklaarde heterozygositeit 34%van de variatie in FA en meer opmerkelijk was dat deze relatie sterk gedrevenwerd door het effect van slechts één enkele locus, hoewel genoomwijde effectenniet <strong>on</strong>omstotelijk verworpen k<strong>on</strong>den worden. Deze resultaten suggereren lokaallinkage disequilibrium of genoomwijde effecten als de potentiele moleculairebasis van <strong>on</strong>twikkelingsstabiliteit. Een gebrek aan voldoende statistische powerverhinderden analyses op individueel niveau voorafgaande resultaten tebevestigen.In Hoofdstuk 4 <strong>on</strong>derzoek ik de neutrale genetische variatie vanhuismussenpopulaties langsheen een urbane‐rurale gradiënt. Enkel de meestcentraal verstedelijkte populatie verto<strong>on</strong>de een genetisch signatuur van eenplotse daling in populatiegrootte (cfr. ‘flessenhals’), hoewel het niet uitgesloten isdat dergelijke signaturen ook in andere (urbane) populaties aanwezig waren maargemaskeerd werden door een influx van immigranten. Een principale coordinatenanalyse verto<strong>on</strong>de een matige scheiding tussen enerzijds de urbane en suburbane170


Samenvattingpopulaties en anderzijds de rurale populaties. Analyses op basis van hierarchischeD est waardes wezen tenslotte op de aanwezigheid van een aanzienlijke mate vangenetische drift binnen huismussenpopulaties.In Hoofdstuk 5 gebruik ik een individueel gebaseerde analyse omkleinschalige spatiale verschillen in verwantschapsdistributies te identificeren.Urbane regios werden gekarakteriseerd door een gemiddeld genomen hogereverwantschap en sterkere populatiestructuur. Spatiale autocorrelogrammen<strong>on</strong>dersteunden verder deze kleinschalige populatiestructuur en suggereerdenbovendien een hogere mate van genetische drift in sterk verstedelijkte milieus.Deze individueel gebaseerde analyses <strong>on</strong>derstrepen nogmaals hun belang entoegevoegde waarde aan meer ‘traditi<strong>on</strong>ele’ populatie gebaseerde analyses bijhet <strong>on</strong>derzoeken van kleinschalige genetische populatiestructuur.Hoewel niet het hoofddoel van deze doctoraatsscriptie kunnen sommigeresultaten mogelijk van enig belang zijn voor c<strong>on</strong>servatiebiologen. Er komensteeds meer aanwijzingen naar voren dat het verlies van inheemse vegetatie eencruciale rol speelt in de achteruitgang van de huismus door zijn sterke negatieveimpact op de lichaamsc<strong>on</strong>ditie van pulli en adulte huismussen (Hoofdstuk 1).Bijz<strong>on</strong>der aandacht dient dan ook besteed te worden aan de bescherming vandeze kleine landschapselementen indien we de huidige daling in hethuismussenbestand willen stoppen. Homerange data (Hoofdstuk 1) suggereertdat de focus niet enkel op het volume dient te liggen maar tevens op de spatialec<strong>on</strong>figuratie van landschapselementen.171


Samenvatting172

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!