10.07.2015 Views

Calcification of charaEffect of calcium encrustation on hevay metal ...

Calcification of charaEffect of calcium encrustation on hevay metal ...

Calcification of charaEffect of calcium encrustation on hevay metal ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Charophytes as a tool forphytoremediati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy <strong>metal</strong>sT. Asaeda, P. I. A. Gomes, and Md.M.BaharInstitute for Envir<strong>on</strong>mental Scienceand Technology,Saitama Universityasaeda@mail.saitama-u.ac.jp1


Charophytes• They are <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the closestrelatives <str<strong>on</strong>g>of</str<strong>on</strong>g> terrestrial plants• They attach <strong>on</strong> the bottom byrhizoids• They reproduce both asexuallyand sexually. (bulbils & oosporesmainly)• Propagule bank c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g>oospores (perennial) and bulbils• There are six genera; Chara,Nitella, Lamprothamnium,Tolypella, Lychnothamnus andNitellopsis.Charophytes with sexualorgans


Ecological significance <str<strong>on</strong>g>of</str<strong>on</strong>g> CharophytesNutrientslow bioturbati<strong>on</strong>velocity distributi<strong>on</strong>settling <str<strong>on</strong>g>of</str<strong>on</strong>g> SSCharophytesdead plantsrefuge for zooplankt<strong>on</strong>mechanically stablegyttjastabley stockedlow re-suspensi<strong>on</strong>• They do not allow materials to besuspended easily.• They are slowly decomposed andstably accumulated <strong>on</strong> the bottom• They provide habitats for variousorganisms particularly for zooplankt<strong>on</strong>


Charophytes are intensively calcified in Ca rich water• CaCO 3 incrustati<strong>on</strong> occurs in stems,branchlets, surface <str<strong>on</strong>g>of</str<strong>on</strong>g> oog<strong>on</strong>ia• CaCO 3 amounts up to 50-60% dry wt(Van den Berg et al 2002)• Generally Chara spp is more calcifiedthan Nitella spp (Imahori 1954)Calcified chara. spp


Calcite Encrustati<strong>on</strong> (based <strong>on</strong> McC<strong>on</strong>naughey’s Model)photosynthesisMcC<strong>on</strong>naughey (1991 ). Limnol. Oceanogr. 36:619–628.


Highly calcified Chara6


Objective and HypothesisGeneral objective:• to reduce heavy <strong>metal</strong>s in water using the calcificati<strong>on</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> charophytes.Background:• Phytochelatins (PCs) and <strong>metal</strong>lothi<strong>on</strong>eins (MTs) are the processes by whichplant cell detoxify heavy <strong>metal</strong>s (Cobbett and Goldsbrough 2002)• Phosphorus is co-precipitated with charophyte calcite even in very lowphosphorus (Si<strong>on</strong>g and Asaeda 2006)Hypothesis• Charophytes are likely relatively tolerant to heavy <strong>metal</strong>s..• The co-precipitati<strong>on</strong> process is not selective, thus, heavy <strong>metal</strong>s can also beco-precipitated (or adsorbed) with the calcite.


Hypothesis <str<strong>on</strong>g>of</str<strong>on</strong>g> Co-precipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy <strong>metal</strong> with Calcitephotosynthesisheavy <strong>metal</strong>heavy <strong>metal</strong>McC<strong>on</strong>naughey (1991 ). Limnol. Oceanogr. 36:619–628.8


We questi<strong>on</strong>ed:• Are charophytes lively in Ca rich water?• How tolerant are charophytes to heavy <strong>metal</strong>s?• Are heavy <strong>metal</strong>s stably co-precipitated?9


How lively are charophytes in Ca rich water?10


Growth measurementsa 1a 3• Lengths for primary, and sub divisi<strong>on</strong>s were recorded separately• Total length was used for analysis (L t =a 1 +a 2 +a 3 +b 1 )Growth rate ~ el<strong>on</strong>gati<strong>on</strong> rate = (L t -L 0 ) x 100/ L 0 (%)a 2b 1Flurocam images were used forCorrecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements• At the end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments relevant plants werephotographed using Flurocamlength measurement correcti<strong>on</strong>11


el<strong>on</strong>gati<strong>on</strong> ratewith respect to the initial length (%)el<strong>on</strong>gati<strong>on</strong> ratewith respecto to the initial length (%)1009080706050403020100Ca 4mg/lCa 40mg/lCa 80mg/lCa 120mg/l1 2 3 4 5 6weeksNitella pseud<str<strong>on</strong>g>of</str<strong>on</strong>g>rabellataThe growth rate was even largerin the higher Ca c<strong>on</strong>centrati<strong>on</strong>450400350300250200150100500Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca c<strong>on</strong>centrati<strong>on</strong><strong>on</strong> the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> CharophytesChara fibrosaCa 4mg/lCa 40mg/lCa 80mg/l0 1 2 3 4 5 6 7 8 9weeks


How are charophytes tolerant to heavy <strong>metal</strong>s?


Materials and methodsMaterials: Nitella pseud<str<strong>on</strong>g>of</str<strong>on</strong>g>labellataIncubated at 12hr:12hr (light: dark) , 24 o C.Ca c<strong>on</strong>centrati<strong>on</strong> (CaCl 2 .2H 2 0 ):4mg/l, 40mg/l, 80mg/lAfter 4 weeks,C 412 11 10 9Low Cr (VI) High Cr (VI)C 408 7 6 54 3 2 1C 800.0 0.1 0.2 0.4 0.844080Ca c<strong>on</strong>centrati<strong>on</strong> mg/LCr(VI) was added by K 2 Cr 2 0 7with c<strong>on</strong>centrati<strong>on</strong>s,c<strong>on</strong>trol, 0.1mg/l, 0.2mg/l, 0.4mg/l, 0.8mg/lThe el<strong>on</strong>gati<strong>on</strong> was measured every week, andthe maximum quantum efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> PSIIphotochemistry was measured.Cr (VI) c<strong>on</strong>centrati<strong>on</strong> mg/L


el<strong>on</strong>gati<strong>on</strong> ratewith respect to the initial length (%)el<strong>on</strong>gati<strong>on</strong> ratewith respect to the initial length (%)el<strong>on</strong>gati<strong>on</strong> ratewith respect to the initial length (%)350300250200Ca: 4mg/lc<strong>on</strong>trol0.1mgCr(IV)/l0.2mgCr(VI)/l0.4mgCr(IV)/l0.8mgCr(IV)/l350300250200Ca:40mg/lc<strong>on</strong>trol0.1mgCr(VI)/l0.2mgCr(VI)/l0.4mgCr(VI)/l0.8mgCr(VI)/l15015010010050Cr(VI) added50Cr(VI) added00 1 2 3 4 5 6 7 8 9weeks00 1 2 3 4 5 6 7 8 9weeksEl<strong>on</strong>gati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> charophytesin different Cr (VI) c<strong>on</strong>centrati<strong>on</strong> mediaCr (VI) is added after 4 th weekTolerance to heavy <strong>metal</strong> (Cr)toxicity has the positivecorrelati<strong>on</strong> with Ca inwater/calcificati<strong>on</strong>.45040035030025020015010050Ca:80mg/lc<strong>on</strong>trol0.1mgCr(VI)/l0.2mgtCr(VI)/l0.4mgCr(VI)/l0.8mgCr(VI)/lCr(VI) added00 1 2 3 4 5 6 7 8 9weeks


Maximum quantum efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> PSII photochemistry (F v /F m )Cr(VI) c<strong>on</strong>centrati<strong>on</strong>F v /F m0.8 0.39-0.440.4 0.40-0.630.2 0.72-0.760.1 0.77-0.79Fv/Fm values before Cr (VI) additi<strong>on</strong> did not showsignificant difference (t-test, P< 0.05)Stress free plants show Fv/Fm greater than 0.8 (DeEll and Toiv<strong>on</strong>en, 2003; Maxwelland Johns<strong>on</strong> 2000). ・・・more affected with increasing Cr c<strong>on</strong>centrati<strong>on</strong>Charophytes have satisfactory tolerance to Cr(VI).


How stably are heavy <strong>metal</strong>s co-precipitated?


Materials:Cara fibrosa Agrardh ex Bruzelius vs CdIncubati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>:2h:12h (light (40mmol/m 2 s -1 ): dark) for 1.5 m<strong>on</strong>thpH:7.0±0.1; Ca: 17±2 mg/L; Mg: 4±1 mg/L; SRP 5±1 mgP/LNO 3- : 1.1±0.2 mgN/L; SO 42-: 35±3 mg/L;Total alkalinity: 33±3 mg CaCO3/LCd c<strong>on</strong>centrati<strong>on</strong>:C<strong>on</strong>trol (mg Cd/L), 0.001 mg Cd/L, 0.01mg Cd/L, 0.1mg Cd/LFor comparis<strong>on</strong>,Attached algae (Oscillatoria spp.) were incubated with 0.01 mg Cd/L


Chemical analysessample• Dissolved in 1.0mol/L HNO 3• Cd and Ca were measurer by double-beam atomic absorpti<strong>on</strong> spectrophotometerSequential fracti<strong>on</strong>ati<strong>on</strong>:• extracti<strong>on</strong> exchangeable fracti<strong>on</strong> with magnesium chloride (MgCl 2 , pH 7.0)• carb<strong>on</strong>ate-bound fracti<strong>on</strong> with sodium acetate (NaOAc, pH 5.0)• organic fracti<strong>on</strong> with H 2 O 2 and HNO 3


Chemical AnalysisSequentialFracti<strong>on</strong>ati<strong>on</strong>20-40 mg sample10 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.0 mol L -1MgCl 2(pH 7.0): 30 minSample0.1 g sample,dry-ashing 400 o C, 20 hTotal Ca and CdExtractExchangeable -Fracti<strong>on</strong>Residue10 mL NaOAc 1.0mol L -1(pH 5.0); 5 h50 mL HNO 31 mol L -1 filteredResidueExtractExtractCarb<strong>on</strong>ate -bound Fracti<strong>on</strong>extractResidue5 mL HNO 335% + 5 mLH 2O 230%, 85 o C, 5mL + 20 distilled water 25 mL, filteredResidue(discharged)Atomic Absorpti<strong>on</strong>Spectrophotometer-Graphite furnace(GFAA)Total MetalsOrganic-boundFracti<strong>on</strong>


Cd in media (mg/L) : 0.001 Cd: 0.01 mg/L Cd: 0.1 mg/LTotal Cd in plant: 0.3 mg/kg dryweight basis (d.w.),BCF (bio-c<strong>on</strong>centrati<strong>on</strong> factor) :300Total Cd: 125-134 mg/kg d.w.BCF: 12500 - 13400Total Cd: 734 mg/kg d.w.BCF: 7340


fracti<strong>on</strong> (%)Total Ca (mg/g dry weight)30025020015010050Ca c<strong>on</strong>tent was not muchaffected by Cd c<strong>on</strong>centrati<strong>on</strong>,more affected by age.(alkaline z<strong>on</strong>e extends with age)0c<strong>on</strong>trolmature0.001mg/L Cdyoung0.01mg/L Cdmature0.1mg/L Cdmaureepiphytes0.01mg/L Cd1009080706050403020100c<strong>on</strong>trolmature0.001mg/L Cdyoung0.01mg/L Cdmature0.1mg/L Cdmaureepiphytes0.01mg/L CdWith increasing Cd c<strong>on</strong>centrati<strong>on</strong>,the fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>ate-bound Ca increases.Most <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca was exchangeable for epiphytic algae.Organic-bound Ca Carb<strong>on</strong>ate-bound Ca exchangeable Ca (%)


fracti<strong>on</strong> (%)Total Cd (mg/Kg dry weight)10009008007006005004003002001000c<strong>on</strong>trolmature0.001mg/L Cdyoung0.01mg/L Cdmature0.1mg/L Cdmaureepiphytes0.01mg/L CdTotal Cd c<strong>on</strong>tent increaseswith Cd c<strong>on</strong>centrati<strong>on</strong>1009080706050403020100c<strong>on</strong>trolmature0.001mg/L Cdyoung0.01mg/L Cdmature0.1mg/L Cdmaureepiphytes0.01mg/L CdOrganic-bound Cd Carb<strong>on</strong>ate-bound Cd exchangeable CdThe fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>ate-bound Cd increases with Cd c<strong>on</strong>centrati<strong>on</strong>.Cd <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytic algae is mostly exchangeable.


Major comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>calcium</str<strong>on</strong>g> and cadmium <strong>on</strong> the cell surface <str<strong>on</strong>g>of</str<strong>on</strong>g> Charathe results <str<strong>on</strong>g>of</str<strong>on</strong>g> visual Minteq (Gustafs<strong>on</strong>, 2007)Input data Ca: 17mg/l, Mg: 4mg/l, PO 43-: 5mgP/l, NO 3- : 1.1mgN/l, SO 42-:35mg/l,Total alkalinity: 33mgCaCO 3 /l, temperature 25 o CMedium (mgCd/l)0.0010.01-0.1under illuminati<strong>on</strong>Acidic (pH 5.5-6.1) Alkaline (pH 8.0-9.6)Ca 2+ CaSO 4 (aq) Ca 2+ CaCO 3(aq) CaSO 4(aq) Ca 2+ CaSO 4 (aq)Cd 2+ CdSO 4 (aq) Cd 2+ CdSO 4(aq) CdHCO 3+CdCO 3(aq) Cd(CO 3 ) 2 2- Cd 2+ CdSO 4 (aq)Ca 2+ CaSO 4 (aq) Ca 2+ CaCO 3(aq) CaSO 4(aq) Ca 2+ CaSO 4 (aq)Cd 2+ CdSO 4 (aq) Cd 2+ CdSO 4(aq) CdHCO 3+darkness(pH 6.0-7.2)CdCO 3(aq) Cd(CO 3 ) 2 2- Cd 2+ CdSO 4 (aq)Red : oversaturated > precipitatedCa CalciteCd OtaviteCalcite was oversaturated over pH=8.3CdCO 3 was oversaturated at pH=8.5-9.4( 0.01mgCD/l), 7.9-9.9 (0.1mgCd/l)CaCO 3 and CdCO 3were precipitated simultaneously. In the alkaline z<strong>on</strong>e.


Alkaline band(calcified)Acidic band(n<strong>on</strong>calcified)Calcified Otavite = alkaline layer <strong>on</strong> the calcite <strong>on</strong>ly slowlydissolved.Carb<strong>on</strong>ate-bound Cd is not affectedby anoxic c<strong>on</strong>diti<strong>on</strong>.The extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> alkaline bandwith age cause the precipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>otavite encrusted with calcite.


heavy <strong>metal</strong>sNutrientslow bioturbati<strong>on</strong>settling <str<strong>on</strong>g>of</str<strong>on</strong>g> SSvelocity distributi<strong>on</strong>Charophytesgyttjamechanically stabledead plantsstabley co-precipitatedand accumulatedrefuge for zooplankt<strong>on</strong>low re-suspensi<strong>on</strong>


C<strong>on</strong>clusi<strong>on</strong>sPossible usage <str<strong>on</strong>g>of</str<strong>on</strong>g> calcificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carophytes for the trap <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy <strong>metal</strong>s wereinvestigated.• Charophytes preferably grow in high c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca 2+ in the media.• Although the growth is more affected with increasing c<strong>on</strong>centrati<strong>on</strong>,charophytes still have satisfactory tolerance against heavy <strong>metal</strong>s andaccumulate them.• Heavy <strong>metal</strong>s are co-precipitated by the <str<strong>on</strong>g>calcium</str<strong>on</strong>g> carb<strong>on</strong>ate <str<strong>on</strong>g>encrustati<strong>on</strong></str<strong>on</strong>g>,are stably trapped.Therefore, charophytes become a feasible media to trap heavy <strong>metal</strong>s in water.27


Thank you for your attenti<strong>on</strong>28


fracti<strong>on</strong> (%)1009080706050403020100CaCO3-Cd CaCO3-Cdco-precipitated co-precipitatedas ani<strong>on</strong> as cati<strong>on</strong>CommercialCaCO 3Cd adsorbedby calciteOtavite layer <strong>on</strong> the calcite <strong>on</strong>ly slowlydissolved.Carb<strong>on</strong>ate-bound Cd is not affectedby anoxic c<strong>on</strong>diti<strong>on</strong>.Organic-bound CdExchangeable CdCarb<strong>on</strong>ate-bound Cd29


alkaline regi<strong>on</strong>acid regi<strong>on</strong><str<strong>on</strong>g>Calcificati<strong>on</strong></str<strong>on</strong>g> model (Borowitzka, 1982)medium cell wall cellHCO 3-HCO 3-OH - + CO 2HCO 3- + OH -OH -H 2 O + CO 32-Ca 2+ C a CO 330


Calcified = alkalineUncalcified =acidCalcified = alkalineUncalcified = acidCalcified = alkaline31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!