10.07.2015 Views

the life cycle performance of sustainable renovation concepts

the life cycle performance of sustainable renovation concepts

the life cycle performance of sustainable renovation concepts

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

APPENDICESTHE LIFE CYCLE PERFORMANCEOF SUSTAINABLE RENOVATIONCONCEPTSA PERFORMANCE EVALUATION OF WARMBOUWENCONTENT:TITLE:SUBTITLE:MASTER THESISTHE LIFE CYCLE PERFORMANCE OF SUSTAINABLE RENOVATION CONCEPTSA PERFORMANCE EVALUATION OF WARMBOUWENNAME:J.P. VINKSTUDENT NUMBER: 0048267UNIVERSITY:MASTER TRACK:INTERNSHIP:UNIVERSITY OF TWENTECONSTRUCTION MANAGEMENT & ENGINEERINGLOCAL COMPANY, AMSTERDAMSUPERVISORS: PROF.DR.IR. J.I.M. HALMAN UNIVERSITY OF TWENTEDR.IR. E. DURMISEVIC UNIVERSITY OF TWENTEDRS. P. BOSWINKEL MRE MRICS LOCAL COMPANYDATE: 10/20/20101


APPENDIX A - EVALUATION RESPONDENTSThe selection criteria <strong>of</strong> <strong>the</strong> selected experts in this research are presented in paragraph2.5, page 16 <strong>of</strong> <strong>the</strong> main report.The interviewed experts listed below were cooperative in this research by giving aninterview, which shows that <strong>the</strong>y were willing to share <strong>the</strong>ir information. The providedinformation by <strong>the</strong> experts has been compared with each o<strong>the</strong>r and with information fromliterature, which results in objective information about <strong>the</strong> subjects.The interviewed experts had specialist knowledge on at least one <strong>of</strong> <strong>the</strong> aspects because:- Mr. Tielkes is a senior policymaker at housing corporation Stadgenoot. Therefore, heis directly involved in <strong>the</strong> development <strong>of</strong> a policy regarding <strong>the</strong> current housing stockand <strong>the</strong> development <strong>of</strong> a <strong>sustainable</strong> strategy to improve <strong>the</strong> current housing stock<strong>of</strong> <strong>the</strong> corporation. He has got a lot <strong>of</strong> expertise in <strong>the</strong> field <strong>of</strong> large scale housingimprovement. As a result <strong>of</strong> his function he has got a lot <strong>of</strong> knowledge and acomprising view on <strong>the</strong> <strong>sustainable</strong> improvement <strong>of</strong> houses.- Mr. van Eeuwijk works on a day-to-day basis at <strong>the</strong> improvement and <strong>sustainable</strong>development <strong>of</strong> <strong>of</strong>fices at ING REIM. Mr. van Eeuwijk has got a lot <strong>of</strong> knowledge inthis field, especially on <strong>the</strong> financial aspects <strong>of</strong> sustainability.- Mrs. O. van Kampen is specialist on <strong>the</strong> execution <strong>of</strong> <strong>life</strong> <strong>cycle</strong> costs calculations atS&G en Partners, which is <strong>the</strong> company that developed <strong>the</strong> s<strong>of</strong>tware tool LCC-Lite.Mrs. van Kampen gives lecture in <strong>the</strong> execution <strong>of</strong> <strong>life</strong> <strong>cycle</strong> costs calculations and hasa lot <strong>of</strong> experience at executing LCC-calculations.- Mr. Mak is director <strong>of</strong> W/E Adviseurs, which is <strong>the</strong> company that developed <strong>the</strong>sustainability assessment tool “GPR Gebouw”. Mr. Mak has got a lot <strong>of</strong> expertise andknowledge in <strong>the</strong> field <strong>of</strong> several aspects <strong>of</strong> sustainability as environmental impact,energy <strong>performance</strong>, comfort and quality, and health.- Mr. Dansen is project manager <strong>of</strong> <strong>the</strong> Dutch Green Building Council. DGBC is anindependent organization that strives after <strong>the</strong> lasting <strong>sustainable</strong> improvement <strong>of</strong> <strong>the</strong>built environment in <strong>the</strong> Ne<strong>the</strong>rlands and is responsible for <strong>the</strong> implementation <strong>the</strong>BREEAM assessment tool in <strong>the</strong> Ne<strong>the</strong>rlands.- Mr. van Kessel is partner at Local Company and is specialized in <strong>the</strong> economicfeasibility <strong>of</strong> <strong>sustainable</strong> measures in commercial real estate. Mr. van Kessel has got alot <strong>of</strong> experience in <strong>sustainable</strong> concept development.- Mr. Vandeginste has nine years experience in real estate development and real estateinvestment. In his career he has worked a lot in <strong>the</strong> field <strong>of</strong> sustainability and<strong>the</strong>refore, has a lot <strong>of</strong> knowledge in <strong>the</strong> field <strong>of</strong> <strong>the</strong> relation between sustainabilityand real estate development and real estate investment.3


APPENDIX B - INTERVIEWSPHASE 1 – EXPLORATION OF THEORETICAL BACKGROUNDIn <strong>the</strong> first phase, expert interviews are executed to ga<strong>the</strong>r relevant information aboutimportant research subjects. These interviews are executed to contribute to <strong>the</strong> definition<strong>of</strong> <strong>the</strong> background <strong>of</strong> <strong>the</strong> research and to provide information about <strong>the</strong> research<strong>concepts</strong>. Figure 1 provides an overview <strong>of</strong> <strong>the</strong> selected experts in phase 1.Name Function CompanyI. Opstelten Program manager energy in <strong>the</strong> built ECNenvironmentG. Abdalla Ph. D. – energy infrastructure University <strong>of</strong> EindhovenP. Oei Program director InnovatieNetwerk/SIGNM. de Gier Architect KBNG ArchitectsP. Boswinkel Partner Local CompanyFIGURE 1 - SELECTED EXPERTS PHASE 1PHASE 2 – IDENTIFICATION FACTORS OF INFLUENCEIn <strong>the</strong> second phase, expert interviews are executed to create a comprising view on <strong>the</strong>factors that have an influence on <strong>the</strong> <strong>performance</strong> <strong>of</strong> <strong>sustainable</strong> <strong>renovation</strong> <strong>concepts</strong>.Figure 2 provides an overview <strong>of</strong> <strong>the</strong> selected experts in phase 2.Name Function CompanyP. Tielkens Senior policy maker StadgenootR. van Eeuwijk Asset manager ING REIMO. van Kampen Life <strong>cycle</strong> costs specialist S&G en PartnersJ. Mak Director W/E AdviseursM. Dansen Project Manager Dutch Green Building CouncilA. van Kessel Partner Local CompanyP. Vandeginste Acquisition and sales manager ASR Real Estate & Capital ManagementFIGURE 2 - SELECTED EXPERTS PHASE 2Also, interviews with involved experts at <strong>the</strong> <strong>renovation</strong> project “De Tempel” areexecuted to identify barriers for <strong>the</strong> practical execution <strong>of</strong> <strong>the</strong> <strong>renovation</strong> concept and toidentify factors that influence <strong>the</strong> practical execution <strong>of</strong> <strong>the</strong> WarmBouwen concept. Figure3 provides an overview <strong>of</strong> <strong>the</strong> selected experts.Name Function RepresentsR. van der Veeken Real estate manager Municipality <strong>of</strong> The Hague (Tenant)B. Hoogvliet Project manager Roodenburg (Installation company)D. van der Wal Real estate developer Aurelius Monumenten (Owner)FIGURE 3 - SELECTED EXPERTS PHASE 2IDENTIFICATION OF WARMBOUWEN CHARACTERISTICSTo identify <strong>the</strong> characteristics <strong>of</strong> WarmBouwen, four experts are consulted. Figure 4provides an overview <strong>of</strong> <strong>the</strong> consulted experts.Name Function CompanyP. Boswinkel Director LocalM. Karthaus Architect KBNG ArchitectsM. de Gier Architect KBNG ArchitectsG. Verbaan Senior sectormanagerbouwfysicaDMGRFIGURE 4 - CONSULTED EXPERTS FOR WARMBOUWEN4


INTERVIEW R. VAN DER VEEKENInterviewer:Jetse VinkGeinterviewde:Ronald van der VeekenFunctie:Dienst Stedelijke Ontwikkeling – Gemeente Den HaagIn project:Representant van de gebruikerInterview gehouden op: 12-04-2010 om 11.15hVraag 1: Is er een verschil tussen het ontwerpproces zoals dat bij de Tempel isgeweest en het reguliere/traditionele bouwproces zoals u dat kent?- Ja, er is zeker een groot verschil. Normaliter krijgt de gemeente als huurder eengebouw casco opgeleverd, waarna ze hun eigen voorzieningen er separaat in gaanbrengen. Dat gaat dan weer met behulp van het doen van een aanbesteding.Er komt dan dus een Programma van Eisen voor de klimaatinstallaties. Daar huren zedan een advisuer voor in die ze daarbij helpt (opstellen van een PvE), vervolgenswordt er een bestek gemaakt, waarna de aanbesteding volgt. De gemeente is dandus opdrachtgever van de aannemers. Gemeente stuurt dan zelf op de geselecteerdeaannemer/installateur. Aannemer levert op aan gemeente en vervolgens gaatgemeente een onderhoudscontract aan met de aannemer.- Bij De Tempel heeft de eigenaar een sterke drang om duurzaamklimaatbeheersingssysteem toe te passen. Gemeente gaat hierin mee. Als eigenaarminder had aangedrongen op een A-label, had gemeente eerder gekozen voor een C-label. De voorzieningen voor klimaatbeheersing is geen standaard W-installatie. Het isnamelijk een geintegreerd geheel, zowel W, E als bouwkundig (wanden , vloeren etc).De gemeente heeft wel PvE geformuleerd, maar heeft geen ervaring met dit soortsystemen. Adviseur worstelt er ook een beetje mee (geen ervaring).- Gemeente heeft in dit geval dan ook functionele eisen geformuleerd, bijvoorbeeld:Geen tocht, binnentemperatuur moet tussen de 17-20 graden zijn. Normaal doet degemeente dat niet. In dit geval gebeurt het wel, omdat er geen kennis is van detechniek. Gemeente vaart dus volledig blind op de expertise van het installatiebedrijf.Gemeente is dus ook geen opdrachtgever van het installatiebedrijf, want dat is deeigenaar. Daarom zie je in dit proces dat dingen heel snel gaan glijden in de tijd (veeltijdverlies) Dit komt omdat er zoveel partijen zijn betrokken die allemaal wat vindenen moeten doen, waardoor je makkelijk gaan glijden in de tijd. Dit heeft zeker temaken met het innovatieve systeem waar je mee te maken hebt.- Ook voor het installatiebedrijf is dit moeilijk. Als je een “installed base” hebt van 30projecten (30 projecten al afgerond) dat gaat het een stuk sneller en makkelijker.Ook voor bijvoorbeeld het installatiebedrijf.- Extra moeilijk hier was het feit dat we te maken hebben met een monument. Ditbrengt extra complexiteit met zich mee, omdat er eisen zijn aan het renoveren vaneen monument.Vraag 2: Is het moeilijk voor de gemeente/huurder dat ze blind moeten gaan opde expertise van het installatiebedrijf?- Nee, gemeente heeft het hier niet moeilijk mee. Je komt op een vertrouwensgebiedterecht dan. Niet op de kennis en kunde van een installatiebedrijf. Dat komt ook metname door de wijze waarop Roodenburg hier mee om gaat. Hierdoor wordtvertrouwen gekweekt bij de gemeente. Aanvankelijk was er wel wat strubbelingtussen verschillende adviseurs. In de loop van de tijd groeiden verschillende partijennaar elkaar toe. Als een soort huwelijk. De rol van het installatiebedrijf is hier wel ergbelangrijk in geweest. Door de instelling van de installateur, die zeer flexibelomgegaan is met allerlei zaken tijdens het proces, werd er vertrouwen gewonnen bijde gemeente.- In dit proces is wel heel veel tijd nodig. En tijd staat gelijk aan kosten.6


- 2 e wat speelt is het bouwfraude verhaal. Wat speelt is dat overheidspartijen verplichtzijn om openbaar aan te besteden. In dit geval kan dat gewoon niet. De eigenaar wilnamelijk persee met Roodenburg in zee en hij mag dat bepalen. Als gemeente kan jehem wel aanbesteden, maar er zijn niet veel bedrijven die dit kunnen. Er zijn maareen aantal bedrijven die geequipeerd zijn om dit soort producten uit te voeren. Ophet kostenaspect is het wel heel erg moeilijk om dan de garantie te geven naar deaccountants intern. Het is moeilijk om te bewijzen dat dit het beste product is voor debeste prijs. Wat ze wel kunnen doen is het geven van een iets grotere rol aan deinstallatieadviseur, zodat deze meer verantwoordelijkheden krijgt (dat is in dit gevaldan ook gebeurd). Alle kostenaspecten worden, naast de interne accountants, ookgoedgekeurd door van Toorenburg (adviseur).- Engineerskosten zijn binnen dit project ontzettend hoog voor het installatiebedrijf.(=12%, logisch doordat het een nieuwe techniek is) Dat maakt het nog eens extracomplex, omdat je met een bedrijf een deal maakt dat veel meer vraagt voor hunwerkzaamheden dan normaal gesproken. Juist omdat je die goede verhouding hebtgerealiseerd met de betrokken partijen (installateur) is dat niet erg. De transparantieen eerlijkheid van de installateur is daarbij heel erg belangrijk. Mede door dezegetoonde transparantie heb je veel vertrouwen.Vraag 3: Wat is in uw ogen cruciaal op het gebied van de instelling van debetrokken partijen om tot een succesvolle realisatie van een project te komen?- Ten eerste heb je daar projectmanagement voor nodig die daar goed mee omgaat.De rol van de opdrachtgever is heel belangrijk. Je moet de boel niet laten escaleren.In dit geval gedaan door Ronald van der Veeken en David van der Wal (huurder eneigenaar). Hebben samen gefungeerd als 2 koppige leiding. Dat ging goed. Het werdmogelijk om snel beslissingen te maken en dat was ook nodig.- Daarnaast heb je vertrouwen in elkaar nodig. Daar is hard aan gewerkt in dit proces.RV noemt het teamgeest. Vergelijk het met een voetbalelftal: 11 goede spelersmaken nog geen goed team. De vraag is <strong>of</strong> de projectleider(s) het team kunnensmeden en de angels eruit kunnen halen.- In dit proces moeite geweest met adviseur vanuit huurder. Relatie adviseur huurderen adviseur eigenaar was niet heel goed. Maar in de loop van de tijd zijn de scherpekantjes er af geraakt. Er kwam meer teamgeest en meer een instelling waarinmensen elkaar wilden helpen!- Er is een belangrijke rol weggelegd voor de procesbewaker. Deze moet doorhebbenwat er gebeurt. En: Moet overal een vinger aan de pols hebben v.w.b. deprojectaspecten geld, tijd, organisatie etc.- Een “wij gevoel” is belangrijk. Teamgeest moet je creeren. Vertrouwen moet jecreeren. Open en eerlijkheid. Niet bang zijn om te zeggen als je iets niet weet. Zeggewoon: moet ik nog even uitzoeken en horen jullie morgen. Dat is erg belangrijkvoor het vertrouwen.- Aannemer/installateur moet innovatief kunnen denken. Zeker in bouwbedrijven isdat heel moeilijk. In dit concept moeten betrokkenen heel innovatief / flexibel omkunnen gaan met klantwensen en ontwerpveranderingen.Vraag 4: Wat zijn dingen in het proces die goed gegaan zijn en welke dingenhadden beter gekund?- In sommige gevallen heeft de OG er iets te makkelijk over gedacht. Dat had betergekund. In de 2 e <strong>of</strong> 3 e vergadering werd er al gesproken over deadlines en DO‟s etc.Terwijl we nog helemaal niet zo ver waren in het proces. Hierdoor kreeg je valsehoop. Je moet veel meer luisteren naar deskundigen over wat wel en niet kan. In hetbegin is het teveel gebeurd dat mensen te makkelijk de bal bij de installateur7


neerlegden, terwijl de installateur dan zegt dat hij ook afhankelijk is vanbudget/architect/vergunning etc.- Volgend project: veel meer tijd nemen voor voorbereidingstraject. Want aanbestedenhoeft niet (win je 3 maanden mee) Als alles duidelijk is en teamgeest is er, dankunnen er snel beslissingen gemaakt worden.- Het is onderschat hoe ingewikkeld het proces is.Vraag 5: Wat was voor u het moeilijkst om mee om te gaan tijdens proces?- Vond het over het algemeen niet moeilijk. Heeft al veel ervaring. Had soms wel watergernis. Ergenis in de zin dat mensen niet naar elkaar luisteren. Geen begrip voorelkaar hebben. Heeft heel lang geduurd totdat er een beetje teamgeest kwam en erbeter werd geluisterd.- Had zelf als procesbegeleider dat anders aangepakt. Eerder op inspringen als er nietgoed geluisterd werd. Eerst een team creeren. De s<strong>of</strong>te kant moet eerst op orde,voordat je aan project begint. Eerst organisatie opzetten. Organogram: hoe liggen deverantwoordelijkheden, wie legt verantwoording af aan wie? Hoe liggencomunicatielijnen en beslislijnen? Communicatiestructuur & beslisstructuur. Derandvoorwaarden moeten duidelijk zijn voordat je aan het project begint.Vraag 6: Zou dit project gelukt zijn als je een traditioneel proces alsuitgangspunt neemt?- Nee, is onmogelijk. Het is onmogelijk om in dit geval als huurder te zeggen tegen deeigenaar: lever maar casco op. Want als de eigenaar dan oplevert, dan moet dehuurder vervolgens alles weer gaan slopen om de installaties erin te krijgen.- Het zou een gigantische verspilling van geld zijn- Je hebt te maken met een geïntegreerde toepassing. Taak van levering en taak vangebruiker zijn niet los te trekken.- Daarnaast kan de huurder dit proces niet zelf ontwikkelen, omdat ze de kennis vanhet duurzame concept niet hebben. Deze kennis is nu door Phlip Boswinkelingebracht.Vraag 7: Wat zou er gebeurd zijn als je niet direct vanaf het begin hetduurzaamheidskarakter en WarmBouwen mee had genomen in het proces?- Als dit niet vanaf het begin er zo duidelijk op had gelegen, was het nooit in de matewaarin het nu toegepast is, toegepast. Zoals als eerder gezegd was de gemeente dangegaan voor een standaard “label C” kantoor, zonder een innovatieverenovatietechniek als WarmBouwen.- In Tempel heeft eigenaar samen met huurder besloten tot het duurzame karakter vande tempel. Hierover was overeenstemming voordat het project begon.- De randvoorwaardelijke uitgangstpunten moeten voordat je start duidelijk vastliggenen daar moet overeenstemming over zijn.Vraag 8: Is er een verschil tussen de mate van vertrouwen in WarmBouwentussen begin en einde van het project?- Is niet echt meer geworden. In het begin was bij een aantal partijen geen 100%vertrouwen in de kwaliteiten van het duurzame concept. Dat is niet meer geworden.- WarmBouwen is een visie geweest die gedefinieerd is vooraf.- Omdat je niet zeker weet wat de output van het systeem is, moet je altijd eenbepaalde gereserveerdheid moet hebben t.o.v. het systeem.- Omdat het de eerste keer is dat een systeem wordt toegepast, ontstaat er twijfel overde kwaliteit ervan. Niemand weet eigenlijk <strong>of</strong> het werkt. Stel dat het concept al 10keer succesvol is toegepast, dan is het vertrouwen in een techniek direct al een stukbeter.8


INTERVIEW B. HOOGVLIETInterviewer:Jetse VinkGeinterviewde:Bryan HoogvlietFunctie:Projectleider – Roodenburg InstallatiebedrijfIn project:Representant van installatiebederijfInterview gehouden op: 19-04-2010 om 10.15hVraag 1: Is er een verschil tussen het ontwerpproces zoals dat bij de Tempel isgeweest en het reguliere/traditionele bouwproces?- Ja er is duidelijk een verschil met een regulier project. Bij de Tempel is hetvoornamelijk veel chaotischer verlopen dan in een regulier proces. Dat komt ook dooronervarenheid van de conceptontwikkelaar en opdrachtgever. Dit wisten niet goedgenoeg wat de bedoeling was.- Een renovatieproject is altijd apart. Bij nieuwbouw kun je veel makkelijker eenstrakke planning maken en de installaties erin engineeren. Bij renovatie komt je altijdonverwachte dingen tegen. Dat vergt extra flexibilietit van de installateur. Tijdens ditproces moest we op een gegeven moment oppassen dat we het gebouw niet gingenoverdimensioneren op het gebied van de installaties.- Bij renovatieprojecten is het altijd moeilijk om een goede planning te maken. Vaaksteken onvoorziene zaken de kop op. Hierdoor moet je als installateur veel zaken opde bouwplaats beslissen en oplossen.- In een renovatieproces wordt meer gecoördineerd dan bij een nieuwbouwproces.Daar kun je zaken veel makkelijker duidelijk maken en kunnen betrokken partijenveel beter aan de slag zonder dat ze heel veel met elkaar meoten afstemmen enoverleggen. In dit geval zal er veel overlegd moeten worden, omdat veel partijensnijvlakken hebben met elkaar.- Het proces is een leerschool geweest voor iedereen. Ook bijvoorbeeld deopdrachtgever. Hij wist niet genoeg van het concept af en ook kwamen er op anderevlakken inhoudelijk zaken op hem af waar hij geen rekening mee had gehouden <strong>of</strong>kennis van had.Vraag 2: Wat zijn dingen in het proces die goed gegaan zijn en welke dingenhadden beter gekund?- Wat de opdrachtgever aanvankelijk dacht dat de opdracht zou gaan worden, is andersgebleken. Het eindproduct is anders dan dat wat de opdrachtgever aanvankelijk ingedachten had. Dit heeft voor veel onrust en onzekerheid geleid.- De manier waarop het proces in de Tempel is aangepakt, geeft veel verstoring t.o.v.het reguliere proces. Er moet heel veel worden afgestemd. Adviseurs kunnen elkaarmoeilijk vinden. Er is veel tijd nodig om vertrouwen in elkaar te krijgen. Het isgebleken dat veel oponthoud is ontstaat in dit proces.- Wat beter had gekund is een betere voorbereiding door de opdrachtgever. Omdat erbij de OG niet genoeg bekend was in het begin van het proces is veel tijd verlorengegaan in het vinden van een ieders rol en het bepalen van het eindproduct. Toeneenmaal het eindproduct duidelijk was en de verantwoordelijkheden en rollenverdeeld en duidelijk waren, ging het een stuk beter met het proces.- Als we ditzelfde proces nog een keer zouden moeten doen met de ervaringen die weals bouwteam nu hebben, dan had het een stuk beter gegaan.- De OG had meer moeten investeren in een duidelijk startpunt. De randvoorwaardenhadden duidelijker moeten zijn, zodat betrokken partijen weten wat het einddoel is.Dat was nu niet zo en dat zorgde voor veel vertraging en verstoring van het proces.Aan het begin van het proces had meer tijd uitgetrokken moeten worden voor hetbepalen van het einddoel en het definiëren van verantwoordelijkheden en rollen inhet proces.9


Vraag 3: Wat was voor u het moeilijkst om mee om te gaan tijdens proces?- Een paar keer in de clinch gelegen met adviseur van de gebruiker die moeite had me<strong>the</strong>t concept dat neergezet werd. Het was moeilijk om alle neuzen 1 kant op tekrijgen.- Een installatiebedrijf zoals Roodenburg heeft standaardprocedures voor projecten. Bijrenovatieprojecten zijn deze procedures anders dan bij nieuwbouw projecten, omdatrenovatieprojecten gewoon een stuk minder voorspelbaar zijn. Er is een flexibelere rolnodig van de installateur dan bij nieuwbouwprojecten. Als er dan tijdens eenrenovatieproject zoals deze, ook nog eens gebruik gemaakt wordt van eeninnovatieve techniek, dan wordt het nog moeilijker om het proces te beheersen. Diteist een nog flexibelere houding van de betrokken partijen. Ook van installateur dus.Vraag 4: Zou dit project gelukt zijn als je het proces traditioneel insteekt?- Dit project had ook wel gerealiseerd kunnen worden als er een traditioneel procesgebruikt was, maar dan had het wel veel en veel meer tijd gekost.- Als je alles volgens de bestaande procedures binnen het bedrijf zou gaan doen, danzou het niks worden. We hebben hier vaak dingen gedaan zonder dat daar formeelopdracht voor gegeven is. Normaal doe je alles volgens de bepalingen van hetcontract, omdat dat ook veel strakker geregeld is normaal gesproken. Nu was allesveel losser geregeld en werd er dus zo nu en dan werk verricht, zonder dat daarformeel een opdracht woor was. Het is dus wel nodig geweest om buiten de paden tegaan die we als bedrijf normaal gesproken kennen. Hadden we dat niet gedaan, danwas het niks geworden.- Als installatiebedrijf moesten we vertrouwen hebben in de andere betrokken partijenen voornamelijk onze directe opdrachtgever, omdat we werk moesten verrichtenzonder dat daar een formele opdracht voor was.Vraag 5: Is WarmBouwen technisch haalbaar volgens u?- We hebben ons er als installateur wel echt in moeten verdiepen. Maar er staat nu weleen concept waar garantie voor wordt afgegeven. Wij hebben er als installatiebedrijfwel vertrouwen in dat het een werkend concept is.- Voor de installateur is er heel veel denkwerk aan vooraf gegaan in dit proces. Wehebben te maken gehad met een innovatieve techniek in een renovatieproject.Daarvoor moeten de engineers en de mensen die het principeschema bedenken veelnadenken en zich verdiepen in de technieken die gebruikt worden in het project.- Door het aantrekken van ervaren en innovatieve aannemers van de gebruiktetechnieken is er een concept tot stand gebracht waar wij als ho<strong>of</strong>daannemer onzegarantie voor gaan afgeven. Binnen het bedrijf is er dus vertrouwen in de werkingvan het concept WarmBouwen.INTERVIEW D. VAN DER WALInterviewer:Jetse VinkGeinterviewde:David van der WalFunctie:Projectmanager Motonic Real EstateIn project:Representant van de eigenaarInterview gehouden op: 10-05-2010 om 10.15hVraag 1: Is er een verschil tussen het ontwerpproces zoals dat bij de Tempel isgeweest en het reguliere/traditionele bouwproces zoals u dat kent?- Er zijn twee relevante zaken welke het project De Tempel anders maken dan eentraditioneel project. Ten eerste is het een renovatieproject. Ten tweede wordt er eeninnovatief concept toegepast voor de klimaatinrichting van het gebouw.10


- Ook waren er in de project nog veel zaken onduidelijk toen er begonen werd met hetproject. Het was niet zo dat vooraf alles al bepaald kon worden.- Het heeft redelijk wat voeten in de aarde gehad om het concept WarmBouwen tevertalen naar het pand. Normaal is dit niet heel ingewikkeld, maar doordat het eenmonument is dat gerenoveerd wordt en doordat er een innovatief concept wordttoegepast, was deze vertaalslag complexer dan gebruikelijk.- In dit project was de organisatievorm niet leading. Het doel was leading en dat heeftook vanaf het begin voorop gestaan.- In een traditioneel proces zijn de verantwoordelijkheden gescheiden, in dit proceswas de verantwoordeijkheid gedeeld. Het mooie hiervan is dat de gebruiker en deeigenaar hetzelde doel hadden en dus daarom wel goed moesten samenwerken. Datgebeurde ook.Vraag 2: Wat is in uw ogen cruciaal op het gebied van de instelling van debetrokken partijen om tot een succesvolle realisatie van een project te komen?- Het doel voor ogen houden is het belangrijkste. Dit vergt wel flexibiliteit eninlevingsvermogen van alle betrokken partijen.Vraag 3: Wat zijn dingen die goed gegaan zijn en welke dingen hadden betergekund?- Soms was het proces best complex. Er waren zo nu en dan complexe, maar ooktroebele omstandigheden waar mee om gegaan moest worden. In deze gevallen hader beter van tevoren met elkaar overlegd moeten worden wat dedoelen/randvoorwaarden waren op het betreffende gebied.- Er zijn kleine geschillen geweest tussen de verschillende adviseurs. De adviseur vande eigenaar en adviseur van de gebruiker konden elkaar niet vinden in destandpunten.Vraag 4: Wat was voor u het moeilijkst om mee om te gaan tijdens proces?- Sommige betrokkenen zijn hun eigen subdoelen belangrijker gaan vinden dat hetho<strong>of</strong>ddoel. Dat was moeilijk om mee om te gaan.- Er waren heel veel factoren die gemanaged moesten worden in dit proces. Datmaakte het erg complex (maar niet persee moeilijk)Vraag 5: Zou dit project gelukt zijn als je een traditioneel proces alsuitgangspunt neemt?- Ja dat kan. Dan duurt het alleen veel langer. Dan gaat iedereen namelijk apart zijnstukjes inleveren. Belangrijker was: het stellen van een gemeenschappelijk doel.Hierdoor gaan partijen elkaar namelijk begrijpen en helpen.INTERVIEW P. TIELKESInterviewer:Geinterviewde:Functie:Interview gehouden op:Jetse VinkPatrick Tielkessenior beleidsmedewerker – Stadgenoot (WBC)06-07-2010 om 11.00 uurVraag 1: Wat is het standpunt van Stadgenoot op het gebied van renoveren vande woningvoorraad?- Er wordt zoals altijd gekeken naar de voorraad en in gevallen dat het nodig is, wordtonderhoud toegepast. Het concreet uitvoeren van renovatieprojecten ligt anders,want dan moet je ook gaan nadenken over het verplaatsen van bewoners.Vraag 2: Wat vindt u van het <strong>life</strong> <strong>cycle</strong> <strong>performance</strong> model? Wat zoudenfactoren zijn die u graag opgenomen zou zien in het model?11


- Er zijn een heleboel belangrijke indicators in opgenomen. Dit model gaat veel verderdan de manier waarop we binnen stadgenoot op dit moment naar renovatie kijken.Bij beslismodellen wordt er voornamelijk veel minder goed gekeken naar de milieuimpact van alternatieven. Vaak zijn de financiele haalbaarheid en de energieprestatievan de huizen wel in beeld, maar op een minder omvattende manier dan als ze in ditmodel zijn opgenomen.- Ik mis de eigenschappen van de concepten die je tegen elkaar afzet. Wat zijnbijvoorbeeld de eigenschappen van de aspecten op het gebied van koeling encomfort?- In mijn ogen moet je naar de LCC kijken, maar wel in samenhang met de daarbijbehorende opbrengsten. Het gaat om financiele haalbaarheid, dat betekent dus dat jeook kijkt naar zaken als: Wat is het comfort en de duurzaamheid en welke impac<strong>the</strong>eft dat om mij maximale huurprijs? Wat is het risico van een concept. Etc.- In het model wordt niks gezegd over kwaliteit van een renovatieconcept. Daar zou ikwat over willen weten. Hoewel het moeilijk is om dit aspect te onderzoeken en tekwantificeren, is dit geen reden om dit niet mee te nemen in het model.- Voor Stadgenoot is de initiële investering ook van belang. Als de initiele investeringlaag is, is dit een minder grote barriere om tot uitvoering te komen, dan als de initiëleinvestering hoog is.- Wat is de impact van concepten op bewoners? Kan een concept toegepast worden,terwijl de bewoner er nog in zit, <strong>of</strong> moeten deze tijdelijk nieuw onderkomen hebben?INTERVIEW R. VAN EEUWIJKInterviewer:Geinterviewde:Functie:Interview gehouden op:Jetse VinkRutger van EeuwijkAsset Manager – ING Real Estate Investment Management07-07-2010 om 11.00 uurVraag 1: Wordt er geïnvesteerd in duurzaam vastgoed / het renoveren vanvastgoed door ING REIM?- De vastgoed ontwikkelaars zijn begonnen met het doorvoeren van duurzaamheid invastgoed. Bij nieuwbouw in de huidige markt is duurzaamheid een gegeven. Wordtaltijd geintegreerd in het concept.Vraag 2: Wat is de martkontwikkeling m.b.t. renoveren?- Op dit moment komt de vraag naar duurzaamheid voornamelijk voort uit de wens vande klant/huurder. Veel bedrijven willen duurzaamheid uitstralen en werken aan ditimago door hun wens tot duurzaam renoveren <strong>of</strong> verhuizen naar duurzaam pand uitte spreken naar vastgoed belegger.Vraag 3: Wat vindt u van het <strong>life</strong> <strong>cycle</strong> <strong>performance</strong> evaluation model? Watzouden factoren zijn die volgens u opgenomen zouden moeten worden?- Volgens mij zitten alle aspecten die van belang zijn voor een vastgoedbelegger erin.Bij vastgoedbelegger wordt voornamelijk gekeken naar de financiele haalbaarheid enhet verwachte rendement op een investering. Dit is goed verwerkt in de <strong>life</strong> <strong>cycle</strong>costing module.- Kwaliteit van het gebouw en beleving bij de huurder zou je eigenlijk opgenomenwillen zien in het model, want dit heeft zijn weerslag op de verwachteinkomstenstroom. Is echter heel erg moeilijk om te bepalen <strong>of</strong> te kwantificeren. Eenoplossing zou kunnen zijn om een prijs/kwaliteit scoring op te nemen.- In de renovatie projecten die wij tot nu toe hebben doorgevoerd zijn we tegen hogeomvormingskosten aangelopen. Dit betekent dat er veel kosten gaan zitten in hetverwijderen van het oude systeem voor warmte/koude en electriciteit en hetaanbrengen van het nieuwe systeem. Blijkbaar brengt dit veel moeilijkheden met zich12


mee. Ik zie deze kostenpost niet opgenomen in dit model, terwijl het er wel in zoumoeten staan.INTERVIEW A. VAN KESSELInterviewer:Geinterviewde:Functie:Interview gehouden op:Jetse VinkArnout van KesselPartner – Local Company28-07-2010 om 14.00 uurVraag: Wat is de procedure van Local bij het opstellen van duurzame renovatieconcepten voor opdrachtgevers- Als Local concepten opstelt voor haar opdrachtgevers, wordt er altijd eerst bekekenwat de ambitie van een opdrachtgever is. Dat wil zeggen, wat is het budget en waarligt de focus van de opdrachtgever. Een opgesteld concept kan heel erg verschillenper ambitie niveau. De ambitie om van G naar A label te gaan, levert totaal andererenovatieconcepten op dan de ambitie om van G label naar C label te gaan narenovatie.- Wat heel belangrijk is bij duurzaamheid en daar focust Local zich ook altijd op, is hetbedrijfseconomische gedeelte van duurzaamheid. Wij vinden duurzaamheid invastgoed heel erg belangrijk, maar wel op een manier dat het bedrijfseconomsichverantwoord is. Dat kan ook, maar om dat te realiseren moet je wel goed de situatieanalyseren, ambitie vaststellen, budget bepalen en slim gebruik maken vanvoorhanden zijnde middelen als subsidie en contracten.- Je moet kijken naar een gebouw en bepalen wat goed is. Op basis daarvan ga je dande prestatie/ambitie bepalen op basis van een bestaande meetlat.Vraag: Wat vind je van het ‘<strong>performance</strong> evaluation model’ zoals dat nu isopgesteld? Wat kan hier aan verbeterd worden?- Dit model geeft grotendeels weer waar het om draait als je kijkt naar het evaluerenvan een duurzaam renovatie concept. Er zit duurzaamheid in op het gebied van milieuimpact. Dit is een gebied dat nog vaak wordt overgeslagen, terwijl het wel degelijkvan groot belang is en ook steeds belangrijker zal worden.- Ook de kosten zijn meegenomen in het model. Dat is erg belangrijk, want alsduurzaamheid alleen maar geld kost, dan wordt het alleen toegepast door de groepmensen <strong>of</strong> opdrachtgevers die dat doen vanuit ideëel oogpunt. Door het inzichtelijkmaken van de financiële voordelen van duurzaamheid, kun je ook mensen aanzettentot renovatie die puur vanuit financieel oogpunt handelen.- De EPC is een belangrijk onderdeel van de duurzaamheidsprestatie van eenrenovatieconcept, omdat het de taal is waarin wordt gepsproken, als je het hebt overduurzaamheid in de woningbouw in Nederland. In bijvoorbeeld het nieuwe WoningWaarderings Stelsel voor sociale verhuur, worden punten toegekend aan delabelscore van een woning. Iedereen begrijpt waar je het over hebt als je het hebtover de labelscore van een woning.- Wat mist in mijn ogen in dit model is de kwaliteit die geleverd wordt door hettoegepaste renovatieconcept. De geleverde kwaliteit zegt namelijk ook iets over definanciele haalbaarheid van een concept. Als je bijvoorbeeld de optie tot koelen hebt,is een gebouw meer waard, <strong>of</strong> kan een verhuurder een hogere huur vragen. Ook ishet erg belangrijk <strong>of</strong> de toegepaste techniek te begrijpen en te bedienen is door degebruiker. Ik zou een aspect kwaliteit toevoegen aan het model. Daarin zouden desubaspecten: Thermisch comfort, gebruikergemak (is het voor oudere mensen enminder technisch aangelegde mensen te begrijpen en te onderhouden?), mate vaninvloed van de gebruiker (een mens wil altijd een invloed kunnen uitoefenen op zijndirecte omgeving. Dus bijvoorbeeld zijn de ramen te openen), toekomstbestendigheid(in welke mate sluit het concept aan bij ontwikkelingen die te verwachten zijn in detoekomst? Wat is de verwachte compabiliteit met toekomste technieken en13


omstandiheden?) en flexibiliteit (in welke mate zijn wijzigingen in en buiten dewoning door te voeren, zonder dat dit een invloed heeft op het renovatieconcept ophet gebied van kosten, prestaties etc.) toevoegen.- In het model zou je ook moeten spelen met de waarde van de woning. Dit zegt watover de opbrengstenkant van een woning met een bepaalde toegepast concept.Immers, de kosten in relatie met de opbrengsten bepalen de financiele haalbaarheidvan een concept. De oplossing die je kiest voor het renoveren van een gebouw, zegtiets over de waarde van je gebouw, want dit heeft een invloed op bijvoorbeeld detoekomstbestendheid- De factoren die zijn opgenomen in het model zijn geen factoren die voor burgersherkenbaar zijn. Om het makkelijk begrijpbaar te maken voor iedereen, zou jekunnen kijken <strong>of</strong> je deze factoren op een manier kunt weergeven, waarop iedereenhet begrijpt.- Kijk een naar de Sphere van ARUP. Die hebben een spindiagram m.b.t. sustainabilitypijlers.INTERVIEW J. MAKInterviewer:Geinterviewde:Functie:Interview gehouden op:Jetse VinkJohn MakDirecteur W/E Adviseurs13-08--2010 om 10.00 uurPersoonlijke geschiedenisHeeft een bouwkundige achtergrond en is vanaf de jaren ‟90 werkzaam in de sectorduurzaam bouwen. Zijn drijfveer is het vormen van de brug tussen kennis en debouwpraktijk. Met de bouwpraktijk wordt bedoeld de architecten, ontwikkelaars,adviseurs & aannemers die een rol spelen in de huidige bouwkolom. Binnen W/Eadviseurs streeft meneer Mak naar een organisatie waarin iedereen zich betrokken voelt.Mede daarom is W/E adviseurs ook een stichting, waarin de medewerkers zelfzeggenschap hebben over de te varen koers voor het bedrijf.In 1995 is W/E begonnen met het oprichten van GPR Gebouw in opdracht van degemeente Tilburg. Gemeente Tilburg zocht destijds een middel om duurzaamheid tekunnen meten en te kunnen communiceren. GPR gebouw is een afgeleide van NPR(Nederlandse Praktijk Richtlijn) en staat voor Gemeentelijke Praktijk Richtlijn. GPRGebouw wordt momenteel door veel gemeenten en commerciële partijen gebruikt. Op ditmoment gebruiken ongeveer 150 gemeenten en 150 commerciële bedrijven de tool.Vraag: Kunt u wat vertellen over W/E en de geschiedenis van GPR Gebouw?W/E Adviseurs is een bedrijf waar 25 personen werkzaam zijn. Het bedrijf is bewust kleingehouden, omdat je dan het bedrijf mean en lean kan houden.Vraag: welke aspecten binnen GPR Gebouw zijn minder van toepassing oprenovatie? En waarom is gekozen voor de huidige weergave ?- Aspecten als water, light & visual comfort, social safety zijn niet typische facetten dieworden verbeterd door het toepassen van een renovatie.- Geluid is een van de grootste binnenmilieuproblemen in de Nederlandsewoningsector. Zeker bij gestapelde woningbouw,veel (sociale) verhuur, duscorporaties hebben last van deze klachten. Is een veel meer gehoord probleem danenergielasten van de bewoners.- In GPR Gebouw is bewust geen weging van factoren meegenomen. Daarmee verliesje namelijk heel veel informatie die erg nuttig kan zijn. Elke opdrachtgever heeftnamelijk andere belangen, daardoor verschilt het per opdrachtgever op welkeaspecten hij de nadruk wil leggen, waar hij goed op wil scoren. Bij het toepassen van14


vooraf bepaalde weegfactoren en het integreren van de deelscores per module in eeneindscore, gaat op deze manier veel kostbare informatie verloren.- Een enkele score kan je wel gebruiken binnen je model, maar dan moet je weltransparant zijn in hoe deze tot stand komt. Dus leg je weging uit en laat deonderbouwing van de eindscore ook zien. In de onderbouwing zit dan een boelinformatie die interessant is voor opdrachtgevers.- Primaire redenen om te renoveren zijn:o Energie (kosten)o Gezondheid- Redenen om te renoveren zijn niet:o Milieu impact (LCEI)o Watergebruik- De kwaliteit van een concept kun je voorspellen op basis van fysischerandvoorwaarden. Specialisten met kennis van constructies kunnen op basis van hunexpertise voorspellen wat de prestatie van een gebouw zullen zijn, gegeven debouwkundige eigenschappen van een gebouw.- GPR Gebouw is ontwikkeld, zodat de stakeholders in de bouwkolom er zelf mee aande slag kunnen. Zo moet een architect zelf aan de hand van een GPR gebouwberekening die hij zelf heeft uitgevoerd, in 2-3 uur kunnen bepalen wat deeigenschappen van een gebouw zijn op de opgestelde modules.Vraag: Waarom is het onderdeel kosten niet opgenomen in het model?- Kosten is echt een vak apart.- Daarnaast is het erg moeilijk om duurzaamheid en de invloed daarvan op devastgoedwaarde in kaart te brengen. Er spelen een heleboel facetten een rol. Veelmensen zijn er van overtuigd dat de waarde van vastgoed stijgt, niet alleen als deenergieprestatie van een gebouw hoger is, maar ook als andere kwaliteitsaspectenbeter scoren.- Dit heeft bijvoorbeeld ook betrekking op het begrip waardebeleving. Dit is typisch eenerg gevoelsmatig aspect van duurzaamheid, waarvan iedereen er eigenlijk wel vanovertuigd is dat het een waarde heeft, maar waarvan het heel erg moeilijk is om dezewaarde te kwantificeren <strong>of</strong> kapitaliseren.Vraag: Welke aspecten zouden volgens u moeten worden opgenomen in een<strong>performance</strong> evaluatie model voor renovatieconcepten?- De aspecten die zijn opgenomen in het GPR gebouw model. Dus dat zijno Energieprestatieo Milieu impacto Kwaliteitsaspecten- De kosten zouden hier ook bij moeten, want om duurzaamheid breed toegepast tekrijgen moet een concept financieel aantrekkelijk zijn om de partijen die vanuitfinanciële oogpunt handelen over de streep te kunnen trekken om duurzaamheid teimplementeren.INTERVIEW P. VANDEGINSTEInterviewer:Geinterviewde:Functie:Interview gehouden op:Jetse VinkPieter VandeginsteSenior Acquisitie & Verkoopmanager17-08-2010 om 13.30 uurPersoonlijke geschiedenisMeneer Vandeginste is 9 jaar actief geweest als vastgoed ontwikkelaar (woningbouw) enis tijdens zijn loopbaan veel bezig geweest met duurzaamheid vanuit de ontwikkelaar. Hijis tijdelijk directeur geweest van een vastgoedontwikkelaar en werkt nu als acquisitie enverkoopmanager bij een vastgoedbelegger. In zijn huidige functie is hij bezig met deontwikkeling van vastgoed vanuit de belegger.15


Vraag: Kunt u wat meer vertellen over duurzaamheid in devastgoedontwikkeling en de manier waarop u dat heeft zien veranderen tijdensuw loopbaan?- Tijdens mijn loopbaan zie ik de relatie tussen vastgoedontwikkelaar envastgoedbelegger steeds nauwer worden. Een ontwikkelaar probeert tegenwoordigalle risico‟s die te maken hebben met de realisatie van een project neer te leggen bijde aannemer. Aan de andere kant probeert hij alle risico‟s die te maken hebben metde exploitatie neer te leggen bij de belegger. Ofwel, de rol van devastgoedontwikkelaar wordt steeds kleiner.- De toegevoegde waarde van een ontwikkelaar wordt steeds minder, tenzij je alsontwikkelaar onderscheidend vermogen kunt leveren op een nichemarkt.Duurzaamheid is een voorbeeld van zo´n nichemarkt waar je je als ontwikkelaar opzou kunnen focussen en onderscheiden. Als je dat goed kan, heb je echt toegevoegdewaarde in de kolom. Als je dit onderscheidende vermogen niet hebt, wordt je rolsteeds kleiner.- In mijn optiek gaat het toevoegen van vastgoed een steeds minder belangrijke rolspelen in de gebouwde omgeving. Wat steeds belangrijker wordt is het vervangenvan bestaande vastgoed, renovatie dus.Vraag: Op welke manier en naar welke aspecten van duurzaamheid wordtgekeken vanuit een vastgoedontwikkelaar / vastgoedbelegger?- Een belegger kijkt op twee manieren naar vastgoedo Wat is mijn directe marktrendement? (komt binnen via de huur)o Wat is mijn eindwaarde? (exit yield)- De huurinkomsten voor een belegger in de woningbouw wordt voornamelijk bepaalddoor het WWS. (Woningwaarderingstelsel)- Voor een belegger zijn kosten, opbrengsten en risico van belang. Kort samengevatzijn dat de enige drie factoren die een rol spelen in de wereld van eenvastgoedontwikkelaar en vastgoedbelegger- De relatie tussen kosten en opbrengsten is erg belangrijk. Als je het hebt overduurzaamheid, kan een concept met hogere kosten, ook hogere opbrengstengenereren <strong>of</strong> minder risico leveren, waardoor het toch interessant is om voor hetconcept te kiezen dat hogere kosten kent dan alternatieven.- Persoonlijk denk ik dat de financiele kant van duurzaamheid het belangrijkte is. Kijkmaar naar de auto mobiel industrie. Auto‟s als de Prius gingen pas super goed lopentoen er vanuit de overheid een subsidie werd verstrekt op de bijtelling van diewagens. Toen begon de auto populair te worden. Hieruit kun je afleiden dat de keuzevoor deze auto niet voortkwam vanuit de duurzaamheidsgedachte, maar vanuitfinanciele overwegingen. Ditzelfde principe geldt ook voor woningen. Aanpassingenmoeten door de gebruikers! In positieve zin voelbaar zijn in de portemonnee. Daarligt de sleutel tot succes.Vraag: Wat vindt u van het opgestelde model en welke factoren zou u daar aantoe willen voegen?- EPC is in mijn ogen meer een randvoorwaarde. Niet zozeer een prestatie van eenrenovatieconcept. Ook is het geen goed communicatiemiddel, omdat niemand EPCsnapt. Ik zou deze daarom, vanuit ontwikkelaars/beleggersoogpunt, niet opnemen inhet model.- Module kwaliteit toevoegen- Life <strong>cycle</strong> opbrengsten opnemen in het model. Dan kun je namelijk financielehaalbaarheid in kaart brengen. Alleen kosten zegt te weinig over een concept.- Je zou kunnen kijken wat een bepaald renovatieconcept voor invloed heeft op derisico opslag voor stukken vastgoed in de portefeuille.16


CONSULT M. DANSENInterviewer:Geconsulteerde:Functie:Geconsulteerd op:Jetse VinkMaarten DansenProject Manager – Dutch Green Building Coucil13-08-2010 om 13.30 uurVragenWat vindt u van de opgenomen aspecten in het model?De basis doet me denk aan de NEN EN 15978, die nu in ontwikkeling is: EPBD, LCC, LCA.Ik vroeg me even af voor wie de tool is? Je spreekt over waardebepaling voor deeigenaar. In hoeverre is de LCA van materialen relevant voor een belegger? Of eenparticuliere eigenaar? Een LCA waarde van een product zegt weinig over de noodzaak totrenovatie.Zijn er aspecten die missen in het model?Denk hierbij aan risico analyses voor een woningportefeuille: voorzieningen in de buurt,openbaar vervoer, school, sportvereniging etc. Of kijk eens naar Politie Keurmerk VeiligWonen <strong>of</strong> Woonkeur.Zijn er aspecten waarvan u denkt dat deze er niet in thuis horen, <strong>of</strong> beter opeen andere manier weergegeven zouden moeten worden?Geheel afhankelijk van de doelgroep, zoals de genoemde LCA.Heeft u aanvullingen op de lijst van kwaliteitsaspecten die nu nog niet zijnopgenomen in bovenstaande lijst met aspecten die nog verwerkt zullenworden?Er ontbreken management aspecten, kwaliteitscontrole (commissioning, het niet goedinregelen veroorzaakt problemen zoals bekend: Vathorst), instructies voor de gebruiker(De gebruiker is erg belangrijk: Het goed instureren van de gebruiker kan al eenenergiebesparing opleveren van 50%: Centre for People and Buildings).Termische test / blowerdoor testen zetten druk op de aannemer en voorkomenkoudebruggen.Hoe zou u de genoemde kwaliteitscriteria scoren? Om toch een vergelijking tekunnen maken tussen verschillende concepten?Concentreer je op de dingen die goed te kwantificeren zijn en hou de rest als wisselgeld.Heeft u tips voor mij m.b.t.Wat betreft die "financiele winsten" verwijs ik je graag naar het consumentenonderzoek'Baat het niet, dan gaat het niet' waarvan verslag wordt gedaan in het NAW DossierConsument en Duurzaamheid van april 2010.Dat betreft een grootschalig landelijk onderzoek naar markt en prijsacceptatie vanenergiezuinige woningen onder uiteindelijk (betreft immers een driefasenonderzoek,zowel kwalitatief als kwantitatief en oa gebaseerd op de Theory <strong>of</strong> <strong>the</strong> PlannedBehaviour) verhuisgeneigde kopers van nieuwbouwwoningen. Onderzoek te downloadenvia www.naw.nl/dossierDaarnaast is er nog een onderzoek van Annelinda van Eck over Willingness to Pay voorduurzame woningen (tu delft)En heeft Nils Kok en Dirk Brounen ook onderzoek gedaan naar de energielabels.Bekijk ook eens Neprom PRO feb 2010 nummer 15 “Zo wil ik wonen”.- “Waarde creatie: hoe stuurbaar is het” (Kees Graaf, Frank van Dam en AnkeBodewes)- De prijs van een plek, Ruimtelijk planbureau, apr 2006 www.pbl.nl- Naar een woningmarkt voor en door bewoners, visie consumentgericht bouwenNVM sep 09.17


RESULTS EXPERT INTERVIEWSFor this research seven experts are interviewed to identify factors that influence <strong>the</strong><strong>performance</strong> <strong>of</strong> <strong>renovation</strong> <strong>concepts</strong>. To create a comprising view on factors <strong>of</strong> influenceon <strong>the</strong> <strong>performance</strong> <strong>of</strong> <strong>renovation</strong> <strong>concepts</strong>, experts that are active in different marketsectors are interviewed. In this research experts are interviewed that are active in <strong>the</strong>sectors real estate development, real estate investment, social housing market,sustainability assessment sector, and <strong>sustainable</strong> development sector. The mentionedfactors during <strong>the</strong> interviews are listed in figure 5.RespondentP. Tielkes(Housingcorporation)R. van Eeuwijk(Real estateinvestment)A. Van Kessel(Sustainabledevelopment)J. Mak(Sustainabilityassessment)P. Vandeginste(Real estatedevelopment)M. Dansen(Sustainabilityassessment)O. van Kampen(<strong>life</strong> <strong>cycle</strong> costing)Mentioned factors <strong>of</strong> influence on <strong>the</strong> <strong>sustainable</strong><strong>performance</strong> <strong>of</strong> <strong>renovation</strong> <strong>concepts</strong>- Financial feasibility (costs and yields)- Energy <strong>performance</strong>- Specifications <strong>of</strong> <strong>the</strong> concept- Comfort- Quality- Initial investment- Impact <strong>of</strong> concept on current tenants- Financial feasibility (costs and yields)- Change over costs are important in <strong>renovation</strong> projects- Quality- Environmental impact- Costs- Quality• Comfort• Future value• Easy to use• Influence <strong>of</strong> user• Flexibility- Energy <strong>performance</strong>- Value for <strong>the</strong> dwelling (yields)- Energy <strong>performance</strong>- Health• Acoustic comfort is currently very important- Environmental impact- User quality- Future value- Costs- Real estate value- Yields (primary and secundary)- Risk- Costs- Quality- Area facilities• Public transport facilities• School / sportclub- Management aspects• Quality controle• Regulating / settings <strong>of</strong> <strong>the</strong> system• User instructions- Information about <strong>the</strong> integrated factors <strong>of</strong> a LCC calculation.FIGURE 5 - MENTIONED FACTORS OF INFLUENCE BY RESPONDENTS18


APPENDIX C - MODEL APPLICATIONThis appendix provides an elaboration <strong>of</strong> <strong>the</strong> model application. The boundary conditions,model input, model output, and model results are successively elaborated.C1. BOUNDARY CONDITIONSIn this part <strong>of</strong> <strong>the</strong> appendix, information is provided about <strong>the</strong> input on <strong>the</strong> boundaryconditions. The scope, reference building, scenarios for <strong>life</strong>span <strong>of</strong> building and scenariosfor <strong>life</strong>span <strong>of</strong> elements/change rate <strong>of</strong> <strong>the</strong> house are elaborated.SCOPEIn this assessment, 3 alternatives for <strong>the</strong> <strong>renovation</strong> are evaluated and compared. Theselected alternatives are:1. No <strong>renovation</strong>2. Standard <strong>renovation</strong>3. WarmBouwen <strong>renovation</strong>NO RENOVATIONThe <strong>renovation</strong> alternative no <strong>renovation</strong> is defined to evaluate whe<strong>the</strong>r or not it iseffective to apply sustainability measures to houses at all. Characteristics <strong>of</strong> <strong>the</strong> „no<strong>renovation</strong>‟ alternative are stated in <strong>the</strong> bullets below.- No constructive sustainability measures are applied- No <strong>sustainable</strong> installation measures are applied- No ventilation measures are applied- Existing elements are replaced during <strong>the</strong> <strong>life</strong> <strong>cycle</strong> based on <strong>the</strong> <strong>life</strong>span <strong>of</strong> elementsassumption.STANDARD RENOVATIONTo determine <strong>the</strong> <strong>performance</strong> <strong>of</strong> <strong>the</strong>„WarmBouwen <strong>renovation</strong>‟ alternative withconventional <strong>renovation</strong> measures, a standard<strong>renovation</strong> alternative is defined. The standard<strong>renovation</strong> alternative as defined in this researchis based on <strong>the</strong> doctoral <strong>the</strong>sis <strong>of</strong> Hoppe (2009).Figure 6 shows a table that describes differentsustainability measures that can be applied at<strong>renovation</strong>s, and to what extend each <strong>of</strong> <strong>the</strong>semeasures are applied in <strong>the</strong> Ne<strong>the</strong>rlands. In thisresearch <strong>the</strong> standard <strong>renovation</strong> concept iscomposed by <strong>the</strong> current broadly appliedmeasures in <strong>the</strong> Ne<strong>the</strong>rlands.Energy measure ConcretemeasureIncreasedefficiency <strong>of</strong>heating systemInsulation <strong>of</strong>facadesA* B** C*** A* B** C***Individual CHsystem92% 93% 63% 82% 85% 58%High-Efficiencyboiler next toindividual CHsystem* Duplex house55% 43% 80% 30% 30% 21%Floor on 1 st floor 41% 37% 30% 11% 27% 42%Ro<strong>of</strong> 67% 73% 57% 37% 56% 72%Facade 54% 53% 33% 45% 60% 52%Windows 76% 74% 63% 54% 63% 76%Solar heat system 2% 1%


Figure 7 points out that a row house is <strong>the</strong>most common type <strong>of</strong> house in <strong>the</strong>Ne<strong>the</strong>rlands. Therefore, this type <strong>of</strong> houseis selected as <strong>the</strong> reference house in thisresearch. If we look to <strong>the</strong> constructionperiods <strong>of</strong> row houses in figure 7, it can besaid that especially between 1946 and1975 a lot <strong>of</strong> <strong>the</strong>se houses have beenbuilt. From <strong>the</strong> report „Voorbeeldwoningenbestaande bouw 2007‟ it can be derivedthat <strong>the</strong> energy <strong>performance</strong> <strong>of</strong> <strong>the</strong> rowhouses built between 1946 and 1965 isnearly <strong>the</strong> same as <strong>the</strong> energy<strong>performance</strong> <strong>of</strong> <strong>the</strong> row houses between1966 and 1975. Figure 8 shows a picture<strong>of</strong> a typical Dutch row house.FIGURE 8 - TYPICAL DUTCH ROW HOUSECONSTRUCTIVE CHARACTERISTICS REFERENCE BUILDINGFigure 9 presents <strong>the</strong> constructive characteristics <strong>of</strong> a row house, which is built between1945 and 1965. These constructive characteristics are input for <strong>the</strong> determination <strong>of</strong> <strong>the</strong>energy <strong>performance</strong> coefficient <strong>of</strong> <strong>the</strong> house.Constructive aspectsGeneralAspect Value UnitySurface 95,8 [m 2 ]Orientation N/S front/backAwning not present -TransmissionAspect Surface [m 2 ] U-value [W/m 2 K] Rc-value [m 2 K/W]Ground level - floor 42,5 2,44 0,15Ro<strong>of</strong> (slope) 55,5 0,47 1,97Front facade 17,2 1,89 0,36Glass type 1 - front facade 5,1 5,10 0,20Glass type 2 - front facade 3,4 3,10 0,32Back facade 17,2 1,89 0,36Glass type 1 - back facade 5,1 5,10 0,20Glass type 2 - back facade 3,4 3,10 0,32InfiltrationAspect [dm 3 /s] [dm 3 /s/m 2]Qv;10 characteristic 232,31 2,425Thermal capacityTraditional - mixed heavyFIGURE 9-CONSTRUCTIVE ASPECTS ROW HOUSE (SENTERNOVEM, 2007)INSTALLATION CHARACTERISTICS REFERENCE BUILDINGFigure 10 provides information about <strong>the</strong> installation technical aspects <strong>of</strong> a row housewithout <strong>renovation</strong>. These aspects are input for <strong>the</strong> determination <strong>of</strong> <strong>the</strong> energyInstallations<strong>performance</strong> coefficient <strong>of</strong> <strong>the</strong>house.HeatingAspectHeating systemTypeType <strong>of</strong> emmissionValueindividual central heating systemefficiency boilerradiatorsCoolingAspectType <strong>of</strong> coolingValueno coolingWarm tap waterAspectHeating systemgas fired combi boilerClassification <strong>of</strong> system n/aVentilationNo ventilationSolar energy systemsNo solar energy systemsFIGURE 10-INSTALLATION ASPECTS ROW HOUSE (SENTERNOVEM, 2007)21


LIFESPAN OF BUILDINGThe <strong>life</strong>span <strong>of</strong> a building after application <strong>of</strong> a <strong>sustainable</strong> <strong>renovation</strong> influences <strong>the</strong><strong>performance</strong> <strong>of</strong> a <strong>sustainable</strong> <strong>renovation</strong> concept. If <strong>the</strong> <strong>life</strong>span <strong>of</strong> a house after<strong>renovation</strong> is short (e.g. 10 years), o<strong>the</strong>r <strong>renovation</strong> measures are interesting than if <strong>the</strong><strong>life</strong>span <strong>of</strong> a house after <strong>renovation</strong> is long (e.g. 75 years). Therefore, three scenarios for<strong>the</strong> <strong>life</strong>span <strong>of</strong> a building after <strong>renovation</strong> are defined in this section.Figure 11 shows three definitions <strong>of</strong> functional time levels <strong>of</strong> buildings in case <strong>of</strong> newdevelopment.Functional time level <strong>of</strong> constructionsDuffy 50-75 yearsBrand30-300 yearsBuilding code New Zealind >50 yearsFIGURE 11 - FUNCTIONAL TIME LEVELS OF BUILDING S (DURMISEVIC, 2006)Figure 11 shows that experts define different <strong>life</strong>span <strong>of</strong> buildings. In <strong>the</strong> report“Duurzaamheid loont”, Bijdendijk (2007) describes that <strong>the</strong> current social dwellings in <strong>the</strong>Ne<strong>the</strong>rland have an average <strong>life</strong>span <strong>of</strong> 50 years.For a comprising view on <strong>the</strong> <strong>life</strong> <strong>cycle</strong> <strong>performance</strong> <strong>of</strong> <strong>the</strong> <strong>renovation</strong> <strong>concepts</strong> that areevaluated in this research, different scenarios are elaborated. Figure 12 shows <strong>the</strong>scenarios for <strong>life</strong>span extension after <strong>renovation</strong> that are elaborated in this research.These scenarios are based on information from <strong>the</strong> report „Transformable BuildingStructures‟ (Durmisevic, 2006).Extension <strong>of</strong> <strong>the</strong> building's <strong>life</strong>spanScenario 1 Scenario 2 Scenario 3Extension is lowerthan expectedExtension is asexpectedLIFESPAN OF ELEMENTSExtension is higherthan expected25 years 50 years 75 yearsFIGURE 12 - EXTENSION OF BUILDING'S LIFESPAN AFTER RENOVATIONThe functional <strong>life</strong>span <strong>of</strong> <strong>the</strong> applied elements <strong>of</strong> a <strong>renovation</strong> concept influences <strong>the</strong><strong>sustainable</strong> <strong>performance</strong> <strong>of</strong> a <strong>renovation</strong> concept. To define this boundary condition, <strong>the</strong>elements <strong>of</strong> a system and <strong>the</strong>ir technical- and functional <strong>life</strong>span are analyzed.In <strong>the</strong> doctoral <strong>the</strong>sis „Transformable Building Structures‟, Durmisevic (2006) states thatdifferent building components and -systems have different degrees <strong>of</strong> durability. Figure13 presents four components <strong>of</strong> a building with different degrees <strong>of</strong> durability.FIGURE 13 - DEGREES OF DURABILITY OF BUILDING PARTS22


Durmisevic (2006) also states that due to all <strong>the</strong> present changes in <strong>the</strong> world, <strong>the</strong>requirements for houses and its functionalities also changes. Research by a housingcorporation in Amsterdam points out that <strong>the</strong> changing sequence in dwellings isincreasing. Figure 14 shows <strong>the</strong> pulse <strong>of</strong> change in dwellings (Rigo, 1999).5 years 10 years 15 years 20 years 25 yearsliving roombedroomkitchenworking roombathroomFIGURE 14 - PULSE OF CHANGE IN DWELLINGSFigure 14 shows <strong>the</strong> change rate <strong>of</strong> different rooms in dwellings. Despite <strong>the</strong> technicalstatus <strong>of</strong> different rooms in a house, changes are implemented during <strong>the</strong> <strong>life</strong> <strong>cycle</strong> <strong>of</strong> ahouse, which leads to an increase <strong>of</strong> costs and environmental impact. Thus, <strong>the</strong> technicaldurability <strong>of</strong> elements varies from <strong>the</strong> functional variability due to <strong>the</strong> change rate indwellings.This concept also accounts for elements <strong>of</strong> <strong>renovation</strong> <strong>concepts</strong>. There is a differencebetween technical <strong>life</strong> span and functional <strong>life</strong> span. The functional <strong>life</strong> span is related to<strong>the</strong> use <strong>of</strong> a building or component while <strong>the</strong> technical <strong>life</strong> span is determined by itstechnical state (Durmisevic, 2006). For this research <strong>the</strong> functional <strong>life</strong> <strong>cycle</strong>s <strong>of</strong> <strong>the</strong>implemented elements are relevant, because <strong>the</strong> functional <strong>life</strong> <strong>cycle</strong> determines <strong>the</strong>change rate and <strong>the</strong>reby <strong>the</strong> impact on <strong>the</strong> <strong>sustainable</strong> <strong>performance</strong>.It is hard to predict what <strong>the</strong> average functional <strong>life</strong> span <strong>of</strong> elements <strong>of</strong> <strong>the</strong> threedifferent <strong>renovation</strong> <strong>concepts</strong> will be. Therefore, three scenarios are elaborated toprovide a comprising view on <strong>the</strong> effect <strong>of</strong> flexibility and change rate on <strong>the</strong> costs andenvironmental impact <strong>of</strong> <strong>renovation</strong> <strong>concepts</strong>.Durmisevic (2006) describes different definitions <strong>of</strong> functional time levels <strong>of</strong> buildingcomponents. Figure 15 gives an overview <strong>of</strong> <strong>the</strong>se different definitions.Duffy's modelComponent Interpretation <strong>of</strong> componentFIGURE 15- LIFE SPAN DEFINITIONS OF BUILDING ELEMENTS (DURMISEVIC, 2006)Life span (years)Shell Main structure <strong>of</strong> <strong>the</strong> building 50-75Services cabling, plumbing, conditioning, vertical communications 15-20Scenery Partitions, ceilings, finishes 5-7Set Furniture 0Brand's modelComponent Interpretation <strong>of</strong> componentLife span (years)Site Urban location eternalStructure Foundation <strong>of</strong> load bearing elements 30-300Skin Exterior finishing 20Services Heating, ventilation, airconditioning, communication, electrical wiring 7-15Space plan Interior lay out including vertical partitioning 3Stuff Furniture 0Building code in New ZealandComponent Interpretation <strong>of</strong> componentLife span (years)Structure building elements such as floors and walls for structural stability >50Services with difficult acces and for hidden fixes >50O<strong>the</strong>r fixings 15It can be concluded that <strong>the</strong>re is not a one-sided answer to <strong>the</strong> question: What is <strong>the</strong>functional <strong>life</strong> span <strong>of</strong> <strong>renovation</strong> elements? Therefore this research elaborates threescenarios for <strong>the</strong> <strong>life</strong> span <strong>of</strong> building element in <strong>the</strong> three alternative <strong>concepts</strong> for<strong>renovation</strong>.23


Scenario 1: Functional <strong>life</strong>span <strong>of</strong> <strong>the</strong> elements is lower than expected & functionalchange rate is higher than expected.Scenario 2: Functional <strong>life</strong>span <strong>of</strong> <strong>the</strong> elements is as expected & functional change rate isas expectedScenario 3: Functional <strong>life</strong>span <strong>of</strong> <strong>the</strong> elements is higher than expected & functionalchange rate is slower than expected.The change rate <strong>of</strong> a building and <strong>life</strong>span <strong>of</strong> elements in <strong>the</strong> three selected <strong>renovation</strong><strong>concepts</strong> are elaborated in figure 16.Functional <strong>life</strong>span <strong>of</strong> <strong>renovation</strong> elementsElement Scenario 1 Scenario 2 Scenario 3Change rate <strong>of</strong> Change rate <strong>of</strong> Change rate <strong>of</strong>Constructive elements dwelling: once in 5 dwelling: once in dwelling: once inyears.10 years.20 years.Life<strong>cycle</strong> <strong>of</strong> installationsElement Scenario 1 Scenario 2 Scenario 3No <strong>renovation</strong>Boiler 10 15 20Standard <strong>renovation</strong>Boiler 10 15 20Mechanical ventilation 5 10 15WarmBouwen <strong>renovation</strong>Heat pump 10 15 20Acquifer 25 50 75FIGURE 16 - SCENARIOS FOR CHANGE RATES AND LIFE SPANS OF INSTALLATION ELEM ENTSThe impact <strong>of</strong> <strong>the</strong> <strong>life</strong>span <strong>of</strong> elements and functional changes on <strong>the</strong> <strong>life</strong> <strong>cycle</strong><strong>performance</strong> <strong>of</strong> a <strong>renovation</strong> concept is determined by assuming a scenario change <strong>of</strong> <strong>the</strong>house. More information about this scenario change is provided in appendix R.24


C2. INPUT MODEL ASPECTSThis subparagraph elaborates <strong>the</strong> input that is used to determine <strong>the</strong> results <strong>of</strong> <strong>the</strong>identified factors <strong>of</strong> influence. The input on <strong>the</strong> aspects <strong>life</strong> <strong>cycle</strong> cost, <strong>life</strong> <strong>cycle</strong> yields, <strong>life</strong><strong>cycle</strong> environmental impact, quality, and energy <strong>performance</strong> coefficient are successivelyelaborated. Assumptions that are made for determining <strong>the</strong> input <strong>of</strong> <strong>the</strong> model aspectsare listed in appendix S.C2.1. LIFE CYCLE COSTSThis appendix provides information about <strong>the</strong> input parameters that are used todetermine <strong>the</strong> <strong>performance</strong> on <strong>the</strong> factor „<strong>life</strong> <strong>cycle</strong> costs‟ <strong>of</strong> each alternative at <strong>the</strong>different defined scenario. To determine <strong>the</strong> output on <strong>the</strong> factor „<strong>life</strong> <strong>cycle</strong> costs‟, <strong>the</strong>s<strong>of</strong>tware tool LCC-Lite, developed by S&G en Partners is used.FINANCIAL FACTORSINITIAL INVESTMENTThe initial investment that is required to execute <strong>the</strong> three <strong>renovation</strong> <strong>concepts</strong> areelaborated in this section.No <strong>renovation</strong>Element Costs (€) SourceRadiator + piping 3500 (350*10) Maat b.v. (expert consult)Efficiency boiler 2490 www.milieucentraal.nlTotal 5990FIGURE 17 - INITIAL INVESTMENT NO RENOVATIONStandard <strong>renovation</strong>Element Costs (€) SourceRadiator + piping 3500 (350*10) Maat b.v. (expert consult)High efficiency boiler 3430 www.milieucentraal.nlRo<strong>of</strong> insulation 4913 Toolkit bestaande bouwFloor insulation 1419 Toolkit bestaande bouwFaçade insulation 2432 Toolkit bestaande bouwDouble glazing 2666 Toolkit bestaande bouwVentilation system 5961 Toolkit bestaande bouwTotal 24321WarmBouwen <strong>renovation</strong>Element Costs (€) SourceRo<strong>of</strong> insulation 4913 Toolkit bestaande bouwWindows 2666 Toolkit bestaande bouwAquifer CONFIDENTIAL Case: Forteck “Krayenh<strong>of</strong>f”Heat pump CONFIDENTIAL Case: Forteck “Krayenh<strong>of</strong>f”Wall heating system CONFIDENTIAL Case: De TempelTotalCONFIDENTIALOPERATING COSTSThe operating costs consist <strong>of</strong> <strong>the</strong> costs that are involved at energy use during <strong>the</strong> <strong>life</strong><strong>cycle</strong> <strong>of</strong> <strong>the</strong> house. The yearly operating costs are described per alternative.The table below shows <strong>the</strong> input parameters that are used in <strong>the</strong> operating costscalculation.25


Aspect Value SourceCaloric value <strong>of</strong> gas 33,41 MJ/m 3 nl.wikipedia.orgPrice <strong>of</strong> gas 0.61 €/m 3 www.lage-energierekening.nlPrice <strong>of</strong> electricity 0.23 €/kWh www.lage-energierekening.nlNo <strong>renovation</strong>AspectEnergy Used energy Costs (€)source (MJ)Heating Gas 60858 1111Secondary heating energy Electricity 4743 303Warm tap water Gas 29247 534Summer comfort Electricity 441 28Fixed costs for connection to - - 237electricity gridFixed costs for connection to gas - - 180,21gridEnergy tax decrease - - -379,16Total 2014Standard <strong>renovation</strong>AspectEnergy Used energy Costs (€)source (MJ)Heating Gas 24815 453Secondary heating energy Electricity 2243 143Warm tap water Gas 18229 333Ventilation Electricity 3095 524Summer comfort Electricity 1994 127Fixed costs for connection to - - 237electricity gridFixed costs for connection to gas - - 180,21gridEnergy tax decrease - - -379,16Total 1619WarmBouwen <strong>renovation</strong>AspectEnergy Used energy Costs (€)source (MJ)Heating Electricity 11296 722Secondary heating energy Electricity 969 62Warm tap water Electricity 13499 862Summer comfort Electricity 339 22Fixed costs for connection to - - 237electricity gridEnergy tax decrease - - -379,16Total 1526MAINTENANCE COSTSThis section describes <strong>the</strong> yearly maintenance costs <strong>of</strong> elements in <strong>the</strong> <strong>renovation</strong>alternatives.No <strong>renovation</strong>Maintenance element Costs (€) SourceBoiler 141 Ministerie van EZ, 200926


Standard <strong>renovation</strong>Maintenance element Costs (€) SourceBoiler 141 Ministerie van EZ, 2009Ventilator 85 Forteck, Ontwikkelaarsinformatiemap, 2009WarmBouwen <strong>renovation</strong>Maintenance element Costs (€) SourceHeat pump 133 www.senternovem.nlAquifer 20 A. van Kessel, Local CompanyDISPOSAL COSTSTo determine <strong>the</strong> disposal costs, <strong>the</strong> assumption is made that <strong>the</strong> disposal costs for <strong>the</strong>three <strong>renovation</strong> <strong>concepts</strong> are equal (see assumption #5, appendix S). The end-<strong>of</strong>-<strong>life</strong>disposal cost <strong>of</strong> a house is not significantly influenced by <strong>the</strong> applied <strong>renovation</strong>alternative.The figure below shows <strong>the</strong> end-<strong>of</strong>-<strong>life</strong> disposal costs for <strong>the</strong> <strong>renovation</strong> <strong>concepts</strong>.Alternative Costs (€) SourceNo <strong>renovation</strong> 1300 Mr. Steenbeek, Heijn HeunStandard <strong>renovation</strong> 1300 Mr. Steenbeek, Heijn HeunWarmBouwen <strong>renovation</strong> 1300 Mr. Steenbeek, Heijn HeunCHANGE OVER COSTSThe changeover costs are equal to <strong>the</strong> disposal costs. The changeover costs <strong>of</strong> <strong>the</strong> three<strong>renovation</strong> alternatives are equal. The figure below shows <strong>the</strong> changeover costs for <strong>the</strong><strong>renovation</strong> <strong>concepts</strong>.Alternative Costs (€) SourceNo <strong>renovation</strong> 1300 Mr. Steenbeek, Heijn HeunStandard <strong>renovation</strong> 1300 Mr. Steenbeek, Heijn HeunWarmBouwen <strong>renovation</strong> 1300 Mr. Steenbeek, Heijn HeunREPLACEMENT COSTS OF ELEMENTSThe replacement costs <strong>of</strong> elements <strong>of</strong> a <strong>renovation</strong> alternative during <strong>the</strong> <strong>life</strong> <strong>cycle</strong> <strong>of</strong> ahouse depend on two factors:1. Lifespan <strong>of</strong> <strong>the</strong> building2. Lifespan <strong>of</strong> elementsFor both <strong>of</strong> <strong>the</strong>se factors, 3 scenarios are defined in this research (see appendix C1). Todetermine <strong>the</strong> replacement costs <strong>of</strong> elements for <strong>the</strong> three <strong>renovation</strong> alternatives on allscenarios, a time bar is made. To give more insight in <strong>the</strong> determination <strong>of</strong> <strong>the</strong>replacement costs <strong>of</strong> elements, one example <strong>of</strong> <strong>the</strong> time bar method is elaborated in thissection.ExampleScenario: 2.2.2.x- Standard <strong>renovation</strong>- Lifespan <strong>of</strong> building: as expected (=50 years)- Lifespan <strong>of</strong> elements/change rate: as expectedFigure 18 shows a time bar that indicates which elements are replaced during <strong>the</strong> <strong>life</strong><strong>cycle</strong> <strong>of</strong> <strong>the</strong> house in scenario 2.2.2.x. Based on this time bar <strong>the</strong> replacements costs aredetermined and processed in <strong>the</strong> <strong>life</strong> <strong>cycle</strong> costs calculation. This calculation is executed27


for each alternative in each scenario. The results from <strong>the</strong>se calculations are described inappendix C3.A = Replacing boilerB = Replacing ventilatorC = Replacing radiatorsD = Replacing windowsE = Replacing wallsBCEABCDEABCEBCDEA0 5 10 15 20 25 30 35 40 45 50t = 50FIGURE 18 - LIFE CYCLE TIME BAR FOR DETERMINING REPLACEMENTFor determining <strong>the</strong> replacement <strong>of</strong> radiators and interior walls, assumption #8 (seeappendix R) is made.EXTERNAL FACTORSDISCOUNT RATEYear Discount ratesAverage %Average %Year Discount ratesper yearper year2009 1,45 2,52 2005 4,082009 1,45 2005 4,082009 1,45 2004 4,43 4,432009 1,77 2004 4,432009 1,77 2003 3,95 4,232009 1,77 2003 3,952009 2,22 2003 4,82009 2,22 2002 5,06 5,062009 2,74 2001 5,23 5,782009 3,47 2001 6,332009 4,99 2000 5,7 5,702009 4,99 2000 5,72008 5,36 5,09 1999 5,61 4,902008 5,36 1999 4,762008 5,36 1999 4,762008 4,59 1999 4,762008 4,59 1999 4,762008 5,19 1999 4,762008 5,19 1998 4,93 5,662007 5,42 4,94 1998 4,932007 5,42 1998 5,952007 4,62 1998 5,952007 4,62 1998 5,952007 4,62 1998 5,952006 4,36 4,10 1998 5,952006 4,36 1997 5,56 5,562006 4,362006 3,7 Total average discount rate 4,682006 3,7Plus 100 points for2005 4,08 2,84 calcution value5,682005 4,082005 4,082005 4,08FIGURE 19 - DISCOUNT RATE EUThe average discount rate for funding in <strong>the</strong>model is determined based upon <strong>the</strong> discount ratethat <strong>the</strong> European Union prescribes togovernments. This discount rate kept up from1997.Figure 19 shows <strong>the</strong> discount rates that havebeen determined by <strong>the</strong> European Union. Theanalysis show that <strong>the</strong> reference rate is 4,68.Depending on <strong>the</strong> use <strong>of</strong> <strong>the</strong> reference rate, <strong>the</strong>appropriate margins have still to be added. For<strong>the</strong> discount rate this means that a margin <strong>of</strong> 100basis points has to be added(http://ec.europa.eu/competition/state_aid/legislation/reference_rates.html, 2010)The discount rate that is defined for this researchis: 5.68%.28


DEVELOPMENT ENERGY PRICEThe development <strong>of</strong> <strong>the</strong> gas price and electricity price has an impact on <strong>the</strong> <strong>performance</strong>on <strong>the</strong> factor „<strong>life</strong> <strong>cycle</strong> costs‟ <strong>of</strong> a <strong>renovation</strong> concept. Therefore, <strong>the</strong> development <strong>of</strong> thisfactor is analyzed. For <strong>the</strong> calculation <strong>of</strong> <strong>life</strong> <strong>cycle</strong> costs in this research, <strong>the</strong> assumptionis made that <strong>the</strong> development in future will be <strong>the</strong> same as <strong>the</strong> development between <strong>the</strong>years 1996 and 2009, which is analyzed in figure 20.FIGURE 20 - DEVELOPMENT ENERGY PRICES. SOURCE: CBSFigure 20 shows that <strong>the</strong> gas price in <strong>the</strong> Ne<strong>the</strong>rlands increased with 8% - 8,7% per yearduring <strong>the</strong> last fourteen years. An average household in <strong>the</strong> Ne<strong>the</strong>rlands uses about 1600m 3 gas. Therefore <strong>the</strong> percentage that is defined for this research is <strong>the</strong> average between<strong>the</strong> increase for a usage <strong>of</strong> 500m 3 and a usage <strong>of</strong> 200 m 3 (see figure 20).The average gas price increases with= 8.34% per year in <strong>the</strong> Ne<strong>the</strong>rlands.For <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> average price increase <strong>of</strong> electricity in <strong>the</strong> Ne<strong>the</strong>rland <strong>the</strong>assumption is made that fifty percent <strong>of</strong> <strong>the</strong> Dutch electricity users use single rateelectricity and <strong>the</strong> o<strong>the</strong>r fifty percent <strong>of</strong> <strong>the</strong> users use double rate electricity.The average electricity price increases with= 8.59% per year in <strong>the</strong>Ne<strong>the</strong>rlands.There is uncertainty about <strong>the</strong> development <strong>of</strong> <strong>the</strong> energy price. Therefore threescenarios are defined. These scenarios are defined based on <strong>the</strong> analysis above:Scenario 1: development is =5% per year (lower than expected)Scenario 2: development is =8% per year (expected)Scenario 3: development is =11% per year (higher than expected)29


C2.2. LIFE CYCLE YIELDSThe <strong>life</strong> <strong>cycle</strong> yields calculation is outside <strong>the</strong> scope <strong>of</strong> this research. However, in thissection a suggestion for an approach is described. This suggestion is based oninformation from expert interviews with A. van Kessel & P. Vandeginste.To score <strong>renovation</strong> alternatives on <strong>the</strong> aspect <strong>of</strong> <strong>life</strong> <strong>cycle</strong> yields, a score must bedetermined for <strong>the</strong> factors that compose <strong>the</strong> <strong>life</strong> <strong>cycle</strong> yields. The factors that compose<strong>the</strong> <strong>life</strong> <strong>cycle</strong> yields are:- Primary returns – rent- Secondary returns – exit yield- RiskPrimary returnsTo determine <strong>the</strong> approximate <strong>performance</strong> <strong>of</strong> <strong>the</strong> three <strong>renovation</strong> alternatives on <strong>the</strong>aspect <strong>of</strong> primary returns, <strong>the</strong> new “woning waarderingsstelsel (WWS)” is used. This newWWS will be implemented in 2011 in <strong>the</strong> Ne<strong>the</strong>rlands and is used to determine <strong>the</strong> score<strong>of</strong> a house. Based on this score a housing corporation determines <strong>the</strong> maximum rent forthat house. The quality and energy <strong>performance</strong> coefficient <strong>of</strong> a house are factors thatinfluence <strong>the</strong> score <strong>of</strong> a house, and <strong>the</strong>reby influence <strong>the</strong> rent and <strong>life</strong> <strong>cycle</strong> yields <strong>of</strong> ahouse. Appendix U shows an overview <strong>of</strong> <strong>the</strong> factors that influence <strong>the</strong> score <strong>of</strong> a housein <strong>the</strong> new “woning waarderingsstelsel” and provides more information about <strong>the</strong> newWWS. Figure 21 presents <strong>the</strong> score on primary returns <strong>of</strong> <strong>the</strong> three <strong>renovation</strong>alternatives that are defined in this research.ScoresAspect <strong>of</strong> WWS No <strong>renovation</strong> Standard <strong>renovation</strong> WarmBouwen <strong>renovation</strong>1 70 70 702 7,5 7,5 7,53 9 9 94 8 32 405 4 4 46 8 8 88 4 4 49 12 12 1210 10 10 1011 -10 -10 -1012 0 0 0Total 122,5 146,5 154,5Rent per point (€) 4,5 4,5 4,5Rent 551,25 659,25 695,25Normalized scores 0,79 0,95 1,00FIGURE 21 - PRIMARY RETURNS BASED ON WWS 2010Secondary returnsInvestments in real estate are written <strong>of</strong>f in a certain period. The write <strong>of</strong>f perioddepends on variables as level <strong>of</strong> investment, purpose <strong>of</strong> investment, nature <strong>of</strong>investment, etc. For <strong>sustainable</strong> <strong>renovation</strong> measures, which can be constructive as wellas installation technical measures, it is plausible to assume that <strong>the</strong> average write <strong>of</strong>fperiod <strong>of</strong> an investment is 20 years (Boswinkel, 2010). That means that <strong>the</strong> investmentsare written <strong>of</strong>f at <strong>the</strong> moment that <strong>the</strong> houses are sold. However, renovated housesprovide a higher level <strong>of</strong> quality and comfort and have a better energy <strong>performance</strong>, alsoat <strong>the</strong> moment <strong>of</strong> selling. Therefore, it can be assumed that <strong>the</strong> selling price, whichdetermines <strong>the</strong> secondary returns, is influenced by <strong>the</strong> level <strong>of</strong> sustainability and quality.Figure 22 presents <strong>the</strong> assumption for <strong>the</strong> secondary return <strong>of</strong> <strong>the</strong> three <strong>renovation</strong>alternatives in <strong>the</strong> research. This assumption is based on <strong>the</strong> case study “De meerwaardevan vastgoed” , executed by G. Berkhout (2010). This case study points out that eachlabel improvement (e.g. from label C to label D) results in 2% higher selling price.30


No <strong>renovation</strong> Standard renovatoin WarmBouwen <strong>renovation</strong>Quality 0,9 0,97 1Energy label E B A+Assumed secundaryreturns 0,9 0,96 1FIGURE 22 - SECONDARY RETURNS BASED ON QUALITY AND ENERGY PERFORMANCERiskVarious risks play a role at <strong>the</strong> exploitation <strong>of</strong> a house. Analyzing <strong>the</strong>se risks anddetermining <strong>the</strong> impact <strong>of</strong> <strong>the</strong> risks on <strong>the</strong> exploitation is outside <strong>the</strong> scope <strong>of</strong> thisresearch. However, in <strong>the</strong> bullets below a first identification <strong>of</strong> risks is given. Based on<strong>the</strong>se risks and <strong>the</strong> characterizations <strong>of</strong> <strong>the</strong> three evaluated <strong>renovation</strong> <strong>concepts</strong> in thisresearch, an assumption is made for <strong>the</strong> <strong>performance</strong> on <strong>the</strong> aspect risks <strong>of</strong> each<strong>renovation</strong> alternative.Risks- Maintenance costs are higher than expected- Replacement costs are higher than expected- The percentage <strong>of</strong> debtors is higher than expected- The vacancy is higher than expected- System <strong>performance</strong> coefficient is lower than expectedBased on <strong>the</strong>se risks and <strong>the</strong> characterizations <strong>of</strong> <strong>the</strong> three <strong>renovation</strong> <strong>concepts</strong>, <strong>the</strong>score <strong>of</strong> each concept is expressed on a +/- scale. To determine a score, a plus results in+1 point, a zero results in +0 points, and minus results in -1 point.Thus, <strong>the</strong> <strong>performance</strong> <strong>of</strong> <strong>the</strong> three <strong>renovation</strong> alternatives is compared with each o<strong>the</strong>r.Based on <strong>the</strong> comparison a score is dedicated on each risk.No<strong>renovation</strong>RisksScore Points Score Points Score PointsMaintenance + 2 - 0 0 1Replacement + 2 - 0 0 1Debtors 0 1 0 1 0 1Vacancy - 0 0 1 + 2System <strong>performance</strong> 0 1 - 0 + 2Total points 6 2 7Normalized score 0,86 0,29 1FIGURE 23 - RISKS AT EXPLOITATIONStandard<strong>renovation</strong>WarmBouwen<strong>renovation</strong>31


C2.3. LIFE CYCLE ENVIRONMENTAL IMPACTThis appendix provides information about <strong>the</strong> input parameters that are used todetermine <strong>the</strong> <strong>performance</strong> on <strong>the</strong> factor „<strong>life</strong> <strong>cycle</strong> environmental impact‟ <strong>of</strong> eachalternative on <strong>the</strong> different defined scenario. To determine <strong>the</strong> output on <strong>the</strong> factor „<strong>life</strong><strong>cycle</strong> environmental impact‟, <strong>the</strong> s<strong>of</strong>tware tool SimaPro, developed by PRé is used.ASSEMBLYMATERIALSIn this section, <strong>the</strong> materials that are applied during <strong>the</strong> <strong>life</strong> <strong>cycle</strong> <strong>of</strong> <strong>the</strong> three evaluated<strong>renovation</strong> alternatives are described. The quantities <strong>of</strong> materials and <strong>the</strong> accompanyingunity are given. Appendix S describes <strong>the</strong> assumptions that are made in <strong>the</strong>secalculations, and <strong>the</strong> processes that are required to produce <strong>the</strong> applied elements.Figures 24, 25 and 26 show <strong>the</strong> quantity <strong>of</strong> materials that is used during <strong>the</strong> whole <strong>life</strong><strong>cycle</strong> <strong>of</strong> <strong>the</strong> house. The sources that provided input parameters for <strong>the</strong>se figures arepresented in appendix D.No <strong>renovation</strong>Component Elements Materials Weight UnityCentral heating Boiler Aluminum 6.5 kgsystemSteel 23 kgCast iron 5 kgCopper 2 kgPiping Aluminum 60 g/mPE 41 g/mRadiator Steel 33 kg/m 1Expansion Steel 3.4 kgbarrelRubber 0.645 kgEpoxy 0.126 kgABS 0.045 kgBrass 0.15Windows Glass Single glass 11.25 kg/m 2Internal walls Wall Sand-lime bricks 750 kg/m 3FIGURE 24 - QUANTITIES „NO RENOVATION‟ ALTERNATIVEBase plaster 1200 kg/m 3Standard <strong>renovation</strong>Component Elements Materials Weight UnityCentral heating Boiler Aluminum 6.5 kgsystemSteel 23 kgCast iron 5 kgCopper 2 kgPiping Aluminum 60 g/mPE 41 g/mRadiator Steel 33 kg/m 1Expansion Steel 3.4 kgbarrelRubber 0.645 kgEpoxy 0.126 kgABS 0.045 kgBrass 0.15 kg32


Windows Glass Double glass 22.5 kg/m 2Internal walls Wall Sand-lime bricks 750 kg/m 3Base plaster 1200 kg/m 3Ventilation Ventilator Steel 3 kgABS 0.4 kgPE 0.5 kgPiping Steel 1.41 kg/m 1Ro<strong>of</strong> insulationInsulation Glass wool 25 kg/m 3materialGypsum board Gypsum 800 kg/m 3Facade insulation Insulation PUR 28 kg/m 3materialFloor insulation InsulationmaterialPUR 28 kg/m 3FIGURE 25 - QUANTITIES 'STANDARD RENOVATION' ALTERNATIVEWarmBouwen <strong>renovation</strong>Component Elements Materials Weight UnityWarmBouwen system Heat pump Cast iron 168.21 kgCopper 35.3 kgBarite 4.23 kgBauxite 48.61 kgBentonite 7.32 kgLead 2.23 kgChromium 0.7 kgManganese 0.09 kgNickel 0.63 kgSilver 2.9 kgZinc 0.17 kgTin 1.62 kgAquifer Piping PVC 19.8 kg/m 1Steel 7930 kg/m 3Pumps Steel 24 kgWall heating system Gypsum board Gypsum fibre board 21.5 kg/m 2Insulation #1 PIR 30 kg/m 3Insulation #2 PE 35.2 kg/m 3Piping Aluminum 60 g/mPE 41 g/mWindows Glass Double glass 22.5 kg/m 2Ro<strong>of</strong> insulationInsulation Glass wool 25 kg/m 3materialGypsum board Gypsum 800 kg/m 3Internal walls Wall Sand-lime bricks 750 kg/m 3FIGURE 26 - QUANTITIES 'WARMBOUWEN RENOVATION' ALTERNATIVEBase plaster 1200 kg/m 3PROCESSING & MANUFACTURINGAppendix S described <strong>the</strong> processes that are required to produce <strong>the</strong> applied elements.33


TRANSPORTTo determine <strong>the</strong> environmental impact due to transport <strong>of</strong> materials and elements, threetransport scenarios are defined. The scenarios are defined, based on expert consultsduring <strong>the</strong> research.Three different transport scenarios have been defined for <strong>the</strong> determining <strong>the</strong>environmental impact due to transport <strong>of</strong> elements:Scenario 1: 200 kmScenario 2: 600 kmScenario 3: 1000 kmFigure 27 presents <strong>the</strong> elements <strong>of</strong> <strong>the</strong> three <strong>renovation</strong> alternatives and <strong>the</strong> transportscenario that is assigned to each element.Element Applied in alternative TransportScenarioBoiler No <strong>renovation</strong> / Standard <strong>renovation</strong> 3Heat pump WarmBouwen <strong>renovation</strong> 3Expansion barrel No <strong>renovation</strong> / Standard <strong>renovation</strong> 3Glass All 1Piping All 2Ventilator Standard <strong>renovation</strong> 2Piping (air) Standard <strong>renovation</strong> 2Ro<strong>of</strong> insulation Standard <strong>renovation</strong> / WarmBouwen <strong>renovation</strong> 1Gypsum board Standard <strong>renovation</strong> / WarmBouwen <strong>renovation</strong> 1Floor insulation Standard <strong>renovation</strong> 1Facade insulation Standard <strong>renovation</strong> 1Aquifer piping WarmBouwen <strong>renovation</strong> 3Aquifer pumps WarmBouwen <strong>renovation</strong> 3Insulation #1 WB WarmBouwen <strong>renovation</strong> 3Insulation #2 WB WarmBouwen <strong>renovation</strong> 3Fixed wall elements All 1Flexible wall elements WarmBouwen <strong>renovation</strong> 1FIGURE 27- TRANSPORT SCENARIOS PER ELEMENTAppendix S provides information about <strong>the</strong> selected lorry for transportation activities at<strong>the</strong> model application in this research.34


WarmBouwen <strong>renovation</strong>Standard <strong>renovation</strong>No <strong>renovation</strong>ASSEMBLY – QUANTITY OF MATERIALSThe figures in this appendix section present <strong>the</strong> determined quantities <strong>of</strong> materials for<strong>the</strong> determination <strong>of</strong> <strong>the</strong> <strong>life</strong> <strong>cycle</strong> environmental impact, per scenario and per <strong>renovation</strong>alternative.Alternative x.1.1.yLife <strong>cycle</strong>: (years) 25Boiler 2Windows changes 1Ventilator changes 4Radiator/piping changes 16Piping 0Acquifer changes 0Distances alternatives (km) 200 600 1000Sub- W eig htW eig htC han T o t alElementSub element s sub ( kg )( kg )g es weig ht T KM ' sBoiler Boiler aluminium 1 2 initial 2 per boiler 2 6 109,52 1 initial 1 per boiler 2 33 2 initial 2 per boiler 2 64 1,5 initial 1,5 per boiler 2 4,5Boiler steel 1 12 initial 12 per boiler 2 362 0,5 initial 0,5 per boiler 2 1,53 1,5 initial 1,5 per boiler 2 4,54 9 initial 9 per boiler 2 27Boiler cast iron 5 initial 5 per boiler 2 15Boiler copper 2 initial 2 per boiler 2 6Piping Piping (rest) 3,034 initial 0,3034 per change 16 7,8884 11,6594Piping aluminium 4,44 initial 0,444 per change 16 11,544Radiators 495 initial 49,5 per radiator change 16 1287 772,2Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 2 0,645 6,69962 0,042 initial 0,042 per barrel 2 0,1263 0,015 initial 0,015 per barrel 2 0,0454 0,05 initial 0,05 per barrel 2 0,15Expansion barrel steel 3,4 initial 3,4 per barrel 2 10,2Glass 191,25 initial 191,25 per change 1 382,5 76,5Fixed walls Wall elements 8093 1696,54Plasterwork 389,68Boiler Boiler aluminium 1 2 initial 2 per boiler 2 6 109,52 1 initial 1 per boiler 2 33 2 initial 2 per boiler 2 64 1,5 initial 1,5 per boiler 2 4,5Boiler steel 1 12 initial 12 per boiler 2 362 0,5 initial 0,5 per boiler 2 1,53 1,5 initial 1,5 per boiler 2 4,54 9 initial 9 per boiler 2 27Boiler cast iron 5 initial 5 per boiler 2 15Boiler copper 2 initial 2 per boiler 2 6Piping Piping (rest) 3,034 initial 0,3034 per change 16 7,8884 11,6594Piping aluminium 4,44 initial 0,444 per change 16 11,544Radiators 495 initial 49,5 per radiator change 16 1287 772,2Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 2 0,645 6,69962 0,042 initial 0,042 per barrel 2 0,1263 0,015 initial 0,015 per barrel 2 0,0454 0,05 initial 0,05 per barrel 2 0,15Expansion barrel steel 3,4 initial 3,4 per barrel 2 10,2Glass 382,5 initial 382,5 per change 1 765 153Ventilator Ventilator (rest) 1 0,4 initial 0,4 per change 4 2 10,82 1 initial 1 per change 0 1Ventilator steel 3 initial 3 per change 4 15Piping (air) 35,25 initial 35,25 per change 0 35,25 21,15Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Insulation material (facade) 86 total 0 per change 0 86 17,2Insulation material (floor) 84 total 0 per change 0 84 16,8Fixed walls Wall elements 8093 1696,54Plasterwork 389,68Heat pump Heat pump (rest) 1 4,23 initial 4,23 per heat pump 2 12,69 816,032 48,61 initial 48,61 per heat pump 2 145,833 7,32 initial 7,32 per heat pump 2 21,964 2,23 initial 2,23 per heat pump 2 6,695 0,7 initial 0,7 per heat pump 2 2,16 0,09 initial 0,09 per heat pump 2 0,277 0,63 initial 0,63 per heat pump 2 1,898 2,9 initial 2,9 per heat pump 2 8,79 0,17 initial 0,17 per heat pump 2 0,5110 1,62 initial 1,62 per heat pump 2 4,86Heat pump cast iron 168,21 initial 168,21 per heat pump 2 504,63Heat pump copper 35,3 initial 35,3 per heat pump 2 105,9Acquifer Acquifer (rest) 1980 initial 1980 per acquifer 0 1980 1314,6Acquifer steel 1 211 initial 211 per acquifer 0 2112 48 initial 48 per pump change 2 144 144Gypsum board 739,6 total 0 per change 0 739,6 147,92Piping Piping (rest) 12,6936 total 0 per change 0 12,694 6,25392Piping aluminium 18,576 total 0 per change 0 18,576Insulation material 1 30,96 total 0 per change 0 30,96 6,192Insulation material 2 3,63 total 0 per change 0 3,63 0,726Glass 382,5 initial 382,5 per change 1 765 153Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Fixed walls Wall elements 8093 1696,54Plasterwork 389,68FIGURE 28 - QUANTITIES OF MATERIALS, SCENARIO X.1.1.Y35


WarmBouwen <strong>renovation</strong>Standard <strong>renovation</strong>No <strong>renovation</strong>Alternative x.1.2.yLife <strong>cycle</strong>: (years)Boiler/heat pump/pump/expansion barrel replacementsWindows changes2511Ventilator changesRadiator/piping changesPiping (air)/ventilator ro<strong>of</strong> unit changesAcquifer changes2800Distances alternatives (km) 200 600 1000Sub- W eig htW eig htC han T o t alElementSub element s sub ( kg )( kg )g es weig ht T KM ' sBoiler Boiler aluminium 1 2 initial 2 per boiler 1 4 732 1 initial 1 per boiler 1 23 2 initial 2 per boiler 1 44 1,5 initial 1,5 per boiler 1 3Boiler steel 1 12 initial 12 per boiler 1 242 0,5 initial 0,5 per boiler 1 13 1,5 initial 1,5 per boiler 1 34 9 initial 9 per boiler 1 18Boiler cast iron 5 initial 5 per boiler 1 10Boiler copper 2 initial 2 per boiler 1 4Piping Piping (rest) 3,034 initial 0,3034 per change 8 5,4612 8,07192Piping aluminium 4,44 initial 0,444 per change 8 7,992Radiators 495 initial 49,5 per radiator change 8 891 534,6Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 1 0,43 4,46642 0,042 initial 0,042 per barrel 1 0,0843 0,015 initial 0,015 per barrel 1 0,034 0,05 initial 0,05 per barrel 1 0,1Expansion barrel steel 3,4 initial 3,4 per barrel 1 6,8Glass 191,25 initial 191,25 per change 1 382,5 76,5Fixed walls Wall elements 4046,5 848,14Plasterwork 194,22Boiler Boiler aluminium 1 2 initial 2 per boiler 1 4 732 1 initial 1 per boiler 1 23 2 initial 2 per boiler 1 44 1,5 initial 1,5 per boiler 1 3Boiler steel 1 12 initial 12 per boiler 1 242 0,5 initial 0,5 per boiler 1 13 1,5 initial 1,5 per boiler 1 34 9 initial 9 per boiler 1 18Boiler cast iron 5 initial 5 per boiler 1 10Boiler copper 2 initial 2 per boiler 1 4Piping Piping (rest) 3,034 initial 0,3034 per change 8 5,4612 8,07192Piping aluminium 4,44 initial 0,444 per change 8 7,992Radiators 495 initial 49,5 per radiator change 8 891 534,6Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 1 0,43 4,46642 0,042 initial 0,042 per barrel 1 0,0843 0,015 initial 0,015 per barrel 1 0,034 0,05 initial 0,05 per barrel 1 0,1Expansion barrel steel 3,4 initial 3,4 per barrel 1 6,8Glass 382,5 initial 382,5 per change 1 765 153Ventilator Ventilator (rest) 1 0,4 initial 0,4 per change 2 1,2 6,722 1 initial 1 per change 0 1Ventilator steel 3 initial 3 per change 2 9Piping (air) 35,25 initial 35,25 per change 0 35,25 21,15Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Insulation material (facade) 86 total 0 per change 0 86 17,2Insulation material (floor) 84 total 0 per change 0 84 16,8Fixed walls Wall elements 4046,5 848,14Plasterwork 194,22Heat pump Heat pump (rest) 1 4,23 initial 4,23 per heat pump 1 8,46 544,022 48,61 initial 48,61 per heat pump 1 97,223 7,32 initial 7,32 per heat pump 1 14,644 2,23 initial 2,23 per heat pump 1 4,465 0,7 initial 0,7 per heat pump 1 1,46 0,09 initial 0,09 per heat pump 1 0,187 0,63 initial 0,63 per heat pump 1 1,268 2,9 initial 2,9 per heat pump 1 5,89 0,17 initial 0,17 per heat pump 1 0,3410 1,62 initial 1,62 per heat pump 1 3,24Heat pump cast iron 168,21 initial 168,21 per heat pump 1 336,42Heat pump copper 35,3 initial 35,3 per heat pump 1 70,6Acquifer Acquifer (rest) 1980 initial 1980 per acquifer 0 1980 1314,6Acquifer steel 1 211 initial 211 per acquifer 0 2112 48 initial 48 per pump change 1 96 96Gypsum board 739,6 total 0 per change 0 739,6 147,92Piping Piping (rest) 12,6936 total 0 per change 0 12,694 6,25392Piping aluminium 18,576 total 0 per change 0 18,576Insulation material 1 30,96 total 0 per change 0 30,96 6,192Insulation material 2 3,63 total 0 per change 0 3,63 0,726Glass 382,5 initial 382,5 per change 1 765 153Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Fixed walls Wall elements 4046,5 848,14Plasterwork 194,22FIGURE 29 - QUANTITIES OF MATERIALS, SCENARIO X.1.2.Y36


WarmBouwen <strong>renovation</strong>Standard <strong>renovation</strong>No <strong>renovation</strong>Alternative x.1.3.yLife <strong>cycle</strong>: (years)Boiler/heat pump/pump/expansion barrel replacementsWindows changes2511Ventilator changesRadiator/piping changesPiping (air)/ventilator ro<strong>of</strong> unit changesAcquifer changes1400Distances alternatives (km) 200 600 1000Sub- W eig htW eig htC han T o t alElementSub element s su ( kg )( kg )g es weig ht T KM ' sBoiler Boiler aluminium 1 2 initial 2 per boiler 1 4 732 1 initial 1 per boiler 1 23 2 initial 2 per boiler 1 44 1,5 initial 1,5 per boiler 1 3Boiler steel 1 12 initial 12 per boiler 1 242 0,5 initial 0,5 per boiler 1 13 1,5 initial 1,5 per boiler 1 34 9 initial 9 per boiler 1 18Boiler cast iron 5 initial 5 per boiler 1 10Boiler copper 2 initial 2 per boiler 1 4Piping Piping (rest) 3,034 initial 0,3034 per change 4 4,2476 6,27816Piping aluminium 4,44 initial 0,444 per change 4 6,216Radiators 495 initial 49,5 per radiator change 4 693 415,8Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 1 0,43 4,46642 0,042 initial 0,042 per barrel 1 0,0843 0,015 initial 0,015 per barrel 1 0,034 0,05 initial 0,05 per barrel 1 0,1Expansion barrel steel 3,4 initial 3,4 per barrel 1 6,8Glass 191,25 initial 191,25 per change 1 382,5 76,5Fixed walls Wall elements 1316,5 275,94Plasterwork 63,18Boiler Boiler aluminium 1 2 initial 2 per boiler 1 4 732 1 initial 1 per boiler 1 23 2 initial 2 per boiler 1 44 1,5 initial 1,5 per boiler 1 3Boiler steel 1 12 initial 12 per boiler 1 242 0,5 initial 0,5 per boiler 1 13 1,5 initial 1,5 per boiler 1 34 9 initial 9 per boiler 1 18Boiler cast iron 5 initial 5 per boiler 1 10Boiler copper 2 initial 2 per boiler 1 4Piping Piping (rest) 3,034 initial 0,3034 per change 4 4,2476 6,27816Piping aluminium 4,44 initial 0,444 per change 4 6,216Radiators 495 initial 49,5 per radiator change 4 693 415,8Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 1 0,43 4,46642 0,042 initial 0,042 per barrel 1 0,0843 0,015 initial 0,015 per barrel 1 0,034 0,05 initial 0,05 per barrel 1 0,1Expansion barrel steel 3,4 initial 3,4 per barrel 1 6,8Glass 382,5 initial 382,5 per change 1 765 153Ventilator Ventilator (rest) 1 0,4 initial 0,4 per change 1 0,8 4,682 1 initial 1 per change 0 1Ventilator steel 3 initial 3 per change 1 6Piping (air) 35,25 initial 35,25 per change 0 35,25 21,15Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Insulation material (facade) 86 total 0 per change 0 86 17,2Insulation material (floor) 84 total 0 per change 0 84 16,8Fixed walls Wall elements 1316,5 275,94Plasterwork 63,18Heat pump Heat pump (rest) 1 4,23 initial 4,23 per heat pump 1 8,46 544,022 48,61 initial 48,61 per heat pump 1 97,223 7,32 initial 7,32 per heat pump 1 14,644 2,23 initial 2,23 per heat pump 1 4,465 0,7 initial 0,7 per heat pump 1 1,46 0,09 initial 0,09 per heat pump 1 0,187 0,63 initial 0,63 per heat pump 1 1,268 2,9 initial 2,9 per heat pump 1 5,89 0,17 initial 0,17 per heat pump 1 0,3410 1,62 initial 1,62 per heat pump 1 3,24Heat pump cast iron 168,21 initial 168,21 per heat pump 1 336,42Heat pump copper 35,3 initial 35,3 per heat pump 1 70,6Acquifer Acquifer (rest) 1980 initial 1980 per acquifer 0 1980 1314,6Acquifer steel 1 211 initial 211 per acquifer 0 2112 48 initial 48 per pump change 1 96 96Gypsum board 739,6 total 0 per change 0 739,6 147,92Piping Piping (rest) 12,6936 total 0 per change 0 12,694 6,25392Piping aluminium 18,576 total 0 per change 0 18,576Insulation material 1 30,96 total 0 per change 0 30,96 6,192Insulation material 2 3,63 total 0 per change 0 3,63 0,726Glass 382,5 initial 382,5 per change 1 765 153Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Fixed walls Wall elements 1316,5 275,94Plasterwork 63,18FIGURE 30 - QUANTITIES OF MATERIALS, SCENARIO X.1.3.Y37


WarmBouwen <strong>renovation</strong>Standard <strong>renovation</strong>No <strong>renovation</strong>Alternative x.2.1.yLife <strong>cycle</strong>: (years)Boiler/heat pump/pump/expansion barrel replacementsWindows changes5042Ventilator changesRadiator/piping changesPiping (air)/ventilator ro<strong>of</strong> unit changesAcquifer changes94211Distances alternatives (km) 200 600 1000Sub- W eig htW eig htC han T o t alElementSub element s sub ( kg )( kg )g es weig ht T KM ' sBoiler Boiler aluminium 1 2 initial 2 per boiler 4 10 182,52 1 initial 1 per boiler 4 53 2 initial 2 per boiler 4 104 1,5 initial 1,5 per boiler 4 7,5Boiler steel 1 12 initial 12 per boiler 4 602 0,5 initial 0,5 per boiler 4 2,53 1,5 initial 1,5 per boiler 4 7,54 9 initial 9 per boiler 4 45Boiler cast iron 5 initial 5 per boiler 4 25Boiler copper 2 initial 2 per boiler 4 10Piping Piping (rest) 3,034 initial 0,3034 per change 42 15,777 23,3189Piping aluminium 4,44 initial 0,444 per change 42 23,088Radiators 495 initial 49,5 per radiator change 42 2574 1544,4Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 4 1,075 11,1662 0,042 initial 0,042 per barrel 4 0,213 0,015 initial 0,015 per barrel 4 0,0754 0,05 initial 0,05 per barrel 4 0,25Expansion barrel steel 3,4 initial 3,4 per barrel 4 17Glass 191,25 initial 191,25 per change 2 573,75 114,75Fixed walls Wall elements 17503 3669,22Plasterwork 843,6Boiler Boiler aluminium 1 2 initial 2 per boiler 4 10 182,52 1 initial 1 per boiler 4 53 2 initial 2 per boiler 4 104 1,5 initial 1,5 per boiler 4 7,5Boiler steel 1 12 initial 12 per boiler 4 602 0,5 initial 0,5 per boiler 4 2,53 1,5 initial 1,5 per boiler 4 7,54 9 initial 9 per boiler 4 45Boiler cast iron 5 initial 5 per boiler 4 25Boiler copper 2 initial 2 per boiler 4 10Piping Piping (rest) 3,034 initial 0,3034 per change 42 15,777 23,3189Piping aluminium 4,44 initial 0,444 per change 42 23,088Radiators 495 initial 49,5 per radiator change 42 2574 1544,4Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 4 1,075 11,1662 0,042 initial 0,042 per barrel 4 0,213 0,015 initial 0,015 per barrel 4 0,0754 0,05 initial 0,05 per barrel 4 0,25Expansion barrel steel 3,4 initial 3,4 per barrel 4 17Glass 382,5 initial 382,5 per change 2 1147,5 229,5Ventilator Ventilator (rest) 1 0,4 initial 0,4 per change 9 4 21,62 1 initial 1 per change 1 2Ventilator steel 3 initial 3 per change 9 30Piping (air) 35,25 initial 35,25 per change 1 70,5 42,3Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Insulation material (facade) 86 total 0 per change 0 86 17,2Insulation material (floor) 84 total 0 per change 0 84 16,8Fixed walls Wall elements 17503 3669,22Plasterwork 843,6Heat pump Heat pump (rest) 1 4,23 initial 4,23 per heat pump 4 21,15 1360,052 48,61 initial 48,61 per heat pump 4 243,053 7,32 initial 7,32 per heat pump 4 36,64 2,23 initial 2,23 per heat pump 4 11,155 0,7 initial 0,7 per heat pump 4 3,56 0,09 initial 0,09 per heat pump 4 0,457 0,63 initial 0,63 per heat pump 4 3,158 2,9 initial 2,9 per heat pump 4 14,59 0,17 initial 0,17 per heat pump 4 0,8510 1,62 initial 1,62 per heat pump 4 8,1Heat pump cast iron 168,21 initial 168,21 per heat pump 4 841,05Heat pump copper 35,3 initial 35,3 per heat pump 4 176,5Acquifer Acquifer (rest) 1980 initial 1980 per acquifer 1 3960 2629,2Acquifer steel 1 211 initial 211 per acquifer 1 4222 48 initial 48 per pump change 4 240 240Gypsum board 739,6 total 0 per change 0 739,6 147,92Piping Piping (rest) 12,6936 total 0 per change 0 12,694 6,25392Piping aluminium 18,576 total 0 per change 0 18,576Insulation material 1 30,96 total 0 per change 0 30,96 6,192Insulation material 2 3,63 total 0 per change 0 3,63 0,726Glass 382,5 initial 382,5 per change 2 1147,5 229,5Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Fixed walls Wall elements 17503 3669,22Plasterwork 843,6FIGURE 31 - QUANTITIES OF MATERIALS, SCENARIO X.2.1.Y38


WarmBouwen <strong>renovation</strong>Standard <strong>renovation</strong>No <strong>renovation</strong>Alternative x.2.2.yLife <strong>cycle</strong>: (years)Boiler/heat pump/pump/expansion barrel replacementsWindows changes5032Ventilator changesRadiator/piping changesPiping (air)/ventilator ro<strong>of</strong> unit changesAcquifer changes42210Distances alternatives (km) 200 600 1000Sub- W eig htW eig htC han T o t alElementSub element s sub ( kg )( kg )g es weig ht T KM ' sBoiler Boiler aluminium 1 2 initial 2 per boiler 3 8 1462 1 initial 1 per boiler 3 43 2 initial 2 per boiler 3 84 1,5 initial 1,5 per boiler 3 6Boiler steel 1 12 initial 12 per boiler 3 482 0,5 initial 0,5 per boiler 3 23 1,5 initial 1,5 per boiler 3 64 9 initial 9 per boiler 3 36Boiler cast iron 5 initial 5 per boiler 3 20Boiler copper 2 initial 2 per boiler 3 8Piping Piping (rest) 3,034 initial 0,3034 per change 22 9,7088 14,3501Piping aluminium 4,44 initial 0,444 per change 22 14,208Radiators 495 initial 49,5 per radiator change 22 1584 950,4Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 3 0,86 8,93282 0,042 initial 0,042 per barrel 3 0,1683 0,015 initial 0,015 per barrel 3 0,064 0,05 initial 0,05 per barrel 3 0,2Expansion barrel steel 3,4 initial 3,4 per barrel 3 13,6Glass 191,25 initial 191,25 per change 2 573,75 114,75Fixed walls Wall elements 8093 1696,29Plasterwork 388,44Boiler Boiler aluminium 1 2 initial 2 per boiler 3 8 1462 1 initial 1 per boiler 3 43 2 initial 2 per boiler 3 84 1,5 initial 1,5 per boiler 3 6Boiler steel 1 12 initial 12 per boiler 3 482 0,5 initial 0,5 per boiler 3 23 1,5 initial 1,5 per boiler 3 64 9 initial 9 per boiler 3 36Boiler cast iron 5 initial 5 per boiler 3 20Boiler copper 2 initial 2 per boiler 3 8Piping Piping (rest) 3,034 initial 0,3034 per change 22 9,7088 14,3501Piping aluminium 4,44 initial 0,444 per change 22 14,208Radiators 495 initial 49,5 per radiator change 22 1584 950,4Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 3 0,86 8,93282 0,042 initial 0,042 per barrel 3 0,1683 0,015 initial 0,015 per barrel 3 0,064 0,05 initial 0,05 per barrel 3 0,2Expansion barrel steel 3,4 initial 3,4 per barrel 3 13,6Glass 382,5 initial 382,5 per change 2 1147,5 229,5Ventilator Ventilator (rest) 1 0,4 initial 0,4 per change 4 2 11,42 1 initial 1 per change 1 2Ventilator steel 3 initial 3 per change 4 15Piping (air) 35,25 initial 35,25 per change 1 70,5 42,3Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Insulation material (facade) 86 total 0 per change 0 86 17,2Insulation material (floor) 84 total 0 per change 0 84 16,8Fixed walls Wall elements 8093 1696,29Plasterwork 388,44Heat pump Heat pump (rest) 1 4,23 initial 4,23 per heat pump 3 16,92 1088,042 48,61 initial 48,61 per heat pump 3 194,443 7,32 initial 7,32 per heat pump 3 29,284 2,23 initial 2,23 per heat pump 3 8,925 0,7 initial 0,7 per heat pump 3 2,86 0,09 initial 0,09 per heat pump 3 0,367 0,63 initial 0,63 per heat pump 3 2,528 2,9 initial 2,9 per heat pump 3 11,69 0,17 initial 0,17 per heat pump 3 0,6810 1,62 initial 1,62 per heat pump 3 6,48Heat pump cast iron 168,21 initial 168,21 per heat pump 3 672,84Heat pump copper 35,3 initial 35,3 per heat pump 3 141,2Acquifer Acquifer (rest) 1980 initial 1980 per acquifer 0 1980 1314,6Acquifer steel 1 211 initial 211 per acquifer 0 2112 48 initial 48 per pump change 3 192 192Gypsum board 739,6 total 0 per change 0 739,6 147,92Piping Piping (rest) 12,6936 total 0 per change 0 12,694 6,25392Piping aluminium 18,576 total 0 per change 0 18,576Insulation material 1 30,96 total 0 per change 0 30,96 6,192Insulation material 2 3,63 total 0 per change 0 3,63 0,726Glass 382,5 initial 382,5 per change 2 1147,5 229,5Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Fixed walls Wall elements 8093 1696,29Plasterwork 388,44FIGURE 32 - QUANTITIES OF MATERIALS, SCENARIOS X.2.2.Y39


WarmBouwen <strong>renovation</strong>Standard <strong>renovation</strong>No <strong>renovation</strong>Alternative x.2.3.yLife <strong>cycle</strong>: (years)Boiler/heat pump/pump/expansion barrel replacementsWindows changes5022Ventilator changesRadiator/piping changesPiping (air)/ventilator ro<strong>of</strong> unit changesAcquifer changes31610Distances alternatives (km) 200 600 1000Sub- W eig htW eig htC han T o t alElementSub element s su ( kg )( kg )g es weig ht T KM ' sBoiler Boiler aluminium 1 2 initial 2 per boiler 2 6 109,52 1 initial 1 per boiler 2 33 2 initial 2 per boiler 2 64 1,5 initial 1,5 per boiler 2 4,5Boiler steel 1 12 initial 12 per boiler 2 362 0,5 initial 0,5 per boiler 2 1,53 1,5 initial 1,5 per boiler 2 4,54 9 initial 9 per boiler 2 27Boiler cast iron 5 initial 5 per boiler 2 15Boiler copper 2 initial 2 per boiler 2 6Piping Piping (rest) 3,034 initial 0,3034 per change 16 7,8884 11,6594Piping aluminium 4,44 initial 0,444 per change 16 11,544Radiators 495 initial 49,5 per radiator change 16 1287 772,2Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 2 0,645 6,69962 0,042 initial 0,042 per barrel 2 0,1263 0,015 initial 0,015 per barrel 2 0,0454 0,05 initial 0,05 per barrel 2 0,15Expansion barrel steel 3,4 initial 3,4 per barrel 2 10,2Glass 191,25 initial 191,25 per change 2 573,75 114,75Fixed walls Wall elements 4046,5 848,14Plasterwork 194,22Boiler Boiler aluminium 1 2 initial 2 per boiler 2 6 109,52 1 initial 1 per boiler 2 33 2 initial 2 per boiler 2 64 1,5 initial 1,5 per boiler 2 4,5Boiler steel 1 12 initial 12 per boiler 2 362 0,5 initial 0,5 per boiler 2 1,53 1,5 initial 1,5 per boiler 2 4,54 9 initial 9 per boiler 2 27Boiler cast iron 5 initial 5 per boiler 2 15Boiler copper 2 initial 2 per boiler 2 6Piping Piping (rest) 3,034 initial 0,3034 per change 16 7,8884 11,6594Piping aluminium 4,44 initial 0,444 per change 16 11,544Radiators 495 initial 49,5 per radiator change 16 1287 772,2Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 2 0,645 6,69962 0,042 initial 0,042 per barrel 2 0,1263 0,015 initial 0,015 per barrel 2 0,0454 0,05 initial 0,05 per barrel 2 0,15Expansion barrel steel 3,4 initial 3,4 per barrel 2 10,2Glass 382,5 initial 382,5 per change 2 1147,5 229,5Ventilator Ventilator (rest) 1 0,4 initial 0,4 per change 3 1,6 9,362 1 initial 1 per change 1 2Ventilator steel 3 initial 3 per change 3 12Piping (air) 35,25 initial 35,25 per change 1 70,5 42,3Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Insulation material (facade) 86 total 0 per change 0 86 17,2Insulation material (floor) 84 total 0 per change 0 84 16,8Fixed walls Wall elements 4046,5 848,14Plasterwork 194,22Heat pump Heat pump (rest) 1 4,23 initial 4,23 per heat pump 2 12,69 816,032 48,61 initial 48,61 per heat pump 2 145,833 7,32 initial 7,32 per heat pump 2 21,964 2,23 initial 2,23 per heat pump 2 6,695 0,7 initial 0,7 per heat pump 2 2,16 0,09 initial 0,09 per heat pump 2 0,277 0,63 initial 0,63 per heat pump 2 1,898 2,9 initial 2,9 per heat pump 2 8,79 0,17 initial 0,17 per heat pump 2 0,5110 1,62 initial 1,62 per heat pump 2 4,86Heat pump cast iron 168,21 initial 168,21 per heat pump 2 504,63Heat pump copper 35,3 initial 35,3 per heat pump 2 105,9Acquifer Acquifer (rest) 1980 initial 1980 per acquifer 0 1980 1314,6Acquifer steel 1 211 initial 211 per acquifer 0 2112 48 initial 48 per pump change 2 144 144Gypsum board 739,6 total 0 per change 0 739,6 147,92Piping Piping (rest) 12,6936 total 0 per change 0 12,694 6,25392Piping aluminium 18,576 total 0 per change 0 18,576Insulation material 1 30,96 total 0 per change 0 30,96 6,192Insulation material 2 3,63 total 0 per change 0 3,63 0,726Glass 382,5 initial 382,5 per change 2 1147,5 229,5Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Fixed walls Wall elements 4046,5 848,14Plasterwork 194,22FIGURE 33 - QUANTITIES OF MATERIALS, SCENARIO X.2.3.Y40


WarmBouwen <strong>renovation</strong>Standard <strong>renovation</strong>No <strong>renovation</strong>Alternative x.3.1.yLife <strong>cycle</strong>: (years)Boiler/heat pump/pump/expansion barrel replacementsWindows changes7573Ventilator changesRadiator/piping changesPiping (air)/ventilator ro<strong>of</strong> unit changesAcquifer changes146821Distances alternatives (km) 200 600 1000Sub- W eig htW eig htC han T o t alElementSub element s su ( kg )( kg )g es weig ht T KM ' sBoiler Boiler aluminium 1 2 initial 2 per boiler 7 16 2922 1 initial 1 per boiler 7 83 2 initial 2 per boiler 7 164 1,5 initial 1,5 per boiler 7 12Boiler steel 1 12 initial 12 per boiler 7 962 0,5 initial 0,5 per boiler 7 43 1,5 initial 1,5 per boiler 7 124 9 initial 9 per boiler 7 72Boiler cast iron 5 initial 5 per boiler 7 40Boiler copper 2 initial 2 per boiler 7 16Piping Piping (rest) 3,034 initial 0,3034 per change 68 23,665 34,9783Piping aluminium 4,44 initial 0,444 per change 68 34,632Radiators 495 initial 49,5 per radiator change 68 3861 2316,6Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 7 1,72 17,86562 0,042 initial 0,042 per barrel 7 0,3363 0,015 initial 0,015 per barrel 7 0,124 0,05 initial 0,05 per barrel 7 0,4Expansion barrel steel 3,4 initial 3,4 per barrel 7 27,2Glass 191,25 initial 191,25 per change 3 765 153Fixed walls Wall elements 28326 5937,01Plasterwork 1359,5Boiler Boiler aluminium 1 2 initial 2 per boiler 7 16 2922 1 initial 1 per boiler 7 83 2 initial 2 per boiler 7 164 1,5 initial 1,5 per boiler 7 12Boiler steel 1 12 initial 12 per boiler 7 962 0,5 initial 0,5 per boiler 7 43 1,5 initial 1,5 per boiler 7 124 9 initial 9 per boiler 7 72Boiler cast iron 5 initial 5 per boiler 7 40Boiler copper 2 initial 2 per boiler 7 16Piping Piping (rest) 3,034 initial 0,3034 per change 68 23,665 34,9783Piping aluminium 4,44 initial 0,444 per change 68 34,632Radiators 495 initial 49,5 per radiator change 68 3861 2316,6Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 7 1,72 17,86562 0,042 initial 0,042 per barrel 7 0,3363 0,015 initial 0,015 per barrel 7 0,124 0,05 initial 0,05 per barrel 7 0,4Expansion barrel steel 3,4 initial 3,4 per barrel 7 27,2Glass 382,5 initial 382,5 per change 3 1530 306Ventilator Ventilator (rest) 1 0,4 initial 0,4 per change 14 6 32,42 1 initial 1 per change 2 3Ventilator steel 3 initial 3 per change 14 45Piping (air) 35,25 initial 35,25 per change 2 105,75 63,45Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Insulation material (facade) 86 total 0 per change 0 86 17,2Insulation material (floor) 84 total 0 per change 0 84 16,8Fixed walls Wall elements 28326 5937,01Plasterwork 1359,5Heat pump Heat pump (rest) 1 4,23 initial 4,23 per heat pump 7 33,84 2176,082 48,61 initial 48,61 per heat pump 7 388,883 7,32 initial 7,32 per heat pump 7 58,564 2,23 initial 2,23 per heat pump 7 17,845 0,7 initial 0,7 per heat pump 7 5,66 0,09 initial 0,09 per heat pump 7 0,727 0,63 initial 0,63 per heat pump 7 5,048 2,9 initial 2,9 per heat pump 7 23,29 0,17 initial 0,17 per heat pump 7 1,3610 1,62 initial 1,62 per heat pump 7 12,96Heat pump cast iron 168,21 initial 168,21 per heat pump 7 1345,7Heat pump copper 35,3 initial 35,3 per heat pump 7 282,4Acquifer Acquifer (rest) 1980 initial 1980 per acquifer 1 3960 2629,2Acquifer steel 1 211 initial 211 per acquifer 1 4222 48 initial 48 per pump change 7 384 384Gypsum board 739,6 total 0 per change 0 739,6 147,92Piping Piping (rest) 12,6936 total 0 per change 0 12,694 6,25392Piping aluminium 18,576 total 0 per change 0 18,576Insulation material 1 30,96 total 0 per change 0 30,96 6,192Insulation material 2 3,63 total 0 per change 0 3,63 0,726Glass 382,5 initial 382,5 per change 3 1530 306Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Fixed walls Wall elements 28326 5937,01Plasterwork 1359,5FIGURE 34 - QUANTITIES OF MATERIALS, SCENARIO X.3.1.Y41


WarmBouwen <strong>renovation</strong> WarmBouwen <strong>renovation</strong>Alternative x.3.1.y (flexible walls)Life <strong>cycle</strong>: (years)Boiler/heat pump/pump/expansion barrel replacementsWindows changesVentilator changes757314Radiator/piping changesPiping (air)/ventilator ro<strong>of</strong> unit changesAcquifer changes6821Distances alternatives (km) 200 600 1000Fixed wallsSub- W eig htW eig htC han T o t alElementSub element s su ( kg )( kg )g es weig ht T KM ' sHeat pump Heat pump (rest) 1 4,23 initial 4,23 per heat pump 7 33,84 2176,082 48,61 initial 48,61 per heat pump 7 388,883 7,32 initial 7,32 per heat pump 7 58,564 2,23 initial 2,23 per heat pump 7 17,845 0,7 initial 0,7 per heat pump 7 5,66 0,09 initial 0,09 per heat pump 7 0,727 0,63 initial 0,63 per heat pump 7 5,048 2,9 initial 2,9 per heat pump 7 23,29 0,17 initial 0,17 per heat pump 7 1,3610 1,62 initial 1,62 per heat pump 7 12,96Heat pump cast iron 168,21 initial 168,21 per heat pump 7 1345,7Heat pump copper 35,3 initial 35,3 per heat pump 7 282,4Acquifer Acquifer (rest) 1980 initial 1980 per acquifer 1 3960 2629,2Acquifer steel 1 211 initial 211 per acquifer 1 4222 48 initial 48 per pump change 7 384 384Gypsum board 739,6 total 0 per change 0 739,6 147,92Piping Piping (rest) 12,6936 total 0 per change 0 12,694 6,25392Piping aluminium 18,576 total 0 per change 0 18,576Insulation material 1 30,96 total 0 per change 0 30,96 6,192Insulation material 2 3,63 total 0 per change 0 3,63 0,726Glass 382,5 initial 382,5 per change 3 1530 306Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Fixed walls Wall elements 28326 5937,01Plasterwork 1359,5Flexible wallsSuElementSub element sb-suW eig ht( kg )W eig ht( kg )C hang esT o t alweig ht T KM ' sHeat pump Heat pump (rest) 1 4,23 initial 4,23 per heat pump 7 33,84 2176,082 48,61 initial 48,61 per heat pump 7 388,883 7,32 initial 7,32 per heat pump 7 58,564 2,23 initial 2,23 per heat pump 7 17,845 0,7 initial 0,7 per heat pump 7 5,66 0,09 initial 0,09 per heat pump 7 0,727 0,63 initial 0,63 per heat pump 7 5,048 2,9 initial 2,9 per heat pump 7 23,29 0,17 initial 0,17 per heat pump 7 1,3610 1,62 initial 1,62 per heat pump 7 12,96Heat pump cast iron 168,21 initial 168,21 per heat pump 7 1345,7Heat pump copper 35,3 initial 35,3 per heat pump 7 282,4Acquifer Acquifer (rest) 1980 initial 1980 per acquifer 1 3960 2629,2Acquifer steel 1 211 initial 211 per acquifer 1 4222 48 initial 48 per pump change 0 48 48Gypsum board 739,6 total 0 per change 0 739,6 147,92Piping Piping (rest) 12,6936 total 0 per change 0 12,694 6,25392Piping aluminium 18,576 total 0 per change 0 18,576Insulation material 1 30,96 total 0 per change 0 30,96 6,192Insulation material 2 3,63 total 0 per change 0 3,63 0,726Glass 382,5 initial 382,5 per change 3 1530 306Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Flexible walls Steel 478,66 initial 478,66 per change 0 478,66 95,73Gyspum board 316,68 initial 316,68 per change 0 316,68 63,34Glass wool 21,84 initial 21,84 per change 0 21,84 4,37Base plaster 5,46 initial 5,46 per change 0 5,46 1,09FIGURE 35 - QUANTITIES OF MATERIALS, SCENARIO X.3.1.Y (FLEXIBLE WALLS)42


WarmBouwen <strong>renovation</strong>Standard <strong>renovation</strong>No <strong>renovation</strong>Alternative x.3.2.yLife <strong>cycle</strong>: (years)Boiler/heat pump/pump/expansion barrel replacementsWindows changes7543Ventilator changesRadiator/piping changesPiping (air)/ventilator ro<strong>of</strong> unit changesAcquifer changes74021Distances alternatives (km) 200 600 1000Sub- W eig htW eig htC han T o t alElementSub element s su ( kg )( kg )g es weig ht T KM ' sBoiler Boiler aluminium 1 2 initial 2 per boiler 4 10 182,52 1 initial 1 per boiler 4 53 2 initial 2 per boiler 4 104 1,5 initial 1,5 per boiler 4 7,5Boiler steel 1 12 initial 12 per boiler 4 602 0,5 initial 0,5 per boiler 4 2,53 1,5 initial 1,5 per boiler 4 7,54 9 initial 9 per boiler 4 45Boiler cast iron 5 initial 5 per boiler 4 25Boiler copper 2 initial 2 per boiler 4 10Piping Piping (rest) 3,034 initial 0,3034 per change 40 15,17 22,422Piping aluminium 4,44 initial 0,444 per change 40 22,2Radiators 495 initial 49,5 per radiator change 40 2475 1485Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 4 1,075 11,1662 0,042 initial 0,042 per barrel 4 0,213 0,015 initial 0,015 per barrel 4 0,0754 0,05 initial 0,05 per barrel 4 0,25Expansion barrel steel 3,4 initial 3,4 per barrel 4 17Glass 191,25 initial 191,25 per change 3 765 153Fixed walls Wall elements 13456 2820,37Plasterwork 645,84Boiler Boiler aluminium 1 2 initial 2 per boiler 4 10 182,52 1 initial 1 per boiler 4 53 2 initial 2 per boiler 4 104 1,5 initial 1,5 per boiler 4 7,5Boiler steel 1 12 initial 12 per boiler 4 602 0,5 initial 0,5 per boiler 4 2,53 1,5 initial 1,5 per boiler 4 7,54 9 initial 9 per boiler 4 45Boiler cast iron 5 initial 5 per boiler 4 25Boiler copper 2 initial 2 per boiler 4 10Piping Piping (rest) 3,034 initial 0,3034 per change 40 15,17 22,422Piping aluminium 4,44 initial 0,444 per change 40 22,2Radiators 495 initial 49,5 per radiator change 40 2475 1485Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 4 1,075 11,1662 0,042 initial 0,042 per barrel 4 0,213 0,015 initial 0,015 per barrel 4 0,0754 0,05 initial 0,05 per barrel 4 0,25Expansion barrel steel 3,4 initial 3,4 per barrel 4 17Glass 382,5 initial 382,5 per change 3 1530 306Ventilator Ventilator (rest) 1 0,4 initial 0,4 per change 7 3,2 18,122 1 initial 1 per change 2 3Ventilator steel 3 initial 3 per change 7 24Piping (air) 35,25 initial 35,25 per change 2 105,75 63,45Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Insulation material (facade) 86 total 0 per change 0 86 17,2Insulation material (floor) 84 total 0 per change 0 84 16,8Fixed walls Wall elements 13456 2820,37Plasterwork 645,84Heat pump Heat pump (rest) 1 4,23 initial 4,23 per heat pump 4 21,15 1360,052 48,61 initial 48,61 per heat pump 4 243,053 7,32 initial 7,32 per heat pump 4 36,64 2,23 initial 2,23 per heat pump 4 11,155 0,7 initial 0,7 per heat pump 4 3,56 0,09 initial 0,09 per heat pump 4 0,457 0,63 initial 0,63 per heat pump 4 3,158 2,9 initial 2,9 per heat pump 4 14,59 0,17 initial 0,17 per heat pump 4 0,8510 1,62 initial 1,62 per heat pump 4 8,1Heat pump cast iron 168,21 initial 168,21 per heat pump 4 841,05Heat pump copper 35,3 initial 35,3 per heat pump 4 176,5Acquifer Acquifer (rest) 1980 initial 1980 per acquifer 1 3960 2629,2Acquifer steel 1 211 initial 211 per acquifer 1 4222 48 initial 48 per pump change 4 240 240Gypsum board 739,6 total 0 per change 0 739,6 147,92Piping Piping (rest) 12,6936 total 0 per change 0 12,694 6,25392Piping aluminium 18,576 total 0 per change 0 18,576Insulation material 1 30,96 total 0 per change 0 30,96 6,192Insulation material 2 3,63 total 0 per change 0 3,63 0,726Glass 382,5 initial 382,5 per change 3 1530 306Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Fixed walls Wall elements 13456 2820,37Plasterwork 645,84FIGURE 36 - QUANTITIES OF MATERIALS, SCENARIO X.3.2.Y43


WarmBouwen <strong>renovation</strong>Standard <strong>renovation</strong>No <strong>renovation</strong>Alternative x.3.3.yLife <strong>cycle</strong>: (years)Boiler/heat pump/pump/expansion barrel replacementsWindows changes7533Ventilator changesRadiator/piping changesPiping (air)/ventilator ro<strong>of</strong> unit changesAcquifer changes42420Distances alternatives (km) 200 600 1000Sub- W eig htW eig htC han T o t alElementSub element s su ( kg )( kg )g es weig ht T KM ' sBoiler Boiler aluminium 1 2 initial 2 per boiler 3 8 1462 1 initial 1 per boiler 3 43 2 initial 2 per boiler 3 84 1,5 initial 1,5 per boiler 3 6Boiler steel 1 12 initial 12 per boiler 3 482 0,5 initial 0,5 per boiler 3 23 1,5 initial 1,5 per boiler 3 64 9 initial 9 per boiler 3 36Boiler cast iron 5 initial 5 per boiler 3 20Boiler copper 2 initial 2 per boiler 3 8Piping Piping (rest) 3,034 initial 0,3034 per change 24 10,316 15,247Piping aluminium 4,44 initial 0,444 per change 24 15,096Radiators 495 initial 49,5 per radiator change 24 1683 1009,8Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 3 0,86 8,93282 0,042 initial 0,042 per barrel 3 0,1683 0,015 initial 0,015 per barrel 3 0,064 0,05 initial 0,05 per barrel 3 0,2Expansion barrel steel 3,4 initial 3,4 per barrel 3 13,6Glass 191,25 initial 191,25 per change 3 765 153Fixed walls Wall elements 5363 1118,08Plasterwork 227,4Boiler Boiler aluminium 1 2 initial 2 per boiler 3 8 1462 1 initial 1 per boiler 3 43 2 initial 2 per boiler 3 84 1,5 initial 1,5 per boiler 3 6Boiler steel 1 12 initial 12 per boiler 3 482 0,5 initial 0,5 per boiler 3 23 1,5 initial 1,5 per boiler 3 64 9 initial 9 per boiler 3 36Boiler cast iron 5 initial 5 per boiler 3 20Boiler copper 2 initial 2 per boiler 3 8Piping Piping (rest) 3,034 initial 0,3034 per change 24 10,316 15,247Piping aluminium 4,44 initial 0,444 per change 24 15,096Radiators 495 initial 49,5 per radiator change 24 1683 1009,8Expansion barrel Expansion barrel (rest) 1 0,215 initial 0,215 per barrel 3 0,86 8,93282 0,042 initial 0,042 per barrel 3 0,1683 0,015 initial 0,015 per barrel 3 0,064 0,05 initial 0,05 per barrel 3 0,2Expansion barrel steel 3,4 initial 3,4 per barrel 3 13,6Glass 382,5 initial 382,5 per change 3 1530 306Ventilator Ventilator (rest) 1 0,4 initial 0,4 per change 4 2 122 1 initial 1 per change 2 3Ventilator steel 3 initial 3 per change 4 15Piping (air) 35,25 initial 35,25 per change 2 105,75 63,45Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Insulation material (facade) 86 total 0 per change 0 86 17,2Insulation material (floor) 84 total 0 per change 0 84 16,8Fixed walls Wall elements 5363 1118,08Plasterwork 227,4Heat pump Heat pump (rest) 1 4,23 initial 4,23 per heat pump 3 16,92 1088,042 48,61 initial 48,61 per heat pump 3 194,443 7,32 initial 7,32 per heat pump 3 29,284 2,23 initial 2,23 per heat pump 3 8,925 0,7 initial 0,7 per heat pump 3 2,86 0,09 initial 0,09 per heat pump 3 0,367 0,63 initial 0,63 per heat pump 3 2,528 2,9 initial 2,9 per heat pump 3 11,69 0,17 initial 0,17 per heat pump 3 0,6810 1,62 initial 1,62 per heat pump 3 6,48Heat pump cast iron 168,21 initial 168,21 per heat pump 3 672,84Heat pump copper 35,3 initial 35,3 per heat pump 3 141,2Acquifer Acquifer (rest) 1980 initial 1980 per acquifer 0 1980 1314,6Acquifer steel 1 211 initial 211 per acquifer 0 2112 48 initial 48 per pump change 3 192 192Gypsum board 739,6 total 0 per change 0 739,6 147,92Piping Piping (rest) 12,6936 total 0 per change 0 12,694 6,25392Piping aluminium 18,576 total 0 per change 0 18,576Insulation material 1 30,96 total 0 per change 0 30,96 6,192Insulation material 2 3,63 total 0 per change 0 3,63 0,726Glass 382,5 initial 382,5 per change 3 1530 306Insulation material (ro<strong>of</strong>) 145,7 total 0 per change 0 145,7 29,14Gypsum board 555 total 0 per change 0 555 111Fixed walls Wall elements 5363 1118,08Plasterwork 227,4FIGURE 37 - QUANTITIES OF MATERIALS, SCENARIO X.3.3.Y44


LIFE CYCLEENERGYFigure 38 shows <strong>the</strong> energy use <strong>of</strong> <strong>the</strong> three selected <strong>renovation</strong> alternatives during <strong>the</strong>whole <strong>life</strong> <strong>cycle</strong> <strong>of</strong> <strong>the</strong> house. This energy use is based upon <strong>the</strong> output from <strong>the</strong> energy<strong>performance</strong> coefficient calculation. Appendix C3.5 provides an overview <strong>of</strong> <strong>the</strong> output on<strong>the</strong> factor „energy <strong>performance</strong> coefficient‟.Scenario Alternative Energy useelectricity(MJ)25 years<strong>life</strong> span50 years<strong>life</strong> span75 years<strong>life</strong> spanEnergy usegas (MJ)Energy use heatpump (MJ)No <strong>renovation</strong> 129600 2252625 -Standard <strong>renovation</strong> 183301 1076100 -WarmBouwen <strong>renovation</strong> 32700 - 619875No <strong>renovation</strong> 259200 4505250 -Standard <strong>renovation</strong> 366602 2152200 -WarmBouwen <strong>renovation</strong> 65400 - 1239750No <strong>renovation</strong> 3228300 6757875 -Standard <strong>renovation</strong> 549903 3228300 -WarmBouwen <strong>renovation</strong> 98100 - 1859625FIGURE 38 - LIFE CYCLE ENERGY USE OF ALTERNATIVESREPLACEMENTSThe environmental impact <strong>of</strong> <strong>the</strong> replacement <strong>of</strong> elements during <strong>the</strong> <strong>life</strong> <strong>cycle</strong>, areintegrated in <strong>the</strong> calculations that are presented in <strong>the</strong> previous section “quantity <strong>of</strong>materials”.DISPOSALAppendix S describes <strong>the</strong> assumptions that are made in <strong>the</strong> field <strong>of</strong> disposal scenarios for<strong>the</strong> applied elements <strong>of</strong> <strong>the</strong> <strong>renovation</strong> alternatives.45


C2.4. QUALITYThis appendix provides information about <strong>the</strong> input parameters that are used todetermine <strong>the</strong> <strong>performance</strong> on <strong>the</strong> factor „quality‟ <strong>of</strong> each <strong>renovation</strong> alternative. Todetermine <strong>the</strong> output on <strong>the</strong> factor „quality‟, <strong>the</strong> s<strong>of</strong>tware tool GPR Gebouw, developed byW/E Adviseurs is used.No <strong>renovation</strong>FIGURE 39 - INPUT ON „QUALITY‟ NO RENOVATION: SOUND46


FIGURE 40 - INPUT ON 'QUALITY' NO RENOVATION: AIR QUALITY47


FIGURE 41 – INPUT ON „QUALITY‟ NO RENOVATION: THERMAL COMFORTFIGURE 42 – INPUT ON „QUALITY‟ NO RENOVATION: LIGHT AND VISUAL COMFORT48


FIGURE 43 - INPUT ON 'QUALITY' NO RENOVATION: TECHNICAL QUALITY49


FIGURE 44 – INPUT ON „QUALITY‟ NO RENOVATION: FUTURE FACILITIESFIGURE 45 – INPUT ON „QUALITY‟ NO RENOVATION: FLEXIBILITY50


FIGURE 46 - INPUT ON 'QUALITY' NO RENOVATION: EXPERIENCED VALUE51


Standard <strong>renovation</strong>FIGURE 47 - INPUT ON 'QUALITY' STANDARD RENOVATION: SOUND52


FIGURE 48 - INPUT ON 'QUALITY' STANDARD RENOVATION: AIR QUALITY53


FIGURE 49 - INPUT ON 'QUALITY' STANDARD RENOVATION: THERMAL COMFORTFIGURE 50 - INPUT ON 'QUALITY' STANDARD RENOVATION: LIGHT AND VISUAL COMFORT54


FIGURE 51 - INPUT ON 'QUALITY' STANDARD RENOVATION: TECHNICAL QUALITY55


FIGURE 52 - INPUT ON 'QUALITY' STANDARD RENOVATION: FUTURE FACILITIESFIGURE 53 - INPUT ON 'QUALITY' STANDARD RENOVATION: FLEXIBILITY56


FIGURE 54 - INPUT ON 'QUALITY' STANDARD RENOVATION: EXPERIENCED VALUE57


WarmBouwen <strong>renovation</strong>FIGURE 55 - INPUT ON 'QUALITY' WARMBOUWEN RENOVATIO N: SOUND58


FIGURE 56 - INPUT ON 'QUALITY' WARMBOUWEN RENOVATIO N: AIR QUALITY59


FIGURE 57 - INPUT ON 'QUALITY' WARMBOUWEN RENOVATIO N: THERMAL COMFORTFIGURE 58 - INPUT ON 'QUALITY' WARMBOUWEN RENOVATIO N: LIGHT AND VISUAL COMFORT60


FIGURE 59 - INPUT ON 'QUALITY' WARMBOUWEN RENOVATIO N: TECHNICAL QUALITY61


FIGURE 60 - INPUT ON 'QUALITY' WARMBOUWEN RENOVATIO N: FUTURE FACILITIESFIGURE 61 - INPUT ON 'QUALITY' WARMBOUWEN RENOVATIO N: FLEXIBILITY62


FIGURE 62 - INPUT ON 'QUALITY' WARMBOUWEN RENOVATIO N: EXPERIENCED VALUE63


C2.5. ENERGY PERFORMANCE COEFFICIENTThis section shows <strong>the</strong> input parameters that are used to determine <strong>the</strong> energy<strong>performance</strong> coefficient <strong>of</strong> <strong>the</strong> three evaluated <strong>renovation</strong> alternatives. The s<strong>of</strong>tware toolEPW is used to determine <strong>the</strong> energy <strong>performance</strong> coefficient <strong>of</strong> <strong>the</strong> three evaluated<strong>renovation</strong> alternatives.TECHNICAL PERFORMANCEThe technical <strong>performance</strong> <strong>of</strong> <strong>the</strong> three <strong>renovation</strong> alternatives are presented in <strong>the</strong>figures 63, 64 & 65No <strong>renovation</strong>Constructive aspectsGeneralAspect Value UnitySurface 95,8 [m 2 ]Orientation N/S front/backAwning not present -TransmissionAspect Surface [m 2 ] U-value [W/m 2 K] Rc-value [m 2 K/W]Ground level - floor 42,5 2,44 0,15Ro<strong>of</strong> (slope) 55,5 0,47 1,97Front facade 17,2 1,89 0,36Glass type 1 - front facade 5,1 5,10 0,20Glass type 2 - front facade 3,4 3,10 0,32Back facade 17,2 1,89 0,36Glass type 1 - back facade 5,1 5,10 0,20Glass type 2 - back facade 3,4 3,10 0,32InfiltrationAspect [dm 3 /s] [dm 3 /s/m 2]Qv;10 characteristic 232,31 2,425Thermal capacityTraditional - mixed heavyFIGURE 63 - CONSTRUCTIVE CHARACTERISTICS 'NO RENOVATION' ALTERNATIVEStandard <strong>renovation</strong>Constructive aspectsGeneralAspect Value UnitySurface 95,8 [m 2 ]Orientation N/S front/backAwning not present -TransmissionAspect Surface [m 2 ] U-value [W/m 2 K] Rc-value [m 2 K/W]Ground level - floor 42,5 2,44 2,50Ro<strong>of</strong> (slope) 55,5 0,47 3,00Front facade 17,2 0,77 1,30Glass type 1 - front facade 5,1 1,60 0,63Glass type 2 - front facade 3,4 1,60 0,63Back facade 17,2 0,77 0,36Glass type 1 - back facade 5,1 1,60 0,63Glass type 2 - back facade 3,4 0,77 1,30InfiltrationAspect [dm 3 /s] [dm 3 /s/m 2]Qv;10 characteristic 232,31 2,425Thermal capacityTraditional - mixed heavyFIGURE 64 - CONSTRUCTIVE CHARACTERISTICS 'STANDARD RENOVATION'ALTERNATIVE64


WarmBouwen <strong>renovation</strong>The calculations <strong>of</strong> <strong>the</strong> transmission <strong>of</strong> <strong>the</strong> facades at <strong>the</strong> WarmBouwen <strong>renovation</strong>alternative are elaborated in appendix P.Constructive characteristicsGeneralAspect Value UnitySurface 95,8 [m 2 ]Orientation N/S front/backAwning not present -TransmissionAspect Surface [m 2 ] U-value [W/m 2 K] Rc-value [m 2 K/W]Ground level - floor 42,5 2,44 0,15Ro<strong>of</strong> (slope) 55,5 0,47 3,00Front facade 17,2 0,51 1,97Glass type 1 - front facade 5,1 1,60 0,63Glass type 2 - front facade 3,4 1,60 0,63Back facade 17,2 0,51 1,97Glass type 1 - back facade 5,1 1,60 0,63Glass type 2 - back facade 3,4 1,60 0,63InfiltrationAspect [dm 3 /s] [dm 3 /s/m 2]Qv;10 characteristic 232,31 2,425Thermal capacityTraditional - mixed heavyFIGURE 65 - CONSTRUCTIVE CHARACTERISTICS 'WARMBOUWEN RENOVATION‟ ALTERNATIVEINSTALLATION TECHNIQUESThe installation technical characteristics <strong>of</strong> <strong>the</strong> three <strong>renovation</strong> alternatives arepresented in figures 66, 67 & 68.No <strong>renovation</strong>InstallationsHeatingAspectHeating systemTypeType <strong>of</strong> emmissionCoolingAspectType <strong>of</strong> coolingValueindividual central heating systemefficiency boilerradiatorsValueno coolingWarm tap waterAspectHeating systemgas fired combi boilerClassification <strong>of</strong> system n/aVentilationNo ventilationSolar energy systemsNo solar energy systemsFIGURE 66 - INSTALLATION TECHNIC AL CHARACTERISTICS 'NO RENOVATION' ALTERNATIVE65


Standard <strong>renovation</strong>InstallationsHeatingAspectHeating systemTypeType <strong>of</strong> emmissionCoolingAspectType <strong>of</strong> coolingValueindividual central heating systemHR-107 boilerradiatorsValueno coolingWarm tap waterAspectHeating systemgas fired combi HR/CW boilerClassification <strong>of</strong> system 4,0VentilationNatural inlet, mechanical outletSolar energy systemsNo solar energy systemsFIGURE 67 - INSTALLATION TECHNIC AL CHARACTERISTICS 'STANDARD RENOVATION' ALTERNATIVEWarmBouwen <strong>renovation</strong>InstallationsHeatingAspectHeating systemTypeType <strong>of</strong> emmissionCoolingAspectType <strong>of</strong> coolingWarm tap waterAspectHeating systemClassification <strong>of</strong> systemVentilationNo ventilationSolar energy systemsNo solar energy systemsValueindividual electrical heat pumpsource: soilwall heating system (T


C3. RESULTS MODEL ASPECTSThis subparagraph provides <strong>the</strong> output on <strong>the</strong> identified factors <strong>of</strong> influence <strong>of</strong> <strong>the</strong><strong>performance</strong> evaluation model. In <strong>the</strong> next subparagraph “results model” <strong>the</strong> total<strong>performance</strong>s <strong>of</strong> <strong>the</strong> alternatives are elaborated.C3.1. LIFE CYCLE COSTSThe tables and pie-charts provide information about <strong>the</strong> output per scenario for <strong>the</strong> threeevaluated <strong>renovation</strong> alternatives. The tables and figures are used to determine <strong>the</strong>composition and contribution <strong>of</strong> <strong>the</strong> factor „<strong>life</strong> <strong>cycle</strong> costs‟ <strong>of</strong> <strong>the</strong> <strong>renovation</strong> alternatives.No <strong>renovation</strong>TablesScenario 1.1.1.1 Euro % Scenario 1.1.1.2 Euro % Scenario 1.1.1.3 Euro %Initial investment boiler 353 8% Initial investment boiler 353 6% Initial investment boiler 353 4%Initial investment boiler radiators 262 6% Initial investment boiler radiators 262 4% Initial investment boiler radiators 262 3%Operating costs 3353 72% Operating costs 4744 79% Operating costs 6914 84%M aintenance costs 145 3% M aintenance costs 145 2% M aintenance costs 145 2%Disposal costs 24 1% Disposal costs 24 0% Disposal costs 24 0%Change over costs 97 2% Change over costs 97 2% Change over costs 97 1%Costs for replacement <strong>of</strong> elements 399 9% Costs for replacement <strong>of</strong> elements 399 7% Costs for replacement <strong>of</strong> elements 399 5%Total LCC (per year) 4633 100% Total LCC (per year) 6024 100% Total LCC (per year) 8194 100%Scenario 1.1.2 .1 Euro % Scenario 1.1.2 .2 Euro % Scenario 1.1.2 .3 Euro %Initial investment boiler 267 6% Initial investment boiler 267 5% Initial investment boiler 267 3%Initial investment boiler radiators 262 6% Initial investment boiler radiators 262 5% Initial investment boiler radiators 262 3%Operating costs 3353 77% Operating costs 4744 83% Operating costs 6914 87%M aintenance costs 145 3% M aintenance costs 145 3% M aintenance costs 145 2%Disposal costs 24 1% Disposal costs 24 0% Disposal costs 24 0%Change over costs 97 2% Change over costs 97 2% Change over costs 97 1%Costs for replacement <strong>of</strong> elements 200 5% Costs for replacement <strong>of</strong> elements 200 3% Costs for replacement <strong>of</strong> elements 200 3%Total LCC (per year) 4348 100% Total LCC (per year) 5739 100% Total LCC (per year) 7909 100%Scenario 1.1.3 .1 Euro % Scenario 1.1.3 .2 Euro % Scenario 1.1.3 .3 Euro %Initial investment boiler 247 6% Initial investment boiler 247 4% Initial investment boiler 247 3%Initial investment boiler radiators 262 6% Initial investment boiler radiators 262 5% Initial investment boiler radiators 262 3%Operating costs 3353 80% Operating costs 4744 85% Operating costs 6914 89%M aintenance costs 145 3% M aintenance costs 145 3% M aintenance costs 145 2%Disposal costs 24 1% Disposal costs 24 0% Disposal costs 24 0%Change over costs 97 2% Change over costs 97 2% Change over costs 97 1%Costs for replacement <strong>of</strong> elements 85 2% Costs for replacement <strong>of</strong> elements 85 2% Costs for replacement <strong>of</strong> elements 85 1%Total LCC (per year) 4213 100% Total LCC (per year) 5604 100% Total LCC (per year) 7774 100%Scenario 1.2 .1.1 Euro % Scenario 1.2 .1.2 Euro % Scenario 1.2 .1.3 Euro %Initial investment boiler 327 5% Initial investment boiler 327 3% Initial investment boiler 327 1%Initial investment boiler radiators 211 3% Initial investment boiler radiators 211 2% Initial investment boiler radiators 211 1%Operating costs 4915 80% Operating costs 10160 89% Operating costs 23898 95%M aintenance costs 145 2% M aintenance costs 145 1% M aintenance costs 145 1%Disposal costs 5 0% Disposal costs 5 0% Disposal costs 5 0%Change over costs 78 1% Change over costs 78 1% Change over costs 78 0%Costs for replacement <strong>of</strong> elements 466 8% Costs for replacement <strong>of</strong> elements 466 4% Costs for replacement <strong>of</strong> elements 466 2%Total LCC (per year) 6147 100% Total LCC (per year) 11392 100% Total LCC (per year) 25130 100%Scenario 1.2 .2 .1 Euro % Scenario 1.2 .2 .2 Euro % Scenario 1.2 .2 .3 Euro %Initial investment boiler 254 4% Initial investment boiler 254 2% Initial investment boiler 254 1%Initial investment boiler radiators 211 4% Initial investment boiler radiators 211 2% Initial investment boiler radiators 211 1%Operating costs 4915 84% Operating costs 10160 92% Operating costs 23898 96%M aintenance costs 145 2% M aintenance costs 145 1% M aintenance costs 145 1%Disposal costs 5 0% Disposal costs 5 0% Disposal costs 5 0%Change over costs 78 1% Change over costs 78 1% Change over costs 78 0%Costs for replacement <strong>of</strong> elements 236 4% Costs for replacement <strong>of</strong> elements 236 2% Costs for replacement <strong>of</strong> elements 236 1%Total LCC (per year) 5844 100% Total LCC (per year) 11089 100% Total LCC (per year) 24827 100%Scenario 1.2 .3 .1 Euro % Scenario 1.2 .3 .2 Euro % Scenario 1.2 .3 .3 Euro %Initial investment boiler 214 4% Initial investment boiler 214 2% Initial investment boiler 214 1%Initial investment boiler radiators 211 4% Initial investment boiler radiators 211 2% Initial investment boiler radiators 211 1%Operating costs 4915 86% Operating costs 10160 93% Operating costs 23898 97%M aintenance costs 145 3% M aintenance costs 145 1% M aintenance costs 145 1%Disposal costs 5 0% Disposal costs 5 0% Disposal costs 5 0%Change over costs 78 1% Change over costs 78 1% Change over costs 78 0%Costs for replacement <strong>of</strong> elements 127 2% Costs for replacement <strong>of</strong> elements 127 1% Costs for replacement <strong>of</strong> elements 127 1%Total LCC (per year) 5695 100% Total LCC (per year) 10940 100% Total LCC (per year) 24678 100%FIGURE 69 - TABLES #1 'LIFE CYCLE COSTS' NO RENOVATION67


Scenario 1.3 .1.1 Euro % Scenario 1.3 .1.2 Euro % Scenario 1.3 .1.3 Euro %Initial investment boiler 328 4% Initial investment boiler 328 2% Initial investment boiler 328 0%Initial investment boiler radiators 202 3% Initial investment boiler radiators 202 1% Initial investment boiler radiators 202 0%Operating costs 6430 84% Operating costs 19759 94% Operating costs 80492 98%M aintenance costs 145 2% M aintenance costs 145 1% M aintenance costs 145 0%Disposal costs 1 0% Disposal costs 1 0% Disposal costs 1 0%Change over costs 75 1% Change over costs 75 0% Change over costs 75 0%Costs for replacement <strong>of</strong> elements 481 6% Costs for replacement <strong>of</strong> elements 481 2% Costs for replacement <strong>of</strong> elements 481 1%Total LCC (per year) 7662 100% Total LCC (per year) 20991 100% Total LCC (per year) 81724 100%Scenario 1.3 .2 .1 Euro % Scenario 1.3 .2 .2 Euro % Scenario 1.3 .2 .3 Euro %Initial investment boiler 247 3% Initial investment boiler 247 1% Initial investment boiler 247 0%Initial investment boiler radiators 202 3% Initial investment boiler radiators 202 1% Initial investment boiler radiators 202 0%Operating costs 6430 88% Operating costs 19759 96% Operating costs 80492 99%M aintenance costs 145 2% M aintenance costs 145 1% M aintenance costs 145 0%Disposal costs 1 0% Disposal costs 1 0% Disposal costs 1 0%Change over costs 75 1% Change over costs 75 0% Change over costs 75 0%Costs for replacement <strong>of</strong> elements 247 3% Costs for replacement <strong>of</strong> elements 247 1% Costs for replacement <strong>of</strong> elements 247 0%Total LCC (per year) 7347 100% Total LCC (per year) 20676 100% Total LCC (per year) 81409 100%Scenario 1.3 .3 .1 Euro % Scenario 1.3 .3 .2 Euro % Scenario 1.3 .3 .3 Euro %Initial investment boiler 209 3% Initial investment boiler 209 1% Initial investment boiler 209 0%Initial investment boiler radiators 202 3% Initial investment boiler radiators 202 1% Initial investment boiler radiators 202 0%Operating costs 6430 89% Operating costs 19759 96% Operating costs 80492 99%M aintenance costs 145 2% M aintenance costs 145 1% M aintenance costs 145 0%Disposal costs 1 0% Disposal costs 1 0% Disposal costs 1 0%Change over costs 75 1% Change over costs 75 0% Change over costs 75 0%Costs for replacement <strong>of</strong> elements 135 2% Costs for replacement <strong>of</strong> elements 135 1% Costs for replacement <strong>of</strong> elements 135 0%Total LCC (per year) 7197 100% Total LCC (per year) 20526 100% Total LCC (per year) 81259 100%FIGURE 70 – TABLES #2 'LIFE CYCLE COSTS' NO RENOVATIONGraphsInitial investment boilerInitial investment radiatorsOperating costsMaintenance costsDisposal costsChange over costsCosts for replacement <strong>of</strong> elementsFIGURE 71 – GRAPHS #1 'LIFE CYCLE COSTS' NO RENOVATION68


FIGURE 72 - GRAPHS #2 'LIFE CYCLE COSTS' NO RENOVATION69


Standard <strong>renovation</strong>TablesScenario 2 .1.1.1 Euro % Scenario 2 .1.1.2 Euro % Scenario 2 .1.1.3 Euro %Initial investment boiler 486 9% Initial investment boiler 486 7% Initial investment boiler 486 6%Initial investment radiators 262 5% Initial investment radiators 262 4% Initial investment radiators 262 3%Initial investment ro<strong>of</strong> insulation 368 7% Initial investment ro<strong>of</strong> insulation 368 5% Initial investment ro<strong>of</strong> insulation 368 4%Initial investment floor insulation 106 2% Initial investment floor insulation 106 2% Initial investment floor insulation 106 1%Initial investment facade insulation 182 3% Initial investment facade insulation 182 3% Initial investment facade insulation 182 2%Initial investment windows 264 5% Initial investment windows 264 4% Initial investment windows 264 3%Initial investment mech. ventilation 447 8% Initial investment mech. ventilation 447 7% Initial investment mech. ventilation 447 5%Operating costs 2695 48% Operating costs 3814 57% Operating costs 5558 66%M aintenance costs 233 4% M aintenance costs 233 3% M aintenance costs 233 3%Disposal costs 24 0% Disposal costs 24 0% Disposal costs 24 0%Change over costs 97 2% Change over costs 97 1% Change over costs 97 1%Costs for replacement <strong>of</strong> elements 430 8% Costs for replacement <strong>of</strong> elements 430 6% Costs for replacement <strong>of</strong> elements 430 5%Total LCC (per year) 5594 100% Total LCC (per year) 6713 100% Total LCC (per year) 8457 100%Scenario 2 .1.2 .1 Euro % Scenario 2 .1.2 .2 Euro % Scenario 2 .1.2 .3 Euro %Initial investment boiler 367 7% Initial investment boiler 367 6% Initial investment boiler 367 5%Initial investment radiators 262 5% Initial investment radiators 262 4% Initial investment radiators 262 3%Initial investment ro<strong>of</strong> insulation 368 7% Initial investment ro<strong>of</strong> insulation 368 6% Initial investment ro<strong>of</strong> insulation 368 5%Initial investment floor insulation 106 2% Initial investment floor insulation 106 2% Initial investment floor insulation 106 1%Initial investment facade insulation 182 3% Initial investment facade insulation 182 3% Initial investment facade insulation 182 2%Initial investment windows 264 5% Initial investment windows 264 4% Initial investment windows 264 3%Initial investment mech. ventilation 447 9% Initial investment mech. ventilation 447 7% Initial investment mech. ventilation 447 6%Operating costs 2695 52% Operating costs 3814 60% Operating costs 5558 69%M aintenance costs 233 4% M aintenance costs 233 4% M aintenance costs 233 3%Disposal costs 24 0% Disposal costs 24 0% Disposal costs 24 0%Change over costs 97 2% Change over costs 97 2% Change over costs 97 1%Costs for replacement <strong>of</strong> elements 181 3% Costs for replacement <strong>of</strong> elements 181 3% Costs for replacement <strong>of</strong> elements 181 2%Total LCC (per year) 5226 100% Total LCC (per year) 6345 100% Total LCC (per year) 8089 100%Scenario 2 .1.3 .1 Euro % Scenario 2 .1.3 .2 Euro % Scenario 2 .1.3 .3 Euro %Initial investment boiler 340 7% Initial investment boiler 340 5% Initial investment boiler 340 4%Initial investment radiators 262 5% Initial investment radiators 262 4% Initial investment radiators 262 3%Initial investment ro<strong>of</strong> insulation 368 7% Initial investment ro<strong>of</strong> insulation 368 6% Initial investment ro<strong>of</strong> insulation 368 5%Initial investment floor insulation 106 2% Initial investment floor insulation 106 2% Initial investment floor insulation 106 1%Initial investment facade insulation 182 4% Initial investment facade insulation 182 3% Initial investment facade insulation 182 2%Initial investment windows 264 5% Initial investment windows 264 4% Initial investment windows 264 3%Initial investment mech. ventilation 447 9% Initial investment mech. ventilation 447 7% Initial investment mech. ventilation 447 6%Operating costs 2695 53% Operating costs 3814 62% Operating costs 5558 70%M aintenance costs 233 5% M aintenance costs 233 4% M aintenance costs 233 3%Disposal costs 24 0% Disposal costs 24 0% Disposal costs 24 0%Change over costs 97 2% Change over costs 97 2% Change over costs 97 1%Costs for replacement <strong>of</strong> elements 59 1% Costs for replacement <strong>of</strong> elements 59 1% Costs for replacement <strong>of</strong> elements 59 1%Total LCC (per year) 5077 100% Total LCC (per year) 6196 100% Total LCC (per year) 7940 100%Scenario 2 .2 .1.1 Euro % Scenario 2 .2 .1.2 Euro % Scenario 2 .2 .1.3 Euro %Initial investment boiler 450 7% Initial investment boiler 450 4% Initial investment boiler 450 2%Initial investment radiators 211 3% Initial investment radiators 211 2% Initial investment radiators 211 1%Initial investment ro<strong>of</strong> insulation 296 5% Initial investment ro<strong>of</strong> insulation 296 3% Initial investment ro<strong>of</strong> insulation 296 1%Initial investment floor insulation 86 1% Initial investment floor insulation 86 1% Initial investment floor insulation 86 0%Initial investment facade insulation 147 2% Initial investment facade insulation 147 1% Initial investment facade insulation 147 1%Initial investment windows 229 4% Initial investment windows 229 2% Initial investment windows 229 1%Initial investment mech. ventilation 360 6% Initial investment mech. ventilation 360 3% Initial investment mech. ventilation 360 2%Operating costs 3951 60% Operating costs 8168 76% Operating costs 19210 88%M aintenance costs 233 4% M aintenance costs 233 2% M aintenance costs 233 1%Disposal costs 5 0% Disposal costs 5 0% Disposal costs 5 0%Change over costs 78 1% Change over costs 78 1% Change over costs 78 0%Costs for replacement <strong>of</strong> elements 492 8% Costs for replacement <strong>of</strong> elements 492 5% Costs for replacement <strong>of</strong> elements 492 2%Total LCC (per year) 6538 100% Total LCC (per year) 10755 100% Total LCC (per year) 21797 100%Scenario 2 .2 .2 .1 Euro % Scenario 2 .2 .2 .2 Euro % Scenario 2 .2 .2 .3 Euro %Initial investment boiler 349 6% Initial investment boiler 349 3% Initial investment boiler 349 2%Initial investment radiators 211 3% Initial investment radiators 211 2% Initial investment radiators 211 1%Initial investment ro<strong>of</strong> insulation 296 5% Initial investment ro<strong>of</strong> insulation 296 3% Initial investment ro<strong>of</strong> insulation 296 1%Initial investment floor insulation 86 1% Initial investment floor insulation 86 1% Initial investment floor insulation 86 0%Initial investment facade insulation 147 2% Initial investment facade insulation 147 1% Initial investment facade insulation 147 1%Initial investment windows 229 4% Initial investment windows 229 2% Initial investment windows 229 1%Initial investment mech. ventilation 360 6% Initial investment mech. ventilation 360 3% Initial investment mech. ventilation 360 2%Operating costs 3951 64% Operating costs 8168 79% Operating costs 19210 90%M aintenance costs 233 4% M aintenance costs 233 2% M aintenance costs 233 1%Disposal costs 5 0% Disposal costs 5 0% Disposal costs 5 0%Change over costs 78 1% Change over costs 78 1% Change over costs 78 0%Costs for replacement <strong>of</strong> elements 216 4% Costs for replacement <strong>of</strong> elements 216 2% Costs for replacement <strong>of</strong> elements 216 1%Total LCC (per year) 6161 100% Total LCC (per year) 10378 100% Total LCC (per year) 21420 100%FIGURE 73 - TABLES #1 'LIFE CYCLE COSTS' STANDARD RENOVATION70


Scenario 2 .2 .3 .1 Euro % Scenario 2 .2 .3 .2 Euro % Scenario 2 .2 .3 .3 Euro %Initial investment boiler 295 5% Initial investment boiler 295 3% Initial investment boiler 295 1%Initial investment radiators 211 4% Initial investment radiators 211 2% Initial investment radiators 211 1%Initial investment ro<strong>of</strong> insulation 296 5% Initial investment ro<strong>of</strong> insulation 296 3% Initial investment ro<strong>of</strong> insulation 296 1%Initial investment floor insulation 86 1% Initial investment floor insulation 86 1% Initial investment floor insulation 86 0%Initial investment facade insulation 147 2% Initial investment facade insulation 147 1% Initial investment facade insulation 147 1%Initial investment windows 229 4% Initial investment windows 229 2% Initial investment windows 229 1%Initial investment mech. ventilation 360 6% Initial investment mech. ventilation 360 4% Initial investment mech. ventilation 360 2%Operating costs 3951 66% Operating costs 8168 80% Operating costs 19210 90%M aintenance costs 233 4% M aintenance costs 233 2% M aintenance costs 233 1%Disposal costs 5 0% Disposal costs 5 0% Disposal costs 5 0%Change over costs 78 1% Change over costs 78 1% Change over costs 78 0%Costs for replacement <strong>of</strong> elements 93 2% Costs for replacement <strong>of</strong> elements 93 1% Costs for replacement <strong>of</strong> elements 93 0%Total LCC (per year) 5984 100% Total LCC (per year) 10201 100% Total LCC (per year) 21243 100%Scenario 2 .3 .1.1 Euro % Scenario 2 .3 .1.2 Euro % Scenario 2 .3 .1.3 Euro %Initial investment boiler 452 6% Initial investment boiler 452 2% Initial investment boiler 452 1%Initial investment radiators 202 3% Initial investment radiators 202 1% Initial investment radiators 202 0%Initial investment ro<strong>of</strong> insulation 283 4% Initial investment ro<strong>of</strong> insulation 283 2% Initial investment ro<strong>of</strong> insulation 283 0%Initial investment floor insulation 82 1% Initial investment floor insulation 82 0% Initial investment floor insulation 82 0%Initial investment facade insulation 140 2% Initial investment facade insulation 140 1% Initial investment facade insulation 140 0%Initial investment windows 224 3% Initial investment windows 224 1% Initial investment windows 224 0%Initial investment mech. ventilation 343 4% Initial investment mech. ventilation 343 2% Initial investment mech. ventilation 343 1%Operating costs 5169 67% Operating costs 15883 86% Operating costs 64705 96%M aintenance costs 233 3% M aintenance costs 233 1% M aintenance costs 233 0%Disposal costs 1 0% Disposal costs 1 0% Disposal costs 1 0%Change over costs 75 1% Change over costs 75 0% Change over costs 75 0%Costs for replacement <strong>of</strong> elements 505 7% Costs for replacement <strong>of</strong> elements 505 3% Costs for replacement <strong>of</strong> elements 505 1%Total LCC (per year) 7709 100% Total LCC (per year) 18423 100% Total LCC (per year) 67245 100%Scenario 2 .3 .2 .1 Euro % Scenario 2 .3 .2 .2 Euro % Scenario 2 .3 .2 .3 Euro %Initial investment boiler 340 5% Initial investment boiler 340 2% Initial investment boiler 340 1%Initial investment radiators 202 3% Initial investment radiators 202 1% Initial investment radiators 202 0%Initial investment ro<strong>of</strong> insulation 283 4% Initial investment ro<strong>of</strong> insulation 283 2% Initial investment ro<strong>of</strong> insulation 283 0%Initial investment floor insulation 82 1% Initial investment floor insulation 82 0% Initial investment floor insulation 82 0%Initial investment facade insulation 140 2% Initial investment facade insulation 140 1% Initial investment facade insulation 140 0%Initial investment windows 224 3% Initial investment windows 224 1% Initial investment windows 224 0%Initial investment mech. ventilation 343 5% Initial investment mech. ventilation 343 2% Initial investment mech. ventilation 343 1%Operating costs 5169 71% Operating costs 15883 88% Operating costs 64705 97%M aintenance costs 233 3% M aintenance costs 233 1% M aintenance costs 233 0%Disposal costs 1 0% Disposal costs 1 0% Disposal costs 1 0%Change over costs 75 1% Change over costs 75 0% Change over costs 75 0%Costs for replacement <strong>of</strong> elements 227 3% Costs for replacement <strong>of</strong> elements 227 1% Costs for replacement <strong>of</strong> elements 227 0%Total LCC (per year) 7319 100% Total LCC (per year) 18033 100% Total LCC (per year) 66855 100%Scenario 2 .3 .3 .1 Euro % Scenario 2 .3 .3 .2 Euro % Scenario 2 .3 .3 .3 Euro %Initial investment boiler 288 4% Initial investment boiler 288 2% Initial investment boiler 288 0%Initial investment radiators 202 3% Initial investment radiators 202 1% Initial investment radiators 202 0%Initial investment ro<strong>of</strong> insulation 283 4% Initial investment ro<strong>of</strong> insulation 283 2% Initial investment ro<strong>of</strong> insulation 283 0%Initial investment floor insulation 82 1% Initial investment floor insulation 82 0% Initial investment floor insulation 82 0%Initial investment facade insulation 140 2% Initial investment facade insulation 140 1% Initial investment facade insulation 140 0%Initial investment windows 224 3% Initial investment windows 224 1% Initial investment windows 224 0%Initial investment mech. ventilation 343 5% Initial investment mech. ventilation 343 2% Initial investment mech. ventilation 343 1%Operating costs 5169 72% Operating costs 15883 89% Operating costs 64705 97%M aintenance costs 233 3% M aintenance costs 233 1% M aintenance costs 233 0%Disposal costs 1 0% Disposal costs 1 0% Disposal costs 1 0%Change over costs 75 1% Change over costs 75 0% Change over costs 75 0%Costs for replacement <strong>of</strong> elements 98 1% Costs for replacement <strong>of</strong> elements 98 1% Costs for replacement <strong>of</strong> elements 98 0%Total LCC (per year) 7138 100% Total LCC (per year) 17852 100% Total LCC (per year) 66674 100%FIGURE 74 - TABLES #2 'LIFE CYCLE COSTS' STANDARD RENOVATION71


GraphsInitial investment boilerInitial investment radiatorsInitial investment ro<strong>of</strong> insulationInitial investment floor insulationInitial investment facade insulationCosts for windowsInitial investment mechanical ventilationOperating costsMaintenance costsDisposal costsChange over costsReplacement costs <strong>of</strong> elementsFIGURE 75 - GRAPHS #1 'LIFE CYCLE COSTS' STANDARD RENOVATION72


FIGURE 76 - GRAPHS #2 'LIFE CYCLE COSTS' STANDARD RENOVATION73


WarmBouwen <strong>renovation</strong>TablesScenario 3 .1.1.1 Euro % Scenario 3 .1.1.2 Euro % Scenario 3 .1.1.3 Euro %Initial investment heat pump 942 18% Initial investment heat pump 942 15% Initial investment heat pump 942 12%Initial investment acquifer 299 6% Initial investment acquifer 299 5% Initial investment acquifer 299 4%Initial investment wall heating system 318 6% Initial investment wall heating system 318 5% Initial investment wall heating system 318 4%Initial investment ro<strong>of</strong> insulation 368 7% Initial investment ro<strong>of</strong> insulation 368 6% Initial investment ro<strong>of</strong> insulation 368 5%Initial investment windows 264 5% Initial investment windows 264 4% Initial investment windows 264 3%Operating costs 2540 49% Operating costs 3595 58% Operating costs 5238 66%M aintenance costs 156 3% M aintenance costs 156 3% M aintenance costs 156 2%Disposal costs 24 0% Disposal costs 24 0% Disposal costs 24 0%Change over costs 97 2% Change over costs 97 2% Change over costs 97 1%Replacement costs <strong>of</strong> elements 177 3% Replacement costs <strong>of</strong> elements 177 3% Replacement costs <strong>of</strong> elements 177 2%Total LCC (per year) 5185 100% Total LCC (per year) 6240 100% Total LCC (per year) 7883 100%Scenario 3 .1.2 .1 Euro % Scenario 3 .1.2 .2 Euro % Scenario 3 .1.2 .3 Euro %Initial investment heat pump 712 15% Initial investment heat pump 712 12% Initial investment heat pump 712 9%Initial investment acquifer 299 6% Initial investment acquifer 299 5% Initial investment acquifer 299 4%Initial investment wall heating system 318 7% Initial investment wall heating system 318 5% Initial investment wall heating system 318 4%Initial investment ro<strong>of</strong> insulation 368 8% Initial investment ro<strong>of</strong> insulation 368 6% Initial investment ro<strong>of</strong> insulation 368 5%Initial investment windows 264 5% Initial investment windows 264 4% Initial investment windows 264 3%Operating costs 2540 52% Operating costs 3595 61% Operating costs 5238 69%M aintenance costs 156 3% M aintenance costs 156 3% M aintenance costs 156 2%Disposal costs 24 0% Disposal costs 24 0% Disposal costs 24 0%Change over costs 97 2% Change over costs 97 2% Change over costs 97 1%Replacement costs <strong>of</strong> elements 72 1% Replacement costs <strong>of</strong> elements 72 1% Replacement costs <strong>of</strong> elements 72 1%Total LCC (per year) 4850 100% Total LCC (per year) 5905 100% Total LCC (per year) 7548 100%Scenario 3 .1.3 .1 Euro % Scenario 3 .1.3 .2 Euro % Scenario 3 .1.3 .3 Euro %Initial investment heat pump 659 14% Initial investment heat pump 659 11% Initial investment heat pump 659 9%Initial investment acquifer 299 6% Initial investment acquifer 299 5% Initial investment acquifer 299 4%Initial investment wall heating system 318 7% Initial investment wall heating system 318 5% Initial investment wall heating system 318 4%Initial investment ro<strong>of</strong> insulation 368 8% Initial investment ro<strong>of</strong> insulation 368 6% Initial investment ro<strong>of</strong> insulation 368 5%Initial investment windows 264 6% Initial investment windows 264 5% Initial investment windows 264 4%Operating costs 2540 54% Operating costs 3595 62% Operating costs 5238 70%M aintenance costs 156 3% M aintenance costs 156 3% M aintenance costs 156 2%Disposal costs 24 1% Disposal costs 24 0% Disposal costs 24 0%Change over costs 97 2% Change over costs 97 2% Change over costs 97 1%Replacement costs <strong>of</strong> elements 19 0% Replacement costs <strong>of</strong> elements 19 0% Replacement costs <strong>of</strong> elements 19 0%Total LCC (per year) 4744 100% Total LCC (per year) 5799 100% Total LCC (per year) 7442 100%Scenario 3 .2 .1.1 Euro % Scenario 3 .2 .1.2 Euro % Scenario 3 .2 .1.3 Euro %Initial investment heat pump 873 14% Initial investment heat pump 873 9% Initial investment heat pump 873 4%Initial investment acquifer 269 5% Initial investment acquifer 269 3% Initial investment acquifer 269 1%Initial investment wall heating system 256 5% Initial investment wall heating system 256 3% Initial investment wall heating system 256 1%Initial investment ro<strong>of</strong> insulation 296 6% Initial investment ro<strong>of</strong> insulation 296 3% Initial investment ro<strong>of</strong> insulation 296 1%Initial investment windows 229 4% Initial investment windows 229 2% Initial investment windows 229 1%Operating costs 3724 72% Operating costs 7698 77% Operating costs 18107 88%M aintenance costs 156 3% M aintenance costs 156 2% M aintenance costs 156 1%Disposal costs 5 0% Disposal costs 5 0% Disposal costs 5 0%Change over costs 78 2% Change over costs 78 1% Change over costs 78 0%Replacement costs <strong>of</strong> elements 192 4% Replacement costs <strong>of</strong> elements 192 2% Replacement costs <strong>of</strong> elements 192 1%Total LCC (per year) 6078 117% Total LCC (per year) 10052 100% Total LCC (per year) 20461 100%Scenario 3 .2 .2 .1 Euro % Scenario 3 .2 .2 .2 Euro % Scenario 3 .2 .2 .3 Euro %Initial investment heat pump 678 12% Initial investment heat pump 678 7% Initial investment heat pump 678 3%Initial investment acquifer 241 4% Initial investment acquifer 241 2% Initial investment acquifer 241 1%Initial investment wall heating system 256 4% Initial investment wall heating system 256 3% Initial investment wall heating system 256 1%Initial investment ro<strong>of</strong> insulation 296 5% Initial investment ro<strong>of</strong> insulation 296 3% Initial investment ro<strong>of</strong> insulation 296 1%Initial investment windows 229 4% Initial investment windows 229 2% Initial investment windows 229 1%Operating costs 3724 65% Operating costs 7698 79% Operating costs 18107 90%M aintenance costs 156 3% M aintenance costs 156 2% M aintenance costs 156 1%Disposal costs 5 0% Disposal costs 5 0% Disposal costs 5 0%Change over costs 78 1% Change over costs 78 1% Change over costs 78 0%Replacement costs <strong>of</strong> elements 77 1% Replacement costs <strong>of</strong> elements 77 1% Replacement costs <strong>of</strong> elements 77 0%Total LCC (per year) 5740 100% Total LCC (per year) 9714 100% Total LCC (per year) 20123 100%Scenario 3 .2 .3 .1 Euro % Scenario 3 .2 .3 .2 Euro % Scenario 3 .2 .3 .3 Euro %Initial investment heat pump 572 10% Initial investment heat pump 572 6% Initial investment heat pump 572 3%Initial investment acquifer 241 4% Initial investment acquifer 241 3% Initial investment acquifer 241 1%Initial investment wall heating system 256 5% Initial investment wall heating system 256 3% Initial investment wall heating system 256 1%Initial investment ro<strong>of</strong> insulation 296 5% Initial investment ro<strong>of</strong> insulation 296 3% Initial investment ro<strong>of</strong> insulation 296 1%Initial investment windows 229 4% Initial investment windows 229 2% Initial investment windows 229 1%Operating costs 3724 67% Operating costs 7698 81% Operating costs 18107 91%M aintenance costs 156 3% M aintenance costs 156 2% M aintenance costs 156 1%Disposal costs 5 0% Disposal costs 5 0% Disposal costs 5 0%Change over costs 78 1% Change over costs 78 1% Change over costs 78 0%Replacement costs <strong>of</strong> elements 25 0% Replacement costs <strong>of</strong> elements 25 0% Replacement costs <strong>of</strong> elements 25 0%Total LCC (per year) 5582 100% Total LCC (per year) 9556 100% Total LCC (per year) 19965 100%Scenario 3 .3 .1.1 Euro % Scenario 3 .3 .1.2 Euro % Scenario 3 .3 .1.3 Euro %Initial investment heat pump 877 12% Initial investment heat pump 877 5% Initial investment heat pump 877 1%Initial investment acquifer 257 4% Initial investment acquifer 257 1% Initial investment acquifer 257 0%Initial investment wall heating system 244 3% Initial investment wall heating system 244 1% Initial investment wall heating system 244 0%Initial investment ro<strong>of</strong> insulation 283 4% Initial investment ro<strong>of</strong> insulation 283 2% Initial investment ro<strong>of</strong> insulation 283 0%Initial investment windows 224 3% Initial investment windows 224 1% Initial investment windows 224 0%Operating costs 4872 68% Operating costs 14971 87% Operating costs 60987 96%M aintenance costs 156 2% M aintenance costs 156 1% M aintenance costs 156 0%Disposal costs 1 0% Disposal costs 1 0% Disposal costs 1 0%Change over costs 75 1% Change over costs 75 0% Change over costs 75 0%Replacement costs <strong>of</strong> elements 196 3% Replacement costs <strong>of</strong> elements 196 1% Replacement costs <strong>of</strong> elements 196 0%Total LCC (per year) 7185 100% Total LCC (per year) 17284 100% Total LCC (per year) 63300 100%FIGURE 77 - TABLES #1 'LIFE CYCLE COSTS' WARMBOUWEN RENOVATION74


Scenario 3 .3 .2 .1 Euro % Scenario 3 .3 .2 .2 Euro % Scenario 3 .3 .2 .3 Euro %Initial investment heat pump 660 10% Initial investment heat pump 660 4% Initial investment heat pump 660 1%Initial investment acquifer 243 4% Initial investment acquifer 243 1% Initial investment acquifer 243 0%Initial investment wall heating system 244 4% Initial investment wall heating system 244 1% Initial investment wall heating system 244 0%Initial investment ro<strong>of</strong> insulation 283 4% Initial investment ro<strong>of</strong> insulation 283 2% Initial investment ro<strong>of</strong> insulation 283 0%Initial investment windows 224 3% Initial investment windows 224 1% Initial investment windows 224 0%Operating costs 4872 71% Operating costs 14971 88% Operating costs 60987 97%M aintenance costs 156 2% M aintenance costs 156 1% M aintenance costs 156 0%Disposal costs 1 0% Disposal costs 1 0% Disposal costs 1 0%Change over costs 75 1% Change over costs 75 0% Change over costs 75 0%Replacement costs <strong>of</strong> elements 80 1% Replacement costs <strong>of</strong> elements 80 0% Replacement costs <strong>of</strong> elements 80 0%Total LCC (per year) 6838 100% Total LCC (per year) 16937 100% Total LCC (per year) 62953 100%Scenario 3 .3 .3 .1 Euro % Scenario 3 .3 .3 .2 Euro % Scenario 3 .3 .3 .3 Euro %Initial investment heat pump 559 8% Initial investment heat pump 559 3% Initial investment heat pump 559 1%Initial investment acquifer 230 3% Initial investment acquifer 230 1% Initial investment acquifer 230 0%Initial investment wall heating system 244 4% Initial investment wall heating system 244 1% Initial investment wall heating system 244 0%Initial investment ro<strong>of</strong> insulation 283 4% Initial investment ro<strong>of</strong> insulation 283 2% Initial investment ro<strong>of</strong> insulation 283 0%Initial investment windows 224 3% Initial investment windows 224 1% Initial investment windows 224 0%Operating costs 4872 73% Operating costs 14971 89% Operating costs 60987 97%M aintenance costs 156 2% M aintenance costs 156 1% M aintenance costs 156 0%Disposal costs 1 0% Disposal costs 1 0% Disposal costs 1 0%Change over costs 75 1% Change over costs 75 0% Change over costs 75 0%Replacement costs <strong>of</strong> elements 26 0% Replacement costs <strong>of</strong> elements 26 0% Replacement costs <strong>of</strong> elements 26 0%Total LCC (per year) 6670 100% Total LCC (per year) 16769 100% Total LCC (per year) 62785 100%FIGURE 78 - TABLES #2 'LIFE CYCLE COSTS' WARMBOUWEN RENOVATIONGraphsInitial investment heat pumpInitial investment acquiferInitial investment wall heating systemInitial investment ro<strong>of</strong> insulationCosts for windowsOperating costsMaintenance costsDisposal costsChange over costsReplacement costs <strong>of</strong> elementsFIGURE 79 - GRAPHS #1 'LIFE CYCLE COSTS' WARMBOUWEN RENOVATION75


FIGURE 80 - GRAPHS #2 'LIFE CYCLE COSTS' WARMBOUWEN RENOVATION76


FIGURE 81 - GRAPHS #3 'LIFE CYCLE COSTS' WARMBOUWEN RENOVATIONFigure 82 provides an overview <strong>of</strong> <strong>the</strong> <strong>performance</strong> on <strong>the</strong> factor „<strong>life</strong> <strong>cycle</strong> costs‟ <strong>of</strong> <strong>the</strong>three <strong>renovation</strong> alternatives at all scenarios. Also, <strong>the</strong> normalized scores <strong>of</strong> <strong>the</strong>scenarios are elaborated in this figure.ScenarionnumberScenarioLCC - No Renovation€NormalizedscoreLCC - StandardRenovationFIGURE 82 – OVERVIEW OF NORMALIZED SCORES RENOVATION ALTERNATIVES€NormalizedscoreLCC - WarmBouwenRenovation€Normalizedscore1 1.1.1 4634 0,91 5597 0,75 5187 0,812 1.1.2 6025 0,70 6715 0,63 6241 0,683 1.1.3 8195 0,51 8459 0,50 7885 0,534 1.2.1 4348 0,97 5229 0,81 4852 0,875 1.2.2 5740 0,73 6347 0,66 5906 0,716 1.2.3 7909 0,53 8091 0,52 7550 0,567 1.3.1 4214 1,00 5080 0,83 4745 0,898 1.3.2 5606 0,75 6198 0,68 5800 0,739 1.3.3 7775 0,54 7942 0,53 7443 0,5710 2.1.1 6148 0,69 6539 0,64 6080 0,6911 2.1.2 11393 0,37 10756 0,39 10054 0,4212 2.1.3 25131 0,17 21799 0,19 20463 0,2113 2.2.1 5844 0,72 6161 0,68 5740 0,7314 2.2.2 11089 0,38 10378 0,41 9714 0,4315 2.2.3 24827 0,17 21421 0,20 20123 0,2116 2.3.1 5696 0,74 5985 0,70 5583 0,7517 2.3.2 10941 0,39 10201 0,41 9557 0,4418 2.3.3 24679 0,17 21244 0,20 19966 0,2119 3.1.1 7662 0,55 7709 0,55 7186 0,5920 3.1.2 20990 0,20 18423 0,23 17284 0,2421 3.1.3 81724 0,05 67245 0,06 63300 0,0722 3.2.1 7348 0,57 7320 0,58 6839 0,6223 3.2.2 20676 0,20 18034 0,23 16937 0,2524 3.2.3 81409 0,05 66855 0,06 62954 0,0725 3.3.1 7198 0,59 7138 0,59 6670 0,6326 3.3.2 20526 0,21 17853 0,24 16769 0,2527 3.3.3 81260 0,05 66674 0,06 62785 0,0777


C3.2. LIFE CYCLE YIELDSIn this section <strong>the</strong> output for <strong>the</strong> factor „<strong>life</strong> <strong>cycle</strong> yields‟ is elaborated.To determine <strong>the</strong> normalized scores for <strong>the</strong> <strong>life</strong> <strong>cycle</strong> yields <strong>of</strong> each <strong>renovation</strong> concept,<strong>the</strong> score per aspect <strong>of</strong> <strong>the</strong> yields is multiplied by a weigh factor. This weigh factor isdetermined based on a <strong>life</strong> <strong>cycle</strong> yields simulation, with an exploitation period <strong>of</strong> 50years, and a selling price <strong>of</strong> <strong>the</strong> house <strong>of</strong> 250.000 euro´s. Figure 83 shows <strong>the</strong> <strong>life</strong> <strong>cycle</strong>yields simulation.250.000695/montht=0Primary returnsSecundary returnst=50FIGURE 83 – DCF CALCULATION FOR DETERMINING CONTRIBUTION OF LCY FACTORSAssumptions:Weigh factor risk = 5%Interest rate = 5,68%The simulation calculation points out that <strong>the</strong> discounted cash flow (DCF) <strong>of</strong>:- Primary returns = 137032- Secundary returns = 12630The weigh factors are:- Primary returns: (137032-12630)/137032 * 95% = 86.3%- Secundary returns: 12630/137032 * 95% = 8.7 %- Risk: 5%Figure 84 shows <strong>the</strong> results <strong>of</strong> <strong>the</strong> calculations in <strong>the</strong> field <strong>of</strong> <strong>life</strong> <strong>cycle</strong> yields. The figureprovides <strong>the</strong> <strong>performance</strong>s <strong>of</strong> <strong>the</strong> three <strong>renovation</strong> alternatives on <strong>the</strong> factor „<strong>life</strong> <strong>cycle</strong>yields‟.No <strong>renovation</strong>Standard <strong>renovation</strong>WarmBouwen<strong>renovation</strong>NormalizedscoreWeighfactorNormalizedscoreWeighfactorNormalizedscoreWeighfactorPrimary returns 0,79 0,863 0,95 0,863 1 0,863Secundary returns 0,9 0,087 0,96 0,087 1 0,087Risk 0,86 0,05 0,29 0,05 1 0,05Total normalized score 0,80 0,92 1FIGURE 84 - RESULTS LCY78


C3.3. LIFE CYCLE ENVIRONMENTAL IMPACTThe figures in this section provide information about <strong>the</strong> output <strong>of</strong> <strong>the</strong> factor „<strong>life</strong> <strong>cycle</strong>environmental impact‟ for <strong>the</strong> three evaluated <strong>renovation</strong> alternatives. The figures areused to determine <strong>the</strong> composition <strong>of</strong> <strong>the</strong> factor „<strong>life</strong> <strong>cycle</strong> environmental impact‟ <strong>of</strong> <strong>the</strong><strong>renovation</strong> alternatives.TablesScenarioAspectScores per <strong>renovation</strong> alternativeNo <strong>renovation</strong>Standard<strong>renovation</strong>WarmBouwen<strong>renovation</strong>x.1.1.y Greenhouse 130 96,7 52,4Ozone layer 0,109 0,0702 0,0505Acidification 11,7 16,8 13,7Eutrophication 4,41 5,95 5,72Heavy metals 54,4 62,7 60,3Carcinogens 15,3 16,8 7,96Pesticides 0 0 0Summer smog 11,9 7,86 5,49Winter smog 9,4 14,1 11,6Energy resources 181 132 70,2Total 418 353 227Converting factor 2 2 2Total (converted) 836 706 455Normalized score 0,403 0,477 0,740Relative score 0,544 0,644 1x.1.2.y Greenhouse 125 91,2 48Ozone layer 0,107 0,0685 0,0493Acidification 10,8 15,8 12,7Eutrophication 3,68 5,22 4,99Heavy metals 33,2 41,4 41,3Carcinogens 12,6 14,1 7,28Pesticides 0 0 0Summer smog 11,6 7,53 5,22Winter smog 8,26 12,9 10,7Energy resources 177 129 68,3Total 382 317 199Converting factor 2 2 2Total (converted) 764 634 397Normalized score 0,440 0,531 0,848Relative score 0,519 0,626 1x.1.3.y Greenhouse 121 88,1 45,8Ozone layer 0,106 0,0676 0,0489Acidification 10,3 15,4 12,6Eutrophication 3,26 4,79 4,69Heavy metals 20,7 28,8 32,3Carcinogens 11,4 12,9 7,26Pesticides 0 0 0Summer smog 11,4 7,36 5,14Winter smog 7,74 12,4 10,6Energy resources 176 127 68Total 362 297 186Converting factor 2 2 2Total (converted) 724 594 373Normalized score 0,465 0,567 0,903Relative score 0,515 0,628 1FIGURE 85 - OUTPUT ON LIFE CYCLE ENVIRONMENTAL IMPACT #179


ScenarioAspectScores per <strong>renovation</strong> alternativeNo <strong>renovation</strong>Standard<strong>renovation</strong>WarmBouwen<strong>renovation</strong>x.2.1.y Greenhouse 261 187 119Ozone layer 0,217 0,134 0,0999Acidification 23,3 29,5 25,1Eutrophication 8,92 10,8 11Heavy metals 113 124 114Carcinogens 30,3 31,4 13,8Pesticides 0 0 0Summer smog 23,8 15 10,7Winter smog 18,6 24,6 20,4Energy resources 362 254 157Total 841 676 471Converting factor 1 1 1Total (converted) 841 676 471Normalized score 0,400 0,498 0,715Relative score 0,560 0,696 1x.2.2.y Greenhouse 248 175 106Ozone layer 0,214 0,13 0,0968Acidification 21,1 27,3 22,8Eutrophication 7,23 9,08 8,48Heavy metals 63,1 73,9 70,1Carcinogens 23,9 25 11,8Pesticides 0 0 0Summer smog 23 14,3 9,12Winter smog 16 21,9 18,4Energy resources 353 245 146Total 756 592 393Converting factor 1 1 1Total (converted) 756 592 393Normalized score 0,446 0,569 0,857Relative score 0,520 0,664 1x.2.3.y Greenhouse 243 170 101Ozone layer 0,212 0,129 0,0956Acidification 20,3 26,5 21,8Eutrophication 6,56 8,41 7,75Heavy metals 43,6 54,4 51,1Carcinogens 21,8 22,8 11,2Pesticides 0 0 0Summer smog 22,8 14 8,85Winter smog 15,1 21 17,5Energy resources 351 243 144Total 724 560 363Converting factor 1 1 1Total (converted) 724 560 363Normalized score 0,465 0,601 0,927Relative score 0,502 0,648 1FIGURE 86 - OUTPUT ON LIFE CYCLE ENVIRONMENTAL IMPACT #280


ScenarioAspectNo <strong>renovation</strong>Scores per <strong>renovation</strong> alternativeStandard WarmBouwen<strong>renovation</strong> <strong>renovation</strong>WarmBouwen(Flexiblewalls)x.3.1.y Greenhouse 393 279 173 152Ozone layer 0,326 0,199 0,146 0,143Acidification 35 42,3 35 34,5Eutrophication 13,6 15,8 15,1 12,3Heavy metals 176 190 170 85,9Carcinogens 45,6 46,2 18,6 20,7Pesticides 0 0 0 0Summer smog 35,7 22,2 14,7 14,1Winter smog 28 35,3 28,4 28,9Energy resources 543 376 222 221Total 1270 1007 677 570Converting factor 0,67 0,67 0,67 0,67Total (converted) 847 671 451 380Normalized score 0,398 0,502 0,746 0,887Relative score 0,533 0,672 1 1,189x.3.2.y Greenhouse 373 260 157Ozone layer 0,321 0,193 0,142Acidification 31,8 39 32Eutrophication 11 13,2 12,6Heavy metals 100 114 104Carcinogens 36,2 36,7 16,5Pesticides 0 0 0Summer smog 34,6 21,1 13,8Winter smog 24,1 31,3 25,6Energy resources 531 363 216Total 1142 878 578Converting factor 0,67 0,67 0,67Total (converted) 761 586 385Normalized score 0,442 0,575 0,874Relative score 0,506 0,658 1x.3.3.y Greenhouse 363 249 145Ozone layer 0,317 0,19 0,139Acidification 30 37,2 29,8Eutrophication 9,58 11,7 10,2Heavy metals 58,5 71,8 64,6Carcinogens 31,1 31,6 14,6Pesticides 0 0 0Summer smog 34 20,5 12,2Winter smog 21,9 29,1 23,6Energy resources 524 357 205Total 1072 808 505Converting factor 0,67 0,67 0,67Total (converted) 715 539 337Normalized score 0,471 0,625 1Relative score 0,471 0,625 1FIGURE 87 - OUTPUT ON LIFE CYCLE ENVIRONMENTAL IMPACT #381


GraphsEnvironmental impact caused by assemblyEnvironmental impact caused by gas use(At <strong>concepts</strong> 3.x.x.x: EI caused byelectricity use heat pump)Environmental impact caused by electricity useEnvironmental impact caused by disposal <strong>of</strong> elementsFIGURE 88 - OUTPUT GRAPHS ENVIRONMENTAL IMPACT #182


Environmental impact caused by assemblyEnvironmental impact caused by gas use(At <strong>concepts</strong> 3.x.x.x: EI caused byelectricity use heat pump)Environmental impact caused by electricity useEnvironmental impact caused by disposal <strong>of</strong> elementsFIGURE 89 - OUTPUT GRAPHS ENVIRONMENTAL IMPACT #283


C3.4. QUALITYFigure 90 provides information about <strong>the</strong> output <strong>of</strong> <strong>the</strong> factor „quality‟ for <strong>the</strong> threeevaluated <strong>renovation</strong> alternatives.HealthUser qualityFuture valueWeightingfactorNo<strong>renovation</strong>PointsStandardrenovatoinpointsWarmBouwen<strong>renovation</strong>PointsSound 250 4,6 11,5 4,9 12,3 4,9 12,3Air quality 450 4,9 22,1 6,5 29,3 6,1 27,5Thermal comfort 250 5,8 14,5 6,6 16,5 7,5 18,8Visual comfort 50 6 3,0 6 3,0 6 3,0Technical quality 250 7,4 18,5 7,4 18,5 7,4 18,5Future facilities 333 4,7 15,7 4,7 15,7 5,3 17,6Flexibility 333 5,7 19,0 5,7 19,0 6,1 20,3Experienced value 333 6 20,0 6 20,0 6,2 20,6Total scoreNormalized scoreFIGURE 90 - OUTPUT ON 'QUALITY'124,20,90134,10,97138,6184


C3.5. ENERGY PERFORMANCE COEFFICIENTThe figures in this section provide information about <strong>the</strong> output <strong>of</strong> <strong>the</strong> factor „energy<strong>performance</strong> coefficient´ for <strong>the</strong> three evaluated <strong>renovation</strong> alternatives.No <strong>renovation</strong>FIGURE 91 - OUTPUT ON 'EPC' NO RENOVATIONStandard RenovationFIGURE 92 - OUTPUT ON 'EPC' STANDARD RENOVATION85


WarmBouwen <strong>renovation</strong>FIGURE 93 - OUTPUT ON 'EPC' WARMBOUWEN RENOVATIONNormalized score <strong>of</strong> alternatives:No <strong>renovation</strong> Standard <strong>renovation</strong> WarmBouwen<strong>renovation</strong>Energy <strong>performance</strong> 2.22 1.23 0.7coefficientNormalized score 0.32 0.57 1FIGURE 94 -NORMALIZED SCORE OF THE RENOVATION ALTERNATIVE ON 'EPC'86


C4. RESULTS MODELThe output on each identified factor <strong>of</strong> influence for <strong>the</strong> three defined <strong>renovation</strong>alternatives is presented in <strong>the</strong> previous subparagraphs (see all defined scenarios inappendix Q). This output information is combined to provide <strong>the</strong> overall model output foreach scenario. The model output is presented in this appendix.Application <strong>of</strong> <strong>the</strong> model results in a diagram as presented in <strong>the</strong> figures in this section.To optimize <strong>the</strong> comparability <strong>of</strong> this output, <strong>the</strong> diagram shows <strong>the</strong> normalized score <strong>of</strong><strong>the</strong> evaluated alternatives. Hereby, <strong>the</strong> best score on each aspect is represented by <strong>the</strong>score 1. The scores <strong>of</strong> <strong>the</strong> o<strong>the</strong>r alternatives represent <strong>the</strong> normalized score. Hereby <strong>the</strong>alternative with <strong>the</strong> score 1 forms <strong>the</strong> norm and <strong>the</strong> score <strong>of</strong> o<strong>the</strong>r alternatives liesbetween 0 and 1. More information about <strong>the</strong> interpretation <strong>of</strong> <strong>the</strong>se figures is providedin sub paragraph 4.2.5, page 52 <strong>of</strong> <strong>the</strong> main report.FIGURE 95 - OVERALL MODEL OUTPUT #187


FIGURE 96 - OVERALL MODEL OUTPUT #288


FIGURE 97 - OVERALL MODEL OUTPUT #389


FIGURE 98 - OVERALL MODEL OUTPUT #490


FIGURE 99 - OVERALL MODEL OUTPUT #591


APPENDIX D - CONSULTED EXPERTS AND USEDDOCUMENTSIn figure 100 <strong>the</strong> experts are listed that are consulted to determine input parameters for<strong>the</strong> model application. The experts are selected on <strong>the</strong>ir specific knowledge in <strong>the</strong> field <strong>of</strong>one <strong>of</strong> <strong>the</strong> <strong>performance</strong> factors <strong>of</strong> <strong>the</strong> model.Name Consulted about CompanyO. van Kampen Parameters for <strong>life</strong> <strong>cycle</strong> costs calculations and S&G en partnersexecuting LCC calculation with <strong>the</strong> LCC-Lites<strong>of</strong>twareG. Verbaan Energy <strong>performance</strong> <strong>of</strong> <strong>the</strong> WarmBouwen DGMRconceptS. Binnemars Modelling in SimaPro / executing LCA University <strong>of</strong> TwentecalculationsT. van de Merwe Assigning environmental impact to elements / University <strong>of</strong> Twenteexecuting LCA calculationsM. Toxopeus Modelling in SimaPro / checking LCA University <strong>of</strong> Twenteparameters and defining re<strong>cycle</strong> scenariosP. Boswinkel Input parameters for LCC calculations Local CompanyWarmBouwenA. van Kessel Yearly average maintenance costs aquifer + Local Companydetermining input parameters for LCYcalculationsM. Mol Composition <strong>of</strong> <strong>the</strong> pumps in an aquifer Grundfos Nederlandsystem (materials + weights)R. Loods Composition <strong>of</strong> <strong>the</strong> o<strong>the</strong>r elements in an Mos b.v.aquifer system (materials + weights)Mr. van der Composition <strong>of</strong> <strong>the</strong> elements in a boiler VaillantPutten(materials + weights)A. Ploegmakers Composition <strong>of</strong> <strong>the</strong> elements in a heat pump Stiebel Eltron(materials + weights). Also consulted about<strong>the</strong> most suitable heat pump for <strong>the</strong> referencehouse <strong>of</strong> <strong>the</strong> research.P. van Tilburg Composition <strong>of</strong> <strong>the</strong> elements in a radiator The heating(materials + weights) & dimensions <strong>of</strong> companyaverage radiator.Mr. Martin Composition <strong>of</strong> <strong>the</strong> elements in a window Saint Gobain(materials + weights)M. Tipkerk Composition <strong>of</strong> <strong>the</strong> elements in an expansion Famcobarrel (materials + weights)J. Vink Composition <strong>of</strong> <strong>the</strong> elements in piping Viega(materials + weights)Mr. Riethorst Composition <strong>of</strong> <strong>the</strong> elements <strong>of</strong> <strong>the</strong> wall RIHOheating system WarmBouwen (materials +weights)Expert -name = Composition <strong>of</strong> <strong>the</strong> elements in a ventilation Orconunknown- system (materials + weights)Mr. Steenbeek Costs for demolishing construction elements Heijn HeunJ. Veldhuis Costs for installation <strong>of</strong> radiators Maat b.v.H. de Jong Costs for replacement <strong>of</strong> ventilators RuconFIGURE 100 - CONSULTED EXPERTS FOR TESTING THE MODEL92


Figure 101 shows <strong>the</strong> literature, reports and product sheets that are used for determining<strong>the</strong> input for <strong>the</strong> model application.Name <strong>of</strong> document Owner SubjectYtong. „Binnenwanden- buitengewoon goed.‟XellaInformation about <strong>the</strong> composition <strong>of</strong> Ytongwalls. These Ytong walls have been used asreference for <strong>the</strong> fixed internal walls in <strong>the</strong><strong>renovation</strong> alternatives.Toolkit bestaandebouw – duurzamewoning verbeteringBAMwoningbouw/SenterNovem/ProjectgroepDEPWSimaPro 7.1 Tutorial Pré -Consultantsbouwkostenonline.nlLife Cycle Assessmentand ExternalEnvironmental CostAnalysis <strong>of</strong> HeatPumpsPlannen en toepassen:Pexfit Fosta, PexfitPlusBouwkostenonline.nlRey et al.ViegaThis document has been used for <strong>the</strong> definition<strong>of</strong> <strong>the</strong> standard <strong>renovation</strong> concept and <strong>the</strong>costs <strong>of</strong> <strong>the</strong> measures that are applied in thisconcept.This tutorial manual has been used to learn <strong>the</strong>use <strong>of</strong> <strong>the</strong> SimaPro s<strong>of</strong>tware. Also <strong>the</strong> tutorial isused to make <strong>the</strong> right assumptions during <strong>the</strong>execution <strong>of</strong> <strong>the</strong> Life Cycle Assessment.This website has been used to determine <strong>the</strong>costs <strong>of</strong> <strong>the</strong> construction <strong>of</strong> internal walls and<strong>the</strong> costs <strong>of</strong> <strong>the</strong> finishing <strong>of</strong> <strong>the</strong> internal walls.This document helped me to determine <strong>the</strong>composition and weights <strong>of</strong> included materials<strong>of</strong> a heat pump. This LCA listed all <strong>the</strong> materialsthat are applied in a heat pump. This list isused as reference for this research.This document provided all technicalinformation about <strong>the</strong> piping that is used indwellings for <strong>the</strong> transport <strong>of</strong> heat.PURSCHUIM Bison This document provided <strong>the</strong> technicalinformation about PUR foam. In this researchPUR foam is applied as insulation material.Gipsplaten – Sneleven andersIsolavaThis document provided <strong>the</strong> technicalinformation about <strong>the</strong> gypsum board. In thisresearch gypsum board is applied as anelement <strong>of</strong> <strong>the</strong> ro<strong>of</strong> insulation.Grundfos_SP 30-2 Grundfos This document provided a part <strong>of</strong> <strong>the</strong> technicalinformation about <strong>the</strong> pumps that are used inaquifer systems.The SP system –Strenght all <strong>the</strong> waySpiralo-buis SPBTechnischedocumentatie -Ventilatie voorwoningbouwTechnischeeigenschappenklimaatplaatKlimaatsysteemGrundfosKennemerspiraloOrconRIHO-TechniekRIHO-TechniekThis document provided a part <strong>of</strong> <strong>the</strong> technicalinformation about <strong>the</strong> pumps that are used inaquifer systems.This product sheet provided technicalinformation about <strong>the</strong> tubes that are used for<strong>the</strong> transportation <strong>of</strong> air in a ventilation system.This document provided <strong>the</strong> technicalinformation about <strong>the</strong> ventilation system. Inthis research a ventilation system is applied in<strong>the</strong> standard <strong>renovation</strong> concept.This product sheet provided technicalinformation about <strong>the</strong> climate board that isapplied in <strong>the</strong> WarmBouwen <strong>renovation</strong>.alternativeThis document provided technical informationabout <strong>the</strong> climate board that is applied in <strong>the</strong>WarmBouwen <strong>renovation</strong> alternative.Eco<strong>the</strong>rm Baseline Eco<strong>the</strong>rm This product sheet provided technical93


information about <strong>the</strong> first insulation layer <strong>of</strong>insulation material that is used in <strong>the</strong>WarmBouwen <strong>renovation</strong> alternative for façadeinsulation.ENVOY Silver ENVOY This product sheet provided technicalinformation about <strong>the</strong> second layer <strong>of</strong> insulationmaterial that is used in <strong>the</strong> WarmBouwen<strong>renovation</strong> alternative for façade insulation.Voorbeeldwoningenbestaande bouw 2007Milieucentraal.nlnl.wikipedia.orgMilieucentraal.nlnl.wikipedia.orglageenergierekening.nlTNO / StiebelEltronTNO-034-APD-2009-00179SenterNovemlageenergierekening.nlFor <strong>the</strong> selection <strong>of</strong> a generic house thisdocument <strong>of</strong> SenterNovem has been analyzed.The document gives an overview <strong>of</strong> all <strong>the</strong> type<strong>of</strong> dwellings that are present in <strong>the</strong> Ne<strong>the</strong>rlandsand into what extend. Based upon thisdocument <strong>the</strong> reference house <strong>of</strong> this researchhas been selected. This document also providedtechnical and spatial information about <strong>the</strong>selected reference house.This website is consulted for <strong>the</strong> costs <strong>of</strong>boilers.This website is used to determine <strong>the</strong> caloricvalue <strong>of</strong> gas.This website is used to determine <strong>the</strong> currentaverage gas price and electricity price in <strong>the</strong>Ne<strong>the</strong>rlands.This document provided technical informationabout <strong>the</strong> <strong>performance</strong> <strong>of</strong> <strong>the</strong> heat pump that isused as a reference in this research.Cbs.nl Cbs.nl This website is consulted to ga<strong>the</strong>r informationabout <strong>the</strong> development <strong>of</strong> <strong>the</strong> consumer pricefor gas and electricity in <strong>the</strong> Ne<strong>the</strong>rlands in <strong>the</strong>past. Based upon this information scenarios forthis development are defined.Ec.europa.euEuropeanUnionThis website was consulted to gain informationabout <strong>the</strong> average discount rate in Europe for<strong>the</strong> last years. Based upon this information anassumption is made for <strong>the</strong> discount rate that isused in this research.Duurzaamheid loont H. Bijdendijk The report <strong>of</strong> Mr. Bijdendijk is used todetermine <strong>the</strong> average <strong>life</strong>span <strong>of</strong> a buildingafter completion. Based on this informationscenarios have been put up for <strong>the</strong> <strong>life</strong>span <strong>of</strong> abuilding after <strong>renovation</strong>.RegelingWarmtebesluitOntwikkelaarsinformatiemapMinisterie vanEconomischeZakenForteckThis document is consulted to define <strong>the</strong>average yearly maintenance costs <strong>of</strong> a boiler.This document provided information about <strong>the</strong>average yearly maintenance costs <strong>of</strong> aventilation system.Offer RIHO RIHO This <strong>of</strong>fer was used to determine to costs perm 2 wallheating, which is applied in <strong>the</strong>alternative WarmBouwen <strong>renovation</strong>.Senternovem.nl SenterNovem This website is consulted to gain informationabout <strong>the</strong> yearly average maintenance costs <strong>of</strong>a individual heat pump.FIGURE 101 - USED SOURCES FOR INPUT MODEL CALCULATIONS94


APPENDIX E - BREEAM ASSESSMENT TOOLThis appendix provides an overview <strong>of</strong> <strong>the</strong> main aspects and sub aspects that are takeninto consideration by <strong>the</strong> BREEAM sustainability assessment tool.- Management• Commissioning• Construction site and surroundings• Construction site impacts• User guide• Life <strong>cycle</strong> costing• Combined credits• Consultation• Shared facilities• Security• Publication <strong>of</strong> building information• The development as a learning resource• Ease <strong>of</strong> maintenance- Health• Daylighting• View out• Glare control• High frequency lighting• Internal and external lightning levels• Lightning zones & controls• Natural ventilation• Internal air quality• Volatile organic compounds• Thermal comfort• Thermal zoning• Acoustic <strong>performance</strong>- Energy• Reduction <strong>of</strong> CO 2 emissions• Sub-metering <strong>of</strong> energy uses• Energy-efficient external lighting• Use <strong>of</strong> renewable energy• Building fabric <strong>performance</strong> & avoidance <strong>of</strong> air infiltration• Energy-efficient refrigerated and frozen storage• Energy-efficient lifts• Energy-efficient escalators and travelers• Assurance <strong>of</strong> <strong>the</strong>rmal quality <strong>of</strong> building shell- Transport• Provision <strong>of</strong> public transport• Proximity to amenities• Cyclist facilities• Pedestrian and cyclist safety• Travel plan and parking policy• Travel information point• Deliveries and manoeuvring95


- Water• Water consumption• Watermeter• Major leak detection• Sanitary supply shut <strong>of</strong>f• Water recycling• Irrigation systems• Vehicle wash- Materials• Materials specification• Reuse <strong>of</strong> building facade• Reuse <strong>of</strong> building structure• Responsible sourcing <strong>of</strong> materials• Designing for robustness- Waste• Waste management on <strong>the</strong> construction site• Re<strong>cycle</strong>d aggregates• Recyclable waste storage• Compost• Finishing elements- Land use & Ecology• Reuse <strong>of</strong> land• Contaminated land• Existing wild<strong>life</strong> at <strong>the</strong> construction site• Plants and animals as co-users <strong>of</strong> <strong>the</strong> plan area• Long-term <strong>sustainable</strong> co-use by plants and animals• Local wild<strong>life</strong> partnerships- Pollution• Refrigerant GWP – building services• Preventing refrigerant leaks• Refrigerant GWP – cold storage• NO x emissions from heating sources• Protecting building from floods• Minimizing watercourse pollution• Reduction <strong>of</strong> night time light pollution• Noise attenuation96


APPENDIX F - GREENCALC ASSESSMENT TOOLThis appendix provides an overview <strong>of</strong> <strong>the</strong> main aspects and sub aspects that are takeninto consideration by Greencalc.- Material• Foundation• Facade• Interior walls• Floors• Ro<strong>of</strong>• Installations• Interior- Energy• Building bounded use• Constructive information• Climate system• Warm tap water• Photo-Voltaic/windmills• Lightning• Equipment• Corrections- Water• Facilities• Sanitary• Rain water• Corrections- Mobility97


APPENDIX G - HISTORY OF LCAThis appendix describes <strong>the</strong> history and origination <strong>of</strong> <strong>the</strong> LCA principle.The history <strong>of</strong> <strong>the</strong> Life Cycle Assessment is described by SAIC (2006). In <strong>the</strong>ir report „LifeCycle Assessment: Principles and Practice‟, <strong>the</strong> history <strong>of</strong> LCA is described as follows:Life Cycle Assessment (LCA) had its beginnings in <strong>the</strong> 1960‟s due to concerns over <strong>the</strong>limitations <strong>of</strong> raw materials and energy resources. This started <strong>the</strong> interest in <strong>the</strong>cumulative account for energy use and <strong>the</strong> calculation <strong>of</strong> future resource supply and use.Later in <strong>the</strong> 1960‟s, global modeling studies published „The Limits to Growth‟ (Meadowset al., 1972) and „A Blueprint for Survival‟ (Goldsmith et al., 1972). These studiespredicted <strong>the</strong> effects <strong>of</strong> <strong>the</strong> world‟s changing population on <strong>the</strong> demand for materials andresources. During this period, various studies were performed to estimate costs andenvironmental implications <strong>of</strong> alternative sources <strong>of</strong> energy.In 1969, researchers initiated an internal study for The Coca-Cola Company that provided<strong>the</strong> foundation for <strong>the</strong> current methods <strong>of</strong> <strong>life</strong> <strong>cycle</strong> inventory analysis in <strong>the</strong> UnitedStates. This comparison <strong>of</strong> different beverage containers resulted in quantifiedinformation about <strong>the</strong> raw materials and fuels needed for <strong>the</strong> manufacturing process foreach container. In <strong>the</strong> early 1970‟s various o<strong>the</strong>r companies performed similarcomparative <strong>life</strong> <strong>cycle</strong> analyses.The quantifying process <strong>of</strong> resources and environmental releases <strong>of</strong> products becameknown as REPA in <strong>the</strong> USA; Resource and Environmental Pr<strong>of</strong>ile Analysis. In Europe thisapproach was became known as Ecobalance. Between 1970 and 1975, about 15 REPA‟swere performed. Through this period, a standard research methodology for conducting<strong>the</strong>se studies was developed.From 1975 through <strong>the</strong> early 1980‟s, as interest in <strong>the</strong>se comprehensive studies wanedbecause <strong>of</strong> <strong>the</strong> fading influence <strong>of</strong> <strong>the</strong> oil crisis, environmental concerns shifted to issues<strong>of</strong> hazardous and household waste management. However, <strong>life</strong> <strong>cycle</strong> inventory analysiscontinued to be conducted. During this time, European interest grew due to <strong>the</strong>establishment <strong>of</strong> an Environment Directorate by <strong>the</strong> European Commission. Therefore, inEurope parallel approaches were developed.In 1988 solid waste became a worldwide issue. Therefore, LCA again emerged as a toolfor analyzing environmental problems. The methodology for LCA again was beingimproved. The need to move to impact assessment has brought LCA methodology toano<strong>the</strong>r point <strong>of</strong> evolution (SETAC, 1991); (SETAC, 1993); (SETAC, 1997).Standardized LCA methodology came up due to concerns over <strong>the</strong> inappropriate use <strong>of</strong>LCA‟s. This standardization was developed by International Standards Organization (ISO)and was called ISO 14000In 2002, <strong>the</strong> United Nations Environment Programme (UNEP) joined forces with <strong>the</strong>Society <strong>of</strong> Environmental Toxicology and Chemistry (SETAC) to launch <strong>the</strong> Life CycleInitiative, an international partnership. This initiative resulted in three programs that aimat putting <strong>life</strong> <strong>cycle</strong> thinking into practice and at improving <strong>the</strong> supporting tools throughbetter data and indicators. The Life Cycle Impact Assessment (LCIA) program increases<strong>the</strong> quality and global reach <strong>of</strong> <strong>life</strong> <strong>cycle</strong> indicators by promoting <strong>the</strong> exchange <strong>of</strong> viewsamong experts whose work results in a set <strong>of</strong> widely accepted recommendations.98


APPENDIX H - INSULATION VS ACCUMULATIONAppendix I describes that insulation is something else than accumulation. Once you havechosen for <strong>the</strong> path <strong>of</strong> insulation, you have abandoned <strong>the</strong> path <strong>of</strong> accumulation. Thisappendix elaborates <strong>the</strong> differences between <strong>the</strong>se two principals in more detail. Theinformation in this paragraph is provided by M. de Gier, KBnG Architects.Insulation literally means separating. That is exactly what has happened to <strong>the</strong>construction technology through <strong>the</strong> ages. In <strong>the</strong> current construction industry, <strong>the</strong>constructor creates a load bearing construction, <strong>the</strong> construction physicist wraps thisconstruction with insulation and foils and at <strong>the</strong> end <strong>the</strong> architect designs an ethic skin tomake <strong>the</strong> building representative. In this system interaction between <strong>the</strong> inside climateand outside climate can form a threat for <strong>the</strong> health <strong>of</strong> <strong>the</strong> user as well as <strong>the</strong> health <strong>of</strong><strong>the</strong> construction. Cold bridges are spots where condensation takes place. Thiscondensation, which is moisture, can result in mould. Mould is on its turn a causativeagent and causes putrefaction. Putrefaction is not <strong>the</strong> only threat, because also frostforms a threat. Water expands when it freezes and <strong>the</strong>reby can form a threat for <strong>the</strong>stability <strong>of</strong> <strong>the</strong> construction.To prevent this from occurring, construction physicists do not only calculate <strong>the</strong> amount<strong>of</strong> insulation that is needed, but also calculate <strong>the</strong> amount <strong>of</strong> vapor in <strong>the</strong> construction.They prevent condensation in <strong>the</strong> building by wrapping up <strong>the</strong> building with vapor pro<strong>of</strong>foils. To carry <strong>of</strong>f <strong>the</strong> moisture that people produce, powerful mechanic ventilation isinstalled in buildings.The next development was <strong>the</strong> installation <strong>of</strong> a heat-regain system on <strong>the</strong> ventilation <strong>of</strong><strong>the</strong> building, because a lot <strong>of</strong> heat is lost due to <strong>the</strong> mechanic ventilation. To increase <strong>the</strong>returns fur<strong>the</strong>rmore, a part <strong>of</strong> <strong>the</strong> air is reused, after getting <strong>the</strong> moisture out andfiltering it. The question is whe<strong>the</strong>r <strong>the</strong> channels and filters for <strong>the</strong> ventilation are ashealthy as <strong>the</strong>y are stated to be. Most <strong>of</strong> <strong>the</strong> time insulation does not simplifyconstruction. Insulation also does not make construction healthier, because additivetechnology has to provide a healthy inside climate.Principally <strong>the</strong>re is nothing wrong with insulation. However, we should be aware <strong>of</strong> <strong>the</strong>fact that more insulation is not always better. The first centimeters <strong>of</strong> insulation have abig impact, but <strong>the</strong> more insulation is applied, <strong>the</strong> less impact <strong>the</strong> added insulation hasgot. The reason insulation is applied, is to reduce <strong>the</strong> loss <strong>of</strong> heat in a building, withouttoo much increase <strong>of</strong> weight <strong>of</strong> <strong>the</strong> building. A brick wall has about <strong>the</strong> same insulationfactor as one centimeter <strong>of</strong> rock wool, while <strong>the</strong> rock wool weighs almost 40 times lessthan <strong>the</strong> brick wall. Energy loss on itself is not necessarily negative. If a building gains asmuch energy as it loses, <strong>the</strong> energy loss is not a problem. In this case, you do have to beable to gain and store energy in <strong>the</strong> first place, and regain this energy when you need it.A roman church, as described in appendix I, is an example <strong>of</strong> a building that contains alot <strong>of</strong> mass. This church stores a lot <strong>of</strong> energy in <strong>the</strong> summer and emits this energy in<strong>the</strong> winter. Due to <strong>the</strong> balance <strong>of</strong> <strong>the</strong>se energy flows, it is not negative that <strong>the</strong>re is anexchange <strong>of</strong> energy. The balance also causes slowness in <strong>the</strong> course <strong>of</strong> <strong>the</strong> temperature,which prevents a huge demand for <strong>the</strong> correction <strong>of</strong> <strong>the</strong> intern climate. Withoutaccumulation <strong>of</strong> energy, a building follows <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> environment, whichchanges not only by night and day, but also seasonal. Without accumulation, a lot <strong>of</strong>energy has to be added to heat <strong>the</strong> building when it is cold outside and to cool <strong>the</strong>building when it is warm outside.99


APPENDIX I - DEVELOPMENT OF WARMBOUWENThis appendix describes <strong>the</strong> development process <strong>of</strong> WarmBouwen. Information isprovided by M. de Gier, KBnG Architects.In history, when humans were not able to build houses yet, <strong>the</strong>y tried to search for o<strong>the</strong>rkinds <strong>of</strong> residences that could protect <strong>the</strong>m from environmental influences. The Eskimosfor example built igloos to protect <strong>the</strong>mselves against wind and cold. In o<strong>the</strong>r parts <strong>of</strong><strong>the</strong> world humans lived in caves to protect <strong>the</strong>mselves against wind, rain, heat and cold.These caves were a comfortable residence, because <strong>the</strong>re was a constant temperature in<strong>the</strong> cave, <strong>the</strong> whole year long. This constant temperature was <strong>the</strong> result <strong>of</strong> <strong>the</strong> mass <strong>of</strong>stone, where <strong>the</strong> cave consisted <strong>of</strong>. After years this mass <strong>of</strong> stone adopted <strong>the</strong> averageenvironment temperature <strong>of</strong> <strong>the</strong> climate <strong>the</strong>y were situated in. In summer <strong>the</strong> caveprovided cold and in <strong>the</strong> winter <strong>the</strong> cave provided heat. Although caves are not commonin <strong>the</strong> Ne<strong>the</strong>rlands, <strong>the</strong> concept <strong>of</strong> a cave in <strong>the</strong> Ne<strong>the</strong>rlands is very interesting. Theaverage environment temperature in <strong>the</strong> Ne<strong>the</strong>rlands is about 13 degrees Celsius. A cavein <strong>the</strong> Ne<strong>the</strong>rlands would provide a interior temperature <strong>of</strong> 13 degrees Celsius, <strong>the</strong> wholeyear.As mankind, we do not live in caves anymore, but still if we enter an old Roman churchwe experience <strong>the</strong> same principal: a constant temperature. The total mass <strong>of</strong> <strong>the</strong>residence is reduced significantly compared to a cave, and also windows have beenplaced, but <strong>the</strong> fluctuation <strong>of</strong> <strong>the</strong> temperature within <strong>the</strong> residence stays limited. Thetemperature <strong>of</strong> <strong>the</strong> church lies between twelve and fourteen degrees Celsius. Gothicchurches are even thinner than Roman churches, <strong>the</strong> windows are bigger and <strong>the</strong> wallsare less massive. But still <strong>the</strong> winter does not significantly influence <strong>the</strong> temperaturewithin <strong>the</strong>se buildings. The fluctuation <strong>of</strong> <strong>the</strong> temperature is still limited, again due to <strong>the</strong>mass <strong>of</strong> <strong>the</strong> building that reacts very slow on differences in temperature.The walls in <strong>the</strong> examples <strong>of</strong> <strong>the</strong> cave and <strong>the</strong> churches above absorb heat during <strong>the</strong>summer and emit this heat to <strong>the</strong> interior during <strong>the</strong> winter. This principal also works <strong>the</strong>o<strong>the</strong>r way around. In <strong>the</strong> winter <strong>the</strong> walls absorbs cold and emit this to <strong>the</strong> interior in <strong>the</strong>summer.In case <strong>of</strong> a tent, <strong>the</strong>re is a totally different situation. A tent gives shelter against windand rain, but does not provide a constant temperature. The mass <strong>of</strong> <strong>the</strong> tent is minimal,and <strong>the</strong>refore does not accumulate temperature. If <strong>the</strong> tent is situated in <strong>the</strong>Ne<strong>the</strong>rlands, <strong>the</strong> average temperature <strong>of</strong> <strong>the</strong> tent over a year is also thirteen degreesCelsius, but <strong>the</strong> minimum and maximum temperature <strong>of</strong> <strong>the</strong> tent is <strong>the</strong> same as <strong>the</strong>temperatures <strong>of</strong> <strong>the</strong> direct environment <strong>of</strong> <strong>the</strong> tent. This means that in winter <strong>the</strong>temperature can get below freezing point and in summer <strong>the</strong> temperature can rise abovethirty degrees Celsius. The situation <strong>of</strong> <strong>the</strong> tent differs from <strong>the</strong> situation <strong>of</strong> <strong>the</strong> cavedescribed above. A residence without mass results in a highly fluctuating interiortemperature. A residence with mass results in a very constant interior temperature,without large fluctuations.In <strong>the</strong> course <strong>of</strong> past few <strong>the</strong> ages, constructions more and more transformed towards atent concept instead <strong>of</strong> a cave concept. Humans have developed knowledge and insightin construction, and <strong>the</strong>reby have been able to build more and more efficient. Thisdevelopment in efficiency resulted in lighter constructions, because in lighterconstructions, less mass has to be piled up. And less mass was considered to be betterbecause mass is a problem in <strong>the</strong> Ne<strong>the</strong>rlands, due to <strong>the</strong> s<strong>of</strong>t soil which cannot bearhuge loads. This problem could be solved by using piles, but piling, and <strong>the</strong>refore mass,is expensive in <strong>the</strong> Ne<strong>the</strong>rlands. This is one <strong>of</strong> <strong>the</strong> reasons why construction in <strong>the</strong>Ne<strong>the</strong>rlands has become lighter during <strong>the</strong> years.100


The cavity wall has been a very important development for <strong>the</strong> efficiency in <strong>the</strong>construction industry. Brick is not hundred percent waterpro<strong>of</strong>, and <strong>the</strong>refore, moisturecan come through a brick wall. The cavity wall ended this moisture problem. After <strong>the</strong>invention <strong>of</strong> <strong>the</strong> cavity wall, <strong>the</strong> insight <strong>of</strong> insulating <strong>the</strong> cavity wall came up. Thisinsulation had <strong>the</strong> function to keep more heat inside <strong>the</strong> building to increase comfort <strong>of</strong><strong>the</strong> building. New technologies made it possible to build lighter, and <strong>the</strong>reby moreefficient. The disadvantage <strong>of</strong> this development is that <strong>the</strong> industry lost sight <strong>of</strong>accumulation <strong>of</strong> temperature. Nowadays, even <strong>the</strong> best insulated buildings follow <strong>the</strong>seasonal temperatures, <strong>the</strong> „tent principal‟. In winter this results in a comforttemperature that differs 20-25 degrees from <strong>the</strong> construction temperature. Withoutaccumulation, without mass, <strong>the</strong> skin <strong>of</strong> a building follows <strong>the</strong> dominant temperature,which is <strong>the</strong> outside temperature. To preserve <strong>the</strong> comfort temperature inside <strong>the</strong>building, a lot <strong>of</strong> energy has to be put in, and a lot <strong>of</strong> energy is needed to keep <strong>the</strong> heatinside <strong>the</strong> building. In summer this system works <strong>the</strong> o<strong>the</strong>r way around. In summer it isvery hard to lose <strong>the</strong> heat inside <strong>the</strong> building.The efficiency development in <strong>the</strong> construction industry has resulted in lighterconstructions with more insulation, which results in a situation whereby constantregulation <strong>of</strong> <strong>the</strong> interior climate with heat or cold is required.101


APPENDIX J - COMPETITIVE CONCEPTSThis appendix provides insight in possible competitive <strong>concepts</strong> for WarmBouwen. Adescription and evaluation <strong>of</strong> <strong>the</strong> competitive <strong>concepts</strong> is provided. This evaluationprovides information about <strong>the</strong> viability <strong>of</strong> <strong>the</strong> WarmBouwen concept compared to o<strong>the</strong>rpossibilities for <strong>the</strong> <strong>sustainable</strong> <strong>renovation</strong> <strong>of</strong> houses. This elaboration provides moreinformation on <strong>the</strong> relative advantage <strong>of</strong> WarmBouwen. The relative advantage is one <strong>of</strong><strong>the</strong> characteristics <strong>of</strong> an innovation that influences adoption <strong>of</strong> <strong>the</strong> innovation.CONVENTIONAL TECHNIQUESBased on <strong>the</strong> doctoral <strong>the</strong>sis <strong>of</strong> Hoppe (2009), conventional sustainability measures fordwellings are defined. Hoppe describes various applied <strong>sustainable</strong> <strong>renovation</strong> measuresand to what extend each measure is applied in <strong>the</strong> Ne<strong>the</strong>rlands. Figure 102 shows <strong>the</strong>results <strong>of</strong> <strong>the</strong> analysis <strong>of</strong> Hoppe.Hoppe explains <strong>the</strong> standard <strong>sustainable</strong><strong>renovation</strong> measures as follows.(Hoppe, 2009)InsulationClassification: save energyVarious insulation measures can beapplied to decrease <strong>the</strong> need for energyin a house. Ro<strong>of</strong>s, walls, and floors canbe insulated. Also new windows can beapplied with a better insulation value.To decrease <strong>the</strong> lost <strong>of</strong> heat duringtransport, piping can be insulated toimprove efficiency <strong>of</strong> <strong>the</strong> system.High efficiency central heating systemClassification: improving energyefficiencyIn <strong>the</strong> Ne<strong>the</strong>rlands natural gas is <strong>the</strong>most important source <strong>of</strong> energy. Inabout ninety percent <strong>of</strong> <strong>the</strong> Dutchhouses, a central heating system basedon natural gas is applied. The efficiency<strong>of</strong> <strong>the</strong> central heating system has beenimproved from 70% in <strong>the</strong> seventiesuntil 100-107% nowadays.Energy measure ConcretemeasureIncreasedefficiency <strong>of</strong>heating systemInsulation <strong>of</strong>facadesDecreasedlosses forspaceheatingand waterheating Optimization use<strong>of</strong> ventilationsystemRenewableenergy sourcesEnergy savinglightningtechniquesA* B** C*** A* B** C***Individual CHsystem92% 93% 63% 82% 85% 58%High-Efficiencyboiler next toindividual CHsystem55% 43% 80% 30% 30% 21%Floor on 1 st floor 41% 37% 30% 11% 27% 42%Ro<strong>of</strong> 67% 73% 57% 37% 56% 72%Facade 54% 53% 33% 45% 60% 52%Windows 76% 74% 63% 54% 63% 76%Crawling space 38% 36% 20% 10% 23% 37%Insulation piping 42% 30% 15% 4% 22% 16%Balanceventilation onrequest* Duplex house1%


are rarely applied in <strong>the</strong> Ne<strong>the</strong>rlands. Broadly applied “standard <strong>renovation</strong>” measuresare:- High efficiency central heating system- Insulation <strong>of</strong> floor, walls (facade), ro<strong>of</strong>, and windows- Insulation <strong>of</strong> pipingThe standard <strong>renovation</strong> measures listed above are <strong>the</strong> base for <strong>the</strong> definition <strong>of</strong> <strong>the</strong>“standard <strong>renovation</strong> concept”, which is elaborated in appendix C1.EVALUATION STANDARD RENOVATION MEASURESThis research points out that <strong>the</strong> relative advantage <strong>of</strong> standard <strong>renovation</strong> measures isless advantageous than <strong>the</strong> relative advantage <strong>of</strong> WarmBouwen, see Chapter 6. Thecompatibility <strong>of</strong> <strong>the</strong> standard <strong>renovation</strong> is better than <strong>the</strong> WarmBouwen <strong>renovation</strong>,because it is easier to apply <strong>the</strong> standard <strong>renovation</strong> measures than <strong>the</strong> WarmBouwenconcept. The WarmBouwen concept can be considered as more complex than <strong>the</strong>standard <strong>renovation</strong> concept, which results in a better score <strong>of</strong> <strong>the</strong> standard <strong>renovation</strong>on <strong>the</strong> aspect <strong>of</strong> complexity. The score on trialability <strong>of</strong> <strong>the</strong> standard <strong>renovation</strong> conceptand <strong>the</strong> WarmBouwen <strong>renovation</strong> concept are considered to be equal. The barrier to try<strong>the</strong> <strong>concepts</strong> in practice is equal. Lastly, WarmBouwen scores better on <strong>the</strong> aspect <strong>of</strong>observability. The transparency <strong>of</strong> <strong>the</strong> advantages is equal, but <strong>the</strong> WarmBouwenconcept has is more advantageous to occupants <strong>of</strong> dwellings which makes it possible tocommunicate <strong>the</strong>se advantages in a better way than at <strong>the</strong> standard <strong>renovation</strong> concept.CONCLUSIONWarmBouwen scores better on <strong>the</strong> characteristics relative advantage and observability.The score <strong>of</strong> <strong>the</strong> two <strong>concepts</strong> is equal on <strong>the</strong> aspect trialability. The standard <strong>renovation</strong>concept scores better on compatibility and complexity.INNOVATIVE CONCEPTSThis subparagraph evaluates three possible alternatives for WarmBouwen. The threealternatives that are evaluated are considered to be highly <strong>sustainable</strong>. The goal <strong>of</strong> thissubparagraph is to determine whe<strong>the</strong>r or not <strong>the</strong>se <strong>concepts</strong> are competitive <strong>concepts</strong> forWarmBouwen in <strong>the</strong> field <strong>of</strong> large scale housing <strong>renovation</strong>.PASSIVE HOUSEThe passive house concept is a development <strong>of</strong> <strong>the</strong> German “Passivhaus Insitut”. Theconcept consists <strong>of</strong> a thoroughly insulated house in combination with a good ventilationsystem that is provided with an effective heat regain system. This paragraph providesmore information about <strong>the</strong> passive house concept.A building in which a comfortable interior climate can be maintained without an activeheating and cooling system, is called a passive house (Adamson, 1987) & (Feist, 1988).A passive house heats and cools itself. (www.passiv.de)The passive house institute in Germany considers <strong>the</strong> features in figure 103 as basicfeatures that distinguish passive house constructions (www.passiv.de)The passive house institute determined that <strong>the</strong> combined primary energy consumption<strong>of</strong> living area <strong>of</strong> a European passive house may not exceed 120 (kWh/m²) per year forspace heating, hot water, and household electricity. (www.passiv.de)FeatureCompact form and goodinsulationSou<strong>the</strong>rn orientation andshade considerationsDetailsAll components <strong>of</strong> <strong>the</strong> exterior shell <strong>of</strong> <strong>the</strong> house are insulated toachieve a U-factor that does not exceed 0.15 W/m 2 *KPassive use <strong>of</strong> solar energy is a significant factor in passive housedesign103


Energy-efficient windowglazing and framesBuilding envelope airtightnessPassive preheating <strong>of</strong>fresh airHighly efficient heatrecovery from exhaust airWindows (glazing and frames, combined) should have U-factors thatdon‟t exceed 0.80 W/m 2 *K, with solar heat-gain coefficients around50%Air leakage through unsealed joint must be less than 0.6 times <strong>the</strong>house volume per hourFresh air can be brought into <strong>the</strong> house through underground ductsthat exchange heat with <strong>the</strong> soil.Most <strong>of</strong> <strong>the</strong> perceptible heat in <strong>the</strong> exhaust air is transferred to <strong>the</strong>incoming fresh air. (Heat recovery rate over 80%)FIGURE 103-BASIC FEATURES OF PASSIVE HOUSES, (WWW.PASSIV.DE)EVALUATION PASSIVE HOUSEThis section evaluates <strong>the</strong> applicability <strong>of</strong> <strong>the</strong> passive house concept on <strong>the</strong> criteria <strong>of</strong> <strong>the</strong>concept, listed in figure 103.Compact form and good insulationIn case <strong>of</strong> a <strong>renovation</strong> project, <strong>the</strong> form <strong>of</strong> <strong>the</strong> building has already been established at<strong>the</strong> development <strong>of</strong> <strong>the</strong> building. It is very hard to adapt <strong>the</strong> form <strong>of</strong> <strong>the</strong> building in a waythat is economically feasible and technical feasible at <strong>the</strong> same time. At <strong>renovation</strong>projects <strong>the</strong>re are only little things to do, to create a more compact form <strong>of</strong> <strong>the</strong> building.Creating a good insulation (passive house pro<strong>of</strong>) is possible in a <strong>renovation</strong> project.However, it should be taken into account that it is not easy to improve <strong>the</strong> existingfacades towards a U-factor <strong>of</strong> 0.15 W/m 2 *K maximum. If <strong>the</strong> insulation is added to <strong>the</strong>inside <strong>of</strong> <strong>the</strong> facades, a significant loss <strong>of</strong> living area will occur. If <strong>the</strong> insulation is addedto <strong>the</strong> outside <strong>of</strong> <strong>the</strong> façade, a thick package <strong>of</strong> insulation must be added. The question iswhe<strong>the</strong>r this can be done, without applying additional expensive constructiveadaptations. Also <strong>the</strong> thick package <strong>of</strong> insulation has got a big influence <strong>of</strong> <strong>the</strong> ethics <strong>of</strong> abuilding and <strong>the</strong> public space around <strong>the</strong> building.Sou<strong>the</strong>rn orientation and shade considerationsGiven <strong>the</strong> fact that an existing buildings is already built, nothing can be done on <strong>the</strong>aspect <strong>of</strong> orientation. Constructive adaptations can have a positive influence on shadeconsiderations and <strong>the</strong> orientation issues, but <strong>the</strong>se adaptations are hard and expensiveto execute.Energy-efficient window glazing and framesIt is possible to make adaptations on <strong>the</strong> aspect <strong>of</strong> windows and frames. In a <strong>renovation</strong>project it is no issue to change <strong>the</strong> windows and frames, although <strong>the</strong> building shouldfacilitate <strong>the</strong> use <strong>of</strong> triple-glazing.Building envelope air tightnessIn <strong>the</strong> passive house concept, <strong>the</strong> air leakage is maximum 0,6 times <strong>the</strong> house volumeper hour. In new development it is quite easy to seal joints, because <strong>the</strong>y are still easilyaccessible. In case <strong>of</strong> <strong>renovation</strong> however, it is much harder to have access to <strong>the</strong>sejoints. Therefore, <strong>the</strong> costs and <strong>the</strong> difficulty to reach passive house values for airtightness are much higher than in case <strong>of</strong> new development.Passive pre-heating <strong>of</strong> fresh airConsidering <strong>the</strong> fact that <strong>the</strong> pre-heating takes place in underground ductwork, it can bestated that this technique can be applied if <strong>the</strong>re is space to apply <strong>the</strong> undergroundductwork next to <strong>the</strong> building, instead <strong>of</strong> under <strong>the</strong> building. It depends upon <strong>the</strong>dimensions <strong>of</strong> <strong>the</strong> pre-heating system whe<strong>the</strong>r this can be applied in case <strong>of</strong> <strong>renovation</strong>projects.104


Heat recovery from exhaust air usingHeat recovery from exhaust air can be easily applied in new development as well as in<strong>renovation</strong> projects. This measure <strong>of</strong> <strong>the</strong> passive house concept forms no problem in<strong>renovation</strong> projects.CONCLUSIONGenerally, it can be said that <strong>the</strong> passive house concept is a concept that is developed fornew development buildings. This makes this concept less suitable for <strong>the</strong> <strong>renovation</strong> <strong>of</strong>building. Therefore, <strong>the</strong> conclusion is that, although <strong>the</strong> passive house is an interestingand proven <strong>sustainable</strong> concept, <strong>the</strong> applicability <strong>of</strong> <strong>the</strong> concept on <strong>renovation</strong> projects islimited. The aspects that are easily applicable for <strong>renovation</strong> projects (energy-efficientglazing and heat recovery from exhaust air) are inferior to <strong>the</strong> aspects that are hard toapply in <strong>renovation</strong> projects (compact form and insulation, orientation, pre-heating <strong>of</strong>fresh air, and air tightness).HOUSE WITH PASSIVE SOLAR DESIGNA house with a passive solar design makes use <strong>of</strong> <strong>the</strong> sun‟s energy for <strong>the</strong> heating andcooling <strong>of</strong> living spaces. The building itself takes advantage <strong>of</strong> natural energycharacteristics in materials and air created by exposure to <strong>the</strong> sun. The advantage <strong>of</strong> apassive design is that it is a simple design with few moving parts, which requires minimalmaintenance and no mechanical systems. Common elements that are found in passivedesigns are operable windows, <strong>the</strong>rmal mass and <strong>the</strong>rmal chimneys.Operable windows are windows that simply can be opened and closed. Thermal massrefers to materials such as masonry and water that can store heat energy for extendedtime. Thermal mass prevents rapid temperature changes. Thermal chimneys create orreinforce <strong>the</strong> hot air rising effect to induce air movement for cooling purposes.(passivesolar.<strong>sustainable</strong>sources.com)Passive design is a proven concept and is practiced throughout <strong>the</strong> world. Passive designis known to produce buildings with low energy needs, reduced maintenance, and highcomfort. The key aspects <strong>of</strong> passive design are:- Appropriate solar orientation- Use <strong>of</strong> <strong>the</strong>rmal mass- Appropriate ventilation and window placementTo be able to make an effective passive design, a designer should have specificunderstanding <strong>of</strong> a building site‟s:- Wind patterns- Terrain- Vegetation- Solar exposureA basic understanding <strong>of</strong> <strong>the</strong>se issues can have a significant effect on <strong>the</strong> energy<strong>performance</strong> <strong>of</strong> a building.EVALUATIONThe passive solar design house is a concept with similarities to <strong>the</strong> passive houseconcept. However, <strong>the</strong> passive solar design focuses on reducing <strong>the</strong> amount <strong>of</strong>mechanical elements in <strong>the</strong> house, where <strong>the</strong> passive house <strong>concepts</strong> does integrates<strong>the</strong>se mechanical elements. The text below evaluates <strong>the</strong> applicability <strong>of</strong> <strong>the</strong> passivesolar design concept on <strong>the</strong> criteria <strong>of</strong> <strong>the</strong> concept.Appropriate solar orientationGiven <strong>the</strong> fact that an existing building is already built, nothing can be done on <strong>the</strong>aspect <strong>of</strong> orientation. Constructive adaptations can have a positive influence on shadeconsiderations and <strong>the</strong> orientation issues, but <strong>the</strong>se adaptations are mostly hard and105


expensive to execute. Adapting <strong>the</strong> solar orientation <strong>of</strong> a house is hard to execute in a<strong>renovation</strong> project.Use <strong>of</strong> <strong>the</strong>rmal massIf you want to make use <strong>of</strong> <strong>the</strong>rmal mass effectively, this aspect should be integratedinto <strong>the</strong> design <strong>of</strong> a building before it is built. Is most cases it will be hard and costly toimplement <strong>the</strong> use <strong>of</strong> <strong>the</strong>rmal mass into <strong>the</strong> <strong>renovation</strong> <strong>of</strong> a house.Appropriate ventilation and window placementThe ventilation <strong>of</strong> a building can be adapted into a certain extend. This is a measure thatcan be applied in <strong>renovation</strong> projects. The window placement on <strong>the</strong> o<strong>the</strong>r hand, is lesseasy to adapt in <strong>renovation</strong> projects. The window placement is determined at <strong>the</strong>development <strong>of</strong> <strong>the</strong> house. This can be adapted in a <strong>renovation</strong> project, but this will becostly. The question is whe<strong>the</strong>r or not this is cost effective on <strong>the</strong> long term.Cater to wind pattern, terrain, vegetation and solar exposureIn case <strong>of</strong> a <strong>renovation</strong> project, it is plausible that <strong>the</strong> building has been built withouttaking <strong>the</strong> aspects <strong>of</strong> wind, terrain, vegetation and solar exposure into account from anenergy efficiency point <strong>of</strong> view. To cater <strong>the</strong>se aspects in a better way, constructiveadaptations have to be implemented to <strong>the</strong> building during <strong>the</strong> <strong>renovation</strong>. This makes ithard to implement <strong>the</strong>se measures on a cost effective way.CONCLUSIONThe basic principles <strong>of</strong> passive solar design houses are an appropriate solar orientation,taking advantage <strong>of</strong> <strong>the</strong>rmal mass principle, an appropriate ventilation system andwindow placement, and taking <strong>the</strong> wind pattern, terrain, and vegetation into account.Most <strong>of</strong> <strong>the</strong>se aspects are hard and costly to implement in a <strong>renovation</strong> project.Therefore, this concept is not suitable for large scale <strong>renovation</strong> <strong>of</strong> houses in <strong>the</strong>Ne<strong>the</strong>rlands.EARTH HOUSEThe aim <strong>of</strong> an earth house is to live with <strong>the</strong> ground, instead <strong>of</strong> on <strong>the</strong> ground. Aconventional house is built into <strong>the</strong> air, which results in <strong>the</strong> loss <strong>of</strong> heat and humidity.Also <strong>the</strong> exterior shell <strong>of</strong> a building loses <strong>life</strong>span as a result <strong>of</strong> environmental influences.An earth house uses <strong>the</strong> ground as an insulating blanket that protects <strong>the</strong> house fromenvironmental influences like rain, wind, and low or high temperatures.(www.erdhaus.ch)Unique about <strong>the</strong> earth house concept is that it uses its surroundings as an advantage.The surroundings are not adapted to <strong>the</strong> building, but <strong>the</strong> house is shaped in order topreserve <strong>the</strong> natural environment. Figure 104 shows <strong>the</strong> principal <strong>of</strong> <strong>the</strong> earth house.FIGURE 104- EARTH HOUSE PRINCIPAL (WWW.ERDHAUS.CH)106


According to www.erdhaus.ch, <strong>the</strong> earth house has <strong>the</strong> following advantages:InsulationDue to decreased heat losses in <strong>the</strong> facades <strong>of</strong> <strong>the</strong> house, energy savings for heating cango up to fifty percent. Therefore, an earth house can be considered to be highly CO 2friendly.Air-permeabilityThe specific architecture <strong>of</strong> earth houses make <strong>the</strong>m nearly airtight. This results indraught free rooms, no structural damage due to humid, a high extend <strong>of</strong> controllability<strong>of</strong> <strong>the</strong> interior climate, and improved sound insulation.Soil-covered ro<strong>of</strong>sThe earth house uses <strong>the</strong> ground as insulation. The ground protects <strong>the</strong> house effectivelyfrom wind, rain, temperature and o<strong>the</strong>r environmental influences like natural abrasion.Due to <strong>the</strong> soil on top <strong>of</strong> <strong>the</strong> house, <strong>the</strong> temperature in summer stays low and <strong>the</strong>temperature in winter stays high.Sustainable usage <strong>of</strong> energy and renewable energyDue to <strong>the</strong> architecture <strong>of</strong> <strong>the</strong> house, it is particularly suitable for alternative heatingsystems. Air, ground, sun, and water can be used as an alternative heat source.CONCLUSIONAn earth house has got some unique advantages but is unsuitable as a <strong>renovation</strong>technique. By realizing an earth house, <strong>the</strong> construction should be suitable for <strong>the</strong> mass<strong>of</strong> <strong>the</strong> soil that comes on top <strong>of</strong> <strong>the</strong> house. It is clear that <strong>the</strong> construction <strong>of</strong> <strong>the</strong> existinghouses in <strong>the</strong> Ne<strong>the</strong>rlands is not calculated upon this mass, and <strong>the</strong>refore is not suitablefor bearing this load. Next to that, <strong>the</strong> earth house concept is only applicable for houseswith a limited height and <strong>the</strong>re should be enough space to wrap <strong>the</strong> building with soil andvegetation. Mostly, this space is unavailable at high density Dutch residential areas.PERFORMANCE EVALUATION OF ALL CONCEPTSStandard<strong>renovation</strong>Passivesolar designPassivehouse Earth houseWarmBouwenProgress on system change process (Dieleman) + +/- +/- +/- +/-Current adoption rate <strong>of</strong> innovation +/- - - - --Relative advantage +/- + ++ ++ ++Compatability + + +/- + +/-Complexity + + - + +/-Trialability - - - - -Observability +/- + + + +Suitability for <strong>renovation</strong> ++ -- -- -- +The table above shows an overview <strong>of</strong> <strong>the</strong> <strong>performance</strong> evaluation <strong>of</strong> <strong>the</strong> identifiedcompetitive <strong>concepts</strong> <strong>of</strong> WarmBouwen.107


APPENDIX K - SOIL CONDITIONSFigure 105 shows <strong>the</strong> quality <strong>of</strong> <strong>the</strong> soil in <strong>the</strong> Ne<strong>the</strong>rlands regarding <strong>the</strong> applicability <strong>of</strong>an aquifer. The list below explains <strong>the</strong> meanings <strong>of</strong> <strong>the</strong> different colors on <strong>the</strong> map.Red:Pink:Orange:Yellow:restriction areas, applying an aquifer is impossible.suitability for applying an aquifer is very good.suitability for applying an aquifer is good.suitability for applying an aquifer is moderate.FIGURE 105 - SUITAB ILITY OF THE SOIL FOR AN AQUIFER. SOURCE: TNO & IF108


APPENDIX L - BREAKDOWN STRUCTURE MODELFigure 106 provides a tree-breakdown-structure <strong>of</strong> <strong>the</strong> „<strong>life</strong> <strong>cycle</strong> <strong>performance</strong> evaluationmodel‟ that is depicted in section 4.2.1 <strong>of</strong> this research. Al <strong>the</strong> identified factors and subfactors<strong>of</strong> influence on <strong>the</strong> <strong>life</strong> <strong>cycle</strong> <strong>performance</strong> <strong>of</strong> <strong>renovation</strong> concept are integrated in<strong>the</strong> structure.Lifespan <strong>of</strong> elementsLifespan <strong>of</strong> buildingReference buildingScope1 st levelsubfactorsBoundaryconditionsBoundaryfactorsLife CyclePerformanceLife CycleCostsLife CycleYieldsLife CycleEnvironmentalImpactQualityEnergyPerformanceCoefficientMainfactorsExternal factorsFinancial factorsRisksPrimary returnsSecondary returnsAssemblyLife <strong>cycle</strong>DisposalUser healthFuture valueTechnical qualityTechnical<strong>performance</strong>Installationtechniques1 st levelsubfactorsDevelopmentenergy priceDiscount rateRentMaterialsProcessing &manufacturingTransportSoundAir qualityThermal comfortLight and visualcomfortVentilationTap waterSpace heatingSpace cooling2 nd levelsubfactorsInitial investmentExit yieldEnergy useEnergy useTransmissionOperating costsMaintenance costsDisposal costsReplacement <strong>of</strong>elementsEnergy useReplacement <strong>of</strong>elementsInfiltrationThermal capacityChange over costsReplacement costs<strong>of</strong> elementsFIGURE 106 - BREAKDOWN STRUCTURE OF THE 'LIFE CYCLE PERFORMANCE EVALUATION MODEL'109


APPENDIX M - EVALUATION EXISTING MODELSThis appendix provides an evaluation <strong>of</strong> <strong>the</strong> quality <strong>of</strong> <strong>the</strong> four analyzed sustainabilityassessment tools.GPR GEBOUWGPR Gebouw is sustainability assessment tool that is recently updated. The factors thatare taken into account in this tool are very useful for developing a <strong>performance</strong>evaluation model for <strong>sustainable</strong> <strong>renovation</strong> <strong>concepts</strong> because <strong>the</strong> tool is very completeand quantifies scores on <strong>the</strong> quality aspect. However, this tool also has someshortcomings. GPR Gebouw gives no indication <strong>of</strong> <strong>the</strong> financial <strong>performance</strong> <strong>of</strong> a<strong>renovation</strong> concept. Therefore, <strong>the</strong> sustainability score can give a distorted image <strong>of</strong> aconcept. For several aspects that are considered in GPR Gebouw, it is not plausible that<strong>the</strong>y will be influenced by <strong>renovation</strong> measures. It is improbable that house ownersinvest in aspects as water, social safety, and accessibility during a <strong>sustainable</strong><strong>renovation</strong>. Thus, <strong>the</strong> GPR tool contains several factors that are improbable to beinfluenced by a <strong>sustainable</strong> <strong>renovation</strong>. For <strong>the</strong> development <strong>of</strong> a <strong>performance</strong> evaluationmodel for <strong>renovation</strong> <strong>concepts</strong>, several aspects can be used. For a comprising view on<strong>the</strong> <strong>sustainable</strong> <strong>performance</strong> <strong>of</strong> a <strong>renovation</strong> concept, a <strong>life</strong> <strong>cycle</strong> approach should beintegrated in <strong>the</strong> <strong>performance</strong> evaluation tool. GPR Gebouw does apply a <strong>life</strong> <strong>cycle</strong>approach on <strong>the</strong> field <strong>of</strong> energy use <strong>of</strong> <strong>the</strong> building and <strong>the</strong> environmental impact.However, on <strong>the</strong> field <strong>of</strong> material use, processes and manufacturing, transport and <strong>the</strong>financial aspects, this tool does not integrate <strong>the</strong> <strong>life</strong> <strong>cycle</strong> approach. Next to that, <strong>the</strong>environmental impact <strong>of</strong> GPR Gebouw is only represented in CO 2 equivalents, while it isplausible that <strong>the</strong> focus in <strong>the</strong> field <strong>of</strong> environmental <strong>performance</strong> will change in <strong>the</strong>future.BREEAMBREEAM is an extensive sustainability assessment tool. Many aspects are taken intoaccount in this tool and all aspects are quantified to form an overall end score. This toolis very useful, but mainly for <strong>the</strong> assessment <strong>of</strong> new development <strong>of</strong> real estate. Ano<strong>the</strong>rdisadvantage <strong>of</strong> <strong>the</strong> tool is that only certified pr<strong>of</strong>essionals are obliged to perform anassessment, which is expensive. A lot <strong>of</strong> factors that are taken into account in BREEAMare improbable to be changed by <strong>renovation</strong> measures. Large parts <strong>of</strong> <strong>the</strong> transport-,water-, waste-, land use & ecology-, and pollution modules are not affected by<strong>sustainable</strong> <strong>renovation</strong> measures for houses. Also, <strong>the</strong> tool takes costs into account intolimited extend. For determining <strong>the</strong> environmental impact <strong>of</strong> <strong>the</strong> building, <strong>the</strong> total <strong>life</strong><strong>cycle</strong> is not taken into account. Therefore, <strong>the</strong> sustainability score can give a distortedimage <strong>of</strong> a <strong>renovation</strong> concept. Ano<strong>the</strong>r disadvantage <strong>of</strong> this tool is that <strong>the</strong> assessmentleads towards an amount <strong>of</strong> points. It is hard to deduce, which specifications leadtowards <strong>the</strong> score. This makes it difficult for clients or homeowners to make a decisionfor a certain <strong>renovation</strong> concept based upon <strong>the</strong>ir specific stakes and interests. However,<strong>the</strong> tool does provide useful aspects that should be taken into account by a <strong>performance</strong>evaluation tool for <strong>sustainable</strong> <strong>renovation</strong> <strong>concepts</strong>.EPWThe EPW tool is <strong>the</strong> most widely applied sustainability assessment tool in <strong>the</strong>Ne<strong>the</strong>rlands. The Dutch government applies EPW requirements in <strong>the</strong>ir laws andregulations. This makes this tool a very important one in <strong>the</strong> Dutch market. EPW is avery useful tool for determining <strong>the</strong> sustainability <strong>performance</strong> <strong>of</strong> <strong>renovation</strong> concept in<strong>the</strong> field <strong>of</strong> energy (<strong>the</strong> Energy Performance Coefficient, EPC) because <strong>the</strong> tool andoutput are widely known and an assessment is easy to execute. However, <strong>the</strong> tool has itsshortcomings on <strong>the</strong> o<strong>the</strong>r factors that influence <strong>the</strong> <strong>performance</strong> <strong>of</strong> <strong>renovation</strong> <strong>concepts</strong>.Although, <strong>the</strong> energy <strong>performance</strong> coefficient provides information about <strong>the</strong> operational110


costs and operational environmental impact, a large part <strong>of</strong> <strong>the</strong>se aspects is not takeninto account. Also, <strong>the</strong> qualitative <strong>performance</strong> <strong>of</strong> <strong>renovation</strong> concept cannot bedetermined with EPW. GPR Gebouw and Greencalc are examples, whereby <strong>the</strong> EPWs<strong>of</strong>tware is embedded, which make <strong>the</strong>se tools more comprising than EPW. The execution<strong>of</strong> EPW results in a energy <strong>performance</strong> coefficient <strong>of</strong> a building. This EPC refers to <strong>the</strong>energy <strong>performance</strong> on <strong>the</strong> moment <strong>of</strong> evaluation. However, for a comprising view on <strong>the</strong><strong>sustainable</strong> <strong>performance</strong> <strong>of</strong> a <strong>renovation</strong> concept, <strong>the</strong> <strong>life</strong> <strong>cycle</strong> <strong>of</strong> <strong>the</strong> building and itsconcept should also be taken into account. The <strong>life</strong> <strong>cycle</strong> approach is not integrated in <strong>the</strong>EPW tool.GREENCALCGreencalc is <strong>the</strong> only tool that performs a <strong>life</strong> <strong>cycle</strong> assessment to determine <strong>the</strong>environmental impact <strong>of</strong> a building. On this aspect Greencalc is <strong>the</strong> most accurate andcomprising tool. The EPC that is determined by EPW is embedded in <strong>the</strong> Greencalcs<strong>of</strong>tware. Thus, Greencalc also takes <strong>the</strong> energy <strong>performance</strong> into account. The thirdmodule is water. Like described before, it is improbable that house owners invest inaspects as water usage when selecting a <strong>renovation</strong> concept. The shortcomings <strong>of</strong> <strong>the</strong>tool are <strong>the</strong> financial aspects and quality <strong>of</strong> a <strong>renovation</strong> concept, which are not takeninto account.111


APPENDIX N - ELABORATION OF IMPROVEMENTSThis appendix provides an elaboration <strong>of</strong> <strong>the</strong> impact evaluation <strong>of</strong> possible improvements<strong>of</strong> <strong>the</strong> WarmBouwen concept. The impact <strong>of</strong> <strong>the</strong> improvements is elaborated on <strong>the</strong> fivemain factors <strong>of</strong> influence on <strong>the</strong> live <strong>cycle</strong> <strong>performance</strong>.IMPROVEMENT 1 – GAS HEAT PUMPThe first improvement <strong>of</strong> <strong>the</strong> WarmBouwen is replacing <strong>the</strong> electric heat pump by a gasheat pump. In <strong>the</strong> sections below, <strong>the</strong> impact <strong>of</strong> this improvement is elaborated.ELABORATION OF THE IMPACT ON PERFORMANCEAssumptions that are made at <strong>the</strong> elaboration are described in figure 107.# Field <strong>of</strong>impact <strong>of</strong>assumptionAssumptionMotivation1 LCEIGas used byheat pumpThe gas that is selected for usein a heat pump is “Heat,natural gas, at diffusionabsorption heat pump 4kW,future/CH S”2 LCC The investment costs andtechnical <strong>life</strong>span <strong>of</strong> anindividual gas heat pump areequal to <strong>the</strong>se characteristics<strong>of</strong> an electric heat pump3 LCEI The environmental impact <strong>of</strong><strong>the</strong> materials and processesthat are required to produce<strong>the</strong> gas heat pump is equal to<strong>the</strong> environmental impact <strong>of</strong> anelectric heat pumpFIGURE 107 - ASSUMPTIONS FOR IMPROVEMENT GAS HEAT PUMPThis product matches <strong>the</strong> bestwith <strong>the</strong> situation in reality. Thecapacity <strong>of</strong> <strong>the</strong> heat pump inreality will be a little higher(approximately 7 kW). However,this product matches good with<strong>the</strong> real situation.The differences in dimensions andprocessed materials between <strong>the</strong>two types <strong>of</strong> heat pumps can beneglected.The differences in dimensions andprocessed materials between <strong>the</strong>two types <strong>of</strong> heat pumps can beneglected. Therefore, <strong>the</strong>environmental impact is assumedto be <strong>the</strong> same.EPCFigure 108 shows <strong>the</strong> effect <strong>of</strong> applying a gat heat pump instead <strong>of</strong> an electric heatpump. The efficiency <strong>of</strong> a gas heat pump is significantly lower than <strong>the</strong> efficiency <strong>of</strong> anelectric heat pump. Therefore, <strong>the</strong> <strong>performance</strong> on EPC also decreases.EPC <strong>performance</strong> Effect on primary energy use (MJ)Apply gas heat pump +0.32 +14607FIGURE 108 - EFFECT ON EPC OF GAS HEAT PUMPThe EPC <strong>of</strong> <strong>the</strong> WarmBouwen concept increases from 0,70 to 1,02 when if a gas heatpump is used for <strong>the</strong> production <strong>of</strong> heat and cold.LCCInitial operational costs:AspectEnergy Used energy Costs (€)source (MJ)Heating Gas 18435 337Warm tap water Gas 21936 401Summer comfort Electricity 339 22Fixed costs for connection to electricity - - 237112


gridFixed costs for connection to gas grid - - 180,21Energy tax decrease - - -379,16Total 798Figure 109 shows <strong>the</strong> impact <strong>of</strong> <strong>the</strong> application <strong>of</strong> <strong>the</strong> gas heat pump on <strong>the</strong> factor „<strong>life</strong><strong>cycle</strong> costs‟.Initial operating Average yearly LCCcostsWarmBouwen 1526 9714WarmBouwen withsolar systems798 6041FIGURE 109 - IMPACT ON LCC OF GAS HEAT PUMPLCYThe impact <strong>of</strong> <strong>the</strong> gas heat pump on <strong>the</strong> <strong>performance</strong> on <strong>the</strong> factor „<strong>life</strong> <strong>cycle</strong> yields‟ isdepicted in figure 110.WarmBouwen<strong>renovation</strong> + gas heatpumpWarmBouwen<strong>renovation</strong>Normalized Weigh Normalized Weighscore factor score factorPrimary returns 0,974 0,863 1 0,863Secundary returns 1 0,087 1 0,087Risk 1 0,05 1 0,05Total normalizedscore 0,98 1,00FIGURE 110 - IMPACT GAS HEAT PUMP ON LCYLCEIThe impact <strong>of</strong> <strong>the</strong> gas heat pump on <strong>the</strong> <strong>performance</strong> on <strong>the</strong> factor „<strong>life</strong> <strong>cycle</strong>environmental impact‟ is depicted in figure 111.ScoresScenarioAspectWarmBouwen<strong>renovation</strong>WarmBouwen<strong>renovation</strong> +gas heat pumpx.2.2.y Greenhouse 106 100Ozone layer 0,0968 0,0879Acidification 22,8 21Eutrophication 8,48 7,84Heavy metals 70,1 69,9Carcinogens 11,8 14,9Pesticides 0 0Summer smog 9,12 10,7Winter smog 18,4 17,6Energy resources 146 147Total 393 389Converting factor 1 1Total (converted) 393 389Normalized score 0,990 1FIGURE 111 - IMPACT OF GAS HEAT PUMP ON LCEIQualityApplying a gas heat pump instead <strong>of</strong> an electric heat pump at <strong>the</strong> WarmBouwen conceptdoes not influence <strong>the</strong> <strong>performance</strong> <strong>of</strong> <strong>the</strong> concept on <strong>the</strong> aspect quality.113


IMPROVEMENT 2 – SOLAR ENERGY SYSTEMSThe first improvement <strong>of</strong> <strong>the</strong> WarmBouwen is <strong>the</strong> application <strong>of</strong> solar energy systems. In<strong>the</strong> sections below, <strong>the</strong> impact <strong>of</strong> this improvement is elaborated.ELABORATION OF THE IMPACT ON PERFORMANCEAssumptions that are made at <strong>the</strong> elaboration are described in figure 112.# Field <strong>of</strong> impact<strong>of</strong> assumptionAssumptionMotivation1 LCEISolar heatingsystem2 LCEISolar heatingsystem3 LCEIPV-cells4 EPCPV-cellsSolar heatingsystem5 LCCInvestment PVcells4 LCCInvestment solarheating systemThe weight <strong>of</strong> a solarheating <strong>of</strong> 4 m 2 systemis 32 kg.The product that isselected for <strong>the</strong> solarheating system is “Solarcollector glass tube,with silver mirror, atplant/DE S”The product that isselected for <strong>the</strong> PV-cellsis “Photovoltaic panel,multi-Si, at plant/RER/IS”The orientation <strong>of</strong> <strong>the</strong>panels is south.The intitial investmentfor 3,9 m 2 PV-cells is€2850.The intitial investmentfor 4 m 2 solar heatingsystem is €2500.FIGURE 112 - ASSUMPTIONS FOR IMPROVEMENT SOLAR ENERGY SYSTEMSThis information is provided by M.Jansen, which is a specialist fromsolar energy company “Energieker”,Amsterdam.This product refers to an averagesolar heating system. For thisevaluation <strong>the</strong> assumption is madethat <strong>the</strong> evaluated system is anaverage system.This product corresponds best with<strong>the</strong> product that is <strong>of</strong>fered by solarenergy company “Energieker”,Amsterdam.Depends on <strong>the</strong> situation. This is <strong>the</strong>most desired orientation, which leadsto <strong>the</strong> best <strong>performance</strong>This information is provided by M.Jansen, which is a specialist fromsolar energy company “Energieker”,Amsterdam.This information is provided by M.Jansen, which is a specialist fromsolar energy company “Energieker”,Amsterdam.EPCFigure 113 shows <strong>the</strong> effect <strong>of</strong> applying a 3,9 m 2 PV-cell, and 4 m 2 solar heating systemto a WarmBouwen renovated house on <strong>the</strong> factor „energy <strong>performance</strong> coefficient‟. Theeffect <strong>of</strong> <strong>the</strong> solar heating systems is determined by calculations in <strong>the</strong> s<strong>of</strong>tware toolEPW.EPC <strong>performance</strong> Effect on primary energy use (MJ)3,9 m 2 PV-cell -0.11 -47684 m 2 Solar heating system -0.14 -6155Total -0.24 -10923FIGURE 113 - EFFECT ON EPC OF SOLAR ENERGY SY STEMSThe EPC <strong>of</strong> <strong>the</strong> WarmBouwen concept decreases from 0,70 to 0,46 if <strong>the</strong> defined solarsystem are applied.LCCThe impact <strong>of</strong> <strong>the</strong> solar energy systems on <strong>the</strong> <strong>performance</strong> on <strong>the</strong> factor „<strong>life</strong> <strong>cycle</strong> costs‟is depicted in figure 114.114


Initial operating costs:AspectEnergy Used energy Costs (€)source (MJ)Heating Electricity 11296 722Secondary heating energy Electricity 969 62Warm tap water Electricity 7344 469Summer comfort Electricity 339 22Production PV-cell Electricity -4768 -305Fixed costs for connection to electricity - - 237gridEnergy tax decrease - - -379,16Total 1065Figure 114 shows <strong>the</strong> impact <strong>of</strong> <strong>the</strong> application <strong>of</strong> <strong>the</strong> defined solar systems.Initial investment Initial operating Average yearly LCCcostsWarmBouwen 22461 1526 9714WarmBouwen withsolar systems27811 1065 7771FIGURE 114 - IMPACT OF SOLAR ENERGY SY STEMS ON LCCLCYThe impact <strong>of</strong> <strong>the</strong> solar energy systems on <strong>the</strong> <strong>performance</strong> on <strong>the</strong> factor „<strong>life</strong> <strong>cycle</strong>yields‟ is depicted in figure 115.WarmBouwen<strong>renovation</strong>WarmBouwen<strong>renovation</strong> + solarsystemsNormalizedscoreWeighfactorNormalizedscoreWeighfactorPrimary returns 0,97 0,863 1 0,863Secundary returns 1 0,087 1 0,087Risk 1 0,05 1 0,05Total normalized score 0,97 1FIGURE 115 - IMPACT ON LCY OF SOLAR ENERGY SY STEMSLCEIThe impact <strong>of</strong> <strong>the</strong> solar energy systems on <strong>the</strong> <strong>performance</strong> on <strong>the</strong> factor „<strong>life</strong> <strong>cycle</strong>environmental impact‟ is depicted in figure 116.FIGURE 116 - IMPACT OF SOLAR SY STEMS ON LIFE CYCLE ENVIRONMENTAL IMPACT115ScenarioAspectScores per <strong>renovation</strong> alternativeWarmBouwen WarmBouwen<strong>renovation</strong> <strong>renovation</strong>3.2.2.y Greenhouse 106 87,3Ozone layer 0,0968 0,0686Acidification 22,8 21,7Eutrophication 8,48 8,2Heavy metals 70,1 70,1Carcinogens 11,8 11,8Pesticides 0 0Summer smog 9,12 7,32Winter smog 18,4 17,6Energy resources 146 119Total 393 343Converting factor 1 1Total (converted) 393 343Normalized score 0,872 1


QualityApplying solar systems to <strong>the</strong> WarmBouwen concept does not influence <strong>the</strong> <strong>performance</strong><strong>of</strong> <strong>the</strong> system on <strong>the</strong> aspect quality.IMPROVEMENT 3 – FLEXIBLE INTERNAL WALLSThe third improvement <strong>of</strong> <strong>the</strong> WarmBouwen is <strong>the</strong> application <strong>of</strong> flexible interior walls. In<strong>the</strong> section below, <strong>the</strong> impact <strong>of</strong> this improvement is elaborated.Figure 117 provides <strong>the</strong> assumptions that are made at <strong>the</strong> elaboration.# Field <strong>of</strong>impact <strong>of</strong>assumptionAssumptionMotivation1 LCEISteel –flexible walls2 LCEISteel –flexible walls3 LCEIGypsum board– flexible walls4 LCEIGlass wool –flexible walls5 LCEIBase plaster –flexible wallsThe product that is selected for <strong>the</strong> steel<strong>of</strong> <strong>the</strong> flexible wall is “Chromium steel18/8, at plant/RER S”The process that is selected for <strong>the</strong> steel<strong>of</strong> <strong>the</strong> flexible wall is “Zinc coating,coils/RER S”The product that is selected for <strong>the</strong>gypsum board <strong>of</strong> <strong>the</strong> flexible wall is“Gypsum plaster board, at plant/CH S”The product that is selected for <strong>the</strong> glasswool <strong>of</strong> <strong>the</strong> flexible wall is “Glass woolmat, at plant/CH S”The product that is selected for <strong>the</strong>plasterwork for finishing <strong>the</strong> flexible wallis “Base plaster, at plant/CH S”FIGURE 117 - ASSUMPTIONS FOR IMPROVEMENT FLEXIBLE INTERNAL WALLSThe selected productsand processes match<strong>the</strong> products that areused in <strong>the</strong> flexible wallsystem. The wallsystem that is used asreference wall is <strong>the</strong>“Lafarge E-11/75/100+MW 30” wall.ELABORATION OF THE IMPACT ON PERFORMANCELCEIThe impact <strong>of</strong> <strong>the</strong> flexible interior walls on <strong>the</strong> <strong>performance</strong> on <strong>the</strong> factor „<strong>life</strong> <strong>cycle</strong>environmental impact‟ is depicted in figure 118.Scores per <strong>renovation</strong> alternativeScenarioAspectWarmBouwen<strong>renovation</strong>WarmBouwen(Flexible walls)x.3.1.y Greenhouse 173 152Ozone layer 0,146 0,143Acidification 35 34,5Eutrophication 15,1 12,3Heavy metals 170 85,9Carcinogens 18,6 20,7Pesticides 0 0Summer smog 14,7 14,1Winter smog 28,4 28,9Energy resources 222 221Total 677 570Converting factor 0,67 0,67Total (converted) 451 380Normalized score 0,746 0,887FIGURE 118 - LCEI OUPUT OF FLEXIBLE INTERNAL WALLS116


APPENDIX O - TOOLKIT BESTAANDE BOUWCONCEPT #1113This appendix provides information about concept #1113 <strong>of</strong> <strong>the</strong> „Toolkit bestaande bouw‟.This concept provided information about <strong>the</strong> investment costs for standard <strong>renovation</strong>measures in a house. Figures 119 and 120 present <strong>the</strong> pages from <strong>the</strong> „toolkit bestaandebouw‟ that are used in this research.FIGURE 119 - OVERVIEW OF CONCEPT OF 'TOOLKIT BESTAANDE BOUW'117


FIGURE 120 - OVERVIEW OF COSTS FOR STANDARD MEASURES118


APPENDIX P - TRANSMISSION WARMBOUWENThis appendix describes <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> transmission value <strong>of</strong> a WarmBouwen wall.To be able to import WarmBouwen into EPW, which is <strong>the</strong> s<strong>of</strong>tware tool that is used inthis research to determine <strong>the</strong> energy <strong>performance</strong> coefficient <strong>of</strong> <strong>the</strong> <strong>renovation</strong><strong>concepts</strong>, a transmission coefficient has to be calculated. For <strong>the</strong> WarmBouwen<strong>renovation</strong> concept a distinction is made between <strong>the</strong> emission <strong>of</strong> heat and and cold to<strong>the</strong> building and <strong>the</strong> influence <strong>of</strong> absorbing heat and cold during summer en winter,which is accumulated in <strong>the</strong> soil.For an accurate calculation <strong>of</strong> <strong>the</strong> effect <strong>of</strong> WarmBouwen, a dynamic calculation modelhas to be made, because it is impossible to calculate <strong>the</strong> accurate effect <strong>of</strong> WarmBouwenstatically.VALIDATION OF THE CALCULATION METHODFor this research <strong>the</strong> effect <strong>of</strong> absorbing heat and cold is outside <strong>the</strong> scope <strong>of</strong> <strong>the</strong>calculation. Therefore, <strong>the</strong> outcomes <strong>of</strong> <strong>the</strong> calculations will probably by less <strong>sustainable</strong>than <strong>the</strong>y are in reality. The calculation <strong>of</strong> <strong>the</strong> transmission <strong>of</strong> WarmBouwen has beenpresented to an expert <strong>of</strong> DGMR. The expert <strong>of</strong> DGMR states that <strong>the</strong> current calculationmethod <strong>of</strong> <strong>the</strong> effect <strong>of</strong> WarmBouwen for interior climate control is a reasonablecalculation that represents <strong>the</strong> real situation. However, <strong>the</strong> consulted expert expects thatit is plausible that <strong>the</strong> <strong>performance</strong> <strong>of</strong> <strong>the</strong> system is better than currently calculated withEPW.ASSUMPTIONSFor determining <strong>the</strong> transmission <strong>of</strong> <strong>the</strong> water that flows through <strong>the</strong> WarmBouwentubes, it is assumed that <strong>the</strong> tubes contain still standing water <strong>of</strong> twenty degrees Celsius.As a result, <strong>the</strong> value λ = 0.6 W/m*K is used for <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> transmission <strong>of</strong><strong>the</strong> WarmBouwen concept.CALCULATION TRANSMISSIONSTEP 1: DETERMINING CONSTRUCTION OF THE WALLThe construction <strong>of</strong> <strong>the</strong> wall consists <strong>of</strong> several layers. The specifications <strong>of</strong> <strong>the</strong>construction <strong>of</strong> <strong>the</strong> wall are depicted in <strong>the</strong> figure 121.Wall specifications - WarmBouwenL1 L2 L3 L4 L5 L6L1: Outer brick layerL2: CavityL3: Inner brick layerL4: AlufoamL5: InsulationL6: WarmBouwen Layer 1L7: WarmBouwen Layer 2L7FIGURE 121 – CROSS-SECTION OF A WARMBOUWEN WALL119


STEP 2: DETERMINE TECHNICAL INFORMATION OF THE MATERIALSFigure 122 depicts a cross-section <strong>of</strong> <strong>the</strong> tubes that are used in <strong>the</strong> applied system for<strong>the</strong> emission <strong>of</strong> heat and cold. The technical information about <strong>the</strong> tube has beenacquired from <strong>the</strong> producer <strong>of</strong> <strong>the</strong> tubes.1.8 mmTube: UWHB – AKB leidingλ=0.43 W/m*K8.4 mmWater: t= 293 °Kλ=0.60 W/m*KGipsvezelplaatλ=0.32 W/m*K1.8 mmFIGURE 122 - CROSS-SECTION OF THE PROCESSED TUBESSTEP 3: DETERMINE THE PROPORTIONS OF TUBES AND GYPSUM FIBER OF THEWARMBOUWEN LAYER.Figure 123 shows one square meter <strong>of</strong> <strong>the</strong> WarmBouwen layer. For <strong>the</strong> transmission <strong>of</strong>this layer, <strong>the</strong> proportions <strong>of</strong> tubes and gypsum fiber must be determined. Technicalinformation about <strong>the</strong> WarmBouwen concept points out that <strong>the</strong> heart-to-heart distance<strong>of</strong> <strong>the</strong> tubes is 100 mm. Therefore, 9 meters <strong>of</strong> tubes is process per m 2 WarmBouwen.The proportion <strong>of</strong> surface where tubes are processed is: 9 * 0.012 = 0.108 m 2The proportion <strong>of</strong> surface covered with only gypsum fiber is: 1 - 0.012 = 0.892 m 2Front view <strong>of</strong> L5 & L6 <strong>of</strong> Wall Structure1 mWarmBouwen Tubes1 m· 9 meter tubes processedper m 2 . (h.o.h. = 100mm)· Tubes: 12/1.8 mm.· Surface <strong>of</strong> tube per m 2 :9*0.012= 0.108m 2· Surface <strong>of</strong> loam:1-0.108=0.892m 2FIGURE 123 – ONE SQUAREMETER OF WARMBOUWEN WALL120


STEP 4: DETERMINE AVERAGE U-VALUE (W/M2K) OF WARMBOUWEN LAYERThe next step in <strong>the</strong> process is to determine <strong>the</strong> average U-value <strong>of</strong> <strong>the</strong> layers 6 & 7 <strong>of</strong><strong>the</strong> construction <strong>of</strong> <strong>the</strong> wall. Figure 124 provides <strong>the</strong>se calculations.Layer 6 - WarmBouwen tubes & gypsumfiberNumber Layer Thickness (m) λ (W/m*K) Rc (m 2 *K/W) Number Layer Thickness (m) λ (W/m*K) Rc (m 2 *K/W)1 Tube 0,0018 0,43 0,004186047 1 Gypsumfiber 0,018 0,32 0,056252 Water 0,0084 0,6 0,0143 Tube 0,0018 0,043 0,0418604654 Gypsumfiber 0,006 0,32 0,01875Calculation U-Average Layer 6 & Layer 7FIGURE 124 - U-VALUE LAYERS 6 & 70,079 Rc_total0,05612,691 U-total (W/m 2 *K) 17,7777777810,8% Part <strong>of</strong> total surface 89,2%U average = (A 1 U 1 +A 2 U 2 )/(A 1 +A 2 ) U average = (0,108*12,69 + 0,892*17,78) / (0,108+0,892)U average : 17,23028 (W/m2*K)A 1 0,108 m 2 Rc average : 0,0580 (m2*K/W)U 1 12,69 (W/m2*K) λ average : 0,6892112 (W/m*K)A 2 0,892 m 2U 2 17,78 (W/m2*K)Rc_totalU-total (W/m 2 *K)Part <strong>of</strong> total surfaceLayer 7 -Loam stuccoSTEP 5: CALCULATION OF THE TOTAL TRANSMISSION VALUE OF AWARMBOUWEN WALLThe last step is <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> total transmission value <strong>of</strong> a WarmBouwen wall.These calculations are presented in figure 125.Calculation U-Value <strong>of</strong> <strong>the</strong> Wall structureNumber Layer Thickness (m) λ (W/m*K) Rc (m 2 *K/W)1 External surface n/a n/a 0,062 Brick Information from report3 CavitySenterNovem0,364 Brick (Standardized values for5 Alufoam 0,002 0,02 0,106 Insulation 0,03 0,023 1,307 WarmBouwen 0,018 0,69 0,038 Internal surface n/a n/a 0,12Rc_total1,97 (m2*K/W)U-total0,51 (W/m2*K)FIGURE 125 - TRANSMISSION WARMBOUWEN WALL121


APPENDIX Q - SCENARIOS AND CODESFigure 126 provides an overview <strong>of</strong> all <strong>the</strong> scenarios with accompanying characteristicsthat are defined for this research.Scenario Characteristics[1.1.1.1] No <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[1.1.1.2] No <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[1.1.1.3] No <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[1.1.2.1] No <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[1.1.2.2] No <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[1.1.2.3] No <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[1.1.3.1] No <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[1.1.3.2] No <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[1.1.3.3] No <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[1.2.1.1] No <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[1.2.1.2] No <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[1.2.1.3] No <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[1.2.2.1] No <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[1.2.2.2] No <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[1.2.2.3] No <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[1.2.3.1] No <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[1.2.3.2] No <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[1.2.3.3] No <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[1.3.1.1] No <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[1.3.1.2] No <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[1.3.1.3] No <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[1.3.2.1] No <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[1.3.2.2] No <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[1.3.2.3] No <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[1.3.3.1] No <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[1.3.3.2] No <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[1.3.3.3] No <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[2.1.1.1] Standard <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[2.1.1.2] Standard <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[2.1.1.3] Standard <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[2.1.2.1] Standard <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[2.1.2.2] Standard <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[2.1.2.3] Standard <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[2.1.3.1] Standard <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[2.1.3.2] Standard <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[2.1.3.3] Standard <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[2.2.1.1] Standard <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[2.2.1.2] Standard <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[2.2.1.3] Standard <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[2.2.2.1] Standard <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[2.2.2.2] Standard <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[2.2.2.3] Standard <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[2.2.3.1] Standard <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[2.2.3.2] Standard <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[2.2.3.3] Standard <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[2.3.1.1] Standard <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[2.3.1.2] Standard <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[2.3.1.3] Standard <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[2.3.2.1] Standard <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[2.3.2.2] Standard <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[2.3.2.3] Standard <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[2.3.3.1] Standard <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[2.3.3.2] Standard <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[2.3.3.3] Standard <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[3.1.1.1] WarmBouwen <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[3.1.1.2] WarmBouwen <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[3.1.1.3] WarmBouwen <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[3.1.2.1] WarmBouwen <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[3.1.2.2] WarmBouwen <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[3.1.2.3] WarmBouwen <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[3.1.3.1] WarmBouwen <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[3.1.3.2] WarmBouwen <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[3.1.3.3] WarmBouwen <strong>renovation</strong>, low extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[3.2.1.1] WarmBouwen <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[3.2.1.2] WarmBouwen <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[3.2.1.3] WarmBouwen <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[3.2.2.1] WarmBouwen <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[3.2.2.2] WarmBouwen <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[3.2.2.3] WarmBouwen <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[3.2.3.1] WarmBouwen <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[3.2.3.2] WarmBouwen <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[3.2.3.3] WarmBouwen <strong>renovation</strong>, expected extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[3.3.1.1] WarmBouwen <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[3.3.1.2] WarmBouwen <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[3.3.1.3] WarmBouwen <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, low functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[3.3.2.1] WarmBouwen <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[3.3.2.2] WarmBouwen <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[3.3.2.3] WarmBouwen <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, expected functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy price[3.3.3.1] WarmBouwen <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, low increase <strong>of</strong> energy price[3.3.3.2] WarmBouwen <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, expected increase <strong>of</strong> energy price[3.3.3.3] WarmBouwen <strong>renovation</strong>, high extenstion <strong>of</strong> <strong>life</strong>span building, high functional <strong>life</strong>span <strong>of</strong> elements, high increase <strong>of</strong> energy priceFIGURE 126 - ALL DEFINED SCENARIOS122


APPENDIX R - IMPACT OF FUNCTIONAL CHANGESFigure 127 shows two interior scenarios <strong>of</strong> <strong>the</strong> reference house that is selected for thisresearch. The two scenarios are used to determine <strong>the</strong> number elements that arechanged during <strong>the</strong> <strong>life</strong> <strong>cycle</strong> <strong>of</strong> a dwelling.Scenario 1 Scenario 21 st Floor2 nd Floor3 rd FloorFIGURE 127 - INTERIOR CHANGE SCENARIOSAssumptions that are made to calculate <strong>the</strong> number <strong>of</strong> radiators and amount <strong>of</strong> pipingthat is changed during <strong>the</strong> <strong>life</strong> <strong>cycle</strong> are:- At <strong>the</strong> first change, <strong>the</strong> interior changes from scenario 1 to scenario 2. At <strong>the</strong> nextinterior change <strong>the</strong> interior changes back from scenario 2 to scenario 1.- Radiators that are changed will be replaced by new radiators. Replaced radiators willbe disposed.Next to replacements due to functional changes within <strong>the</strong> dwelling, replacement <strong>of</strong>elements is caused by <strong>the</strong> expiration <strong>of</strong> <strong>the</strong> technical <strong>life</strong> span <strong>of</strong> elements. Figure 128shows <strong>the</strong> technical <strong>life</strong>span <strong>of</strong> <strong>the</strong> elements that are used in <strong>the</strong> calculations <strong>of</strong> thisresearch.ElementTechnical <strong>life</strong> span (years)Piping 30Radiator 30Ro<strong>of</strong> insulationwhole <strong>life</strong> <strong>cycle</strong>Floor insulationwhole <strong>life</strong> <strong>cycle</strong>Facade insulation whole <strong>life</strong> <strong>cycle</strong>Windows 20Wall heating system whole <strong>life</strong> <strong>cycle</strong>FIGURE 128 - TECHNICAL LIFESPAN OF ELEMENTS123


APPENDIX S - ASSUMPTIONS# Field <strong>of</strong>impact <strong>of</strong>assumption1 LCC & LCEIFixed internalwalls2 LCCSpecificationsreferencehouse3 LCC & LCEIStart <strong>life</strong> <strong>cycle</strong>alternatives 1& 24 LCC & LCEIPipingWarmBouwenconcept5 LCCDisposal costsalternatives6 LCCChange overcosts7 LCCSubsidies8 LCC & LCEIChange <strong>of</strong>124AssumptionThe fixed internal wallsare made <strong>of</strong> Ytongbricks, and finishedwith plasterwork.The reference housethat is used in thisresearch is unoccupiedat <strong>the</strong> moment <strong>of</strong><strong>renovation</strong>.At <strong>the</strong> start <strong>of</strong> <strong>the</strong> <strong>life</strong><strong>cycle</strong> <strong>of</strong> <strong>the</strong>alternatives „No<strong>renovation</strong>‟ &„Standard <strong>renovation</strong>‟new radiators, aboiler, and piping arerequired.The piping that isprocessed in <strong>the</strong> wallheating system <strong>of</strong>WarmBouwen has atechnical <strong>life</strong> <strong>cycle</strong> thatis equal to <strong>the</strong> <strong>life</strong><strong>cycle</strong> <strong>of</strong> <strong>the</strong> building.The disposal costs <strong>of</strong><strong>the</strong> three evaluated<strong>renovation</strong> <strong>concepts</strong>are equal.The change-over costs<strong>of</strong> <strong>the</strong> three evaluated<strong>renovation</strong> <strong>concepts</strong>are equal.In <strong>the</strong> calculations <strong>of</strong>this research,subsidies are nottaken into account.The house changesfrom scenario 1 toMotivation„Ytong bricks‟ is a product that is appliedon large scale for non-constructive wallsin houses. It is fast and easy to process.The calculations without costs forreplacement <strong>of</strong> occupants, gives a betterview on <strong>the</strong> costs <strong>of</strong> <strong>the</strong> <strong>renovation</strong>concept itself. In practice <strong>the</strong> situationcan differ from <strong>the</strong> calculations made inthis research, because occupants have tobe taken into account.Is can be assumed that <strong>renovation</strong> <strong>of</strong>houses takes place after a significantperiod <strong>of</strong> exploitation. Therefore, it ismost realistic to assume that newradiators and piping is required at <strong>the</strong>start <strong>of</strong> <strong>the</strong> <strong>life</strong> <strong>cycle</strong>.The piping that is processed in <strong>the</strong> wallshas a minimal exposure to <strong>the</strong>environment. The chance on damage isnil, and <strong>the</strong> material is protected, longlasting,and not susceptible for erosion.Therefore it is realistic to assume that <strong>the</strong><strong>life</strong><strong>cycle</strong> <strong>of</strong> this piping is <strong>the</strong> same as <strong>the</strong><strong>life</strong> <strong>cycle</strong> <strong>of</strong> <strong>the</strong> building after <strong>renovation</strong>.It is assumed that <strong>the</strong> building isdemolished after its <strong>life</strong><strong>cycle</strong> is ended.The end <strong>of</strong> <strong>life</strong> scenario is not affected by<strong>the</strong> applied <strong>renovation</strong> concept.Therefore, it is most realistic to assumethat <strong>the</strong> disposal costs at <strong>the</strong> end <strong>of</strong> <strong>the</strong><strong>life</strong> <strong>cycle</strong> <strong>of</strong> <strong>the</strong> building are equal for allthree <strong>concepts</strong>.At <strong>the</strong> start <strong>of</strong> <strong>the</strong> <strong>life</strong> <strong>cycle</strong>, <strong>the</strong> existinginstallations have to be removed in case<strong>of</strong> all three <strong>renovation</strong> <strong>concepts</strong>. Theexisting installation, and <strong>the</strong> process <strong>of</strong>removing it, is equal for all <strong>the</strong> <strong>renovation</strong><strong>concepts</strong>. Therefore, <strong>the</strong> costs <strong>of</strong> thisprocess are also equal.It would give an unrealistic view on <strong>the</strong>situation. If a subsidy would be appointedto one or more <strong>renovation</strong> <strong>concepts</strong> inthis research. For a clear and faircomparison, subsidies are not taken intoaccount. (In practice, WarmBouwen wouldhave a big chance on receiving a subsidy)To be able to determine <strong>the</strong> impact on <strong>the</strong>LCC and LCA <strong>of</strong> functional changes during


adiators9 LCC & LCEIChange <strong>of</strong>piping during<strong>life</strong> <strong>cycle</strong>10 LCCEnergy pricedevelopment11 LCC & LCEIExtension <strong>of</strong><strong>life</strong>span <strong>of</strong>building after<strong>renovation</strong>12 LCC & LCEIChange rateand functional<strong>life</strong>span <strong>of</strong>elements inhouses13 LCCDiscount ratescenario 2 at <strong>the</strong> firstfunctional change. At<strong>the</strong> second functionalchanges, <strong>the</strong> housechanges back fromscenario 2 to scenario1.For each radiator thatis changed during ht<strong>life</strong> <strong>cycle</strong> <strong>of</strong> a house,7.4 meters <strong>of</strong> pipingreplaced.For <strong>the</strong> energy pricedevelopment, threescenarios have beendefined. The scenariosare averagedevelopment per year.Defined scenarios:+5%, +8%, and+11%.For <strong>the</strong> extension <strong>of</strong><strong>the</strong> <strong>life</strong> <strong>cycle</strong> <strong>of</strong> <strong>the</strong>building after<strong>renovation</strong>, threescenarios have beendefined. Definedscenarios: +25 year,+50 year, and +75year.Change rate scenarios:Scenario 1: once in 5years functionalchange.Scenario 2: once in 10years functionalchange.Scenario 3: once in 20years functionalchange.The discount rate thatis used in <strong>the</strong> LCCcalculations <strong>of</strong> thisresearch is: 5.68%<strong>the</strong> <strong>life</strong>time <strong>of</strong> a house, 2 scenarios havebeen created. The assumptions is madethat <strong>the</strong> house goes from scenario1 to 2and backwards during its <strong>life</strong> <strong>cycle</strong>. Theimpact depends on <strong>the</strong> amount <strong>of</strong>functional changes during <strong>the</strong> <strong>life</strong><strong>cycle</strong> <strong>of</strong><strong>the</strong> house. Appendix R shows <strong>the</strong> twodefined scenarios.Appendix xx shows a calculation <strong>of</strong> <strong>the</strong>total amount <strong>of</strong> piping that is present in ahouse. The average amount <strong>of</strong> piping thatis processed per radiator is 7.4 meter. Isis realistic that piping will be replaced if aradiator is changed. Therefore <strong>the</strong>assumption is made that every change <strong>of</strong>radiator, results in <strong>the</strong> replacement <strong>of</strong> 7.4meters <strong>of</strong> piping.Appendix C2.1 shows a calculation <strong>of</strong> <strong>the</strong>energy price development in <strong>the</strong> pastfifteen years. Based upon this analysis,<strong>the</strong> three scenarios are defined.Scenario 1: Development is lower thanexpected:+5%Scenario 2: Development is increasing asexpected: +8%Scenario 3: Development is higher thanexpected: +11%Different experts have <strong>the</strong>ir ideas about<strong>the</strong> intended <strong>life</strong><strong>cycle</strong> <strong>of</strong> a building. Forthis research I have assumed that <strong>the</strong> <strong>life</strong><strong>cycle</strong> <strong>of</strong> <strong>the</strong> building after <strong>renovation</strong> isequal to <strong>the</strong> <strong>life</strong> <strong>cycle</strong> that housingcorporations define for buildings that arenewly developed. This assumptionresulted in <strong>the</strong> scenarios described in <strong>the</strong>previous column.Appendix C1 gives a more detailedmotivation <strong>of</strong> <strong>the</strong> selected scenarios onthis subject.For <strong>the</strong> determination <strong>of</strong> costs andenvironmental impact <strong>of</strong> elements <strong>of</strong> a<strong>renovation</strong> concept, 3 scenarios havebeen defined for <strong>the</strong> functional changerate en <strong>life</strong>span <strong>of</strong> elements <strong>of</strong> <strong>the</strong> three<strong>renovation</strong> <strong>concepts</strong>. In appendix C1, <strong>the</strong>functional <strong>life</strong>span <strong>of</strong> elements in <strong>the</strong><strong>renovation</strong> <strong>concepts</strong> are described inmore detail.For <strong>the</strong> determination <strong>of</strong> <strong>the</strong> discountrate, <strong>the</strong> average discount rate that <strong>the</strong>European Union prescribes forgovernments is analyzed. Based upon <strong>the</strong>average discount rate that is prescribedby <strong>the</strong> EU, <strong>the</strong> discount rate for thisresearch is defined. The analysis <strong>of</strong> <strong>the</strong>discount rate <strong>of</strong> <strong>the</strong> EU is described in125


14 LCEIAveragetransportdistance <strong>of</strong>elements15 LCEIRadiators16 LCEIEfficiencyboiler17 LCEISingle glazing18 LCEIPiping19 LCEIRadiators20 LCEIPIR-insulation126Three differenttransport scenarioshave been defined for<strong>the</strong> determining <strong>the</strong>environmental impactdue to transport <strong>of</strong>elements:Scenario 1: 200 kmScenario 2: 600 kmScenario 3: 1000 kmThe average length <strong>of</strong>a radiator is 1.5 meterand is 0,60 meterhigh.The environmentalimpact <strong>of</strong> material thatare processed in <strong>the</strong>efficiency boiler isequal to that <strong>of</strong> a highefficiency boilerThe assumption ismade that singleglazing is 50% <strong>of</strong> <strong>the</strong>impact <strong>of</strong> doubleglazingThe weight <strong>of</strong> <strong>the</strong>piping consists for60% out <strong>of</strong> aluminum,and for 40% out <strong>of</strong> PE.A radiator consists for100% out <strong>of</strong> steelThe environmentalimpact <strong>of</strong> PIR is equalto <strong>the</strong> environmentalimpact <strong>of</strong> PURappendix C2.1.To be able to determine <strong>the</strong>environmental impact <strong>of</strong> transport <strong>of</strong>elements in <strong>the</strong> <strong>renovation</strong> <strong>concepts</strong>,three scenarios have been defined. Basedupon consults <strong>of</strong> experts and ownestimations, each element is assigned toone <strong>of</strong> <strong>the</strong> three transport scenarios.Appendix C2.3 shows <strong>the</strong> input for <strong>the</strong>environmental impact calculations. Thisappendix describes <strong>the</strong> elements and <strong>the</strong>irassigned transport classification.Radiators that have to heat large roomslike <strong>the</strong> living room, or <strong>the</strong> kitchen mostlyare bigger than 1,5. Radiators in <strong>the</strong>bathroom or sleeping room mostly aresmaller. Based upon this information <strong>the</strong>average length <strong>of</strong> radiators in a house on1,5 meter per radiator is determined. Theinformation about <strong>the</strong> radiators isdetermined by consulting an expert. (Mr.van Tilburg – The Heating Company)Although a high efficiency boiler maycontain more elements, it can be said that<strong>the</strong> difference between a efficiency boilerand a high efficiency boiler is nil.Therefore, <strong>the</strong> assumption is made that<strong>the</strong> environmental impact <strong>of</strong> <strong>the</strong> twoboilers is identical.Double glazing is nothing else than twolayers <strong>of</strong> single glazing and a vacuumcavity that is filled with gas or air.Therefore, no difference is made between<strong>the</strong> impacts <strong>of</strong> <strong>the</strong> material <strong>of</strong> <strong>the</strong>se twopossibilities, but only <strong>the</strong> amount <strong>of</strong> glassdiffers. There is made a distinction in <strong>the</strong>production process for single and doubleglass.The specific gravity <strong>of</strong> aluminum = 2800kg/m 3 and <strong>of</strong> PE = 1000 kg/m 3 . Based on<strong>the</strong> technical information about this pipingit is assumed that 65% <strong>of</strong> <strong>the</strong> pipingconsists <strong>of</strong> PE en 35% <strong>of</strong> aluminum. Thiscalculation results in <strong>the</strong> weight partition<strong>of</strong> <strong>the</strong> piping: 60% aluminum, 40% PE.In practice a radiator consists for about95-98% out <strong>of</strong> steel. The percentage thatis caused by paint and syn<strong>the</strong>tic materialis neglected.The product PIR is not defined in <strong>the</strong>library <strong>of</strong> <strong>the</strong> used LCA s<strong>of</strong>tware tool.Based on information from severalwebsites <strong>life</strong> www.immoweb.be it can beassumed that that although <strong>the</strong> chemicalcomposition <strong>of</strong> PIR and PUR differsslightly, <strong>the</strong> environmental impact isabout <strong>the</strong> same.


21 LCEIPiping wallheatingsystem22 LCEIFaçadeinsulation(cavityinsulation)23 LCEIHeat pump24 EPCWarmBouwenPer m 2 wall heatingsystem, 9 meters <strong>of</strong>piping is processed.The thickness <strong>of</strong> <strong>the</strong>cavity is assumed tobe 10 cm.The composition andweights <strong>of</strong> materials <strong>of</strong><strong>the</strong> heat pump areequated to <strong>the</strong> resultsthat are determined in<strong>the</strong> scientific researchby Rey et al.For determining <strong>the</strong>heat conductivity <strong>of</strong> aWarmBouwen façade,<strong>the</strong> influence <strong>of</strong>capturing heat andcold is neglected.Based upon technical information about<strong>the</strong> wall heating system <strong>of</strong> WarmBouwen,<strong>the</strong> amount <strong>of</strong> meters processed piping iscalculated. The heart-to-heart distance <strong>of</strong>piping is 10 cm. This means 9 strokes <strong>of</strong>piping is processed per m 2 . This results in9 m piping per m 2 .For determining <strong>the</strong> quantity <strong>of</strong> processedPUR in <strong>the</strong> cavity wall in <strong>the</strong> standard<strong>renovation</strong> concept, <strong>the</strong> thickness <strong>of</strong> <strong>the</strong>cavity is <strong>of</strong> influence. The assumption <strong>of</strong><strong>the</strong> thickness <strong>of</strong> <strong>the</strong> cavity is made, basedupon technical information <strong>of</strong> <strong>the</strong>reference house.The composition <strong>of</strong> <strong>the</strong> used heat pump in<strong>the</strong> WarmBouwen <strong>renovation</strong> concept isequal to <strong>the</strong> composition <strong>of</strong> <strong>the</strong> heatpump that is analyzed in <strong>the</strong> research:“Life <strong>cycle</strong> assessment and externalenvironmental cost analysis <strong>of</strong> heatpumps” by Rey et al.This assumption is made based upon aconsult <strong>of</strong> an expert, Mr. Verbaan –DGMR. For a precise determination <strong>of</strong> <strong>the</strong>energetic <strong>performance</strong> <strong>of</strong> a WarmBouwenwall, a 3D calculation must be made. Thiscalculation is outside <strong>the</strong> scope <strong>of</strong> thisresearch.Assumptions made for <strong>the</strong> modeling in SimaPro (LCA tool)# Field <strong>of</strong>impact <strong>of</strong>assumptionAssumptionMotivation25 LCEIWeight factorsLCEIcalculations25 LCEITransportspecifications127For <strong>the</strong> determination <strong>of</strong> <strong>the</strong>environmental impact <strong>of</strong> <strong>the</strong>alternatives, <strong>the</strong> followingweight factors are used:Greenhouse: 8Ozone Layer: 5Acidification: 5Eutrophication: 5Heavy Metals: 5Carcinogens: 5Pesticides: 5Summer smog: 5Winter smog: 5Energy resources: 8„Lorry 20-28 ton, fleetaverage/CHS‟ is selected for<strong>the</strong> transportation <strong>of</strong> materialsand elementsAssembly in SimaPro26 LCEIBoiler-The aluminum that is selectedfor <strong>the</strong> use in a boiler isThere are two factors that have ahigher weight factor than <strong>the</strong>o<strong>the</strong>rs: Greenhouse and Energyresources. This is because <strong>the</strong>setwo factors have an influence on<strong>the</strong> problems that are urgent andactual at this moment.In <strong>the</strong> LCA s<strong>of</strong>tware, differentlorries are defined. For thisresearch, <strong>the</strong> selected lorry isidentical to <strong>the</strong> lorry that is usedin <strong>the</strong> example calculations <strong>of</strong> <strong>the</strong>s<strong>of</strong>tware tool.This aluminum is <strong>the</strong> aluminumthat is produced for consumption


27 LCEIProcessBoileraluminum128aluminum “aluminum, primary, at plant” in Europe.The process that is selectedfor <strong>the</strong> production <strong>of</strong> aluminumin <strong>the</strong> boiler is “aluminumproduct manufacturing,average metal working”28 LCEIBoiler – Steel29 LCEIBoiler – Steel30 LCEIBoiler-Castiron31 LCEIBoiler-Castiron32 LCEIBoiler-copper33 LCEIBoiler-copper34 LCEIPiping-PE35 LCEIPiping-PEThe steel that is selected for<strong>the</strong> use in a boiler is“Chromium steel 18/8, atplant”The process that is selectedfor <strong>the</strong> production <strong>of</strong> steel in<strong>the</strong> boiler is “Chromium steelproduct manufacturing,average metal working”The cast iron that is selectedfor <strong>the</strong> use in a boiler is “castiron, at plant”The process that is selected for<strong>the</strong> production <strong>of</strong> cast iron in<strong>the</strong> boiler is “Drilling,conventional, cast iron”The copper that is selected for<strong>the</strong> use in a boiler is “Copper,at regional storage”The process that is selected for<strong>the</strong> production <strong>of</strong> copper is“copper productmanufacturing, average metalworking”The product that is selected for<strong>the</strong> part <strong>of</strong> <strong>the</strong> piping that isnot made <strong>of</strong> Aluminum is“Polyethylene, HDPE,granulate, at plant”The process that is selected for<strong>the</strong> production <strong>of</strong> PE is“Extrusion, plastic pipes”This is <strong>the</strong> average process thatis executed to produce aluminuminto a final product. These finalproducts are applied in <strong>the</strong> boiler.This data is specified on <strong>the</strong>market in Europe.The steel that is processed inboilers is stainless steel.Therefore, <strong>the</strong> chromium steelalternative is selected. The data<strong>of</strong> this product is specified onplant in <strong>the</strong> EU.This process is selected becauseit is specified to <strong>the</strong> EU, and itmatches <strong>the</strong> product that isselected for <strong>the</strong> steel that is usedin boilers.The SimaPro library contains onlyone sort <strong>of</strong> cast iron. This is <strong>the</strong>average cast iron product that isused and produced in <strong>the</strong> EU.Therefore, this product isselected for this research.This is <strong>the</strong> average productionprocess that belongs to <strong>the</strong>production <strong>of</strong> cast iron, if youwant to create final products asan end product. This productionprocess is <strong>the</strong> averagetechnology.For <strong>the</strong> selection <strong>of</strong> copper, <strong>the</strong>most common sort <strong>of</strong> copper isselected. Copper at regionalstorage is <strong>the</strong> most common sort<strong>of</strong> copper that is used. Therefore,this type <strong>of</strong> product is selectedThis is <strong>the</strong> average process thatis executed to produce copperinto a final product. These finalproducts are applied in <strong>the</strong> boiler.This data is specified on <strong>the</strong>market in Europe.The product sheet <strong>of</strong> <strong>the</strong> pipingdelivered <strong>the</strong> input for <strong>the</strong>selection <strong>of</strong> this product. In <strong>the</strong>library <strong>of</strong> SimaPro several types<strong>of</strong> PE are available. The pr<strong>of</strong>ile <strong>of</strong>this product matches <strong>the</strong> productthat is use for piping <strong>the</strong> most,because it is high quality andspecified on production in <strong>the</strong> EU.The PE is processed in piping.The extrusion process changes<strong>the</strong> material from base product toend product, whereby <strong>the</strong> endproduct is suitable for <strong>the</strong>


36 LCEIPiping-Aluminum37 LCEIPiping-Aluminum38 LCEIPiping-Aluminum39 LCEIRadiators40 LCEIRadiators41 LCEIExpansionbarrel (rest)42 LCEIExpansionbarrel (rest43 LCEIExpansionbarrel – steel44 LCEIExpansionbarrel – steel129The product that is selected for<strong>the</strong> aluminum part <strong>of</strong> <strong>the</strong>piping is “Aluminum, primary,at plant”The first process that isselected for processing <strong>the</strong>aluminum <strong>of</strong> <strong>the</strong> piping is”Sheet rolling, aluminum”The second process that isselected for processing <strong>the</strong>aluminum <strong>of</strong> <strong>the</strong> piping is”Laser machining, metal, withCO 2 -laser, 4000W power”The steel that is selected for<strong>the</strong> use in <strong>the</strong> radiators is“Chromium steel 18/8, atplant”The process that is selectedfor <strong>the</strong> production <strong>of</strong> steel in<strong>the</strong> radiators is “Chromiumsteel product manufacturing,average metal working”The products that have beenselected for <strong>the</strong> production <strong>of</strong><strong>the</strong> expansion barrel are:“Syn<strong>the</strong>this rubber, at plant”,“Epoxy resin, liquid, at plant”,“Acrylonitrile-butadienestyrenecopolymer, ABS, atplant” and “Brass, at plant”The process that are selectedfor <strong>the</strong> „rest‟ materials in anexpansion barrel are:“Therm<strong>of</strong>orming, withcalendaring”, “Injectionmoulding”, and “Casting,brass”The steel that is selected for<strong>the</strong> use in <strong>the</strong> expansionsbarrel is “Chromium steel18/8, at plant”The process that is selectedfor <strong>the</strong> production <strong>of</strong> steel in<strong>the</strong> expansion barrel is“Chromium steel productmanufacturing, average metalworking”processing in piping.This aluminum is <strong>the</strong> aluminumthat is produced for consumptionin Europe.Experts provided <strong>the</strong> informationabout this production process.Based upon this information <strong>the</strong>matching process from <strong>the</strong>SimaPro library is selectedTo finish <strong>the</strong> piping, <strong>the</strong> ends <strong>of</strong><strong>the</strong> rolled sheets are lasered. Thisprocess is selected because itwas about <strong>the</strong> average <strong>of</strong> all <strong>the</strong>laser processes. Next to that, it isassumed that <strong>the</strong> laser speed is5cm/second, Based on this <strong>the</strong>electricity use for this process isdetermined.The steel that is processed inradiators is stainless steel.Therefore, <strong>the</strong> chromium steelalternative is selected. The data<strong>of</strong> this product is specified onplant in <strong>the</strong> EU.This process is selected becauseit is specified to <strong>the</strong> EU, and itmatches <strong>the</strong> product that isselected for <strong>the</strong> steel that is usedin radiators.For all <strong>the</strong>se products it accountsthat is <strong>the</strong> average usual productthat is applied in Europe.Therefore, <strong>the</strong>se products areselected in this LCA.These selection processes areneeded to form <strong>the</strong> basematerials that are applied in aexpansion barrel into a finalproduct that can be applied in <strong>the</strong>barrel.The steel that is processed inexpansion barrels is stainlesssteel. Therefore, <strong>the</strong> chromiumsteel alternative is selected. Thedata <strong>of</strong> this product is specifiedon plant in <strong>the</strong> EU.This process is selected becauseit is specified to <strong>the</strong> EU, and itmatches <strong>the</strong> product that isselected for <strong>the</strong> steel that is usedin boilers.


45 LCEISingle glazing46 LCEISingle glazing47 LCEIFixed internalwalls48 LCEIFinishinginternal walls49 LCEIDouble glazing50 LCEIDouble glazing51 LCEIVentilator –rest52 LCEIVentilator –rest130The glass that is selected for<strong>the</strong> single glass that is used in<strong>the</strong> concept “No <strong>renovation</strong>” is“Flat glass, coated, at plant”The process that is selected for<strong>the</strong> production <strong>of</strong> <strong>the</strong> singleglazing is ”Tempering, flatglass”The brick that is selected for<strong>the</strong> fixed internal walls “Sandlimebrick, at plant”The product that is selected for<strong>the</strong> finishing <strong>of</strong> <strong>the</strong> fixedinternal walls is “Base plaster,at plant”The product that is selected for<strong>the</strong> double glazing that isapplied in <strong>the</strong> ´standard´ and´WarmBouwen´ <strong>renovation</strong><strong>concepts</strong> is “Glazing, double(2-IV), U


53 LCEIVentilator –steel54 LCEIVentilator –steel55 LCEIPiping (air)56 LCEIPiping (air)57 LCEIRo<strong>of</strong>insulationmaterial58 LCEIRo<strong>of</strong>insulation-Gypsum board59 LCEIFaçadeinsulationmaterial60 LCEIFloorinsulationmaterial131The steel that is selected for<strong>the</strong> use in <strong>the</strong> ventilator is“Chromium steel 18/8, atplant”The process that is selectedfor <strong>the</strong> production <strong>of</strong> steel in<strong>the</strong> ventilator is “Chromiumsteel product manufacturing,average metal working”The steel that is selected for<strong>the</strong> use in <strong>the</strong> piping <strong>of</strong> air is“Chromium steel 18/8, atplant”The process that is selectedfor <strong>the</strong> production <strong>of</strong> steel in<strong>the</strong> piping <strong>of</strong> air is “Chromiumsteel product manufacturing,average metal working”The product that is selected for<strong>the</strong> insulation <strong>of</strong> <strong>the</strong> ro<strong>of</strong> is“Glass wool mat, at plant”The product that is used for<strong>the</strong> finishing <strong>of</strong> <strong>the</strong> ro<strong>of</strong>insulation is “Gypsum plasterboard, at plant”The product that is selected for<strong>the</strong> insulation <strong>of</strong> <strong>the</strong> cavity wallin <strong>the</strong> „standard <strong>renovation</strong>‟concept is “Polyurethane,flexible foam, at plant”The product that is selected for<strong>the</strong> insulation <strong>of</strong> <strong>the</strong> floor in<strong>the</strong> „standard <strong>renovation</strong>‟concept is “Polyurethane,flexible foam, at plant”The steel that is processed in aventilator is stainless steel.Therefore, <strong>the</strong> chromium steelalternative is selected. The data<strong>of</strong> this product is specified onplant in <strong>the</strong> EU.This process is selected becauseit is specified to <strong>the</strong> EU, and itmatches <strong>the</strong> product that isselected for <strong>the</strong> steel that is usedin ventilators.The steel that is processed in <strong>the</strong>piping <strong>of</strong> air is stainless steel.Therefore, <strong>the</strong> chromium steelalternative is selected. The data<strong>of</strong> this product is specified onplant in <strong>the</strong> EU.This process is selected becauseit is specified to <strong>the</strong> EU, and itmatches <strong>the</strong> product that isselected for <strong>the</strong> steel that is usedin piping <strong>of</strong> air.The technical information about<strong>the</strong> „standard <strong>renovation</strong>‟ conceptprovided <strong>the</strong> input for <strong>the</strong>selection <strong>of</strong> this material. In <strong>the</strong>library <strong>of</strong> SimaPro, <strong>the</strong> pr<strong>of</strong>ile <strong>of</strong>this product matches <strong>the</strong> pr<strong>of</strong>ileas defined in <strong>the</strong> concept. Theend products are <strong>the</strong> rolls <strong>of</strong> glasswool that can be directly appliedin <strong>the</strong> <strong>renovation</strong> concept.This is <strong>the</strong> standard product thatis normally applied to finish ro<strong>of</strong>insulation. The library <strong>of</strong> SimaProcontains one product type thatmatches <strong>the</strong> pr<strong>of</strong>ile <strong>of</strong> <strong>the</strong> boardas defined in <strong>the</strong> „standard<strong>renovation</strong>‟ concept.This product matches <strong>the</strong> pr<strong>of</strong>ilefrom <strong>the</strong> technical informationthat is provided by <strong>the</strong> productsheet <strong>of</strong> <strong>the</strong> PUR that is used for<strong>the</strong> façade insulation. The flexiblefoam is selected, because it hasto be brought into <strong>the</strong> cavity,which is not possible with rigidplates.This product matches <strong>the</strong> pr<strong>of</strong>ilefrom <strong>the</strong> technical informationthat is provided by <strong>the</strong> productsheet <strong>of</strong> <strong>the</strong> PUR that is used for<strong>the</strong> floor insulation. The flexiblefoam is selected, because mostly<strong>the</strong> PUR gets sprayed onto <strong>the</strong>floor.61 LCEI The products that are selected These products have been


132Heat pump(rest)62 LCEIHeat pump(rest)63 LCEIHeat pump –cast iron64 LCEIHeat pump –cast iron65 LCEIHeat pump –copper66 LCEIHeat pump –copper67 LCEIAquifer (rest)68 LCEIAquifer (rest)for <strong>the</strong> heat pump (rest) are:“Barite, at plant”, “Bauxite, atplant”, “Bentonite, at plant”,“Lead, at regional storage”,“Chromium, at regionalstorage”, “manganese, atregional storage”, “Nickel, 99.5%, at plant”, “Silver, atregional storage”, “Zinc, atregional storage”, and “Tin, atregional storage”The process that is selected for<strong>the</strong> Heat pump (rest) materialsis “Chromium steel productmanufacturing, average metalworking”The cast iron that is selectedfor <strong>the</strong> use in a heat pump is“cast iron, at plant”The process that is selected for<strong>the</strong> production <strong>of</strong> cast iron in<strong>the</strong> heat pump is “Drilling,conventional, cast iron”The copper that is selected for<strong>the</strong> use in a heat pump is“Copper, at regional storage”The process that is selected for<strong>the</strong> production <strong>of</strong> copper is“copper productmanufacturing, average metalworking”The product that is selected fordetermining <strong>the</strong> impact <strong>of</strong> <strong>the</strong>aquifer (rest) is“Polyvinylchloride, at regionalstorage”The process that is needed for<strong>the</strong> production <strong>of</strong> PVC piping is“Extrusion, plastic pipes”selected, based on estimationsand assumptions. For mostelements, <strong>the</strong> library <strong>of</strong> SimaProprovides only one product sheet.The product sheets that areprovided by SimaPro are selectedin <strong>the</strong>se cases.In <strong>the</strong> library no suitableprocesses for <strong>the</strong> most elements<strong>of</strong> <strong>the</strong> heat pump could be found.Most products are applied in verylittle amounts, and <strong>the</strong>refore <strong>the</strong>possible missing processes wouldnot have a serious impact on <strong>the</strong>total <strong>renovation</strong> concept.The SimaPro library contains onlyone sort <strong>of</strong> cast iron. This is <strong>the</strong>average cast iron product that isused and produced in <strong>the</strong> EU.Therefore, this product isselected for this research.This is <strong>the</strong> average productionprocess that belongs to <strong>the</strong>production <strong>of</strong> cast iron, if youwant to create final elements asan end product. This productionprocess is <strong>the</strong> averagetechnology.For <strong>the</strong> selection <strong>of</strong> copper, <strong>the</strong>most common sort <strong>of</strong> copper isselected. Copper at regionalstorage is <strong>the</strong> most common sort<strong>of</strong> copper that is used. Therefore,this type <strong>of</strong> product is selectedThis is <strong>the</strong> average process thatis executed to produce aluminuminto a final product. These finalproducts are applied in <strong>the</strong> boiler.This data is specified on <strong>the</strong>market in Europe.Expert information provided <strong>the</strong>composition <strong>of</strong> this element. Theselected product sheet <strong>of</strong>SimaPro matches <strong>the</strong> definedmaterial that is stated by <strong>the</strong>expert.Expert information provided <strong>the</strong>required process <strong>of</strong> this element.The selected process sheet <strong>of</strong>SimaPro matches <strong>the</strong> definedprocess that is stated by <strong>the</strong>expert.69 LCEI The product that is selected for Expert information (Grundfos)


Aquifer steel70 LCEIAquifer steel71 LCEIWall heatingsystem72 LCEIFaçadeinsulation 173 LCEIFaçadeinsulation 174 LCEIFaçadeinsulation 275 LCEIFaçadeinsulation 2determining <strong>the</strong> impact <strong>of</strong> <strong>the</strong>aquifer - steel is “Chromiumsteel 18/8, at plant”The process that is needed for<strong>the</strong> production <strong>of</strong> Chromiumsteel piping is “Chromium steelproduct manufacturing,average metal working”The product that is selected fordetermining <strong>the</strong> impact <strong>of</strong> <strong>the</strong>wall heating system is“Gypsum fibre board, at plant”The first product sheet that isselected to determine <strong>the</strong>impact <strong>of</strong> <strong>the</strong> façade insulationat <strong>the</strong> WarmBouwen<strong>renovation</strong> concept is“Polyurethane, rigid foam”The process that is needed tocreate <strong>the</strong> rigid PIR plates is“Foaming, expanding”The second product sheet thatis selected to determine <strong>the</strong>impact <strong>of</strong> <strong>the</strong> façade insulationat <strong>the</strong> WarmBouwen<strong>renovation</strong> concept is“Polyethylene terephthalate,granulate, amorphous, atplant”The process that is selected for<strong>the</strong> production <strong>of</strong> in secondlayer <strong>of</strong> insulation is “Fleeceproduction, Polyethyleneterephthalate”Life <strong>cycle</strong> in SimaPro76 LCEIGas useduring <strong>life</strong>The product that is selected forgas use during <strong>the</strong> <strong>life</strong> <strong>cycle</strong> <strong>of</strong><strong>the</strong> „no <strong>renovation</strong>‟ andprovided <strong>the</strong> composition <strong>of</strong> thiselement. The selected productsheet <strong>of</strong> SimaPro matches <strong>the</strong>defined material that is stated by<strong>the</strong> expert.This process is selected becauseit is specified to <strong>the</strong> EU, and itmatches <strong>the</strong> product that isselected for <strong>the</strong> steel that is usedin boilers.This product sheet matches with<strong>the</strong> technical informationprovided from <strong>the</strong> documents <strong>of</strong><strong>the</strong> producer <strong>of</strong> <strong>the</strong> gypsumplates. The end product <strong>of</strong> thisproduct sheet is a plate thatdirectly can be applied in <strong>the</strong><strong>renovation</strong> concept. The pipingthat is processed in <strong>the</strong> wallheating elements is <strong>the</strong> samepiping as applied in <strong>the</strong> o<strong>the</strong>r<strong>renovation</strong> <strong>concepts</strong>. Informationabout this piping is describedbefore. (Assumptions #33-37)Although <strong>the</strong> product that isapplied is PIR instead <strong>of</strong> PUR it isassumed that <strong>the</strong> environmentalimpact <strong>of</strong> <strong>the</strong>se two materials is<strong>the</strong> same. (see assumption #20).This product sheet was <strong>the</strong> mostplausible for <strong>the</strong> applied materialin practice.To harden <strong>the</strong> PIR foam into arigid board, <strong>the</strong> expandingprocess is needed. Therefore, thisprocess is selected in <strong>the</strong>production process <strong>of</strong> thisinsulation product.The technical information <strong>of</strong> <strong>the</strong>producer <strong>of</strong> this insulationmaterial matches <strong>the</strong> best with<strong>the</strong> product that has beenselected in SimaPro. Therefore,this material is selected as <strong>the</strong>second insulation layer <strong>of</strong> <strong>the</strong>façade insulation in <strong>the</strong>WarmBouwen <strong>renovation</strong>concept.This process matches <strong>the</strong> bestwith <strong>the</strong> selected product.Therefore, this process is selectedin <strong>the</strong> LCA.This product is selected because<strong>the</strong> boilers in <strong>the</strong> Ne<strong>the</strong>rlands usenatural gas. Average boilers are133


<strong>cycle</strong>77 LCEIElectricity useduring <strong>life</strong><strong>cycle</strong>78 LCEIElectricity forheat pump„standard <strong>renovation</strong>‟alternative is “Heat, naturalgas, at boiler atmospheric nonmodulating


APPENDIX T - CASE STUDIESThis appendix provides <strong>the</strong> information about <strong>the</strong> cases that are analyzed in thisresearch.CASE: DE TEMPEL (CONFIDENTIAL)-CONFIDENTIAL-CASE: DE KRAYENHOFF (CONFIDENTIAL)-CONFIDENTIAL-135FIGURE 129 - INPUT INFORMATION FROM CASE 'DE KRAYENHOF F'


APPENDIX U - WWS 2010Figure 134 and 135 provide characteristics <strong>of</strong> <strong>the</strong> new „woning waarderingsstelsel‟ thatwill be implemented in <strong>the</strong> Ne<strong>the</strong>rlands in 2011.FIGURE 130 - NEW 'WWS' #1136


FIGURE 131 - NEW 'WWS' #2137


APPENDIX V - STAKEHOLDERS AT SUSTAINABLERENOVATIONSThis appendix describes <strong>the</strong> role and <strong>the</strong> required focus <strong>of</strong> involved stakeholders in a<strong>renovation</strong> project for <strong>the</strong> implementation <strong>of</strong> <strong>sustainable</strong> <strong>renovation</strong> applications.Central GovernmentIn a project specific situation <strong>the</strong> role <strong>of</strong> <strong>the</strong> central government is small unless <strong>the</strong>central government is involved as owner or user. The central government is responsiblefor <strong>the</strong> central subsidy distribution policy. This role is elaborated in more detail at <strong>the</strong>stakeholder „Subsidy distributor‟. The central government as a policymaker is responsiblefor appointing subsidies for <strong>sustainable</strong> <strong>renovation</strong> <strong>concepts</strong> and applications. Next tothat, <strong>the</strong> central government should simplify <strong>the</strong> process <strong>of</strong> obtaining <strong>the</strong> licenses thatare required to become eligible for subsidies in <strong>the</strong> flied <strong>of</strong> <strong>sustainable</strong> <strong>renovation</strong>s. Alsorules and legislation should not form barriers for <strong>the</strong> implementation <strong>of</strong> <strong>sustainable</strong><strong>renovation</strong> measures.ProvinceThe characteristics <strong>of</strong> <strong>the</strong> stakeholder „Central Government‟ also account for <strong>the</strong> province.Only <strong>the</strong> influence <strong>of</strong> <strong>the</strong> province is on provincial level.Governmental water agency: The governmental water agency is responsible for <strong>the</strong>quality <strong>of</strong> <strong>the</strong> ground water and surface water. As a result, <strong>the</strong> governmental wateragency can be involved in <strong>renovation</strong> projects, for example if an aquifer is applied. Thisinstance can contribute by being clear at defining rules and regulations and by simplifying<strong>the</strong> process <strong>of</strong> obtaining licenses for <strong>the</strong> application <strong>of</strong> <strong>sustainable</strong> <strong>renovation</strong> techniques.MunicipalityThe characteristics <strong>of</strong> <strong>the</strong> stakeholder „Central Government‟ also account for <strong>the</strong>municipality. Only <strong>the</strong> influence <strong>of</strong> <strong>the</strong> municipality is on municipal level.Prosperity agencyThe prosperity agency is can be a hindrance for <strong>the</strong> application <strong>of</strong> <strong>sustainable</strong> measuresto existing buildings. To contribute to <strong>the</strong> implementation <strong>of</strong> <strong>sustainable</strong> measures, thisinstance could define exceptions in this field. For example, exceptions could be definedfor adaptations to a protected building, if <strong>the</strong> adaptations have a certain level <strong>of</strong>sustainability.LandownerIn case <strong>of</strong> a <strong>renovation</strong> project, <strong>the</strong> land owner mostly plays a minor role.Direct local residents and o<strong>the</strong>r involved residentsThe local residents can play an important role at <strong>the</strong> implementation <strong>of</strong> <strong>sustainable</strong><strong>renovation</strong> projects. Complaints and protests against construction projects can form amajor barrier for <strong>the</strong> execution <strong>of</strong> a project. It is hard to make a difference between<strong>sustainable</strong> <strong>renovation</strong> projects and regular projects regarding <strong>the</strong> chance on complaintsand protests against <strong>the</strong> project. The project organization should focus on a clear andsolid communication process with local residents to prevent complaints and protests.Future userThe future user plays an important role at <strong>the</strong> implementation <strong>of</strong> <strong>sustainable</strong> <strong>renovation</strong><strong>concepts</strong>. The future user should demand <strong>the</strong> implementation <strong>of</strong> <strong>sustainable</strong> measuresinto a far-reaching degree at <strong>renovation</strong> projects. To compensate <strong>the</strong> investment <strong>of</strong> <strong>the</strong>owner, <strong>the</strong> future user should be willing to pay an increased rental price. This increasedrental price is compensated by decreased energy costs. If <strong>the</strong> future users do not138


demand a certain level <strong>of</strong> sustainability at a <strong>renovation</strong>, <strong>the</strong> project developer is nottriggered to come up with innovative and <strong>sustainable</strong> solutions.Project developerA project developer can play an important role at <strong>the</strong> implementation <strong>of</strong> <strong>sustainable</strong>applications at <strong>renovation</strong> projects. However, <strong>the</strong> developer should be triggered andchallenged by o<strong>the</strong>r involved parties, to invest in sustainability at <strong>the</strong> developmentprocess, for example <strong>the</strong> future users. The current market does not challenge a projectdeveloper to implement sustainability at <strong>renovation</strong> projects. However, <strong>the</strong>re is a biginterest in challenging <strong>the</strong> project developer to invest in sustainability, because <strong>the</strong>project developer has <strong>the</strong> capacity to make major investments and has <strong>the</strong> capacity t<strong>of</strong>ocus on long term pr<strong>of</strong>its. Long term pr<strong>of</strong>its fit with sustainability principals, and a longterm focus is essential for <strong>the</strong> successful application <strong>of</strong> sustainability.ArchitectThe architect can have a major influence on <strong>the</strong> degree <strong>of</strong> sustainability that isimplemented at <strong>renovation</strong> projects. The architect translates requirements and wishesinto <strong>the</strong> redesign <strong>of</strong> a building. If <strong>the</strong> architect has a strong focus on <strong>the</strong> implementation<strong>of</strong> sustainability aspects, this can result in a design which caters to sustainability aspectsinto higher extend. The architect should be triggered by project developers and futureusers to implement sustainability aspects in <strong>the</strong> redesign <strong>of</strong> buildings. In o<strong>the</strong>r words,owners should demand a certain degree <strong>of</strong> sustainability to trigger <strong>the</strong> architect.Contractor & ConstructorThe contractor and constructor are responsible for <strong>the</strong> execution <strong>of</strong> <strong>the</strong> <strong>renovation</strong>project. This makes <strong>the</strong>m an important player in <strong>the</strong> field <strong>of</strong> implementation <strong>of</strong>sustainability aspects. The executing parties should have <strong>the</strong> skills to apply <strong>sustainable</strong>measures <strong>the</strong> way <strong>the</strong>y are meant to be applied. To make sure that <strong>the</strong> designedsustainability measures are applicable, it is important that <strong>the</strong> contractor and constructorcommunicate with o<strong>the</strong>r involved parties like <strong>the</strong> architect, <strong>the</strong> project developer,consultants, and future users. Also, <strong>the</strong>se stakeholders should be willing to be flexibleand studious to develop <strong>the</strong>ir <strong>sustainable</strong> skills.ConsultantsConsultants can have an important role at <strong>the</strong> implementation <strong>of</strong> sustainability aspects.Currently, <strong>the</strong>re is only minor knowledge in <strong>the</strong> market about <strong>the</strong> implementation <strong>of</strong>sustainability at <strong>renovation</strong> projects. Consultants are experts that are able to help aproject organization with <strong>the</strong> definition <strong>of</strong> <strong>sustainable</strong> ambitions, contracts, financialimpacts, and practical issues. The sustainability consultant should be involved in an earlyphase <strong>of</strong> <strong>renovation</strong> projects. Consultants must be willing to be flexible and to think out<strong>of</strong> <strong>the</strong> box.Financial consultantThe financial consultant should be able to provide consult that fits with <strong>the</strong> requirements<strong>of</strong> <strong>the</strong> applied <strong>sustainable</strong> measures. The financial consultant should be able to thinkcreatively and out <strong>of</strong> <strong>the</strong> box to overcome <strong>the</strong> financial barriers that arise from <strong>the</strong>current financial system.Environmental organizationsIn a project specific context, environmental organizations do not have <strong>the</strong> capability tohave a significant contribution on <strong>the</strong> implementation <strong>of</strong> sustainability measures at<strong>renovation</strong> project.Subsidy distributorThe subsidy distributor is responsible for simplifying <strong>the</strong> process <strong>of</strong> obtaining a subsidyfor <strong>sustainable</strong> <strong>renovation</strong> measures. However, this may not be at <strong>the</strong> cost <strong>of</strong> <strong>the</strong> justice<strong>of</strong> <strong>the</strong> system.139

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!