10.07.2015 Views

measurements of chromosome aberration at tomato plants

measurements of chromosome aberration at tomato plants

measurements of chromosome aberration at tomato plants

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Measurements <strong>of</strong> <strong>chromosome</strong> <strong>aberr<strong>at</strong>ion</strong> <strong>at</strong> tom<strong>at</strong>o <strong>plants</strong>(Lycopersicon esculentum mill.) regener<strong>at</strong>ed from “in vitro”tissue cultureCristea Tina Oana* 1 , Ambăruş Silvica 1 , Călin Maria 1 , Prisecaru Maria 2 , Avasiloaiei D. I. 11 Vegetable Research and Development St<strong>at</strong>ion Bacău ; 2 University Vasile Alecsandri Bacău, Faculty <strong>of</strong>Biology*Corresponding author. Email: tinaoana@yahoo.comAbstract Tissue culture “in vitro” have a key role for the development <strong>of</strong>breeding activities <strong>at</strong> tom<strong>at</strong>oes <strong>plants</strong>. Currently, the modern breedingtechniques based on genetic engineering, employ in a certain stage <strong>of</strong> newvarietal cre<strong>at</strong>ion, the utiliz<strong>at</strong>ion <strong>of</strong> tissue culture for the regener<strong>at</strong>ion <strong>of</strong> <strong>plants</strong>.But, during the “in vitro” culture, due to the composition <strong>of</strong> medium culture,alter<strong>at</strong>ion <strong>of</strong> <strong>chromosome</strong>s morphology may occur. Depending on the finalobjective <strong>of</strong> tissue culture, the abnormalities <strong>of</strong> <strong>chromosome</strong>s th<strong>at</strong> mayappear <strong>at</strong> “in vitro” regener<strong>at</strong>ed <strong>plants</strong> have to be avoided (cultures designedfor clonal multiplic<strong>at</strong>ion) or to be amplified (cultures designed for somaclonalvariability). According with the liter<strong>at</strong>ure, <strong>chromosome</strong> <strong>aberr<strong>at</strong>ion</strong>s have beenused as a measure <strong>of</strong> reproductive success in <strong>plants</strong> for many years andhave been correl<strong>at</strong>ed with morphological changes, fertility-sterilityrel<strong>at</strong>ionships, mut<strong>at</strong>ions, etc.Subsequent studies <strong>at</strong> different plant species have shown th<strong>at</strong> plant<strong>chromosome</strong>s exhibit many different types <strong>of</strong> <strong>aberr<strong>at</strong>ion</strong>, as a result <strong>of</strong>different types <strong>of</strong> chemicals used for the prepar<strong>at</strong>ion <strong>of</strong> “in vitro” culturemedium.The main objective <strong>of</strong> the present paper is screening <strong>of</strong> some aspectsregarding the type and frequency <strong>of</strong> <strong>chromosome</strong>s <strong>aberr<strong>at</strong>ion</strong>s th<strong>at</strong> appeared<strong>at</strong> tom<strong>at</strong>oes <strong>plants</strong> regener<strong>at</strong>ed from “in vitro” culture are discussed. The maintypes <strong>of</strong> <strong>aberr<strong>at</strong>ion</strong>s identified <strong>at</strong> regener<strong>at</strong>ed <strong>plants</strong> are: <strong>chromosome</strong>clumping, contraction, stickiness, paling, fragment<strong>at</strong>ion, dissolution,<strong>chromosome</strong> and chrom<strong>at</strong>id bridges, C-mitosis and endoploidy.The early detection <strong>of</strong> the chromosomal <strong>aberr<strong>at</strong>ion</strong>s allows theselection <strong>of</strong> the growth conditions th<strong>at</strong> better suit the final goal <strong>of</strong>investig<strong>at</strong>ions (clone multiplic<strong>at</strong>ion or by contrary the induction <strong>of</strong> somaclonalvariability).Key wordsgenetic,stickiness,tom<strong>at</strong>oes<strong>chromosome</strong>s,anaphase,One <strong>of</strong> the principal objectives <strong>of</strong> using <strong>chromosome</strong>sas a monitoring system is to determine whether or notthe „in vitro” tissue culture conditions are clastogen(meaning capable <strong>of</strong> breaking <strong>chromosome</strong>s). If thehormones or other chemicals used for the mediaprepar<strong>at</strong>ion are clastogen, then this would permitexchanges th<strong>at</strong> would be transl<strong>at</strong>ed through cytologicalor genetic changes <strong>at</strong> regener<strong>at</strong>ed <strong>plants</strong> level.The cultiv<strong>at</strong>ion <strong>of</strong> different ex<strong>plants</strong> onnutritive media “in vitro” is <strong>of</strong>ten rel<strong>at</strong>ed with anincrease in the frequency <strong>of</strong> structural chromosomalalter<strong>at</strong>ions as well as an increase in the frequency <strong>of</strong>gene mut<strong>at</strong>ions. How these factors are rel<strong>at</strong>ed to oneanother and how they cause changes in the<strong>chromosome</strong> and gene mut<strong>at</strong>ion r<strong>at</strong>es are not wellunderstood. However, the fact th<strong>at</strong> all these externalagents cause similar changes and indic<strong>at</strong>e a broadfundamental process may be a primary cause <strong>of</strong>mut<strong>at</strong>ions.It is highly important to determine thefrequency <strong>of</strong> <strong>aberr<strong>at</strong>ion</strong> th<strong>at</strong> occurs during “in vitro”regener<strong>at</strong>ion <strong>of</strong> <strong>plants</strong> as it reflects directly in thephenotype <strong>of</strong> <strong>plants</strong>. In the “in vitro” multiplic<strong>at</strong>ion <strong>of</strong>valuable <strong>plants</strong> utilized in classical breeding this type<strong>of</strong> genetic variability must be avoid. The identific<strong>at</strong>ion<strong>of</strong> hormonal formuli th<strong>at</strong> causes the minimumfrequency <strong>of</strong> chromosomal alter<strong>at</strong>ion is thus <strong>of</strong>maximum importance for the development <strong>of</strong> futuremultiplic<strong>at</strong>ion technologies.274


M<strong>at</strong>erial and MethodsThe biological m<strong>at</strong>erial is represented from 4genotypes <strong>of</strong> tom<strong>at</strong>oes (Lycopersicon esculentum Mill.)from Vegetable Research and Development St<strong>at</strong>ionBacau, Romania. The seeds were utilized for the “invitro” multiplic<strong>at</strong>ion <strong>of</strong> these valuable genotypes andthe meristem<strong>at</strong>ic root tips were excised from the “invitro” plantlets regener<strong>at</strong>ed on D1-D3 variants,characterized through the presence <strong>of</strong> BAP and Kinetinalone or in associ<strong>at</strong>ion with IAA – table 1.Experimental variants utilized in the cytogenetic studies <strong>at</strong> Lycopersicon esculentum Mill.Components D0 D1 D2 D3Macro elementsMS, 1962Microelements MS, 1962Vitamins B 5BAP seeds germin<strong>at</strong>ed “ex 2,0 mg/l - 1,5 mg/lKinetin vitro”- 2 mg/l -IAA - - 0,5 mg/lSucrose 3% 3% 3%Agar 8 ‰ 8 ‰ 8 ‰Table 1The control variant is represented by <strong>plants</strong>germin<strong>at</strong>ed “ex vitro” in Petri dishes.The cytogenetic studies were accomplished inmeristem<strong>at</strong>ic root cells, stained in Carnoy fixingsolution for 24 hours <strong>at</strong> 4 0 C then hydrolyzed with HClfor 7 minutes and colored with the basic coloringsolution Carr. The root meristems were displayed usingsquash technique and for each genotype and variant6000 cells were counted.Results and DiscussionsThe objective <strong>of</strong> the present study was todetermine whether or not the <strong>plants</strong> regener<strong>at</strong>ed fromin vitro culture presents alter<strong>at</strong>ion in their geneticstructure. Thus, we tested the influence <strong>of</strong> mediumculture composition over the <strong>chromosome</strong>s structures.The cytogenetical studies accomplished in the presentstudy demonstr<strong>at</strong>e th<strong>at</strong> the cultiv<strong>at</strong>ion <strong>of</strong> tom<strong>at</strong>oesshoot tips on nutritive medium modified with Kinetinand BAP allows the regener<strong>at</strong>ion <strong>of</strong> new <strong>plants</strong> with astable genetic m<strong>at</strong>erial th<strong>at</strong> shows little geneticvariability. This variability manifested <strong>at</strong> cellular levelthrough the different types <strong>of</strong> chromosomalabnormalities does not exceed the n<strong>at</strong>ural variabilitypresent also on <strong>plants</strong> germin<strong>at</strong>ed in n<strong>at</strong>ural conditions.The results obtained are presented in tables 2, 3, 4 andfigures 1, 2, 3.Table 2Types and frequency <strong>of</strong> chromosomal <strong>aberr<strong>at</strong>ion</strong>s observed in root meristem<strong>at</strong>ic cells - genotype MonoromVariant Total no<strong>of</strong> cells% Prophases withanomalies%Metaphaseswith anomalies%A+T withanomaliesOther typesD0 5745 0,65 0,83 0,88 1,19D1 6078 0,23 0,24 0,54 0,32D2 5974 0,12 0,32 0,41 0,28D3 6298 0,21 0,49 0,68 0,59275


1,210,80,60,4D0D1D2D30,20% Prophaseswith anomalies%Metaphaseswith anomalies%A+T withanomaliesOther typesFig. 1: Types and frequency <strong>of</strong> chromosomal <strong>aberr<strong>at</strong>ion</strong>s observedin root meristem<strong>at</strong>ic cells – genotype MonoromTable 3Types and frequency <strong>of</strong> chromosomal <strong>aberr<strong>at</strong>ion</strong>s observed in root meristem<strong>at</strong>ic cells – genotype L24SVariant Total no <strong>of</strong>cells% Prophases withanomalies%Metaphaseswith anomalies%A+T withanomaliesOther typesD0 6012 0,21 0,88 1,89 1,16D1 6241 0,11 0,85 1,13 0,59D2 5320 0,12 0,72 0,9 0,89D3 6000 0,09 0,63 1,12 1,0921,81,61,41,210,80,6D0D1D2D30,40,20% Prophaseswith anomalies%Metaphaseswith anomalies%A+T withanomaliesOther typesFig. 2: Types and frequency <strong>of</strong> chromosomal <strong>aberr<strong>at</strong>ion</strong>s observedin root meristem<strong>at</strong>ic cells - genotype L24STable 4Types and frequency <strong>of</strong> chromosomal <strong>aberr<strong>at</strong>ion</strong>s observed in root meristem<strong>at</strong>ic cells – genotype L27SVariant Total no<strong>of</strong> cells% Prophaseswith anomalies%Metaphaseswith anomalies%A+T withanomaliesOther types<strong>of</strong>anomaliesD0 5891 1,32 0,25 1,72 1,74D1 5942 1,20 0,24 1,21 0,97D2 6001 0,12 0,18 1,18 0,78D3 5012 0,29 0,12 0,87 0,96276


1,81,61,41,210,80,6D0D1D2D30,40,20% Prophases %Metaphaseswith anomalies with anomalies%A+T withanomaliesOther types <strong>of</strong>anomaliesFig. 3: Types and frequency <strong>of</strong> chromosomal <strong>aberr<strong>at</strong>ion</strong>s observedin root meristem<strong>at</strong>ic cells - genotype L27STable 5Types and frequency <strong>of</strong> chromosomal <strong>aberr<strong>at</strong>ion</strong>s observed in root meristem<strong>at</strong>ic cells – genotype FRANCESCAVariant Total no<strong>of</strong> cells% Prophaseswith anomalies%Metaphaseswith anomalies%A+T withanomaliesOther types<strong>of</strong>anomaliesD0 6021 0,52 0,41 1,96 1,11D1 5478 0,24 0,26 1,32 1,00D2 5965 0,16 0,12 1,02 0,89D3 5418 0,28 0,22 1,35 1,2921,81,61,41,210,80,6D0D1D2D30,40,20% Prophaseswith anomalies%Metaphaseswith anomalies%A+T withanomaliesOther types <strong>of</strong>anomaliesFig. 3: Types and frequency <strong>of</strong> chromosomal <strong>aberr<strong>at</strong>ion</strong>s observedin root meristem<strong>at</strong>ic cells - genotype FrancescaThe main types <strong>of</strong> <strong>aberr<strong>at</strong>ion</strong>s identified <strong>at</strong>regener<strong>at</strong>ed <strong>plants</strong> are: <strong>chromosome</strong> clumping,contraction, stickiness, paling, fragment<strong>at</strong>ion,dissolution, <strong>chromosome</strong> and chrom<strong>at</strong>id bridges, C-mitosis and endoploidy.For all the genotypes tested in thepresent study the highest incidence <strong>of</strong> <strong>aberr<strong>at</strong>ion</strong>s wasobserved in ana-telophases. The most commonabnormalities were ana-telophases with simple ormultiple bridges, expelled or l<strong>at</strong>e <strong>chromosome</strong>s andmultipolar ana-telophases – figure 4. We also detectedabnormalities is metaphases th<strong>at</strong> were abnormallyorganized, with ring <strong>chromosome</strong>s, minutes, expelled<strong>chromosome</strong>s, fragment, etc – figure 5.In a smaller number we detected prophases th<strong>at</strong>presented different types <strong>of</strong> chromosomal <strong>aberr<strong>at</strong>ion</strong>slike l<strong>at</strong>e prophases, with ring <strong>chromosome</strong>s, expelled<strong>chromosome</strong>s etc – figure 6.277


Fig. 4 – Ana-telophases with bridge (left) and l<strong>at</strong>e <strong>chromosome</strong>s (right)Fig. 5 – Prophase with ring <strong>chromosome</strong>s (left) and binucle<strong>at</strong>e cells (right) (genotype L24S)Fig. 6 – Sticky metaphases (left) and with expelled <strong>chromosome</strong>s (right) <strong>at</strong> L27S genotypeAll four genotypes had the same cytogenetic behavior,the <strong>plants</strong> regener<strong>at</strong>ed from “in vitro” culturepresenting abnormalities in similar percentages as thecontrol. For example <strong>at</strong> the genotype L24S from theentire number <strong>of</strong> identified metaphases a rangebetween 0,63-0,85% <strong>of</strong> them were abnormal <strong>at</strong> variant278


D1-D3, while the control registered 0,88%, <strong>at</strong> L27Sgenotype the value were between 0,12-0,24% for D-D3and 0,25% for control.Regarding the percentage <strong>of</strong> cells with an<strong>at</strong>elophaseswith abnormalities the values are higherthan the one registered for metaphases. At genotypeFrancesca, for example, <strong>at</strong> <strong>plants</strong> regener<strong>at</strong>ed from invitro cultures the percentage <strong>of</strong> cells with abnormalitiesin ana-telophases ranged between 1,02-1,35 %, whilethe control registered 1,96%. The same genotype had0,26% from cells in metaphases with abnormalitieswhile the control had only 0,41%.ConclusionsThe results obtained in our experiment provedth<strong>at</strong> in the “in vitro” conditions tested, the types andfrequency <strong>of</strong> chromosomal <strong>aberr<strong>at</strong>ion</strong> are similar withthe control. No other genetic abnormality <strong>of</strong> the tissuecultured<strong>plants</strong> was observed suggesting th<strong>at</strong> geneticfidelity <strong>of</strong> tissue cultured <strong>plants</strong> can be maintained ifappropri<strong>at</strong>e plant growth regul<strong>at</strong>ors are used with lessnumber <strong>of</strong> subcultures in the multiplic<strong>at</strong>ion stage.The cultiv<strong>at</strong>ion <strong>of</strong> tom<strong>at</strong>oes shoot tips onnutritive medium modified with Kinetin and BAPallows the regener<strong>at</strong>ion <strong>of</strong> new <strong>plants</strong> with a stablegenetic m<strong>at</strong>erial th<strong>at</strong> shows little genetic variability.This variability manifested <strong>at</strong> cellular level through thedifferent types <strong>of</strong> chromosomal abnormalities does notexceed the n<strong>at</strong>ural variability present also on <strong>plants</strong>germin<strong>at</strong>ed in “ex vitro” conditions.The main types <strong>of</strong> abnormalities in the rootcells <strong>of</strong> tom<strong>at</strong>oes are ana-telophases with bridges,metaphases with lagging <strong>chromosome</strong>s, expelled<strong>chromosome</strong>s or ring <strong>chromosome</strong>s, multipolar an<strong>at</strong>elophases,as well as binucle<strong>at</strong>e cells and interphaseswith micro-nucleuses.References1. Li M., M. Zhang, 1991 - Technology for plant<strong>chromosome</strong> research. Northwest Forest Univ. Press,Shenyiang, China. p. 31–39.2. Budiman, M.A., L. Mao, T. Wood and R.A.Wing. 2000. A Deep-Coverage Tom<strong>at</strong>o BAC Libraryand Prospects Toward Development <strong>of</strong> an STCFramework for Genome Sequencing. GenomeResearch 10:129-136.3. Mao, L., D. Begum, S.A. G<strong>of</strong>f, R.A. Wing.2001. Sequence and Analysis <strong>of</strong> the Tom<strong>at</strong>oJOINTLESS Locus. Plant Physiology: 126:1331-1340.279

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!