Effective Lagrangians and Field Theory on the lattice

Effective Lagrangians and Field Theory on the lattice Effective Lagrangians and Field Theory on the lattice

Method of <strong>the</strong> derivati<strong>on</strong> of Chiral <str<strong>on</strong>g>Effective</str<strong>on</strong>g>Theories from Lattice QCD• Why QCD <strong>on</strong> <strong>the</strong> <strong>lattice</strong>. Lattice QCD as regularizati<strong>on</strong>scheme.• Analytical integrati<strong>on</strong> <strong>on</strong> <strong>the</strong> <strong>lattice</strong> – how it’s possible?• First Step – Str<strong>on</strong>g coupling regime• Lattice <str<strong>on</strong>g>and</str<strong>on</strong>g> space-time symmetries: <strong>lattice</strong> artifacts• Soluti<strong>on</strong>: R<str<strong>on</strong>g>and</str<strong>on</strong>g>om Lattice!• Restorati<strong>on</strong> of space-time symmetries <strong>on</strong> <strong>the</strong> R<str<strong>on</strong>g>and</str<strong>on</strong>g>omLattice <str<strong>on</strong>g>and</str<strong>on</strong>g> zero-order chiral effective <strong>the</strong>ory• Derivati<strong>on</strong> of Chiral <str<strong>on</strong>g>Effective</str<strong>on</strong>g> Theories from Lattice QCD – way isfree!


Str<strong>on</strong>g-coupling <str<strong>on</strong>g>and</str<strong>on</strong>g> glu<strong>on</strong> correlati<strong>on</strong> length


Str<strong>on</strong>g-coupling <str<strong>on</strong>g>and</str<strong>on</strong>g> glu<strong>on</strong> correlati<strong>on</strong> lengthSpacing a > 0.2 fm


Str<strong>on</strong>g coupling regime = Link integrals dominati<strong>on</strong>whereZ( β → ) [ DG][ Dψ][ Dψ]00= ∫− Se ψ(+)x, x, x, x,= ∑+S Tr A G A Gψμ μ μ μx,μAA=ψPψx , μ x , μ μ x=ψPx , μ x μ x , μ−+ψ± 1Pμ= r ±μ2( γ )


Lattice QCDStr<strong>on</strong>g coupling regimeβ→0Gross-Brezeot trickIntegrati<strong>on</strong> <strong>on</strong> glu<strong>on</strong> fieldPreliminary fermi<strong>on</strong>-field dependenteffective acti<strong>on</strong>Integrati<strong>on</strong> <strong>on</strong> fermi<strong>on</strong> field<str<strong>on</strong>g>Effective</str<strong>on</strong>g> acti<strong>on</strong> <strong>on</strong> Chiral <str<strong>on</strong>g>Field</str<strong>on</strong>g>


Bos<strong>on</strong>ic matrix M:Mαβ( x)is a metrix in <strong>the</strong> spin <str<strong>on</strong>g>and</str<strong>on</strong>g> flavor spacerepresenting an effective bos<strong>on</strong>ic fieldM ( x) = M exp{ iS( x) + iP( x) γ + iV ( x) γ + iA ( x) γ γ + iT ( x) σ }αβ 0 5 μ μ μ μ 5 μν μνSU(2) Chiral scenario means <strong>the</strong> neglecting of c<strong>on</strong>tributi<strong>on</strong> fromScalar, Vector, Axial-vector <str<strong>on</strong>g>and</str<strong>on</strong>g> Tensor mes<strong>on</strong>s. Just <strong>on</strong>lyPseudoscalers are taking into account!M ( x) = M exp{ iP( x) γ }αβ0 5Stati<strong>on</strong>ary point of acti<strong>on</strong>


Interacti<strong>on</strong> <strong>on</strong> fermi<strong>on</strong> degrees of freedom:stati<strong>on</strong>ary-point expansi<strong>on</strong>(S. Myint, C. Rebbi hep-lat/9401009, hep-lat/9401010)W ( λ )S U Tr xeff∞ ( k )0k( ) = −∑∑ ⎡ ( λv( ) λ0)k = 1 k ! ⎣ −x,v⎤⎦[ ]Tr ( λ ( x) − λ ) =−2 λ Tr( α)v0 02 2 2 2Tr ⎡⎣( λv( x) − λ0) ⎤⎦ = 2 λ0Tr( α ) −4 λ0Tr( α)3 3 3 3 2Tr ⎡⎣( λv( x) − λ0) ⎤⎦ = − 2 λ0Tr( α ) + 6 λ0Tr( α )α = a ∇ U ∇ U + O( a )2 +4v vU = exp( iφτ/ f π)4 4 4 4 3 3 2Tr ⎡⎣( λv( x) − λ0) ⎤⎦ = 2 λ0Tr( α ) − 8 λ0Tr( α ) + 4 λ0Tr( α )Tr ⎡( λ ( x) λ ) ⎤ 2 λ Tr( α ) 10 λ Tr( α )5 5 5 5 4⎣ v−0 ⎦ =−0+0+ …………


Integrati<strong>on</strong> <strong>on</strong> hyper-cubical <strong>lattice</strong>: О(4) symmetriesviolati<strong>on</strong>!Lattice basis = orthog<strong>on</strong>al vectorsν =i, j, k,t


Integrati<strong>on</strong> <strong>on</strong> hyper-cubical <strong>lattice</strong>: О(4) symmetriesviolati<strong>on</strong>!Lattice basis = orthog<strong>on</strong>al vectorsν =i, j, k,t∇ U∇ U = ∇U∇U+ +1) v v i i[ ]Tr ( λ ( x) − λ ) =−2 λ Tr( α)v0 0∼ Tr( ∂U∂U + )iiU = exp( iφτ/ f π)2 2 2 2Tr ⎡⎣( λv( x) − λ0) ⎤⎦ = 2 λ0Tr( α ) −4 λ0Tr( α)3 3 3 3 2Tr ⎡⎣( λv( x) − λ0) ⎤⎦ = − 2 λ0Tr( α ) + 6 λ0Tr( α )∼+ +Tr( ∂ U ∂ U ∂ U ∂ U )i i i i4 4 4 4 3 3 2Tr ⎡⎣( λv( x) − λ0) ⎤⎦ = 2 λ0Tr( α ) − 8 λ0Tr( α ) + 4 λ0Tr( α )Tr ⎡( λ ( x) λ ) ⎤ 2 λ Tr( α ) 10 λ Tr( α )5 5 5 5 4⎣ v−0 ⎦ =−0+0+ …………


We have a problem with reproducing of space-timesymmetry!Cause: Violati<strong>on</strong> of space-time symmetry to discrete groupSequence: Lattice Artifacts!Possible soluti<strong>on</strong>s: Try to find more symmetrical <strong>lattice</strong>!More symmetrical <strong>lattice</strong> in 4-dim:Body Centered Hyper Cubical Lattice


Integrati<strong>on</strong> <strong>on</strong> hyper-cubical <strong>lattice</strong> with center element asstep <strong>on</strong> <strong>the</strong> way to general soluti<strong>on</strong>Basis vectors of <strong>the</strong> hyper-cubical <strong>lattice</strong> with center elementν ± = ±( e e ) / 2ij i j


Integrati<strong>on</strong> <strong>on</strong> hyper-cubical <strong>lattice</strong> with center element asstep <strong>on</strong> <strong>the</strong> way to general soluti<strong>on</strong>Basis vectors of <strong>the</strong> hyper-cubical <strong>lattice</strong> with center elementν ± = ±( e e ) / 2ij i j[( λ ( x) − λ )]+ +∇ TrvU∇ vU = ∇iU∇ iUv 0∼ Tr( ∂iU ∂iU + )Tr ⎡⎣( λv( x) − λ0)2⎤⎦∼+ + + + + +Tr( ∂ U ∂ U ∂ U ∂ U + ∂ U ∂ U ∂ U ∂ U + ∂ U ∂ U ∂ U ∂ U )i i j j i j i j i j J i3 3 3 3 2Tr ⎡⎣( λv( x) − λ0) ⎤⎦ = − 2 λ0Tr( α ) + 6 λ0Tr( α )N<strong>on</strong>- invarianceagain!!


Unfortunately, Body Centered Hyper CubicalLattice is not what we seek…We need More symmetrical Lattice!Unfortunately, <strong>the</strong>re are no more symmetrical Lattice in 4-dim thanBCHC!No more REGULAR Lattice…OK, no more regular <strong>lattice</strong>!Let us to c<strong>on</strong>sider R<str<strong>on</strong>g>and</str<strong>on</strong>g>om Lattice!


R<str<strong>on</strong>g>and</str<strong>on</strong>g>om Lattice: historical remark• Georgy Vor<strong>on</strong>oi • Boris Delaunay1868-1909 г 1890-1980 г


R<str<strong>on</strong>g>and</str<strong>on</strong>g>om Lattice: step 1Let us c<strong>on</strong>sider R<str<strong>on</strong>g>and</str<strong>on</strong>g>om distributi<strong>on</strong> of centers


R<str<strong>on</strong>g>and</str<strong>on</strong>g>om Lattice: step 2


R<str<strong>on</strong>g>and</str<strong>on</strong>g>om Lattice: step 3


R<str<strong>on</strong>g>and</str<strong>on</strong>g>om Lattice: step 4


.R<str<strong>on</strong>g>and</str<strong>on</strong>g>om Lattice: step 5


R<str<strong>on</strong>g>and</str<strong>on</strong>g>om Lattice: step 6


R<str<strong>on</strong>g>and</str<strong>on</strong>g>om Lattice: step 7


R<str<strong>on</strong>g>and</str<strong>on</strong>g>om Lattice averaging = restorati<strong>on</strong> of О(D=4)invariance……………..


CFL formalism for r<str<strong>on</strong>g>and</str<strong>on</strong>g>om <strong>lattice</strong>(Christ, Friеdberd, Lee Nucl.Phys. B202 (1982) 89; B210 (1982) 310; 337)1. Any element or object <strong>on</strong> R<str<strong>on</strong>g>and</str<strong>on</strong>g>om <strong>lattice</strong> corresp<strong>on</strong>dto same element or object of Dual R<str<strong>on</strong>g>and</str<strong>on</strong>g>om <strong>lattice</strong>2. Any element or object <strong>on</strong> R<str<strong>on</strong>g>and</str<strong>on</strong>g>om <strong>lattice</strong> has statisticalweighsCenter iD-dim value of dual V<strong>on</strong>oi cellLink iPlaquettejki jD-1 – dim value of <strong>the</strong> plane of <strong>the</strong>Vor<strong>on</strong>oi cellD-2 - dim value ofcorresp<strong>on</strong>dent dualobject


Fermi<strong>on</strong> <strong>on</strong> R<str<strong>on</strong>g>and</str<strong>on</strong>g>om LatticeLattice acti<strong>on</strong> for fermi<strong>on</strong> <strong>on</strong> <strong>the</strong> <strong>lattice</strong>1(μ μψ γ λ ψ )S T r l ijψ= ∑ λ = S /ij2 x , μν γvijijlij


Restorati<strong>on</strong> of О(4) symmetry <strong>on</strong> R<str<strong>on</strong>g>and</str<strong>on</strong>g>om LatticeТ(CFL)⎛⎜⎝∑μν μ ν 2μ ν=λij ij ijL l lij⎞⎟⎠[ Ω ]=δ( δ δ δ δ δ δ )= c+ +μνρσ μ ν ρσ μρ νσ μσ ρνL2Lci iN ⎜ ∏ δ δperm utati<strong>on</strong>i1i2 … i2N l k=⎛⎝∑⎞⎟⎠c N=N12 ( N + 1)!


Restorati<strong>on</strong> of О(4) symmetry <strong>on</strong> R<str<strong>on</strong>g>and</str<strong>on</strong>g>om Lattice⎛⎜⎝∑νabνν⎞⎟⎠[ Ω ]=abii⎛⎜⎝∑ν⎞ 1aνb C d abc d ab cd ab c dν ν ν ⎟ = + +⎠ 6[ Ω]( )i i j j i j i j i j j i


<str<strong>on</strong>g>Effective</str<strong>on</strong>g> <strong>the</strong>ory for chiral field in str<strong>on</strong>g couplingregimeR<str<strong>on</strong>g>and</str<strong>on</strong>g>om <strong>lattice</strong>s ensemble averaging => restorati<strong>on</strong> ofspace symmetry <strong>on</strong> zero step of perturbati<strong>on</strong>!!!2Fπ +L= Tr( ∂iU∂ iU) +21+ CTr ( ∂U∂U ∂ U∂ U +∂U∂ U ∂U∂ U +∂U∂ U ∂ U∂ U ) + C L + + + + + + +4 i i j j i j i j i j J i6 2 6F πp < F ∼ 100MeVπ


Shock-wave soluti<strong>on</strong>s of Chiral Born-Infeld <str<strong>on</strong>g>Theory</str<strong>on</strong>g>ChBI( ( ))1 1μ2βL =−f β Tr − − L L μ2 2 2πf π→ 0β → 0L ϕ ϕ2 2H= 1− 1 −( t− x)LW=−f2π4( ) μTr L L μ+Lμ= U ∂μUU = exp( iφτ/ f π)


C<strong>on</strong>clusi<strong>on</strong>s:• The method of derivati<strong>on</strong> of chiral effective <strong>the</strong>ories from Lattice QCD wasc<strong>on</strong>sidered.• Basis of <strong>the</strong> method – c<strong>on</strong>cepti<strong>on</strong> of <strong>the</strong> r<str<strong>on</strong>g>and</str<strong>on</strong>g>om <strong>lattice</strong> ensemble averaging• Zero-order perturbati<strong>on</strong> <strong>the</strong>ory in str<strong>on</strong>g coupling regime was c<strong>on</strong>sidered.Restorati<strong>on</strong> of O(4) space symmetry was studied.• This method could be used for any order of perturbati<strong>on</strong>, for any plaquetcotributi<strong>on</strong>s.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!