10.07.2015 Views

Raffi Budakian Joonho Jang Investigating Magnetic Order in ...

Raffi Budakian Joonho Jang Investigating Magnetic Order in ...

Raffi Budakian Joonho Jang Investigating Magnetic Order in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Investigat<strong>in</strong>g</strong> <strong>Magnetic</strong> <strong>Order</strong> <strong>in</strong> MesoscopicSuperconductors Us<strong>in</strong>g Cantilever Torque Magnetometry<strong>Raffi</strong> <strong>Budakian</strong><strong>Joonho</strong> <strong>Jang</strong>1 µm


Outl<strong>in</strong>e Introduction to superconductivity <strong>in</strong> Sr 2RuO 4 Describe torque magnetometry measurements to detect momentsfrom edge currents <strong>in</strong> mesoscopic SRO samples Measurements <strong>in</strong> NbSe 2(Model system that is layered and s-wave)SRO Measurements Prelim<strong>in</strong>ary evidence of moment due to edge currents Nonl<strong>in</strong>ear diamagnetic susceptibility Conclud<strong>in</strong>g Remarks


Superconductivity <strong>in</strong> Sr 2 RuO 4 Layered perovskite structure similar to high T ccuprates Normal state is metallic T c= 1.5 K


Evidence for Unconventional SuperconductivitySuppression of T cfromnon-magnetic impurities(NMR)Oxygen Knight shiftSp<strong>in</strong>-polarizedneutron scatter<strong>in</strong>gMackenzie et al. (1998)Ishida et al. (1998)Duffy et al. (2000)Sp<strong>in</strong> component of wavefunction is even parity


Evidence for Time Reversal Symmetry Break<strong>in</strong>gµSRKerr RotationComplex order parameterLuke et al. (1998)Xia et al. (2006) Doma<strong>in</strong>s with orbital order have a net magnetic moment. <strong>Magnetic</strong> fields from doma<strong>in</strong>s are screened by the collective motion of CP.


Screen<strong>in</strong>g Currents Around Chiral Doma<strong>in</strong>s


Experimental Evidence for TRS Break<strong>in</strong>gExperiment Status Doma<strong>in</strong> SizeµSR -----Josephson tunnel<strong>in</strong>g < 1 µmKerr Rotation ~ 50 – 100 µmSQUID Imag<strong>in</strong>g < 2 µmHall probe Imag<strong>in</strong>g < 1 µm


Vortex Matter <strong>in</strong> Chiral Superconductors 2 Vectors are needed to describe the SC order(1) d-vector - direction normal to the sp<strong>in</strong> polarization(2) L-vector - the angular momentumMackenzie (2003)Integer quantum vortex:Orbital phase w<strong>in</strong>ds by 2πd-vector is stationaryHalf-<strong>in</strong>teger quantum vortex:Orbital phase w<strong>in</strong>ds by πd-vector w<strong>in</strong>ds by ± π


Cantilever Torque Magnetometry Measurementsfiber optic <strong>in</strong>terferometerfor displacement detectionsuperconduct<strong>in</strong>gparticleSuperconductordisplacement signalLens90 deg.phase shiftpiezocantileverCantileverzOptical fiberyamplitude controlxPLLfrequency demodulation


300 mK Force Microscope


Micron-Size Superconduct<strong>in</strong>g NbSe 2 Particles0.0! fc (Hz)-0.2-0.4-0.6-0.8-1.04.7 K5.5 K6.0 K6.5 K7.0 K7.2 K7.5 K7.8 K2H-NbSe 2 Partilce2 _m-100 -50 0 50 100H x(Oe)8!" (X 10 -13 emu Oe -1 )642T c = 7.3 K00 2 4 6 7.3 8Temperature (K)


Vortex State <strong>in</strong> Mesoscopic NbSe 2 SamplesFrequency (Hz)5300.55300.05299.55299.0-100 0 100H x(Oe)Moment (X10 -12 emu)6040200-20-40-60-150 -100 -50 0 50 100 150H x(Oe)Moment (X10 -12 emu)26.020.815.610.45.20.0-150 -140 -130 -120 -110 -100 -90 -80 80 90 100 110 120 130 140 150H x(Oe)


Diamagnetic Susceptibility of NbSe 260404392.820Hz (Oe)0-204392.64392.44392.2Frequency (Hz)-40-604392.0-60 -40 -20 0 20 40 60H x (Oe)


Response to ab-Plane Field4394Frequency (Hz)4393H z (Oe)02040608010012014016043924391-140 -120 -100 -80 -60 -40 -20 0H x(Oe)


Switch<strong>in</strong>g Noise <strong>in</strong> Vortex Dynamics4394.2Frequency (Hz)4394.04393.84393.64393.44393.2H z = -140 Oe4393.804393.754393.704393.654393.60-55.0 -54.5 -54.0 -53.5-80 -60 -40 -20 0 20H x(Oe)T = 4.7 K4393.854393.754393.70 4393.75 4393.80 4393.904393.704393.704393.70 4393.75 4393.80 4393.854393.904393.854393.654393.654393.65 4393.704393.75 4393.804393.854393.804393.604393.604393.60 4393.65 4393.704393.754393.804393.754393.554393.55 4393.60 4393.65 4393.704393.754393.7001020304050Time (s)


Torque Magnetometry of Micron-Size Sr 2 RuO 4 Particles1 µmT c= 1.2 Kc-axis1 µm Samples are cleaved from bulkcrystals and glued to the cantileverwith the c-axis normal to the cantileverface.Samples grown by Y. Maeno


Zero-Field Magnetization Measruements3.0a2 (mHz)2.021.51.0Negative field coolZero field coolPositive field cool0.500 20 40 60 80 100(!H) 2 (Oe) 2<strong>Magnetic</strong> Moment (X10 -13 emu)0.60.40.20.0-0.2-0.40.00.40.81.2Negative field cool (1-2 G)Positive field cool (1-2) GZero field cool108a1 (mHz)64200 2 4 6 8 10Temperature (K)!H (Oe)


M. Matsumoto & M. SigristJ. Phys. Soc. Jpn. 994 (1999)Assume the particle is a s<strong>in</strong>gle chiral doma<strong>in</strong>perimeter:thickness:


Diamagnetic Susceptibility Measurements <strong>in</strong> Sr 2 RuO 4Sr 2 RuO 4 4488.34Frequency (Hz)4488.324488.30T = 0.45 KH z = 0 Oe2 µm4488.28Particle dimensions: 3 µm × 4 µm × 0.5 µm<strong>Magnetic</strong> moment (X10 -12 emu)1050-5-104488.26-2 -1 0 1 2H x (Oe)-20 -10 0 10 20H x (Oe)


404488.94488.8H z (Oe)2004488.74488.6Frequency (Hz)4488.5-204488.4-40-10 -5 0 5 10H x (Oe)


Remarks Torque magnetometry measurements of mesoscopic samples is apromis<strong>in</strong>g technique for detection of edge currents Mesoscopic anular geometry might be useful <strong>in</strong> stabiliz<strong>in</strong>g fractional vorticesQuestions Why do we not observe tra<strong>in</strong><strong>in</strong>g effects <strong>in</strong> the zero-field magnetization ? What is the orig<strong>in</strong> of the nonl<strong>in</strong>ear diamagnetic susceptibility ?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!