20.11.2012 Views

Sizing - Pietro Fiorentini

Sizing - Pietro Fiorentini

Sizing - Pietro Fiorentini

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Sizing</strong><br />

Pressure Regulators &<br />

Control Valves


<strong>Sizing</strong> the Pressure Regulators<br />

<strong>Sizing</strong> of regulators is usually made on the basis of Cg valve and KG sizing coefficients. Flow rates at fully open<br />

position and various operating conditions are related by the following formulae where:<br />

Q = flow rate in Stm 3/h<br />

Pu = inlet pressure in bar (abs)<br />

Pd = outlet pressure in bar (abs).<br />

A > When the Cg and KG values of the regulator are known, as well as Pu and Pd, the flow rate can be calculated<br />

as follows:<br />

A-1 in sub critical conditions: (Pu Vice versa, when the values of Pu, Pd and Q are known,the Cg or KG values, and hence the regulator size,<br />

may be calculated using:<br />

B-1 in sub-critical conditions: (Pu


The above formulae are applicable to natural gas having a relative density of 0.61 w.r.t. air and a<br />

regulator inlet temperature of 15°C. For gases having a different relative density d and temperature<br />

tu in °C, the value of the flow rate, calculated as above, must be multiplied by a correction factor<br />

Fc, as follows:<br />

Fc =<br />

CAUTION:<br />

175.8<br />

S x ( 273.15 + tu )<br />

Correction factors FC<br />

Type of gas<br />

Air<br />

Propane<br />

Butane<br />

Nitrogen<br />

Oxygen<br />

Carbon dioxide<br />

Relative density<br />

1.0<br />

1.53<br />

2.0<br />

0.97<br />

1.14<br />

1.52<br />

Fc Factor<br />

0.78<br />

0.63<br />

0.55<br />

0.79<br />

0.73<br />

0.63<br />

Lists the correction factors Fc for anumber of gases at 15°C.<br />

in order to get optimal performance, to avoid premature erosion phenomena and to limit noise<br />

emissions, it is recommended to check gas speed at the outlet flange does not exceed the values<br />

of the graph below.<br />

The gas speed at the outlet flange may be calculated by means of the following formula:<br />

V<br />

=<br />

345 . 92<br />

Q<br />

x<br />

2<br />

DN<br />

1 - 0.<br />

002 x Pd<br />

x<br />

1 + Pd<br />

Gas speed at the outlet flange [m/sec]<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 5 10 15 20 25 30 35 40 45 50 55<br />

Outlet pressure [bar]<br />

where:<br />

V = gas speed in m/sec<br />

Q = gas flow rate in Stm3/h<br />

DN = nominal size of regulator in mm<br />

Pd = outlet pressure in barg.


Cg and Kg valve coefficient<br />

Aperflux 101<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

K1 body shape factor<br />

Aperflux 851<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

K1 body shape factor<br />

Reflux 819<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

K1 body shape factor<br />

Reflux 819/FO<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

K1 body shape factor<br />

25<br />

1"<br />

480<br />

505<br />

113,9<br />

25<br />

1"<br />

575<br />

605<br />

106,78<br />

25<br />

1"<br />

575<br />

605<br />

106,78<br />

Tables<br />

50<br />

2”<br />

1682<br />

1768<br />

103<br />

50<br />

2"<br />

1550<br />

1627<br />

113,9<br />

50<br />

2"<br />

2220<br />

2335<br />

106,78<br />

50<br />

2"<br />

2220<br />

2335<br />

106,78<br />

80<br />

3"<br />

3790<br />

3979<br />

113,9<br />

80<br />

3"<br />

4937<br />

5194<br />

106,78<br />

80<br />

3"<br />

4937<br />

5194<br />

106,78<br />

100<br />

4"<br />

5554<br />

5837<br />

113,9<br />

100<br />

4"<br />

8000<br />

8416<br />

106,78<br />

100<br />

4"<br />

8000<br />

8416<br />

106,78<br />

80<br />

3”<br />

4200<br />

4414<br />

108<br />

150<br />

6"<br />

11112<br />

11678<br />

113,9<br />

150<br />

6"<br />

16607<br />

17471<br />

106,78<br />

150<br />

6"<br />

16607<br />

17471<br />

106,78<br />

200<br />

8"<br />

17316<br />

18199<br />

113,9<br />

200<br />

8"<br />

25933<br />

27282<br />

106,78<br />

200<br />

8"<br />

25933<br />

27282<br />

106,78<br />

250<br />

10"<br />

24548<br />

25850<br />

113,9<br />

250<br />

10"<br />

36525<br />

38425<br />

106,78<br />

250<br />

10"<br />

36525<br />

38425<br />

106,78


Dixi AP<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

K1 body shape factor<br />

Staflux 185<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

K1 body shape factor<br />

Aperval 101<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

K1 body shape factor<br />

Aperval<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

K1 body shape factor<br />

25<br />

1"<br />

159<br />

167<br />

99,5<br />

25<br />

1"<br />

439<br />

462<br />

106,78<br />

25<br />

1"<br />

584<br />

613<br />

90<br />

50<br />

2"<br />

1681<br />

1768<br />

106,78<br />

50<br />

2”<br />

2091<br />

2199<br />

108<br />

80<br />

3"<br />

3764<br />

3960<br />

106,78<br />

50<br />

2"<br />

1978<br />

2077<br />

101<br />

Dival 160 AP<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

K1 body shape factor<br />

Staflux 187<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

K1 body shape factor<br />

80<br />

3”<br />

4796<br />

5045<br />

108<br />

65<br />

2"1/2<br />

3530<br />

3706<br />

101<br />

80<br />

3"<br />

4525<br />

4751<br />

101<br />

25<br />

1"<br />

140<br />

147<br />

93,5<br />

25<br />

1"<br />

130<br />

136<br />

106,78<br />

100<br />

4”<br />

7176<br />

7546<br />

108<br />

100<br />

4"<br />

6719<br />

7055<br />

101


Cg and Kg valve coefficient<br />

Reval 182<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

K1 body shape factor<br />

Terval<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

K1 body shape factor<br />

Terval/R<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

K1 body shape factor<br />

Dixi<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

K1 body shape factor<br />

25<br />

1"<br />

575<br />

605<br />

106,78<br />

Tables<br />

50<br />

2"<br />

2220<br />

2335<br />

106,78<br />

65<br />

2" 1/2<br />

3320<br />

4197<br />

106,78<br />

50<br />

2"<br />

1706<br />

1796<br />

108<br />

50<br />

2"<br />

1667<br />

1755<br />

104<br />

25<br />

1"<br />

540<br />

567<br />

96<br />

80<br />

3"<br />

4937<br />

5194<br />

106,78<br />

65<br />

2" 1/2<br />

2731<br />

2875<br />

104<br />

65<br />

2" 1/2<br />

2793<br />

2940<br />

104<br />

40<br />

1" 1/2<br />

983<br />

1034<br />

96<br />

100<br />

4"<br />

8000<br />

8416<br />

106,78<br />

150<br />

6"<br />

16607<br />

17471<br />

106,78<br />

80<br />

3"<br />

3906<br />

4112<br />

100<br />

80<br />

3"<br />

4099<br />

4315<br />

106<br />

50<br />

2"<br />

1014<br />

1066<br />

96<br />

200<br />

8"<br />

25933<br />

27282<br />

106,78<br />

100<br />

4"<br />

5490<br />

5775<br />

100<br />

100<br />

4"<br />

5660<br />

5954<br />

106<br />

250<br />

10"<br />

36525<br />

38425<br />

106,78


Dival 600<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

K1 body shape factor<br />

Dival 700<br />

Norval<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

K1 body shape factor<br />

Norval 608<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

K1 body shape factor<br />

25<br />

1"<br />

269<br />

283<br />

94<br />

25<br />

1"<br />

331<br />

348<br />

106,78<br />

Head ø 280 Head ø 280/TR<br />

40<br />

1"1/2<br />

652<br />

685<br />

94<br />

40<br />

1"1/2<br />

848<br />

892<br />

106,78<br />

50<br />

2"<br />

1700<br />

1788<br />

106<br />

50<br />

2"<br />

781<br />

821<br />

86<br />

50<br />

2"<br />

1360<br />

1430<br />

106,78<br />

65<br />

2"1/2<br />

2240<br />

2356<br />

106,78<br />

80<br />

3"<br />

3500<br />

3681<br />

106<br />

25<br />

1"<br />

315<br />

331<br />

97<br />

See the capacity Table<br />

80<br />

3"<br />

3395<br />

3571<br />

106,78<br />

40<br />

1"1/2<br />

692<br />

727<br />

95<br />

100<br />

4"<br />

5100<br />

5365<br />

106,78<br />

50<br />

2"<br />

770<br />

809<br />

97<br />

150<br />

6"<br />

10600<br />

11151<br />

106,78<br />

200<br />

8"<br />

16600<br />

17463<br />

106,78


Cg and Kg valve coefficient<br />

<strong>Sizing</strong> the Control Valve<br />

Choise of the valve is usually on the basis of Cg valve and Cg flow rate coefficients.Cg coefficient corresponds<br />

numerically to the value of air flow in SCF/H in critical conditions with full open valve operating with an upstream<br />

pressure of 1 psia at a temperature of 15°C.KG. coefficient corresponds numerically to the value of natural gas<br />

flow rate in Stm/h in critical conditions with full open valve operating with an upstream pressure of 2 bar abs at a<br />

temperature of 15°C. Flow rates at full open position and various working conditions, are bound by the following<br />

formule where:<br />

Pu = inlet pressure in bar (abs) Q = flow rate in Stm/H<br />

Pd = outlet pressure in bar (abs) KG, Cv, Cg = valve coefficent<br />

1 > When the Cg and KG values of the control valve are known, as well as Pu and Pd, the flow rate can be<br />

calculated as follows:<br />

1.1 > in non critical conditions:<br />

1.2 > in critical conditions:<br />

Reflux 919 - Syncroflux - VLM<br />

Q = KG (Pu - Pd) Pd Q = 16,8 x Cv x Pu x sin 106,78<br />

KG<br />

Q x<br />

= 2<br />

2 > Vice versa, when the values of Pu, Pd and Q are known, calculate the values of Cv, Cg or KG with:<br />

KG =<br />

Q<br />

Pd ( Pu - Pd )<br />

Cv =<br />

Pu - Pd<br />

Pu Q= 16,8 x Cv x Pu Q= 0,526 x Cg x Pu (valid for Pu ≥ 2 x Pd)<br />

Q<br />

.16,8x<br />

Pux<br />

sinx<br />

106,78<br />

Pu - Pd<br />

((<br />

Pu<br />

(valid for Pu < 2 x Pd)<br />

2.2 > in critical conditions: x Q<br />

KG =<br />

(valid for Pu ≥ 2 x Pd)<br />

Pu<br />

2<br />

Q<br />

Q<br />

Cv =<br />

Cg =<br />

16,8 x Pu<br />

0,526 x Pu<br />

Pu<br />

(valid for Pu < 2 x Pd)<br />

Q<br />

A oversizing of 20% on calculated values is raccomanded. Cg formulae give flow rate values more correct while<br />

KG formulae give values 5% higher than real ones only in noncritical conditions. In the case of noise limitation level<br />

a speed at the outlet flange of 130 m/sec. it is also raccomanded. Above formulae are valid for natural gas with a<br />

relative specific gravity of 0,61 compared to air and temperature of 15° C at inlet. For gases with different relative<br />

specific gravity (S) and temperature t (in °C) ), value of flow rate calculated as above, must be adjusted multiplying<br />

by:<br />

175.8<br />

Fc =<br />

S x ( 273.15 + tu )<br />

Reflux 919 - Syncroflux - VLM<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Cg flow coefficient<br />

KG flow coefficient<br />

Cv flow coefficient<br />

Q = 0,526 x Cg x Pu x sin<br />

25<br />

1"<br />

575<br />

605<br />

18<br />

50<br />

2"<br />

2200<br />

2335<br />

69<br />

106,78<br />

80<br />

3"<br />

4937<br />

5194<br />

154<br />

Pu - Pd<br />

100<br />

4"<br />

8000<br />

8416<br />

250<br />

Pu<br />

Cg =<br />

150<br />

6"<br />

16607<br />

17471<br />

519<br />

200<br />

8"<br />

25933<br />

27282<br />

810<br />

250<br />

10"<br />

36525<br />

38425<br />

1141<br />

( (<br />

( (<br />

0,526 . xPux<br />

sinx<br />

106,78<br />

Pu - Pd<br />

((<br />

Pu


<strong>Sizing</strong> the Control Valve<br />

A. Subcritical conditions<br />

(when ΔP < 0.5F 2 P1)<br />

Volume flow rate (gas and vapor)<br />

Q = 290 Cv<br />

P Δ (P1+P2)<br />

G T<br />

Weight flow rate (gas and vapor)<br />

Q = 355 Cv<br />

GΔP (P1+P2)<br />

T<br />

Weight flow rate (saturated steam)<br />

W = 13,55 Cv ΔP (P1+P2)<br />

Weight flow rate (overheated steam)<br />

Cv ΔP (P1+P2)<br />

W = 13,55<br />

(1+0,00126Δt)<br />

B. Critical conditions<br />

(when ΔP 0.5F2 P1)<br />

Volume flow rate (gas and vapor)<br />

262 F Cv P1<br />

Q =<br />

G T<br />

Weight flow rate (gas and vapor)<br />

W = 321 F Cv P1<br />

G<br />

T<br />

Weight flow rate (saturated steam)<br />

W = 11,73 F Cv P1<br />

Weight flow rate (overheated steam)<br />

F Cv P1<br />

W = 11,73<br />

(1+0,00126 Δ t)<br />

Deltaflux<br />

GAS, VAPOR AND STEAM BIPHASE FLUIDS<br />

A. Subcritical conditions<br />

(when ΔP < 0.5F 2 P1)<br />

Constant liquid/gas mixture ratio (liquid containing<br />

non condensable gas or liquid containing high title<br />

vapor)<br />

W = 19,1 Cv ΔP (w1+w2)<br />

Variable liquid/vapor mixture ratio (liquid containing<br />

low title vapor, less then 0.5)<br />

W = 27,1 Cv ΔP w1<br />

B. Critical conditions<br />

(when ΔP ≥ 0.5F 2 P1)<br />

Constant liquid/gas mixture ratio (liquid containing<br />

non condensable gas or liquid containing high title<br />

vapor)<br />

W = 13,5 F Cv P1 (w1+w2)<br />

Variable liquid/vapor mixture ratio (liquid containing<br />

low title vapor, less then 0.5)<br />

W = 19,1 F Cv P1 w1<br />

100<br />

w1 =<br />

Xg (Vg1-Vf) + 100 Vf<br />

100<br />

w2 =<br />

Xg (Vg2-Vf) + 100 Vf


Cg and Kg valve coefficient<br />

LIQUIDS<br />

Glossary<br />

A. Subcritical conditions<br />

(when ΔP < F 2 ΔPc)<br />

Volume flow rate<br />

Cv ΔP<br />

Qf =<br />

1.17 Gf<br />

Weight flow rate<br />

W = 855 Cv GfΔP<br />

Note:<br />

For values of ΔP ≥ ΔPk the<br />

valve works under cavitation<br />

conditions.<br />

Deltaflux<br />

Cv = valve flow rate coefficient: US gpm of water with<br />

∆P = 1 psi<br />

ΔP = valve pressure drop P1-P2: bar<br />

ΔPc = maximum dimensioning differential pressure: bar<br />

ΔPk = cavitation differential pressure: bar<br />

Δt = overheating temperature delta t1 - ts: °C<br />

F = valve recovery factor: non dimensional<br />

G = gas relative density (air=1): non dimensional<br />

Gf = liquid relative density at operating temperature<br />

(water at 15°C=1)<br />

Kc = valve incipient cavitation factor: non dimensional<br />

Xg = weight percentage of gas or vapor in the mixture at<br />

upstream pressure: %<br />

P1 = valve upstream pressure: bar abs<br />

P2 = valve downstream pressure: bar abs<br />

Pc<br />

Pk<br />

Pv<br />

T<br />

t1<br />

ts<br />

Q<br />

Qf<br />

W<br />

W1<br />

W2<br />

Vf<br />

Vg1<br />

Vg2<br />

B. Critical conditions<br />

(when ΔP ≥ F 2 ΔPc)<br />

Volume flow rate<br />

F Cv ΔPc<br />

Qf =<br />

1.17 Gf<br />

Weight flow rate<br />

W = 855 F Cv Gf Δ Pc<br />

ΔPc = P1-Pc<br />

Pc = Pv (0,96-0,28<br />

Pv<br />

Pk<br />

ΔPk = Kc (P1-Pv)<br />

= vena contracta critical pressure: bar abs<br />

= thermodynamic critical point pressure: bar abs<br />

= vapor pressure at operating temperature: bar abs<br />

= upstream gas absolute temperature (273+°C): °K<br />

= overheated steam upstream temperature: °C<br />

= saturated steam temperature at upstream pressure: °C<br />

= volume flow rate at 15 °C and 1.013 bar abs: Sm3/h<br />

= volume flow rate: m3/h<br />

= weight flow rate: Kg/h<br />

= upstream mixture density: kg/m3<br />

= downstream mixture density: kg/m3<br />

= specific volume of liquid: m3/kg<br />

= specific volume of gas or vapor at upstream pressure: m3/kg<br />

= specific volume of gas or vapor at downstream pressure: m3/kg<br />

)


Cv coefficient<br />

Deltaflux<br />

Dn<br />

2"<br />

3"<br />

4"<br />

6"<br />

8"<br />

10"<br />

12"<br />

14"<br />

16"<br />

18"<br />

20"<br />

24"<br />

Deltaflux<br />

Dn<br />

2"<br />

3"<br />

4"<br />

6"<br />

8"<br />

10"<br />

12"<br />

14"<br />

16"<br />

18"<br />

20"<br />

24"<br />

Cv coefficient<br />

at 100% opening<br />

82<br />

215<br />

405<br />

1080<br />

1750<br />

2860<br />

3980<br />

5000<br />

6800<br />

8400<br />

10600<br />

16100<br />

Cv coefficient<br />

at 100% opening<br />

60<br />

150<br />

290<br />

650<br />

1225<br />

1975<br />

2825<br />

3475<br />

4675<br />

5950<br />

7500<br />

11100<br />

Liquid control application<br />

Liquid trim<br />

Gas control application<br />

Gas trim<br />

Deltaflux<br />

Note: To verify the dimensioning and, in detail, for the dimensioning of Deltaflux control<br />

valves bigger than 24”, always refer to <strong>Pietro</strong> <strong>Fiorentini</strong> S.p.A.


<strong>Sizing</strong> the Slam Shut Valves<br />

Calculation of the pressure drop<br />

The following formula can be used to calculate pressure losses of the slam shut valve in fully<br />

open position:<br />

Δp = KG x Pu - (KG2 x Pu 2) - 4Q 2<br />

2 x KG<br />

Δp = pressure loss in bar<br />

Pu = absolute inlet pressure in bar<br />

Q = flow rate Stm3/h<br />

KG = flow coefficient<br />

Pressure loss calculated as above is referred to natural gas with specific gravity of 0.61 (air=1)<br />

temperature of 15 °C at valve inlet, for gases with different specific gravity S and temperatures t<br />

°C, pressure loss can still be calculated with the above formula, replacing the value of the flow<br />

coefficent in the table with:<br />

KG1 = KG x<br />

S x<br />

175 . 8<br />

( 273 . 15<br />

+ t)


SBC 782<br />

Nominal diameter (mm)<br />

Size (inches)<br />

KG flow coefficient<br />

SCN<br />

Nominal diameter (mm)<br />

Size (inches)<br />

KG flow coefficient<br />

HBC 975<br />

Nominal diameter (mm)<br />

Size (inches)<br />

KG flow coefficient<br />

Dilock 108<br />

Nominal diameter (mm)<br />

Size (inches)<br />

KG flow coefficient<br />

25<br />

1"<br />

510<br />

25<br />

1"<br />

549<br />

50<br />

2"<br />

1970<br />

40<br />

1" 1/2<br />

1116<br />

100<br />

4"<br />

7120<br />

25<br />

1"<br />

500<br />

65<br />

2" 1/2<br />

3550<br />

50<br />

2"<br />

1788<br />

150<br />

6"<br />

14780<br />

40<br />

1" 1/2<br />

860<br />

80<br />

3"<br />

4390<br />

65<br />

2" 1/2<br />

2603<br />

200<br />

8"<br />

23080<br />

50<br />

2"<br />

976<br />

80<br />

3"<br />

4086<br />

100<br />

4"<br />

7120<br />

100<br />

4"<br />

6122<br />

250<br />

10"<br />

32470<br />

150<br />

6"<br />

14780<br />

150<br />

6"<br />

13680<br />

200<br />

8"<br />

23080<br />

200<br />

8"<br />

21700<br />

250<br />

10"<br />

32506


<strong>Sizing</strong> the Safety Relief Valves<br />

Calculation of the safety relief valves<br />

The flow rate is calculated by the following formulae:<br />

M<br />

q = (0.9 Kc) • (394.9 x C) • P1 A • Q = 23.661<br />

q = maximum flow rate to be discharged, in Kg/h<br />

Q = maximum flow rate (Stm3/h)<br />

A = minimum area (cm2) (see table)<br />

Kc = outflow coefficient<br />

P1= setting pressure plus a 10% overpressure (bar abs)<br />

T1= temperature in °K of the fluid at the valve inlet during<br />

the discarge, reported by user or by designer.<br />

0,9 = safety coefficient<br />

M = molecular mass of the fluid in Kg/Kmol (see table)<br />

Z1 = compressibiliti factor of the fluid under the P1<br />

conditions to be considered approximately equal to<br />

one if the actual values is not known.<br />

k=<br />

Z1 T1<br />

Cp exponent of equation of the isentropic expansion<br />

Cv under the P1 and T1 conditions.<br />

Cp = specific heat at consistant pressure<br />

Cv = specific heat at consistant volume<br />

C = coefficient of expansion = C =<br />

(see table)<br />

2<br />

k ( )<br />

k+1<br />

k-1<br />

k+1<br />

q<br />

M


PVS 782<br />

Nominal diameter (mm)<br />

Size (inches)<br />

Calculation area (cm2)<br />

Outflow coefficient K<br />

Molecular mass and expansion coeff.<br />

Relative density<br />

Carbon dioxide<br />

Hydrogen<br />

Methane<br />

Natural gas*<br />

Nitrogen<br />

Oxigen<br />

Propane<br />

* Medium value<br />

Molecular mass M<br />

28,97<br />

44,01<br />

2,02<br />

16,04<br />

18,04<br />

28,02<br />

32,00<br />

44,09<br />

Capacity table versus pressure<br />

Pressure<br />

Nominal diameter (mm)<br />

Size<br />

2 barg<br />

10 barg<br />

20 barg<br />

30 barg<br />

40 barg<br />

Flow rate (Kg/h)<br />

25<br />

1"<br />

332<br />

1885<br />

2472<br />

5337<br />

7063<br />

25<br />

1"<br />

4,71<br />

0,56<br />

50<br />

2"<br />

20,03<br />

0,56<br />

Coefficient of expansion C<br />

0,685<br />

0,668<br />

0,686<br />

0,669<br />

0,669<br />

0,685<br />

0,685<br />

0,635<br />

50<br />

2"<br />

2144<br />

8016<br />

15357<br />

22697<br />

30038<br />

80<br />

3"<br />

4604<br />

17214<br />

32976<br />

48738<br />

64500<br />

80<br />

3"<br />

43,01<br />

0,56<br />

100<br />

4"<br />

7991<br />

29881<br />

57242<br />

84603<br />

111964<br />

100<br />

4"<br />

74,66<br />

0,56<br />

150<br />

6"<br />

18043<br />

67462<br />

129235<br />

191008<br />

252781<br />

150<br />

6"<br />

168,56<br />

0,56<br />

200<br />

8"<br />

27788<br />

103894<br />

199028<br />

294161<br />

389295<br />

200<br />

8"<br />

259,59<br />

0,56


The data are not binding. We reserve the<br />

right to make eventual changes without<br />

prior notice.<br />

CT-s 570-E June 12<br />

DA SISTEMARE !!!!!!!!<br />

www.fiorentini.com<br />

<strong>Pietro</strong> <strong>Fiorentini</strong> S.p.A.<br />

via E.Fermi 8/10<br />

I-36057 Arcugnano (VI) Italy<br />

Tel. +39 0444 968.511<br />

Fax. +39 0444 960.468

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!