10.07.2015 Views

New guises of the BTZ black hole and the entropy of 2d CFT

New guises of the BTZ black hole and the entropy of 2d CFT

New guises of the BTZ black hole and the entropy of 2d CFT

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy Comments<strong>New</strong> <strong>guises</strong> <strong>of</strong> AdS 3<strong>and</strong><strong>the</strong> <strong>entropy</strong> <strong>of</strong> two-dimensional <strong>CFT</strong>N. TetradisUniversity <strong>of</strong> A<strong>the</strong>nsJune 21, 2011N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsOutlineFefferman-Graham parametrization <strong>of</strong> AdS 3 with variousboundary metricsStress-energy tensorEntropyCommentsP. Apostolopoulos, G. Siopsis, N. T. : arxiv:0809.3505[hep-th], Phys.Rev. Lett. 102 (2009) 151301N. T. : arxiv:0905.2763[hep-th], JHEP 1003 (2010) 040N. Lamprou, S. Nonis, N. T. : arXiv:1106.1533 [gr-qc]N. T. : arXiv:1106.2492 [hep-th]N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsThe <strong>BTZ</strong> <strong>black</strong> <strong>hole</strong>Metric in Schwarzschild coordinates (φ has a period equal to 2π):ds 2 = −f(r)dt 2 + dr 2f(r) + r 2 dφ 2 , f(r) = r 2 − µ. (1)Temperature, energy <strong>and</strong> <strong>entropy</strong> <strong>of</strong> <strong>the</strong> <strong>black</strong> <strong>hole</strong> (V = 2π):T = 1 √ Vµ, E = µ,2π16πG 3Metric in Fefferman-Graham coordinates:ds 2 = 1 ( [dz 2z 2 − 1 − µ 4 z2) <strong>2d</strong>t 2 +S = V4G 3√ µ. (2)(1 + µ 4 z2) <strong>2d</strong>φ2]. (3)withz = 2 µ(r ∓ √ )r 2 − µ , r = 1 z + µ z. (4)4z takes values 0 < z ≤ z e = 2/ √ µ <strong>and</strong> z e ≤ z < ∞, coveringtwice <strong>the</strong> region outside <strong>the</strong> event horizon.r takes values r e = √ µ ≤ r < ∞. Throat at z = 2/ √ µ.N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsGeneral metric in Fefferman-Graham coordinates:ds 2 = 1 z 2 [dz 2 + g µν dx µ dx ν] , (5)whereg µν = g µν (0) + z 2 g µν (2) + z 4 g µν (4) . (6)Holographic stress-energy tensor <strong>of</strong> <strong>the</strong> dual <strong>CFT</strong> (Skenderis2000)〈T µν (<strong>CFT</strong>) 〉 = 1 [ (g (2) − tr g (2)) g (0)] . (7)8πG 3Apply this to <strong>the</strong> <strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> with a flat boundaryEnergy density <strong>and</strong> pressure:ds 2 0 = g(0) µν dxµ dx ν = −dt 2 + dφ 2 . (8)ρ = E V = −〈T t µt〉 = ,16πG 3(9)p = 〈T φ φ 〉 = µ.16πG 3(10)N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsAdS 3 with a Rindler boundaryFor <strong>the</strong> Rindler wedge (x > 0), <strong>the</strong> metric (1) with µ = 0 (AdS 3 inPoincare coordinates) can be put in <strong>the</strong> formds 2 = 1 z 2 [with a Rindler boundarydz 2 − a 2 x 2 (1 + z24x 2 ) <strong>2d</strong>t 2 +(1 − z24x 2 ) <strong>2d</strong>x 2 ],(11)ds 2 0 = g (0)µν dx µ dx ν = −a 2 x 2 dt 2 + dx 2 . (12)The coordinate transformation does not affect <strong>the</strong> timecoordinate:( xr(z, x) = az + z )(13)4xφ(z, x) = 1 a log [ax] − 8a(4 + z 2 /x 2 ) . (14)The transformation maps <strong>the</strong> w<strong>hole</strong> region near negative infinityfor φ to <strong>the</strong> neighborhood <strong>of</strong> zero with x > 0 . φ is not periodic.N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsFor fixed x, <strong>the</strong>re is a minimal value for r(z, x) as a function <strong>of</strong> z.It is obtained forz m (x) = 2x (15)<strong>and</strong> is equal toThe corresponding value <strong>of</strong> φ isr m (x) = a. (16)φ m (x) ≡ φ m (z m (x), x) = (log[ax] − 1)/a. (17)Bridge connecting <strong>the</strong> two asymptotic regions (that are copies <strong>of</strong>each o<strong>the</strong>r) at z → 0 <strong>and</strong> z → ∞.The holographic stress-energy tensor isρ = −〈T t t〉 = − 1 116πG 3 x 2, (18)p = 〈T x x〉 = − 1 116πG 3 x 2. (19)It displays <strong>the</strong> expected singularity at x = 0. The conformalanomaly vanishes.N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsGlobal coordinatesAdS 3 can be written asds 2 =1cos 2 (˜χ)[−d˜t 2 + d ˜χ 2 + sin 2 (˜χ) d ˜φ 2] , (20)with 0 ≤ φ ≤ 2π, 0 ≤ ˜χ < π/2. The boundary is approached for˜χ → π/2.The Schwarzschild (Poincare) <strong>and</strong> <strong>the</strong> global coordinates arerelated through[√r2− µ sinh( √ ]µ t)˜t(t, r, φ) = arctanr 2 cosh( √ (21)µ φ)√r˜χ(t, r, φ) = arctan2 µ sinh2 ( √ µφ) + r 2 − µcosh 2 ( √ µt)(22)µ[√r2− µ cosh( √ ]µ t)˜φ(t, r, φ) = arctanr 2 sinh( √ . (23)µ φ)N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsΧ1.41.21.00.80.60.40.23 2 1 0 1 2 3ΦFigure: Lines <strong>of</strong> constant r.N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsA different stateThe AdS 3 metric can also be put in <strong>the</strong> formds 2 = 1 z 2 [dz 2 − a 2 x 2 dη 2 + dx 2] , (24)with a Rindler boundary. The coordinate transformation thatachieves this is given byt(η, x) = x sinh(aη) (25)r(z) =1 z(26)φ(z, x) = x cosh(aη). (27)The corresponding stress-energy tensor vanishes.N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsAdS 3 with de Sitter boundaryds 2 = 1 ([dz 2z 2 − (1 − H 2 ρ 2 ) 1 + 1 [H 2 ] ) 24 1 − H 2 ρ 2 − H2 z 2 dt 2+φ(z, ρ) = 1 [ 1 + Hρ2H log 1 − Hρ(1 − 1 [H 2 ] ) 24 1 − H 2 ρ 2 + H2 z 2 dρ 21 − H 2 ρ 2 ](28) ,with a de Sitter boundary at z = 0.The coordinate transformation is (−1/H < ρ < 1/H)r(z, ρ) =√1 − H2 ρ 2 H 4 ρ 2+z 4 √ 1 − H 2 ρ z 2](29)−H 2 ρz 22(1 − H 2 ρ 2 + H 4 ρ 2 z 2 /4) .(30)The transformation maps <strong>the</strong> region near negative infinity for φ to<strong>the</strong> vicinity <strong>of</strong> −1/H for ρ > −1/H, <strong>and</strong> <strong>the</strong> region near positiveinfinity for φ to <strong>the</strong> vicinity <strong>of</strong> 1/H for ρ < 1/H.N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsFor fixed ρ, <strong>the</strong>re is a minimal value for r(z, ρ), obtained for√1 − Hz m (ρ) = 22 ρ 2H 4 ρ 2 . (31)It is given byr m (ρ) = H 2 |ρ|. (32)The corresponding value <strong>of</strong> φ isφ m (ρ) ≡ φ(z m (ρ), ρ) = 1 [ ] 1 + Hρ2H log − 11 − Hρ H 2 ρ . (33)Bridge connecting <strong>the</strong> asymptotic regions at z → 0 <strong>and</strong> z → ∞.Stress-energy tensor:ρ = −〈T t t 〉 = − 1 (H 2 )16πG 3 1 − H 2 ρ 2 + H2 (34)p = 〈T ρ ρ 〉 = − 1 (H 2 )16πG 3 1 − H 2 ρ 2 − H2 . (35)The conformal anomaly is 〈T µ (<strong>CFT</strong>)µ 〉 = H 2 /(8πG 3 ).N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsΧ1.41.21.00.80.60.40.23 2 1 0 1 2 3ΦFigure: Global coordinates.N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsA different stateThe metricds 2 =[dz 1 2z 2 +(1 − 1 ) 2 )4 H2 z(−(1 ] 2 − H 2 ρ 2 )dη 2 + dρ21 − H 2 ρ 2 ,also has a de Sitter boundary.The stress-energy tensor is(36)ρ = −〈T t t 〉 = − H216πG 3(37)p = 〈T ρ ρ〉 = H216πG 3. (38)The conformal anomaly is <strong>the</strong> same as before.N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsAdS 3 with FRW boundaryThe <strong>BTZ</strong> metric can be expressed as (φ is now periodic)withds 2 = 1 z 2 [dz 2 − N 2 (τ, z)dτ 2 + A 2 (τ, z)dφ 2] , (39)A(τ, z)N(τ, z)The boundary has <strong>the</strong> form(= a(τ) 1 + µ − )ȧ2 (τ)4a(τ) 2 z 2(40)= 1 − µ − ȧ2 + 2aä4a 2 z 2 A(τ,= ˙ z). (41)ȧds 2 0 = g (0)µν dx µ dx ν = −dτ 2 + a 2 (τ)dφ 2 , (42)with a(τ) an arbitrary function.N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsThe transformation <strong>of</strong> <strong>the</strong> time coordinate for z < z e1 or forz > z e2 is[t(τ, z) =ɛ 4a 22 √ µ log − ( √ ) 2]µ + ȧ z24a 2 − ( √ ) 2+ ɛ c(τ), (47)µ − ȧ z2where <strong>the</strong> function c(τ) satisfies ċ = 1/a(τ) <strong>and</strong> ɛ = ±1.For z e1 < z < z e2 <strong>the</strong> transformation is[t(τ, z) =ɛ −4a 22 √ µ log + ( √ ) 2]µ + ȧ z24a 2 − ( √ ) 2µ − ȧ z2The transformation is singular on <strong>the</strong> event horizons.+ ɛ c(τ). (48)N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsThe coordinate φ remains unaffected by <strong>the</strong> transformation. It isperiodic, with periodicity 2π.Dual picture: <strong>the</strong>rmalized <strong>CFT</strong> on an exp<strong>and</strong>ing background, witha scale factor a(τ).Stress-energy tensor:Casimir energy ∼ ȧ 2 /a 2 .Conformal anomaly:ρ = E V = −〈T τ τ 〉 = 116πG 3µ − ȧ 2a 2 (49)P = 〈T φ φ 〉 = 116πG 3µ − ȧ 2 + 2aäa 2 , (50)〈T µ (<strong>CFT</strong>)µ 〉 = 18πG 3äa . (51)N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsObservation: The <strong>entropy</strong> is proportional to <strong>the</strong> narrowest part<strong>of</strong> <strong>the</strong> throat or bridge.This line defines <strong>the</strong> boundary <strong>of</strong> <strong>the</strong> part <strong>of</strong> <strong>the</strong> bulk geometrythat is not covered by <strong>the</strong> Fefferman-Graham parametrization. Ina sense, it determines <strong>the</strong> part <strong>of</strong> <strong>the</strong> bulk that is not included in<strong>the</strong> construction <strong>of</strong> <strong>the</strong> dual <strong>the</strong>ory.In quantitative terms:S = 14G 3A, (52)with A <strong>the</strong> length <strong>of</strong> <strong>the</strong> narrowest part <strong>of</strong> <strong>the</strong> throat or bridge at agiven time.<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> with a flat boundary:A = 2π √ µ,S th = π2G 3√ µ. (53)N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsAdS 3 with Rindler boundaryThe throat is located at:in Fefferman-Graham coordinates.Equivalently, it is located atz m (x) = 2x (54)r m (x) = a, φ m (x) ≡ φ m (z m (x), x) = (log[ax] − 1)/a (55)in Schwarzschild (Poincare) coordinates.The <strong>entropy</strong> isS = 14G 3∫ ∞−∞adφ = 14G 3∫ ∞0dxx = 14G 3∫ ∞0dzz . (56)The infinities come from <strong>the</strong> endpoints, where <strong>the</strong> lineapproaches <strong>the</strong> boundary.Regulate !S = 24G 3∫ 1/ɛds, (57)N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsFor a (d + 1)-dimensional bulk metricds 2 = 1 u 2 (du 2 − dt 2 + d⃗x 2) , (58)<strong>the</strong> effective <strong>New</strong>ton’s constant G d is1= 1 ∫ ∞duG d G d+1 ud−1. (59)For d = 2 <strong>and</strong> u = 1/r01= 1 ∫ ∞G 2 G 30drr . (60)A line integral in AdS 3 , starting <strong>and</strong> ending at <strong>the</strong> boundary.G 2 = 0. But, regulate !This gives1G 2= 2 G 3∫ 1/ɛds (61)S R = 14G 2. (62)N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


) Las prestaciones de desempleo;c) El acceso a los programas de obras públicas destinados a combatir el desempleo;d) El acceso a otro empleo en caso de quedar sin trabajo o darse término a otra actividadremunerada, con sujeción a lo dispuesto en el artículo 52 de la presente Convención.2. Si un trabajador migratorio alega que su empleador ha violado las condiciones de su contrato detrabajo, tendrá derecho a recurrir ante las autoridades competentes del Estado de empleo, segúnlo dispuesto en el párrafo 1 del artículo 18 de la presente Convención.Artículo 55Los trabajadores migratorios que hayan obtenido permiso para ejercer una actividad remunerada,con sujeción a las condiciones adscritas a dicho permiso, tendrán derecho a igualdad de tratorespecto de los nacionales del Estado de empleo en el ejercicio de esa actividad remunerada.Artículo 561. Los trabajadores migratorios y sus familiares a los que se refiere la presente parte de laConvención no podrán ser expulsados de un Estado de empleo salvo por razones definidas en lalegislación nacional de ese Estado y con sujeción a las salvaguardias establecidas en la parte III.2. No se podrá recurrir a la expulsión como medio de privar a un trabajador migratorio o a unfamiliar suyo de los derechos emanados de la autorización de residencia y el permiso de trabajo.3. Al considerar si se va a expulsar a un trabajador migratorio o a un familiar suyo, deben tenerseen cuenta consideraciones de carácter humanitario y también el tiempo que la persona de que setrate lleve residiendo en el Estado de empleo.PARTE VDisposiciones aplicables a categorías particulares de trabajadores migratorios ysus familiaresArtículo 57Los trabajadores migratorios y sus familiares incluidos en las categorías particulares enumeradasen la presente Parte de la Convención que estén documentados o en situación regular gozarán delos derechos establecidos en la parte III, y, con sujeción a las modificaciones que se especifican acontinuación, de los derechos establecidos en la parte IV.Artículo 581. Los trabajadores fronterizos, definidos en el inciso a) del párrafo 2 del artículo 2 de la presenteConvención, gozarán de los derechos reconocidos en la parte IV que puedan corresponderles envirtud de su presencia y su trabajo en el territorio del Estado de empleo, teniendo en cuenta que nohan establecido su residencia habitual en dicho Estado.21


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsThe shift <strong>of</strong> <strong>the</strong> mass term by 1 is a result <strong>of</strong> <strong>the</strong> influence <strong>of</strong> <strong>the</strong>Casimir energy on <strong>the</strong> <strong>entropy</strong>.Our result gives a generalization <strong>of</strong> <strong>the</strong> Cardy formula for atime-dependent background, with Casimir energy ∼ ȧ 2 /a 2 .N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsAdS 3 with a Milne boundary: zero <strong>entropy</strong>AdS 3 with a steady-state boundary: zero <strong>entropy</strong>N. Tetradis University <strong>of</strong> A<strong>the</strong>ns


<strong>BTZ</strong> <strong>black</strong> <strong>hole</strong> AdS 3 with Rindler boundary AdS 3 with de Sitter boundary Time-dependent boundary Entropy CommentsCommentsThe de Sitter <strong>entropy</strong> was calculated through holographic meansin:Hawking, Maldacena, Strominger 2001Iwashita, Kobayashi, Shiromizu, Yoshiho 2006The R<strong>and</strong>all-Sundrum construction was used.A general framework for <strong>the</strong> calculation <strong>of</strong> entanglement <strong>entropy</strong>for a flat boundary through holography was given in:Ryu,Takayanagi 2006 Hubeny,Rangamani,Takayanagi 2007Connection with minimal surfaces ?Higher dimensions ?N. Tetradis University <strong>of</strong> A<strong>the</strong>ns

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!