10.07.2015 Views

FGF-signalling in the differentiation of mouse ES cells towards ...

FGF-signalling in the differentiation of mouse ES cells towards ...

FGF-signalling in the differentiation of mouse ES cells towards ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PhD <strong>the</strong>sisCand.scient. Janny Marie Landegent Peterslund<strong>FGF</strong>-<strong>signall<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong><strong>differentiation</strong> <strong>of</strong> <strong>mouse</strong> <strong>ES</strong> <strong>cells</strong><strong>towards</strong> def<strong>in</strong>itive endodermAcademic advisors:Dr. Ber<strong>the</strong> M. Willumsen, Department <strong>of</strong> Biology, Faculty <strong>of</strong> Science, University <strong>of</strong>Copenhagen – DenmarkDr. Palle Serup, Department <strong>of</strong> Stem Cell Biology, Hagedorn Research Institute – DenmarkSubmitted March 2010"It is not birth, marriage, or death, but gastrulation,which is truly <strong>the</strong> most important time <strong>in</strong> your life."Lewis Wolpert (1986)


PrefaceThis <strong>the</strong>sis is based on experimental work performed <strong>in</strong> <strong>the</strong> Department <strong>of</strong> Stem Cell Biology(formerly <strong>the</strong> Department <strong>of</strong> Developmental Biology) at <strong>the</strong> Hagedorn Research Institute <strong>in</strong>Gent<strong>of</strong>te – Denmark, from August 2006 to March 2010 (<strong>in</strong>clud<strong>in</strong>g an 8 month leave). Theproject supervisors were Ber<strong>the</strong> M. Willumsen, Pr<strong>of</strong>essor at <strong>the</strong> Institute <strong>of</strong> Biology, Faculty <strong>of</strong>Science, University <strong>of</strong> Copenhagen – Denmark, and Palle Serup, Ph.D., Scientific Director at<strong>the</strong> Hagedorn Research Institute, Gent<strong>of</strong>te – Denmark. The work was supported by grants from<strong>the</strong> Juvenile Diabetes Research Foundation and <strong>the</strong> Beta Cell Biology Consortium, NationalInstitutes <strong>of</strong> Health – USA.This <strong>the</strong>sis is submitted <strong>in</strong> order to meet <strong>the</strong> requirements for obta<strong>in</strong><strong>in</strong>g <strong>the</strong> degree <strong>of</strong>philosophiæ doctor (Ph.D.) at <strong>the</strong> Faculty <strong>of</strong> Science, University <strong>of</strong> Copenhagen – Denmark.The <strong>the</strong>sis is based on two papers:Paper I:‘A late requirement for Wnt and <strong>FGF</strong> signal<strong>in</strong>g dur<strong>in</strong>g Activ<strong>in</strong>-<strong>in</strong>duced formation <strong>of</strong> foregutendoderm from <strong>mouse</strong> embryonic stem <strong>cells</strong>’Published <strong>in</strong> Developmental Biology, 2009; 330, pp. 286-304.Mattias Hansson, Dor<strong>the</strong> R- Olesen, Janny M.L. Peterslund, N<strong>in</strong>a Engberg, Morten Kahn,Maria W<strong>in</strong>zi, T<strong>in</strong>o Kle<strong>in</strong>, Poul Maddox-Hyttel and Palle SerupPaper II:‘<strong>FGF</strong>R(IIIc)-activation <strong>in</strong>duces mesendoderm but is dispensable for def<strong>in</strong>itive endodermformation <strong>in</strong> <strong>mouse</strong> embryonic stem <strong>cells</strong>’Manuscript to be submitted.Janny Marie L. Peterslund and Palle SerupIn addition, this <strong>the</strong>sis conta<strong>in</strong>s a general <strong>in</strong>troduction to early <strong>mouse</strong> embryonic developmentand pancreas formation, directed <strong>differentiation</strong> <strong>of</strong> m<strong>ES</strong> <strong>cells</strong> <strong>towards</strong> DE and pancreatic β-like<strong>cells</strong>, and <strong>FGF</strong>-<strong>signall<strong>in</strong>g</strong> <strong>in</strong> relation to both development and <strong>differentiation</strong>. The reader willalso f<strong>in</strong>d a short chapter expand<strong>in</strong>g on <strong>the</strong> pattern<strong>in</strong>g <strong>of</strong> def<strong>in</strong>itive endoderm described <strong>in</strong> paperI and a general discussion <strong>of</strong> my work <strong>in</strong> relation to <strong>the</strong> research field as a whole.Janny Marie Landegent PeterslundMarch 2010III


ResuméSukkersyge er en sygdom der på verdensplan påvirker mere end 200 mio. mennesker.Transplantation med <strong>in</strong>sul<strong>in</strong>producerende β-celler anses for en mulig fremtidig kur modsukkersyge, men da antallet af donorer er begrænset er der brug for andre kilder tilcellemateriale. Embryonale stamceller (<strong>ES</strong>C’er) er pluripotente celler, hvilket betyder at de harpotentiale til at kunne differentiere til alle celle- og vævstyper i den voksne krop. De vil somsådan kunne være en ubegrænset kilde til <strong>in</strong> vitro-differentierede β-lignende celler. Detnærværende arbejde beskriver hvordan muse-<strong>ES</strong>C’er, der bruges som model for humane<strong>ES</strong>C’er, bliver <strong>in</strong>duceret til at differentiere i de tidlige stadier mod β-lignende celler. Arbejdetfokuserer på fibroblast vækstfaktor (<strong>FGF</strong>)-signaler<strong>in</strong>g i forhold til dannelsen af mesendoderm,def<strong>in</strong>itiv endoderm (DE) og ’posterior foregut endoderm’. Mesendoderm er en bipotentcellepopulation som kan differentiere til enten DE eller mesoderm ved activ<strong>in</strong>A eller bonemorphogenetic prote<strong>in</strong> (BMP). DE og ’posterior foregut endoderm’ er mere modne celletyperder senere danner bugspytkirtlen og β-celler.Dette arbejde er baseret på et serum- og feederfrit cellekultursystem og viser hvordan <strong>in</strong>duktionaf mesendoderme celletyper med BMP4 eller forskellige activ<strong>in</strong>A-koncentrationer afhænger af<strong>FGF</strong>-signaler<strong>in</strong>g. Bloker<strong>in</strong>g af <strong>FGF</strong>-signaler<strong>in</strong>g med opløselige <strong>FGF</strong> receptorer (<strong>FGF</strong>R’er) ellersmåmolekylære hæmmere h<strong>in</strong>drer dannelsen af mesendoderm, hvorimod tilsætn<strong>in</strong>g af en række<strong>FGF</strong>’er øger dens dannelse. Mere præcist er det aktiver<strong>in</strong>g af <strong>FGF</strong>R(III)c (<strong>FGF</strong>Rc)-is<strong>of</strong>ormerder giver effekten, mens aktiver<strong>in</strong>g af <strong>FGF</strong>Rb-is<strong>of</strong>ormer ikke har nogen effekt. Dette stemmeroverens med udtrykket af især <strong>FGF</strong>Rc-is<strong>of</strong>ormer i tidlig differentier<strong>in</strong>g af <strong>ES</strong>C’er. På denanden side reducerer høje <strong>FGF</strong>-koncentrationer antallet af mere modne DE celler, men aktiv<strong>FGF</strong>R-signaler<strong>in</strong>g generelt er dog nødvendig for DE-dannelse.En <strong>FGF</strong>4 knockout cellel<strong>in</strong>je, der tidligere har vist sig ikke at kunne differentiere til ektodermog mesoderm kimlagstyper, kunne meget overraskende sagtens differentiere til DE udentilsætn<strong>in</strong>g af <strong>FGF</strong>4-prote<strong>in</strong>. Den heterozygote cellel<strong>in</strong>je <strong>FGF</strong>4 +/– viser endda højere udtryk afDE markørgener end både vildtype og knockout cellel<strong>in</strong>jerne, hvilket tyder på at etmellemliggende niveau af <strong>FGF</strong>-signaler<strong>in</strong>g er fremmende for DE dannelse. Alt i alt tyder disseresultater på at DE opnås bedst i muse-<strong>ES</strong>C’er ved tidlig aktiver<strong>in</strong>g af <strong>FGF</strong>Rc-is<strong>of</strong>ormer imesendodermdannelse efterfulgt af <strong>FGF</strong>Rc-aktiver<strong>in</strong>g under endogene niveauer.Endeligt afhænger en videre differentier<strong>in</strong>g af DE cellepopulationen af ret<strong>in</strong>oic acid og <strong>FGF</strong>signaler<strong>in</strong>g,helst ved <strong>FGF</strong>7 og <strong>FGF</strong>10, der aktiverer <strong>FGF</strong>Rb-is<strong>of</strong>ormer. Enmiddelkoncentration af <strong>FGF</strong> resulterer i mange celler der udtrykker en ’anterior foregut’-markør, få celler der udtrykker en ’posterior foregut’ markør og <strong>in</strong>gen celler der udtrykker en’h<strong>in</strong>dgut’-markør. Høje koncentrationer af <strong>FGF</strong> får DE til at danne ’h<strong>in</strong>dgut’.Disse resultater giver ny viden om <strong>FGF</strong>-signaler<strong>in</strong>gs forskelligartede effekt på mesendoderm-,DE- og ’posterior foregut endoderm’-dannelse over tid. Det vil sandsynligvis være værdifuldtfor slutmaterialet, nemlig β-lignende celler, at overføre denne viden til nuværendedifferentier<strong>in</strong>gsprotokoller.V


VIII


Table <strong>of</strong> contents1


AbbreviationsAP1 activator prote<strong>in</strong> 1AIPanterior <strong>in</strong>test<strong>in</strong>al portalAKTakt; prote<strong>in</strong> k<strong>in</strong>ase BALK4 activ<strong>in</strong> receptor-like k<strong>in</strong>ase 4A-Panterior-posteriorAVEanterior visceral endodermBMPbone morphogenetic prote<strong>in</strong>BSAbov<strong>in</strong>e serum album<strong>in</strong>Cdx2 Homeobox transcription factor Cdx2CIPcaudal <strong>in</strong>test<strong>in</strong>al portalCxcr4 Chemok<strong>in</strong>e (C-X-C motif) receptor 4DAPI 4′,6-diamid<strong>in</strong>o-2-phenyl<strong>in</strong>doleDEdef<strong>in</strong>itive endodermDkk1 Dickkopf 1DTTdithiotreitolEembryonic dayEBembroid bodyEdU5-ethynyl-2’-deoxyurid<strong>in</strong>eEpCAM epi<strong>the</strong>lial cell-adhesion moleculeEpiSC epiblast stem cellEPLearly primitive ectoderm-likeERK1/2 extracellular signal-regulated k<strong>in</strong>ase1/2<strong>ES</strong>embryonic stemEvx1 Even-skipped homeobox homolog 1ExEextra-embryonic ectodermFACS fluorescence-activated cell scanner<strong>FGF</strong>fibroblast growth factor<strong>FGF</strong>R fibroblast growth factor receptor<strong>FGF</strong>Rb/c fibroblast growth factor(IIIb)/(IIIc)Flk1 Fetal-like k<strong>in</strong>ase 1Foxa2 Forkhead transcription box 2GAPDH glyceraldehyde 3-phosphate dehydrogenaseGATA6 GATA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> 6GFPgreen fluorescent prote<strong>in</strong>Gp130 glycoprote<strong>in</strong> 130GscGooseciodGSK3 glycogen synthase k<strong>in</strong>ase 3h<strong>ES</strong> <strong>cells</strong> human embryonic stem <strong>cells</strong>Hesx1 Homeobox expressed <strong>in</strong> <strong>ES</strong> <strong>cells</strong> 1HexHematopoietically expressed homeoboxHlxb9 Homeobox transcription factor HB9HShepar<strong>in</strong> sulfate3


ICM<strong>in</strong>ner cell massIdInhibitor <strong>of</strong> <strong>differentiation</strong>iPS<strong>in</strong>duced pluripotent stemJAKJanus k<strong>in</strong>aseJDRF Juvenile diabetes research foundationLIFleukemia <strong>in</strong>hibitory factorMAPK Mitogen-activated prote<strong>in</strong> k<strong>in</strong>asem-Cer1 <strong>mouse</strong>-Cerberus 1MEK a MAP k<strong>in</strong>asem<strong>ES</strong> cell s <strong>mouse</strong> embryonic stem <strong>cells</strong>MHC major histocompatability complexMixl1 Mix1 homeobox-likeNgn3 Neurogen<strong>in</strong> 3Nkx6.1 NK homeobox transcription factor 6.1Oct4Octamer-4Otx2 Orthodenticle homeobox 2PCRpolymerase cha<strong>in</strong> reactionPDGFR platelet-derived growth factor receptorPdx1 Pancreatic and duodenal homeobox factor 1PEparietal endodermPLCγ phospholipase CγPPpancreatic polypeptide-produc<strong>in</strong>gPI3Kphospho<strong>in</strong>osityl 3 k<strong>in</strong>asePtf1aPancreas-specific transcription factor 1aqPCR quantitative polymerase cha<strong>in</strong> reactionRAret<strong>in</strong>oic acidRT-PCR reverse transcriptase- polymerase cha<strong>in</strong> reactionS.D.standard deviationS.E.M. standard error <strong>of</strong> <strong>the</strong> meanShhSonic hedgehogSMAD prote<strong>in</strong>s modulat<strong>in</strong>g <strong>the</strong> activity <strong>of</strong> TGFβ ligands; <strong>the</strong> name is a comb<strong>in</strong>ation <strong>of</strong><strong>the</strong> prote<strong>in</strong> homologs ‘SMA’ (C. elegans) and ‘mos<strong>the</strong>rs aga<strong>in</strong>tsdecapentaplegic’ (D. melanogaster)SoxSex determ<strong>in</strong><strong>in</strong>g region Y (SRY)-related HMG boxSPRED Sprouty-related EVH1 prote<strong>in</strong>STAT3 signal transducer and activator <strong>of</strong> transcription 3TBrachyuryTBPTATA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>TdhThermostable direct hemolys<strong>in</strong> geneTEtrophectodermTGFβ Transform<strong>in</strong>g growth factor βVEvisceral endodermWHO World Health OrganizationWNT3(a) w<strong>in</strong>gless-type MMTV <strong>in</strong>tegration site 3(a)4


1. General <strong>in</strong>troductionDiabetes mellitusDiabetes mellitus (diabetes hereafter) is caused by a lack <strong>of</strong> <strong>in</strong>sul<strong>in</strong>-production or <strong>in</strong>sul<strong>in</strong>responsiveness,result<strong>in</strong>g <strong>in</strong> high blood glucose levels <strong>in</strong> <strong>the</strong> patient. There are two types <strong>of</strong>diabetes, type I and type II, result<strong>in</strong>g <strong>in</strong> an absolute or a relative lack <strong>of</strong> β <strong>cells</strong>, respectively(Donath and Halban 2004). Type II is <strong>the</strong> most common form <strong>of</strong> diabetes, account<strong>in</strong>g for 90 –95% <strong>of</strong> all cases. The World Health Organization (WHO) estimated a worldwide prevalence <strong>of</strong>171 million diabetics <strong>in</strong> 2000 and <strong>the</strong> prognosis is 336 million people by <strong>the</strong> year 2030, call<strong>in</strong>g it apandemic. In Denmark alone, 226.000 people (or 5% <strong>of</strong> <strong>the</strong> total population) had diabetes <strong>in</strong> 2006and it is estimated that <strong>the</strong> Danish health care system spends DKK 22 billion (or app. US$ 4billion) per year on treatment <strong>of</strong> diabetes and diabetes-related illness (Juvenile Diabetes ResearchFoundation homage). Fur<strong>the</strong>rmore, it is estimated that <strong>the</strong> disease costs Denmark an extra DKK 9billion per year due to loss-<strong>of</strong>-production.In type I patients, <strong>the</strong> disease is a result <strong>of</strong> an auto-immune attack on <strong>the</strong> <strong>in</strong>sul<strong>in</strong>-produc<strong>in</strong>g β <strong>cells</strong>,result<strong>in</strong>g <strong>in</strong> <strong>the</strong> loss <strong>of</strong> β cell mass, followed by dependence on <strong>in</strong>sul<strong>in</strong>-treatment for <strong>the</strong> patient(see (Lernmark and Falorni 1998; Madsen 2005) for reviews). This dependency is life-long, as <strong>the</strong>β cell mass does not regenerate to levels where it can susta<strong>in</strong> <strong>the</strong> body’s need for <strong>in</strong>sul<strong>in</strong>. Theonset <strong>of</strong> type I diabetes is due to genetic and/ or environmental factors, but a comprehensiveknowledge <strong>of</strong> <strong>the</strong> aetiology <strong>of</strong> <strong>the</strong> disease is still lack<strong>in</strong>g despite <strong>in</strong>tense studies <strong>the</strong>re<strong>of</strong>. Alongwith <strong>the</strong> primary disease which is treated with <strong>in</strong>sul<strong>in</strong> <strong>in</strong>jections, patients develop severesecondary complications such as bl<strong>in</strong>dness, kidney failure, and amputations due to chronicvascular defects caused by <strong>the</strong>ir blood-glucose levels be<strong>in</strong>g irregular and difficult to stabilize.In type II patients, a gradual <strong>in</strong>sul<strong>in</strong> resistance <strong>of</strong> <strong>the</strong> peripheral tissues leads to an <strong>in</strong>crease <strong>in</strong> βcell mass as a compensation for this condition (Rhodes 2005). This condition is partly reversible,but will ultimately lead to type I diabetes and <strong>in</strong>sul<strong>in</strong>-dependence if not treated. Type II diabetes isma<strong>in</strong>ly caused by genetic predisposition and environmental factors such as obesity, physical<strong>in</strong>activity, excessive calorie <strong>in</strong>take and ag<strong>in</strong>g (L<strong>in</strong>g and Groop 2009).Cell replacement <strong>the</strong>rapy <strong>in</strong> diabetesAlthough <strong>the</strong>re is no cure for diabetes at present, research focus<strong>in</strong>g on <strong>the</strong>rapeutic treatment isenvisioned as a palliative treatment or maybe even a cure for <strong>the</strong> disease. This section will focuson <strong>the</strong>rapies directed aga<strong>in</strong>st type I diabetes.In 2000, Shapiro and co-workers published <strong>the</strong> Edmonton protocol, as it is now referred to,provid<strong>in</strong>g pro<strong>of</strong> <strong>of</strong> pr<strong>in</strong>ciple for cur<strong>in</strong>g diabetes by transplant<strong>in</strong>g donor islets <strong>of</strong> Langerhans andre-establish<strong>in</strong>g eu-glycaemia <strong>in</strong> seven patients suffer<strong>in</strong>g from type I (Shapiro et al. 2000).However, 85% <strong>of</strong> islet recipients needed <strong>in</strong>sul<strong>in</strong> treatment after a 5-year period (Ryan et al. 2005).The obstacles <strong>of</strong> auto-immunity along with <strong>the</strong> scarcity <strong>of</strong> islet donor material, has directed focus<strong>towards</strong> o<strong>the</strong>r sources <strong>of</strong> β cell material to put to use <strong>in</strong> a similar treatment.In type I diabetics, <strong>the</strong>re is evidence <strong>of</strong> a cont<strong>in</strong>uous β cell regeneration tak<strong>in</strong>g place (Meier et al.2005). However, attempts to regenerate <strong>the</strong> β cell mass are most likely overruled by <strong>the</strong> autoimmuneattack, <strong>the</strong> gross result be<strong>in</strong>g no <strong>in</strong>sul<strong>in</strong>-production from <strong>the</strong> islets <strong>of</strong> Langerhans. Thereis evidence that β-<strong>cells</strong> can be generated from exist<strong>in</strong>g <strong>cells</strong>, but it is unclear whe<strong>the</strong>r this isthrough replication <strong>of</strong> exist<strong>in</strong>g β <strong>cells</strong> or by re-<strong>differentiation</strong> <strong>of</strong> o<strong>the</strong>r pancreatic <strong>cells</strong> such as duct<strong>cells</strong> or even from hepatic <strong>cells</strong> (Bouwens and Pipeleers 1998; Yang et al. 2002a; Dor et al. 2004;Hardikar 2004; Xu et al. 2008; Borowiak and Melton 2009). It is debated whe<strong>the</strong>r <strong>the</strong> pancreashosts a pancreatic endocr<strong>in</strong>e stem cell that can be stimulated to proliferate (Madsen 2005). Bypartial pancreatectomy or cellophane wrapp<strong>in</strong>g <strong>of</strong> <strong>the</strong> pancreas, it has been demonstrated that β5


cell mass regenerates probably through an ability to ‘sense’ <strong>the</strong> total mass <strong>of</strong> <strong>in</strong>sul<strong>in</strong>-produc<strong>in</strong>g<strong>cells</strong> and self-regulate accord<strong>in</strong>gly (Hardikar 2004). Still, <strong>the</strong> success <strong>of</strong> <strong>the</strong>se studies is low andsuch treatments will probably not be sufficient for cur<strong>in</strong>g diabetes.Replacement <strong>the</strong>rapy by external sources <strong>of</strong> β-like <strong>cells</strong> holds <strong>the</strong> potential <strong>of</strong> an <strong>in</strong>f<strong>in</strong>ite supply <strong>of</strong>donor material for transplantation. The <strong>in</strong>itial cell material may come from ei<strong>the</strong>r somatic (oradult) stem <strong>cells</strong> or embryonic stem (<strong>ES</strong>) <strong>cells</strong>, or may <strong>in</strong> time come from patient-specific <strong>in</strong>ducedpluripotent (iPS) <strong>cells</strong>. These cell types are described <strong>in</strong> detail <strong>in</strong> a later section.The immune system represents a major obstacle when discuss<strong>in</strong>g cell replacement-<strong>the</strong>rapies.Patients would ei<strong>the</strong>r have to be put on a life-long treatment <strong>of</strong> immune-suppressive drugs, withmany complications to follow, or o<strong>the</strong>r methods will have to be developed to overcome <strong>the</strong> attack<strong>of</strong> cell material by <strong>the</strong> recipient immune system (Ross<strong>in</strong>i et al. 1999). Encapsulation <strong>of</strong> <strong>the</strong>rapeutic<strong>cells</strong> is one such method. Despite limitations <strong>in</strong> nutrient supply to and transport <strong>of</strong> effectermoleculesfrom <strong>the</strong> transplanted <strong>cells</strong>, studies <strong>in</strong> rat show that <strong>the</strong>y can convey normo-glycaemia<strong>in</strong> steptozotoc<strong>in</strong>-<strong>in</strong>duced diabetic rats (Omer et al. 2005). Ano<strong>the</strong>r possibility is <strong>in</strong>duction <strong>of</strong>immunological tolerance (mixed chimaerism), which has been shown possible by bone-marrowtransplantation <strong>in</strong> mice (Ross<strong>in</strong>i et al. 1999; Blaha et al. 2005).Embryonic developmentTo appreciate <strong>the</strong> challenges <strong>of</strong> directed <strong>in</strong> vitro <strong>differentiation</strong> <strong>of</strong> <strong>ES</strong> <strong>cells</strong>, one must acquire athorough understand<strong>in</strong>g <strong>of</strong> embryonic development. In this <strong>the</strong>sis, focus will be on <strong>mouse</strong>development from zygote to pancreatic β <strong>cells</strong>, especially concentrat<strong>in</strong>g on <strong>the</strong> early development,as <strong>the</strong> work presented here is on <strong>mouse</strong> <strong>ES</strong> cell <strong>differentiation</strong> <strong>in</strong> <strong>the</strong> early steps <strong>towards</strong> β-like<strong>cells</strong>.From zygote to blastocystThe fertilized egg, <strong>the</strong> zygote, is a totipotent cell from which all tissues <strong>of</strong> <strong>the</strong> embryo proper, <strong>the</strong>germ l<strong>in</strong>e and extra-embryonic tissues arise. In mice, <strong>the</strong> zygote moves <strong>in</strong>to <strong>the</strong> uter<strong>in</strong>e tract <strong>of</strong> <strong>the</strong>female and matures along <strong>the</strong> way. By embryonic day 3.5 (E3.5), it has developed <strong>in</strong>to an ovalstructure, <strong>the</strong> blastocyst, consist<strong>in</strong>g <strong>of</strong> an <strong>in</strong>ner cell mass (ICM) at one end and <strong>the</strong> blastocoel at<strong>the</strong> o<strong>the</strong>r end. The ICM gives rise to i) <strong>the</strong> epiblast (also called <strong>the</strong> primitive ectoderm), which willlater form <strong>the</strong> embryo proper and ii) fac<strong>in</strong>g <strong>the</strong> blastocoel, <strong>the</strong> primitive endoderm, which willgive rise to <strong>the</strong> visceral and parietal endoderm (PE), form<strong>in</strong>g parts <strong>of</strong> <strong>the</strong> yolk sac and uter<strong>in</strong>e walll<strong>in</strong><strong>in</strong>g, respectively (Gardner 1983; Rossant 2004). Surround<strong>in</strong>g <strong>the</strong>se structures is <strong>the</strong>trophectoderm (TE), which will develop <strong>in</strong>to <strong>the</strong> foetal parts <strong>of</strong> <strong>the</strong> placenta, <strong>the</strong> chorion. At E4.5<strong>the</strong> blastocyst implants <strong>in</strong>to <strong>the</strong> uter<strong>in</strong>e wall, ga<strong>in</strong><strong>in</strong>g access to maternal blood vessels and <strong>the</strong>rebya supply <strong>of</strong> nutrients and oxygen.The ICM expresses Octamer-4 (Oct4; encoded by Pou5f1), which is down-regulated <strong>in</strong> <strong>the</strong> TE(Nichols et al. 1998) and Nanog, which is ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> epiblast but down-regulated <strong>in</strong> <strong>the</strong> PE(Mitsui et al. 2003). Oct4 –/– and Nanog –/– embryos die due to a failure to form <strong>the</strong> ICM or <strong>the</strong>epiblast, respectively. Also, Sex determ<strong>in</strong><strong>in</strong>g region Y (SRY)-box 2 (Sox2) is present <strong>in</strong> <strong>the</strong> ICM,possibly as remnants <strong>of</strong> maternally deposited prote<strong>in</strong> (Avilion et al. 2003). It is expressed by <strong>the</strong>embryo <strong>in</strong> <strong>the</strong> later epiblast and TE, where it, toge<strong>the</strong>r with OCT4 and nanog <strong>in</strong>ducestranscription <strong>of</strong> pluripotency-associated genes. The TE expresses Cdx2, a homeobox transcriptionfactor, which is required to form <strong>the</strong> placenta and to suppress transcription <strong>of</strong> Oct4 and Nanog(Chawengsaksophak et al. 2004; Strumpf et al. 2005). The PE expresses GATA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> 6(GATA6; (Morrisey et al. 1998)). Recent studies have shown that <strong>cells</strong> <strong>in</strong> <strong>the</strong> ICM express bothnanog and GATA6 prote<strong>in</strong>s prior to segregation <strong>in</strong>to ei<strong>the</strong>r epiblast or PE <strong>cells</strong> <strong>in</strong> a mosaic pattern(Chazaud et al. 2006). It is <strong>the</strong> expression level <strong>of</strong> fibroblast growth factor (<strong>FGF</strong>) that regulateseach cell’s fate <strong>in</strong> such that low levels <strong>of</strong> <strong>FGF</strong> generate epiblast cell formation and high levels <strong>of</strong><strong>FGF</strong> generate PE formation (Yamanaka et al. 2010). At this early stage, <strong>FGF</strong>4 and <strong>FGF</strong> receptor 1(<strong>FGF</strong>R1) are expressed <strong>in</strong> <strong>the</strong> ICM and knockout mice <strong>of</strong> both genes die prior to or at gastrulation(Deng et al. 1994; Yamaguchi et al. 1994; Feldman et al. 1995). Fgf4 expression is activated by6


SOX2 and OCT4. Later, <strong>the</strong> PE and epiblast transiently express Fgf5 (Haub and Goldfarb 1991;Hebert et al. 1991).Gastrulation and germ-layer formationAt E5.5 <strong>the</strong> epiblast is formed as a cup-like structure surrounded by <strong>the</strong> visceral endoderm (VE)which patterns <strong>the</strong> epiblast and <strong>in</strong>itiates gastrulation (Figure 1-1A; (Rossant 2004)). It is at <strong>the</strong>posterior, proximal part <strong>of</strong> this cup that <strong>the</strong> primitive streak (PS) forms around E6.5 from where itstarts to migrate distally (Figure 1-1A). There is an anterior-posterior (A-P) pattern<strong>in</strong>g <strong>of</strong> <strong>the</strong>epiblast prior to gastrulation. Onset <strong>of</strong> PS formation is <strong>in</strong>itiated by a gradient <strong>of</strong> <strong>the</strong> transform<strong>in</strong>ggrowth factor β (TGFβ)-family member nodal and w<strong>in</strong>gless-type MMTV <strong>in</strong>tegration site 3(WNT3) <strong>signall<strong>in</strong>g</strong> from <strong>the</strong> posterior epiblast. Nodal generates a proximal-to-distal gradient andWNT3a forms a posterior-to-anterior gradient (Liu et al. 1999; Ben-Haim et al. 2006; Arnold andRobertson 2009). The nodal gradient moves distally, form<strong>in</strong>g <strong>the</strong> PS along <strong>the</strong> way and f<strong>in</strong>allyends at <strong>the</strong> distal-most part <strong>of</strong> <strong>the</strong> embryo, <strong>the</strong> node (Gadue et al. 2005). At <strong>the</strong> late streak stage,nodal expression is only found <strong>in</strong> <strong>the</strong> node where it forms a distal-to-proximal signal gradient. TheWNT3 expression pattern is restricted to <strong>the</strong> posterior epiblast dur<strong>in</strong>g PS-formation. At <strong>the</strong> sametime, <strong>the</strong> TGFβ family member bone morphogenetic prote<strong>in</strong> 4 (BMP4) from <strong>the</strong> extra-embryonicectoderm (ExE) signals to <strong>the</strong> adjacent epiblast. Thereby a proximal-to-distal signal gradientoppos<strong>in</strong>g that <strong>of</strong> nodal is formed (Lawson et al. 1999). The shape <strong>of</strong> <strong>the</strong>se morphogeneticgradients is modulated by <strong>the</strong> reciprocal expression <strong>of</strong> antagonists or <strong>in</strong>hibitors, <strong>the</strong>se be<strong>in</strong>g leftyand cerberus-like <strong>in</strong>hibit<strong>in</strong>g nodal-<strong>signall<strong>in</strong>g</strong>, dickkopf-related prote<strong>in</strong> 1 (DKK1) <strong>in</strong>hibit<strong>in</strong>gWNT3-<strong>signall<strong>in</strong>g</strong>, and chord<strong>in</strong> and nogg<strong>in</strong> <strong>in</strong>hibit<strong>in</strong>g BMP4-<strong>signall<strong>in</strong>g</strong> (Gadue et al. 2005).Thereby, <strong>the</strong> extension <strong>of</strong> <strong>the</strong> PS is restricted to <strong>the</strong> posterior side <strong>of</strong> <strong>the</strong> embryo.The primitive streak expresses <strong>the</strong> T-box transcription factor Brachyury (T) <strong>in</strong> migrat<strong>in</strong>g <strong>cells</strong> <strong>of</strong><strong>the</strong> PS and Mix1 homeobox-like (Mixl1), along with Even-skipped homeobox homolog 1 (Evx1)(Figure 1-1A; (Bastian and Gruss 1990; Dush and Mart<strong>in</strong> 1992; Kispert and Herrmann 1994; Nget al. 2005)). Goosecoid (Gsc) is expressed <strong>in</strong> <strong>the</strong> progress<strong>in</strong>g PS and localises to <strong>the</strong> anteriorstreak (Blum et al. 1992).7


Figure 1-1: Early embryo development from blastocyst stage to development through <strong>the</strong> primitive streak. A)Schematic representation <strong>of</strong> <strong>mouse</strong> embryonic development and signal gradients <strong>of</strong> BMP4, WNT, and nodal fromblastocyst to late-streak stages. The red l<strong>in</strong>e <strong>in</strong> <strong>the</strong> late streak-stage embryo marks a cross-section, which is shown <strong>in</strong>B). Names <strong>of</strong> marker genes expressed <strong>in</strong> a tissue-type are noted <strong>in</strong> brackets. B) Cross-section <strong>of</strong> embryo illustrat<strong>in</strong>ghow epiblast <strong>cells</strong> (<strong>in</strong> blue) move through <strong>the</strong> PS and form <strong>the</strong> def<strong>in</strong>itive endoderm (DE) germ layer (<strong>in</strong> yellow)displac<strong>in</strong>g <strong>the</strong> visceral endoderm (VE; <strong>in</strong> green). In between <strong>the</strong> DE and epiblast/ ectoderm, <strong>the</strong> mesoderm germ layer(<strong>in</strong> red) forms. Ant, anterior; AVE, anterior visceral endoderm; DE, def<strong>in</strong>itive endoderm; Dist, distal; ExE, extraembryonicectoderm; ICM, <strong>in</strong>ner cell mass; Post, posterior; Prox, proximal; PS, primitive streak; VE, visceralendoderm. Modified from (Gadue et al. 2005; Wolpert 2002).Cells start gastrulation by undergo<strong>in</strong>g an epi<strong>the</strong>lial-to-mesenchymal transition, enabl<strong>in</strong>g <strong>the</strong>m tomove through <strong>the</strong> PS (Figure 1-1B, cross-section <strong>of</strong> <strong>the</strong> PS). <strong>FGF</strong>3, 4 and 8 are present <strong>in</strong> <strong>the</strong> PSand <strong>FGF</strong>4 and 8 are required for gastrulat<strong>in</strong>g <strong>cells</strong> to leave <strong>the</strong> PS (Sun et al. 1999). From chickenstudies it is suggested that <strong>FGF</strong>4 and 8 act as a chemo-attractant and a chemo-repellent,respectively on <strong>the</strong> migrat<strong>in</strong>g <strong>cells</strong>, driv<strong>in</strong>g cell movements after <strong>in</strong>gression through <strong>the</strong> PS(Wilk<strong>in</strong>son et al. 1988; Hebert et al. 1991; Niswander and Mart<strong>in</strong> 1992; Sun et al. 1999; Yang etal. 2002b; Bottcher and Niehrs 2005). When <strong>cells</strong> have moved through <strong>the</strong> PS, <strong>the</strong>y become ei<strong>the</strong>rdef<strong>in</strong>itive endoderm (DE), displac<strong>in</strong>g <strong>the</strong> visceral endoderm, or mesoderm form<strong>in</strong>g an<strong>in</strong>termediate germ layer between <strong>the</strong> DE and <strong>the</strong> epiblast (Lawson et al. 1991; Tam et al. 1993;Carey et al. 1995). The rema<strong>in</strong><strong>in</strong>g <strong>cells</strong> <strong>of</strong> <strong>the</strong> former epiblast become <strong>the</strong> ectoderm germ layer.Cells mov<strong>in</strong>g through <strong>the</strong> mid- and posterior PS early become different types <strong>of</strong> mesoderm,<strong>in</strong>clud<strong>in</strong>g some extra-embryonic mesoderm, <strong>in</strong>fluenced by BMP4 and low concentrations <strong>of</strong>nodal (Parameswaran and Tam 1995; K<strong>in</strong>der et al. 1999). The mesoderm expresses Fetal-likek<strong>in</strong>ase 1 (Flk1) along with Nogg<strong>in</strong> and Chord<strong>in</strong>. DE is formed from <strong>the</strong> anterior regions <strong>of</strong> <strong>the</strong> PS,<strong>in</strong>fluenced ma<strong>in</strong>ly by high concentrations <strong>of</strong> nodal. Here, Forkhead box A2 (Foxa2) is expresseddur<strong>in</strong>g gastrulation and is later found <strong>in</strong> <strong>the</strong> DE (Tam and Bedd<strong>in</strong>gton 1992; Robb and Tam2004). A specific marker for <strong>the</strong> DE germ layer at this stage is <strong>the</strong> Sry-related HMG box gene 17(Sox17), which is not expressed <strong>in</strong> <strong>the</strong> o<strong>the</strong>r two germ layers, but is found also <strong>in</strong> <strong>the</strong> VE (Kanai-Azuma et al. 2002). The VE expresses <strong>the</strong> Sry-related HMG box gene 7 (Sox7), which is notfound <strong>in</strong> DE (Futaki et al. 2004; Segu<strong>in</strong> et al. 2008). DE <strong>cells</strong> migrat<strong>in</strong>g through <strong>the</strong> PS earlydur<strong>in</strong>g gastrulation populate <strong>the</strong> anterior parts <strong>of</strong> <strong>the</strong> endoderm, <strong>the</strong> later foregut, and <strong>cells</strong> leav<strong>in</strong>g<strong>the</strong> PS late <strong>in</strong> gastrulation populate <strong>the</strong> posterior endoderm, <strong>the</strong> later h<strong>in</strong>dgut (Tam andBedd<strong>in</strong>gton 1992).Gut tube pattern<strong>in</strong>g and regionalizationBy <strong>the</strong> end <strong>of</strong> gastrulation around E7.5 <strong>in</strong> <strong>the</strong> <strong>mouse</strong>, <strong>the</strong> embryo conta<strong>in</strong>s two major <strong>signall<strong>in</strong>g</strong>centres, <strong>the</strong> anterior VE (AVE) and <strong>the</strong> node. The AVE is found at <strong>the</strong> anterior side <strong>of</strong> <strong>the</strong> embryo(Figure 1-1A) and acts to restrict <strong>the</strong> PS structure and is <strong>in</strong>volved <strong>in</strong> <strong>the</strong> head fold (Wells andMelton 2000). The node is found <strong>in</strong> <strong>the</strong> distal-most part <strong>of</strong> <strong>the</strong> embryo cyl<strong>in</strong>der, <strong>the</strong> anterior limit<strong>of</strong> <strong>the</strong> PS, from where it directs DE pattern<strong>in</strong>g among o<strong>the</strong>r activities.The DE is patterned along <strong>the</strong> A-P axis through <strong>in</strong>teractions with <strong>the</strong> anterior ectoderm, cardiacmesoderm, and notochord to form <strong>the</strong> anterior gut tube and with <strong>the</strong> node, lateral plate mesodermand PS to form <strong>the</strong> posterior gut tube (Wells and Melton 1999; Wells and Melton 2000). At E7.5anterior and posterior gut tube can be dist<strong>in</strong>guished from one ano<strong>the</strong>r not only by <strong>the</strong>irlocalization <strong>in</strong> <strong>the</strong> embryo, but also by <strong>the</strong>ir expression <strong>of</strong> marker genes. Mouse-Cerberus 1 (m-Cer1), Orthodenticle homeobox 2 (Otx2), Hematopoietically expressed homeobox (Hex) andHomeobox expressed <strong>in</strong> <strong>ES</strong> <strong>cells</strong> 1 (Hesx1) are expressed anteriorly and Cdx2 and certa<strong>in</strong>members <strong>of</strong> <strong>the</strong> Hox family are expressed posteriorly. Divid<strong>in</strong>g <strong>the</strong> form<strong>in</strong>g gut tube <strong>in</strong>to fourregions can illustrate how <strong>the</strong>y re-localize to form <strong>the</strong> proper gut tube (Figure 1-2A&B; E8.5):Region I, <strong>the</strong> most anterior part, seems to fold over region II and form <strong>the</strong> ventral foregut, giv<strong>in</strong>grise to <strong>the</strong> lungs, stomach, liver and ventral pancreas. Region II gives rise to <strong>the</strong> oesophagus,stomach, duodenum and dorsal pancreas. Similarly, region IV seems to fold over region III,giv<strong>in</strong>g rise to posterior trunk endoderm and h<strong>in</strong>dgut, form<strong>in</strong>g <strong>the</strong> large <strong>in</strong>test<strong>in</strong>e. Region III givesrise to <strong>the</strong> midgut and trunk endoderm, form<strong>in</strong>g <strong>the</strong> small <strong>in</strong>test<strong>in</strong>e (Wells and Melton 1999).Closure <strong>of</strong> <strong>the</strong> gut tube happens as <strong>the</strong> anterior <strong>in</strong>test<strong>in</strong>al portal (AIP) and caudal <strong>in</strong>test<strong>in</strong>al portal8


(CIP) move rostrally (arrows <strong>in</strong> Figure 1-2A&B). Around E8.5 – E8.75 <strong>the</strong> embryo starts to turnso that <strong>the</strong> endoderm becomes situated on <strong>the</strong> <strong>in</strong>side, and <strong>the</strong> ectoderm on <strong>the</strong> outside <strong>of</strong> <strong>the</strong>develop<strong>in</strong>g organism.Figure 1-2: Formation, fold<strong>in</strong>g and branch<strong>in</strong>g <strong>of</strong> <strong>the</strong> gut tube. A) The endoderm (yellow and light green) separatedfrom <strong>the</strong> mesoderm (red), ectoderm (blue) and PS (p<strong>in</strong>k) <strong>in</strong> an E7.5 embryo. Roman numerals I–IV represent regions<strong>of</strong> E7.5 endoderm that fate map to regions I–IV <strong>of</strong> <strong>the</strong> E8.5 gut <strong>in</strong> B). B) The form<strong>in</strong>g gut tube (yellow) is seperatedfrom <strong>the</strong> rema<strong>in</strong><strong>in</strong>g embryo. The foregut tube forms as region I folds over region II and migrates <strong>in</strong> a posteriordirection, whereas <strong>the</strong> h<strong>in</strong>dgut tube forms when region IV folds over region III and migrates <strong>in</strong> an anterior direction(arrows <strong>in</strong> A). C) The formation <strong>of</strong> organ buds <strong>in</strong> a E10.5 embryo. D) Branch<strong>in</strong>g and maturation <strong>of</strong> <strong>the</strong> pancreas. A,anterior; AIP, anterior <strong>in</strong>test<strong>in</strong>al portal; CIP, caudal <strong>in</strong>test<strong>in</strong>al portal; D, dorsal; d. Panc, dorsal pancreatic bud; <strong>in</strong>t,duodenum/<strong>in</strong>test<strong>in</strong>e; Lu, lung; Li, liver; P, posterior; PS, primitive streak; St, stomach; V, ventral; v. Panc, ventralpancreatic bud. Modified from (Wells and Melton 1999).Instructive signals from <strong>the</strong> adjacent germ layers specify <strong>the</strong> A-P regions <strong>of</strong> <strong>the</strong> gut tube. Theanterior part <strong>of</strong> <strong>the</strong> gut tube has been shown to adopt a more posterior fate when exposed toposterior mesoderm or ectoderm <strong>in</strong> <strong>mouse</strong> embryos (Wells and Melton 2000). This has beensupported by studies <strong>in</strong> chicken, where anterior endoderm changes to a more posterior fate whentransplanted to a posterior site, but it cannot change to a more anterior fate when transplanted<strong>the</strong>re (Kumar and Melton 2003). These studies showed that <strong>in</strong>creas<strong>in</strong>g concentrations <strong>of</strong> <strong>FGF</strong>4and ret<strong>in</strong>oic acid (RA) posteriorize <strong>the</strong> gut tube <strong>in</strong> <strong>mouse</strong> and chicken (Wells and Melton 2000;Dessimoz et al. 2006; Bayha et al. 2009). In <strong>the</strong> chick embryo BMP, activ<strong>in</strong>A (a surrogate fornodal) and RA <strong>signall<strong>in</strong>g</strong> could <strong>in</strong>duce expression <strong>of</strong> <strong>the</strong> pancreatic foregut marker Pancreaticand duodenal homeobox 1 (Pdx1) <strong>in</strong> endoderm anterior to <strong>the</strong> pancreas (Kumar and Melton2003). Thus, signals orig<strong>in</strong>ally implicated <strong>in</strong> <strong>the</strong> A-P specification <strong>of</strong> <strong>the</strong> neural tube were shownto have a similar function <strong>in</strong> <strong>the</strong> endoderm. The <strong>mouse</strong> gut tube can be specified by regionalmarkers, <strong>in</strong>clud<strong>in</strong>g Foxa2 expressed throughout <strong>the</strong> gut tube; Sox2 expressed <strong>in</strong> <strong>the</strong> thyroid,trachea and stomach regions; Pdx1 expressed <strong>in</strong> <strong>the</strong> duodenal and pancreatic regions; and Cdx2expressed <strong>in</strong> <strong>the</strong> posterior gut tube (as exemplified by <strong>the</strong> chicken cartoon <strong>in</strong> Figure 1-3; chickenCdxA = <strong>mouse</strong> Cdx2).9


Figure 1-3: Regional expression <strong>of</strong> transcription factors <strong>in</strong> <strong>the</strong> endoderm. Although <strong>the</strong>ir expression is here mapped<strong>in</strong> <strong>the</strong> chicken embryo, <strong>the</strong>ir homologs are expressed <strong>in</strong> a similar regional manner <strong>in</strong> <strong>the</strong> <strong>mouse</strong>. The transcriptionfactors shown on <strong>the</strong> left, mostly homeobox genes, are mapped to specific regions <strong>of</strong> <strong>the</strong> endoderm, as shown on <strong>the</strong>right.. These genes are not only regionally expressed <strong>in</strong> already shaped organs (as shown <strong>in</strong> <strong>the</strong> E4 chicken gut tube),but also <strong>in</strong> <strong>the</strong> endodermal sheet prior to organ formation, with stable expression doma<strong>in</strong>s that can be used as markers<strong>of</strong> presumptive regions. The top left p<strong>in</strong>k triangle shows Hex expression <strong>in</strong> <strong>the</strong> thyroid. The bottom left triangle refersto pancreas bud and <strong>the</strong> bottom right triangle to liver bud. BA1–4, branchial arches 1–4; Chicken CdxA = <strong>mouse</strong>Cdx2. Modified from (Grap<strong>in</strong>-Botton and Melton 2000).Pancreas and β cell formationPdx1 is expressed <strong>in</strong> <strong>the</strong> region <strong>of</strong> <strong>the</strong> gut tube where <strong>the</strong> pancreatic primordia start to bud aroundE8.75 (Figure 1-2C) and all pancreatic cell types derive from this PDX1-positive (PDX1 +hereafter) doma<strong>in</strong> (Jonsson et al. 1994). The ventral and dorsal buds form from <strong>the</strong> midl<strong>in</strong>e andlateral areas <strong>of</strong> <strong>the</strong> PDX1 + gut, respectively, <strong>the</strong>n grow and branch extensively before fus<strong>in</strong>g tobecome one pancreas by E12.5 (Figure 1-2D; (Jorgensen et al. 2007)). The ventral bud precedes<strong>the</strong> dorsal bud and expresses <strong>the</strong> Homeobox transcription factor HB9 (Hlxb9) and Pdx1concomitantly whereas <strong>the</strong> dorsal bud expresses <strong>the</strong>se sequentially and exclude sonic hedgehog(SHH)-<strong>signall<strong>in</strong>g</strong> (Hebrok et al. 1998). SHH repression allows pancreatic budd<strong>in</strong>g <strong>in</strong> this regionand is determ<strong>in</strong>ed by <strong>the</strong> underly<strong>in</strong>g notochord. Expression <strong>of</strong> <strong>the</strong> Pancreas-specific transcriptionfactor 1a subunit (Ptf1a; or p48) is limited to <strong>the</strong> dorsal and ventral epi<strong>the</strong>lium and is coexpressedwith Pdx1. The ventral pancreas develops <strong>in</strong> close association with <strong>the</strong> adjacent hepaticand bile duct endoderm and restriction <strong>of</strong> <strong>the</strong> ventral pancreas is dependent on TGFβ (SMAD2/3),BMP (SMAD1/5/8) and <strong>FGF</strong>-<strong>signall<strong>in</strong>g</strong> from <strong>the</strong> cardiac mesoderm (Deutsch et al. 2001; Rossi etal. 2001). TGFβ-<strong>signall<strong>in</strong>g</strong> is stable whereas <strong>FGF</strong> and BMP-<strong>signall<strong>in</strong>g</strong> are dynamic and canchange with<strong>in</strong> a few somite stages (Wandzioch and Zaret 2009). The dorsal pancreas does notshow active BMP or <strong>FGF</strong>-<strong>signall<strong>in</strong>g</strong> at this stage, but ra<strong>the</strong>r is specified by dynamic TGFβ-10


<strong>signall<strong>in</strong>g</strong>. These dynamic <strong>signall<strong>in</strong>g</strong> cascades possibly determ<strong>in</strong>e <strong>the</strong> boundaries <strong>of</strong> pancreaticendoderm, i.e. expression <strong>of</strong> Pdx1, and <strong>the</strong> closely related liver endoderm.As <strong>the</strong> pancreatic buds grow and branch, <strong>the</strong> surround<strong>in</strong>g mesenchyme secretes <strong>FGF</strong>10, whichstimulates pancreatic epi<strong>the</strong>lial proliferation. This mesenchymal stimulation is absolutelynecessary for ma<strong>in</strong>tenance <strong>of</strong> Pdx1 expression and pancreatic development, as <strong>FGF</strong>10 –/– show noPdx1 expression at E10.5 (Bhushan et al. 2001). The epi<strong>the</strong>lial expression <strong>of</strong> Pdx1 and NKhomeobox transcription factor 6.1 (Nkx6.1) starts to deviate <strong>in</strong>to NKX6.1 + <strong>cells</strong> found only <strong>in</strong> <strong>the</strong>central part <strong>of</strong> <strong>the</strong> epi<strong>the</strong>lium, whereas PDX1 + /NKX6.1 – <strong>cells</strong> are found at <strong>the</strong> periphery and atE13.5 mark <strong>the</strong> ac<strong>in</strong>i (Jorgensen et al. 2007). These ac<strong>in</strong>i become <strong>the</strong> exocr<strong>in</strong>e part <strong>of</strong> <strong>the</strong> pancreasthat produces and secretes digestive enzymes <strong>in</strong>to <strong>the</strong> connect<strong>in</strong>g ducts, releas<strong>in</strong>g <strong>the</strong>m to <strong>the</strong><strong>in</strong>test<strong>in</strong>e (Slack 1995). Neurogen<strong>in</strong> 3 (NGN3) + endocr<strong>in</strong>e precursors delam<strong>in</strong>ate from <strong>the</strong>epi<strong>the</strong>lium and develop <strong>in</strong>to Paired box gene 6 (Pax6)-express<strong>in</strong>g endocr<strong>in</strong>e <strong>cells</strong> which form <strong>the</strong>islets <strong>of</strong> Langerhans. The endocr<strong>in</strong>e <strong>cells</strong> <strong>in</strong> <strong>the</strong>se islets produce hormones, which <strong>the</strong>y secrete to<strong>the</strong> bloodstream. Islets consist <strong>of</strong> five cell types: α <strong>cells</strong> produc<strong>in</strong>g glucagon; β <strong>cells</strong> produc<strong>in</strong>g<strong>in</strong>sul<strong>in</strong>; δ <strong>cells</strong> produc<strong>in</strong>g somatostat<strong>in</strong>; ε <strong>cells</strong> produc<strong>in</strong>g ghrel<strong>in</strong> and PP <strong>cells</strong> produc<strong>in</strong>gpancreatic polypeptide. These islets have a dist<strong>in</strong>ct morphology, with <strong>the</strong> β <strong>cells</strong> <strong>in</strong> <strong>the</strong> centre and<strong>the</strong> o<strong>the</strong>r cell types at <strong>the</strong> periphery.Mouse <strong>ES</strong> <strong>cells</strong> <strong>in</strong> directed <strong>differentiation</strong>The <strong>in</strong>itial cell population used to generate β-like <strong>cells</strong> for cell replacement <strong>the</strong>rapy may comefrom ei<strong>the</strong>r somatic (or adult) stem <strong>cells</strong> or from <strong>ES</strong> <strong>cells</strong>. Somatic stem <strong>cells</strong> are mono- ormultipotent <strong>cells</strong> resid<strong>in</strong>g <strong>in</strong> most tissues and organs <strong>of</strong> <strong>the</strong> post-natal human. They are used <strong>in</strong> <strong>the</strong>treatment <strong>of</strong> leukaemia and o<strong>the</strong>r haematological malignancies through bone-marrowtransplantation. Additional areas under <strong>in</strong>vestigation <strong>in</strong>clude treatment <strong>of</strong> strokes, myocardial<strong>in</strong>farctions, corneal regeneration and epidermal gene <strong>the</strong>rapy (Pellegr<strong>in</strong>i et al. 2009; McCall et al.2010). There is no def<strong>in</strong>itive evidence <strong>of</strong> a somatic stem cell <strong>in</strong> <strong>the</strong> pancreas and thus <strong>the</strong> focus <strong>of</strong>cell replacement-<strong>the</strong>rapy for diabetes is currently on <strong>ES</strong> <strong>cells</strong> (Madsen 2005).<strong>ES</strong> <strong>cells</strong> are pluripotent <strong>cells</strong>, i.e. <strong>the</strong>y can give rise to all tissues <strong>of</strong> <strong>the</strong> embryo proper (Ohtsukaand Dalton 2008). They are isolated from <strong>the</strong> <strong>in</strong>ner cell mass <strong>of</strong> a blastocyst stage embryo andunder <strong>the</strong> right culture conditions <strong>the</strong>y can multiply <strong>in</strong>def<strong>in</strong>itely, while keep<strong>in</strong>g <strong>the</strong>ir pluripotentphenotype (Evans and Kaufman 1981; Mart<strong>in</strong> 1981; Y<strong>in</strong>g et al. 2003a). They hold great potentialdue to <strong>the</strong>ir pluripotent nature, but as yet, no protocol applicable to human treatment has beendeveloped.Modell<strong>in</strong>g <strong>differentiation</strong> us<strong>in</strong>g <strong>mouse</strong> <strong>ES</strong> <strong>cells</strong>Mouse <strong>ES</strong> (m<strong>ES</strong>) <strong>cells</strong> are used for <strong>the</strong> study <strong>of</strong> directed <strong>differentiation</strong> <strong>towards</strong> def<strong>in</strong>itiveendoderm, pancreatic foregut and ultimately β-like <strong>cells</strong> because <strong>the</strong>y have certa<strong>in</strong> advantages.Work<strong>in</strong>g with m<strong>ES</strong> <strong>cells</strong> holds fewer ethical concerns than work<strong>in</strong>g with human <strong>ES</strong> (h<strong>ES</strong>) <strong>cells</strong>and <strong>the</strong>re are many available tools, such as transgenic m<strong>ES</strong> cell l<strong>in</strong>es which can be used to testhypo<strong>the</strong>ses that cannot be o<strong>the</strong>rwise experimentally tested. Also, <strong>mouse</strong> embryonic developmentclosely mimics human embryonic development, suggest<strong>in</strong>g that conclusions may be extrapolatedand applied to <strong>the</strong> human system. But <strong>in</strong> us<strong>in</strong>g m<strong>ES</strong> <strong>cells</strong> for scientific purposes, it is important tobear <strong>in</strong> m<strong>in</strong>d that <strong>the</strong> end product will always be a cell <strong>the</strong>rapy based on h<strong>ES</strong> <strong>cells</strong>, and f<strong>in</strong>d<strong>in</strong>gswill <strong>the</strong>refore always have to be confirmed <strong>in</strong> this system. The sections below will focus on m<strong>ES</strong><strong>cells</strong> with examples from h<strong>ES</strong> cell work where relevant.Derivation <strong>of</strong> m<strong>ES</strong>CsThe first m<strong>ES</strong> <strong>cells</strong> were derived almost 30 years ago and <strong>the</strong> first h<strong>ES</strong> cell l<strong>in</strong>e was derived 12years ago (Evans and Kaufman 1981; Mart<strong>in</strong> 1981; Thomson et al. 1998). m<strong>ES</strong> <strong>cells</strong> (<strong>ES</strong> <strong>cells</strong>hereafter) are used ei<strong>the</strong>r for generation <strong>of</strong> transgenic mice or for cultur<strong>in</strong>g and <strong>differentiation</strong> <strong>of</strong>(transgenic) cell l<strong>in</strong>es. Mouse <strong>ES</strong> <strong>cells</strong> are derived from <strong>the</strong> ICM <strong>of</strong> <strong>the</strong> E3.5 blastocyst. They aregrown on feeder <strong>cells</strong> <strong>in</strong> <strong>the</strong> presence <strong>of</strong> serum and leukemia <strong>in</strong>hibitory factor (LIF), whichma<strong>in</strong>ta<strong>in</strong>s <strong>the</strong>m pluripotent.11


The pluripotent stateThe pluripotency <strong>of</strong> <strong>ES</strong> <strong>cells</strong> along with <strong>the</strong>ir capability to self-renew <strong>in</strong>def<strong>in</strong>itely are <strong>the</strong> mostimportant characteristics <strong>of</strong> <strong>ES</strong> <strong>cells</strong>. The pluripotent state is characterised morphologically bytightly associated <strong>cells</strong> grow<strong>in</strong>g <strong>in</strong> rounded clusters. Molecularly, <strong>the</strong>y are characterised by <strong>the</strong>expression <strong>of</strong> markers, some <strong>of</strong> which are found also <strong>in</strong> <strong>the</strong> ICM <strong>of</strong> <strong>the</strong> develop<strong>in</strong>g embryo. Themost commonly used are Oct4, Nanog, Stage specific embryonic antigen-1 (SSEA-1), Sox2 andAlkal<strong>in</strong>e phosphatase (Solter and Knowles 1978; Pease et al. 1990; Nichols et al. 1998; Avilion etal. 2003; Chambers et al. 2003; Mitsui et al. 2003). To test if <strong>ES</strong> <strong>cells</strong> have ma<strong>in</strong>ta<strong>in</strong>ed <strong>the</strong>irpluripotency over time when <strong>in</strong> culture, <strong>the</strong>y are evaluated <strong>in</strong> several ways, each provid<strong>in</strong>g a morestr<strong>in</strong>gent test but at <strong>the</strong> same time tak<strong>in</strong>g more resources. They can be evaluated by i)morphology; ii) a positive sta<strong>in</strong> with antibodies for <strong>the</strong> pluripotent markers; iii) subcutaneous<strong>in</strong>jection <strong>in</strong> mice and formation <strong>of</strong> teratomes with <strong>cells</strong> <strong>of</strong> all three germ layers; iv) <strong>in</strong>jection <strong>in</strong>to<strong>the</strong> ICM <strong>of</strong> a develop<strong>in</strong>g embryo where <strong>the</strong>y give rise to chimaeras with contributions to tissues <strong>of</strong>all three germ layers and <strong>the</strong> germ l<strong>in</strong>e (Ohtsuka and Dalton 2008). The last test is considered <strong>the</strong>‘golden standard’ but is time-consum<strong>in</strong>g and is <strong>the</strong>refore not rout<strong>in</strong>ely carried out except <strong>in</strong> <strong>the</strong>establishment and analysis <strong>of</strong> newly generated transgenic cell l<strong>in</strong>es or by <strong>in</strong>vestigat<strong>in</strong>g whe<strong>the</strong>r acerta<strong>in</strong> (manipulated) <strong>ES</strong> cell l<strong>in</strong>e is entirely pluripotent.Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> pluripotent state <strong>in</strong> an <strong>ES</strong> cell culture is done through prevention <strong>of</strong><strong>differentiation</strong> (or <strong>in</strong>duction <strong>of</strong> self-renewal properties) and promotion <strong>of</strong> proliferation. LIF isadded to <strong>the</strong> culture medium <strong>of</strong> pluripotent <strong>ES</strong> <strong>cells</strong> and is <strong>the</strong> ma<strong>in</strong> factor <strong>in</strong>volved <strong>in</strong> keep<strong>in</strong>g<strong>cells</strong> pluripotent (Figure 1-4A). It activates <strong>the</strong> JAK/STAT3-<strong>signall<strong>in</strong>g</strong> pathway, result<strong>in</strong>g <strong>in</strong>transcription <strong>of</strong> genes <strong>in</strong>volved <strong>in</strong> self-renewal, one <strong>of</strong> <strong>the</strong>se be<strong>in</strong>g C-myc (Niwa et al. 1998;Cartwright et al. 2005). LIF also activates <strong>the</strong> important Phospho<strong>in</strong>ositol 3 k<strong>in</strong>ase (PI3K), lead<strong>in</strong>gto activation <strong>of</strong> Ras/ mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase (MAPK) and AKT pathways. The latter is<strong>in</strong>volved <strong>in</strong> relief <strong>of</strong> C-myc repression by glycogen synthase k<strong>in</strong>ase-3 (GSK-3), which seems to bevery important <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g self-renewal capability (Umehara et al. 2007). BMP is a secondimportant factor for ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g self-renewal, its effect possibly depend<strong>in</strong>g on <strong>the</strong> cultureconditions <strong>in</strong> which it acts (Ohtsuka and Dalton 2008). BMP activates SMAD1/5/8-<strong>signall<strong>in</strong>g</strong>lead<strong>in</strong>g to expression <strong>of</strong> Inhibitor <strong>of</strong> <strong>differentiation</strong> (Id)-genes which block at least neural<strong>differentiation</strong> (Figure 1-4A; (Y<strong>in</strong>g et al. 2003a)). BMPs also act by suppress<strong>in</strong>g <strong>the</strong> p38 MAPK,which would o<strong>the</strong>rwise promote <strong>differentiation</strong> (Qi et al. 2004; Kunath et al. 2007). <strong>FGF</strong>4 isexpressed <strong>in</strong> pluripotent <strong>ES</strong> <strong>cells</strong> <strong>in</strong> an autocr<strong>in</strong>e fashion and <strong>the</strong> activation <strong>of</strong> <strong>the</strong> ERK1/2-<strong>signall<strong>in</strong>g</strong> cascade by <strong>FGF</strong> must be suppressed <strong>in</strong> order to ma<strong>in</strong>ta<strong>in</strong> <strong>cells</strong> <strong>in</strong> <strong>the</strong> plupipotent state(Ma et al. 1992; Kunath et al. 2007; Nichols et al. 2009). The LIF-gp130 receptor complex sees tothis.12


Figure 1-4: Key <strong>signall<strong>in</strong>g</strong> pathways required for ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g pluripotency and for directed <strong>differentiation</strong><strong>in</strong>to <strong>the</strong> three germ layers. A) LIF <strong>signall<strong>in</strong>g</strong> activates JAK–STAT3 and PI3K pathways to <strong>in</strong>duce target genesessential for pluripotency. BMP signals activate SMAD1/5/8-Id gene and suppress p38 MAPK. Activ<strong>in</strong>/ nodalhave been shown to contribute m<strong>ES</strong>Cs proliferation but not pluripotency. B) Illustration <strong>of</strong> <strong>signall<strong>in</strong>g</strong>demonstrated <strong>in</strong>duce to <strong>ES</strong> cell self-renewal and germ layer specification, through <strong>the</strong> EPL-state. BMP, bonemorphogenetic prote<strong>in</strong>; EPL, early-primitive ectoderm-like; <strong>ES</strong>Cs, embryonic stem <strong>cells</strong>; <strong>FGF</strong>, fibroblast growthfactor; ICM, <strong>in</strong>ner cell mass; LIF, leukemia <strong>in</strong>hibitory factor. Modified from (Ohtsuka and Dalton 2008; Gadueet al. 2005).Recent studies have suggested that epigenetic processes are required for repression <strong>of</strong>developmental pathways through <strong>the</strong> actions <strong>of</strong> e.g. polycomb-group complex prote<strong>in</strong>s. Howimportant epigenetic control and regulation <strong>of</strong> <strong>the</strong> pluripotent state is compared to <strong>the</strong> addition <strong>of</strong>growth factors and cytok<strong>in</strong>es is yet to be determ<strong>in</strong>ed (Niwa 2007).Grow<strong>in</strong>g <strong>ES</strong> <strong>cells</strong> as a pluripotent culture can be done on a feeder-layer <strong>of</strong> e.g. <strong>mouse</strong> embryonicfibroblasts <strong>in</strong> <strong>the</strong> presence <strong>of</strong> serum and LIF. Here, serum conta<strong>in</strong>s BMP and feeder <strong>cells</strong> may besubstituted entirely by LIF, which <strong>the</strong>y contribute to <strong>the</strong> culture condition (Smith et al. 1988; Y<strong>in</strong>gand Smith 2003). Alternatively, pluripotent <strong>ES</strong> <strong>cells</strong> can be ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> feeder-free serumreplacement media conta<strong>in</strong><strong>in</strong>g LIF, where N2, B27 and BMP4 are added to replace serum <strong>in</strong>general, and BMP <strong>in</strong> particular (Y<strong>in</strong>g et al. 2003a).Directed <strong>differentiation</strong> <strong>of</strong> <strong>ES</strong> <strong>cells</strong>Removal <strong>of</strong> LIF (and BMP4) <strong>in</strong>itiates <strong>differentiation</strong> <strong>of</strong> <strong>ES</strong> <strong>cells</strong> by <strong>in</strong>creas<strong>in</strong>g ERK activity.<strong>FGF</strong>5 is up-regulated and pluripotency markers are down-regulated along with PI3K and AKT<strong>signall<strong>in</strong>g</strong>pathways (Rathjen et al. 1999; Ohtsuka and Dalton 2008). Intact <strong>FGF</strong>4-<strong>signall<strong>in</strong>g</strong> hasbeen shown to be necessary for <strong>in</strong>itiation <strong>of</strong> <strong>differentiation</strong> for at least ectoderm and, lessconv<strong>in</strong>c<strong>in</strong>gly, mesoderm l<strong>in</strong>eages (Kunath et al. 2007). As little as a 24-hour pulse <strong>of</strong> ectopic13


There are four membrane-bound <strong>FGF</strong>Rs consist<strong>in</strong>g <strong>of</strong> three Ig doma<strong>in</strong>s (doma<strong>in</strong>s I – III) on <strong>the</strong>extracellular side and <strong>of</strong> two tyros<strong>in</strong>e k<strong>in</strong>ase doma<strong>in</strong>s on <strong>the</strong> <strong>in</strong>tracellular side <strong>of</strong> <strong>the</strong> cell surface.The Ig-doma<strong>in</strong>s convey <strong>FGF</strong>-b<strong>in</strong>d<strong>in</strong>g, determ<strong>in</strong>e <strong>FGF</strong> ligand selectivity (doma<strong>in</strong> III) and <strong>in</strong>teractwith HS (Bottcher and Niehrs 2005). The C-term<strong>in</strong>al half <strong>of</strong> Ig-doma<strong>in</strong> III <strong>in</strong> <strong>FGF</strong>R1-3demonstrates alternative splic<strong>in</strong>g <strong>of</strong> exon 7 to ei<strong>the</strong>r exons 8 or 9, generat<strong>in</strong>g <strong>FGF</strong>R(III)b or<strong>FGF</strong>R(III)c is<strong>of</strong>orms, respectively (<strong>FGF</strong>Rb or <strong>FGF</strong>Rc hereafter; Figure 1-6C; (Johnson andWilliams 1993; Groth and Lardelli 2002; Eswarakumar et al. 2005)). The expression <strong>of</strong> specific<strong>FGF</strong>R-is<strong>of</strong>orms is tissue-specific, mean<strong>in</strong>g ligand-receptor <strong>in</strong>teractions can be regulated acrosstissues, giv<strong>in</strong>g a high range <strong>of</strong> <strong>in</strong>teraction-potential to modulate downstream <strong>signall<strong>in</strong>g</strong> pathwaysand gene expression. The <strong>in</strong>tracellular k<strong>in</strong>ase doma<strong>in</strong>s are responsible for tyros<strong>in</strong>e k<strong>in</strong>ase activitylead<strong>in</strong>g to auto-phosphorylation and recruitment <strong>of</strong> downstream <strong>signall<strong>in</strong>g</strong> components elicit<strong>in</strong>g<strong>the</strong> cellular response to ligand b<strong>in</strong>d<strong>in</strong>g. <strong>FGF</strong>R4, which has no splice variants, resembles <strong>FGF</strong>Rcis<strong>of</strong>ormsboth structurally and <strong>in</strong> <strong>FGF</strong> b<strong>in</strong>d<strong>in</strong>g-aff<strong>in</strong>ities (Va<strong>in</strong>ikka et al. 1992).A secreted third is<strong>of</strong>orm, <strong>FGF</strong>R1-3(III)a lacks <strong>the</strong> trans-membrane and <strong>in</strong>tracellular k<strong>in</strong>asedoma<strong>in</strong>s, and although <strong>the</strong>y are present <strong>in</strong> blood, <strong>the</strong>ir function is somewhat unclear (Johnson etal. 1990; Johnson et al. 1991; Johnson and Williams 1993; Hanneken 2001).Figure 1-6: The evolution <strong>of</strong> <strong>the</strong> <strong>FGF</strong> family, b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> <strong>FGF</strong> to <strong>FGF</strong>R and alternative splic<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>FGF</strong>R. A)The evolutionary relationships with<strong>in</strong> <strong>the</strong> fibroblast growth factor (<strong>FGF</strong>) gene family. The twenty-two <strong>FGF</strong> encod<strong>in</strong>ggenes are arranged <strong>in</strong>to seven subfamilies. Branch lengths are proportional to <strong>the</strong> evolutionary distance between eachgene. <strong>FGF</strong>19 is <strong>the</strong> human ortholog <strong>of</strong> <strong>mouse</strong> <strong>FGF</strong>15. The <strong>FGF</strong>11 subfamily is also referred to as <strong>the</strong> <strong>in</strong>tracellular<strong>FGF</strong>s (i<strong>FGF</strong>s), and <strong>the</strong> <strong>FGF</strong>15 (<strong>FGF</strong>19) family as <strong>the</strong> hormone-like <strong>FGF</strong>s (h<strong>FGF</strong>s). B) Ribbon diagram <strong>of</strong> <strong>the</strong> ternary<strong>FGF</strong>2/hepar<strong>in</strong>/<strong>FGF</strong>R1 complex show<strong>in</strong>g <strong>FGF</strong>2 <strong>in</strong> yellow, D2 and D3 doma<strong>in</strong>s <strong>of</strong> <strong>the</strong> ligand-b<strong>in</strong>d<strong>in</strong>g portion <strong>of</strong><strong>FGF</strong>R1 <strong>in</strong> green and blue, respectively, and hepar<strong>in</strong> <strong>in</strong> red. C) The two is<strong>of</strong>orms <strong>of</strong> <strong>FGF</strong>R1-3 are generated by17


alternative splic<strong>in</strong>g <strong>of</strong> exons 8 and 9. The C-term<strong>in</strong>al half <strong>of</strong> <strong>the</strong> DIII doma<strong>in</strong> is encoded by exon 8 to generate <strong>the</strong><strong>FGF</strong>R(III)b is<strong>of</strong>orms while <strong>the</strong> C-term<strong>in</strong>al half <strong>of</strong> DIII is encoded by exon 9 to generate <strong>the</strong> <strong>FGF</strong>R(III)c is<strong>of</strong>orms.Modified from (Itoh and Ornitz 2004; Eswarakumar et al. 2005).HS, downstream <strong>signall<strong>in</strong>g</strong> pathways and regulationHeparan sulfates (HSs) are proteoglycans consist<strong>in</strong>g <strong>of</strong> repeated subunits <strong>of</strong> D-glucosam<strong>in</strong>e anddisaccharides and are embedded <strong>in</strong> <strong>the</strong> extracellular matrix on <strong>the</strong> cell surface. Mutations <strong>in</strong> genes<strong>in</strong>volved <strong>in</strong> <strong>the</strong> syn<strong>the</strong>sis or modulation <strong>of</strong> HS results <strong>in</strong> developmental defects <strong>in</strong> mice, mostlikely due to impaired <strong>FGF</strong>-<strong>signall<strong>in</strong>g</strong> (Bullock et al. 1998; Ornitz 2000; Kraushaar et al. 2010)).HS stabilizes <strong>FGF</strong>s to <strong>the</strong>rmal denaturation, proteolysis and limit <strong>the</strong>ir diffusion and release to<strong>in</strong>terstitial spaces (Moscatelli 1987; Flaumenhaft et al. 1990). This leads to <strong>in</strong>creased 1:1<strong>FGF</strong>:<strong>FGF</strong>R complex formation which <strong>the</strong>n results <strong>in</strong> a transient receptor dimerization and<strong>signall<strong>in</strong>g</strong> from this 2:2 <strong>FGF</strong>:<strong>FGF</strong>R complex (Figure 1-6B; (Hsu et al. 1999; Plotnikov et al.1999; Pye and Gallagher 1999)).Intracellular phosphorylation <strong>of</strong> <strong>the</strong> k<strong>in</strong>ase-doma<strong>in</strong>s leads to activation <strong>of</strong> <strong>in</strong>tracellular signaltransduction pathways. Most commonly, <strong>the</strong> Ras/MAPK pathway is activated upon <strong>FGF</strong><strong>signall<strong>in</strong>g</strong>,but also <strong>the</strong> PLCγ/Ca 2+ and PI3K/AKT pathways are activated (Bottcher and Niehrs2005). For activation <strong>of</strong> <strong>the</strong> Ras/MAPK pathway, FRS2 is recruited and forms a complexactivat<strong>in</strong>g Ras. Pathway activity ultimately leads to nuclear translocation <strong>of</strong> MAPK and activation<strong>of</strong> target genes, such as AP1, c-myc and ETS transcription factors (Wasylyk et al. 1998).Activation <strong>of</strong> PLCγ leads to <strong>in</strong>tracellular release <strong>of</strong> Ca 2+ and activation <strong>of</strong> phosphok<strong>in</strong>ase C (PKC;(Pawson 1995)). F<strong>in</strong>ally, activation <strong>of</strong> PI3K through ei<strong>the</strong>r direct <strong>in</strong>teraction with <strong>the</strong> <strong>FGF</strong>R or bycomponents <strong>of</strong> <strong>the</strong> Ras/ MAPK pathway leads to activation <strong>of</strong> AKT (Carballada et al. 2001).<strong>FGF</strong>-<strong>signall<strong>in</strong>g</strong> is regulated by members <strong>of</strong> <strong>the</strong> sprouty and sprouty-related EVH1 prote<strong>in</strong>(SPRED) families by a feedback mechanism that regulates MAPK-<strong>signall<strong>in</strong>g</strong> through receptortyros<strong>in</strong>e k<strong>in</strong>ase b<strong>in</strong>d<strong>in</strong>g (Hacohen et al. 1998; Lim et al. 2002). Fur<strong>the</strong>rmore, <strong>FGF</strong>-activity ismodified through a tight regulation <strong>of</strong> HS-syn<strong>the</strong>sis and certa<strong>in</strong> transmembrane regulators (SEFand FLRT), which <strong>in</strong>terrupt <strong>FGF</strong>-<strong>FGF</strong>R complex formation or downstream <strong>signall<strong>in</strong>g</strong> (Bottcherand Niehrs 2005). Syn<strong>the</strong>tic small molecules such as SU5402 and PD173074 <strong>in</strong>hibit most <strong>FGF</strong>R<strong>signall<strong>in</strong>g</strong>with some or little secondary effects, respectively (Mohammadi et al. 1997;Mohammadi et al. 1998).To date, <strong>the</strong> role <strong>of</strong> <strong>FGF</strong>-<strong>FGF</strong>R <strong>signall<strong>in</strong>g</strong> <strong>in</strong> directed <strong>differentiation</strong> <strong>towards</strong> cell types <strong>of</strong> <strong>the</strong>endoderm germ layer has been <strong>in</strong>vestigated as a general activation or <strong>in</strong>hibition <strong>of</strong> <strong>FGF</strong>-<strong>FGF</strong>Rsignals. The role <strong>of</strong> <strong>in</strong>dividual <strong>FGF</strong>- and <strong>FGF</strong>R family members <strong>in</strong> <strong>differentiation</strong> <strong>towards</strong> DErema<strong>in</strong>s to be elucidated.18


2. AimsThe aim <strong>of</strong> this study was to <strong>in</strong>vestigate <strong>the</strong> role <strong>of</strong> <strong>FGF</strong>-<strong>signall<strong>in</strong>g</strong> <strong>in</strong> directed <strong>differentiation</strong> <strong>of</strong><strong>mouse</strong> <strong>ES</strong> <strong>cells</strong> <strong>towards</strong> i) mesendoderm formation, and ii) def<strong>in</strong>itive endoderm formation andpattern<strong>in</strong>g.We applied a mono-layer, serum-free culture system <strong>in</strong> which <strong>differentiation</strong> <strong>of</strong> <strong>mouse</strong> <strong>ES</strong> <strong>cells</strong><strong>towards</strong> mesendoderm was achieved by addition <strong>of</strong> BMP4 and a range <strong>of</strong> activ<strong>in</strong>-concentrationsto <strong>the</strong> culture medium. Formation <strong>of</strong> def<strong>in</strong>itive endoderm was reached us<strong>in</strong>g high concentrations<strong>of</strong> activ<strong>in</strong> and fur<strong>the</strong>r pattern<strong>in</strong>g here<strong>of</strong> was done us<strong>in</strong>g various growth factors and <strong>in</strong>hibitors. We<strong>in</strong>vestigated <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> <strong>FGF</strong>s on this system by addition <strong>of</strong> a range <strong>of</strong> <strong>FGF</strong>s, small molecule<strong>FGF</strong>-<strong>in</strong>hibitors and soluble <strong>FGF</strong>Rs. We analysed <strong>the</strong> result<strong>in</strong>g cell populations by us<strong>in</strong>g greenfluorescent prote<strong>in</strong> (GFP)-l<strong>in</strong>ked reporter cell l<strong>in</strong>es and knockout cell l<strong>in</strong>es, immunecytochemistry,RT-PCR and qPCR.19


3. Paper IA late requirement for Wnt and <strong>FGF</strong> signal<strong>in</strong>g dur<strong>in</strong>g activ<strong>in</strong>-<strong>in</strong>duced formation<strong>of</strong> foregut endoderm from <strong>mouse</strong> embryonic stem <strong>cells</strong>Published <strong>in</strong> Developmental Biology, 2009, 330, p. 286 – 304.Mattias Hansson a,1 , Dor<strong>the</strong> R- Olesen a,b,1 , Janny M.L. Peterslund a , N<strong>in</strong>a Engberg a , MortenKahn a,b , Maria W<strong>in</strong>zi a , T<strong>in</strong>o Kle<strong>in</strong> a , Poul Maddox-Hyttel b and Palle Serup a, *a Department <strong>of</strong> Developmental Biology, Hagedorn Research Institute, Niels Steensens Vej 6,DK-2820 Gent<strong>of</strong>te, Denmark. b Department <strong>of</strong> Animal and Veter<strong>in</strong>ary Basic Sciences, Faculty <strong>of</strong>Life Sciences, University <strong>of</strong> Copenhagen, DK-1870 Frederiksberg C, Denmark. 1 These authorscontributed equally to this work. * Correspond<strong>in</strong>g author.Author contributionsThe majority <strong>of</strong> <strong>the</strong> experiments were performed <strong>in</strong> collaboration between Mattias Hansson andDor<strong>the</strong> R. Olesen with equal contributions. I worked on <strong>the</strong> effect <strong>of</strong> <strong>FGF</strong>-<strong>signall<strong>in</strong>g</strong> upon foregutendoderm formation, and <strong>in</strong> collaboration with N<strong>in</strong>a Engberg looked at <strong>the</strong> fur<strong>the</strong>r pattern<strong>in</strong>g <strong>of</strong>activ<strong>in</strong>-<strong>in</strong>duced def<strong>in</strong>itive endoderm <strong>towards</strong> Pdx1-express<strong>in</strong>g pancreatic endoderm. The paperwas published <strong>in</strong> Developmental Biology, issue 330, 2009. Stated below is each <strong>in</strong>dividual’scontribution to <strong>the</strong> paper (numbers <strong>in</strong>dicate figures).Mattias Hansson 1; 2; 3; 4A; 7; 10; 11; S1; S2; S3B,C; S4; Wrote paper draftDor<strong>the</strong> R. Olesen 1; 2; 3; 4A,C,F; 5; 8B; S1; S2Janny M. L. Peterslund 8A; 9; 10; 12; S4N<strong>in</strong>a Engberg 4B,D,E; 12Morten KahnS3A; S5B,CMaria W<strong>in</strong>zi6; S6T<strong>in</strong>o Kle<strong>in</strong>S5APoul Maddox-Hyttel SupervisorPalle SerupPr<strong>in</strong>cipal <strong>in</strong>vestigator and supervisor; paper revisionFor co-authorship declaration, see Appendix A.21


Developmental Biology 330 (2009) 286–304Contents lists available at ScienceDirectDevelopmental Biologyjournal homepage: www.elsevier.com/developmentalbiologyA late requirement for Wnt and <strong>FGF</strong> signal<strong>in</strong>g dur<strong>in</strong>g activ<strong>in</strong>-<strong>in</strong>duced formation <strong>of</strong>foregut endoderm from <strong>mouse</strong> embryonic stem <strong>cells</strong>Mattias Hansson a,1 , Dor<strong>the</strong> R. Olesen a,b,1 , Janny M.L. Peterslund a , N<strong>in</strong>a Engberg a , Morten Kahn a,b ,Maria W<strong>in</strong>zi a , T<strong>in</strong>o Kle<strong>in</strong> a , Poul Maddox-Hyttel b , Palle Serup a, ⁎a Department <strong>of</strong> Developmental Biology, Hagedorn Research Institute, Niels Steensens Vej 6, DK-2820 Gent<strong>of</strong>te, Denmarkb Department <strong>of</strong> Animal and Veter<strong>in</strong>ary Basic Sciences, Faculty <strong>of</strong> Life Sciences, University <strong>of</strong> Copenhagen, DK-1870, Frederiksberg C, Denmarkarticle<strong>in</strong>foabstractArticle history:Received for publication 16 July 2008Revised 18 March 2009Accepted 30 March 2009Available onl<strong>in</strong>e 7 April 2009Keywords:Embryonic stem cellGastrulationEndodermMesendodermAnterior–posterior pattern<strong>in</strong>gTGF-βWnt<strong>FGF</strong>Here we exam<strong>in</strong>e how BMP, Wnt, and <strong>FGF</strong> signal<strong>in</strong>g modulate activ<strong>in</strong>-<strong>in</strong>duced mesendodermal <strong>differentiation</strong><strong>of</strong> <strong>mouse</strong> <strong>ES</strong> <strong>cells</strong> grown under def<strong>in</strong>ed conditions <strong>in</strong> adherent monoculture. We monitor <strong>ES</strong> <strong>cells</strong> conta<strong>in</strong><strong>in</strong>greporter genes for markers <strong>of</strong> primitive streak (PS) and its progeny and extend previous f<strong>in</strong>d<strong>in</strong>gs on <strong>the</strong> ability<strong>of</strong> <strong>in</strong>creas<strong>in</strong>g concentrations <strong>of</strong> activ<strong>in</strong> to progressively <strong>in</strong>duce more <strong>ES</strong> cell progeny to anterior PS andendodermal fates. We f<strong>in</strong>d that <strong>the</strong> number <strong>of</strong> Sox17- and Gsc-express<strong>in</strong>g <strong>cells</strong> <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>gactiv<strong>in</strong> concentration while <strong>the</strong> highest number <strong>of</strong> T-express<strong>in</strong>g <strong>cells</strong> is found at <strong>the</strong> lowest activ<strong>in</strong>concentration. The expression <strong>of</strong> Gsc and o<strong>the</strong>r anterior markers <strong>in</strong>duced by activ<strong>in</strong> is prevented by treatmentwith BMP4, which <strong>in</strong>duces T expression and subsequent mesodermal development. We show that canonicalWnt signal<strong>in</strong>g is required only dur<strong>in</strong>g late stages <strong>of</strong> activ<strong>in</strong>-<strong>in</strong>duced development <strong>of</strong> Sox17-express<strong>in</strong>gendodermal <strong>cells</strong>. Fur<strong>the</strong>rmore, Dkk1 treatment is less effective <strong>in</strong> reduc<strong>in</strong>g development <strong>of</strong> Sox17 +endodermal <strong>cells</strong> <strong>in</strong> adherent culture than <strong>in</strong> aggregate culture and appears to <strong>in</strong>hibit nodal-mediated<strong>in</strong>duction <strong>of</strong> Sox17 + <strong>cells</strong> more effectively than activ<strong>in</strong>-mediated <strong>in</strong>duction. Notably, activ<strong>in</strong> <strong>in</strong>duction <strong>of</strong> Gsc-GFP + <strong>cells</strong> appears refractory to <strong>in</strong>hibition <strong>of</strong> canonical Wnt signal<strong>in</strong>g but shows a dependence on early as wellas late <strong>FGF</strong> signal<strong>in</strong>g. Additionally, we f<strong>in</strong>d a late dependence on <strong>FGF</strong> signal<strong>in</strong>g dur<strong>in</strong>g <strong>in</strong>duction <strong>of</strong> Sox17 + <strong>cells</strong>by activ<strong>in</strong> while BMP4-<strong>in</strong>duced T expression requires <strong>FGF</strong> signal<strong>in</strong>g <strong>in</strong> adherent but not aggregate culture.Lastly, we demonstrate that activ<strong>in</strong>-<strong>in</strong>duced def<strong>in</strong>itive endoderm derived from <strong>mouse</strong> <strong>ES</strong> <strong>cells</strong> can <strong>in</strong>corporate<strong>in</strong>to <strong>the</strong> develop<strong>in</strong>g foregut endoderm <strong>in</strong> vivo and adopt a mostly anterior foregut character after fur<strong>the</strong>rculture <strong>in</strong> vitro.© 2009 Elsevier Inc. All rights reserved.IntroductionDirected <strong>differentiation</strong> <strong>of</strong> embryonic stem (<strong>ES</strong>) <strong>cells</strong> <strong>in</strong>to mesoandendodermal derivatives is <strong>in</strong>tensely studied due to <strong>the</strong>ir potentialcl<strong>in</strong>ical applications. Meso- and endoderm is formed by epiblast <strong>cells</strong>that <strong>in</strong>gress through <strong>the</strong> primitive streak (PS) dur<strong>in</strong>g gastrulation(reviewed <strong>in</strong> Tam and Loebel, 2007). Fate mapp<strong>in</strong>g studies haveshown that <strong>cells</strong> that migrate through different anterior–posteriorregions <strong>of</strong> <strong>the</strong> streak give rise to different mesodermal andendodermal components (Carey et al., 1995; Lawson, 1999; Lawsonand Pedersen, 1992). At early stages, mesodermally fated <strong>cells</strong> <strong>in</strong>gressalongside endodermally fated <strong>cells</strong> but it is unclear when and how<strong>in</strong>gress<strong>in</strong>g <strong>cells</strong> acquire <strong>the</strong>ir ultimate fate. The def<strong>in</strong>itive endoderm(DE) is derived from progenitors migrat<strong>in</strong>g through <strong>the</strong> anterior PS atearly and mid-streak stages (Carey et al., 1995; Lawson, 1999; Lawson⁎ Correspond<strong>in</strong>g author. Fax: +45 44438000.E-mail address: pas@hagedorn.dk (P. Serup).1 These authors have contributed equally to this work.and Pedersen, 1987; Lawson and Pedersen, 1992). Moreover, recentevidence suggests that a common progenitor population, <strong>the</strong>mesendoderm, exists <strong>in</strong> <strong>the</strong> PS (K<strong>in</strong>der et al., 2001; Lawson et al.,1991; Tada et al., 2005) and that <strong>the</strong> cumulative exposure to nodalsignal<strong>in</strong>g determ<strong>in</strong>es mesendodermal fates such that <strong>in</strong>creas<strong>in</strong>gexposure to nodal shifts <strong>the</strong> fate from posterior mesoderm throughanterior mesoderm and posterior endoderm to anterior DE at <strong>the</strong>largest dose (Ben-Haim et al., 2006).The use <strong>of</strong> <strong>mouse</strong> <strong>ES</strong> (m<strong>ES</strong>) cell l<strong>in</strong>es with <strong>the</strong> green fluorescentprote<strong>in</strong> (GFP) targeted to <strong>the</strong> PS- and early mesodermal-specific genesBrachyury (T), Mix1 homeobox-like 1 (Mixl1), and Goosecoid (Gsc) hasmade it possible to quantify mesendoderm <strong>in</strong>duction and isolate andcharacterize different mesodermal and endodermal populations(Fehl<strong>in</strong>g et al., 2003; Gadue et al., 2006; Kubo et al., 2004; Ng et al.,2005; Tada et al., 2005; Yasunaga et al., 2005). Anterior PS fates andendoderm was <strong>in</strong>duced with high concentrations <strong>of</strong> activ<strong>in</strong> A (activ<strong>in</strong>hereafter) that activates Smad2/3 signal<strong>in</strong>g through b<strong>in</strong>d<strong>in</strong>g to <strong>the</strong>same receptor as nodal. Recent studies have extended <strong>the</strong> endoderm<strong>in</strong>duc<strong>in</strong>gproperties <strong>of</strong> activ<strong>in</strong> to human <strong>ES</strong> cell <strong>differentiation</strong> cultures(D'Amour et al., 2005, 2006). However, as nodal signal<strong>in</strong>g <strong>in</strong> <strong>the</strong> early0012-1606/$ – see front matter © 2009 Elsevier Inc. All rights reserved.doi:10.1016/j.ydbio.2009.03.026


M. Hansson et al. / Developmental Biology 330 (2009) 286–304287embryo <strong>in</strong>teracts with o<strong>the</strong>r signal<strong>in</strong>g pathways such as <strong>the</strong> BMP, Wnt,and <strong>FGF</strong> pathways (reviewed <strong>in</strong> Tam and Loebel, 2007), we addresshere <strong>the</strong> role <strong>of</strong> <strong>the</strong>se signals and <strong>the</strong>ir potential to modulate activ<strong>in</strong><strong>in</strong>ducedmesendodermal <strong>differentiation</strong> <strong>of</strong> m<strong>ES</strong> <strong>cells</strong> grown understandard conditions <strong>in</strong> feeder- and serum-free adherent monoculture(Y<strong>in</strong>g et al., 2003a,b). We use <strong>ES</strong> <strong>cells</strong> conta<strong>in</strong><strong>in</strong>g reporter genes (lacZor GFP) targeted to <strong>the</strong> T (Fehl<strong>in</strong>g et al., 2003), Mixl1 (Hart et al.,2002), Gsc (Tada et al., 2005), Flk1 (Shalaby et al., 1995), Sox17 (Kim etal., 2007), and Sox2 (Li et al., 1998) loci to monitor, over time, <strong>the</strong>effects <strong>of</strong> different growth factors on <strong>the</strong> expression <strong>of</strong> markersspecific to different anterior and posterior regions <strong>of</strong> <strong>the</strong> PS andderivatives <strong>the</strong>re<strong>of</strong>. We confirm and extend previous f<strong>in</strong>d<strong>in</strong>gs on <strong>the</strong>ability <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g concentrations <strong>of</strong> activ<strong>in</strong> to progressively <strong>in</strong>ducemore <strong>ES</strong> cell progeny to an anterior PS fate. Remarkably, while <strong>the</strong>number <strong>of</strong> Gsc- and Sox17-express<strong>in</strong>g <strong>cells</strong> <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>gactiv<strong>in</strong> concentration, <strong>the</strong> highest number <strong>of</strong> T-express<strong>in</strong>g <strong>cells</strong> isfound at <strong>the</strong> lowest activ<strong>in</strong> concentration, similar to <strong>the</strong> activ<strong>in</strong>response seen <strong>in</strong> Xenopus animal cap <strong>cells</strong>. Fur<strong>the</strong>rmore, expression <strong>of</strong>Gsc and o<strong>the</strong>r anterior markers <strong>in</strong>duced at high activ<strong>in</strong> doses isprevented by simultaneous treatment with BMP4 which redirectsdevelopment <strong>towards</strong> mesodermal fates, also similar to results fromXenopus. Extend<strong>in</strong>g previous work, we f<strong>in</strong>d that <strong>in</strong>hibition <strong>of</strong>canonical Wnt signal<strong>in</strong>g by treatment with Dkk1 is able to preventactiv<strong>in</strong>-<strong>in</strong>duced development <strong>of</strong> endodermal <strong>cells</strong> but only at latestages <strong>of</strong> <strong>differentiation</strong>. Dkk1 also <strong>in</strong>hibits activ<strong>in</strong>-<strong>in</strong>duced Mixl1-expression and consistent with this f<strong>in</strong>d<strong>in</strong>g Wnt3a and activ<strong>in</strong> actadditively on Mixl1 expression but not on Gsc expression. Wnt3a byitself appears to <strong>in</strong>duce only posterior PS fates depend<strong>in</strong>g, however, onendogenous Smad2/3 signal<strong>in</strong>g. Additionally, we demonstrate that<strong>in</strong>duction <strong>of</strong> anterior and posterior PS fates by activ<strong>in</strong> or BMP4,respectively, is dependent on <strong>FGF</strong> signal<strong>in</strong>g. Lastly, we demonstrate for<strong>the</strong> first time that activ<strong>in</strong>-<strong>in</strong>duced DE derived from m<strong>ES</strong> <strong>cells</strong> can<strong>in</strong>corporate <strong>in</strong>to <strong>the</strong> develop<strong>in</strong>g foregut endoderm when implanted<strong>in</strong>to chicken embryos but respond only to a limited degree toposterioriz<strong>in</strong>g cues <strong>in</strong> vitro by <strong>in</strong>itiat<strong>in</strong>g expression <strong>of</strong> regional foregutmarkers.Materials and methodsCell culture and <strong>differentiation</strong> <strong>of</strong> <strong>ES</strong>CsMouse <strong>ES</strong> <strong>cells</strong> (40,000 <strong>cells</strong>/cm 2 ) were kept undifferentiated ongelat<strong>in</strong>-coated cell culture plastic (Nunc) <strong>in</strong> serum-free medium; KO-DMEM supplemented with N2, B27, 0.1 mM nonessential am<strong>in</strong>o acids,2 mM L-glutam<strong>in</strong>e, Penicill<strong>in</strong>/Streptomyc<strong>in</strong> (all from Invitrogen),0.1 mM 2-mercaptoethanol (Sigma-Aldrich), 1500 U/ml leukemia<strong>in</strong>hibitory factor (LIF, Chemicon) and 10 ng/ml BMP4 (R&D Systems),essentially as described by Y<strong>in</strong>g et al. (2003a). <strong>ES</strong> <strong>cells</strong> were passagedevery second day with daily media changes for at least three passages(6 days) prior to <strong>in</strong>itiation <strong>of</strong> <strong>differentiation</strong> studies.For <strong>differentiation</strong> experiments <strong>cells</strong> grown as described abovewere dissociated to s<strong>in</strong>gle <strong>cells</strong> and <strong>differentiation</strong> was <strong>in</strong>duced byseed<strong>in</strong>g 2000 <strong>cells</strong>/cm 2 on gelat<strong>in</strong>-coated cell culture plastic <strong>in</strong> KO-DMEM supplemented with N2, B27, 0.1 mM nonessential am<strong>in</strong>o acids,2 mM L-glutam<strong>in</strong>e, Penicill<strong>in</strong>/Streptomyc<strong>in</strong> (all from Invitrogen),0.1 mM 2-mercaptoethanol (Sigma-Aldrich) without LIF and BMP4.The medium was supplemented with one or more <strong>of</strong> <strong>the</strong> follow<strong>in</strong>ggrowth factors, soluble receptors, and small molecule compounds:activ<strong>in</strong> (3, 10, 30 or 100 ng/ml), Wnt3a (5 or 100 ng/ml), Nodal(1 µg/ml), BMP4 (10 ng/ml), Dkk1 (320 ng/ml; all from R&DSystems), and <strong>FGF</strong>2 (100 ng/ml; Invitrogen). Soluble <strong>FGF</strong> receptors(all from R&D Systems) were first used to achieve <strong>in</strong>hibition <strong>of</strong> ligandsspecific for both b and c splice forms by mix<strong>in</strong>g s<strong>FGF</strong>R1IIIc, s<strong>FGF</strong>R2IIIb,and l s<strong>FGF</strong>R4 (12, 8 and 24 ng/ml, respectively). To achieve selective<strong>in</strong>hibition <strong>of</strong> <strong>the</strong> b or c splice form specific <strong>FGF</strong>s we mixed s<strong>FGF</strong>R1IIIband s<strong>FGF</strong>R2IIIb (both at 250 ng/ml) or s<strong>FGF</strong>R1IIIc and s<strong>FGF</strong>R4 (both at250 ng/ml), respectively. The medium conta<strong>in</strong><strong>in</strong>g <strong>FGF</strong>2 or s<strong>FGF</strong>Rs wassupplemented with 10 μg/ml heparan sulfate (Sigma-Aldrich), 1 μMSB431542 (Inman et al., 2002), 10 μM SU5402 or 100 nM PD173074(Calbiochem). The <strong>cells</strong> were cultured for up to 7 days and <strong>the</strong>medium was changed daily, beg<strong>in</strong>n<strong>in</strong>g at <strong>the</strong> second day <strong>of</strong><strong>differentiation</strong>. It should be noted that our B27 supplement conta<strong>in</strong>ret<strong>in</strong>yl acetate which is a precursor dur<strong>in</strong>g RA syn<strong>the</strong>sis. However,experiments us<strong>in</strong>g B27 supplement without ret<strong>in</strong>yl acetate (Invitrogen)did not affect <strong>the</strong> number <strong>of</strong> activ<strong>in</strong>-<strong>in</strong>duced Sox17-GFP Hiendodermal <strong>cells</strong>. Fur<strong>the</strong>r <strong>differentiation</strong> <strong>of</strong> day 5 activ<strong>in</strong>-<strong>in</strong>ducedcultures was done by 3 days <strong>of</strong> additional culture <strong>in</strong> serum-freemedium (KO-DMEM, N2, B27, 0.1 mM nonessential am<strong>in</strong>o acids, 2 mML-glutam<strong>in</strong>e, Penicill<strong>in</strong>/Streptomyc<strong>in</strong>, 0.1 mM 2-mercaptoethanol)supplemented with Wnt3a (5 ng/ml), <strong>FGF</strong>4 (10 ng/ml) and/or0.1 μM all-trans ret<strong>in</strong>oic acid (Sigma).Differentiation <strong>in</strong> embryoid bodies (EBs) was carried out us<strong>in</strong>g <strong>the</strong>hang<strong>in</strong>g drop method. Cells were dissociated to s<strong>in</strong>gle <strong>cells</strong> us<strong>in</strong>g nonenzymaticCell Dissociation Solution (Sigma-Aldrich) and diluted <strong>in</strong>N2B27 medium conta<strong>in</strong><strong>in</strong>g <strong>the</strong> relevant growth factors to yield100 <strong>cells</strong> per 20 μl drop. Approximately 150 drops were applied to<strong>the</strong> lid <strong>of</strong> a 14 cm cell culture dish (Nunc), and placed upside downover autoclaved Millipore water. Drops were left overnight and EBswere washed down with HBSS w/o Ca 2+ and Mg 2+ and left tosediment for 3–4 m<strong>in</strong> before remov<strong>in</strong>g <strong>the</strong> supernatant andtransferr<strong>in</strong>g EBs to 50 mm Petri dishes (Steril<strong>in</strong>) conta<strong>in</strong><strong>in</strong>g N2B27medium with <strong>the</strong> relevant growth factors. The medium was changeddaily. We frequently observed that 3–5 <strong>in</strong>dividual aggregates wouldform <strong>in</strong> <strong>the</strong> hang<strong>in</strong>g drop yield<strong>in</strong>g aggregates composed <strong>of</strong> 20–30<strong>cells</strong>.Flow cytometryThe <strong>cells</strong> were dissociated <strong>in</strong> 0.05% Tryps<strong>in</strong>-EDTA (Invitrogen) anda percentage <strong>of</strong> GFP + <strong>cells</strong> was analyzed on a FACSCalibur flowcytometer (BD Biosciences) at days 2–6 <strong>in</strong> at least three <strong>in</strong>dependentexperiments. Mean % GFP + <strong>cells</strong>±standard deviation (S.D.) wascalculated and statistical analyses were performed us<strong>in</strong>g a two-tailedStudent's t-test for paired samples, unless we had a clear expectation<strong>of</strong> <strong>the</strong> outcome <strong>in</strong> which case a one-tailed test was used. Sort<strong>in</strong>g <strong>of</strong>GFP + <strong>cells</strong> for RNA extraction was performed on a FACSAria (BDBiosciences). CXCR4 expression was analyzed on a FACSCalibur flowcytometer us<strong>in</strong>g a human anti-CXCR4 monoclonal antibody (MAB172;R&D Systems). Cells were dissociated us<strong>in</strong>g Collagenase (Sigma-Aldrich) for 5 m<strong>in</strong>. The cell suspension was fixed and sta<strong>in</strong>ed asdescribed below without permeabilization. Visual <strong>in</strong>spection <strong>of</strong> <strong>the</strong>sta<strong>in</strong>ed <strong>cells</strong> by confocal microscopy confirmed surface localization <strong>of</strong><strong>the</strong> antigen.Immun<strong>of</strong>luorescence and X-gal sta<strong>in</strong><strong>in</strong>gThe <strong>cells</strong> were cultured on gelat<strong>in</strong>-coated chamber slides for 3, 5 or8 days and fixed at room temperature for 30 m<strong>in</strong> <strong>in</strong> 4% formaldehydesolution (Mall<strong>in</strong>ckrodt Baker) for immun<strong>of</strong>luorescence or 5 m<strong>in</strong> <strong>in</strong>0.2% glutaraldehyde for X-gal sta<strong>in</strong><strong>in</strong>g. For immun<strong>of</strong>luorescence, <strong>the</strong><strong>cells</strong> were permeabilized <strong>in</strong> graded ethanol followed by block<strong>in</strong>g <strong>in</strong>10% donkey serum for 1 h and <strong>in</strong>cubation with primary antibody for1 h at room temperature or overnight at 4 °C. The follow<strong>in</strong>g antibodieswere used: goat anti-Foxa2 (Santa Cruz Biotechnology), goat anti-T(R&D Systems), rat anti-E-cadher<strong>in</strong> (E-cad; Zymed/Invitrogen), goatanti-Sox17 (R&D Systems), Alexa 448 conjugated rabbit anti-GFP(Molecular Probes/Invitrogen), rabbit anti-β-galactosidase (MPBiomedicals), rabbit anti-Lhx1 (Chemicon), goat and rabbit anti-Pdx1 (a k<strong>in</strong>d gift from C. Wright), <strong>mouse</strong> and rabbit anti-Nkx6-1(Jensen et al., 1996; Pedersen et al., 2006), rabbit anti-Sox2(Chemicon) and <strong>mouse</strong> anti-Cdx2 (BioGenex). The <strong>cells</strong> were<strong>in</strong>cubated with Cy2-, Cy3-, Texas Red- or Cy5-conjugated species-


288 M. Hansson et al. / Developmental Biology 330 (2009) 286–304


M. Hansson et al. / Developmental Biology 330 (2009) 286–304289specific secondary antibodies (Jackson ImmunoResearch Laboratories)and 4′,6-diamid<strong>in</strong>o-2-phenyl<strong>in</strong>dole (DAPI, MP Biomedicals).The Lhx1 sta<strong>in</strong><strong>in</strong>g used tyramide signal amplification (Perk<strong>in</strong>Elmer)accord<strong>in</strong>g to <strong>the</strong> manufacturer's recommendations. Negative controls,where <strong>the</strong> primary antibodies were omitted, were <strong>in</strong>cluded for allsta<strong>in</strong><strong>in</strong>gs. These controls showed no unspecific sta<strong>in</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong>secondary antibodies (data not shown). β-galactosidase activity wasvisualized by add<strong>in</strong>g X-gal sta<strong>in</strong> solution for 4 h at 37 °C. The slideswere analyzed us<strong>in</strong>g an LSM 510 META laser scann<strong>in</strong>g microscope(Carl Zeiss) or a BX60 epifluorescence microscope equipped with aDP71 camera (both from Olympus).RT-PCR and qPCRCells were dissociated us<strong>in</strong>g 0.05% Tryps<strong>in</strong>-EDTA and collected bycentrifugation. Total RNA was isolated us<strong>in</strong>g <strong>the</strong> RNeasy kit withDNAse treatment (Qiagen) follow<strong>in</strong>g <strong>the</strong> manufacturer's protocol.cDNA was prepared from 5 or 100 ng RNA us<strong>in</strong>g MMLV ReverseTranscriptase (Invitrogen). PCR reactions were performed us<strong>in</strong>g 1 μlcDNA, 1 μl 20μM primer mix and 23 μl Reddy Mix PCR master mix(Abgene). The PCR was carried out with an <strong>in</strong>itial denaturation step at96 °C for 2 m<strong>in</strong>, followed by 32–38 cycles <strong>of</strong> 96 °C for 30 s, 55 °C for30 s and 72 °C for 1 m<strong>in</strong>. The PCR was f<strong>in</strong>ished with a f<strong>in</strong>al extensionstep at 72 °C for 5 m<strong>in</strong>. QPCR was performed us<strong>in</strong>g <strong>the</strong> standard SYBR ®Green program with dissociation curve <strong>of</strong> <strong>the</strong> Mx3005P (Stratagene).PCR reaction was run <strong>in</strong> duplicates us<strong>in</strong>g 5 μl Brilliant ® SYBR ® GreenQPCR Master Mix (Stratagene), 1 μl cDNA, 1 μl 10μM primer mix and3 μl DEPC-treated water. Quantified values for each gene <strong>of</strong> <strong>in</strong>terestwere normalized aga<strong>in</strong>st <strong>the</strong> <strong>in</strong>put determ<strong>in</strong>ed by <strong>the</strong> housekeep<strong>in</strong>ggenes G6pdh and Tbp. The results are expressed as <strong>the</strong> relativeexpression level compared with <strong>the</strong> vehicle control condition or <strong>the</strong>scrambled control siRNA <strong>in</strong> <strong>the</strong> vehicle condition. Primer sequencesare available on request.siRNA transfectionThe sequence effective for <strong>mouse</strong> β-caten<strong>in</strong> knock-down wasdesigned us<strong>in</strong>g s<strong>of</strong>tware available at <strong>the</strong> web site <strong>of</strong> Invitrogen(http://rnaidesigner.<strong>in</strong>vitrogen.com/rnaiexpress/). The β-caten<strong>in</strong>(accession number NM_0079614.2) target sequences <strong>of</strong> <strong>the</strong> STEALTHsiRNAs were 5′-GCCTTCATTATGGACTGCCTGTTGT-3′ (siRNA1) and 5′-GAGCAAGGCTTTTCCCAGTCCTTCA-3′ (siRNA2). The STEALTH negativecontrol siRNA (scrambled; Invitrogen) has been used as negativecontrol and is labeled “scrambled”.The <strong>cells</strong> were cultured on gelat<strong>in</strong>-treated 24-well plates aspreviously described with a start<strong>in</strong>g density <strong>of</strong> 4000 <strong>cells</strong>/cm 2 .After1 day <strong>of</strong> <strong>differentiation</strong> <strong>the</strong> <strong>cells</strong> were transfected with 100 nMSTEALTH siRNAs us<strong>in</strong>g Lip<strong>of</strong>ectam<strong>in</strong>e2000 accord<strong>in</strong>g to <strong>the</strong> manufacturer's<strong>in</strong>structions. The transfected <strong>cells</strong> were grown fur<strong>the</strong>r andanalyzed for β-caten<strong>in</strong> expression by western blot at days 3 and 5 <strong>of</strong><strong>differentiation</strong>. QPCR and flow cytometry analysis was performed atday 5.Western blotTotal cell lysates were obta<strong>in</strong>ed on days 3 and 5 <strong>of</strong> <strong>differentiation</strong>culture us<strong>in</strong>g RIPA lysis buffer. 20 μg <strong>of</strong> each prote<strong>in</strong> sample wereloaded and analyzed by western blot us<strong>in</strong>g a rabbit anti-β-caten<strong>in</strong>monoclonal antibody (Lab Vision) and a <strong>mouse</strong> anti-β-Act<strong>in</strong>monoclonal antibody (Sigma-Aldrich) as primary antibodies aswell as secondary HRP-conjugated antibodies (Santa CruzBiotechnology).Generation <strong>of</strong> stable Wnt-reporter <strong>ES</strong> cell l<strong>in</strong>es and chimera formationThe SuTOP-CFP construct was generated by cutt<strong>in</strong>g <strong>the</strong> luciferasegene from <strong>the</strong> Super8XTOPFLASH Wnt reporter (generously providedby Dr. R. Moon, University <strong>of</strong> Seattle, WA) with Fse and Nco1 andreplac<strong>in</strong>g it with Cerulean PCR product from <strong>the</strong> pmCerulean-C1vector (Rizzo et al., 2004). To generate stably transfected cell l<strong>in</strong>es, E14<strong>cells</strong> (Hooper et al., 1987) <strong>of</strong> low passage number were co-transfectedwith SuTOP-CFP and a ploxP-Neo vector, conferr<strong>in</strong>g resistance toNeomyc<strong>in</strong>. The relationship between plasmids was 10:1 (reporter:ploxP-Neo). Transfection was carried out us<strong>in</strong>g Lip<strong>of</strong>ectam<strong>in</strong>e2000(Invitrogen) and 24 h after transfection, selection was added (200 μg/ml G418, Invitrogen). Medium was changed daily for 9 days and0.5 μM BIO (GSK3β <strong>in</strong>hibitor, Calbiochem), which activates canonicalWnt signal<strong>in</strong>g, was added to <strong>the</strong> medium for <strong>the</strong> last 2 days <strong>of</strong>selection to identify Wnt-responsive colonies. Fluorescent colonieswere <strong>the</strong>n picked and expanded and one clone was selected forchimera formation via blastocyst <strong>in</strong>jection.E3.5 blastocysts were harvested by flush<strong>in</strong>g <strong>the</strong> uteri <strong>of</strong> mature,time mated NMRI mice (Taconic). Chimeric embryos were generatedby <strong>in</strong>jection <strong>of</strong> approximately 10 SuTOP-CFP <strong>ES</strong> <strong>cells</strong> <strong>in</strong>to <strong>the</strong>blastocoel us<strong>in</strong>g a paraff<strong>in</strong>-oil driven manual <strong>in</strong>jector (Cell TramVario, Eppendorf) and a Narishige micromanipulator. Follow<strong>in</strong>g 3 h <strong>of</strong>culture <strong>in</strong> M16 medium, embryos were transferred to <strong>the</strong> uterus <strong>of</strong>E2.5 pseudo-pregnant, 7 week old NMRI foster mo<strong>the</strong>rs. Care <strong>of</strong> <strong>the</strong>animals was done accord<strong>in</strong>g to <strong>in</strong>stitutional guidel<strong>in</strong>es. Embryos wereharvested at E10.5 and fixed <strong>in</strong> Lilly's fixative (4% phosphate bufferedformaldehyde) for 30 m<strong>in</strong> before be<strong>in</strong>g analyzed for native Ceruleanfluorescence. All animal experiments were performed <strong>in</strong> accordancewith <strong>in</strong>stitutional and national regulations.Chick embryo graft<strong>in</strong>gFertilized eggs from white leghorn chicken were purchased fromTriova and <strong>in</strong>cubated at 38 °C to Hamburger and Hamilton (HH) stages8–10 (Hamburger and Hamilton, 1951). The embryos were explantedas previously described (Chapman et al., 2001). E14 <strong>ES</strong> cell progenywas prepared for graft<strong>in</strong>g by label<strong>in</strong>g with fluorescent CMTMRCellTracker dye (Molecular Probes/Invitrogen). Clumps <strong>of</strong> <strong>cells</strong> werescraped <strong>of</strong>f, washed <strong>in</strong> PBS and <strong>in</strong>serted between endoderm andmesoderm <strong>of</strong> chicken embryos via a small <strong>in</strong>cision <strong>in</strong> <strong>the</strong> endoderm.Grafted embryos were <strong>in</strong>cubated for 48 h <strong>in</strong> a humidified <strong>in</strong>cubator at38 °C. The embryos were isolated, washed <strong>in</strong> PBS, fixed <strong>in</strong> 4% PFA atroom temperature for 2 h and stored <strong>in</strong> methanol at −20 °C until <strong>the</strong>time <strong>of</strong> analysis. Whole-mount immun<strong>of</strong>luorescent analyses <strong>of</strong>grafted chicken embryos were performed as previously described(Ahnfelt-Ronne et al., 2007).ResultsDose-dependent effects <strong>of</strong> activ<strong>in</strong> on <strong>the</strong> expression <strong>of</strong> PS genes aremodulated by BMP and Wnt signal<strong>in</strong>gPrevious studies have demonstrated <strong>in</strong>duction <strong>of</strong> Brachyury (T) andGoosecoid (Gsc) by activ<strong>in</strong> <strong>in</strong> m<strong>ES</strong> <strong>cells</strong> (Gadue et al., 2006; Kubo et al.,2004; Tada et al., 2005; Yasunaga et al., 2005). However, differences <strong>in</strong>media compositions and <strong>the</strong> culture methods used make a directcomparison <strong>of</strong> <strong>the</strong> response <strong>of</strong> <strong>the</strong>se two genes to vary<strong>in</strong>g doses <strong>of</strong>activ<strong>in</strong> difficult. Prior to <strong>the</strong> <strong>in</strong>duction <strong>of</strong> <strong>differentiation</strong> by addition <strong>of</strong>growth factors, we culture <strong>the</strong> undifferentiated <strong>ES</strong> <strong>cells</strong> under def<strong>in</strong>edconditions (Y<strong>in</strong>g et al., 2003a). As activ<strong>in</strong> is known to dosedependentlyregulate T and Gsc expression <strong>in</strong> Xenopus animal capFig. 1. Activ<strong>in</strong>, BMP and Wnt signal<strong>in</strong>g control <strong>the</strong> dynamic expression <strong>of</strong> primitive streak genes <strong>in</strong> differentiat<strong>in</strong>g <strong>ES</strong> <strong>cells</strong>. Flow cytometric analysis <strong>of</strong> T Gfp/+ (A), Gsc Gfp/+ (B), orMixl1 Gfp/+ (C) <strong>cells</strong> grown <strong>in</strong> adherent culture for up to 6 days <strong>in</strong> serum-free media conta<strong>in</strong><strong>in</strong>g 0, 3, 10, 30 or 100 ng/ml activ<strong>in</strong> <strong>in</strong> <strong>the</strong> presence or absence <strong>of</strong> 10 ng/ml BMP4 or100 ng/ml Wnt3a. The mean % GFP + <strong>cells</strong> ±standard deviation <strong>of</strong> three <strong>in</strong>dependent experiments is presented.


290 M. Hansson et al. / Developmental Biology 330 (2009) 286–304Fig. 2. BMP4 but not Wnt3a <strong>in</strong>hibits <strong>the</strong> expression <strong>of</strong> Foxa2 and E-cadher<strong>in</strong>, and promotes expression <strong>of</strong> Flk1 <strong>in</strong> <strong>the</strong> presence <strong>of</strong> activ<strong>in</strong>. The expression <strong>of</strong> Foxa2, E-cad (Cdh1), and Flk1(β-gal) was analyzed by immun<strong>of</strong>luorescence <strong>in</strong> Flk1 LacZ/+ <strong>ES</strong> <strong>cells</strong> cultured for 5 days <strong>in</strong> media conta<strong>in</strong><strong>in</strong>g 0, 3 or 100 ng/ml activ<strong>in</strong>, 100 ng/ml Wnt3a, 10 ng/ml BMP4, 100 ng/mlactiv<strong>in</strong>+100 ng/ml Wnt3a, or 100 ng/ml activ<strong>in</strong>+ 10 ng/ml BMP4.<strong>cells</strong> such that low doses will activate T and high doses will activate Gsc(Dyson and Gurdon, 1998; Green et al., 1992; Gurdon et al., 1994, 1999;Lat<strong>in</strong>kic et al., 1997), we <strong>in</strong>itially tested if exposure <strong>of</strong> m<strong>ES</strong> <strong>cells</strong> to<strong>in</strong>creas<strong>in</strong>g doses <strong>of</strong> activ<strong>in</strong> would lead to a shift from T to Gscexpression. <strong>ES</strong> cell l<strong>in</strong>es carry<strong>in</strong>g T-Gfp (T Gfp/+ ) and Gsc-Gfp (Gsc Gfp/+ )knock-<strong>in</strong> alleles (Fehl<strong>in</strong>g et al., 2003; Tada et al., 2005) were culturedwith <strong>in</strong>creas<strong>in</strong>g amounts <strong>of</strong> activ<strong>in</strong> (from 3 to 100 ng/ml) and <strong>the</strong>number <strong>of</strong> GFP + <strong>cells</strong> was analyzed by flow cytometry. Examples <strong>of</strong>primary flow cytometry diagrams are shown <strong>in</strong> Fig. S1. When GFP +<strong>cells</strong> were quantitated we found that 3 ng/ml activ<strong>in</strong> transiently<strong>in</strong>duced 21±15% T-GFP + <strong>cells</strong> (mean %±S.D., n=3) peak<strong>in</strong>g at day 4(Fig. 1A). However, this <strong>in</strong>duction was not statistically significant. Athigher activ<strong>in</strong> concentrations <strong>the</strong> number <strong>of</strong> T-GFP + <strong>cells</strong> decl<strong>in</strong>edgradually such that <strong>the</strong> highest dose (100 ng/ml) resulted <strong>in</strong> only5±4% T-GFP + <strong>cells</strong> at day 4, comparable to <strong>the</strong> control samplescultured <strong>in</strong> <strong>the</strong> absence <strong>of</strong> activ<strong>in</strong> (6±5% T-GFP + <strong>cells</strong>, Fig. 1A). Incontrast, flow cytometric analyses <strong>of</strong> Gsc Gfp/+ <strong>cells</strong> showed that <strong>the</strong>expression <strong>of</strong> this anterior PS marker (Blum et al., 1992) was <strong>in</strong>ducedby activ<strong>in</strong> <strong>in</strong> a dose-dependent manner with expression peak<strong>in</strong>g atdays 5–6 (Fig. 1B). 3 ng/ml activ<strong>in</strong> <strong>in</strong>duced 25±4% Gsc-GFP + <strong>cells</strong> atday 5, and this number <strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g concentration <strong>of</strong>activ<strong>in</strong> reach<strong>in</strong>g 43±11% Gsc-GFP + <strong>cells</strong> <strong>in</strong> cultures treated with100 ng/ml activ<strong>in</strong> (Fig. 1B). Control samples grown <strong>in</strong> <strong>the</strong> absence <strong>of</strong>activ<strong>in</strong> conta<strong>in</strong>ed 3 ±4% Gsc-GFP + <strong>cells</strong> at this time po<strong>in</strong>t. The<strong>in</strong>duction <strong>of</strong> Gsc expression at day 5 was statistically significant forall activ<strong>in</strong> concentrations tested (pb0.05). Thus, similar to <strong>the</strong> case <strong>in</strong>Xenopus animal cap <strong>cells</strong>, low doses <strong>of</strong> activ<strong>in</strong> support T expressionwhile high doses stimulate Gsc expression. Intrigu<strong>in</strong>gly, while


M. Hansson et al. / Developmental Biology 330 (2009) 286–304291expression <strong>of</strong> <strong>the</strong> PS marker Mixl1 (Pearce and Evans, 1999) was<strong>in</strong>duced by activ<strong>in</strong>, <strong>the</strong> number <strong>of</strong> Mixl1-GFP + <strong>cells</strong> was <strong>in</strong>dependent<strong>of</strong> <strong>the</strong> activ<strong>in</strong> concentration (Fig. 1C).In vivo, BMP4 is a ventraliz<strong>in</strong>g agent, act<strong>in</strong>g dur<strong>in</strong>g gastrulation to<strong>in</strong>duce T and repress Gsc expression (Fa<strong>in</strong>sod et al., 1994; Jones et al.,1996; Ste<strong>in</strong>beisser et al., 1995). We found a strong but transient<strong>in</strong>duction <strong>of</strong> T expression <strong>in</strong> response to BMP4 (Fig. 1A). Peak<strong>in</strong>g at day3, we observed 48±15% T-GFP + <strong>cells</strong>, which was significantly higherthan detected <strong>in</strong> vehicle-treated <strong>cells</strong> (pb0.05). The <strong>in</strong>duction <strong>of</strong> Texpression by BMP4 was observed regardless <strong>of</strong> <strong>the</strong> presence orabsence <strong>of</strong> activ<strong>in</strong>. However, <strong>the</strong> activ<strong>in</strong>-mediated <strong>in</strong>duction <strong>of</strong> Gsc-GFP + <strong>cells</strong> at day 5 was strongly <strong>in</strong>hibited by BMP4 (pb0.05),irrespective <strong>of</strong> <strong>the</strong> activ<strong>in</strong> concentration (Fig. 1B). Cultures conta<strong>in</strong><strong>in</strong>gBMP4 never conta<strong>in</strong>ed more than 10±6% Gsc-GFP + <strong>cells</strong>, which iscomparable to vehicle-treated <strong>cells</strong>. BMP4 also stimulated Mixl1expression peak<strong>in</strong>g at day 3 with 26±12% Mixl1-GFP + <strong>cells</strong> butfur<strong>the</strong>r addition <strong>of</strong> activ<strong>in</strong> did not affect <strong>the</strong> number <strong>of</strong> Mixl1-GFP +<strong>cells</strong> (Fig. 1C).In Xenopus, Wnt molecules have both organizer-<strong>in</strong>duc<strong>in</strong>g andposterioriz<strong>in</strong>g activities (Niehrs, 2004) and <strong>in</strong> mice Wnt3 is requiredfor proper axis formation and <strong>in</strong>duction <strong>of</strong> <strong>the</strong> primitive streak(Barrow et al., 2007; Liu et al., 1999). We <strong>the</strong>refore tested <strong>the</strong> ability<strong>of</strong> Wnt3a by itself or <strong>in</strong> comb<strong>in</strong>ation with different doses <strong>of</strong> activ<strong>in</strong> to<strong>in</strong>duce PS markers. 5 ng/ml Wnt3a <strong>in</strong>duced 23±4% T-GFP + <strong>cells</strong> (datanot shown), whereas 100 ng/ml <strong>in</strong>duced 30±9% T-GFP + <strong>cells</strong> at day 3,significantly higher than <strong>the</strong> control <strong>cells</strong> (Fig. 1A; pb0.05). Activ<strong>in</strong> didnot have a significant effect on Wnt3a-<strong>in</strong>duced T expression althoughwe observed a tendency to reduced numbers <strong>of</strong> T-GFP + <strong>cells</strong> with <strong>the</strong>highest doses <strong>of</strong> activ<strong>in</strong>. The prom<strong>in</strong>ent <strong>in</strong>duction <strong>of</strong> T expression seenwith both BMP4 and Wnt3a was confirmed by immun<strong>of</strong>luorescence atday 3 (Fig. S2A). Wnt3a also <strong>in</strong>duced Mixl1 expression. Culturesconta<strong>in</strong><strong>in</strong>g 100 ng/ml Wnt3a conta<strong>in</strong>ed 11±4% Mixl1-GFP + <strong>cells</strong> atday 4. Notably, <strong>the</strong> comb<strong>in</strong>ation <strong>of</strong> 100 ng/ml activ<strong>in</strong> and 100 ng/mlWnt3a <strong>in</strong>duced 22±3% Mixl1-GFP + <strong>cells</strong> at day 4, approximatelytwice that achieved by ei<strong>the</strong>r factor alone (Fig. 1C; pb0.05). Whenexam<strong>in</strong><strong>in</strong>g co-expression <strong>of</strong> Tand GFP at day 3 by immun<strong>of</strong>luorescencewe found that most, if not all, Mixl1 express<strong>in</strong>g <strong>cells</strong> also expressed T,while <strong>the</strong> converse was not <strong>the</strong> case (Fig. S2B). While Wnt3astimulated T and Mixl1 expression, it did not affect <strong>the</strong> number <strong>of</strong>Gsc-GFP + <strong>cells</strong> (Figs. 1B and S2). The <strong>in</strong>duction <strong>of</strong> Gsc expression byactiv<strong>in</strong> <strong>in</strong> <strong>the</strong> presence or absence <strong>of</strong> Wnt3a and its <strong>in</strong>hibition by BMP4was confirmed by immun<strong>of</strong>luorescence at day 5 (Fig. S2C). Notably, <strong>the</strong>few T-express<strong>in</strong>g <strong>cells</strong> present <strong>in</strong> activ<strong>in</strong>-treated Gsc Gfp/+ <strong>cells</strong> after5 days did not express GFP. Consider<strong>in</strong>g that T is found not only <strong>in</strong> <strong>the</strong>PS, but also <strong>in</strong> <strong>the</strong> emerg<strong>in</strong>g mesoderm at <strong>the</strong> late gastrula stage(Inman and Downs, 2006), this may <strong>in</strong>dicate that mesoderm is als<strong>of</strong>ormed <strong>in</strong> activ<strong>in</strong>-treated cultures. Collectively, <strong>the</strong> different <strong>ES</strong> l<strong>in</strong>es allresponded similarly to growth factor treatment (Fig. S2). Overall, ourresults <strong>in</strong>dicate an anterioriz<strong>in</strong>g role <strong>of</strong> activ<strong>in</strong> dur<strong>in</strong>g <strong>ES</strong> cell<strong>differentiation</strong> that can be modulated by <strong>the</strong> posterioriz<strong>in</strong>g factorsBMP4 and Wnt3a, consistent with <strong>the</strong> roles <strong>of</strong> <strong>the</strong>se factors before anddur<strong>in</strong>g gastrulation (reviewed <strong>in</strong> Tam and Loebel, 2007).BMP4 <strong>in</strong>duces mesoderm and blocks activ<strong>in</strong>-mediated <strong>in</strong>duction <strong>of</strong>def<strong>in</strong>itive endodermTo establish if our cultures conta<strong>in</strong>ed embryonic or extraembryoniccell types we first exam<strong>in</strong>ed expression <strong>of</strong> CXCR4 (chemok<strong>in</strong>e (C-X-Cmotif) receptor-4), which is expressed <strong>in</strong> embryonic but not <strong>in</strong>extraembryonic tissues (McGrath et al., 1999; Sherwood et al., 2007).Us<strong>in</strong>g FACS analysis we compared surface expression <strong>of</strong> CXCR4 on <strong>cells</strong>isolated from dissociated E11 <strong>mouse</strong> embryo heads with that <strong>of</strong>differentiated <strong>ES</strong> cell progeny. Two dist<strong>in</strong>ct CXCR4-expression populationscould be detected among <strong>cells</strong> from <strong>mouse</strong> embryos, a CXCR4 lo andaCXCR4 hi population (Fig. S3A). When <strong>ES</strong> cell progeny from ei<strong>the</strong>rvehicle or activ<strong>in</strong>-treated cultures was analyzed it was clear that <strong>the</strong> vastFig. 3. Activ<strong>in</strong>-<strong>in</strong>duced expression <strong>of</strong> <strong>the</strong> anterior primitive streak marker Gsc is <strong>in</strong>hibited by BMP4 but not by Dkk1. Gsc Gfp/+ <strong>ES</strong> <strong>cells</strong> were grown <strong>in</strong> serum-free mediumsupplemented with one or more <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g growth factors or <strong>in</strong>hibitor; 10 ng/ml BMP4, 100 ng/ml Wnt3a, 320 ng/ml Dkk1, 3 or 100 ng/ml activ<strong>in</strong> as <strong>in</strong>dicated. (A)Triple-label immun<strong>of</strong>luorescence was performed to analyze <strong>the</strong> co-expression <strong>of</strong> E-cad (Cdh1), Gsc (GFP), and Sox17 <strong>in</strong> <strong>cells</strong> grown for 5 days under <strong>the</strong> <strong>in</strong>dicated conditions.Note Cdh1 + GFP − Sox17 − <strong>cells</strong> (white arrows), Cdh1 − GFP + Sox17 − <strong>cells</strong> (red arrows), Cdh1 + GFP − Sox17 + <strong>cells</strong> (white arrowheads), and Cdh1 + GFP + Sox17 + <strong>cells</strong> (with yellownuclei, red arrowheads) (B) Triple-label immun<strong>of</strong>luorescence was also performed to analyze co-expression <strong>of</strong> Cdh1, Gsc (GFP), and Oct4 on day 5. Note Cdh1 + GFP − Oct4 + <strong>cells</strong>(white arrows), Cdh1 − GFP + Oct4 − <strong>cells</strong> (red arrows), and Cdh1 + GFP + Oct4 − <strong>cells</strong> (red arrowheads).


292 M. Hansson et al. / Developmental Biology 330 (2009) 286–304majority <strong>of</strong> <strong>the</strong> <strong>cells</strong> were CXCR4 hi (Fig. S3A), <strong>in</strong>dicat<strong>in</strong>g that most <strong>cells</strong>, <strong>in</strong>both vehicles and activ<strong>in</strong>-treated cultures, are embryonic ra<strong>the</strong>r thanextraembryonic <strong>in</strong> nature. Fur<strong>the</strong>rmore, significant levels <strong>of</strong> Sox7 (SRYboxconta<strong>in</strong><strong>in</strong>g gene 7) transcripts, which is exclusively expressed <strong>in</strong> <strong>the</strong>extraembryonic part <strong>of</strong> <strong>the</strong> endoderm <strong>in</strong> <strong>the</strong> gastrula stage embryo(Kanai-Azuma et al., 2002), could only be detected <strong>in</strong> Wnt3a-treatedcultures but not <strong>in</strong> vehicle, BMP4-, or activ<strong>in</strong>-treated cultures (Fig. S3B).Hav<strong>in</strong>g established <strong>the</strong> embryonic nature <strong>of</strong> <strong>the</strong> <strong>ES</strong> cell progeny <strong>in</strong>our cultures we next exam<strong>in</strong>ed <strong>the</strong> expression <strong>of</strong> a number <strong>of</strong> germlayer specific markers. We <strong>in</strong>itially analyzed expression <strong>of</strong> <strong>the</strong>transcription factor gene Foxa2 and <strong>the</strong> epi<strong>the</strong>lial marker E-cadher<strong>in</strong>(E-cad; Cdh1), both <strong>of</strong> which are expressed <strong>in</strong> develop<strong>in</strong>g endoderm(Ang et al., 1993; Sasaki and Hogan, 1993). Immun<strong>of</strong>luorescentsta<strong>in</strong><strong>in</strong>g <strong>of</strong> <strong>cells</strong> grown <strong>in</strong> 3 or 100 ng/ml activ<strong>in</strong> showed that <strong>the</strong>secultures conta<strong>in</strong>ed many Foxa2 + Cdh1 + <strong>cells</strong> compared to vehicletreatedsamples (Fig. 2). Notably, addition <strong>of</strong> BMP4 (10 ng/ml) but notWnt3a (100 ng/ml) was able to drastically reduce <strong>the</strong> number <strong>of</strong>Foxa2 + Cdh1 + <strong>cells</strong> <strong>in</strong>duced by activ<strong>in</strong> (Fig. 2). Analysis <strong>of</strong> VEGFreceptor-2 (Kdr or Flk1) expression us<strong>in</strong>g Flk1-LacZ <strong>ES</strong> <strong>cells</strong> revealedthat both BMP4 (with or without 100 ng/ml activ<strong>in</strong>) and Wnt3a werecapable <strong>of</strong> <strong>in</strong>duc<strong>in</strong>g Flk1-express<strong>in</strong>g <strong>cells</strong> (Fig. 2), <strong>in</strong>dicative <strong>of</strong>mesoderm formation (Ema et al., 2006).Wnt signal<strong>in</strong>g augments <strong>the</strong> development <strong>of</strong> Sox17-express<strong>in</strong>g def<strong>in</strong>itiveendoderm <strong>in</strong>duced by activ<strong>in</strong>Based on <strong>the</strong> analysis <strong>of</strong> Foxa2 and Cdh1 expression it was not clearif <strong>the</strong> concentration <strong>of</strong> activ<strong>in</strong> used <strong>in</strong>fluenced subsequent <strong>differentiation</strong><strong>towards</strong> DE. Fur<strong>the</strong>rmore, analyses <strong>of</strong> Foxa2 and Cdh1 expressioncannot dist<strong>in</strong>guish between DE from different A–P positions. We<strong>the</strong>refore exam<strong>in</strong>ed <strong>the</strong> number <strong>of</strong> Gsc Gfp/+ <strong>cells</strong> that co-expressedGFP, Cdh1, and Sox17 by ICC as an <strong>in</strong>dicator <strong>of</strong> anterior DE (ADE), <strong>in</strong>response to vary<strong>in</strong>g doses <strong>of</strong> activ<strong>in</strong> with or without additional BMP4,Wnt3a, or Dkk1 treatment. Notably, we found that 100 ng/ml activ<strong>in</strong>resulted <strong>in</strong> higher numbers <strong>of</strong> Cdh1 + GFP + Sox17 + triple positive <strong>cells</strong>than seen with 3 ng/ml activ<strong>in</strong> (Fig. 3A, compare panels b and c),support<strong>in</strong>g that efficient formation <strong>of</strong> ADE depends on <strong>the</strong> activ<strong>in</strong>concentration (Yasunaga et al., 2005). Treatment with 3 ng/ml activ<strong>in</strong>resulted <strong>in</strong> many Cdh1 + <strong>cells</strong> but <strong>the</strong> majority <strong>of</strong> <strong>the</strong>se were not coexpress<strong>in</strong>gGFP or Sox17 and most likely represent undifferentiated <strong>ES</strong><strong>cells</strong> (see below). Most <strong>of</strong> <strong>the</strong> GFP + <strong>cells</strong> generated <strong>in</strong> response to 3 ng/ml activ<strong>in</strong> were Cdh1 − Sox17 − , suggest<strong>in</strong>g that <strong>the</strong>y may representmesoderm (Fig. 3A, panel b). Similarly, after treatment with Wnt3aalone (100 ng/ml) most GFP + <strong>cells</strong> were Cdh1 − Sox17 − (Fig. 3A, paneld). We tested if Wnt signal<strong>in</strong>g was required for <strong>the</strong> development <strong>of</strong>Fig. 4. The requirement for canonical Wnt signal<strong>in</strong>g dur<strong>in</strong>g activ<strong>in</strong>-<strong>in</strong>duced Sox17 expression is more pronounced <strong>in</strong> aggregate culture than <strong>in</strong> adherent culture, and Dkk1 <strong>in</strong>hibitsnodal-<strong>in</strong>duced Sox17 expression more than activ<strong>in</strong>-<strong>in</strong>duced Sox17 expression. (A) Nodal/activ<strong>in</strong> and Wnt signal<strong>in</strong>g <strong>in</strong>teractions were analyzed <strong>in</strong> Mixl1 Gfp/+ and Gsc Gfp/+ <strong>cells</strong> atdays 2–6 <strong>of</strong> <strong>differentiation</strong> us<strong>in</strong>g flow cytometry. (B) Gsc Gfp/+ <strong>cells</strong> cultured <strong>in</strong> <strong>the</strong> presence <strong>of</strong> Dkk1 prior to and dur<strong>in</strong>g activ<strong>in</strong> <strong>in</strong>duction were analyzed by flow cytometry. (C) Gsc Gfp/+<strong>cells</strong> were <strong>in</strong>duced to form embryoid bodies <strong>in</strong> <strong>the</strong> presence <strong>of</strong> <strong>the</strong> <strong>in</strong>dicated growth factors and analyzed for GFP expression by flow cytometry after 5 days <strong>of</strong> culture. (D) Sox17 Gfp/+<strong>cells</strong> cultured for 5 days were analyzed for GFP expression by flow cytometry. The mean % GFP + <strong>cells</strong> ±S.E.M. <strong>of</strong> three <strong>in</strong>dependent experiments is presented. (E) Sox17 Gfp/+ <strong>cells</strong>cultured for 2–7 days <strong>in</strong> <strong>the</strong> presence <strong>of</strong> activ<strong>in</strong> (30 or 100 ng/ml) were analyzed for GFP expression by flow cytometry at <strong>the</strong> <strong>in</strong>dicated time po<strong>in</strong>ts. (F) Sox17 Gfp/+ <strong>cells</strong> were <strong>in</strong>duced t<strong>of</strong>orm embryoid bodies <strong>in</strong> <strong>the</strong> presence <strong>of</strong> <strong>the</strong> <strong>in</strong>dicated growth factors and analyzed for GFP expression by flow cytometry after 5 days <strong>of</strong> culture. The mean % GFP + <strong>cells</strong> ±standarddeviation <strong>of</strong> three <strong>in</strong>dependent experiments is presented for all flow cytometric analyses unless o<strong>the</strong>rwise noted.


M. Hansson et al. / Developmental Biology 330 (2009) 286–304293Cdh1 + GFP + Sox17 + triple positive <strong>cells</strong> <strong>in</strong> response to activ<strong>in</strong> andfound that such <strong>cells</strong> were still generated efficiently <strong>in</strong> response to100 ng/ml activ<strong>in</strong> if Dkk1 was <strong>in</strong>cluded (Fig. 3A, panel f). In contrast,addition <strong>of</strong> BMP4 completely prevented <strong>the</strong> development <strong>of</strong> such <strong>cells</strong>(Fig. 3A, panel g). We <strong>of</strong>ten found clusters <strong>of</strong> Cdh1 + GFP − Sox17 − <strong>cells</strong><strong>in</strong> cultures treated with different comb<strong>in</strong>ations <strong>of</strong> activ<strong>in</strong> and Wnt3a(Fig. 3A, panels b–e). Immunocytochemistry revealed that manyCdh1 + Gsc − <strong>cells</strong> were Oct4 + and thus likely represent undifferentiated<strong>ES</strong> <strong>cells</strong> (Fig. 3B). Attempts to quantify <strong>the</strong> relative number <strong>of</strong>Gsc-GFP + Cdh1 + and Gsc-GFP − Cdh1 + <strong>cells</strong> by FACS under <strong>the</strong> variousconditions failed due to problems with achiev<strong>in</strong>g reliable FACS dataus<strong>in</strong>g <strong>the</strong> Chd1 monoclonal antibodies available.Although it was not evident from <strong>the</strong> above experiments with <strong>the</strong>Gsc Gfp/+ <strong>cells</strong> that canonical Wnt signal<strong>in</strong>g <strong>in</strong>fluenced <strong>the</strong> expression<strong>of</strong> PS markers or <strong>the</strong> formation <strong>of</strong> DE <strong>in</strong> response to activ<strong>in</strong> we wantedto exam<strong>in</strong>e closer if Wnt activity was required for expression <strong>of</strong> o<strong>the</strong>rPS markers and DE formation <strong>in</strong> our <strong>ES</strong> cell cultures s<strong>in</strong>ce gastrulationand <strong>the</strong>reby also endoderm formation requires Wnt3 activity <strong>in</strong> vivo(Barrow et al., 2007; Liu et al., 1999) and because we detectedexpression <strong>of</strong> Wnt3 and Wnt3a <strong>in</strong> our differentiat<strong>in</strong>g <strong>ES</strong> cell cultures(Fig. S4). To test this notion, we first cultured Mixl1 Gfp/+ <strong>cells</strong> withactiv<strong>in</strong> or Wnt3a <strong>in</strong> <strong>the</strong> presence or absence <strong>of</strong> 320 ng/ml Dkk1 or1 μM <strong>of</strong> <strong>the</strong> ALK4/5/7-specific <strong>in</strong>hibitor SB431542, respectively. Theconcentration <strong>of</strong> <strong>the</strong> <strong>in</strong>hibitors was titrated by us<strong>in</strong>g a Wnt- or activ<strong>in</strong>responsiveluciferase assay (data not shown), choos<strong>in</strong>g <strong>the</strong> concentrationthat blocked <strong>the</strong> response to exogenous Wnt3a or activ<strong>in</strong>,respectively, without caus<strong>in</strong>g non-specific toxicity <strong>in</strong> <strong>ES</strong> <strong>cells</strong>. Whenanalyz<strong>in</strong>g <strong>the</strong> number <strong>of</strong> Mixl1-GFP + <strong>cells</strong> after 4 days <strong>of</strong> activ<strong>in</strong>treatment (30 ng/ml) we found that <strong>the</strong>se were significantly reducedwhen Dkk1 was <strong>in</strong>cluded (26±3% vs. 4±3%; pb0.05; Fig. 4A).Similarly, <strong>the</strong> number <strong>of</strong> Mixl1-GFP + <strong>cells</strong> <strong>in</strong>duced by 100 ng/mlWnt3a was reduced from 11±4% on day 4 to 3±4% by simultaneousSB431542 treatment (Fig. 4A). Thus, activ<strong>in</strong> and Wnt3a act cooperativelyto <strong>in</strong>duce Mixl1 expression and both signal<strong>in</strong>g pathways arerequired for Mixl1 expression <strong>in</strong> <strong>ES</strong> cell progeny. Although Wnt3a only<strong>in</strong>duced low numbers <strong>of</strong> Gsc-express<strong>in</strong>g <strong>cells</strong>, <strong>the</strong>se were dependenton endogenous nodal/activ<strong>in</strong> signal<strong>in</strong>g as SB431542 significantly<strong>in</strong>hibited <strong>the</strong> development <strong>of</strong> Gsc-GFP + <strong>cells</strong> <strong>in</strong> response to Wnt3a(Fig. 4A). In contrast, FACS analyses confirmed that activ<strong>in</strong>-<strong>in</strong>ducedGsc expression was not <strong>in</strong>hibited by Dkk1 treatment. Cultures <strong>of</strong>Gsc Gfp/+ <strong>cells</strong> conta<strong>in</strong>ed 17±4% Gsc-GFP + <strong>cells</strong> at day 5 when grown<strong>in</strong> 30 ng/ml activ<strong>in</strong> and 23±12% when cultured <strong>in</strong> <strong>the</strong> presence <strong>of</strong>activ<strong>in</strong> and Dkk1 (Fig. 4A) consistent with <strong>the</strong> above mentionedimmun<strong>of</strong>luorescent analysis that demonstrated that Gsc-GFP + Sox17 +Cdh1 + triple positive <strong>cells</strong> were efficiently generated <strong>in</strong> response toactiv<strong>in</strong> treatment, regardless <strong>of</strong> <strong>the</strong> presence <strong>of</strong> Dkk1. Undifferentiated<strong>ES</strong> <strong>cells</strong> have a low level <strong>of</strong> active canonical Wnt signal<strong>in</strong>g despite <strong>the</strong>lack <strong>of</strong> exogenously added Wnt factors (Sato et al., 2004). To test if thislow level <strong>of</strong> Wnt signal<strong>in</strong>g has any <strong>in</strong>fluence on <strong>the</strong> later activation <strong>of</strong>Gsc expression we cultured undifferentiated Gsc Gfp/+ <strong>cells</strong> for threepassages <strong>in</strong> media conta<strong>in</strong><strong>in</strong>g Dkk1 before <strong>differentiation</strong> was <strong>in</strong>ducedby remov<strong>in</strong>g LIF and BMP4 and add<strong>in</strong>g activ<strong>in</strong> and Dkk1 for 5 days. Wefound that <strong>in</strong>clusion <strong>of</strong> Dkk1 prior to <strong>differentiation</strong> did not preventactiv<strong>in</strong> from efficiently <strong>in</strong>duc<strong>in</strong>g Gsc expression (Fig. 4B). Fur<strong>the</strong>rmore,Dkk1 failed to prevent activ<strong>in</strong> from <strong>in</strong>duc<strong>in</strong>g Gsc-GFP + <strong>cells</strong> <strong>in</strong>aggregate culture (Fig. 4C).To obta<strong>in</strong> quantitative data on <strong>the</strong> number <strong>of</strong> DE <strong>cells</strong> after growthfactor treatment we subjected a Sox17 Gfp/+ reporter l<strong>in</strong>e (Kim et al.,2007) to our <strong>differentiation</strong> protocol. At mid-streak stage Sox17expression marks <strong>the</strong> def<strong>in</strong>itive endoderm form<strong>in</strong>g adjacent to <strong>the</strong>anterior end <strong>of</strong> <strong>the</strong> PS. Simultaneous with <strong>the</strong> movement <strong>of</strong> DE to <strong>the</strong>anterior region <strong>of</strong> <strong>the</strong> gastrula, <strong>the</strong> Sox17 expression doma<strong>in</strong> expandsto <strong>in</strong>clude <strong>the</strong> endoderm underly<strong>in</strong>g <strong>the</strong> neural plate <strong>of</strong> <strong>the</strong> early tailbud-stageembryo (Kanai-Azuma et al., 2002). Thus, Sox17 is an earlymarker that similar to genes such as Hex, Foxa2, and Cer1, areexpressed simultaneously <strong>in</strong> <strong>the</strong> anterior visceral endoderm and <strong>the</strong>DE <strong>in</strong> <strong>the</strong> embryonic part <strong>of</strong> <strong>the</strong> gastrulat<strong>in</strong>g embryo. Sox17 Gfp/+ <strong>cells</strong>express a low level <strong>of</strong> GFP (Sox17-GFP Lo ) when kept undifferentiated<strong>in</strong> <strong>the</strong> presence <strong>of</strong> LIF and BMP4 (not shown). Differentiation underneural promot<strong>in</strong>g conditions (Y<strong>in</strong>g et al., 2003a) results <strong>in</strong> <strong>the</strong>development <strong>of</strong> a Sox17-GFP − population and some rema<strong>in</strong><strong>in</strong>gSox17-GFP Lo <strong>cells</strong> while treatment with activ<strong>in</strong> for 5 days <strong>in</strong>ducesSox17-GFP Hi and Sox17-GFP − populations <strong>in</strong> addition to a rema<strong>in</strong><strong>in</strong>gSox17 Lo population (Fig. S1). Increas<strong>in</strong>g concentrations <strong>of</strong> activ<strong>in</strong>resulted <strong>in</strong> development <strong>of</strong> progressively more Sox17-GFP Hi <strong>cells</strong> with<strong>the</strong> highest numbers reached with 30 and 100 ng/ml <strong>of</strong> activ<strong>in</strong> (Fig.4D). We observed an <strong>in</strong>crease <strong>in</strong> Sox17-GFP Hi <strong>cells</strong> over time, peak<strong>in</strong>gat day 5, followed by a modest decrease at days 6 and 7 (Fig. 4E). The<strong>in</strong>duction <strong>of</strong> Sox17-GFP Hi <strong>cells</strong> was at least partly dependent on Wntsignal<strong>in</strong>g as treatment with Dkk1 reduced <strong>the</strong> number <strong>of</strong> GFP Hi <strong>cells</strong>by ∼50% at <strong>the</strong> highest activ<strong>in</strong> concentration (Fig. 4D). Notably, <strong>the</strong>number <strong>of</strong> Sox17-GFP Hi <strong>cells</strong> <strong>in</strong>duced by 1 μg/ml nodal appeared morestrongly reduced <strong>in</strong> response to Dkk1 treatment than did a similarnumber <strong>of</strong> Sox17-GFP Hi <strong>cells</strong> <strong>in</strong>duced by 30 and 100 ng/ml <strong>of</strong> activ<strong>in</strong>(Fig. 4D). Fur<strong>the</strong>rmore, when <strong>differentiation</strong> was performed <strong>in</strong>aggregate culture, which may rely more on endogenous signal<strong>in</strong>g(Sachlos and Auguste, 2008; ten Berge et al., 2008), <strong>the</strong> number <strong>of</strong>activ<strong>in</strong>-<strong>in</strong>duced Sox17-GFP Hi <strong>cells</strong> were strongly reduced by Dkk1treatment (Fig. 4F). As expected, <strong>the</strong> addition <strong>of</strong> BMP4 preventedactiv<strong>in</strong>-<strong>in</strong>duced formation <strong>of</strong> Sox17-GFP Hi <strong>cells</strong> (pb0.001), whileaddition <strong>of</strong> Wnt3a resulted <strong>in</strong> a marg<strong>in</strong>al, but significant (pb0.05)<strong>in</strong>crease <strong>in</strong> <strong>the</strong> development <strong>of</strong> Sox17-GFP Hi <strong>cells</strong> (Fig. 4D).To fur<strong>the</strong>r def<strong>in</strong>e <strong>the</strong> time at which canonical Wnt signal<strong>in</strong>g wasrequired for <strong>the</strong> formation <strong>of</strong> T-, Gsc- and Sox17-GFP Hi <strong>cells</strong>, wecultured <strong>the</strong> <strong>cells</strong> with activ<strong>in</strong> for three (T Gfp/+ )orfive (Gsc Gfp/+ andSox17 Gfp/+ ) days and added ei<strong>the</strong>r Wnt3a or Dkk1 for shorter periodsFig. 5. Wnt signal<strong>in</strong>g is required dur<strong>in</strong>g late stages <strong>of</strong> activ<strong>in</strong>-<strong>in</strong>duced def<strong>in</strong>itiveendoderm formation. <strong>ES</strong> <strong>cells</strong> were cultured <strong>in</strong> serum-free medium with 100 ng/mlactiv<strong>in</strong> and supplemented with 100 ng/ml Wnt3a or 320 ng/ml Dkk1 for a variablenumber <strong>of</strong> days. T Gfp/+ <strong>cells</strong> (A) were cultured for 3 days and Gsc Gfp/+ (B) and Sox17 Gfp/+(C) <strong>cells</strong> were cultured for 5 days before be<strong>in</strong>g analyzed for GFP expression by flowcytometry. The mean % GFP + <strong>cells</strong> ±standard deviation <strong>of</strong> three <strong>in</strong>dependentexperiments is presented.


294 M. Hansson et al. / Developmental Biology 330 (2009) 286–304dur<strong>in</strong>g <strong>the</strong> 5 day activ<strong>in</strong> treatment. To monitor <strong>the</strong> effectiveness <strong>of</strong>Dkk1 treatment <strong>in</strong> reduc<strong>in</strong>g canonical Wnt signal<strong>in</strong>g we firstgenerated an <strong>ES</strong> cell l<strong>in</strong>e stably transfected with a SuperTOP-Ceruleanreporter (SuTOP-CFP) and established its ability to report Wntsignal<strong>in</strong>g <strong>in</strong> E10.5 chimeric embryos after <strong>in</strong>jection <strong>in</strong>to E3.5blastocysts and implantation <strong>in</strong>to pseudo-pregnant females. Asshown <strong>in</strong> Fig. S5A, native Cerulean fluorescence can be observed <strong>in</strong>several sites known to harbor active Wnt signal<strong>in</strong>g at this stage,<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> peripheral aspects <strong>of</strong> <strong>the</strong> otic vesicles (Maretto et al.,2003). When SuTOP-CFP <strong>cells</strong> were cultured <strong>in</strong> activ<strong>in</strong> we found thatCFP + colonies developed at day 3 even <strong>in</strong> <strong>the</strong> absence <strong>of</strong> exogenousWnt addition and that additional treatment with Dkk1 reduced orabolished reporter activity depend<strong>in</strong>g on <strong>the</strong> duration <strong>of</strong> treatment(Fig. S5B). Similarly, when SuTOP-CFP <strong>cells</strong> were assayed at day 5, wefound that Dkk1 treatment at days 3–4 or4–5 <strong>in</strong>hibited reporteractivity (Fig. S5C). Thus, treatment with Dkk1 for as little as 1 to 2 daysat <strong>the</strong> concentration used appeared quite effective <strong>in</strong> suppress<strong>in</strong>gSuTOP reporter activity.We <strong>the</strong>n analyzed <strong>the</strong> number <strong>of</strong> T-GFP + <strong>cells</strong> develop<strong>in</strong>g <strong>in</strong>response to activ<strong>in</strong> when Wnt signal<strong>in</strong>g was experimentally perturbed.T-GFP + cell numbers were augmented by Wnt3a with <strong>the</strong>largest effect reached when Wnt3a was added only at day 3.Treatment with Dkk1 on <strong>the</strong> o<strong>the</strong>r hand reduced <strong>the</strong> number <strong>of</strong> T-GFP + <strong>cells</strong> most effectively when <strong>in</strong>cluded <strong>in</strong> that last part <strong>of</strong> <strong>the</strong>three day period (Fig. 5A). Nei<strong>the</strong>r stimulat<strong>in</strong>g nor <strong>in</strong>hibit<strong>in</strong>g Wntsignal<strong>in</strong>g <strong>in</strong> Gsc Gfp/+ <strong>cells</strong>, by treatment with Wnt3a and Dkk1,respectively, resulted <strong>in</strong> a significant change <strong>in</strong> <strong>the</strong> number <strong>of</strong> activ<strong>in</strong><strong>in</strong>ducedGFP + <strong>cells</strong> irrespective <strong>of</strong> <strong>the</strong> treatment period (Fig. 5B).However, treatment <strong>of</strong> Sox17 Gfp/+ <strong>cells</strong> with Wnt3a prior toappearance <strong>of</strong> GFP + <strong>cells</strong> reduced <strong>the</strong> number <strong>of</strong> Sox17-GFP Hi <strong>cells</strong>,while later Wnt3a treatment had no effect. Conversely, treatment withDkk1 reduced <strong>the</strong> number <strong>of</strong> Sox17-GFP Hi <strong>cells</strong> only if present after <strong>the</strong>first appearance <strong>of</strong> <strong>the</strong>se (Fig. 5C).We next used siRNA mediated knock-down <strong>of</strong> β-caten<strong>in</strong> (encodedby Ctnnb1) to confirm that <strong>in</strong>hibition <strong>of</strong> canonical Wnt signal<strong>in</strong>g at <strong>the</strong>latter part <strong>of</strong> <strong>the</strong> 5 day activ<strong>in</strong> stimulation period could suppress <strong>the</strong>appearance <strong>of</strong> Sox17-GFP Hi <strong>cells</strong> and to fur<strong>the</strong>r test <strong>the</strong> Gsc Gfp/+ celll<strong>in</strong>e which appeared refractory to Wnt <strong>in</strong>hibition <strong>in</strong> previousexperiments. We transfected Gsc Gfp/+ and Sox17 Gfp/+ <strong>cells</strong> withcontrol and two different Ctnnb1 siRNAs at day 2 <strong>of</strong> <strong>differentiation</strong>and assayed β-caten<strong>in</strong> expression by western blott<strong>in</strong>g at days 3 and 5.In Gsc Gfp/+ <strong>cells</strong> we found a reduction <strong>of</strong> β-caten<strong>in</strong> expression at day 3which was normalized at day 5. siRNA treatment appeared moreeffective <strong>in</strong> Sox17 Gfp/+ <strong>cells</strong> with strong <strong>in</strong>hibition <strong>of</strong> β-caten<strong>in</strong>expression at day 3 which was only partly recovered by day 5(Fig. 6A). FACS analysis at day 5 showed a reduction <strong>in</strong> <strong>the</strong> number <strong>of</strong>Gsc-GFP + <strong>cells</strong> after β-caten<strong>in</strong> knock-down, although this onlyreached significance <strong>in</strong> Ctnnb1 siRNA2 treated samples (pb0.05,Fig. 6B). Fur<strong>the</strong>rmore, Q-RT-PCR analysis <strong>of</strong> Gsc Gfp/+ <strong>cells</strong> after β-caten<strong>in</strong> knock-down did not reveal significant changes <strong>in</strong> expression<strong>of</strong> Lhx1 and Chrd (Fig. S6).However, <strong>in</strong> agreement with <strong>the</strong> results obta<strong>in</strong>ed with Dkk1treatment, we found a prom<strong>in</strong>ent reduction <strong>in</strong> <strong>the</strong> number <strong>of</strong> Sox17-GFP Hi <strong>cells</strong> at day 5, <strong>in</strong> both siRNA1 and siRNA2 treated samples(pb0.05, Fig. 6B).Activ<strong>in</strong> dose-dependently <strong>in</strong>duces an anterior gene expression patternTo determ<strong>in</strong>e whe<strong>the</strong>r <strong>the</strong> DE formed <strong>in</strong> <strong>the</strong> presence <strong>of</strong> highconcentrations <strong>of</strong> activ<strong>in</strong> was anterior or posterior <strong>in</strong> character weanalyzed <strong>the</strong> expression <strong>of</strong> a number <strong>of</strong> markers display<strong>in</strong>g differentialexpression depend<strong>in</strong>g on <strong>the</strong> anterior–posterior position <strong>of</strong> <strong>the</strong> <strong>cells</strong>.RT-PCR analyses at day 5 showed that activ<strong>in</strong>, regardless <strong>of</strong>concentration, could <strong>in</strong>duce expression <strong>of</strong> genes associated withanterior cell fates, <strong>in</strong>clud<strong>in</strong>g Lefty1, Hex, (Mart<strong>in</strong>ez-Barbera et al.,2000) and Otx2, (Rh<strong>in</strong>n et al., 1998). However, robust expression <strong>of</strong>Fig. 6. Inhibition <strong>of</strong> canonical Wnt signal<strong>in</strong>g <strong>in</strong>hibits activ<strong>in</strong>-<strong>in</strong>duced Sox17-GFP Hi def<strong>in</strong>itive endoderm formation, but has little effect on Gsc expression. (A) Western blot analysis <strong>of</strong>β-caten<strong>in</strong> expression after siRNA mediated knock-down. Two different siRNAs target<strong>in</strong>g β-caten<strong>in</strong> (siRNA1 and siRNA2) or a scrambled control siRNA were <strong>in</strong>troduced to Gsc Gfp/+and Sox17 Gfp/+ cell l<strong>in</strong>es on day 2 and β-caten<strong>in</strong> levels assayed at day 3 and 5. An anti-β-act<strong>in</strong> western blot served as load<strong>in</strong>g control. (B) siRNA treated Gsc Gfp/+ and Sox17 Gfp/+ <strong>cells</strong>were analyzed for GFP expression by flow cytometry after 5 days <strong>of</strong> serum-free culture supplemented with 0, 3 or 100 ng/ml activ<strong>in</strong>. The mean % GFP + <strong>cells</strong> ±standard deviation <strong>of</strong>three <strong>in</strong>dependent experiments is presented. Untransfected and mock transfected controls are also shown.


M. Hansson et al. / Developmental Biology 330 (2009) 286–304295Cer1 as well as repression <strong>of</strong> <strong>the</strong> posterior marker Cdx2 was only seen<strong>in</strong> <strong>the</strong> presence <strong>of</strong> <strong>the</strong> high activ<strong>in</strong> concentration (Fig. 7A). In contrast,Cdx2 (Beck et al., 1995) was expressed <strong>in</strong> samples treated with 10 ng/ml BMP4 or 100 ng/ml Wnt3a, as well as <strong>cells</strong> treated with <strong>the</strong> lowdose <strong>of</strong> activ<strong>in</strong> (Fig. 7A). We next isolated Gsc-GFP + and Gsc-GFP −<strong>cells</strong> as well as Sox17-GFP Hi , Sox17-GFP Lo and Sox17-GFP − <strong>cells</strong> fromactiv<strong>in</strong>-stimulated cultures at day 5 by FACS and prepared RNA forgene expression analysis. Message for Otx2 and Cer1 was detected <strong>in</strong>both Gsc-GFP + and Gsc-GFP − fractions, but with an enrichment <strong>in</strong> <strong>the</strong>GFP + fraction (Fig. 7B). Cer1 was also enriched <strong>in</strong> Sox17-GFP Hi <strong>cells</strong>compared to Sox17-GFP − and Sox17-GFP Lo <strong>cells</strong> (Fig. 7B). Fur<strong>the</strong>rmore,when analyz<strong>in</strong>g <strong>the</strong> expression <strong>of</strong> <strong>the</strong> respective DE and VEmarkers, Pyy and Tdh (Hou et al., 2007; Sherwood et al., 2007) weonly found Pyy <strong>in</strong> <strong>the</strong> Sox17-GFP Hi <strong>cells</strong> while Tdh was found <strong>in</strong> <strong>the</strong>Sox17-GFP − and, to a lesser degree, Sox17-GFP Lo populations (Fig. 7B).However, it should be noted that FACS sorted populations are probablynot completely pure. For example, <strong>the</strong> Sox17 Hi and Sox17 Lo populationsare likely display<strong>in</strong>g “cross-contam<strong>in</strong>ation” to some extent.F<strong>in</strong>ally, as Lhx1 is expressed <strong>in</strong> <strong>the</strong> anterior part <strong>of</strong> <strong>the</strong> PS <strong>in</strong> <strong>the</strong> latestreakembryo and expected to co-localize with Gsc (Shawlot andBehr<strong>in</strong>ger, 1995; Tada et al., 2005) we performed GFP-Lhx1 doubleimmun<strong>of</strong>luorescent sta<strong>in</strong><strong>in</strong>gs on Gsc Gfp/+ <strong>cells</strong> after 5 days <strong>of</strong><strong>differentiation</strong>. As expected, we found Gsc-GFP + Lhx1 + doublepositive <strong>cells</strong> <strong>in</strong> activ<strong>in</strong>-treated cultures and <strong>the</strong> formation <strong>of</strong> <strong>the</strong>se<strong>cells</strong> was <strong>in</strong>hibited by <strong>the</strong> addition <strong>of</strong> BMP4 but not Wnt3a (Fig. 7C).<strong>FGF</strong> receptor signal<strong>in</strong>g is required for mesendoderm and endoderm<strong>differentiation</strong>If <strong>FGF</strong> signal<strong>in</strong>g is compromised dur<strong>in</strong>g early development as <strong>in</strong><strong>FGF</strong>8, <strong>FGF</strong>R1, or UDP-glucose dehydrogenase mutants, <strong>the</strong> embryos'arrest at gastrulation and no embryonic mesoderm- or endodermderivedtissues develop (Ciruna et al., 1997; Deng et al., 1994; Garcia-Garcia and Anderson, 2003; Sun et al., 1999; Yamaguchi et al., 1994).The phenotype is associated with a failure <strong>of</strong> migration and it isunclear to what degree <strong>FGF</strong> signal<strong>in</strong>g regulates allocation <strong>of</strong>mesodermal and endodermal fates. However, studies <strong>in</strong> zebrafish<strong>in</strong>dicate that <strong>FGF</strong> signal<strong>in</strong>g promotes mesodermal development at <strong>the</strong>expense <strong>of</strong> endodermal development (Mathieu et al., 2004; Mizoguchiet al., 2006; Poula<strong>in</strong> et al., 2006). We first exam<strong>in</strong>ed <strong>the</strong>Fig. 7. Activ<strong>in</strong>, BMP and Wnt signal<strong>in</strong>g <strong>in</strong>fluence anterior–posterior pattern<strong>in</strong>g dur<strong>in</strong>g <strong>differentiation</strong> <strong>of</strong> <strong>ES</strong> <strong>cells</strong>. <strong>ES</strong> <strong>cells</strong> were grown for 5 days <strong>in</strong> serum-free medium supplementedwith <strong>in</strong>dicated growth factors. (A) The expression <strong>of</strong> Lefty1, Hex, Otx2, Cer1 and Cdx2 was analyzed <strong>in</strong> T Gfp/+ <strong>cells</strong> by RT-PCR. The expression <strong>of</strong> TATA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> (Tbp) was usedas <strong>in</strong>ternal standard. (B) <strong>ES</strong> <strong>cells</strong> were cultured with 100 ng/ml activ<strong>in</strong> and FACS sorted based on native GFP fluorescence after 5 days <strong>of</strong> culture. The expression <strong>of</strong> Otx2 and Cer1 wasanalyzed <strong>in</strong> <strong>the</strong> GFP + and GFP − fraction <strong>of</strong> Gsc Gfp/+ <strong>cells</strong>, and Otx2, Cer1, Pyy and Tdh expression was analyzed<strong>in</strong> <strong>the</strong> GFP Hi , GFP Lo and GFP − fraction <strong>in</strong> Sox17 Gfp/+ <strong>cells</strong>. Glucose-6-phosphate dehydrogenase (G6pd) was used as <strong>in</strong>ternal standard. (C) The expression <strong>of</strong> Lhx1 and GFP was exam<strong>in</strong>ed <strong>in</strong> Gsc Gfp/+ <strong>cells</strong> by immun<strong>of</strong>luorescence after 5 days <strong>in</strong> <strong>the</strong>presence <strong>of</strong> <strong>the</strong> <strong>in</strong>dicated factors.


296 M. Hansson et al. / Developmental Biology 330 (2009) 286–304expression <strong>of</strong> members <strong>of</strong> <strong>the</strong> <strong>FGF</strong> family <strong>in</strong> differentiat<strong>in</strong>g <strong>ES</strong> cellcultures treated with activ<strong>in</strong> and BMP4 (alone or <strong>in</strong> comb<strong>in</strong>ation). Wefound that <strong>FGF</strong>4 and <strong>FGF</strong>8 were expressed <strong>in</strong> <strong>ES</strong> cell cultures treatedwith activ<strong>in</strong> or BMP4 (Fig. S4). We <strong>the</strong>refore addressed <strong>the</strong> role <strong>of</strong> <strong>FGF</strong>signal<strong>in</strong>g by cultur<strong>in</strong>g <strong>the</strong> <strong>cells</strong> <strong>in</strong> activ<strong>in</strong> (100 ng/ml) or BMP4(10 ng/ml) with or without <strong>the</strong> <strong>FGF</strong> receptor <strong>in</strong>hibitor SU5402(Mohammadi et al., 1997) or <strong>in</strong> <strong>the</strong> absence or presence <strong>of</strong>exogenously added <strong>FGF</strong>2. Consistent with a recent report (Kunath etal., 2007), flow cytometric analyses <strong>of</strong> undifferentiated <strong>cells</strong> (day 0)and at days 3 and 5 <strong>of</strong> <strong>differentiation</strong> revealed that both BMP4-<strong>in</strong>duced T and Mixl1 expression were strongly <strong>in</strong>hibited by 10 μMSU5402 (Fig. 8A), a concentration <strong>of</strong> SU5402 that did not compromisecell viability (data not shown). As BMP4-<strong>in</strong>duced T expression hasbeen shown to be <strong>in</strong>sensitive to SU5402 <strong>in</strong> EB culture (Willems andLeyns, 2008), we repeated this experiment to determ<strong>in</strong>e if choice <strong>of</strong>culture system could expla<strong>in</strong> this difference. Indeed we also f<strong>in</strong>d thatBMP4-<strong>in</strong>duced T expression is unaffected by addition <strong>of</strong> SU5402, andeven by itself SU5402 is able to <strong>in</strong>duce T expression (Fig. 8B).Never<strong>the</strong>less, addition <strong>of</strong> soluble <strong>FGF</strong> receptors (s<strong>FGF</strong>Rs, b and c spliceforms) failed to <strong>in</strong>hibit BMP4-<strong>in</strong>duced T or Mixl1 expression at day 3<strong>of</strong> adherent culture (Fig. 8A). Conversely, addition <strong>of</strong> <strong>FGF</strong>2 augmented<strong>the</strong> number <strong>of</strong> T-GFP + and Mixl1-GFP + <strong>cells</strong> formed <strong>in</strong> response toBMP4 treatment (from 39±23% to 68 ±6% and from 41±8% to 53±8%, respectively). However, this <strong>in</strong>duction was only significant forMixl1-GFP (pb0.01).From studies <strong>in</strong> zebrafish we would expect that <strong>FGF</strong> signal<strong>in</strong>gwould <strong>in</strong>hibit endoderm development and redirect <strong>cells</strong> <strong>towards</strong>mesoderm (Mizoguchi et al., 2006; Poula<strong>in</strong> et al., 2006).When Gsc Gfp/+ <strong>cells</strong> were cultured <strong>in</strong> <strong>the</strong> presence <strong>of</strong> activ<strong>in</strong> withaddition <strong>of</strong> <strong>FGF</strong>2, SU5402, PD173074, or soluble <strong>FGF</strong> receptors weobserved a strong dependence on <strong>FGF</strong> signal<strong>in</strong>g for <strong>the</strong> development <strong>of</strong>Gsc-GFP + <strong>cells</strong> (Figs. 9A and B). The number <strong>of</strong> Gsc-GFP + <strong>cells</strong>appear<strong>in</strong>g at day 5 <strong>in</strong> <strong>the</strong> presence <strong>of</strong> activ<strong>in</strong> was significantly <strong>in</strong>hibitedby <strong>the</strong> addition <strong>of</strong> SU5402 (pb0.05), PD173074 (pb0.001) or s<strong>FGF</strong>Rs(pb0.05). Fur<strong>the</strong>rmore, both <strong>the</strong> b and c splice forms <strong>of</strong> soluble<strong>FGF</strong> receptors reduced <strong>the</strong> number <strong>of</strong> Gsc-GFP + <strong>cells</strong> (p b0.05us<strong>in</strong>g Student's one-tailed t-test). Moreover, <strong>the</strong> addition <strong>of</strong> <strong>FGF</strong>2significantly enhanced <strong>the</strong> amount <strong>of</strong> Gsc-GFP + <strong>cells</strong> seen at day 5 <strong>in</strong>activ<strong>in</strong>-treated cultures (pb0.01). These results demonstrate thatactiv<strong>in</strong>-<strong>in</strong>duced Gsc expression depends on <strong>FGF</strong> signal<strong>in</strong>g and suggestthat anterior PS fate is augmented by <strong>FGF</strong> signal<strong>in</strong>g. However, as Gscexpress<strong>in</strong>g<strong>cells</strong> develop fur<strong>the</strong>r <strong>in</strong>to both meso- and endoderm wenext asked whe<strong>the</strong>r development <strong>of</strong> def<strong>in</strong>itive endoderm is also <strong>FGF</strong>dependent. Hence we exam<strong>in</strong>ed if activ<strong>in</strong>-<strong>in</strong>duced formation <strong>of</strong> Sox17-GFP Hi <strong>cells</strong> was <strong>in</strong>fluenced by <strong>FGF</strong> signal<strong>in</strong>g. Culture <strong>of</strong> Sox17 Gfp/+ <strong>cells</strong><strong>in</strong> activ<strong>in</strong> toge<strong>the</strong>r with SU5402 or PD173074 resulted <strong>in</strong> a ∼50% and∼90% reduction <strong>in</strong> <strong>the</strong> number <strong>of</strong> Sox17-GFP Hi <strong>cells</strong> compared toactiv<strong>in</strong> alone (pb0.001; Fig. 9B), demonstrat<strong>in</strong>g that <strong>FGF</strong>R signal<strong>in</strong>g isrequired for normal formation <strong>of</strong> def<strong>in</strong>itive endoderm. However, <strong>in</strong>contrast to results obta<strong>in</strong>ed with <strong>the</strong> Gsc reporter, addition <strong>of</strong> s<strong>FGF</strong>Rdid not affect Sox17 expression. Moreover, where <strong>the</strong> addition <strong>of</strong> <strong>FGF</strong>2boosted <strong>the</strong> formation <strong>of</strong> Gsc-GFP + <strong>cells</strong> it resulted <strong>in</strong> an almost 50%reduction <strong>in</strong> <strong>the</strong> number <strong>of</strong> Sox17-GFP Hi <strong>cells</strong> (pb0.005; Fig. 9B),suggest<strong>in</strong>g that precise control <strong>of</strong> <strong>FGF</strong> levels is important for regulation<strong>of</strong> Sox17 promoter activity.To better def<strong>in</strong>e <strong>the</strong> time where <strong>FGF</strong> signal<strong>in</strong>g acted dur<strong>in</strong>g<strong>in</strong>duction <strong>of</strong> Gsc- and Sox17 expression we cultured Gsc- and Sox17-GFP <strong>cells</strong> with activ<strong>in</strong> for 5 days and added ei<strong>the</strong>r <strong>FGF</strong>2, SU5402, orPD173074 for shorter periods. The (modest) stimulatory effect <strong>of</strong> <strong>FGF</strong>2upon Gsc-GFP expression required that <strong>FGF</strong>2 was present early <strong>in</strong> <strong>the</strong>5 day culture period, prior to <strong>the</strong> <strong>in</strong>itial appearance <strong>of</strong> GFP + <strong>cells</strong>(Fig. 9C). In contrast, SU5402 and PD173074 reduced <strong>the</strong> number <strong>of</strong>Gsc-GFP + <strong>cells</strong> both when added early and late <strong>in</strong> <strong>the</strong> culture period(Fig. 9C). In contrast, <strong>the</strong> number <strong>of</strong> Sox17-GFP Hi <strong>cells</strong> was reducedwhen <strong>FGF</strong>2 and <strong>FGF</strong>R <strong>in</strong>hibitors were present after <strong>the</strong> <strong>in</strong>itialappearance <strong>of</strong> GFP Hi <strong>cells</strong> (Fig. 9C).We used RT-PCR to analyze whe<strong>the</strong>r <strong>the</strong> expression <strong>of</strong> additionalmarkers, <strong>in</strong>formative <strong>in</strong> relation to anterior–posterior positionalFig. 8. <strong>FGF</strong> receptor signal<strong>in</strong>g is required for BMP4-<strong>in</strong>duced mesendoderm formation <strong>in</strong> adherent, but not <strong>in</strong> aggregate culture. (A) T Gfp/+ and Mixl1 Gfp/+ <strong>cells</strong> were cultured <strong>in</strong>medium conta<strong>in</strong><strong>in</strong>g 10 ng/ml BMP4, with or without 100 ng/ml <strong>FGF</strong>2, 10 μM SU5402, or different concentrations <strong>of</strong> soluble forms <strong>of</strong> <strong>FGF</strong> receptors (b or c splice forms, or acomb<strong>in</strong>ation <strong>of</strong> both). Cells were analyzed for GFP expression by flow cytometry on days 0, 3 and 5. (B) T Gfp/+ were <strong>in</strong>duced to form embryoid bodies with <strong>the</strong> <strong>in</strong>dicated growthfactors and analyzed for GFP expression by flow cytometry on day 3. The mean % GFP + <strong>cells</strong> ±standard deviation <strong>of</strong> three <strong>in</strong>dependent experiments is presented.


M. Hansson et al. / Developmental Biology 330 (2009) 286–304297Fig. 9. <strong>FGF</strong> receptor signal<strong>in</strong>g is required throughout <strong>the</strong> five day period for activ<strong>in</strong>-<strong>in</strong>duced Gsc expression but only required late for activ<strong>in</strong> <strong>in</strong>duction <strong>of</strong> Sox17-express<strong>in</strong>g def<strong>in</strong>itiveendoderm. Gsc Gfp/+ and Sox17 Gfp/+ <strong>cells</strong> were cultured <strong>in</strong> medium conta<strong>in</strong><strong>in</strong>g 100 ng/ml activ<strong>in</strong>, <strong>in</strong> comb<strong>in</strong>ation with 100 ng/ml <strong>FGF</strong>2, 10 μM SU5402, 100 nM PD173074, or solubleforms <strong>of</strong> <strong>FGF</strong> receptors as <strong>in</strong>dicated. (A) Time course analysis <strong>of</strong> appearance <strong>of</strong> Gsc-GFP + <strong>cells</strong> by flow cytometry at time 0 and after 3 and 5 days <strong>in</strong> culture. (B) Gsc Gfp/+ and Sox17 Gfp/+<strong>cells</strong> were analyzed for GFP expression at day 5 after culture with <strong>the</strong> <strong>in</strong>dicated factors. (C) Gsc Gfp/+ and Sox17 Gfp/+ <strong>cells</strong> were analyzed for GFP expression at day 5 after culture withactiv<strong>in</strong> and ei<strong>the</strong>r <strong>FGF</strong>2, SU5402, or PD173074 for shorted periods as <strong>in</strong>dicated. The mean % GFP + <strong>cells</strong> ±standard deviation <strong>of</strong> three <strong>in</strong>dependent experiments is presented.identity, were affected by block<strong>in</strong>g <strong>FGF</strong> receptor signal<strong>in</strong>g <strong>in</strong> activ<strong>in</strong>treated<strong>cells</strong>. Expression <strong>of</strong> Otx2, Chrd, and Cer1, genes that arerepressed by BMP4, is not affected by <strong>the</strong> addition <strong>of</strong> SU5402 after3days(Fig. 10). Among <strong>the</strong> markers analyzed only Bmp2, which is firstexpressed <strong>in</strong> <strong>the</strong> embryo proper at E7.5 just lateral to <strong>the</strong> anteriorneural folds and <strong>in</strong> precardiac mesoderm and slightly later <strong>in</strong> foregutendoderm (W<strong>in</strong>nier et al., 1995), is repressed both by BMP4 andSU5402 at day 3. Chrd expression appears at day 3 <strong>in</strong> vehicle-treatedcultures and at day 5 <strong>in</strong> BMP4-treated cultures but <strong>in</strong> both cases it issensitive to SU5402. Also BMP4-<strong>in</strong>duced expression <strong>of</strong> mesodermmarkers Chrd, and Nog at day 5, as well as <strong>the</strong> posterior markers Bmp4and Cdx2, is sensitive to SU5402 (Fig. 10 and Fig. S4).Foregut and pancreatic competence <strong>of</strong> <strong>ES</strong> cell-derived endodermTo test if <strong>the</strong> DE-like <strong>cells</strong> had potential to functionally <strong>in</strong>tegrate<strong>in</strong>to develop<strong>in</strong>g embryonic endoderm, we implanted approximately50 <strong>cells</strong> labeled with a fluorescent dye <strong>in</strong>to 6 to 10 somite stage chickenembryos at <strong>the</strong> level <strong>of</strong> <strong>the</strong> prospective pancreatic endoderm and<strong>in</strong>cubated for 48 h. When <strong>ES</strong> cell progeny from activ<strong>in</strong>-treated cultureswere grafted, 15 out <strong>of</strong> 21 transplanted embryos conta<strong>in</strong>ed dyelabeled,Foxa2 + <strong>cells</strong> <strong>in</strong>corporated <strong>in</strong>to <strong>the</strong> endoderm. In contrast, only3 out <strong>of</strong> 20 embryos receiv<strong>in</strong>g <strong>cells</strong> cultured without activ<strong>in</strong> and 0 <strong>of</strong><strong>the</strong> 8 embryos receiv<strong>in</strong>g activ<strong>in</strong>- and BMP4-treated <strong>cells</strong> conta<strong>in</strong>eddye-labeled cell <strong>in</strong> <strong>the</strong> endoderm (Figs. 11A, D, G). Frequently, <strong>the</strong>activ<strong>in</strong>-treated <strong>cells</strong> <strong>in</strong>corporated <strong>in</strong> <strong>the</strong> Nkx6-1 + Pdx1 + pancreaticendoderm (Figs. 11E, F) (Pedersen et al., 2005). In a second series <strong>of</strong>graft<strong>in</strong>g experiments we tested if <strong>the</strong> Sox17-GFP Hi <strong>cells</strong> obta<strong>in</strong>ed afteractiv<strong>in</strong> treatment for 5 days with or without additional Dkk1 treatmentwere capable <strong>of</strong> <strong>in</strong>corporat<strong>in</strong>g <strong>in</strong>to chick foregut endoderm. Such <strong>cells</strong>were equally capable <strong>of</strong> contribut<strong>in</strong>g to <strong>the</strong> foregut endoderm (Figs.11H, I, K–M), although <strong>the</strong> number <strong>of</strong> Sox17-GFP Hi <strong>cells</strong> were reduced<strong>in</strong> cultures conta<strong>in</strong><strong>in</strong>g Dkk1. Orthogonal projections <strong>of</strong> <strong>the</strong> confocalstacks obta<strong>in</strong>ed from grafted embryos suggested expression <strong>of</strong> Nkx6-1<strong>in</strong> some <strong>of</strong> <strong>the</strong> grafted <strong>cells</strong> (Fig. 11J). Consider<strong>in</strong>g <strong>the</strong> anterior markersexpressed by activ<strong>in</strong>-treated <strong>cells</strong>, and <strong>the</strong> absence <strong>of</strong> pancreatic or


298 M. Hansson et al. / Developmental Biology 330 (2009) 286–304Fig. 10. TGF-β, Wnt and <strong>FGF</strong> signal<strong>in</strong>g control <strong>the</strong> dynamic gene expression <strong>in</strong> differentiat<strong>in</strong>g <strong>ES</strong> <strong>cells</strong>. T Gfp/+ <strong>cells</strong> cultured for 3 or 5 days <strong>in</strong> serum-free medium supplemented with100 ng/ml activ<strong>in</strong>, 10 ng/ml BMP4 and/or 10 μM SU5402, as <strong>in</strong>dicated, were analyzed by RT-PCR. The expression <strong>of</strong> Otx2, Chrd, Cer1, Bmp2, Bmp4 and Cdx2 was analyzed. Tbp wasused as <strong>in</strong>ternal standard.o<strong>the</strong>r regional foregut markers at day 5 (Fig. 12), <strong>the</strong> graft<strong>in</strong>gexperiments suggest that DE formed <strong>in</strong> our cultures can respond toposterioriz<strong>in</strong>g cues from <strong>the</strong> embryonic environment and progressfur<strong>the</strong>r <strong>in</strong> <strong>differentiation</strong>. We <strong>the</strong>refore tested if <strong>the</strong> <strong>cells</strong> were able torespond to suspected posterioriz<strong>in</strong>g cues <strong>in</strong> vitro. After 5 days <strong>of</strong>culture <strong>in</strong> activ<strong>in</strong>, <strong>the</strong> <strong>cells</strong> were shifted to conditions where activ<strong>in</strong>was replaced by candidate posterioriz<strong>in</strong>g factors Wnt3a, <strong>FGF</strong>4, andret<strong>in</strong>oic acid (RA) (Grap<strong>in</strong>-Botton and Constam, 2007) and analyzedfor expression <strong>of</strong> Sox2, Pdx1, and Cdx2, markers <strong>of</strong> fore-, mid-, andh<strong>in</strong>dgut, respectively (Grap<strong>in</strong>-Botton and Melton, 2000). Remarkably,we found large numbers <strong>of</strong> Sox2 + Foxa2 + <strong>cells</strong> <strong>in</strong> cultures treated withposterioriz<strong>in</strong>g factors (Fig. 12). We confirmed Sox2 expression us<strong>in</strong>g<strong>the</strong> OS25 cell l<strong>in</strong>e which carries a β-geo reporter gene <strong>in</strong> <strong>the</strong> Sox2 locus(Li et al., 1998). β-galactosidase activity was visualized with X-galsta<strong>in</strong><strong>in</strong>g (Fig. 12). The appearance <strong>of</strong> Sox2 + <strong>cells</strong> was depend<strong>in</strong>g onnei<strong>the</strong>r <strong>FGF</strong>4 nor RA. Scattered Pdx1 + <strong>cells</strong> also appeared but <strong>in</strong>contrast to Sox2 + <strong>cells</strong> <strong>the</strong>se only appeared <strong>in</strong> <strong>the</strong> presence <strong>of</strong> RA. Cdx2positive <strong>cells</strong> were not detected under any <strong>of</strong> <strong>the</strong> conditions tested.Toge<strong>the</strong>r, our data demonstrate that DE formed from m<strong>ES</strong> <strong>cells</strong> <strong>in</strong>adherent monoculture is capable <strong>of</strong> <strong>differentiation</strong> toward foregutendoderm <strong>in</strong> vivo and <strong>in</strong> vitro but that only a limited number <strong>of</strong> <strong>the</strong>se<strong>cells</strong> appear to respond to posterioriz<strong>in</strong>g cues <strong>in</strong> vitro.DiscussionA recent work from Smith et al. has demonstrated that m<strong>ES</strong> <strong>cells</strong> canbe kept pluripotent under def<strong>in</strong>ed serum- and feeder-free conditions(Y<strong>in</strong>g et al., 2003a), and be efficiently converted to Sox1 + neuroectodermalprogenitors when kept <strong>in</strong> adherent monoculture <strong>in</strong> <strong>the</strong> absence<strong>of</strong> LIF and BMP4 (Y<strong>in</strong>g et al., 2003a,b). In <strong>the</strong> present work, we extendthis def<strong>in</strong>ed system to demonstrate that m<strong>ES</strong> <strong>cells</strong> kept <strong>in</strong> serum- andfeeder-free adherent monoculture respond dose-dependently to <strong>in</strong>ducers<strong>of</strong> primitive streak formation by develop<strong>in</strong>g mesendoderm withcapacity to differentiate fur<strong>the</strong>r <strong>in</strong>to <strong>cells</strong> resembl<strong>in</strong>g foregut endoderm,<strong>in</strong> vivo and <strong>in</strong> vitro. Although several recent studies have establishedthat <strong>the</strong> TGF-β family members BMP4 and activ<strong>in</strong> <strong>in</strong>duce mesodermaland endodermal gene expression <strong>in</strong> differentiat<strong>in</strong>g m<strong>ES</strong> <strong>cells</strong> (Gadue etal., 2006; Kubo et al., 2004; Mossman et al., 2005; Ng et al., 2005; Tada etal., 2005; Yasunaga et al., 2005), <strong>the</strong> varied conditions under which<strong>differentiation</strong> was <strong>in</strong>duced; e.g. adherent vs. suspension culture,differences <strong>in</strong> basal cell culture media and supplements, cell density,absence or presence <strong>of</strong> serum; as well as <strong>the</strong> different reporter l<strong>in</strong>esutilized make a direct comparison <strong>of</strong> <strong>the</strong>se studies difficult. Here we usea series <strong>of</strong> GFP-based reporters to study <strong>the</strong> dynamic expression <strong>of</strong> T,Mixl1, Gsc,andSox17 after manipulat<strong>in</strong>g one or more <strong>of</strong> <strong>the</strong> <strong>FGF</strong>, TGF-β,and Wnt signal<strong>in</strong>g pathways. Remarkably, we f<strong>in</strong>d that <strong>the</strong> lowestconcentration <strong>of</strong> activ<strong>in</strong> used (3 ng/ml) <strong>in</strong>duced <strong>the</strong> highest number <strong>of</strong>T-GFP + <strong>cells</strong>, whereas higher concentrations (10–100 ng/ml) resulted <strong>in</strong>progressively fewer T-GFP + <strong>cells</strong>. These data apparently conflict withresults obta<strong>in</strong>ed by Keller et al. who observed <strong>in</strong>creas<strong>in</strong>g numbers <strong>of</strong> T-GFP + <strong>cells</strong> with <strong>in</strong>creas<strong>in</strong>g activ<strong>in</strong> concentration until a plateau <strong>of</strong> about50–60% T-GFP + <strong>cells</strong> was reached at 30 ng/ml <strong>of</strong> activ<strong>in</strong> (Kubo et al.,2004). It is not entirely clear why a direct correlation between activ<strong>in</strong>concentration and <strong>the</strong> number <strong>of</strong> T-GFP + <strong>cells</strong> is observed by Kubo et al.while we observe an <strong>in</strong>verse correlation. One possible explanationrelates to <strong>the</strong> embryoid body formation used by Kubo et al. <strong>in</strong> which only<strong>cells</strong> located at <strong>the</strong> periphery, directly exposed to <strong>the</strong> cell culturemedium, may experience <strong>the</strong> full concentration <strong>of</strong> added growth factoras recently demonstrated (Sachlos and Auguste, 2008). Cells located <strong>in</strong><strong>the</strong> <strong>in</strong>terior <strong>of</strong> <strong>the</strong> embryoid body are most likely experienc<strong>in</strong>g a lowerconcentration and <strong>the</strong> overall dose–response curve may <strong>the</strong>reforeappear shifted <strong>towards</strong> higher concentrations. It is also possible that <strong>the</strong>environment <strong>of</strong> <strong>the</strong> embryoid body is more conducive to secondarysignal<strong>in</strong>g events that may <strong>in</strong>fluence <strong>the</strong> number <strong>of</strong> T-GFP + <strong>cells</strong>. A recentstudy did however report that T mRNA levels <strong>in</strong> differentiat<strong>in</strong>g EBs were<strong>in</strong>versely correlated with activ<strong>in</strong> concentration with<strong>in</strong> <strong>the</strong> 5–50 ng/mlrange (Willems and Leyns, 2008). Moreover, our results are strik<strong>in</strong>glysimilar to data from Xenopus animal cap explants, where activ<strong>in</strong> dosedependentlycontrols cell fate specification. The expression <strong>of</strong> <strong>the</strong> XenopusT homolog Xbra is <strong>in</strong>duced by low concentrations <strong>of</strong> activ<strong>in</strong> whilehigher concentrations <strong>in</strong>duce <strong>the</strong> expression <strong>of</strong> <strong>the</strong> Gsc homolog Xgsc(Green et al., 1992; Gurdon et al., 1994; Lat<strong>in</strong>kic et al., 1997). However,even Xgsc-express<strong>in</strong>g <strong>cells</strong> <strong>in</strong>duced by high doses <strong>of</strong> activ<strong>in</strong> haveundergone a transient Xbra-express<strong>in</strong>g phase, but direct repression <strong>of</strong>Xbra transcription by b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> Xgsc to <strong>the</strong> Xbra promoter limits <strong>the</strong>duration <strong>of</strong> Xbra expression (Lat<strong>in</strong>kic et al.,1997). In this regard, analyses<strong>of</strong> <strong>the</strong> duration <strong>of</strong> T expression by time-lapse microscopy under differentconditions would be highly <strong>in</strong>formative. The notion <strong>of</strong> activ<strong>in</strong> as a dosedependent<strong>in</strong>ducer <strong>of</strong> anterior fate <strong>in</strong> <strong>ES</strong> cell progeny is <strong>in</strong>dicated byseveral observations: <strong>the</strong> differential effect <strong>of</strong> 3 and 100 ng/ml activ<strong>in</strong> ongene expression such that only <strong>the</strong> high dose <strong>in</strong>duces <strong>the</strong> anteriormarker Cer1 and represses <strong>the</strong> posterior marker Cdx2. Also, extensiveco-localization <strong>of</strong> E-cadher<strong>in</strong>, Gsc-GFP and Sox17 was only observedafter treatment with 100 ng/ml <strong>of</strong> activ<strong>in</strong>. Additional marker analyses


M. Hansson et al. / Developmental Biology 330 (2009) 286–304299Fig. 11. m<strong>ES</strong> cell-derived endoderm grafts contribute to <strong>the</strong> develop<strong>in</strong>g chicken endoderm. (A–F) <strong>ES</strong> <strong>cells</strong> were cultured for 5 days <strong>in</strong> serum-free medium conta<strong>in</strong><strong>in</strong>g vehicle,100 ng/mlactiv<strong>in</strong> or 100 ng/ml activ<strong>in</strong> and 10 ng/ml BMP4 as <strong>in</strong>dicated. Small clusters <strong>of</strong> <strong>cells</strong> were labeled with <strong>the</strong> red fluorescent cell tracker dye CMTMR and grafted between <strong>the</strong> endodermand mesoderm <strong>of</strong> explanted chicken embryos and allowed to develop for 2 days before be<strong>in</strong>g processed for confocal immunohistochemistry. (H–M) Sox17 Gfp/+ <strong>cells</strong> were cultured for5 days <strong>in</strong> serum-free medium conta<strong>in</strong><strong>in</strong>g ei<strong>the</strong>r 100 ng/ml activ<strong>in</strong> or 100 ng/ml activ<strong>in</strong> plus 320 ng/ml Dkk1. Small clumps <strong>of</strong> GFP + <strong>cells</strong> were labeled with <strong>the</strong> red fluorescent celltracker dye CMTMR and grafted between <strong>the</strong> endoderm and mesoderm <strong>of</strong> explanted chicken embryos and allowed to develop <strong>in</strong> ovo for 2 days before be<strong>in</strong>g processed for confocalimmunohistochemistry. (A–F, H, I, K, L) Optical sections <strong>of</strong> chicken embryos whole-mount sta<strong>in</strong>ed with <strong>the</strong> <strong>in</strong>dicated antibodies and transplanted with <strong>ES</strong> cell progeny develop<strong>in</strong>g after5 days with <strong>the</strong> <strong>in</strong>dicated growth factors. (J) Orthogonal view <strong>of</strong> a Z-stack reveal<strong>in</strong>g an Nkx6-1-express<strong>in</strong>g CMTMR-labeled cell. (G, M) Tabulated results <strong>of</strong> <strong>the</strong> graft<strong>in</strong>g experiments.Arrowheads <strong>in</strong> A–F and H–L <strong>in</strong>dicate implanted <strong>cells</strong>. dp: dorsal pancreas, e: endoderm, fp: floor plate, n: notochord, nt: neural tube, vp: ventral pancreas.revealed that such <strong>cells</strong> were also Pyy + ,Foxa2 + and CXCR4 + but Sox7 −and Tdh − , suggest<strong>in</strong>g embryonic ra<strong>the</strong>r than extraembryonic endodermhad formed (Kanai-Azuma et al., 2002; Tada et al., 2005; Yasunaga et al.,2005). Conversely, BMP4- and Wnt3a-treated <strong>cells</strong> expressed low levels<strong>of</strong> anterior markers and <strong>in</strong>stead expressed <strong>the</strong> posterior markers Bmp4and Cdx2. Fur<strong>the</strong>rmore, BMP4 prevented activ<strong>in</strong>-<strong>in</strong>duced gene expressionand stimulated <strong>the</strong> expression <strong>of</strong> T and Mixl1. These observationsare consistent with previous <strong>in</strong> vivo data show<strong>in</strong>g that BMP4 isnecessary for T expression (W<strong>in</strong>nier et al., 1995) and that activ<strong>in</strong><strong>in</strong>ducedGsc expression can be counteracted by BMP4 <strong>in</strong> vivo (Imai et al.,2001; Jones et al., 1996; Sander et al., 2007; Shapira et al., 1999;Ste<strong>in</strong>beisser et al., 1995). Additionally, Keller et al. also noted aposterioriz<strong>in</strong>g effect <strong>of</strong> BMP4 upon <strong>mouse</strong> <strong>ES</strong> <strong>cells</strong> derived, activ<strong>in</strong><strong>in</strong>ducedPS populations (Nostro et al., 2008) and Suemori et al. foundthat <strong>in</strong>hibition <strong>of</strong> BMP signal<strong>in</strong>g redirected human <strong>ES</strong> cell-derivedmesodermal <strong>cells</strong> (<strong>in</strong>duced by forced expression <strong>of</strong> stabilized β-caten<strong>in</strong>)<strong>towards</strong> an anterior PS/DE l<strong>in</strong>eage, <strong>in</strong> a process dependent on activ<strong>in</strong>/nodal signal<strong>in</strong>g (Sumi et al., 2008).


300 M. Hansson et al. / Developmental Biology 330 (2009) 286–304Fig. 12. <strong>ES</strong> cell-derived endoderm acquire foregut cell fates. (A–J′ and P–Z′) OS25 (Sox2β geo/+ )or(K–O) Pdx1 LacZ/+ <strong>cells</strong> were cultured for 5 days <strong>in</strong> 100 ng/ml activ<strong>in</strong> andsubsequently treated with 5 ng/ml Wnt3a, 10 ng/ml <strong>FGF</strong>4 and/or 0,1 μM RA for 3 days as <strong>in</strong>dicated. The co-expression <strong>of</strong> Foxa2 and Sox2 (foregut), Pdx1 (midgut) or Cdx2 (h<strong>in</strong>dgut)was analyzed by immun<strong>of</strong>luorescence. The expression <strong>of</strong> Sox2 (A–E) and Pdx1 (K–O) was confirmed by analyz<strong>in</strong>g β-galactosidase activity us<strong>in</strong>g X-gal sta<strong>in</strong><strong>in</strong>g.Fur<strong>the</strong>r analysis <strong>of</strong> BMP4- (and Wnt3a-) treated <strong>cells</strong> revealed <strong>the</strong>presence <strong>of</strong> Flk1 + <strong>cells</strong> demonstrat<strong>in</strong>g that mesodermal <strong>differentiation</strong>had occurred. Interest<strong>in</strong>gly, Smith et al. recently reported thatBMP4 treatment <strong>of</strong> m<strong>ES</strong> <strong>cells</strong>, under conditions nearly identical toours, resulted <strong>in</strong> <strong>cells</strong> <strong>of</strong> unknown identity that were unlikely to bemesodermal based on presence <strong>of</strong> E-cad immunoreactivity (Kunath etal., 2007). While we occasionally detect a fa<strong>in</strong>t plasma membranesta<strong>in</strong><strong>in</strong>g <strong>in</strong> BMP4-treated <strong>cells</strong> (see for example Fig. 3), <strong>the</strong> <strong>in</strong>tensity <strong>of</strong><strong>the</strong> sta<strong>in</strong><strong>in</strong>g is strongly reduced compared to <strong>the</strong> signal seen <strong>in</strong> activ<strong>in</strong>treated<strong>cells</strong>, and most <strong>cells</strong> appear E-cad − <strong>in</strong> our experiments.Fur<strong>the</strong>rmore, <strong>the</strong> presence <strong>of</strong> Flk1 express<strong>in</strong>g <strong>cells</strong> would appear toconclusively demonstrate mesodermal <strong>differentiation</strong>. This is alsoconsistent with a number <strong>of</strong> studies where embryoid bodies arestimulated with BMP4 (Czyz and Wobus, 2001; F<strong>in</strong>ley et al., 1999;Johansson and Wiles, 1995; Lengerke et al., 2008; Ng et al., 2005;Willems and Leyns, 2008).Our exam<strong>in</strong>ation <strong>of</strong> <strong>the</strong> role <strong>of</strong> Wnt signal<strong>in</strong>g dur<strong>in</strong>g mesendoderm<strong>differentiation</strong> seems to <strong>in</strong>dicate a major difference between <strong>differentiation</strong><strong>in</strong> embryoid bodies and <strong>in</strong> adherent monoculture. Apparently,<strong>the</strong> extent to which Wnt signal<strong>in</strong>g is required to <strong>in</strong>duce anteriorPS formation is different <strong>in</strong> <strong>the</strong> two systems. Gadue et al. found that100 ng/ml Wnt could <strong>in</strong>duce formation <strong>of</strong> Foxa2-CD4 + T-GFP +anterior PS-like <strong>cells</strong>, and that this was dependent on endogenousALK4/5/7 signal<strong>in</strong>g. Moreover, <strong>the</strong> ability <strong>of</strong> activ<strong>in</strong> to <strong>in</strong>duce <strong>the</strong>same fate was dependent on Wnt signal<strong>in</strong>g s<strong>in</strong>ce Dkk1 could prevent<strong>the</strong> effect <strong>of</strong> activ<strong>in</strong> (Gadue et al., 2006). At first glance <strong>the</strong>se f<strong>in</strong>d<strong>in</strong>gsmay appear to contrast with our results, namely that <strong>the</strong> sameconcentration <strong>of</strong> Wnt3a could not <strong>in</strong>duce significant numbers <strong>of</strong> Gsc-GFP + <strong>in</strong> adherent culture and that Dkk1 could not prevent <strong>in</strong>duction<strong>of</strong> Gsc-GFP + <strong>cells</strong> by activ<strong>in</strong>. However, <strong>the</strong> Gsc-GFP + <strong>cells</strong> <strong>in</strong> this workdo not express Brachyury and very likely represent a mixed populationand are thus difficult to compare to <strong>the</strong> Foxa2/T double positive <strong>cells</strong>


M. Hansson et al. / Developmental Biology 330 (2009) 286–304301studied by Gadue et al. Fur<strong>the</strong>rmore, although siRNA mediated knockdown<strong>of</strong> β-caten<strong>in</strong> significantly reduced <strong>the</strong> number <strong>of</strong> Gsc-GFP + <strong>cells</strong>develop<strong>in</strong>g <strong>in</strong> response to activ<strong>in</strong> <strong>the</strong> effect never exceeded 50%. Incontrast, <strong>the</strong> formation <strong>of</strong> Sox17-GFP Hi DE <strong>cells</strong> was more sensitive to<strong>in</strong>hibition <strong>of</strong> canonical Wnt signal<strong>in</strong>g, but only when signal<strong>in</strong>g was<strong>in</strong>hibited at a relatively late stage <strong>of</strong> development, suggest<strong>in</strong>g that <strong>the</strong>requirement for Wnt signal<strong>in</strong>g is not dur<strong>in</strong>g <strong>the</strong> formation <strong>of</strong> PS <strong>cells</strong>but may ra<strong>the</strong>r represent a Wnt-mediated l<strong>in</strong>eage choice by acommon mesendodermal precursor or alternatively, a requirementfor Wnt signal<strong>in</strong>g <strong>in</strong> <strong>the</strong> ma<strong>in</strong>tenance <strong>of</strong> Sox17-express<strong>in</strong>g DE <strong>cells</strong>.Indeed, our observation that Dkk1 only reduces <strong>the</strong> number <strong>of</strong> Sox17 Hi<strong>cells</strong> if present at day 4, i.e. after Sox17 expression is <strong>in</strong>itiated, isconsistent with a requirement for Wnt signal<strong>in</strong>g <strong>in</strong> <strong>the</strong> ma<strong>in</strong>tenance <strong>of</strong>DE. Also, our observations are consistent with <strong>the</strong> requirement for β-caten<strong>in</strong> function <strong>in</strong> DE to acquire or ma<strong>in</strong>ta<strong>in</strong> DE fate (Lickert et al.,2002) as well as <strong>the</strong> observation <strong>of</strong> synergy between Sox17 and β-caten<strong>in</strong> <strong>in</strong> <strong>the</strong> activation <strong>of</strong> DE gene expression (S<strong>in</strong>ner et al., 2004).We also speculate that <strong>the</strong> proposed action <strong>of</strong> Wnt3 dur<strong>in</strong>ggastrulation might <strong>of</strong>fer at least a partial explanation for <strong>the</strong> difference<strong>in</strong> sensitivity <strong>towards</strong> Dkk1 treatment observed between activ<strong>in</strong> andnodal as well as between adherent and aggregate culture. Wnt3 isrequired <strong>in</strong> vivo for nodal to <strong>in</strong>itiate its auto-stimulatory cascade. In<strong>the</strong> absence <strong>of</strong> Wnt3, nodal expression is <strong>in</strong>itiated but <strong>the</strong>n regressesra<strong>the</strong>r than expands (Barrow et al., 2007; Liu et al., 1999). Wnt3 isthought to <strong>in</strong>duce expression <strong>of</strong> Cfc1 which encodes <strong>the</strong> obligatenodal co-receptor Cripto (Morkel et al., 2003). It was recently reportedthat <strong>the</strong> three dimensional environment <strong>in</strong> embryoid bodies preventexogenously added growth factors from diffus<strong>in</strong>g more than a limiteddistance <strong>in</strong>to <strong>the</strong> embryoid body (Sachlos and Auguste, 2008) possiblymak<strong>in</strong>g <strong>the</strong>se more reliant on endogenous relay signal<strong>in</strong>g via nodalwhich subsequently would require Wnt activity to <strong>in</strong>duce Criptoexpression. This notion is supported by our observation that nodal<strong>in</strong>ducedSox17-GFP Hi <strong>cells</strong> appear more sensitive to Dkk1-mediatedsuppression than activ<strong>in</strong> <strong>in</strong>duced Sox17-GFP Hi <strong>cells</strong>, and by ourobservation that activ<strong>in</strong>-<strong>in</strong>duced Sox17-GFP Hi <strong>cells</strong> are more sensitiveto Dkk1 treatment <strong>in</strong> aggregate culture compared to adherent culture.The apparent absence <strong>of</strong> such an autocr<strong>in</strong>e nodal/Wnt signal<strong>in</strong>g loop<strong>in</strong> adherent culture is not surpris<strong>in</strong>g given <strong>the</strong> remarkable <strong>in</strong>stability<strong>of</strong> nodal when secreted by cultured <strong>cells</strong> (Le Good et al., 2005). Nodalmay simply be degraded before it can reach o<strong>the</strong>r <strong>cells</strong> <strong>in</strong> <strong>the</strong> dishwhereas <strong>in</strong> <strong>the</strong> conf<strong>in</strong>ed environment <strong>of</strong> an embryoid body it may wellsignal to nearby <strong>cells</strong> and such signal<strong>in</strong>g might propagate <strong>in</strong> a relayfashion. Thus, Wnt3a treatment would not be sufficient to <strong>in</strong>duce thisloop <strong>in</strong> adherent culture. Conversely, s<strong>in</strong>ce all <strong>the</strong> <strong>cells</strong> <strong>in</strong> adherentculture are exposed evenly to exogenous activ<strong>in</strong> <strong>the</strong>re may be norequirement for Wnt signal<strong>in</strong>g to facilitate ALK4 signal<strong>in</strong>g. Never<strong>the</strong>less,Gsc-GFP + <strong>cells</strong> appear largely refractory to <strong>the</strong> <strong>in</strong>hibitoryeffects <strong>of</strong> Dkk1 treatment. S<strong>in</strong>ce Wnt <strong>in</strong>duced expression <strong>of</strong> Xgsc ismediated by two homeodoma<strong>in</strong> prote<strong>in</strong>s (Siamois and Tw<strong>in</strong> whichhave no apparent homologs <strong>in</strong> <strong>the</strong> <strong>mouse</strong>) b<strong>in</strong>d<strong>in</strong>g to <strong>the</strong> PE-element,this f<strong>in</strong>d<strong>in</strong>g raises <strong>the</strong> question <strong>of</strong> whe<strong>the</strong>r <strong>the</strong> conserved Wntresponsiveelement <strong>in</strong> <strong>the</strong> <strong>mouse</strong> Gsc promoter (Watabe et al., 1995)isfunctional <strong>in</strong> all contexts. It is possible that Gsc is not always <strong>in</strong>ducedby Wnt as Gsc expression is reduced ra<strong>the</strong>r than <strong>in</strong>creased <strong>in</strong> E8.5Dkk1 mutant embryos (Lewis et al., 2008). Lastly, we cannot ruleout a more trivial explanation related to <strong>the</strong> particular Gsc-GFP celll<strong>in</strong>e, which may potentially harbor a defect <strong>in</strong> its responsiveness toDkk1-mediated Wnt <strong>in</strong>hibition. It is possible that more efficientknock-down <strong>of</strong> β-caten<strong>in</strong> than we achieved might fur<strong>the</strong>r reduce oreven prevent <strong>the</strong> formation <strong>of</strong> Gsc-GFP + <strong>cells</strong>.In contrast, we do observe a requirement for Wnt signal<strong>in</strong>g for<strong>in</strong>duction <strong>of</strong> Mixl1 expression. Our experiments revealed <strong>the</strong> simultaneousrequirement <strong>of</strong> nodal/activ<strong>in</strong> and Wnt signal<strong>in</strong>g to <strong>in</strong>duceexpression <strong>of</strong> Mixl1 <strong>in</strong> <strong>ES</strong> cell progeny. Stimulation <strong>of</strong> one pathwaywhile <strong>in</strong>hibit<strong>in</strong>g <strong>the</strong> o<strong>the</strong>r reduced Mixl1 <strong>in</strong>duction, which corroboratesprevious f<strong>in</strong>d<strong>in</strong>gs (Gadue et al., 2006). The Mixl1 promoter haspreviously been shown to be nodal/activ<strong>in</strong>-responsive via <strong>the</strong>presence <strong>of</strong> Foxh1 and Smad b<strong>in</strong>d<strong>in</strong>g sites <strong>in</strong> <strong>the</strong> promoter (Hart etal., 2005) and <strong>in</strong>spection <strong>of</strong> <strong>the</strong> published sequence reveals <strong>the</strong>presence <strong>of</strong> consensus TCF/LEF b<strong>in</strong>d<strong>in</strong>g sites <strong>in</strong> <strong>the</strong> promoter as well.In vivo, Wnt/β-caten<strong>in</strong> signal<strong>in</strong>g is upstream <strong>of</strong> two dist<strong>in</strong>ct geneexpression programs act<strong>in</strong>g dur<strong>in</strong>g anteroposterior axis and mesodermformation, respectively (Morkel et al., 2003). We suspect thatwe observe a requirement for Wnt signal<strong>in</strong>g <strong>in</strong> mesoderm formationbut did not pursue this aspect fur<strong>the</strong>r.The two <strong>differentiation</strong> systems, adherent and aggregate culture,also differ strik<strong>in</strong>gly <strong>in</strong> <strong>the</strong> requirement for <strong>FGF</strong> signal<strong>in</strong>g. In agreementwith our results a recent study us<strong>in</strong>g embryoid body formation foundthat <strong>FGF</strong> signal<strong>in</strong>g was not required for BMP4-<strong>in</strong>duced T expression(Willems and Leyns, 2008), which is unlike <strong>the</strong> situation <strong>in</strong> adherentculture where BMP4-<strong>in</strong>duced T expression is completely prevented bySU5402. Moreover, consistent with our results Kunath et al., also us<strong>in</strong>gadherent culture, recently reported that <strong>FGF</strong>4 deficiency or treatmentwith PD173074 prevented <strong>the</strong> switch from BMP4-mediated support <strong>of</strong>pluripotency to BMP4-<strong>in</strong>duced <strong>differentiation</strong> (Kunath et al., 2007).The requirement for <strong>FGF</strong> signal<strong>in</strong>g <strong>in</strong> <strong>in</strong>duction <strong>of</strong> mesodermal geneexpression is also consistent with <strong>the</strong> <strong>in</strong> vivo requirement for <strong>FGF</strong>signal<strong>in</strong>g <strong>in</strong> Xenopus and zebrafish mesodermal <strong>in</strong>duction (Cornell etal., 1995; Mathieu et al., 2004). In zebrafish, <strong>FGF</strong> signal<strong>in</strong>g is requireddownstream <strong>of</strong> Nodal for <strong>in</strong>duction <strong>of</strong> One-eyed-p<strong>in</strong>head, <strong>the</strong> zebrafishhomolog <strong>of</strong> Cripto (Mathieu et al., 2004). However, as discussedabove activ<strong>in</strong> does not require Cripto to activate its receptors, thusactiv<strong>in</strong> <strong>in</strong>duced Sox17 expression should not necessarily be <strong>in</strong>hibitedby <strong>FGF</strong>R <strong>in</strong>hibitors. This is <strong>in</strong>deed what we f<strong>in</strong>d when <strong>in</strong>hibit<strong>in</strong>g <strong>FGF</strong>signal<strong>in</strong>g prior to appearance <strong>of</strong> Sox17-GFP Hi <strong>cells</strong>, <strong>the</strong> time where onewould expect to f<strong>in</strong>d a requirement for Cripto function if Nodal was <strong>the</strong><strong>in</strong>ducer. It might be illum<strong>in</strong>at<strong>in</strong>g to determ<strong>in</strong>e if Nodal <strong>in</strong>duced Sox17expression would be sensitive to <strong>the</strong>se <strong>in</strong>hibitors. Never<strong>the</strong>less, we doobserve that Sox17 expression depends on <strong>FGF</strong> signal<strong>in</strong>g after <strong>the</strong><strong>in</strong>itial appearance <strong>of</strong> Sox17-GFP Hi <strong>cells</strong> at <strong>the</strong> same time where weobserve a dependency for Wnt signal<strong>in</strong>g. It thus appears thatma<strong>in</strong>tenance <strong>of</strong> Sox17 expression and/or propagation <strong>of</strong> Sox17express<strong>in</strong>g <strong>cells</strong> depend on both <strong>FGF</strong> and Wnt signal<strong>in</strong>g. Consistentwith our results, Brickman et al. also observed an absolute requirementfor <strong>FGF</strong> signal<strong>in</strong>g at days 3–7 for <strong>the</strong> formation <strong>of</strong> Hex + CXCR4 + ADE<strong>cells</strong> when differentiat<strong>in</strong>g <strong>ES</strong> <strong>cells</strong> <strong>in</strong> monolayer culture under def<strong>in</strong>edconditions (Morrison et al., 2008).In some cases we noticed what appeared to be conflict<strong>in</strong>g resultswhen <strong>in</strong>hibit<strong>in</strong>g <strong>FGF</strong> and <strong>FGF</strong>R signal<strong>in</strong>g by soluble <strong>FGF</strong> receptors andSU5402, respectively. It is possible that this is a reflection <strong>of</strong> <strong>FGF</strong><strong>in</strong>dependent <strong>FGF</strong>R activation. <strong>FGF</strong> receptors are known to formcomplexes with N-cadher<strong>in</strong> and N CAM <strong>in</strong> neurons and <strong>in</strong> pancreaticβ-<strong>cells</strong>, result<strong>in</strong>g <strong>in</strong> ligand <strong>in</strong>dependent receptor activation (Cavallaroet al., 2001; Saffell et al., 1997; Williams et al., 1994), and this wouldnot be expected to be sensitive to <strong>the</strong> addition <strong>of</strong> soluble <strong>FGF</strong>receptors. More trivial explanations are also possible. We cannot ruleout that SU5402 may have unknown non-<strong>FGF</strong>R-mediated effects or becerta<strong>in</strong> that our soluble <strong>FGF</strong>R preparations are capable <strong>of</strong> <strong>in</strong>hibit<strong>in</strong>g all<strong>FGF</strong> family members. Additional experiments with dom<strong>in</strong>ant negativereceptors and cell l<strong>in</strong>es mutated <strong>in</strong> genes cod<strong>in</strong>g for <strong>FGF</strong> signal<strong>in</strong>gcomponents will likely shed more light on <strong>the</strong>se questions.The expression <strong>of</strong> anterior markers such as Otx2 and Cer1 <strong>in</strong> Sox17-GFP Hi <strong>cells</strong> suggest that <strong>the</strong>se could be anterior def<strong>in</strong>itive endoderm.This notion is supported by <strong>the</strong> selective presence <strong>of</strong> Pyy transcripts <strong>in</strong>this population, but <strong>the</strong> lack <strong>of</strong> good ADE specific markers prevents usfrom categorically mak<strong>in</strong>g this conclusion. However, <strong>in</strong> vivo ADEforms under conditions <strong>of</strong> high nodal signal<strong>in</strong>g (Ben-Haim et al.,2006; Lu and Robertson, 2004; V<strong>in</strong>cent et al., 2003) which we believewe mimic with culture conditions conta<strong>in</strong><strong>in</strong>g 30–100 ng/ml activ<strong>in</strong> or1 μg/ml nodal. Thus, it is likely that <strong>the</strong> Sox17-GFP Hi <strong>cells</strong> formed <strong>in</strong>our cultures represent ADE. However, it is also likely that mesoderm isformed to some extent <strong>in</strong> cultures treated with high doses <strong>of</strong> activ<strong>in</strong> or


302 M. Hansson et al. / Developmental Biology 330 (2009) 286–304nodal. The presence <strong>of</strong> Otx2 transcripts <strong>in</strong> Sox17-GFP Lo and -GFP −populations suggest that <strong>the</strong>se also conta<strong>in</strong> anterior cell types<strong>in</strong>clud<strong>in</strong>g perhaps small numbers <strong>of</strong> AVE <strong>cells</strong>. The latter is <strong>in</strong>dicatedby <strong>the</strong> presence <strong>of</strong> <strong>the</strong> VE marker Tdh and <strong>the</strong> presence <strong>of</strong> Otx2 andCer1 is consistent with this idea. Lastly, we cannot exclude thatSox17-negative endoderm is present <strong>in</strong> our cultures.Chick embryo xenograft<strong>in</strong>g has previously been used to <strong>in</strong>vestigate<strong>the</strong> developmental potential <strong>of</strong> embryonic <strong>mouse</strong> <strong>cells</strong> (Fonta<strong>in</strong>e-Perus, 2000; Fonta<strong>in</strong>e-Perus et al., 1996, 1997, 1995) as well as <strong>mouse</strong>and human <strong>ES</strong> cell derivatives (Lee et al., 2007; Wichterle et al., 2002)but to our knowledge we report <strong>the</strong> first functional assay for m<strong>ES</strong> cellderivedendoderm. Previous studies have relied almost exclusively onexpression <strong>of</strong> cell-specific markers for <strong>the</strong> characterization <strong>of</strong> <strong>in</strong> vitrogenerated endoderm. Although <strong>the</strong> <strong>ES</strong> cell-derived endoderm did notexpress transcription factors associated with <strong>the</strong> regionalization <strong>of</strong> <strong>the</strong>primitive gut tube after 5 days <strong>of</strong> activ<strong>in</strong> treatment, <strong>the</strong> <strong>cells</strong> werecapable <strong>of</strong> turn<strong>in</strong>g on <strong>the</strong>se genes when <strong>in</strong>tegrat<strong>in</strong>g <strong>in</strong>to endodermalepi<strong>the</strong>lium <strong>in</strong> vivo. Moreover, some embryos conta<strong>in</strong>ed grafted <strong>cells</strong> <strong>in</strong><strong>the</strong> Nkx6-1 + and Pdx1 + pancreatic endoderm. Overall, our datasuggest that <strong>ES</strong> cell-derived DE, formed under def<strong>in</strong>ed conditions, cancontribute to <strong>the</strong> develop<strong>in</strong>g gut tube and fur<strong>the</strong>r suggests that such<strong>cells</strong> are, at least partly, capable <strong>of</strong> respond<strong>in</strong>g to pattern<strong>in</strong>g cues from<strong>the</strong> <strong>in</strong> vivo environment. The latter notion is corroborated by <strong>the</strong><strong>in</strong>duction <strong>of</strong> pancreas markers <strong>in</strong> a limited number <strong>of</strong> <strong>cells</strong> when such<strong>cells</strong> are cultured fur<strong>the</strong>r <strong>in</strong> <strong>the</strong> presence <strong>of</strong> known and suspectedposterioriz<strong>in</strong>g factors.It is remarkable how <strong>the</strong> requirement for certa<strong>in</strong> signal<strong>in</strong>g eventsare strik<strong>in</strong>gly different when compar<strong>in</strong>g aggregate culture (i.e.embryoid body formation) and adherent culture. However, we donot th<strong>in</strong>k that one system is superior to <strong>the</strong> o<strong>the</strong>r but ra<strong>the</strong>r thatcomparison <strong>of</strong> directed <strong>differentiation</strong> under adherent and aggregateculture conditions will prove valuable when attempt<strong>in</strong>g to decipher<strong>the</strong> extent <strong>of</strong> secondary signal<strong>in</strong>g events and <strong>the</strong>ir role <strong>in</strong> l<strong>in</strong>eageselection. In this regard it is also noteworthy that endogenous signal<strong>in</strong>glikely plays a prom<strong>in</strong>ent role also <strong>in</strong> adherent culture. This notion isbased on several <strong>of</strong> our observations, <strong>in</strong>clud<strong>in</strong>g that many SuTOP-CFP +<strong>cells</strong> formed <strong>in</strong> cultures that received activ<strong>in</strong> as <strong>the</strong> only exogenousfactor, <strong>the</strong> <strong>in</strong>terdependence between activ<strong>in</strong> and Wnt signal<strong>in</strong>g forgeneration <strong>of</strong> Mixl1-GFP + <strong>cells</strong>, and on <strong>the</strong> dependence on Wnt and<strong>FGF</strong> signal<strong>in</strong>g for efficient activ<strong>in</strong>-<strong>in</strong>duced formation <strong>of</strong> Sox17-GFP +<strong>cells</strong>.AcknowledgmentsWe are <strong>in</strong>debted to Drs. G. Keller, A.G. Elefanty, S. Nishikawa, A.Smith, S.J. Morrison, J. Rossant, and C. Wright for <strong>the</strong> T-GFP, Mixl1-GFP,Gsc-GFP, Sox2-LacZ, Sox17-GFP, Flk1-LacZ and Pdx1-LacZ reporter <strong>ES</strong>cell l<strong>in</strong>es and anti-Pdx1 antibody. We thank Ragna Jørgensen, SørenRefsgaard L<strong>in</strong>dskog, Gurmeet Kaur S<strong>in</strong>gh, Heidi Ingemann Jensen, andRodrigo Garcia for excellent technical assistance. This work was madepossible by fund<strong>in</strong>g from <strong>the</strong> Juvenile Diabetes Research Foundation,EU Integrated Project No. 512145, PS; NIDDK U19-DK04-017, PS; and<strong>the</strong> Danish Stem Cell Research Doctoral School (PS and PM-H).Appendix A. Supplementary dataSupplementary data associated with this article can be found, <strong>in</strong><strong>the</strong> onl<strong>in</strong>e version, at doi:10.1016/j.ydbio.2009.03.026.ReferencesAhnfelt-Ronne, J., Jorgensen, M.C., Hald, J., Madsen, O.D., Serup, P., Hecksher-Sorensen, J.,2007. An improved method for 3D reconstruction <strong>of</strong> prote<strong>in</strong> expression patterns <strong>in</strong><strong>in</strong>tact <strong>mouse</strong> and chicken embryos and organs. J. Histochem. Cytochem. 55, 925–930.Ang, S.L., Wierda, A., Wong, D., Stevens, K.A., Cascio, S., Rossant, J., Zaret, K.S., 1993. Theformation and ma<strong>in</strong>tenance <strong>of</strong> <strong>the</strong> def<strong>in</strong>itive endoderm l<strong>in</strong>eage <strong>in</strong> <strong>the</strong> <strong>mouse</strong>:<strong>in</strong>volvement <strong>of</strong> HNF3/forkhead prote<strong>in</strong>s. Development 119, 1301–1315.Barrow, J.R., Howell, W.D., Rule, M., Hayashi, S., Thomas, K.R., Capecchi, M.R., McMahon,A.P., 2007. Wnt3 signal<strong>in</strong>g <strong>in</strong> <strong>the</strong> epiblast is required for proper orientation <strong>of</strong> <strong>the</strong>anteroposterior axis. Dev. Biol. 312, 312–320.Beck, F., Erler, T., Russell, A., James, R., 1995. Expression <strong>of</strong> Cdx-2 <strong>in</strong> <strong>the</strong> <strong>mouse</strong> embryoand placenta: possible role <strong>in</strong> pattern<strong>in</strong>g <strong>of</strong> <strong>the</strong> extra-embryonic membranes. Dev.Dyn. 204, 219–227.Ben-Haim, N., Lu, C., Guzman-Ayala, M., Pescatore, L., Mesnard, D., Bisch<strong>of</strong>berger, M.,Naef, F., Robertson, E.J., Constam, D.B., 2006. The nodal precursor act<strong>in</strong>g via activ<strong>in</strong>receptors <strong>in</strong>duces mesoderm by ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a source <strong>of</strong> its convertases and BMP4.Dev. Cell 11, 313–323.Blum, M., Gaunt, S.J., Cho, K.W., Ste<strong>in</strong>beisser, H., Blumberg, B., Bittner, D., De Robertis, E.M., 1992. Gastrulation <strong>in</strong> <strong>the</strong> <strong>mouse</strong>: <strong>the</strong> role <strong>of</strong> <strong>the</strong> homeobox gene goosecoid. Cell69, 1097–1106.Carey, F.J., L<strong>in</strong>ney, E.A., Pedersen, R.A., 1995. Allocation <strong>of</strong> epiblast <strong>cells</strong> to germ layerderivatives dur<strong>in</strong>g <strong>mouse</strong> gastrulation as studied with a retroviral vector. Dev.Genet. 17, 29–37.Cavallaro, U., Niedermeyer, J., Fuxa, M., Christ<strong>of</strong>ori, G., 2001. N-CAM modulates tumourcelladhesion to matrix by <strong>in</strong>duc<strong>in</strong>g <strong>FGF</strong>-receptor <strong>signall<strong>in</strong>g</strong>. Nat. Cell Biol. 3, 650–657.Chapman, S.C., Collignon, J., Schoenwolf, G.C., Lumsden, A., 2001. Improved methodfor chick whole-embryo culture us<strong>in</strong>g a filter paper carrier. Dev. Dyn. 220,284–289.Ciruna, B.G., Schwartz, L., Harpal, K., Yamaguchi, T.P., Rossant, J., 1997. Chimeric analysis <strong>of</strong>fibroblast growth factor receptor-1 (Fgfr1) function: a role for <strong>FGF</strong>R1 <strong>in</strong> morphogeneticmovement through <strong>the</strong> primitive streak. Development 124, 2829–2841.Cornell, R.A., Musci, T.J., Kimelman, D., 1995. <strong>FGF</strong> is a prospective competence factor forearly activ<strong>in</strong>-type signals <strong>in</strong> Xenopus mesoderm <strong>in</strong>duction. Development 121,2429–2437.Czyz, J., Wobus, A., 2001. Embryonic stem cell <strong>differentiation</strong>: <strong>the</strong> role <strong>of</strong> extracellularfactors. Differentiation 68, 167–174.D′ Amour, K.A., Agulnick, A.D., Eliazer, S., Kelly, O.G., Kroon, E., Baetge, E.E., 2005.Efficient <strong>differentiation</strong> <strong>of</strong> human embryonic stem <strong>cells</strong> to def<strong>in</strong>itive endoderm.Nat. Biotechnol. 23, 1534–1541.D′ Amour, K.A., Bang, A.G., Eliazer, S., Kelly, O.G., Agulnick, A.D., Smart, N.G., Moorman,M.A., Kroon, E., Carpenter, M.K., Baetge, E.E., 2006. Production <strong>of</strong> pancreatichormone-express<strong>in</strong>g endocr<strong>in</strong>e <strong>cells</strong> from human embryonic stem <strong>cells</strong>. Nat.Biotechnol. 24, 1392–1401.Deng, C.X., Wynshaw-Boris, A., Shen, M.M., Daugherty, C., Ornitz, D.M., Leder, P., 1994.Mur<strong>in</strong>e <strong>FGF</strong>R-1 is required for early postimplantation growth and axial organization.Genes Dev. 8, 3045–3057.Dyson, S., Gurdon, J.B., 1998. The <strong>in</strong>terpretation <strong>of</strong> position <strong>in</strong> a morphogen gradient asrevealed by occupancy <strong>of</strong> activ<strong>in</strong> receptors. Cell 93, 557–568.Ema, M., Takahashi, S., Rossant, J., 2006. Deletion <strong>of</strong> <strong>the</strong> selection cassette, but not cisact<strong>in</strong>gelements, <strong>in</strong> targeted Flk1-lacZ allele reveals Flk1 expression <strong>in</strong> multipotentmesodermal progenitors. Blood 107, 111–117.Fa<strong>in</strong>sod, A., Ste<strong>in</strong>beisser, H., De Robertis, E.M., 1994. On <strong>the</strong> function <strong>of</strong> BMP-4 <strong>in</strong>pattern<strong>in</strong>g <strong>the</strong> marg<strong>in</strong>al zone <strong>of</strong> <strong>the</strong> Xenopus embryo. EMBO J. 13, 5015–5025.Fehl<strong>in</strong>g, H.J., Lacaud, G., Kubo, A., Kennedy, M., Robertson, S., Keller, G., Kousk<strong>of</strong>f, V.,2003. Track<strong>in</strong>g mesoderm <strong>in</strong>duction and its specification to <strong>the</strong> hemangioblastdur<strong>in</strong>g embryonic stem cell <strong>differentiation</strong>. Development 130, 4217–4227.F<strong>in</strong>ley, M.F., Devata, S., Huettner, J.E., 1999. BMP-4 <strong>in</strong>hibits neural <strong>differentiation</strong> <strong>of</strong>mur<strong>in</strong>e embryonic stem <strong>cells</strong>. J. Neurobiol. 40, 271–287.Fonta<strong>in</strong>e-Perus, J., 2000. Interspecific <strong>mouse</strong>-chick chimeras. Methods Mol. Biol. 135,443–446.Fonta<strong>in</strong>e-Perus, J., Jarno, V., Fournier le Ray, C., Li, Z., Paul<strong>in</strong>, D., 1995. Mouse chickchimera: a new model to study <strong>the</strong> <strong>in</strong> ovo developmental potentialities <strong>of</strong>mammalian somites. Development 121, 1705–1718.Fonta<strong>in</strong>e-Perus, J., Cheraud, Y., Halgand, P., 1996. Developmental potentialities <strong>of</strong> <strong>the</strong><strong>mouse</strong> neural tube grafted <strong>in</strong> chick embryo. Int. J. Dev. Biol. (Suppl 1), 135S.Fonta<strong>in</strong>e-Perus, J., Halgand, P., Cheraud, Y., Rouaud, T., Velasco, M.E., Cifuentes Diaz, C.,Rieger, F., 1997. Mouse-chick chimera: a developmental model <strong>of</strong> mur<strong>in</strong>eneurogenic <strong>cells</strong>. Development 124, 3025–3036.Gadue, P., Huber, T.L., Paddison, P.J., Keller, G.M., 2006. Wnt and TGF-beta signal<strong>in</strong>g arerequired for <strong>the</strong> <strong>in</strong>duction <strong>of</strong> an <strong>in</strong> vitro model <strong>of</strong> primitive streak formation us<strong>in</strong>gembryonic stem <strong>cells</strong>. Proc. Natl. Acad. Sci. U. S. A. 103, 16806–16811.Garcia-Garcia, M.J., Anderson, K.V., 2003. Essential role <strong>of</strong> glycosam<strong>in</strong>oglycans <strong>in</strong> Fgfsignal<strong>in</strong>g dur<strong>in</strong>g <strong>mouse</strong> gastrulation. Cell 114, 727–737.Grap<strong>in</strong>-Botton, A., Constam, D., 2007. Evolution <strong>of</strong> <strong>the</strong> mechanisms and molecularcontrol <strong>of</strong> endoderm formation. Mech. Dev. 124, 253–278.Grap<strong>in</strong>-Botton, A., Melton, D.A., 2000. Endoderm development: from pattern<strong>in</strong>g toorganogenesis. Trends Genet. 16, 124–130.Green, J.B., New, H.V., Smith, J.C., 1992. Responses <strong>of</strong> embryonic Xenopus <strong>cells</strong> to activ<strong>in</strong>and <strong>FGF</strong> are separated by multiple dose thresholds and correspond to dist<strong>in</strong>ct axes<strong>of</strong> <strong>the</strong> mesoderm. Cell 71, 731–739.Gurdon, J.B., Harger, P., Mitchell, A., Lemaire, P., 1994. Activ<strong>in</strong> <strong>signall<strong>in</strong>g</strong> and response toa morphogen gradient. Nature 371, 487–492.Gurdon, J.B., Standley, H., Dyson, S., Butler, K., Langon, T., Ryan, K., Stennard, F., Shimizu,K., Zorn, A., 1999. S<strong>in</strong>gle <strong>cells</strong> can sense <strong>the</strong>ir position <strong>in</strong> a morphogen gradient.Development 126, 5309–5317.Hamburger, V., Hamilton, H.L., 1951. A series <strong>of</strong> normal stages <strong>in</strong> <strong>the</strong> development <strong>of</strong> <strong>the</strong>chick embryo. J. Exp. Morphol. 88, 49–92.Hart, A.H., Hartley, L., Sourris, K., Stadler, E.S., Li, R., Stanley, E.G., Tam, P.P., Elefanty, A.G.,Robb, L., 2002. Mixl1 is required for axial mesendoderm morphogenesis andpattern<strong>in</strong>g <strong>in</strong> <strong>the</strong> mur<strong>in</strong>e embryo. Development 129, 3597–3608.Hart, A.H., Willson, T.A., Wong, M., Parker, K., Robb, L., 2005. Transcriptional regulation<strong>of</strong> <strong>the</strong> homeobox gene Mixl1 by TGF-beta and FoxH1. Biochem. Biophys. Res.Commun. 333, 1361–1369.


M. Hansson et al. / Developmental Biology 330 (2009) 286–304303Hooper, M., Hardy, K., Handyside, A., Hunter, S., Monk, M., 1987. HPRT-deficient (Lesch–Nyhan) <strong>mouse</strong> embryos derived from germl<strong>in</strong>e colonization by cultured <strong>cells</strong>.Nature 326, 292–295.Hou, J., Charters, A.M., Lee, S.C., Zhao, Y., Wu, M.K., Jones, S.J., Marra, M.A., Hoodless, P.A.,2007. A systematic screen for genes expressed <strong>in</strong> def<strong>in</strong>itive endoderm by serialanalysis <strong>of</strong> gene expression (SAGE). BMC Dev. Biol. 7, 92.Imai, Y., Gates, M.A., Melby, A.E., Kimelman, D., Schier, A.F., Talbot, W.S., 2001. Thehomeobox genes vox and vent are redundant repressors <strong>of</strong> dorsal fates <strong>in</strong> zebrafish.Development 128, 2407–2420.Inman, G.J., Nicolas, F.J., Callahan, J.F., Harl<strong>in</strong>g, J.D., Gaster, L.M., Reith, A.D., Lap<strong>in</strong>g, N.J.,Hill, C.S., 2002. SB-431542 is a potent and specific <strong>in</strong>hibitor <strong>of</strong> transform<strong>in</strong>g growthfactor-beta superfamily type I activ<strong>in</strong> receptor-like k<strong>in</strong>ase (ALK) receptors ALK4,ALK5, and ALK7. Mol. Pharmacol. 62, 65–74.Inman, K.E., Downs, K.M., 2006. Localization <strong>of</strong> brachyury (T) <strong>in</strong> embryonic andextraembryonic tissues dur<strong>in</strong>g <strong>mouse</strong> gastrulation. Gene Expr. Patterns 6,783–793.Jensen, J., Serup, P., Karlsen, C., Nielsen, T.F., Madsen, O.D., 1996. mRNA pr<strong>of</strong>il<strong>in</strong>g <strong>of</strong> ratislet tumors reveals Nkx6.1 as a beta-cell-specific homeodoma<strong>in</strong> transcriptionfactor. J. Biol. Chem. 271, 18749–18758.Johansson, B.M., Wiles, M.V., 1995. Evidence for <strong>in</strong>volvement <strong>of</strong> activ<strong>in</strong> A and bonemorphogenetic prote<strong>in</strong> 4 <strong>in</strong> mammalian mesoderm and hematopoietic development.Mol. Cell. Biol. 15, 141–151.Jones, C.M., Dale, L., Hogan, B.L., Wright, C.V., Smith, J.C., 1996. Bone morphogeneticprote<strong>in</strong>-4 (BMP-4) acts dur<strong>in</strong>g gastrula stages to cause ventralization <strong>of</strong> Xenopusembryos. Development 122, 1545–1554.Kanai-Azuma, M., Kanai, Y., Gad, J.M., Tajima, Y., Taya, C., Kurohmaru, M., Sanai, Y.,Yonekawa, H., Yazaki, K., Tam, P.P., Hayashi, Y., 2002. Depletion <strong>of</strong> def<strong>in</strong>itive gutendoderm <strong>in</strong> Sox17-null mutant mice. Development 129, 2367–2379.Kim, I., Saunders, T.L., Morrison, S.J., 2007. Sox17 dependence dist<strong>in</strong>guishes <strong>the</strong>transcriptional regulation <strong>of</strong> fetal from adult hematopoietic stem <strong>cells</strong>. Cell 130,470–483.K<strong>in</strong>der, S.J., Tsang, T.E., Wakamiya, M., Sasaki, H., Behr<strong>in</strong>ger, R.R., Nagy, A., Tam, P.P., 2001.The organizer <strong>of</strong> <strong>the</strong> <strong>mouse</strong> gastrula is composed <strong>of</strong> a dynamic population <strong>of</strong>progenitor <strong>cells</strong> for <strong>the</strong> axial mesoderm. Development 128, 3623–3634.Kubo, A., Sh<strong>in</strong>ozaki, K., Shannon, J.M., Kousk<strong>of</strong>f, V., Kennedy, M., Woo, S., Fehl<strong>in</strong>g, H.J.,Keller, G., 2004. Development <strong>of</strong> def<strong>in</strong>itive endoderm from embryonic stem <strong>cells</strong> <strong>in</strong>culture. Development 131, 1651–1662.Kunath, T., Saba-El-Leil, M.K., Almousailleakh, M., Wray, J., Meloche, S., Smith, A., 2007.<strong>FGF</strong> stimulation <strong>of</strong> <strong>the</strong> Erk1/2 <strong>signall<strong>in</strong>g</strong> cascade triggers transition <strong>of</strong> pluripotentembryonic stem <strong>cells</strong> from self-renewal to l<strong>in</strong>eage commitment. Development 134,2895–2902.Lat<strong>in</strong>kic, B.V., Umbhauer, M., Neal, K.A., Lerchner, W., Smith, J.C., Cunliffe, V., 1997. TheXenopus brachyury promoter is activated by <strong>FGF</strong> and low concentrations <strong>of</strong> activ<strong>in</strong>and suppressed by high concentrations <strong>of</strong> activ<strong>in</strong> and by paired-type homeodoma<strong>in</strong>prote<strong>in</strong>s. Genes Dev. 11, 3265–3276.Lawson, K.A., 1999. Fate mapp<strong>in</strong>g <strong>the</strong> <strong>mouse</strong> embryo. Int. J. Dev. Biol. 43, 773–775.Lawson, K.A., Pedersen, R.A., 1987. Cell fate, morphogenetic movement and populationk<strong>in</strong>etics <strong>of</strong> embryonic endoderm at <strong>the</strong> time <strong>of</strong> germ layer formation <strong>in</strong> <strong>the</strong> <strong>mouse</strong>.Development 101, 627–652.Lawson, K.A., Pedersen, R.A., 1992. Clonal analysis <strong>of</strong> cell fate dur<strong>in</strong>g gastrulation andearly neurulation <strong>in</strong> <strong>the</strong> <strong>mouse</strong>. Ciba Found. Symp. 165, 3–21.Lawson, K.A., Meneses, J.J., Pedersen, R.A., 1991. Clonal analysis <strong>of</strong> epiblast fate dur<strong>in</strong>ggerm layer formation <strong>in</strong> <strong>the</strong> <strong>mouse</strong> embryo. Development 113, 891–911.Lee, H., Shamy, G.A., Elkabetz, Y., Sch<strong>of</strong>ield, C.M., Harrsion, N.L., Panagiotakos, G.,Socci, N.D., Tabar, V., Studer, L., 2007. Directed <strong>differentiation</strong> and transplantation<strong>of</strong> human embryonic stem cell-derived motoneurons. Stem. Cells 25,1931–1939.Le Good, J.A., Joub<strong>in</strong>, K., Giraldez, A.J., Ben-Haim, N., Beck, S., Chen, Y., Schier, A.F.,Constam, D.B., 2005. Nodal stability determ<strong>in</strong>es signal<strong>in</strong>g range. Curr. Biol. 15,31–36.Lengerke, C., Schmitt, S., Bowman, T.V., Jang, I.H., Maouche-Chretien, L., McK<strong>in</strong>ney-Freeman, S., Davidson, A.J., Hammerschmidt, M., Rentzsch, F., Green, J.B., Zon, L.I.,Daley, G.Q., 2008. BMP and Wnt specify hematopoietic fate by activation <strong>of</strong> <strong>the</strong> Cdx-Hox pathway. Cell. Stem. Cell. 2, 72–82.Lewis, S.L., Khoo, P.L., De Young, R.A., Ste<strong>in</strong>er, K., Wilcock, C., Mukhopadhyay, M.,Westphal, H., Jamieson, R.V., Robb, L., Tam, P.P., 2008. Dkk1 and Wnt3 <strong>in</strong>teract tocontrol head morphogenesis <strong>in</strong> <strong>the</strong> <strong>mouse</strong>. Development 135, 1791–1801.Lickert, H., Kutsch, S., Kanzler, B., Tamai, Y., Taketo, M.M., Kemler, R., 2002. Formation <strong>of</strong>multiple hearts <strong>in</strong> mice follow<strong>in</strong>g deletion <strong>of</strong> beta-caten<strong>in</strong> <strong>in</strong> <strong>the</strong> embryonicendoderm. Dev. Cell. 3, 171–181.Li, M., Pevny, L., Lovell-Badge, R., Smith, A., 1998. Generation <strong>of</strong> purified neuralprecursors from embryonic stem <strong>cells</strong> by l<strong>in</strong>eage selection. Curr. Biol. 8, 971–974.Liu, P., Wakamiya, M., Shea, M.J., Albrecht, U., Behr<strong>in</strong>ger, R.R., Bradley, A., 1999.Requirement for Wnt3 <strong>in</strong> vertebrate axis formation. Nat. Genet. 22, 361–365.Lu, C.C., Robertson, E.J., 2004. Multiple roles for Nodal <strong>in</strong> <strong>the</strong> epiblast <strong>of</strong> <strong>the</strong> <strong>mouse</strong>embryo <strong>in</strong> <strong>the</strong> establishment <strong>of</strong> anterior–posterior pattern<strong>in</strong>g. Dev. Biol. 273,149–159.Maretto, S., Cordenonsi, M., Dupont, S., Braghetta, P., Broccoli, V., Hassan, A.B., Volp<strong>in</strong>, D.,Bressan, G.M., Piccolo, S., 2003. Mapp<strong>in</strong>g Wnt/beta-caten<strong>in</strong> signal<strong>in</strong>g dur<strong>in</strong>g <strong>mouse</strong>development and <strong>in</strong> colorectal tumors. Proc. Natl. Acad. Sci. U. S. A. 100, 3299–3304.Mart<strong>in</strong>ez-Barbera, J.P., Clements, M., Thomas, P., Rodriguez, T., Meloy, D., Kioussis, D.,Bedd<strong>in</strong>gton, R.S., 2000. The homeobox gene Hex is required <strong>in</strong> def<strong>in</strong>itiveendodermal tissues for normal forebra<strong>in</strong>, liver and thyroid formation. Development127, 2433–2445.Mathieu, J., Griff<strong>in</strong>, K., Herbomel, P., Dickmeis, T., Strahle, U., Kimelman, D., Rosa, F.M.,Peyrieras, N., 2004. Nodal and Fgf pathways <strong>in</strong>teract through a positive regulatoryloop and synergize to ma<strong>in</strong>ta<strong>in</strong> mesodermal cell populations. Development 131,629–641.McGrath, K.E., Koniski, A.D., Maltby, K.M., McGann, J.K., Palis, J., 1999. Embryonicexpression and function <strong>of</strong> <strong>the</strong> chemok<strong>in</strong>e SDF-1 and its receptor, CXCR4. Dev. Biol.213, 442–456.Mizoguchi, T., Izawa, T., Kuroiwa, A., Kikuchi, Y., 2006. Fgf signal<strong>in</strong>g negativelyregulates Nodal-dependent endoderm <strong>in</strong>duction <strong>in</strong> zebrafish. Dev. Biol. 300,612–622.Mohammadi, M., McMahon, G., Sun, L., Tang, C., Hirth, P., Yeh, B.K., Hubbard, S.R.,Schless<strong>in</strong>ger, J., 1997. Structures <strong>of</strong> <strong>the</strong> tyros<strong>in</strong>e k<strong>in</strong>ase doma<strong>in</strong> <strong>of</strong> fibroblast growthfactor receptor <strong>in</strong> complex with <strong>in</strong>hibitors. Science 276, 955–960.Morkel, M., Huelsken, J., Wakamiya, M., D<strong>in</strong>g, J., van de Weter<strong>in</strong>g, M., Clevers, H., Taketo,M.M., Behr<strong>in</strong>ger, R.R., Shen, M.M., Birchmeier, W., 2003. Beta-caten<strong>in</strong> regulatesCripto- and Wnt3-dependent gene expression programs <strong>in</strong> <strong>mouse</strong> axis andmesoderm formation. Development 130, 6283–6294.Morrison, G.M., Oikonomopoulou, I., Migueles, R.P., Soneji, S., Livigni, A., Enver, T.,Brickman, J.M., 2008. Anterior def<strong>in</strong>itive endoderm from <strong>ES</strong>Cs reveals a role for <strong>FGF</strong>signal<strong>in</strong>g. Cell. Stem. Cell. 3, 402–415.Mossman, A.K., Sourris, K., Ng, E., Stanley, E.G., Elefanty, A.G., 2005. Mixl1 and oct4prote<strong>in</strong>s are transiently co-expressed <strong>in</strong> differentiat<strong>in</strong>g <strong>mouse</strong> and humanembryonic stem <strong>cells</strong>. Stem. Cells Dev. 14, 656–663.Ng, E.S., Azzola, L., Sourris, K., Robb, L., Stanley, E.G., Elefanty, A.G., 2005. The primitivestreak gene Mixl1 is required for efficient haematopoiesis and BMP4-<strong>in</strong>ducedventral mesoderm pattern<strong>in</strong>g <strong>in</strong> differentiat<strong>in</strong>g <strong>ES</strong> <strong>cells</strong>. Development 132,873–884.Niehrs, C., 2004. Regionally specific <strong>in</strong>duction by <strong>the</strong> Spemann–Mangold organizer. Nat.Rev. Genet. 5, 425–434.Nostro, M.C., Cheng, X., Keller, G.M., Gadue, P., 2008. Wnt, activ<strong>in</strong>, and BMP signal<strong>in</strong>gregulate dist<strong>in</strong>ct stages <strong>in</strong> <strong>the</strong> developmental pathway from embryonic stem <strong>cells</strong>to blood. Cell. Stem. Cell. 2, 60–71.Pearce, J.J., Evans, M.J., 1999. Mml, a <strong>mouse</strong> Mix-like gene expressed <strong>in</strong> <strong>the</strong> primitivestreak. Mech. Dev. 87, 189–192.Pedersen, I.L., Kl<strong>in</strong>ck, R., Hecksher-Sorensen, J., Zahn, S., Madsen, O.D., Serup, P.,Jorgensen, M.C., 2006. Generation and characterization <strong>of</strong> monoclonal antibodiesaga<strong>in</strong>st <strong>the</strong> transcription factor Nkx6.1. J. Histochem. Cytochem. 54,567–574.Pedersen, J.K., Nelson, S.B., Jorgensen, M.C., Henseleit, K.D., Fujitani, Y., Wright, C.V.,Sander, M., Serup, P., 2005. Endodermal expression <strong>of</strong> Nkx6 genes dependsdifferentially on Pdx1. Dev. Biol. 288, 487–501.Poula<strong>in</strong>, M., Furthauer, M., Thisse, B., Thisse, C., Lepage, T., 2006. Zebrafish endodermformation is regulated by comb<strong>in</strong>atorial Nodal, <strong>FGF</strong> and BMP <strong>signall<strong>in</strong>g</strong>. Development133, 2189–2200.Rh<strong>in</strong>n, M., Dierich, A., Shawlot, W., Behr<strong>in</strong>ger, R.R., Le Meur, M., Ang, S.L., 1998.Sequential roles for Otx2 <strong>in</strong> visceral endoderm and neuroectoderm for forebra<strong>in</strong>and midbra<strong>in</strong> <strong>in</strong>duction and specification. Development 125, 845–856.Rizzo, M.A., Spr<strong>in</strong>ger, G.H., Granada, B., Piston, D.W., 2004. An improved cyanfluorescent prote<strong>in</strong> variant useful for FRET. Nat. Biotechnol. 22, 445–449.Sachlos, E., Auguste, D.T., 2008. Embryoid body morphology <strong>in</strong>fluences diffusivetransport <strong>of</strong> <strong>in</strong>ductive biochemicals: a strategy for stem cell <strong>differentiation</strong>.Biomaterials 29, 4471–4480.Saffell, J.L., Williams, E.J., Mason, I.J., Walsh, F.S., Doherty, P., 1997. Expression <strong>of</strong> adom<strong>in</strong>ant negative <strong>FGF</strong> receptor <strong>in</strong>hibits axonal growth and <strong>FGF</strong> receptorphosphorylation stimulated by CAMs. Neuron 18, 231–242.Sander, V., Reversade, B., De Robertis, E.M., 2007. The oppos<strong>in</strong>g homeobox genesgoosecoid and Vent1/2 self-regulate Xenopus pattern<strong>in</strong>g. EMBO J. 26, 2955–2965.Sasaki, H., Hogan, B.L., 1993. Differential expression <strong>of</strong> multiple fork head related genesdur<strong>in</strong>g gastrulation and axial pattern formation <strong>in</strong> <strong>the</strong> <strong>mouse</strong> embryo. Development118, 47–59.Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., Brivanlou, A.H., 2004. Ma<strong>in</strong>tenance<strong>of</strong> pluripotency <strong>in</strong> human and <strong>mouse</strong> embryonic stem <strong>cells</strong> through activation<strong>of</strong> Wnt signal<strong>in</strong>g by a pharmacological GSK-3-specific <strong>in</strong>hibitor. Nat. Med. 10,55–63.Shalaby, F., Rossant, J., Yamaguchi, T.P., Gertsenste<strong>in</strong>, M., Wu, X.F., Breitman, M.L., Schuh,A.C., 1995. Failure <strong>of</strong> blood-island formation and vasculogenesis <strong>in</strong> Flk-1-deficientmice. Nature 376, 62–66.Shapira, E., Marom, K., Yel<strong>in</strong>, R., Levy, A., Fa<strong>in</strong>sod, A., 1999. A role for <strong>the</strong> homeobox geneXvex-1 as part <strong>of</strong> <strong>the</strong> BMP-4 ventral signal<strong>in</strong>g pathway. Mech. Dev. 86, 99–111.Shawlot, W., Behr<strong>in</strong>ger, R.R., 1995. Requirement for Lim1 <strong>in</strong> head-organizer function.Nature 374, 425–430.Sherwood, R.I., Jitianu, C., Cleaver, O., Shaywitz, D.A., Lamenzo, J.O., Chen, A.E., Golub, T.R., Melton, D.A., 2007. Prospective isolation and global gene expression analysis <strong>of</strong>def<strong>in</strong>itive and visceral endoderm. Dev. Biol. 304, 541–555.S<strong>in</strong>ner, D., Rank<strong>in</strong>, S., Lee, M., Zorn, A.M., 2004. Sox17 and beta-caten<strong>in</strong> cooperate toregulate <strong>the</strong> transcription <strong>of</strong> endodermal genes. Development 131, 3069–3080.Ste<strong>in</strong>beisser, H., Fa<strong>in</strong>sod, A., Niehrs, C., Sasai, Y., De Robertis, E.M., 1995. The role <strong>of</strong> gscand BMP-4 <strong>in</strong> dorsal–ventral pattern<strong>in</strong>g <strong>of</strong> <strong>the</strong> marg<strong>in</strong>al zone <strong>in</strong> Xenopus: a loss-<strong>of</strong>functionstudy us<strong>in</strong>g antisense RNA. Embo J. 14, 5230–5243.Sumi, T., Tsuneyoshi, N., Nakatsuji, N., Suemori, H., 2008. Def<strong>in</strong><strong>in</strong>g early l<strong>in</strong>eagespecification <strong>of</strong> human embryonic stem <strong>cells</strong> by <strong>the</strong> orchestrated balance <strong>of</strong>canonical Wnt/beta-caten<strong>in</strong>, Activ<strong>in</strong>/Nodal and BMP signal<strong>in</strong>g. Development 135,2969–2979.Sun, X., Meyers, E.N., Lewandoski, M., Mart<strong>in</strong>, G.R., 1999. Targeted disruption <strong>of</strong> Fgf8causes failure <strong>of</strong> cell migration <strong>in</strong> <strong>the</strong> gastrulat<strong>in</strong>g <strong>mouse</strong> embryo. Genes Dev. 13,1834–1846.Tada, S., Era, T., Furusawa, C., Sakurai, H., Nishikawa, S., K<strong>in</strong>oshita, M., Nakao, K., Chiba, T.,2005. Characterization <strong>of</strong> mesendoderm: a diverg<strong>in</strong>g po<strong>in</strong>t <strong>of</strong> <strong>the</strong> def<strong>in</strong>itive


304 M. Hansson et al. / Developmental Biology 330 (2009) 286–304endoderm and mesoderm <strong>in</strong> embryonic stem cell <strong>differentiation</strong> culture. Development132, 4363–4374.Tam, P.P., Loebel, D.A., 2007. Gene function <strong>in</strong> <strong>mouse</strong> embryogenesis: get set forgastrulation. Nat. Rev. Genet. 8, 368–381.ten Berge, D., Koole, W., Fuerer, C., Fish, M., Eroglu, E., Nusse, R., 2008. Wnt signal<strong>in</strong>gmediates self-organization and axis formation <strong>in</strong> embryoid bodies. Cell. Stem. Cell.3, 508–518.V<strong>in</strong>cent, S.D., Dunn, N.R., Hayashi, S., Norris, D.P., Robertson, E.J., 2003. Cell fate decisionswith<strong>in</strong> <strong>the</strong> <strong>mouse</strong> organizer are governed by graded nodal signals. Genes Dev. 17,1646–1662.Watabe, T., Kim, S., Candia, A., Rothbacher, U., Hashimoto, C., Inoue, K., Cho, K.W., 1995.Molecular mechanisms <strong>of</strong> Spemann's organizer formation: conserved growthfactor synergy between Xenopus and <strong>mouse</strong>. Genes Dev. 9, 3038–3050.Wichterle, H., Lieberam, I., Porter, J.A., Jessell, T.M., 2002. Directed <strong>differentiation</strong> <strong>of</strong>embryonic stem <strong>cells</strong> <strong>in</strong>to motor neurons. Cell 110, 385–397.Willems, E., Leyns, L., 2008. Pattern<strong>in</strong>g <strong>of</strong> <strong>mouse</strong> embryonic stem cell-derived panmesodermby activ<strong>in</strong> A/nodal and Bmp4 signal<strong>in</strong>g requires fibroblast growth factoractivity. Differentiation 2, 2.Williams, E.J., Furness, J., Walsh, F.S., Doherty, P., 1994. Activation <strong>of</strong> <strong>the</strong> <strong>FGF</strong> receptorunderlies neurite outgrowth stimulated by L1, N-CAM, and N-cadher<strong>in</strong>. Neuron 13,583–594.W<strong>in</strong>nier, G., Bless<strong>in</strong>g, M., Labosky, P.A., Hogan, B.L., 1995. Bone morphogenetic prote<strong>in</strong>-4is required for mesoderm formation and pattern<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>mouse</strong>. Genes Dev. 9,2105–2116.Yamaguchi, T.P., Harpal, K., Henkemeyer, M., Rossant, J., 1994. fgfr-1 is required forembryonic growth and mesodermal pattern<strong>in</strong>g dur<strong>in</strong>g <strong>mouse</strong> gastrulation. GenesDev. 8, 3032–3044.Yasunaga, M., Tada, S., Torikai-Nishikawa, S., Nakano, Y., Okada, M., Jakt, L.M., Nishikawa,S., Chiba, T., Era, T., 2005. Induction and monitor<strong>in</strong>g <strong>of</strong> def<strong>in</strong>itive and visceralendoderm <strong>differentiation</strong> <strong>of</strong> <strong>mouse</strong> <strong>ES</strong> <strong>cells</strong>. Nat. Biotechnol. 23, 1542–1550.Y<strong>in</strong>g, Q.L., Nichols, J., Chambers, I., Smith, A., 2003a. BMP <strong>in</strong>duction <strong>of</strong> Id prote<strong>in</strong>ssuppresses <strong>differentiation</strong> and susta<strong>in</strong>s embryonic stem cell self-renewal <strong>in</strong>collaboration with STAT3. Cell 115, 281–292.Y<strong>in</strong>g, Q.L., Stavridis, M., Griffiths, D., Li, M., Smith, A., 2003b. Conversion <strong>of</strong> embryonicstem <strong>cells</strong> <strong>in</strong>to neuroectodermal precursors <strong>in</strong> adherent monoculture. Nat.Biotechnol. 21, 183–186.


Supplementary data, Paper I‘A late requirement for Wnt and <strong>FGF</strong> signal<strong>in</strong>g ’dur<strong>in</strong>g activ<strong>in</strong>-<strong>in</strong>ducde formation <strong>of</strong>foregut endoderm from <strong>mouse</strong> embryonic stem <strong>cells</strong>’Developmental Biology, 2009, 330, p. 286 – 304.Mattias Hansson, Dor<strong>the</strong> R- Olesen, Janny M.L. Peterslund, N<strong>in</strong>a Engberg, Morten Kahn,Maria W<strong>in</strong>zi, T<strong>in</strong>o Kle<strong>in</strong>, Poul Maddox-Hyttel and Palle SerupFigure S1Figure S1: BMP4 and Activ<strong>in</strong> <strong>in</strong>duction <strong>of</strong> GFP expression <strong>in</strong> T Gfp/+ , Mixl1-Gsc Gfp/+ , Gsc Gfp/+ and Sox17 Gfp/+<strong>cells</strong>. Primary flow cytometry histograms <strong>of</strong> GFP expression <strong>in</strong> T Gfp/+ and Mixl1Gfp/+ <strong>cells</strong> cultured for 3 days withor without 10 ng/ml BMP4 and Gsc Gfp/+ and Sox17 Gfp/+ <strong>cells</strong> cultured for 5 days <strong>in</strong> <strong>the</strong> presence or absence <strong>of</strong>100 ng/ml activ<strong>in</strong>43


Figure S2Figure S2: A subpopulation <strong>of</strong> T + <strong>cells</strong> expresses Mixl1, whereas Gsc + <strong>cells</strong> express no or low levels <strong>of</strong> T.Immun<strong>of</strong>luorescent analyses <strong>of</strong> T expression <strong>in</strong> T Gfp/+ (A), Mixl1 Gfp/+ (B) or Gsc Gfp/+ <strong>cells</strong> (C) grown <strong>in</strong> adherentculture for 3 or 5 days <strong>in</strong> <strong>the</strong> presence <strong>of</strong> <strong>the</strong> <strong>in</strong>dicated growth factors. The arrows <strong>in</strong> (C) <strong>in</strong>dicate areas with high Texpression and low/no Gsc (GFP) expression. (D) Immun<strong>of</strong>luorescent analyses <strong>of</strong> Foxa2 and E-cad expression <strong>in</strong>T Gfp/+ (a–d), Mixl1 Gfp/+ (e–h), or Gsc Gfp/+ <strong>cells</strong> (i–l) after activ<strong>in</strong> treatment.44


Figure S3Figure S3: <strong>ES</strong> cell progeny treated with activ<strong>in</strong> express markers <strong>of</strong> def<strong>in</strong>itive endoderm and not visceralendoderm. (A) Flow cytometric analysis <strong>of</strong> CXCR4 expression <strong>in</strong> Mixl1 Gfp/+ <strong>cells</strong> grown for 5 days with or without100 ng/ml activ<strong>in</strong>. Mouse embryonic day (E)11 head tissue was used as control. (B, C) RT-PCR analysis for Sox7expression <strong>in</strong> T Gfp/+ <strong>cells</strong> (B) and Sox17, Pyy, Sox7 and Tdh expression <strong>in</strong> Flk1 LacZ/+ <strong>cells</strong> (C). Cells were cultured <strong>in</strong>0, 3 or 100 ng/ml activ<strong>in</strong>, 10 ng/ml BMP4, 100 ng/ml Wnt3a or 100 ng/ml activ<strong>in</strong> + 100 ng/ml Wnt3a for 5 days as<strong>in</strong>dicated. E7 <strong>mouse</strong> embryo cDNA was used as positive control and expression <strong>of</strong> Tbp and G6pd was analyzed asreference genes.45


Figure S4Figure S4: Expression <strong>of</strong> TGF-β, Wnt and <strong>FGF</strong> signal<strong>in</strong>g components dur<strong>in</strong>g directed <strong>differentiation</strong> <strong>of</strong> <strong>ES</strong><strong>cells</strong>. RT-PCR analysis <strong>of</strong> T Gfp/+ <strong>cells</strong> cultured for 3 or 5 days <strong>in</strong> medium conta<strong>in</strong><strong>in</strong>g growth factors and/or <strong>in</strong>hibitor,as <strong>in</strong>dicated. The expression <strong>of</strong> components <strong>of</strong> <strong>the</strong> nodal/activ<strong>in</strong>, BMP, Wnt and <strong>FGF</strong> signal<strong>in</strong>g pathway wasanalyzed. The expression <strong>of</strong> Tbp was analyzed as reference gene.Opposite, Figure S5: Wnt signal<strong>in</strong>g is <strong>in</strong>hibited by addition <strong>of</strong> Dkk1 to activ<strong>in</strong>-stimulated SuTOP-CFP <strong>cells</strong>cultured for 3 and 5 days. (A) Chimeric E10.5 embryo recovered after blastocyst <strong>in</strong>jection <strong>of</strong> SuTOP-CFP <strong>ES</strong><strong>cells</strong>. Note CFP expression at sites known to harbor active Wnt signal<strong>in</strong>g at this stage <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> otic vesicle(white arrow), optic vesicle (white arrowhead), tail bud (red arrow), and somites and dorsal neural tube (redarrowhead). (B) SuTOP-CFP <strong>cells</strong> were cultured <strong>in</strong> <strong>the</strong> presence <strong>of</strong> 100 ng/ml activ<strong>in</strong> for 3 days and supplementedwith 100 ng/ml Wnt3a or 320 ng/ml Dkk1 for a variable number <strong>of</strong> days as <strong>in</strong>dicated. Scale bar is 80 µm. (C)SuTOP-CFP <strong>cells</strong> were cultured <strong>in</strong> <strong>the</strong> presence <strong>of</strong> 100 ng/ml activ<strong>in</strong> for 5 days and supplemented with 100 ng/mlWnt3a or 320 ng/ml Dkk1 for a variable number <strong>of</strong> days as <strong>in</strong>dicated <strong>in</strong> <strong>the</strong> figure. “–” <strong>in</strong>dicates treatment withactiv<strong>in</strong> alone. Scale bar is 200 µm.46


Figure S547


Figure S6Figure S6: qRT-PCR analyses <strong>of</strong> activ<strong>in</strong>-stimulated <strong>ES</strong> <strong>cells</strong> after <strong>in</strong>hibition <strong>of</strong> Wnt signal<strong>in</strong>g. Gsc Gfp/+ <strong>cells</strong> werecultured <strong>in</strong> 100 ng/ml activ<strong>in</strong> for 5 days and (A) transfected with β-caten<strong>in</strong> siRNA as <strong>in</strong>dicated or (B) treated withDkk1 as <strong>in</strong>dicated. At <strong>the</strong> end <strong>of</strong> day 5 <strong>of</strong> <strong>the</strong> culture period RNA was prepared and qRT-PCR was performed tomeasure <strong>the</strong> relative abundance <strong>of</strong> Lhx1 and Chrd message.48


4. Pxd1 <strong>in</strong>ductionBackgroundThe work shown <strong>in</strong> Figure 12 <strong>of</strong> paper I was performed by N<strong>in</strong>a Engberg and me <strong>in</strong>collaboration. We worked toge<strong>the</strong>r with o<strong>the</strong>r members <strong>of</strong> <strong>the</strong> lab on pattern<strong>in</strong>g <strong>the</strong> naïve DE<strong>in</strong>duced by high concentrations <strong>of</strong> activ<strong>in</strong>. In this chapter, I will show additional data on thispattern<strong>in</strong>g performed by myself, and refer to data performed by o<strong>the</strong>r members <strong>of</strong> <strong>the</strong> lab.The motivation beh<strong>in</strong>d this project departs from work by Mattias Hansson and Dor<strong>the</strong> R.Olesen show<strong>in</strong>g that <strong>the</strong>y could differentiate m<strong>ES</strong> <strong>cells</strong> to DE after 5 days <strong>of</strong> culture <strong>in</strong> 100ng/ml activ<strong>in</strong>, referred to as ‘Step 1’ <strong>of</strong> <strong>the</strong> <strong>differentiation</strong> protocol. This DE was believed to be<strong>of</strong> a naïve type, as it did not sta<strong>in</strong> positive for regional markers <strong>of</strong> <strong>the</strong> gut tube, such as SOX2,PDX1, NKX6.1 or CDX2 (Figure 4-1). We proposed that <strong>the</strong> DE could be patterned <strong>in</strong>to <strong>cells</strong>resembl<strong>in</strong>g posterior foregut endoderm, <strong>the</strong> region from which <strong>the</strong> pancreatic outgrowth occurs,when presented to <strong>the</strong> correct <strong>in</strong>duc<strong>in</strong>g signal.Figure 4-1: A high concentration <strong>of</strong> activ<strong>in</strong> <strong>in</strong> Step 1 <strong>in</strong>duces naïve DE. Flk1-LacZ <strong>cells</strong> were differentiated for 5days <strong>in</strong> 100 ng/ml activ<strong>in</strong> and both differentiated <strong>cells</strong> <strong>mouse</strong> and tissue was sta<strong>in</strong>ed for whole endoderm andregional markers: FOXA2, SOX2, PDX1, NKX6.1, CDX2 and <strong>the</strong> nuclear sta<strong>in</strong> DAPI. Mattias Hansson,unpublished data.To pattern this naïve DE <strong>in</strong>to posterior foregut endoderm, referred to as ‘Step 2’ <strong>of</strong> <strong>the</strong><strong>differentiation</strong> protocol, we relied on data from <strong>mouse</strong> and chicken development. We chosespecific genes regionally expressed along <strong>the</strong> anterior-posterior (A-P) axis <strong>of</strong> <strong>the</strong> gut tube asmarkers <strong>of</strong> cell fate. These were Sox2, expressed anterior to <strong>the</strong> pancreatic region; Pdx1,expressed <strong>in</strong> <strong>the</strong> duodenum and pancreatic regions; Nkx6.1, expressed <strong>in</strong> <strong>the</strong> pancreatic49


epi<strong>the</strong>lium; Cdx2, expressed posterior to <strong>the</strong> pancreatic region. Foxa2, expressed throughout <strong>the</strong>gut tube, was used as a marker for DE-derived cell types (see also Figure 1-3; (Grap<strong>in</strong>-Bottonand Melton 2000; Jorgensen et al. 2007)).In <strong>the</strong> embryo, endoderm <strong>cells</strong> are patterned by <strong>signall<strong>in</strong>g</strong> events with<strong>in</strong> <strong>the</strong> endoderm or from<strong>the</strong> mesoderm. Activ<strong>in</strong> has an anterioris<strong>in</strong>g effect on both endoderm formation and pattern<strong>in</strong>gwhereas WNT3a has a posterioris<strong>in</strong>g effect on PS-formation and cell specification dur<strong>in</strong>ggastrulation (Grap<strong>in</strong>-Botton and Melton 2000). Dessimoz and co-workers showed that <strong>in</strong>chicken embryos, <strong>FGF</strong>4 also has a posterioris<strong>in</strong>g effect start<strong>in</strong>g dur<strong>in</strong>g gastrulation andpersist<strong>in</strong>g through <strong>the</strong> early somite stages (Dessimoz et al. 2006). <strong>FGF</strong>-<strong>signall<strong>in</strong>g</strong> is necessaryfor restrict<strong>in</strong>g anterior expressed genes and for establish<strong>in</strong>g midgut gene expression. Ret<strong>in</strong>oicacid (RA) is implicated <strong>in</strong> <strong>the</strong> development <strong>of</strong> tissues <strong>in</strong> all three germ layers. In m<strong>ES</strong> cell<strong>differentiation</strong>, it is <strong>of</strong>ten used to <strong>in</strong>duce <strong>cells</strong> <strong>of</strong> a neural type (Okada et al. 2004). In <strong>ES</strong> cellaggregates, RA has been shown to <strong>in</strong>duce Pdx1-express<strong>in</strong>g <strong>cells</strong> (Micallef et al. 2005), and <strong>in</strong>endoderm pattern<strong>in</strong>g <strong>towards</strong> pancreatic cell types it is used <strong>in</strong> both <strong>mouse</strong> and human <strong>ES</strong> cellprotocols (D'Amour et al. 2006; Micallef et al. 2007; Borowiak and Melton 2009).Materials and MethodsWe cultured and analysed <strong>cells</strong> as described <strong>in</strong> Hansson et al., 2009. Below are additions to <strong>the</strong>methods and materials described.Cell culture and <strong>differentiation</strong>We used <strong>the</strong> follow<strong>in</strong>g m<strong>ES</strong> cell l<strong>in</strong>es: Sox2-LacZ (Li et al. 1998) and Pdx1-GFP (Holland etal. 2006). We added KAAD-cyclopam<strong>in</strong>e (Toronto Research Chemicals) and <strong>FGF</strong>10 (R&DSystems) to <strong>the</strong> <strong>differentiation</strong> medium.RT-PCRRT-PCR was performed us<strong>in</strong>g <strong>the</strong> primer sequences: Pdx1F_AAATTGAAACAAGTGCAGGT, R_GACAGTTCTCCACTGCTCTC; GAPDH F_CGGTGCTGAGTATGTCGTGGA, R_ GGCAGAA GGGGCGGAGATGA.ResultsWe applied a 2-step protocol for <strong>the</strong> pattern<strong>in</strong>g <strong>of</strong> our DE:‘Step 1’ – DE <strong>in</strong>duction: 5 days <strong>in</strong> 30 – 100 ng/ ml activ<strong>in</strong>, seed<strong>in</strong>g density <strong>of</strong> 2.000 <strong>cells</strong>/ cm 2‘Step 2’ – Pdx1 <strong>in</strong>duction: 3 – 5 days <strong>in</strong> a comb<strong>in</strong>ation <strong>of</strong> growth factors and <strong>in</strong>hibitors50


Figure 4-2: WNT3a and <strong>FGF</strong>4 <strong>in</strong> Step 2 <strong>in</strong>duce anterior gut tube <strong>cells</strong>. Sox2-LacZ <strong>cells</strong> differentiated for 5 days<strong>in</strong> 100 ng/ml activ<strong>in</strong> (Step 1) and 3 days <strong>in</strong> 5 ng/ml WNT3a + 10 ng/ml <strong>FGF</strong>4 (Step 2) were sta<strong>in</strong>ed for β–Galactosidase and imaged under 10× objective.Figure 4-3: Increas<strong>in</strong>g <strong>the</strong> <strong>FGF</strong>4-concentration does not result <strong>in</strong> posterior foregut-type <strong>cells</strong>. Flk1-LacZ <strong>cells</strong>differentiated for 5 days <strong>in</strong> 100 ng/ml activ<strong>in</strong> (Step 1) and 3 days <strong>in</strong> 25 ng/ml WNT3a ± 10 or 100 ng/ml <strong>FGF</strong>4(Step 2) were sta<strong>in</strong>ed for FOXA2, SOX2, and PDX1. 20× objective.<strong>FGF</strong>4 and WNT3a alone <strong>in</strong>duce <strong>cells</strong> resembl<strong>in</strong>g anterior or posterior gut tubeThe first attempts to pattern our DE <strong>in</strong>to <strong>cells</strong> <strong>of</strong> a pancreatic type was done by addition <strong>of</strong> 0, 10or 100 ng/ml <strong>FGF</strong>4 and/ or 0, 5 or 25 ng/ml WNT3a to <strong>the</strong> basic medium for 3 days.51


Figure 4-4: A high <strong>FGF</strong>4-concentration <strong>in</strong>duces CDX2 + posterior gut tube. Flk1-LacZ <strong>cells</strong> differentiated for 5days <strong>in</strong> 100 ng/ml activ<strong>in</strong> (Step 1) and 3 days <strong>in</strong> 25 ng/ml Wnt3a + 0, 10 or 100 ng/ml <strong>FGF</strong>4 (Step 2) were sta<strong>in</strong>edfor FOXA2 and CDX2. 20× objective, scale bar <strong>in</strong>dicates 50 µm.This resulted <strong>in</strong> numerous Sox2-LacZ + and SOX2 + <strong>cells</strong> as seen by β-Galactosidase sta<strong>in</strong> andimmune-cytochemistry, respectively (Figures 4-2 and 4-3). Variation <strong>in</strong> <strong>the</strong> concentrations <strong>of</strong><strong>FGF</strong>4 and WNT3a did not seem to <strong>in</strong>fluence <strong>the</strong> numbers <strong>of</strong> Sox2-LacZ + or SOX2 + <strong>cells</strong>, aslong as both factors were present. We saw vast numbers <strong>of</strong> FOXA2 + <strong>cells</strong> throughout <strong>the</strong>conditions applied (Figure 4-3). <strong>FGF</strong>4 and WNT3a did not <strong>in</strong>duce PDX1 + <strong>cells</strong> under anyconditions (Figure 4-3), but high concentrations <strong>of</strong> <strong>FGF</strong>4 <strong>in</strong> comb<strong>in</strong>ation with WNT3a (5 or 25ng/ml) <strong>in</strong>duced CDX2 + clusters <strong>in</strong> <strong>the</strong> culture (Figure 4-4). To be sure that we did not miss aweak expression <strong>of</strong> Pdx1 <strong>in</strong> <strong>the</strong> samples, we performed RT-PCR and saw only <strong>the</strong> housekeep<strong>in</strong>ggene Glyceraldehyde 3-phosphate dehydrogenase (Gapdh) expressed (Figure 4-5).Thus, we concluded that <strong>FGF</strong>4 and WNT3a ei<strong>the</strong>r alone or <strong>in</strong> comb<strong>in</strong>ation were not enough todrive pattern<strong>in</strong>g <strong>of</strong> <strong>the</strong> DE <strong>in</strong>to Pdx1-express<strong>in</strong>g posterior foregut cell types. We saw vastnumbers <strong>of</strong> Sox2-LacZ + and SOX2 + <strong>cells</strong>, <strong>in</strong>dicative <strong>of</strong> an anterior DE-type. CDX2 was<strong>in</strong>duced by 100 ng/ml <strong>FGF</strong>4, suggest<strong>in</strong>g that this concentration is too high when aim<strong>in</strong>g atPDX1-<strong>in</strong>duction.52


Figure 4-5: Pdx1 cannot be detected by RT-PCR. RT-PCR for Pdx1 on E18,5 <strong>mouse</strong> pancreas and β-TC3, i.e.positive controls and Flk1-LacZ <strong>cells</strong> differentiated for 5 days <strong>in</strong> 100 ng/ml activ<strong>in</strong> (Step 1) and 3 days <strong>in</strong> 25 ng/mlWNT3a ± 10 or 100 ng/ml <strong>FGF</strong>4 (Step 2). Gapdh is used as a house-keep<strong>in</strong>g gene control. Load<strong>in</strong>g <strong>in</strong> <strong>the</strong><strong>in</strong>dividual wells is described next to <strong>the</strong> agarose gel images.RA <strong>in</strong> comb<strong>in</strong>ation with WNT3a and <strong>FGF</strong>4 <strong>in</strong>duces posterior foregut <strong>cells</strong>As shown <strong>in</strong> paper I, figure 12, we could <strong>in</strong>duce PDX1-expression by addition <strong>of</strong> 0.1 µM RAand <strong>in</strong>termediate levels <strong>of</strong> WNT3a (5 ng/ ml) and <strong>FGF</strong>4 (10 ng/ml) to Step 2 <strong>of</strong> <strong>the</strong><strong>differentiation</strong> protocol. Under <strong>the</strong>se conditions, we saw a vast number <strong>of</strong> FOXA2 + /SOX2 +<strong>cells</strong> and no CDX2-express<strong>in</strong>g <strong>cells</strong>. This <strong>in</strong>dicates that RA, <strong>in</strong> comb<strong>in</strong>ation with WNT3a and<strong>FGF</strong>4, <strong>in</strong>duces <strong>cells</strong> <strong>of</strong> an anterior-<strong>in</strong>termediate gut fate express<strong>in</strong>g FOXA2 and SOX2 orPDX1, but no CDX2.Prolonged <strong>differentiation</strong> does not <strong>in</strong>crease Pdx1-<strong>in</strong>ductionTo be able to quantify <strong>the</strong> numbers <strong>of</strong> PDX1 + <strong>cells</strong>, we used a Pdx1-GFP cell l<strong>in</strong>e (Holland etal. 2006) and applied our 2-step protocol to this. We <strong>in</strong>cluded KAAD-cyclopam<strong>in</strong>e(cyclopam<strong>in</strong>e; an <strong>in</strong>hibitor <strong>of</strong> SHH-<strong>signall<strong>in</strong>g</strong>) <strong>in</strong> this protocol, as <strong>in</strong>hibition <strong>of</strong> SHH has provencrucial for Pdx1-<strong>in</strong>duction <strong>in</strong> <strong>the</strong> develop<strong>in</strong>g gut tube (Hebrok et al. 1998).We generally saw <strong>in</strong>duction <strong>of</strong> 2-4% Pdx1-GFP + <strong>cells</strong> when apply<strong>in</strong>g our standard protocol <strong>of</strong>0.1 µM RA, 5 ng/ml WNT3a and 10 ng/ml <strong>FGF</strong>4 (data not shown). This was not satisfactoryfor cont<strong>in</strong>ued <strong>differentiation</strong> <strong>towards</strong> posterior foregut endoderm, and we speculated whe<strong>the</strong>rour DE was still to immature to be patterned after 5 days <strong>of</strong> DE-<strong>in</strong>duction. Thus, we <strong>in</strong>troducedan extra step between endoderm <strong>in</strong>duction and pattern<strong>in</strong>g: two days <strong>of</strong> culture with or withoutpattern<strong>in</strong>g factors <strong>FGF</strong>10 and cyclopam<strong>in</strong>e followed by comb<strong>in</strong>ations <strong>of</strong> RA, <strong>FGF</strong>10 andcyclopam<strong>in</strong>e. In general, we saw a very low <strong>in</strong>duction <strong>of</strong> Pdx1-GFP + <strong>cells</strong> <strong>in</strong> all conditions,rang<strong>in</strong>g from 0,5-4% (Figure 4-6). There was a tendency for more Pdx1-GFP + <strong>cells</strong> with an<strong>in</strong>crease <strong>in</strong> factors applied, <strong>the</strong> comb<strong>in</strong>ation <strong>of</strong> all three be<strong>in</strong>g <strong>the</strong> most potent. Also, <strong>the</strong> <strong>cells</strong>grown <strong>in</strong> <strong>FGF</strong>10 and cyclopam<strong>in</strong>e <strong>in</strong> step 2 showed higher numbers <strong>of</strong> Pdx1-GFP + <strong>cells</strong> <strong>in</strong>general. There seems to be little endogenous SHH-<strong>signall<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> DE cell population, as<strong>in</strong>hibition <strong>the</strong>re<strong>of</strong> did not improve our protocol. However, with a total amount <strong>of</strong> 2-4% Pdx1-GFP + <strong>cells</strong>, this protocol needs fur<strong>the</strong>r optimization.53


Figure 4-6: A 3-step protocol does not enhance <strong>the</strong> numbers <strong>of</strong> Pdx1-GFP + <strong>cells</strong>. Pdx1-GFP <strong>cells</strong> differentiatedfor 5 days <strong>in</strong> 30 ng/ml activ<strong>in</strong> (Step 1), 2 days <strong>in</strong> Step 2A-media and 3 days <strong>in</strong> Step 2B-media (see schematic fordetails). Concentrations used: 0,1 µM RA; 25 ng/ml <strong>FGF</strong>10; 0,25 µM KAAD-Cyclopam<strong>in</strong>e (Cyc). n = 3 ± S.E.M.is shown.Figure 4-7: Addition <strong>of</strong> <strong>the</strong> posterioriz<strong>in</strong>g factor BMP4 <strong>in</strong> Step 1 does not <strong>in</strong>crease Pdx1-GFP <strong>in</strong>duction. Pdx1-GFP <strong>cells</strong> differentiated for 5 days <strong>in</strong> 30 ng/ml activ<strong>in</strong> (Step 1) and 3 days <strong>in</strong> Step 2-media (see schematic fordetails). Concentrations used: 0,1 or 1 ng/ml BMP4; 0,1 µM RA; 25 ng/ml <strong>FGF</strong>7; 1 µM SB431542; 50 mg/mlNogg<strong>in</strong>. n = 3 ± S.E.M. is shown.Posterioris<strong>in</strong>g DE-<strong>in</strong>duction does not <strong>in</strong>crease <strong>the</strong> posterior foregut cell populationWe decided to look <strong>in</strong>to whe<strong>the</strong>r <strong>the</strong> DE we generated by a high concentration <strong>of</strong> activ<strong>in</strong> couldbe posteriorized already <strong>in</strong> Step 1, thus lead<strong>in</strong>g to higher numbers <strong>of</strong> posterior foregutendoderm <strong>in</strong> Step 2. Based on DE-<strong>in</strong>duction protocols used for m<strong>ES</strong> or h<strong>ES</strong> <strong>cells</strong>, we addedBMP4 at different concentrations <strong>in</strong> Step 1 and <strong>in</strong>hibited this <strong>signall<strong>in</strong>g</strong>-pathway <strong>in</strong> Step 2(Candy H.-H. Cho, personal communication; (Morrison et al. 2008; Touboul et al. 2009)). InStep 1, we found that BMP4-concentrations <strong>of</strong> 0,1 ng/ml on days 1-2 or 1-5, or 1 ng/ml on days1-2 had no <strong>in</strong>hibitory effect on <strong>the</strong> percentage <strong>of</strong> Sox17-GFP + <strong>cells</strong> formed, whereas higherBMP4-concentrations did (Maria W<strong>in</strong>zi, unpublished data). Next, we used <strong>the</strong>se concentrations<strong>in</strong> Step 1 and added <strong>FGF</strong>7 and RA ± <strong>the</strong> BMP4-<strong>in</strong>hibitor nogg<strong>in</strong> and <strong>the</strong> ALK4/5/7 <strong>in</strong>hibitorSB431542. We saw a tendency for <strong>in</strong>creased numbers <strong>of</strong> Pdx1-GFP + <strong>cells</strong> when add<strong>in</strong>g <strong>the</strong> lowconcentration <strong>of</strong> BMP4 for all 5 days or <strong>the</strong> high concentration for 2 days (Figure 4-7).However, <strong>the</strong> percentage <strong>of</strong> Pdx1-GFP + <strong>cells</strong> was not significantly higher than when <strong>in</strong>duc<strong>in</strong>g54


DE <strong>in</strong> medium conta<strong>in</strong><strong>in</strong>g activ<strong>in</strong> only. We <strong>the</strong>refore conclude that addition <strong>of</strong> BMP4 has noposterioris<strong>in</strong>g effect on our DE <strong>in</strong> this system.DiscussionOur protocol for <strong>the</strong> generation <strong>of</strong> posterior foregut from an activ<strong>in</strong>-<strong>in</strong>duced DE cell populationis successful as a ‘pro<strong>of</strong> <strong>of</strong> pr<strong>in</strong>ciple’. We show that addition <strong>of</strong> posterioris<strong>in</strong>g factors such asRA and <strong>FGF</strong> <strong>in</strong>duce PDX1-expression <strong>in</strong> fur<strong>the</strong>r <strong>differentiation</strong> <strong>of</strong> apparently naïve DE <strong>cells</strong>.The protocol is reproducible between E14, Pdx1-LacZ and Pdx1-GFP cell l<strong>in</strong>es, <strong>in</strong> which weobta<strong>in</strong> 2-4% PDX1 + <strong>cells</strong> on average. However, attempts to <strong>in</strong>crease <strong>the</strong> efficiency <strong>of</strong> Pdx1-<strong>in</strong>duction proved difficult and <strong>the</strong> protocol is <strong>the</strong>refore not satisfactory for fur<strong>the</strong>r <strong>differentiation</strong><strong>in</strong>to pancreatic endoderm.It seems that <strong>the</strong>re is a fundamental problem <strong>in</strong> our protocol setup, as we have had little success<strong>in</strong> improv<strong>in</strong>g <strong>the</strong> number <strong>of</strong> PDX1 + <strong>cells</strong>. One source <strong>of</strong> problems could be connected to ourculture conditions. We use B27 which conta<strong>in</strong>s glucocorticoids that have been shown to <strong>in</strong>hibitPdx1-expression (Tanimizu et al. 2004). Ano<strong>the</strong>r issue is tim<strong>in</strong>g; we see <strong>the</strong> highest <strong>in</strong>duction<strong>of</strong> Pdx1-GFP + <strong>cells</strong> after 3 days <strong>of</strong> culture <strong>in</strong> Step 2 media, and <strong>in</strong>troduc<strong>in</strong>g an extra 2 days <strong>of</strong><strong>differentiation</strong> does not <strong>in</strong>crease <strong>the</strong> numbers <strong>of</strong> Pdx1-GFP + <strong>cells</strong>. However, 3 days seem to bea ra<strong>the</strong>r short <strong>in</strong>duction period compared to o<strong>the</strong>r protocols. D’Amour and co-workers grewh<strong>ES</strong> cell-derived DE for 4-8 days to differentiate <strong>the</strong>m to posterior foregut (D'Amour et al.2006).The rationales on which we have built our <strong>in</strong>duc<strong>in</strong>g factor-comb<strong>in</strong>ations seem reasonable, asstudies performed <strong>in</strong> h<strong>ES</strong> <strong>cells</strong> us<strong>in</strong>g <strong>FGF</strong>4 and RA showed an <strong>in</strong>duction <strong>of</strong> 32% PDX1 + <strong>cells</strong>from DE-cultures (Johannesson et al. 2009). Also, <strong>in</strong>termediate concentrations <strong>of</strong> <strong>FGF</strong>2 wereshown to <strong>in</strong>duce pancreatic foregut specification, whereas higher concentrations <strong>in</strong>duced amore posterior gut type (Ameri et al. 2010).In conclusion, we show that by addition <strong>of</strong> RA and <strong>FGF</strong> we can successfully <strong>in</strong>duce PDX1 +<strong>cells</strong>, albeit <strong>in</strong> low numbers. This protocol lays <strong>the</strong> ground for fur<strong>the</strong>r optimization, althoughthis may prove difficult <strong>in</strong> <strong>the</strong> current culture conditions.55


5. Paper II<strong>FGF</strong>R(IIIc)-activation <strong>in</strong>duces mesendoderm but is dispensable for def<strong>in</strong>itiveendoderm formation <strong>in</strong> <strong>mouse</strong> embryonic stem <strong>cells</strong>Manuscript to be submitted.Janny Marie L. Peterslund and Palle Serup*Department <strong>of</strong> Stem Cell Biology, Hagedorn Research Institute, Niels Steensens Vej 6, DK-2820 Gent<strong>of</strong>te, Denmark. * Correspond<strong>in</strong>g author.Author contributionsJanny Marie L. Peterslund performed <strong>the</strong> experiments, analyzed and <strong>in</strong>terpreted <strong>the</strong> data, made<strong>the</strong> figures and wrote <strong>the</strong> paper draft. Palle Serup conceived ideas, commented on <strong>the</strong> paper andwas <strong>the</strong> pr<strong>in</strong>cipal <strong>in</strong>vestigator and supervisor on <strong>the</strong> research. Both authors designed <strong>the</strong>research and discussed <strong>the</strong> results.For co-authorship declaration, see Appendix B.57


<strong>FGF</strong>R(IIIc)-activation <strong>in</strong>duces mesendoderm but isdispensable for def<strong>in</strong>itive endoderm formation <strong>in</strong> <strong>mouse</strong>embryonic stem <strong>cells</strong>Janny Marie L. Peterslund and Palle Serup*Department <strong>of</strong> Stem Cell Biology, Hagedorn Research Institute, Niels Steensens Vej 6, DK-2820 Gent<strong>of</strong>te, Denmark.Runn<strong>in</strong>g title: <strong>FGF</strong>(R)s and mesendoderm <strong>differentiation</strong> <strong>in</strong> m<strong>ES</strong>CsKeywords: <strong>mouse</strong> embryonic stem cell, fibroblast growth factor (<strong>FGF</strong>), <strong>FGF</strong> receptors,mesendoderm, def<strong>in</strong>itive endoderm, <strong>FGF</strong>4 –/– cell l<strong>in</strong>e*Correspond<strong>in</strong>g author:Dr. Palle SerupHagedorn Research InstituteNiels Steensens Vej 6DK-2820 Gent<strong>of</strong>teDenmarkE-mail: pas@hagedorn.dkPhone: +45 44439822Fax: +45 4443800058


AbstractProgress <strong>in</strong> embryonic stem (<strong>ES</strong>) cell research over <strong>the</strong> last decade has outl<strong>in</strong>ed a possible cellbased <strong>in</strong>tervention strategy <strong>in</strong> diabetes based on <strong>the</strong> hierarchical <strong>differentiation</strong> <strong>of</strong> embryonicstem <strong>cells</strong> <strong>in</strong>to <strong>in</strong>sul<strong>in</strong> produc<strong>in</strong>g beta <strong>cells</strong>. The def<strong>in</strong>itive endoderm (DE) cell type constitutesan essential milestone <strong>in</strong> this <strong>differentiation</strong> pathway and fibroblast growth factor (<strong>FGF</strong>)-signal<strong>in</strong>g drives <strong>the</strong> formation <strong>of</strong> DE <strong>in</strong> <strong>the</strong> <strong>mouse</strong> <strong>ES</strong> cell model system. More specifically, ithas been shown that <strong>FGF</strong>4 is crucial for <strong>cells</strong> to leave <strong>the</strong> pluripotent state and differentiate toectoderm and mesoderm cell l<strong>in</strong>eages. The <strong>FGF</strong> system counts several receptor is<strong>of</strong>orms with apossible functional redundant role <strong>in</strong> conduct<strong>in</strong>g <strong>the</strong> <strong>differentiation</strong> signal. Here, we <strong>in</strong>vestigate<strong>the</strong> spatio-temporal dynamics <strong>of</strong> <strong>FGF</strong> receptor (<strong>FGF</strong>R) distribution <strong>in</strong> <strong>the</strong> form<strong>in</strong>g DE and f<strong>in</strong>dthat <strong>FGF</strong>R(III)c-is<strong>of</strong>orms are highly represented <strong>in</strong> <strong>the</strong> whole culture, whereas <strong>FGF</strong>R2(III)band <strong>FGF</strong>R4 are found <strong>in</strong> <strong>the</strong> DE fraction, specifically. The <strong>FGF</strong>R(III)c is<strong>of</strong>orm-activat<strong>in</strong>g <strong>FGF</strong>s<strong>in</strong>duce mesendoderm markers T and Gsc, but reduce <strong>the</strong> DE marker Sox17 whereas <strong>FGF</strong>sactivat<strong>in</strong>g <strong>FGF</strong>(III)b-is<strong>of</strong>orms have no effect on ei<strong>the</strong>r cell type. Notably, <strong>FGF</strong>R(III)c is<strong>of</strong>ormactivat<strong>in</strong>g<strong>FGF</strong>s exhibit strong mitogenic effects on <strong>ES</strong> <strong>cells</strong> early <strong>in</strong> <strong>the</strong> <strong>differentiation</strong> periodwhere <strong>FGF</strong>s activat<strong>in</strong>g <strong>FGF</strong>R(III)b-is<strong>of</strong>orms have only a moderate mitogenic potentialconf<strong>in</strong>ed to <strong>the</strong> late <strong>differentiation</strong> period. Interest<strong>in</strong>gly, when apply<strong>in</strong>g our DE <strong>in</strong>ductionprotocol onto an <strong>FGF</strong>4 –/– cell l<strong>in</strong>e, we f<strong>in</strong>d that <strong>cells</strong> readily differentiate <strong>in</strong>to endoderm <strong>cells</strong>without ectopic adm<strong>in</strong>istration <strong>of</strong> <strong>FGF</strong>4. By antibody sta<strong>in</strong><strong>in</strong>g and qPCR analyses for def<strong>in</strong>itiveand visceral endoderm markers, we show that this endoderm is def<strong>in</strong>itive ra<strong>the</strong>r than visceral.We conclude that <strong>FGF</strong>R(III)c-is<strong>of</strong>orm activation selectively drives <strong>the</strong> <strong>differentiation</strong> <strong>of</strong> m<strong>ES</strong><strong>cells</strong> <strong>towards</strong> mesendoderm and that <strong>FGF</strong>4 is dispensable for <strong>the</strong> f<strong>in</strong>al <strong>differentiation</strong> step <strong>in</strong>toDE.59


IntroductionBased on knowledge obta<strong>in</strong>ed <strong>in</strong> developmental biology, <strong>mouse</strong> embryonic stem (m<strong>ES</strong>) <strong>cells</strong>can be directed <strong>towards</strong> <strong>differentiation</strong> <strong>in</strong>to specific germ layers and more mature tissues. Sucha <strong>differentiation</strong> <strong>in</strong>to glucose-responsive β cell-like <strong>in</strong>sul<strong>in</strong>-secret<strong>in</strong>g <strong>cells</strong>, serves <strong>in</strong> <strong>the</strong>ory as acure for type I diabetes mellitus (McCall et al. 2010). For this purpose, <strong>the</strong> first step is togenerate def<strong>in</strong>itive endoderm (DE) with <strong>the</strong> potential to fur<strong>the</strong>r differentiate <strong>in</strong>to <strong>cells</strong>resembl<strong>in</strong>g <strong>the</strong> primitive gut tube (reviewed by (Van Ho<strong>of</strong> et al. 2009)). Understand<strong>in</strong>g <strong>the</strong> role<strong>of</strong> each component used <strong>in</strong> this directed <strong>differentiation</strong> is crucial for obta<strong>in</strong><strong>in</strong>g <strong>the</strong> optimalprogenitor cell population <strong>in</strong> each step.In <strong>the</strong> late blastocyst stage <strong>of</strong> <strong>the</strong> develop<strong>in</strong>g <strong>mouse</strong> embryo (E4.5), <strong>the</strong> <strong>in</strong>ner cell mass (ICM) isdivided <strong>in</strong>to <strong>the</strong> epiblast and <strong>the</strong> primitive, later visceral endoderm. The visceral endoderm(VE) is <strong>in</strong>volved <strong>in</strong> <strong>the</strong> asymmetric anterior-posterior pattern<strong>in</strong>g <strong>of</strong> <strong>the</strong> epiblast, result<strong>in</strong>g <strong>in</strong> <strong>the</strong>onset <strong>of</strong> gastrulation (reviewed by (Rossant 2004)). In <strong>the</strong> gastrulat<strong>in</strong>g <strong>mouse</strong> embryo, epiblast<strong>cells</strong> migrate through <strong>the</strong> primitive streak (PS), and <strong>in</strong> this process become determ<strong>in</strong>ed <strong>towards</strong>ei<strong>the</strong>r mesoderm or DE germ layers (Lawson et al. 1991; Tam et al. 1993; Carey et al. 1995).The transform<strong>in</strong>g growth factor-β family member nodal, an activator <strong>of</strong> SMAD2/3 <strong>signall<strong>in</strong>g</strong>, is<strong>the</strong> ma<strong>in</strong> <strong>in</strong>itiator <strong>of</strong> epiblast pattern<strong>in</strong>g and PS formation (Conlon et al. 1994; Waldrip et al.1998). At high levels, nodal <strong>in</strong>duces anterior PS structures and DE and at low doses it <strong>in</strong>ducesmore posterior streak fates (Ben-Haim et al. 2006). At <strong>the</strong> posterior-most end <strong>of</strong> <strong>the</strong> PS, bonemorphogenetic prote<strong>in</strong> 4 (BMP4) is produced by <strong>the</strong> extra-embryonic ectoderm and establishesa signal gradient. BMP4 is critical for formation <strong>of</strong> <strong>the</strong> PS and <strong>in</strong>duces mesoderm formation(reviewed by (Gadue et al. 2005)). It is currently accepted that <strong>cells</strong> <strong>in</strong> <strong>the</strong> mesoderm andendoderm tissues arise from a common progenitor cell population, <strong>the</strong> mesendoderm (Lawsonet al. 1991; K<strong>in</strong>der et al. 2001). The PS marker Brachyury (T) is expressed <strong>in</strong> <strong>the</strong> nascent andmigrat<strong>in</strong>g mesoderm <strong>of</strong> <strong>the</strong> primitive streak dur<strong>in</strong>g gastrulation <strong>in</strong> <strong>the</strong> <strong>mouse</strong> embryo (Kispertand Herrmann 1994). Goosecoid (Gsc) is located <strong>in</strong> <strong>the</strong> progress<strong>in</strong>g primitive streak at E6.5,and later localizes to <strong>the</strong> anterior streak, from which <strong>the</strong> DE arises (Blum et al. 1992). It is<strong>in</strong>duced by high concentrations <strong>of</strong> activ<strong>in</strong> <strong>in</strong> animal cap explants from Xenopus and <strong>in</strong> m<strong>ES</strong><strong>cells</strong>, it is used as a marker for <strong>the</strong> mesendoderm cell population (Kubo et al. 2004; Gadue et al.2006). Sry-related HMG box gene 17 (Sox17) is an early marker specifically expressed <strong>in</strong> <strong>the</strong>def<strong>in</strong>itive endoderm <strong>of</strong> <strong>the</strong> gastrula, and later expands to <strong>the</strong> endoderm underly<strong>in</strong>g <strong>the</strong> neuralplate <strong>of</strong> <strong>the</strong> early-bud-stage embryo (Kanai-Azuma et al. 2002). Sox17 is also expressed <strong>in</strong> <strong>the</strong>extra-embryonic, but not <strong>in</strong> <strong>the</strong> embryonic visceral endoderm.In m<strong>ES</strong> cell cultures, <strong>cells</strong> take on a mesendoderm-type fate before be<strong>in</strong>g committed to ei<strong>the</strong>r<strong>the</strong> mesoderm or DE l<strong>in</strong>eages (Tada et al. 2005). Activ<strong>in</strong>A (activ<strong>in</strong> hereafter) is used as asurrogate for nodal as <strong>the</strong>y both activate SMAD2/3 <strong>signall<strong>in</strong>g</strong> by b<strong>in</strong>d<strong>in</strong>g to <strong>the</strong> ALK4 receptor,thus function<strong>in</strong>g <strong>in</strong> <strong>the</strong> same manner (Schier 2003). In <strong>the</strong> mesendoderm population, highconcentrations <strong>of</strong> nodal/ activ<strong>in</strong>-<strong>signall<strong>in</strong>g</strong> <strong>in</strong>duce anterior streak and DE <strong>cells</strong> while BMP4 orlow concentrations <strong>of</strong> nodal/ activ<strong>in</strong> <strong>in</strong>duce posterior streak or mesoderm (Kubo et al. 2004;Willems and Leyns 2008; Hansson et al. 2009). The PS genes T, Mix-like 1 (Mixl1) and Gsc areexpressed <strong>in</strong> this population <strong>in</strong> response to <strong>in</strong>creas<strong>in</strong>g concentrations <strong>of</strong> activ<strong>in</strong>. High activ<strong>in</strong>levelsfur<strong>the</strong>r <strong>in</strong>duce <strong>the</strong> DE markers Sox17, E-cadher<strong>in</strong> and Forkhead box A2 (Foxa2). BMP4<strong>in</strong>duces T, Mixl1 and <strong>the</strong> mesodermal marker Fetal like k<strong>in</strong>ase 1 (Flk1; VEGFR2/ Kdr; (Gadueet al. 2005)). Dur<strong>in</strong>g m<strong>ES</strong> cell <strong>differentiation</strong>, T-express<strong>in</strong>g <strong>cells</strong> give rise to endoderm andmesoderm derivatives (Kubo et al. 2004) and we have previously shown that a T-GFP reportercell l<strong>in</strong>e (T Gfp/ + ; (Fehl<strong>in</strong>g et al. 2003)) can be activated by BMP4 and a low concentration <strong>of</strong>activ<strong>in</strong> (Hansson et al. 2009).For <strong>the</strong> <strong>differentiation</strong> <strong>of</strong> mesendoderm and DE to occur properly <strong>in</strong> m<strong>ES</strong> <strong>cells</strong>, fibroblastgrowth factor (<strong>FGF</strong>)-<strong>signall<strong>in</strong>g</strong> is required (Funa et al. 2008; Morrison et al. 2008; Willems andLeyns 2008; Hansson et al. 2009). The <strong>FGF</strong> family <strong>of</strong> prote<strong>in</strong>s consists <strong>of</strong> 22 members named<strong>FGF</strong>1-23 (<strong>FGF</strong>15 is <strong>the</strong> <strong>mouse</strong> ortholog <strong>of</strong> human <strong>FGF</strong>19). They activate one or more <strong>of</strong> fourreceptor tyros<strong>in</strong>e k<strong>in</strong>ases, <strong>the</strong> <strong>FGF</strong> receptors (<strong>FGF</strong>Rs)1-4. <strong>FGF</strong>Rs1-3 have two secreted splice60


variants <strong>in</strong> <strong>the</strong>ir Ig-like doma<strong>in</strong> III, <strong>the</strong> <strong>FGF</strong>R(III)b or <strong>FGF</strong>R(III)c is<strong>of</strong>orms (hereafter <strong>FGF</strong>Rbor <strong>FGF</strong>Rc, respectively; (Ornitz and Itoh 2001; Itoh and Ornitz 2004)). <strong>FGF</strong>s are <strong>in</strong>volved <strong>in</strong>many functions such as germ layer formation, limb development, cell proliferation and cellmigration <strong>in</strong> <strong>the</strong> develop<strong>in</strong>g embryo (Ornitz and Itoh 2001). In early <strong>mouse</strong> development, <strong>FGF</strong><strong>signall<strong>in</strong>g</strong>is necessary for <strong>the</strong> migration <strong>of</strong> epiblast <strong>cells</strong> through <strong>the</strong> PS (Ciruna et al. 1997;Guo and Li 2007). The loss <strong>of</strong> <strong>FGF</strong>4 is lethal at E4-5, due to <strong>the</strong> <strong>in</strong>ability <strong>of</strong> epiblast <strong>cells</strong> toundergo epi<strong>the</strong>lial-to-mesenchymal transition and migrate through <strong>the</strong> PS (Feldman et al.1995). <strong>FGF</strong>R1 –/– mice also die at gastrulation and both <strong>FGF</strong>4 and <strong>FGF</strong>R1 are expressed <strong>in</strong> <strong>the</strong>ICM and PS (Deng et al. 1994; Yamaguchi et al. 1994). <strong>FGF</strong>4 is expressed <strong>in</strong> pluripotent m<strong>ES</strong><strong>cells</strong> and has been shown to be necessary for <strong>differentiation</strong> <strong>in</strong>to ectoderm and mesoderml<strong>in</strong>eages, suggest<strong>in</strong>g a crucial role <strong>of</strong> <strong>FGF</strong>4 <strong>in</strong> <strong>the</strong> <strong>in</strong>itiation <strong>of</strong> <strong>differentiation</strong> (Kunath et al.2007). However, Wilder et al. showed that <strong>FGF</strong>4 –/– <strong>cells</strong> could differentiate <strong>in</strong> vitro, albeit at alow frequency, and gave rise to tumours consist<strong>in</strong>g <strong>of</strong> a wide range <strong>of</strong> differentiated cell types<strong>in</strong> vivo (Wilder et al. 1997).In this study, we expand on our previous f<strong>in</strong>d<strong>in</strong>g that active <strong>FGF</strong>-<strong>signall<strong>in</strong>g</strong> is necessary for DEformation (Hansson et al. 2009), and <strong>in</strong>vestigate <strong>the</strong> effects <strong>of</strong> different <strong>FGF</strong>R-is<strong>of</strong>orms onmesendoderm and DE <strong>differentiation</strong>. We first analyse <strong>the</strong> expression patterns <strong>of</strong> <strong>FGF</strong>Ris<strong>of</strong>orms<strong>in</strong> <strong>the</strong> form<strong>in</strong>g DE and f<strong>in</strong>d that <strong>FGF</strong>Rc-is<strong>of</strong>orms are up-regulated <strong>in</strong> <strong>the</strong> bulk culturewhereas <strong>FGF</strong>R2b and 4 are up-regulated specifically <strong>in</strong> <strong>the</strong> DE-fraction. By means <strong>of</strong> reportercell l<strong>in</strong>es and antibody sta<strong>in</strong><strong>in</strong>g, we f<strong>in</strong>d that <strong>FGF</strong>s activat<strong>in</strong>g primarily <strong>FGF</strong>Rc-is<strong>of</strong>orms <strong>in</strong>ducePS and mesendoderm markers T and Gsc but reduce <strong>the</strong> DE marker Sox17. <strong>FGF</strong>s activat<strong>in</strong>g<strong>FGF</strong>Rb-is<strong>of</strong>orms have no effect on ei<strong>the</strong>r cell type. The <strong>FGF</strong>Rc is<strong>of</strong>orm-activat<strong>in</strong>g <strong>FGF</strong>s show<strong>the</strong> highest mitogenic effects early <strong>in</strong> <strong>the</strong> <strong>differentiation</strong> period, and suggestively speeds up<strong>differentiation</strong>, as proliferation rates <strong>in</strong> <strong>the</strong> presence <strong>of</strong> <strong>the</strong>se <strong>FGF</strong>s are reduced later <strong>in</strong> <strong>the</strong>culture period. Remarkably, an <strong>ES</strong> cell l<strong>in</strong>e carry<strong>in</strong>g a knockout for one such <strong>FGF</strong>Rc is<strong>of</strong>ormactivat<strong>in</strong>g<strong>FGF</strong>, <strong>FGF</strong>4 –/– was able to differentiate to endoderm <strong>cells</strong> at levels comparable to wtand <strong>FGF</strong>4 +/– situations. The absence <strong>of</strong> <strong>FGF</strong>4 gave rise to DE <strong>differentiation</strong>, and although afew <strong>cells</strong> sta<strong>in</strong>ed positive for <strong>the</strong> VE marker Sry-related HMG box 7 (SOX7), qPCR analysesconfirmed <strong>the</strong> DE fate <strong>of</strong> <strong>the</strong> culture. Thus, we conclude that <strong>FGF</strong>Rc-is<strong>of</strong>orms specify <strong>the</strong>mesendoderm but not DE cell population and that <strong>FGF</strong>4-<strong>signall<strong>in</strong>g</strong> is dispensable for <strong>in</strong>duction<strong>of</strong> DE <strong>cells</strong>.Materials and MethodsCell culture and <strong>differentiation</strong> <strong>of</strong> m<strong>ES</strong>CsWe used <strong>the</strong> follow<strong>in</strong>g <strong>mouse</strong> <strong>ES</strong> cell l<strong>in</strong>es: E14 (Hooper et al. 1987), T-GFP (Fehl<strong>in</strong>g et al.2003), Gsc-GFP (Tada et al. 2005), Sox17-GFP (Kim et al. 2007), <strong>FGF</strong>4 +/– and <strong>FGF</strong>4 –/–(Wilder et al. 1997). Cells were grown as previously described (Y<strong>in</strong>g et al. 2003a; Hansson etal. 2009) on cell culture plastic ware (Nunc) coated with 0,1% gelat<strong>in</strong>e (Sigma), us<strong>in</strong>g 0,05%Tryps<strong>in</strong>-EDTA (Invitrogen) for dissociation <strong>of</strong> <strong>cells</strong> dur<strong>in</strong>g passage. Tryps<strong>in</strong> was <strong>in</strong>activated byN2B27 medium: KO-DMEM supplemented with N2, B27, 0.1 mM non-essential am<strong>in</strong>o acids,2 mM L-glutam<strong>in</strong>e, Penicill<strong>in</strong>/Streptomyc<strong>in</strong> (all from Invitrogen), 0.1 mM 2-mercaptoethanol(Sigma-Aldrich). Cells were grown for at least 3 passages before onset <strong>of</strong> <strong>differentiation</strong>.For <strong>differentiation</strong> purposes, <strong>cells</strong> were dissociated <strong>in</strong>to s<strong>in</strong>gle <strong>cells</strong> and seeded at 2.000 <strong>cells</strong>/cm 2 <strong>in</strong> N2B27 medium conta<strong>in</strong><strong>in</strong>g one or more <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g growth factors: BMP4 (10ng/ml), activ<strong>in</strong>A (1 or 30 ng/ml; both from R&D Systems), <strong>FGF</strong>1 (100 ng/ml; ChemiconInternational), <strong>FGF</strong>2 (100 ng/ml; Invitrogen), <strong>FGF</strong>4, <strong>FGF</strong>5, <strong>FGF</strong>6, <strong>FGF</strong>7, <strong>FGF</strong>8b, <strong>FGF</strong>8c,<strong>FGF</strong>8e, <strong>FGF</strong>9, <strong>FGF</strong>10, <strong>FGF</strong>16 (5 or 100 ng/ml; all from R&D Systems). Media conta<strong>in</strong><strong>in</strong>g<strong>FGF</strong>s were supplemented with 10 µg/ml heparan sulfate (Sigma-Aldrich).Flow cytometryFor GFP-analysis <strong>of</strong> reporter cell l<strong>in</strong>es, live <strong>cells</strong> were dissociated <strong>in</strong>to s<strong>in</strong>gle <strong>cells</strong> by 0,05%Tryps<strong>in</strong>-EDTA (Invitrogen) and analysed by FACS Calibur flow cytometer (BD Biosciences).61


For analysis <strong>of</strong> <strong>cells</strong> sta<strong>in</strong>ed with antibodies, <strong>cells</strong> were fixed <strong>in</strong> LILLY’s fixative (Bie &Berntsen), and resuspended <strong>in</strong> 0,1% BSA <strong>in</strong> PBS. Cells were sta<strong>in</strong>ed <strong>in</strong> 0,1% BSA <strong>in</strong> PBS for 2hrs at 4°C with Flk1-PE (BD Pharmigen, # 555308) and EpCAM-PE-Cy7 (eBioscience, # 25-5791-80). Or <strong>cells</strong> were permeabilised <strong>in</strong> dilution buffer (0,3% Triton X-100 + 0,1% BSA <strong>in</strong>PBS), unspecific b<strong>in</strong>d<strong>in</strong>g sites were blocked by 10% Normal Donkey Serum (JacksonImmunoresearch Laboratories) for 30 m<strong>in</strong>utes at RT and sta<strong>in</strong>ed for Brachyury (R&D Systems,# AF2085) for 2 hours at RT <strong>in</strong> dilution buffer, followed by a Cy3-conjugated secondaryantibody (Jackson Immunoresearch Laboratories, # 705-165-147) for 1 hour at RT. Cells wereanalysed by FACS Aria flow cytometer (BD Biosciences).Cell sort<strong>in</strong>gCells were dissociated by 0,05% Tryps<strong>in</strong>-EDTA (Invitrogen), washed and resuspended <strong>in</strong>N2B27 medium before sort<strong>in</strong>g by FACS Aria flow cytometer (BD Biosciences).Immun<strong>of</strong>luorescent sta<strong>in</strong><strong>in</strong>gCells were grown <strong>in</strong> 9 cm 2 slide flasks (Nunc) coated with 0,1% gelat<strong>in</strong>e (Sigma) and fixed <strong>in</strong>LILLY’s fixative (Bie & Berntsen), permeabilised <strong>in</strong> dilution buffer (see above) and blockedfor 30 m<strong>in</strong>utes at RT <strong>in</strong> 10% Normal Donkey Serum (Jackson Immunoresearch Laboratories)<strong>in</strong> dilution buffer. They were sta<strong>in</strong>ed ON at 4°C with primary antibodies: <strong>mouse</strong> anti-Oct3/4(C-10), goat anti-Foxa2 (both Santa Cruz Biotechnology), goat anti-Brachyury (R&DSystems), rat anti-E-cadher<strong>in</strong> (Zymed/Invitrogen), goat anti-Sox17 (R&D Systems), and 1 hrwith Cy2-, Cy3- or Cy5-conjugated species-specific secondary antibodies (JacksonImmunoResearch Laboratories) and 4′,6-diamid<strong>in</strong>o-2-phenyl<strong>in</strong>dole (DAPI, MP Biomedicals).Slides were mounted <strong>in</strong> Fluorescent mount<strong>in</strong>g medium (KPL). Negative controls, where <strong>the</strong>primary antibodies were omitted, were <strong>in</strong>cluded for all sta<strong>in</strong><strong>in</strong>gs and showed no unspecificsta<strong>in</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> secondary antibodies (data not shown). The slides were analyzed us<strong>in</strong>g an LSM510 META laser scann<strong>in</strong>g microscope (Carl Zeiss).qPCRCells were harvested <strong>in</strong> Lysis solution (Invitek), supplemented with 10 mM dithiothreitol(DTT). Total RNA was isolated us<strong>in</strong>g <strong>the</strong> Invisorb Sp<strong>in</strong> RNA kit (Invitek) with DNAsetreatment (Promega) follow<strong>in</strong>g <strong>the</strong> manufacturer’s protocol. cDNA was prepared from 250 ngRNA us<strong>in</strong>g MMLV Reverse Transcriptase (Invitrogen) with random oligos or oligo(dT) 12-18primers (both Invitrogen).qPCR was performed us<strong>in</strong>g <strong>the</strong> standard SYBR ® Green program with dissociation curve on <strong>the</strong>Mx3005P (Stratagene). PCR reactions were run <strong>in</strong> duplicates us<strong>in</strong>g 10 µl Brilliant ® SYBR ®Green qPCR Master Mix (Stratagene), 1 µl cDNA, 1 µl 20 µM primer-mix and 8 µl dH 2 O.Quantified values for each gene were normalized aga<strong>in</strong>st <strong>the</strong> housekeep<strong>in</strong>g gene TATAb<strong>in</strong>d<strong>in</strong>gprote<strong>in</strong> (TBP). Statistical analyses were performed us<strong>in</strong>g Student’s two-tailed, paired t-test. Primer sequences are: <strong>FGF</strong>R1c F_CCGTATGTCCAGATCCTGAAGA,R_GATAGAGTTACCCGCCAAGCA; <strong>FGF</strong>R2c F_GCCCTACCTCAAGGTTCTGAAAGR_GATAGAATTACCCGCCAAGCA; <strong>FGF</strong>R3c F_CCCTACGTCACTGTACTCAAGACTGR_GTGACATTGTGCAAGGACAGAAC; <strong>FGF</strong>R4 F_CGACGGTTTCCCCTACGTACAR_TGCCCGCCAGACAGGTATAC (all from (Woei Ng et al. 2007); <strong>FGF</strong>R1bF_CTTGACGTCGTGGAACGATCT, R_CACGCAGACTGGTTAGCTTCAC (Nakayama etal. 2007); <strong>FGF</strong>R2b F_AACGGGAAGGAGTTTAAGCAG,R_GGAGCTATTTATCCCCGAGTG (Yamanaka et al. 2000); Sox17F_GGAGGGTCACCACTGCTTTA, R_TCAGATGTCTGGAGGTGCTG; Cxcr4F_AGGTACATCTGTGACCGCCTTT, R_ AGACCCACCATTATATGCTGGAA (Kim etal. 2008); Sox7 F_GGCAGTGCAGAACCCGGACC, R_TGCAGAGGCGCTTGCCTTGT;Tdh F_ CCTGGAGGAGGAACAACTGACTA, R_ ACTCGAATGTGCCGTTCTTTG(Wang et al. 2009); TBP F_TCTGAGAGCTCTGGAATTGT,R_GAAGTGCAATGGTCTTTAGG.62


Cell count and proliferation assayCells were fixed <strong>in</strong> LILLY’s fixative (Bie & Berntsen) and counted <strong>in</strong> a NucleoCassette read by<strong>the</strong> NucleoCounter (ChemoMetec A/S) accord<strong>in</strong>g to <strong>the</strong> manufacturer’s protocol for count<strong>in</strong>gnon-liv<strong>in</strong>g <strong>cells</strong>.As a proliferation assay, EdU-<strong>in</strong>corporation by <strong>the</strong> Click-iT® EdU HCS Assay (Invitrogen)was used (Salic and Mitchison 2008). Cells were <strong>in</strong>cubated for 15 m<strong>in</strong> <strong>in</strong> <strong>the</strong>ir respective mediaconta<strong>in</strong><strong>in</strong>g 10 µM EdU. Cells were washed, fixed and sta<strong>in</strong>ed by <strong>the</strong> Click-iT reaction cocktailaccord<strong>in</strong>g to <strong>the</strong> manufacturer’s protocol, us<strong>in</strong>g <strong>the</strong> Alexa Fluor 488-conjugated antibody todetect <strong>in</strong>corporation. Sta<strong>in</strong>ed <strong>cells</strong> were quantified us<strong>in</strong>g <strong>the</strong> FACS Aria flow cytometer (BDBiosciences).StatisticsMean % <strong>of</strong> <strong>the</strong> <strong>cells</strong> <strong>of</strong> <strong>in</strong>terest ± standard deviation or standard error <strong>of</strong> <strong>the</strong> mean (S.D. orS.E.M.) was calculated and statistical analyses by Student’s paired, two-tailed t-test or Ratio t-test were performed.ResultsExpression <strong>of</strong> <strong>FGF</strong> receptor-isotypes dur<strong>in</strong>g def<strong>in</strong>itive endoderm formationRecently, we and o<strong>the</strong>rs have shown that fibroblast growth factor (<strong>FGF</strong>)-<strong>signall<strong>in</strong>g</strong> <strong>in</strong> <strong>mouse</strong>embryonic stem (m<strong>ES</strong>) cell cultures is necessary for <strong>the</strong> <strong>differentiation</strong> <strong>of</strong> def<strong>in</strong>itive endoderm(DE; (Funa et al. 2008; Morrison et al. 2008; Willems and Leyns 2008; Hansson et al. 2009)).These studies are based on a general requirement for active <strong>FGF</strong>-<strong>signall<strong>in</strong>g</strong> dur<strong>in</strong>g early <strong>mouse</strong>development where <strong>FGF</strong>3, 4, 5, 8b and <strong>FGF</strong>R1 are expressed <strong>in</strong> <strong>the</strong> epiblast to post-gastrulationembryo (Wilk<strong>in</strong>son et al. 1988; Haub and Goldfarb 1991; Hebert et al. 1991; Niswander andMart<strong>in</strong> 1992; Ciruna et al. 1997; Guo and Li 2007). To elaborate on <strong>the</strong> observed dependenceon <strong>FGF</strong>-<strong>signall<strong>in</strong>g</strong> dur<strong>in</strong>g DE formation, we made a thorough <strong>in</strong>vestigation <strong>of</strong> <strong>the</strong> expression <strong>of</strong>is<strong>of</strong>orms <strong>of</strong> <strong>FGF</strong>Rs dur<strong>in</strong>g <strong>the</strong> 5-day <strong>differentiation</strong> period by quantitative RT-PCR (qPCR).We used a Sox17 Gfp/ + reporter cell l<strong>in</strong>e (Kim et al. 2007) and sorted <strong>cells</strong> <strong>in</strong>to Sox17-GFP Hi andSox17-GFP Lo fractions, <strong>in</strong> order to isolate RNA from <strong>the</strong> form<strong>in</strong>g DE and <strong>the</strong> non-DEpopulations <strong>of</strong> <strong>cells</strong>, respectively (Figure 1A). In general, <strong>FGF</strong>R1c was expressed at high levels,<strong>FGF</strong>R2b and 2c at <strong>in</strong>termediate levels and <strong>FGF</strong>R1b, 3c and 4 at low levels. Dur<strong>in</strong>g <strong>the</strong> 5-day<strong>differentiation</strong> period, <strong>FGF</strong>R2b and 4 were up-regulated <strong>in</strong> <strong>the</strong> unsorted and Sox17-GFP Hifractions while <strong>the</strong>ir expression was ei<strong>the</strong>r unchanged or down-regulated <strong>in</strong> <strong>the</strong> Sox17-GFP L<strong>of</strong>ractions (Figure 1B). <strong>FGF</strong>R1b was down-regulated <strong>in</strong> both <strong>the</strong> unsorted and Sox17-GFP L<strong>of</strong>ractions upon <strong>in</strong>itiation <strong>of</strong> <strong>differentiation</strong>, although not significantly different from <strong>the</strong>undifferentiated culture. These data confirm f<strong>in</strong>d<strong>in</strong>gs by o<strong>the</strong>r groups, show<strong>in</strong>g that <strong>FGF</strong>R2band 4 are expressed <strong>in</strong> endodermal epi<strong>the</strong>lia such as <strong>the</strong> def<strong>in</strong>itive endoderm (Stark et al. 1991;Orr-Urtreger et al. 1993; Elghazi et al. 2002). <strong>FGF</strong>R1c was upregulated <strong>in</strong> <strong>the</strong> Sox17-GFP L<strong>of</strong>raction alone, peak<strong>in</strong>g on day 5, whereas <strong>FGF</strong>R2c and 3c were up-regulated <strong>in</strong> both Sox17-GFP Lo and Sox17-GFP Hi fractions, upon <strong>differentiation</strong> by activ<strong>in</strong> (Figure 1B). In summary,<strong>FGF</strong>Rc-is<strong>of</strong>orms are highly up-regulated throughout <strong>the</strong> cell culture or <strong>in</strong> <strong>the</strong> Sox17-GFP L<strong>of</strong>raction alone, whereas <strong>FGF</strong>R2b and 4 are up-regulated <strong>in</strong> <strong>the</strong> Sox17-GFP Hi fractionspecifically, suggest<strong>in</strong>g a role for especially <strong>FGF</strong>Rc is<strong>of</strong>orm-activation dur<strong>in</strong>g DE formation <strong>in</strong>m<strong>ES</strong> <strong>cells</strong>.<strong>FGF</strong>s activat<strong>in</strong>g specific sub-populations <strong>of</strong> <strong>FGF</strong>Rs differentially activate PS and DEmarkersS<strong>in</strong>ce <strong>FGF</strong>s activate specific <strong>FGF</strong>R-is<strong>of</strong>oms, we speculated that certa<strong>in</strong> <strong>FGF</strong>s were likely tohave a more potent effect on expression <strong>of</strong> PS and DE markers <strong>in</strong> a culture system aimed at<strong>in</strong>duc<strong>in</strong>g such cell types. We chose to focus on <strong>FGF</strong>s that are described to have a functiondur<strong>in</strong>g gastrulation and <strong>in</strong> <strong>the</strong> development <strong>of</strong> <strong>the</strong> DE and based on which <strong>FGF</strong>Rs <strong>the</strong>y activate63


<strong>the</strong>y were divided <strong>in</strong>to three categories (Figure 2A; (Ornitz et al. 1996; Bottcher and Niehrs2005; Zhang et al. 2006)). <strong>FGF</strong>1, 2 and 9 activate a mixed population <strong>of</strong> both <strong>FGF</strong>Rb- and<strong>FGF</strong>Rc-is<strong>of</strong>orms, with a preference for <strong>the</strong> latter; <strong>FGF</strong>7 and 10 activate <strong>FGF</strong>Rb-is<strong>of</strong>orms only;and <strong>FGF</strong>4, 5, 6, 8b, 8c, 8e and 16 activate one or more <strong>FGF</strong>Rc-is<strong>of</strong>orms and/ or <strong>FGF</strong>R4(MacArthur et al. 1995; Ornitz et al. 1996; Olsen et al. 2006; Zhang et al. 2006; Mason 2007).<strong>FGF</strong>R4 is grouped with <strong>the</strong> <strong>FGF</strong>Rc-type <strong>of</strong> receptors, based on <strong>the</strong> fact that it structurallyresembles this group <strong>of</strong> <strong>FGF</strong>Rs (Va<strong>in</strong>ikka et al. 1992). Importantly, most <strong>FGF</strong>s activat<strong>in</strong>g<strong>FGF</strong>Rc-is<strong>of</strong>orms also activate <strong>the</strong> <strong>FGF</strong>R4 (Mason 2007), mak<strong>in</strong>g it also functionally an<strong>FGF</strong>Rc-type. To evaluate <strong>the</strong> effect <strong>of</strong> <strong>the</strong> different <strong>FGF</strong>s <strong>in</strong> mesendodermal <strong>differentiation</strong>, wemonitored at <strong>the</strong> expression <strong>of</strong> PS and DE markers by means <strong>of</strong> reporter cell l<strong>in</strong>es on days 3and 5.Accord<strong>in</strong>gly, we <strong>in</strong>duced mesoderm by 10 ng/ml BMP4 and added different <strong>FGF</strong>s to evaluate<strong>the</strong>ir effect on <strong>the</strong> PS marker T Gfp/ + cell l<strong>in</strong>e expression. <strong>FGF</strong>1, 2, 4, 6 and 9, b<strong>in</strong>d<strong>in</strong>g a mixedpopulation <strong>of</strong> <strong>FGF</strong>Rs or <strong>FGF</strong>Rc-is<strong>of</strong>orms only, <strong>in</strong>creased <strong>the</strong> number <strong>of</strong> T-GFP + <strong>cells</strong> on day 3by up to 20% compared to BMP4-treatment alone, i.e. 79 – 83 ± 6 – 10% and 69 ± 6%,respectively (mean % ± S.D., n=3; Figure 2B). <strong>FGF</strong>7 and 10 had no significant effect on T-GFP <strong>in</strong>duction, nor did <strong>FGF</strong>8b, 8c, 8e or 16, but <strong>FGF</strong>5 slightly repressed T-<strong>in</strong>duction (Figure2B). Look<strong>in</strong>g at <strong>the</strong> same marker <strong>in</strong> a posterior streak/ mesoderm-<strong>in</strong>duc<strong>in</strong>g protocol, us<strong>in</strong>g 1ng/ml activ<strong>in</strong>, we saw that <strong>FGF</strong>4 and 6 show a 31 – 42% <strong>in</strong>crease <strong>in</strong> T-GFP <strong>in</strong>duction on day 3(Figure 2C), while <strong>FGF</strong>5 and 10 show a smaller <strong>in</strong>crease. <strong>FGF</strong>1, 2, 4, 6 and 9 <strong>in</strong>duced numbers<strong>of</strong> T-GFP + <strong>cells</strong> by up to 34% on day 5. <strong>FGF</strong>7, 8b, 8c, 8e and 16 showed no effect on <strong>the</strong>numbers <strong>of</strong> T-GFP + <strong>cells</strong> on ei<strong>the</strong>r day 3 or 5. Thus, <strong>the</strong> largest effect was seen when add<strong>in</strong>g<strong>FGF</strong>s b<strong>in</strong>d<strong>in</strong>g <strong>FGF</strong>Rc-is<strong>of</strong>orms or a mixed population <strong>of</strong> <strong>FGF</strong>Rs, mediat<strong>in</strong>g an <strong>in</strong>crease <strong>in</strong> T-GFP + <strong>cells</strong> <strong>in</strong> general and on day 5 <strong>in</strong> particular. The reason for this pronounced effect can bethrough ei<strong>the</strong>r a delay <strong>in</strong> <strong>the</strong> response by some <strong>cells</strong> (<strong>in</strong> media conta<strong>in</strong><strong>in</strong>g BMP4 or activ<strong>in</strong> only,it peaks on day 3), or ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> T-expression for a time period extend<strong>in</strong>g beyond day 3.Next, we looked at <strong>the</strong> effect <strong>of</strong> <strong>FGF</strong>s on anterior streak/ DE-<strong>in</strong>duction by 30 ng/ml activ<strong>in</strong> <strong>in</strong> am<strong>ES</strong> cell l<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g a GFP knock-<strong>in</strong> allele <strong>of</strong> <strong>the</strong> anterior streak marker Gsc, Gsc Gfp/ +(Tada et al. 2005). Addition <strong>of</strong> <strong>FGF</strong>1, 2, 4, 6, 8b and 9 <strong>in</strong>creased <strong>the</strong> number <strong>of</strong> Gsc-GFP + <strong>cells</strong>by 22 – 40% (Figure 2D). Activation <strong>of</strong> <strong>FGF</strong>Rb-is<strong>of</strong>orms only, by <strong>FGF</strong>7 and 10, had no effectand nor did <strong>FGF</strong>5, 8c, 8e and 16. This f<strong>in</strong>d<strong>in</strong>g was not due to <strong>the</strong> lack <strong>of</strong> receptors, as <strong>the</strong>y werepresent <strong>in</strong> <strong>the</strong> cell population (Figure 1B). Look<strong>in</strong>g at <strong>the</strong> DE marker Sox17, we saw up to a50% decrease <strong>of</strong> <strong>the</strong> Sox17-GFP Hi fraction, from 34 ± 4% to 17 ± 3% when add<strong>in</strong>g <strong>FGF</strong>sactivat<strong>in</strong>g <strong>FGF</strong>Rc-is<strong>of</strong>orms (Figure 2E). <strong>FGF</strong>s activat<strong>in</strong>g <strong>FGF</strong>Rb-is<strong>of</strong>orms only, slightly<strong>in</strong>creased <strong>the</strong> number <strong>of</strong> Sox17-GFP Hi <strong>cells</strong> or had no effect (<strong>FGF</strong>7 and <strong>FGF</strong>10, respectively).In summary, <strong>FGF</strong>s b<strong>in</strong>d<strong>in</strong>g predom<strong>in</strong>antly <strong>FGF</strong>R4/<strong>FGF</strong>Rc-is<strong>of</strong>orms, i.e. <strong>FGF</strong>1, 2, 4, 6, 8b and9, promote <strong>differentiation</strong> <strong>towards</strong> a mesendoderm cell population express<strong>in</strong>g primitive andanterior streak markers.The mesendoderm population responds to <strong>FGF</strong>Rc-is<strong>of</strong>orm activation onlyNext we <strong>in</strong>vestigated whe<strong>the</strong>r <strong>the</strong> <strong>FGF</strong>s <strong>in</strong>hibit<strong>in</strong>g DE formation would <strong>in</strong>stead promote PS andmesoderm marker expression by analys<strong>in</strong>g Sox17-GFP <strong>cells</strong> sta<strong>in</strong>ed with antibodies aga<strong>in</strong>st T,FLK1 and EpCAM. For analytical purposes, cell populations were divided <strong>in</strong>to Sox17-GFP –/Loand Sox17-GFP Hi fractions. We limited <strong>the</strong> number <strong>of</strong> <strong>FGF</strong>s <strong>in</strong>troduced <strong>in</strong> <strong>the</strong>se experiments,focus<strong>in</strong>g only on those show<strong>in</strong>g <strong>the</strong> largest effect on PS and DE marker <strong>in</strong>duction/ repression,namely <strong>FGF</strong>1, 2 and 9 (mixed <strong>FGF</strong>R-activation); <strong>FGF</strong>7 and 10 (<strong>FGF</strong>Rb-activation only); and<strong>FGF</strong>4, 6 and 8b (<strong>FGF</strong>Rc-activation only). As a control, we <strong>in</strong>cluded <strong>differentiation</strong> by BMP4and saw that <strong>the</strong>se <strong>cells</strong> expressed <strong>the</strong> most T <strong>in</strong> Sox17-GFP –/Lo <strong>cells</strong> as expected (Figures 3Aand B).In <strong>the</strong> Sox17-GFP Hi fraction, 12% <strong>of</strong> <strong>cells</strong> were T + on day 3 when treated with activ<strong>in</strong> alone(Figure 3A). This number was <strong>in</strong>creased by addition <strong>of</strong> <strong>FGF</strong>2, 4, 7 and 10, and decreased <strong>in</strong> <strong>the</strong>presence <strong>of</strong> <strong>FGF</strong>6, 8b, 9 and especially <strong>FGF</strong>1. On day 5, numbers <strong>of</strong> T + <strong>cells</strong> were ra<strong>the</strong>r lowand an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> Sox17-GFP Hi /T + cell population was seen only when add<strong>in</strong>g <strong>FGF</strong>2(Figure 3A). We also <strong>in</strong>vestigated <strong>the</strong> Sox17-GFP –/Lo fraction and saw that <strong>FGF</strong>7 and 10 had no64


<strong>in</strong>fluence on <strong>the</strong> numbers <strong>of</strong> Sox17-GFP –/Lo / T + <strong>cells</strong> on day 3 (Figure 3B), but <strong>the</strong> o<strong>the</strong>r <strong>FGF</strong>sall reduced cell numbers. On day 5, cell numbers were <strong>in</strong> general very low, show<strong>in</strong>g a slight<strong>in</strong>duction <strong>of</strong> Sox17-GFP –/Lo / T + <strong>cells</strong> when add<strong>in</strong>g <strong>FGF</strong>2, 4 or 6 (Figure 3B). These datademonstrate that <strong>the</strong> <strong>FGF</strong>s activat<strong>in</strong>g ei<strong>the</strong>r a mixed population <strong>of</strong> <strong>FGF</strong>Rs or <strong>FGF</strong>Rc-is<strong>of</strong>ormscan reduce <strong>the</strong> number <strong>of</strong> T + <strong>cells</strong> <strong>in</strong> <strong>the</strong> emerg<strong>in</strong>g DE and <strong>in</strong> <strong>the</strong> rest <strong>of</strong> <strong>the</strong> cell culture, whichhas been suggested to consist <strong>of</strong> <strong>cells</strong> <strong>of</strong> an anterior streak type, not yet determ<strong>in</strong>ed to expressDE markers (Hansson et al. 2009).Tada and co-workers showed that <strong>the</strong> mesendoderm population can be dist<strong>in</strong>guished by <strong>the</strong> PSmarker Gsc, and later <strong>the</strong> DE can be separated from <strong>the</strong> mesoderm by means <strong>of</strong> <strong>the</strong> DE markersSOX17, E-cadher<strong>in</strong> and FOXA2 and mesoderm markers FLK1 and platelet-derived growthfactor receptors (PDGFRs) α and β (Tada et al. 2005). Try<strong>in</strong>g to def<strong>in</strong>e whe<strong>the</strong>r <strong>in</strong>dividual<strong>FGF</strong>s would switch <strong>the</strong> mesoderm vs. endoderm balance <strong>in</strong> <strong>the</strong> differentiat<strong>in</strong>g culture, we<strong>in</strong>vestigated markers able to dist<strong>in</strong>guish between <strong>the</strong>se cultures namely Epi<strong>the</strong>lial cell adhesionmolecule (EpCAM) and FLK1. EpCAM is expressed <strong>in</strong> pluripotent m<strong>ES</strong> <strong>cells</strong> and <strong>in</strong> <strong>the</strong> DEepi<strong>the</strong>lium dur<strong>in</strong>g embryonic development (Balzar et al. 1999; Sherwood et al. 2007) whereasFLK1 is expressed <strong>in</strong> all mesoderm <strong>cells</strong> leav<strong>in</strong>g <strong>the</strong> embryonic posterior streak. Subsequently,FLK1 is observed <strong>in</strong> develop<strong>in</strong>g mesodermal cardiac crescent <strong>cells</strong> and <strong>in</strong> most extraembryonicmesoderm and at E8.5 it is expressed <strong>in</strong> splanchnic mesoderm and endo<strong>the</strong>lial <strong>cells</strong><strong>of</strong> <strong>the</strong> dorsal aorta only (Ema et al. 2006). Focus<strong>in</strong>g on day 5, we sta<strong>in</strong>ed differentiated Sox17-GFP <strong>cells</strong> with antibodies for Flk1 and EpCAM. Look<strong>in</strong>g at <strong>the</strong> three markers separately, wesaw a decrease <strong>in</strong> Sox17-GFP Hi <strong>cells</strong> <strong>in</strong> <strong>the</strong> presence <strong>of</strong> <strong>FGF</strong>1, 2, 4 and 6 <strong>in</strong> concordance withprevious data (Figures 3C and 2E). There were very few FLK1 + <strong>cells</strong> when treat<strong>in</strong>g withactiv<strong>in</strong>, regardless <strong>of</strong> <strong>FGF</strong>s added, but a high <strong>in</strong>duction <strong>in</strong> <strong>the</strong> BMP4-treated positive controland BSA control samples (Figure 3D). The <strong>in</strong>duction <strong>of</strong> EpCAM is 87 ± 2% <strong>in</strong> <strong>the</strong> presence <strong>of</strong>activ<strong>in</strong> (Figure 3E) and <strong>FGF</strong>6, 7, 8b and 9 modestly but significantly <strong>in</strong>crease EpCAMexpression <strong>in</strong> <strong>the</strong> range <strong>of</strong> 88 ± 3% to 92 ± 3%. We see a high amount <strong>of</strong> <strong>cells</strong> that are FLK1 +or EpCAM + <strong>in</strong> <strong>the</strong> N2B27+BSA negative control medium. This condition gives rise to 50-75%Sox1-express<strong>in</strong>g neural progenitors at day 5 <strong>of</strong> culture ((Y<strong>in</strong>g et al. 2003b); Peterslund et al.,unpublished data). The high amount <strong>of</strong> FLK1 + and EpCAM + <strong>cells</strong> <strong>in</strong> this condition is mostlikely due to random and/ or neural <strong>differentiation</strong>.In <strong>the</strong> Sox17-GFP Hi fraction, <strong>cells</strong> turned primarily <strong>in</strong>to Sox17-GFP Hi / FLK1 – / EpCAM + <strong>cells</strong><strong>in</strong> <strong>the</strong> presence <strong>of</strong> activ<strong>in</strong>, representative <strong>of</strong> def<strong>in</strong>itive endoderm (Figure 3F; numbers shown are% <strong>of</strong> Sox17-GFP Hi <strong>cells</strong>). The addition <strong>of</strong> <strong>FGF</strong>s did not alter this picture, and also did notchange fates <strong>of</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g <strong>cells</strong>, <strong>the</strong>se be<strong>in</strong>g small fractions <strong>of</strong> Sox17 Hi / FLK1 + / EpCAM +and Sox17 Hi / FLK1 – / EpCAM – . The former are likely to represent <strong>cells</strong> <strong>in</strong> a transition phaseexpress<strong>in</strong>g both EpCAM and FLK1 and were present ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> BSA control sample. Weonly found Sox17 Hi / FLK1 + / EpCAM – <strong>cells</strong> <strong>in</strong> <strong>the</strong> BMP4-condition, thus <strong>in</strong>duc<strong>in</strong>g what appearsto be a Sox17-express<strong>in</strong>g mesodermal cell type.We also looked at cell fates <strong>in</strong> <strong>the</strong> Sox17-GFP –/Lo fraction. Here, <strong>the</strong> vast majority <strong>of</strong> <strong>cells</strong> werestill Sox17 –/Lo / FLK1 – / EpCAM + (Figure 3G), and <strong>FGF</strong>1, 2, 8b and 9 had a positive effect onthis population, elevat<strong>in</strong>g numbers <strong>of</strong> this population by up to 10%.In summary, <strong>FGF</strong>s activat<strong>in</strong>g <strong>FGF</strong>Rc-is<strong>of</strong>orms slightly decrease <strong>the</strong> number <strong>of</strong> Sox17-GFP + /T +and Sox17 –/Lo /T + <strong>cells</strong>, <strong>in</strong>dicat<strong>in</strong>g random and/ or neural <strong>differentiation</strong> ra<strong>the</strong>r than PSformation at <strong>the</strong> expense <strong>of</strong> DE. In <strong>the</strong> Sox17-GFP + population, <strong>FGF</strong>s activat<strong>in</strong>g <strong>FGF</strong>Rcis<strong>of</strong>orms<strong>in</strong>crease <strong>the</strong> number <strong>of</strong> FLK1 – /EpCAM + and decrease <strong>the</strong> number <strong>of</strong> FLK1 – /EpCAM –<strong>cells</strong> possibly <strong>in</strong>dicat<strong>in</strong>g a pool <strong>of</strong> non-mesodermal <strong>cells</strong> at <strong>in</strong>termediary steps <strong>of</strong> <strong>differentiation</strong>.<strong>FGF</strong>Rc-isotype activation <strong>in</strong>duces cell growth dur<strong>in</strong>g <strong>the</strong> first 3 days <strong>of</strong> culture<strong>FGF</strong>s were orig<strong>in</strong>ally discovered as hav<strong>in</strong>g a mitogenic effect <strong>in</strong> fibroblast <strong>cells</strong>, and were laterfound to have adverse effects <strong>in</strong> embryonic development, <strong>in</strong>clud<strong>in</strong>g endoderm formation(Gospodarowicz and Moran 1975; Ornitz et al. 1996; Bottcher and Niehrs 2005). We analysed<strong>the</strong> mitogenic effect <strong>of</strong> <strong>the</strong> <strong>FGF</strong>s <strong>in</strong> wt m<strong>ES</strong> <strong>cells</strong> on days 3 and 5, and found that activ<strong>in</strong>treatmentalone gave a 3,3 times <strong>in</strong>crease <strong>in</strong> cell numbers by day 3 (from 2.000 <strong>cells</strong>/ cm 2 to6.600 <strong>cells</strong>/ cm 2 ; Figure 4A). All <strong>FGF</strong>s improved cell growth to vary<strong>in</strong>g degrees, <strong>FGF</strong>1, 2, 465


and 9 be<strong>in</strong>g <strong>the</strong> most effective ones (up to 20.400 <strong>cells</strong>/ cm 2 or a 3 times <strong>in</strong>crease compared to<strong>the</strong> activ<strong>in</strong>-treated <strong>cells</strong>). By means <strong>of</strong> 5-ethynyl-2’-deoxyurid<strong>in</strong>e (EdU)-<strong>in</strong>corporation (Salicand Mitchison 2008) we could quantify <strong>the</strong> proliferation <strong>of</strong> <strong>cells</strong> (see Figure S1 for gat<strong>in</strong>g andcontrols). We found that <strong>the</strong> absolute number <strong>of</strong> proliferat<strong>in</strong>g <strong>cells</strong> was higher at day 3 than day5, by an approximate 4 time <strong>in</strong>crease for <strong>the</strong> activ<strong>in</strong>-treated <strong>cells</strong> and a 4-7 times <strong>in</strong>crease for<strong>the</strong> conditions supplemented with <strong>FGF</strong>s. At day 3, <strong>the</strong> relative number <strong>of</strong> proliferat<strong>in</strong>g <strong>cells</strong> didnot differ much from <strong>the</strong> activ<strong>in</strong>-treated sample (Figure 4A) except for a small reduction whenadd<strong>in</strong>g <strong>FGF</strong>1 or not add<strong>in</strong>g any growth factors at all, i.e. <strong>the</strong> BSA control.On day 5, <strong>the</strong>re was app. 80.000 <strong>cells</strong>/cm 2 <strong>in</strong> samples treated with activ<strong>in</strong> alone. This number<strong>in</strong>creased 1,6 times to app. 130.000 <strong>cells</strong>/ cm 2 when add<strong>in</strong>g <strong>FGF</strong>2 (Figure 4B). This <strong>in</strong>dicatesthat <strong>the</strong> effect <strong>of</strong> <strong>FGF</strong>s on cell growth is decreas<strong>in</strong>g over time probably because more <strong>cells</strong> aredifferentiated at day 5. At this stage, especially <strong>FGF</strong>1 and 2 positively affect cell numbers.These have been shown also <strong>in</strong> o<strong>the</strong>r cell systems to have <strong>the</strong> largest mitogenic effect (Ornitz etal. 1996; Zhang et al. 2006). By EdU-<strong>in</strong>corporation, we saw a 50% higher proliferation rate <strong>in</strong><strong>the</strong> BSA control than with <strong>cells</strong> treated with activ<strong>in</strong>, show<strong>in</strong>g 25% and 15% total proliferation,respectively (Figure 4B). The <strong>FGF</strong>s most frequently reduced proliferation; <strong>FGF</strong>1, 2, 4 and 6 by40 – 50% and <strong>FGF</strong>8b, 9 and 10 show<strong>in</strong>g moderate reductions. These data <strong>in</strong>dicate that <strong>the</strong> ma<strong>in</strong>effect seen by <strong>FGF</strong>1, 2, 4, 6 and 9 on proliferation occurs prior to day 3, and that most <strong>of</strong> <strong>the</strong><strong>cells</strong> <strong>in</strong> <strong>the</strong>se cultures have left <strong>the</strong> proliferative state by day 5.<strong>FGF</strong>4 is dispensable for <strong>the</strong> formation <strong>of</strong> endodermOf <strong>the</strong> <strong>FGF</strong>s tested, <strong>FGF</strong>4 and 6 b<strong>in</strong>d<strong>in</strong>g <strong>FGF</strong>Rc-isotypes only, <strong>in</strong>crease BMP4 and activ<strong>in</strong><strong>in</strong>ducedexpression <strong>of</strong> T and Gsc <strong>the</strong> most. <strong>FGF</strong>4 is important dur<strong>in</strong>g gastrulation where it isresponsible for <strong>the</strong> cell movements through <strong>the</strong> PS (Bottcher and Niehrs 2005). We wanted to<strong>in</strong>vestigate whe<strong>the</strong>r an <strong>FGF</strong>4 –/– cell l<strong>in</strong>e (Wilder et al. 1997) would be able to i) differentiate<strong>in</strong>to <strong>the</strong> endoderm l<strong>in</strong>eage; and ii) promote <strong>differentiation</strong> <strong>of</strong> DE cell types, <strong>in</strong> that <strong>the</strong> latterwould not be <strong>in</strong>hibited by <strong>the</strong> <strong>FGF</strong>Rc is<strong>of</strong>orm-activat<strong>in</strong>g <strong>FGF</strong>4. When <strong>cells</strong> were ma<strong>in</strong>ta<strong>in</strong>ed aspluripotent <strong>cells</strong>, <strong>the</strong> <strong>FGF</strong>4 –/– cell l<strong>in</strong>e showed a different cell morphology than <strong>the</strong> E14 and<strong>FGF</strong>4 +/– cell l<strong>in</strong>es. Cells grew <strong>in</strong> small, very dense clusters <strong>in</strong>dicative <strong>of</strong> pluripotent <strong>cells</strong>(Figure 5A) and growth rates were slower, confirm<strong>in</strong>g <strong>the</strong> mitogenic effect <strong>of</strong> <strong>FGF</strong>4. Cellssta<strong>in</strong>ed positive for <strong>the</strong> pluripotency marker OCT4 and negative for <strong>the</strong> endoderm markerSox17, similar to <strong>the</strong> wt and heterozygote cell l<strong>in</strong>es.We subjected <strong>the</strong> wt E14, <strong>FGF</strong>4 +/– and <strong>FGF</strong>4 –/– cell l<strong>in</strong>es to our DE <strong>in</strong>duction-protocol.Through antibody sta<strong>in</strong><strong>in</strong>g <strong>of</strong> SOX17, E-cadher<strong>in</strong> (Ecad) and FOXA2 we identified <strong>cells</strong> <strong>of</strong> anendoderm orig<strong>in</strong>. Foxa2 is expressed dur<strong>in</strong>g embryonic development <strong>in</strong> <strong>the</strong> anterior primitivestreak, <strong>the</strong> newly formed def<strong>in</strong>itive endoderm and is ma<strong>in</strong>ta<strong>in</strong>ed throughout most matureendoderm-derived tissues (Kaestner et al. 1994; We<strong>in</strong>ste<strong>in</strong> et al. 1994). <strong>FGF</strong>4 +/– <strong>cells</strong> behavedmuch like E14 wt <strong>cells</strong>, show<strong>in</strong>g vast numbers <strong>of</strong> OCT4 – /SOX17 + and SOX17 + /FOXA2 + /Ecadher<strong>in</strong>+ <strong>cells</strong> by day 5 (Figure 5B). In each cell l<strong>in</strong>e, <strong>differentiation</strong> was not 100% and smallclusters <strong>of</strong> tightly connected, undifferentiated OCT4 + <strong>cells</strong> persisted <strong>in</strong> <strong>the</strong> culture. Remarkably,<strong>FGF</strong>4 –/– <strong>cells</strong> readily differentiated along <strong>the</strong> endoderm l<strong>in</strong>eage, show<strong>in</strong>g ma<strong>in</strong>ly OCT4 –/SOX17 + <strong>cells</strong> and only a few more OCT4 + <strong>cells</strong> than <strong>the</strong> wt and heterozygote cell l<strong>in</strong>es (Figure5A). When adm<strong>in</strong>istrat<strong>in</strong>g <strong>FGF</strong>4 prote<strong>in</strong> ectopically, <strong>the</strong> number <strong>of</strong> OCT4 + <strong>cells</strong> was reduced towt levels. There were comparable numbers <strong>of</strong> SOX17 + /FOXA2 + /E-cadher<strong>in</strong> + <strong>in</strong> <strong>the</strong> knock-outcell l<strong>in</strong>e and wt or heterozygote cell l<strong>in</strong>es, and <strong>the</strong>se did not change by <strong>the</strong> addition <strong>of</strong> <strong>FGF</strong>4 to<strong>the</strong> medium (Figure 5B).Thus, we conclude that <strong>FGF</strong>4 is dispensable for <strong>differentiation</strong> <strong>of</strong> m<strong>ES</strong> <strong>cells</strong> along <strong>the</strong>endoderm l<strong>in</strong>eage and for <strong>cells</strong> to leave <strong>the</strong> pluripotent state when <strong>the</strong> <strong>differentiation</strong> protocolapplied <strong>in</strong>cludes activ<strong>in</strong>.Def<strong>in</strong>itive endoderm is formed <strong>in</strong> <strong>the</strong> absence <strong>of</strong> <strong>FGF</strong>4Look<strong>in</strong>g for expression <strong>of</strong> Sox7 and Thermostable direct hemolys<strong>in</strong> gene (Tdh), markers <strong>of</strong>visceral endoderm (VE; (Sherwood et al. 2007)), we wanted to see whe<strong>the</strong>r <strong>the</strong> endodermformed was def<strong>in</strong>itive or visceral. Sta<strong>in</strong><strong>in</strong>g for endoderm and VE markers <strong>in</strong> <strong>the</strong>66


undifferentiated <strong>cells</strong>, we found that E-cadher<strong>in</strong> was abundantly expressed but not SOX17 orSOX7 expression (Figure 6A). When <strong>cells</strong> had undergone <strong>differentiation</strong> for five days, E14 and<strong>FGF</strong>4 +/– cell l<strong>in</strong>es were SOX17 + /E-cadher<strong>in</strong> + /SOX7 – <strong>in</strong>dicative <strong>of</strong> a DE identity (Figure 6B).<strong>FGF</strong>4 –/– <strong>cells</strong> ma<strong>in</strong>ly showed <strong>the</strong> same expression pattern but also showed small clusters <strong>of</strong>SOX17 + /E-cadher<strong>in</strong> + /SOX7 + <strong>cells</strong> <strong>in</strong>dicat<strong>in</strong>g formation <strong>of</strong> VE <strong>in</strong> <strong>the</strong>se areas (Figures 6B andS2). When add<strong>in</strong>g ectopic <strong>FGF</strong>4 to <strong>the</strong> growth medium, hardly any SOX7 + <strong>cells</strong> were seen <strong>in</strong><strong>the</strong> culture (Figure 6B).By qPCR analyses, we confirmed <strong>the</strong> DE phenotype <strong>of</strong> all three cell l<strong>in</strong>es but did not seeevidence <strong>of</strong> a VE sub-population <strong>in</strong> <strong>the</strong> <strong>FGF</strong>4 –/– cell culture. We saw a large <strong>in</strong>duction <strong>of</strong> Sox17and especially Cxcr4 transcription upon DE-<strong>in</strong>duction (Figure 6C) <strong>in</strong>dicative <strong>of</strong> <strong>the</strong> formation<strong>of</strong> DE ra<strong>the</strong>r than VE. The VE marker Sox7 showed similar levels <strong>of</strong> expression <strong>in</strong> <strong>the</strong>pluripotent and differentiated states for all three cell l<strong>in</strong>es and <strong>the</strong> absolute amount <strong>of</strong>transcription was very low, i.e. similar to Sox17-expression levels <strong>in</strong> m<strong>ES</strong> <strong>cells</strong>. Tdh wasexpressed at <strong>in</strong>termediary levels <strong>in</strong> m<strong>ES</strong> <strong>cells</strong> but was down-regulated upon DE-<strong>in</strong>duction.Interest<strong>in</strong>gly, <strong>the</strong> <strong>FGF</strong>4 +/– cell l<strong>in</strong>e showed a somewhat elevated expression <strong>of</strong> Sox17 and Cxcr4both <strong>in</strong> <strong>the</strong> pluripotent and differentiated states whereas <strong>the</strong> <strong>FGF</strong>4 –/– cell l<strong>in</strong>e expressed <strong>the</strong>segenes at levels comparable to wt <strong>cells</strong>. This suggests that <strong>FGF</strong>4 acts as a morphogen and that an<strong>in</strong>termediary expression level most efficiently <strong>in</strong>duces DE-formation whereas high or lowlevels <strong>in</strong> <strong>the</strong> wt and <strong>FGF</strong>4 –/– cell l<strong>in</strong>es, respectively, fail to do so. In summary, we conclude that<strong>FGF</strong>4-<strong>signall<strong>in</strong>g</strong> is dispensable for <strong>in</strong>duction <strong>of</strong> DE <strong>in</strong> <strong>FGF</strong>4 –/– m<strong>ES</strong> <strong>cells</strong> and that an<strong>in</strong>termediary <strong>FGF</strong>4-koncentration may be beneficial to DE formation.DiscussionDur<strong>in</strong>g embryonic development, epi<strong>the</strong>lial tissues express <strong>FGF</strong>Rb-is<strong>of</strong>orms whilemesenchymal tissues express ma<strong>in</strong>ly <strong>FGF</strong>Rc-is<strong>of</strong>orms (Ornitz and Itoh 2001). <strong>FGF</strong>sspecifically activat<strong>in</strong>g <strong>FGF</strong>Rb-is<strong>of</strong>orms (i.e. <strong>FGF</strong>7 and 10) are ma<strong>in</strong>ly expressed <strong>in</strong> <strong>the</strong>mesenchyme and <strong>FGF</strong>s activat<strong>in</strong>g <strong>FGF</strong>Rc-is<strong>of</strong>orms (i.e. <strong>FGF</strong>4, 8 and 9) are ma<strong>in</strong>ly expressed<strong>in</strong> <strong>the</strong> epi<strong>the</strong>lium, result<strong>in</strong>g <strong>in</strong> specificity dur<strong>in</strong>g reciprocal epi<strong>the</strong>lial-mesenchymal <strong>signall<strong>in</strong>g</strong> <strong>in</strong>develop<strong>in</strong>g organs such as <strong>the</strong> lung, cecum, salivary glands and pancreas (Stark et al. 1991;Orr-Urtreger et al. 1993; Colv<strong>in</strong> et al. 2001; Ornitz and Itoh 2001; Elghazi et al. 2002; Manfroidet al. 2007). Data from <strong>mouse</strong> embryos obta<strong>in</strong>ed <strong>in</strong> our group confirm f<strong>in</strong>d<strong>in</strong>gs by o<strong>the</strong>rs that <strong>in</strong><strong>the</strong> develop<strong>in</strong>g pancreas <strong>FGF</strong>R2b and 4 are expressed <strong>in</strong> <strong>the</strong> epi<strong>the</strong>lium, whereas <strong>FGF</strong>R1c and2c are expressed <strong>in</strong> <strong>the</strong> mesenchyme (Kathr<strong>in</strong>e Beck Sylvestersen, personal communication;(Stark et al. 1991; Orr-Urtreger et al. 1993; Elghazi et al. 2002)). In <strong>the</strong> present report we showhow <strong>FGF</strong>R2b and 4 are up-regulated <strong>in</strong> <strong>the</strong> Sox17-GFP Hi or DE-fraction dur<strong>in</strong>g DE formation<strong>in</strong> m<strong>ES</strong> <strong>cells</strong>. <strong>FGF</strong>R1c, 2c and 3c were up-regulated <strong>in</strong> <strong>the</strong> Sox17-GFP Lo fraction alone or <strong>in</strong>both fractions. The reason for this unexpected high expression <strong>of</strong> <strong>FGF</strong>Rc-is<strong>of</strong>orms <strong>in</strong> both <strong>the</strong>Sox17-GFP Lo and Sox17-GFP Hi fractions may be that <strong>the</strong> Sox17-GFP Lo fraction conta<strong>in</strong>s alarge pool <strong>of</strong> <strong>cells</strong> not yet committed to an epi<strong>the</strong>lial fate or <strong>cells</strong> that are undifferentiated. Thefraction is characterised by high numbers <strong>of</strong> non-mesodermal Sox17-GFP –/Lo / FLK1 – /EpCAM + express<strong>in</strong>g <strong>cells</strong>. These <strong>cells</strong> may still undergo <strong>differentiation</strong> and maturation andthus have <strong>the</strong> potential to later become epi<strong>the</strong>lial endoderm or <strong>the</strong>y may conta<strong>in</strong> mesenchymal<strong>cells</strong> to some degree. The Sox17-GFP Lo express<strong>in</strong>g <strong>cells</strong> may have a function <strong>in</strong> <strong>the</strong> culturesimilar to that <strong>of</strong> <strong>the</strong> mesenchyme <strong>in</strong> pancreatic development, i.e. <strong>signall<strong>in</strong>g</strong> to direct cell fate <strong>of</strong>DE or foregut progenitors. Accord<strong>in</strong>gly, prelim<strong>in</strong>ary data <strong>in</strong> our lab show that if Sox17-GFP<strong>cells</strong> are sorted after 5 days <strong>of</strong> DE formation, <strong>the</strong>n re-plated and cultured under conditions<strong>in</strong>duc<strong>in</strong>g pancreatic progenitors (Hansson et al. 2009), <strong>the</strong> Sox17-GFP Hi fraction will looseGFP expression and fail to turn on foregut markers such as SOX2 and PDX1 (Maria W<strong>in</strong>zi,personal communication). On <strong>the</strong> contrary, <strong>cells</strong> <strong>of</strong> <strong>the</strong> Sox17-GFP Lo fraction will turn on GFPexpression and differentiate <strong>in</strong>to SOX2 + , NKX6.1 + and PDX1 + positive <strong>cells</strong> similar to <strong>the</strong>unsorted culture. This suggests that signals from <strong>the</strong> Sox17-GFP Lo to <strong>the</strong> Sox17-GFP Hi <strong>cells</strong><strong>in</strong>clude <strong>FGF</strong>s and is crucial for <strong>the</strong>ir propagation and ability to differentiate fur<strong>the</strong>r.67


Most <strong>of</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g <strong>cells</strong> are Sox17 –/Lo / FLK1 – / EpCAM – and <strong>the</strong>se may represent amesoderm population which is no longer express<strong>in</strong>g FLK1, i.e. is not haematopoietic. Flk1 isnecessary for hematopoietic and endo<strong>the</strong>lial development, but not for o<strong>the</strong>r mesodermall<strong>in</strong>eages express<strong>in</strong>g <strong>the</strong> marker at an early stage (Ema et al. 2006).We have previously shown that <strong>FGF</strong>-<strong>signall<strong>in</strong>g</strong> has a positive effect on <strong>differentiation</strong> <strong>towards</strong>PS-type <strong>cells</strong> peak<strong>in</strong>g on day 3 (T-GFP + and Gsc-GFP + ), but <strong>in</strong>hibitory effect on DE <strong>cells</strong>(Sox17-GFP + ; (Hansson et al. 2009)). In <strong>the</strong> present study we show that <strong>FGF</strong> activat<strong>in</strong>g several<strong>FGF</strong>Rc-isotypes elicit this effect and that <strong>FGF</strong>s activat<strong>in</strong>g only <strong>FGF</strong>Rb-isotypes have no effect.This suggests that activation <strong>of</strong> <strong>FGF</strong>Rc-is<strong>of</strong>orms is beneficial for early <strong>differentiation</strong> <strong>towards</strong>an <strong>in</strong>termediary PS-type cell, primarily through <strong>in</strong>creased proliferation <strong>of</strong> <strong>cells</strong> <strong>in</strong>duced todifferentiate by activ<strong>in</strong> or BMP4. Later, <strong>FGF</strong>Rc-activation must be removed <strong>in</strong> order tooptimize <strong>differentiation</strong> <strong>in</strong>to a DE cell, probably because <strong>FGF</strong>Rc-activation drivesmesendodermal <strong>cells</strong> <strong>towards</strong> <strong>the</strong> mesodermal l<strong>in</strong>eage. The <strong>FGF</strong>R-expression seen dur<strong>in</strong>gmesendoderm/ DE-<strong>in</strong>duction supports this, as ma<strong>in</strong>ly <strong>FGF</strong>Rc-is<strong>of</strong>orms are expressed <strong>in</strong> <strong>the</strong>culture. <strong>FGF</strong>R2b is expressed late dur<strong>in</strong>g DE-<strong>in</strong>duction suggest<strong>in</strong>g that <strong>the</strong> form<strong>in</strong>g epi<strong>the</strong>liumcan respond to <strong>FGF</strong>s activat<strong>in</strong>g this receptor. However, we failed to substantiate this hypo<strong>the</strong>sisas <strong>the</strong> number <strong>of</strong> Sox17-GFP Hi <strong>cells</strong> were unaffected by <strong>FGF</strong>7 and 10. Possibly, this <strong>FGF</strong>R2bexpression renders <strong>the</strong> <strong>cells</strong> competent to respond to later signals dur<strong>in</strong>g organogenesis.Prior to gastrulation, <strong>FGF</strong>4 and 5, activat<strong>in</strong>g <strong>FGF</strong>Rc-is<strong>of</strong>orms only, are expressed <strong>in</strong> <strong>the</strong>embryonic ectoderm <strong>in</strong> <strong>the</strong> area <strong>of</strong> <strong>the</strong> later PS, and <strong>in</strong> <strong>the</strong> PS dur<strong>in</strong>g gastrulation (Haub andGoldfarb 1991; Hebert et al. 1991; Niswander and Mart<strong>in</strong> 1992). Dur<strong>in</strong>g gastrulation, <strong>FGF</strong>3,activat<strong>in</strong>g <strong>FGF</strong>Rb-is<strong>of</strong>orms only, is expressed <strong>in</strong> <strong>the</strong> PS (Wilk<strong>in</strong>son et al. 1988). This supportsour suggestion that <strong>FGF</strong>Rc-activation is important early <strong>in</strong> <strong>differentiation</strong>, although we do notsee a requirement for <strong>FGF</strong>Rb-activation dur<strong>in</strong>g ei<strong>the</strong>r mesoderm or endoderm <strong>in</strong>duction. Acomb<strong>in</strong>ation <strong>of</strong> factors, activat<strong>in</strong>g <strong>FGF</strong>Rc-is<strong>of</strong>orms early dur<strong>in</strong>g <strong>differentiation</strong> and <strong>FGF</strong>Rbis<strong>of</strong>ormslater may be beneficial for future DE-<strong>in</strong>duction.The <strong>FGF</strong>s hav<strong>in</strong>g <strong>the</strong> largest effect on PS-marker <strong>in</strong>duction were <strong>FGF</strong>4 and 6. <strong>FGF</strong>4 is animportant growth factor dur<strong>in</strong>g gastrulation where it is responsible for <strong>the</strong> cell movementsthrough <strong>the</strong> PS (Bottcher and Niehrs 2005) and <strong>FGF</strong>4 knock-out mice die dur<strong>in</strong>g gastrulation atE4-5 (Feldman et al. 1995). It has also been shown to be necessary for m<strong>ES</strong>Cs when leav<strong>in</strong>g<strong>the</strong> pluripotent state and differentiat<strong>in</strong>g <strong>in</strong>to ei<strong>the</strong>r ectoderm or mesoderm l<strong>in</strong>eages (Kunath etal. 2007; Stavridis et al. 2007). Kunath and co-workers found that this knock-out cell l<strong>in</strong>e couldnot differentiate <strong>in</strong>to ei<strong>the</strong>r l<strong>in</strong>eage, except when supplement<strong>in</strong>g <strong>the</strong> growth medium with <strong>FGF</strong>4prote<strong>in</strong>.Remarkably, us<strong>in</strong>g culture conditions similar to Kunath and co-workers, we found that ectopic<strong>FGF</strong>4 was dispensable when differentiat<strong>in</strong>g <strong>the</strong> <strong>FGF</strong>4 –/– cell l<strong>in</strong>e <strong>in</strong>to SOX17 + /Ecadher<strong>in</strong>+ /FOXA2 + /SOX7 – DE <strong>cells</strong> express<strong>in</strong>g Sox17 and Cxcr4, but not Sox7 and Tdh. Thissupports our previous f<strong>in</strong>d<strong>in</strong>g that <strong>in</strong>duction <strong>of</strong> DE-formation is not dependent on early <strong>FGF</strong><strong>signall<strong>in</strong>g</strong>,as <strong>cells</strong> readily become Sox17-GFP + <strong>in</strong> <strong>the</strong> presence <strong>of</strong> <strong>the</strong> <strong>FGF</strong>R-<strong>in</strong>hibitorPD173074 at early stages (Hansson et al. 2009). In <strong>the</strong> <strong>FGF</strong>4 –/– cell l<strong>in</strong>e, slightly more <strong>cells</strong> stay<strong>in</strong> a pluripotent state, i.e. more <strong>cells</strong> sta<strong>in</strong> OCT4 + , than what is seen for wt and heterozygote celll<strong>in</strong>es. Some <strong>of</strong> <strong>the</strong>se <strong>cells</strong> can be <strong>in</strong>duced to differentiate when <strong>FGF</strong>4 is added to <strong>the</strong><strong>differentiation</strong> medium, but <strong>FGF</strong>4 supplement does not seem to alter <strong>the</strong> fate <strong>of</strong> <strong>the</strong>differentiated <strong>cells</strong>. We propose that ectopic adm<strong>in</strong>istration <strong>of</strong> <strong>FGF</strong>4 is only necessary for<strong>differentiation</strong> <strong>in</strong>to ectoderm and mesoderm l<strong>in</strong>eages but not for leav<strong>in</strong>g <strong>the</strong> pluripotent state(Kunath et al. 2007; Stavridis et al. 2007). Although <strong>FGF</strong>4 knockout mice have been shown tobe embryonic lethal at <strong>the</strong> stage <strong>of</strong> gastrulation (Feldman et al. 1995; Wilder et al.), <strong>the</strong>irdependence on <strong>FGF</strong>4 <strong>signall<strong>in</strong>g</strong> may lie at an earlier time-po<strong>in</strong>t, namely <strong>in</strong> <strong>the</strong> area <strong>of</strong>embryonic ectoderm where later <strong>the</strong> PS forms. This would render <strong>FGF</strong>4 necessary forformation <strong>of</strong> <strong>the</strong> PS ra<strong>the</strong>r than it’s function (Niswander and Mart<strong>in</strong> 1992; Tam et al. 1993).This also shows that <strong>FGF</strong>4 is not necessary for <strong>cells</strong> to leave <strong>the</strong> pluripotent state when <strong>the</strong><strong>differentiation</strong> protocol applied <strong>in</strong>cludes activ<strong>in</strong>.68


<strong>FGF</strong>4, 5, <strong>FGF</strong>8b and <strong>FGF</strong>R1, are expressed dur<strong>in</strong>g PS-formation and gastrulation (Haub andGoldfarb 1991; Hebert et al. 1991; Deng et al. 1994; Yamaguchi et al. 1994; Sun et al. 1999).<strong>FGF</strong>R1 –/– or <strong>FGF</strong>8 –/– embryos are embryonic lethal at this time po<strong>in</strong>t, <strong>the</strong> latter fail<strong>in</strong>g toexpress Fgf4 <strong>in</strong> <strong>the</strong> streak. In m<strong>ES</strong> cell cultures, Fgf5 is upregulated at <strong>the</strong> onset <strong>of</strong><strong>differentiation</strong> (Kunath et al. 2007). Interest<strong>in</strong>gly, Kunath and co-workers could not rescueneural <strong>differentiation</strong> <strong>in</strong> <strong>the</strong> <strong>FGF</strong>4 –/– cell l<strong>in</strong>e when add<strong>in</strong>g <strong>FGF</strong>5 (Kunath et al. 2007).However, we suggest a redundancy <strong>in</strong> <strong>FGF</strong>-<strong>signall<strong>in</strong>g</strong> at <strong>the</strong> po<strong>in</strong>t <strong>of</strong> <strong>in</strong>itiation <strong>of</strong> endoderm<strong>differentiation</strong> tak<strong>in</strong>g place, <strong>in</strong> such that <strong>FGF</strong>5 or 8b, b<strong>in</strong>d<strong>in</strong>g <strong>FGF</strong>Rc-is<strong>of</strong>orms as does <strong>FGF</strong>4,facilitate <strong>the</strong> activation <strong>of</strong> key <strong>differentiation</strong> genes.Most studies on endoderm formation from m<strong>ES</strong> <strong>cells</strong> rely on cultur<strong>in</strong>g conditions us<strong>in</strong>g ei<strong>the</strong>rembryoid bodies as start<strong>in</strong>g material or high cell densities (Funa et al. 2008; Morrison et al.2008; Willems and Leyns 2008). Compared to Kunath and co-workers, we seed <strong>cells</strong> at a lowerdensity. Possibly, an excess <strong>of</strong> <strong>cells</strong> to some degree <strong>in</strong>hibits <strong>differentiation</strong>, a commonphenomenon seen <strong>in</strong> many <strong>ES</strong> cell <strong>differentiation</strong> systems. Indeed, when apply<strong>in</strong>g <strong>the</strong> ectoderm<strong>differentiation</strong> protocol as described by Kunath and co-workers to <strong>cells</strong> at low density, we sawa significant <strong>in</strong>crease <strong>in</strong> <strong>differentiation</strong> (data not shown). It has been shown that only m<strong>ES</strong> <strong>cells</strong>grown at high density loose <strong>the</strong>ir renewal properties after ROCK-<strong>in</strong>hibition (Chang et al. 2010).Cells grown at high densities have more cell-cell <strong>in</strong>teractions and <strong>the</strong>ir β-caten<strong>in</strong> pool is partlylocated at <strong>the</strong> plasma membrane, activat<strong>in</strong>g <strong>the</strong> Wnt <strong>signall<strong>in</strong>g</strong> pathway implicated <strong>in</strong>ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> pluripotent state <strong>in</strong> both human and <strong>mouse</strong> <strong>ES</strong> <strong>cells</strong>. Thus, we speculate thathigh cell densities preferentially reta<strong>in</strong> m<strong>ES</strong> <strong>cells</strong> <strong>in</strong> <strong>the</strong> pluripotent state to a higher degree than<strong>cells</strong> at low density and that <strong>FGF</strong>4-<strong>signall<strong>in</strong>g</strong> may be necessary for leav<strong>in</strong>g <strong>the</strong> pluripotent stateat high cell densities only.AcknowledgementsWe are thankful to Drs. G. Keller, S. Nishikawa, S. J. Morrison and A. Rizz<strong>in</strong>o/ T. Kunath for<strong>the</strong> T-GFP, Gsc-GFP, Sox17-GFP, <strong>FGF</strong>4 +/– and <strong>FGF</strong>4 –/– cell l<strong>in</strong>es, respectively. We thankSøren Refsgaard L<strong>in</strong>dskog for excellent technical assistance and Mads Daugaard for criticallyread<strong>in</strong>g <strong>of</strong> <strong>the</strong> manuscript.Figure legendsFigure 1: Screen for <strong>FGF</strong>R-isotypes dur<strong>in</strong>g DE <strong>differentiation</strong> <strong>in</strong> sorted fractions <strong>of</strong> Sox17-GFP <strong>cells</strong>The expression <strong>of</strong> each <strong>FGF</strong>R-is<strong>of</strong>orm was analysed by qPCR <strong>in</strong> both sorted and unsortedfractions <strong>of</strong> Sox17-GFP <strong>cells</strong>, differentiated by our DE protocol (30 ng/ml activ<strong>in</strong> for 5 days).A) A histogram show<strong>in</strong>g sort<strong>in</strong>g gates <strong>in</strong> GFP – , GFP Lo and GFP Hi fractions. B) The absoluteexpression <strong>of</strong> each <strong>FGF</strong>R-is<strong>of</strong>orm was standardised to <strong>the</strong> house-keep<strong>in</strong>g gene TATA-b<strong>in</strong>d<strong>in</strong>gprote<strong>in</strong> (Tbp). Sox17 Hi fractions are shown only at day 4 and 5, when <strong>the</strong>y appeared <strong>in</strong> <strong>the</strong>culture. The fraction <strong>of</strong> Sox17-GFP – <strong>cells</strong> was to low for RNA-extraction. We did not obta<strong>in</strong>functional primers for <strong>FGF</strong>R3b. The relative mean expression ± S.E.M. <strong>of</strong> 3 <strong>in</strong>dependentexperiments is shown, us<strong>in</strong>g a Student’s paired, two-tailed t-test for <strong>the</strong> statistical analysis: * =P < 0,05; ** = P < 0,01 compared to <strong>the</strong> <strong>ES</strong>C condition for each fraction (Sox17-GFP +fractions were compared to <strong>the</strong> unsorted <strong>ES</strong>C sample).Figure 2: Activation <strong>of</strong> <strong>FGF</strong>Rc-is<strong>of</strong>orms boosts mesendoderm but <strong>in</strong>hibits DE markerexpressionUs<strong>in</strong>g GFP-reporter cell l<strong>in</strong>es T-GFP, Gsc-GFP and Sox17-GFP, we differentiated <strong>cells</strong> for 3(T-GFP cell l<strong>in</strong>e only) and 5 days <strong>in</strong> BMP4- or activ<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g media, add<strong>in</strong>g different<strong>FGF</strong>s. Cells were analysed by a FACS. A) Table <strong>of</strong> <strong>FGF</strong> – <strong>FGF</strong>R b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> selected <strong>FGF</strong>s69


used <strong>in</strong> this paper. Modified from (Ornitz et al. 1996; Olsen et al. 2006; Zhang et al. 2006;Mason 2007). B-C) Cells were differentiated <strong>in</strong> 10 ng/ml BMP4 (= mesoderm-<strong>in</strong>duction) or 1ng/ml activ<strong>in</strong> (= posterior streak/ mesoderm-<strong>in</strong>duction) w/wo <strong>FGF</strong>s, and expression <strong>of</strong> T-GFPwas measured at days 3 and 5. D) Gsc-GFP <strong>cells</strong> were differentiated <strong>in</strong> 30 ng/ml activ<strong>in</strong> w/wo<strong>FGF</strong>s, and expression <strong>of</strong> GFP was measured at day 5. E) Sox17-GFP <strong>cells</strong> were differentiated<strong>in</strong> 30 ng/ml activ<strong>in</strong> w/wo <strong>FGF</strong>s, and expression <strong>of</strong> GFP was measured at day 5. The meanexpression ± S.E.M. <strong>of</strong> 3 <strong>in</strong>dependent experiments is shown, us<strong>in</strong>g a Student’s t-test for <strong>the</strong>statistical analysis: * = P < 0,05; ** = P < 0,01 compared to <strong>the</strong> BMP4 or activ<strong>in</strong> conditions.Figure 3: Activation <strong>of</strong> <strong>FGF</strong>Rb or <strong>FGF</strong>Rc-is<strong>of</strong>orms differentially affects <strong>the</strong> expression <strong>of</strong>PS, DE and mesoderm markersSox17-GFP <strong>cells</strong> were differentiated <strong>in</strong> media conta<strong>in</strong><strong>in</strong>g BMP4 or activ<strong>in</strong> w/wo <strong>FGF</strong>s for 3-5days before harvest. Cells were sta<strong>in</strong>ed for markers <strong>of</strong> PS, DE or mesoderm and analysed us<strong>in</strong>ga FACS. A & B) Cells were sta<strong>in</strong>ed for T and analysed on days 3 and 5. Shown here are <strong>the</strong>relative number <strong>of</strong> T + <strong>cells</strong> <strong>in</strong> <strong>the</strong> Sox17-GFP Hi fraction A), or <strong>the</strong> Sox17-GFP –/Lo fraction B).The mean expression ± S.E.M. <strong>of</strong> 2 <strong>in</strong>dependent experiments are shown, no statistical analysisperformed. C-G) Cells were sta<strong>in</strong>ed for FLK1 and EpCAM and analysed <strong>in</strong> ei<strong>the</strong>r s<strong>in</strong>glechannel for C) Sox17-GFP, D) FLK1, E) EpCAM; or <strong>in</strong> multichannel for <strong>the</strong> Sox17-GFP Hifraction F), or Sox17-GFP –/Lo fraction G) divid<strong>in</strong>g data <strong>in</strong>to four fractions: FLK1 – /EpCAM + ;FLK1 + /EpCAM + ; FLK1 – /EpCAM – ; FLK1 + /EpCAM – . The mean expression ± S.E.M. <strong>of</strong> 3<strong>in</strong>dependent experiments is shown, us<strong>in</strong>g a Student’s paired, two-tailed t-test for <strong>the</strong> statisticalanalysis: * = P < 0,05; ** = P < 0,01 compared to <strong>the</strong> activ<strong>in</strong> conditions.Figure 4: <strong>FGF</strong>s activat<strong>in</strong>g <strong>FGF</strong>Rc-is<strong>of</strong>orms affect early cell growth and proliferationA wt m<strong>ES</strong> cell l<strong>in</strong>e (E14) was grown <strong>in</strong> media conta<strong>in</strong><strong>in</strong>g activ<strong>in</strong> w/wo <strong>FGF</strong>s and harvested foranalysis <strong>of</strong> total cell number and proliferation on days 3 &5. A count <strong>of</strong> total number <strong>of</strong> <strong>cells</strong>and relative proliferation <strong>of</strong> <strong>cells</strong> is shown for day 3 A) and day 5 B). The mean expression ±S.E.M. <strong>of</strong> 3 <strong>in</strong>dependent experiments is shown, us<strong>in</strong>g a Student’s t-test for <strong>the</strong> statisticalanalysis: * = P < 0,05; ** = P < 0,01 compared to <strong>the</strong> activ<strong>in</strong> conditions.Figure 5: <strong>FGF</strong>4-<strong>signall<strong>in</strong>g</strong> is dispensable for endoderm <strong>differentiation</strong>E14, <strong>FGF</strong>4 +/– and <strong>FGF</strong>4 –/– <strong>cells</strong> were sta<strong>in</strong>ed for markers <strong>of</strong> pluripotency and endoderm. A)Undifferentiated <strong>cells</strong> were sta<strong>in</strong>ed for OCT4 and SOX17 and <strong>the</strong> nuclear sta<strong>in</strong> DAPI. B) Cellswere differentiated for 5 days <strong>in</strong> 30 ng/ml activ<strong>in</strong> w/wo 5 ng/ml <strong>FGF</strong>4 and sta<strong>in</strong>ed for OCT4and endoderm markers SOX17, FOXA2, E-cadher<strong>in</strong> (Ecad) and DAPI. Representative imagesare shown for each condition. Scale bar: 100 µm.Figure 6: In <strong>the</strong> absence <strong>of</strong> <strong>FGF</strong>4, DE ra<strong>the</strong>r than VE is formedAntibody sta<strong>in</strong> and qPCR-analyses <strong>of</strong> DE and VE markers <strong>in</strong> E14, <strong>FGF</strong>4 +/– and <strong>FGF</strong>4 –/– <strong>cells</strong>.A) Undifferentiated <strong>cells</strong> were sta<strong>in</strong>ed for SOX17, E-cadher<strong>in</strong>, SOX7 and <strong>the</strong> nuclear sta<strong>in</strong>DAPI. B) Cells were differentiated for 5 days <strong>in</strong> 30 ng/ml activ<strong>in</strong> w/wo 5 ng/ml <strong>FGF</strong>4 andsta<strong>in</strong>ed for <strong>the</strong> same markers. Representative images are shown for each condition. Scale bar:100 µm. C) qPCR data show<strong>in</strong>g <strong>the</strong> relative expression levels <strong>of</strong> Sox17, Cxcr4, Sox7 and TdhmRNA present <strong>in</strong> undifferentiated and differentiated <strong>cells</strong> <strong>of</strong> each cell l<strong>in</strong>e compared to E14<strong>ES</strong>Cs, all standardized to <strong>the</strong> house-keep<strong>in</strong>g gene Tbp. The mean expression ± S.E.M. <strong>of</strong> 3<strong>in</strong>dependent experiments is shown (n=2 for <strong>FGF</strong>4 –/– <strong>cells</strong> treated w/ activ<strong>in</strong> + <strong>FGF</strong>4), us<strong>in</strong>g aRatio t-test for <strong>the</strong> statistical analysis: # = P < 0,05; ## = P < 0,01 compared to <strong>the</strong> E14 m<strong>ES</strong> cellcondition.SUPPLEMENTARY DATAFigure S1: Negative controls <strong>of</strong> EdU-<strong>in</strong>corporation and sort gateA histogram show<strong>in</strong>g <strong>the</strong> distribution <strong>of</strong> pluripotent E14 m<strong>ES</strong> <strong>cells</strong> with/without EdU<strong>in</strong>corporationand without EdU-sta<strong>in</strong> (red and black samples); without EdU-<strong>in</strong>corporation and70


with EdU-sta<strong>in</strong> (blue sample); and w/ EdU-<strong>in</strong>corporation and with EdU-sta<strong>in</strong> (sta<strong>in</strong>ed withAlexa-488, i.e. positive control; green sample).Figure S2: A few areas <strong>of</strong> SOX7 + <strong>cells</strong> <strong>in</strong> <strong>the</strong> <strong>FGF</strong>4 –/– cell l<strong>in</strong>e after DE-<strong>in</strong>ductionCells were differentiated for 5 days <strong>in</strong> 30 ng/ml activ<strong>in</strong> w/wo 5 ng/ml <strong>FGF</strong>4 and sta<strong>in</strong>ed forSOX17, E-cadher<strong>in</strong>, SOX7 and <strong>the</strong> nuclear sta<strong>in</strong> DAPI. The yellow frame <strong>in</strong>dicates area blownup and shown to <strong>the</strong> right (red signal boosted). Representative images are shown for eachcondition, except for <strong>FGF</strong>4 –/– <strong>cells</strong> <strong>in</strong> activ<strong>in</strong> alone which shows a SOX7 + area <strong>in</strong> <strong>the</strong> culture.White scale bar: 100 µm; yellow scale bar: 50 µm.ReferencesBalzar, M., M.J. W<strong>in</strong>ter, C.J. de Boer, and S.V. Litv<strong>in</strong>ov. 1999. The biology <strong>of</strong> <strong>the</strong> 17-1A antigen (Ep-CAM). J Mol Med 77: 699-712.Ben-Haim, N., C. Lu, M. Guzman-Ayala, L. Pescatore, D. Mesnard, M. Bisch<strong>of</strong>berger, F. Naef, E.J.Robertson, and D.B. Constam. 2006. The nodal precursor act<strong>in</strong>g via activ<strong>in</strong> receptors <strong>in</strong>ducesmesoderm by ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a source <strong>of</strong> its convertases and BMP4. Dev Cell 11: 313-23.Blum, M., S.J. Gaunt, K.W. Cho, H. Ste<strong>in</strong>beisser, B. Blumberg, D. Bittner, and E.M. De Robertis. 1992.Gastrulation <strong>in</strong> <strong>the</strong> <strong>mouse</strong>: <strong>the</strong> role <strong>of</strong> <strong>the</strong> homeobox gene goosecoid. Cell 69: 1097-106.Bottcher, R.T. and C. Niehrs. 2005. Fibroblast growth factor signal<strong>in</strong>g dur<strong>in</strong>g early vertebratedevelopment. Endocr Rev 26: 63-77.Carey, F.J., E.A. L<strong>in</strong>ney, and R.A. Pedersen. 1995. Allocation <strong>of</strong> epiblast <strong>cells</strong> to germ layer derivativesdur<strong>in</strong>g <strong>mouse</strong> gastrulation as studied with a retroviral vector. Dev Genet 17: 29-37.Chang, T.C., Y.C. Chen, M.H. Yang, C.H. Chen, E.W. Hs<strong>in</strong>g, B.S. Ko, J.Y. Liou, and K.K. Wu. 2010.Rho k<strong>in</strong>ases regulate <strong>the</strong> renewal and neural <strong>differentiation</strong> <strong>of</strong> embryonic stem <strong>cells</strong> <strong>in</strong> a cellplat<strong>in</strong>g density-dependent manner. PLoS One 5: e9187.Ciruna, B.G., L. Schwartz, K. Harpal, T.P. Yamaguchi, and J. Rossant. 1997. Chimeric analysis <strong>of</strong>fibroblast growth factor receptor-1 (Fgfr1) function: a role for <strong>FGF</strong>R1 <strong>in</strong> morphogeneticmovement through <strong>the</strong> primitive streak. Development 124: 2829-41.Colv<strong>in</strong>, J.S., A.C. White, S.J. Pratt, and D.M. Ornitz. 2001. Lung hypoplasia and neonatal death <strong>in</strong> Fgf9-null mice identify this gene as an essential regulator <strong>of</strong> lung mesenchyme. Development 128:2095-106.Conlon, F.L., K.M. Lyons, N. Takaesu, K.S. Barth, A. Kispert, B. Herrmann, and E.J. Robertson. 1994.A primary requirement for nodal <strong>in</strong> <strong>the</strong> formation and ma<strong>in</strong>tenance <strong>of</strong> <strong>the</strong> primitive streak <strong>in</strong> <strong>the</strong><strong>mouse</strong>. Development 120: 1919-28.Deng, C.X., A. Wynshaw-Boris, M.M. Shen, C. Daugherty, D.M. Ornitz, and P. Leder. 1994. Mur<strong>in</strong>e<strong>FGF</strong>R-1 is required for early postimplantation growth and axial organization. Genes Dev 8:3045-57.Elghazi, L., C. Cras-Meneur, P. Czernichow, and R. Scharfmann. 2002. Role for <strong>FGF</strong>R2IIIb-mediatedsignals <strong>in</strong> controll<strong>in</strong>g pancreatic endocr<strong>in</strong>e progenitor cell proliferation. Proc Natl Acad Sci U SA 99: 3884-9.Ema, M., S. Takahashi, and J. Rossant. 2006. Deletion <strong>of</strong> <strong>the</strong> selection cassette, but not cis-act<strong>in</strong>gelements, <strong>in</strong> targeted Flk1-lacZ allele reveals Flk1 expression <strong>in</strong> multipotent mesodermalprogenitors. Blood 107: 111-7.Fehl<strong>in</strong>g, H.J., G. Lacaud, A. Kubo, M. Kennedy, S. Robertson, G. Keller, and V. Kousk<strong>of</strong>f. 2003.Track<strong>in</strong>g mesoderm <strong>in</strong>duction and its specification to <strong>the</strong> hemangioblast dur<strong>in</strong>g embryonic stemcell <strong>differentiation</strong>. Development 130: 4217-27.Feldman, B., W. Poueymirou, V.E. Papaioannou, T.M. DeChiara, and M. Goldfarb. 1995. Requirement<strong>of</strong> <strong>FGF</strong>-4 for postimplantation <strong>mouse</strong> development. Science 267: 246-9.Funa, N.S., J. Saldeen, B. Akerblom, and M. Welsh. 2008. Interdependent fibroblast growth factor andactiv<strong>in</strong> A signal<strong>in</strong>g promotes <strong>the</strong> expression <strong>of</strong> endodermal genes <strong>in</strong> differentiat<strong>in</strong>g <strong>mouse</strong>embryonic stem <strong>cells</strong> express<strong>in</strong>g Src Homology 2-doma<strong>in</strong> <strong>in</strong>active Shb. Differentiation 76: 443-53.Gadue, P., T.L. Huber, M.C. Nostro, S. Kattman, and G.M. Keller. 2005. Germ layer <strong>in</strong>duction fromembryonic stem <strong>cells</strong>. Exp Hematol 33: 955-64.71


Gadue, P., T.L. Huber, P.J. Paddison, and G.M. Keller. 2006. Wnt and TGF-beta signal<strong>in</strong>g are requiredfor <strong>the</strong> <strong>in</strong>duction <strong>of</strong> an <strong>in</strong> vitro model <strong>of</strong> primitive streak formation us<strong>in</strong>g embryonic stem <strong>cells</strong>.Proc Natl Acad Sci U S A 103: 16806-11.Gospodarowicz, D. and J.S. Moran. 1975. Mitogenic effect <strong>of</strong> fibroblast growth factor on early passagecultures <strong>of</strong> human and mur<strong>in</strong>e fibroblasts. J Cell Biol 66: 451-7.Guo, Q. and J.Y. Li. 2007. Dist<strong>in</strong>ct functions <strong>of</strong> <strong>the</strong> major Fgf8 spliceform, Fgf8b, before and dur<strong>in</strong>g<strong>mouse</strong> gastrulation. Development 134: 2251-60.Hansson, M., D.R. Olesen, J.M. Peterslund, N. Engberg, M. Kahn, M. W<strong>in</strong>zi, T. Kle<strong>in</strong>, P. Maddox-Hyttel, and P. Serup. 2009. A late requirement for Wnt and <strong>FGF</strong> signal<strong>in</strong>g dur<strong>in</strong>g activ<strong>in</strong><strong>in</strong>ducedformation <strong>of</strong> foregut endoderm from <strong>mouse</strong> embryonic stem <strong>cells</strong>. Dev Biol 330: 286-304.Haub, O. and M. Goldfarb. 1991. Expression <strong>of</strong> <strong>the</strong> fibroblast growth factor-5 gene <strong>in</strong> <strong>the</strong> <strong>mouse</strong>embryo. Development 112: 397-406.Hebert, J.M., M. Boyle, and G.R. Mart<strong>in</strong>. 1991. mRNA localization studies suggest that mur<strong>in</strong>e <strong>FGF</strong>-5plays a role <strong>in</strong> gastrulation. Development 112: 407-15.Hooper, M., K. Hardy, A. Handyside, S. Hunter, and M. Monk. 1987. HPRT-deficient (Lesch-Nyhan)<strong>mouse</strong> embryos derived from germl<strong>in</strong>e colonization by cultured <strong>cells</strong>. Nature 326: 292-5.Itoh, N. and D.M. Ornitz. 2004. Evolution <strong>of</strong> <strong>the</strong> Fgf and Fgfr gene families. Trends Genet 20: 563-9.Kaestner, K.H., H. Hiemisch, B. Luckow, and G. Schutz. 1994. The HNF-3 gene family <strong>of</strong> transcriptionfactors <strong>in</strong> mice: gene structure, cDNA sequence, and mRNA distribution. Genomics 20: 377-85.Kanai-Azuma, M., Y. Kanai, J.M. Gad, Y. Tajima, C. Taya, M. Kurohmaru, Y. Sanai, H. Yonekawa, K.Yazaki, P.P. Tam, and Y. Hayashi. 2002. Depletion <strong>of</strong> def<strong>in</strong>itive gut endoderm <strong>in</strong> Sox17-nullmutant mice. Development 129: 2367-79.Kim, I., T.L. Saunders, and S.J. Morrison. 2007. Sox17 dependence dist<strong>in</strong>guishes <strong>the</strong> transcriptionalregulation <strong>of</strong> fetal from adult hematopoietic stem <strong>cells</strong>. Cell 130: 470-83.Kim, S.Y., C.H. Lee, B.V. Midura, C. Yeung, A. Mendoza, S.H. Hong, L. Ren, D. Wong, W. Korz, A.Merzouk, H. Salari, H. Zhang, S.T. Hwang, C. Khanna, and L.J. Helman. 2008. Inhibition <strong>of</strong> <strong>the</strong>CXCR4/CXCL12 chemok<strong>in</strong>e pathway reduces <strong>the</strong> development <strong>of</strong> mur<strong>in</strong>e pulmonarymetastases. Cl<strong>in</strong> Exp Metastasis 25: 201-11.K<strong>in</strong>der, S.J., T.E. Tsang, M. Wakamiya, H. Sasaki, R.R. Behr<strong>in</strong>ger, A. Nagy, and P.P. Tam. 2001. Theorganizer <strong>of</strong> <strong>the</strong> <strong>mouse</strong> gastrula is composed <strong>of</strong> a dynamic population <strong>of</strong> progenitor <strong>cells</strong> for <strong>the</strong>axial mesoderm. Development 128: 3623-34.Kispert, A. and B.G. Herrmann. 1994. Immunohistochemical analysis <strong>of</strong> <strong>the</strong> Brachyury prote<strong>in</strong> <strong>in</strong> wildtypeand mutant <strong>mouse</strong> embryos. Dev Biol 161: 179-93.Kubo, A., K. Sh<strong>in</strong>ozaki, J.M. Shannon, V. Kousk<strong>of</strong>f, M. Kennedy, S. Woo, H.J. Fehl<strong>in</strong>g, and G. Keller.2004. Development <strong>of</strong> def<strong>in</strong>itive endoderm from embryonic stem <strong>cells</strong> <strong>in</strong> culture. Development131: 1651-62.Kunath, T., M.K. Saba-El-Leil, M. Almousailleakh, J. Wray, S. Meloche, and A. Smith. 2007. <strong>FGF</strong>stimulation <strong>of</strong> <strong>the</strong> Erk1/2 <strong>signall<strong>in</strong>g</strong> cascade triggers transition <strong>of</strong> pluripotent embryonic stem<strong>cells</strong> from self-renewal to l<strong>in</strong>eage commitment. Development 134: 2895-902.Lawson, K.A., J.J. Meneses, and R.A. Pedersen. 1991. Clonal analysis <strong>of</strong> epiblast fate dur<strong>in</strong>g germ layerformation <strong>in</strong> <strong>the</strong> <strong>mouse</strong> embryo. Development 113: 891-911.MacArthur, C.A., A. Lawshe, J. Xu, S. Santos-Ocampo, M. Heik<strong>in</strong>heimo, A.T. Chellaiah, and D.M.Ornitz. 1995. <strong>FGF</strong>-8 is<strong>of</strong>orms activate receptor splice forms that are expressed <strong>in</strong> mesenchymalregions <strong>of</strong> <strong>mouse</strong> development. Development 121: 3603-13.Manfroid, I., F. Delporte, A. Baudhu<strong>in</strong>, P. Motte, C.J. Neumann, M.L. Voz, J.A. Martial, and B. Peers.2007. Reciprocal endoderm-mesoderm <strong>in</strong>teractions mediated by fgf24 and fgf10 governpancreas development. Development 134: 4011-21.Mason, I. 2007. Initiation to end po<strong>in</strong>t: <strong>the</strong> multiple roles <strong>of</strong> fibroblast growth factors <strong>in</strong> neuraldevelopment. Nat Rev Neurosci 8: 583-96.McCall, M.D., C. Toso, E.E. Baetge, and A.M. Shapiro. 2010. Are stem <strong>cells</strong> a cure for diabetes? Cl<strong>in</strong>Sci (Lond) 118: 87-97.Morrison, G.M., I. Oikonomopoulou, R.P. Migueles, S. Soneji, A. Livigni, T. Enver, and J.M.Brickman. 2008. Anterior def<strong>in</strong>itive endoderm from <strong>ES</strong>Cs reveals a role for <strong>FGF</strong> signal<strong>in</strong>g. CellStem Cell 3: 402-15.Nakayama, T., N. Mutsuga, and G. Tosato. 2007. <strong>FGF</strong>2 posttranscriptionally down-regulates expression<strong>of</strong> SDF1 <strong>in</strong> bone marrow stromal <strong>cells</strong> through <strong>FGF</strong>R1 IIIc. Blood 109: 1363-72.Niswander, L. and G.R. Mart<strong>in</strong>. 1992. Fgf-4 expression dur<strong>in</strong>g gastrulation, myogenesis, limb and toothdevelopment <strong>in</strong> <strong>the</strong> <strong>mouse</strong>. Development 114: 755-68.72


Olsen, S.K., J.Y. Li, C. Bromleigh, A.V. Eliseenkova, O.A. Ibrahimi, Z. Lao, F. Zhang, R.J. L<strong>in</strong>hardt,A.L. Joyner, and M. Mohammadi. 2006. Structural basis by which alternative splic<strong>in</strong>gmodulates <strong>the</strong> organizer activity <strong>of</strong> <strong>FGF</strong>8 <strong>in</strong> <strong>the</strong> bra<strong>in</strong>. Genes Dev 20: 185-98.Ornitz, D.M. and N. Itoh. 2001. Fibroblast growth factors. Genome Biol 2: REVIEWS3005.Ornitz, D.M., J. Xu, J.S. Colv<strong>in</strong>, D.G. McEwen, C.A. MacArthur, F. Coulier, G. Gao, and M. Goldfarb.1996. Receptor specificity <strong>of</strong> <strong>the</strong> fibroblast growth factor family. J Biol Chem 271: 15292-7.Orr-Urtreger, A., M.T. Bedford, T. Burakova, E. Arman, Y. Zimmer, A. Yayon, D. Givol, and P. Lonai.1993. Developmental localization <strong>of</strong> <strong>the</strong> splic<strong>in</strong>g alternatives <strong>of</strong> fibroblast growth factorreceptor-2 (<strong>FGF</strong>R2). Dev Biol 158: 475-86.Rossant, J. 2004. L<strong>in</strong>eage development and polar asymmetries <strong>in</strong> <strong>the</strong> peri-implantation <strong>mouse</strong> blastocyst.Sem<strong>in</strong> Cell Dev Biol 15: 573-81.Salic, A. and T.J. Mitchison. 2008. A chemical method for fast and sensitive detection <strong>of</strong> DNA syn<strong>the</strong>sis<strong>in</strong> vivo. Proc Natl Acad Sci U S A 105: 2415-20.Schier, A.F. 2003. Nodal signal<strong>in</strong>g <strong>in</strong> vertebrate development. Annu Rev Cell Dev Biol 19: 589-621.Sherwood, R.I., C. Jitianu, O. Cleaver, D.A. Shaywitz, J.O. Lamenzo, A.E. Chen, T.R. Golub, and D.A.Melton. 2007. Prospective isolation and global gene expression analysis <strong>of</strong> def<strong>in</strong>itive andvisceral endoderm. Dev Biol 304: 541-55.Stark, K.L., J.A. McMahon, and A.P. McMahon. 1991. <strong>FGF</strong>R-4, a new member <strong>of</strong> <strong>the</strong> fibroblast growthfactor receptor family, expressed <strong>in</strong> <strong>the</strong> def<strong>in</strong>itive endoderm and skeletal muscle l<strong>in</strong>eages <strong>of</strong> <strong>the</strong><strong>mouse</strong>. Development 113: 641-51.Stavridis, M.P., J.S. Lunn, B.J. Coll<strong>in</strong>s, and K.G. Storey. 2007. A discrete period <strong>of</strong> <strong>FGF</strong>-<strong>in</strong>duced Erk1/2<strong>signall<strong>in</strong>g</strong> is required for vertebrate neural specification. Development 134: 2889-94.Sun, X., E.N. Meyers, M. Lewandoski, and G.R. Mart<strong>in</strong>. 1999. Targeted disruption <strong>of</strong> Fgf8 causesfailure <strong>of</strong> cell migration <strong>in</strong> <strong>the</strong> gastrulat<strong>in</strong>g <strong>mouse</strong> embryo. Genes Dev 13: 1834-46.Tada, S., T. Era, C. Furusawa, H. Sakurai, S. Nishikawa, M. K<strong>in</strong>oshita, K. Nakao, and T. Chiba. 2005.Characterization <strong>of</strong> mesendoderm: a diverg<strong>in</strong>g po<strong>in</strong>t <strong>of</strong> <strong>the</strong> def<strong>in</strong>itive endoderm and mesoderm<strong>in</strong> embryonic stem cell <strong>differentiation</strong> culture. Development 132: 4363-74.Tam, P.P., E.A. Williams, and W.Y. Chan. 1993. Gastrulation <strong>in</strong> <strong>the</strong> <strong>mouse</strong> embryo: ultrastructural andmolecular aspects <strong>of</strong> germ layer morphogenesis. Microsc Res Tech 26: 301-28.Va<strong>in</strong>ikka, S., J. Partanen, P. Bellosta, F. Coulier, D. Birnbaum, C. Basilico, M. Jaye, and K. Alitalo.1992. Fibroblast growth factor receptor-4 shows novel features <strong>in</strong> genomic structure, ligandb<strong>in</strong>d<strong>in</strong>g and signal transduction. Embo J 11: 4273-80.Van Ho<strong>of</strong>, D., K.A. D'Amour, and M.S. German. 2009. Derivation <strong>of</strong> <strong>in</strong>sul<strong>in</strong>-produc<strong>in</strong>g <strong>cells</strong> fromhuman embryonic stem <strong>cells</strong>. Stem Cell Res 3: 73-87.Waldrip, W.R., E.K. Bik<strong>of</strong>f, P.A. Hoodless, J.L. Wrana, and E.J. Robertson. 1998. Smad2 signal<strong>in</strong>g <strong>in</strong>extraembryonic tissues determ<strong>in</strong>es anterior-posterior polarity <strong>of</strong> <strong>the</strong> early <strong>mouse</strong> embryo. Cell92: 797-808.Wang, J., P. Alexander, L. Wu, R. Hammer, O. Cleaver, and S.L. McKnight. 2009. Dependence <strong>of</strong><strong>mouse</strong> embryonic stem <strong>cells</strong> on threon<strong>in</strong>e catabolism. Science 325: 435-9.We<strong>in</strong>ste<strong>in</strong>, D.C., A. Ruiz i Altaba, W.S. Chen, P. Hoodless, V.R. Prezioso, T.M. Jessell, and J.E.Darnell, Jr. 1994. The w<strong>in</strong>ged-helix transcription factor HNF-3 beta is required for notochorddevelopment <strong>in</strong> <strong>the</strong> <strong>mouse</strong> embryo. Cell 78: 575-88.Wilder, P.J., D. Kelly, K. Brigman, C.L. Peterson, T. Nowl<strong>in</strong>g, Q.S. Gao, R.D. McComb, M.R.Capecchi, and A. Rizz<strong>in</strong>o. 1997. Inactivation <strong>of</strong> <strong>the</strong> <strong>FGF</strong>-4 gene <strong>in</strong> embryonic stem <strong>cells</strong> alters<strong>the</strong> growth and/or <strong>the</strong> survival <strong>of</strong> <strong>the</strong>ir early differentiated progeny. Dev Biol 192: 614-29.Wilk<strong>in</strong>son, D.G., G. Peters, C. Dickson, and A.P. McMahon. 1988. Expression <strong>of</strong> <strong>the</strong> <strong>FGF</strong>-related protooncogene<strong>in</strong>t-2 dur<strong>in</strong>g gastrulation and neurulation <strong>in</strong> <strong>the</strong> <strong>mouse</strong>. Embo J 7: 691-5.Willems, E. and L. Leyns. 2008. Pattern<strong>in</strong>g <strong>of</strong> <strong>mouse</strong> embryonic stem cell-derived pan-mesoderm byActiv<strong>in</strong> A/Nodal and Bmp4 signal<strong>in</strong>g requires Fibroblast Growth Factor activity. Differentiation76: 745-59.Woei Ng, K., T. Speicher, C. Dombrowski, T. Helledie, L.M. Haupt, V. Nurcombe, and S.M. Cool.2007. Osteogenic <strong>differentiation</strong> <strong>of</strong> mur<strong>in</strong>e embryonic stem <strong>cells</strong> is mediated by fibroblastgrowth factor receptors. Stem Cells Dev 16: 305-18.Yamaguchi, T.P., K. Harpal, M. Henkemeyer, and J. Rossant. 1994. fgfr-1 is required for embryonicgrowth and mesodermal pattern<strong>in</strong>g dur<strong>in</strong>g <strong>mouse</strong> gastrulation. Genes Dev 8: 3032-44.Yamanaka, T., A. Sakamoto, Y. Tanaka, Y. Zhang, Y. Hayashido, S. Toratani, Y. Akagawa, and T.Okamoto. 2000. Isolation and serum-free culture <strong>of</strong> epi<strong>the</strong>lial <strong>cells</strong> derived from epi<strong>the</strong>lial rests<strong>of</strong> Malassez <strong>in</strong> human periodontal ligament. In Vitro Cell Dev Biol Anim 36: 548-53.73


Y<strong>in</strong>g, Q.L., J. Nichols, I. Chambers, and A. Smith. 2003a. BMP <strong>in</strong>duction <strong>of</strong> Id prote<strong>in</strong>s suppresses<strong>differentiation</strong> and susta<strong>in</strong>s embryonic stem cell self-renewal <strong>in</strong> collaboration with STAT3. Cell115: 281-92.Y<strong>in</strong>g, Q.L., M. Stavridis, D. Griffiths, M. Li, and A. Smith. 2003b. Conversion <strong>of</strong> embryonic stem <strong>cells</strong><strong>in</strong>to neuroectodermal precursors <strong>in</strong> adherent monoculture. Nat Biotechnol 21: 183-6.Zhang, X., O.A. Ibrahimi, S.K. Olsen, H. Umemori, M. Mohammadi, and D.M. Ornitz. 2006. Receptorspecificity <strong>of</strong> <strong>the</strong> fibroblast growth factor family. The complete mammalian <strong>FGF</strong> family. J BiolChem 281: 15694-700.74


FiguresFigure 1: Screen for <strong>FGF</strong>R-isotypes dur<strong>in</strong>g DE <strong>differentiation</strong> <strong>in</strong> sorted fractions <strong>of</strong> Sox17-GFP <strong>cells</strong>. Theexpression <strong>of</strong> each <strong>FGF</strong>R-is<strong>of</strong>orm was analysed by qPCR <strong>in</strong> both sorted and unsorted fractions <strong>of</strong> Sox17-GFP <strong>cells</strong>,differentiated by our DE protocol (30 ng/ml activ<strong>in</strong> for 5 days). A) A histogram show<strong>in</strong>g sort<strong>in</strong>g gates <strong>in</strong> GFP – ,GFP Lo and GFP Hi fractions. B) The absolute expression <strong>of</strong> each <strong>FGF</strong>R-is<strong>of</strong>orm was standardised to <strong>the</strong> housekeep<strong>in</strong>ggene TATA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> (Tbp). Sox17 Hi fractions are shown only at day 4 and 5, when <strong>the</strong>y appeared <strong>in</strong><strong>the</strong> culture. The fraction <strong>of</strong> Sox17-GFP – <strong>cells</strong> was to low for RNA-extraction. We did not obta<strong>in</strong> functional primersfor <strong>FGF</strong>R3b. The relative mean expression ± S.E.M. <strong>of</strong> 3 <strong>in</strong>dependent experiments is shown, us<strong>in</strong>g a Student’spaired, two-tailed t-test for <strong>the</strong> statistical analysis: * = P < 0,05; ** = P < 0,01 compared to <strong>the</strong> <strong>ES</strong>C condition foreach fraction (Sox17-GFP + fractions were compared to <strong>the</strong> unsorted <strong>ES</strong>C sample).75


Figure 2: Activation <strong>of</strong> <strong>FGF</strong>Rc-is<strong>of</strong>orms boosts mesendoderm but <strong>in</strong>hibits DE marker expression. Us<strong>in</strong>g GFPreportercell l<strong>in</strong>es T-GFP, Gsc-GFP and Sox17-GFP, we differentiated <strong>cells</strong> for 3 (T-GFP cell l<strong>in</strong>e only) and 5 days<strong>in</strong> BMP4- or activ<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g media, add<strong>in</strong>g different <strong>FGF</strong>s. Cells were analysed by a FACS. A) Table <strong>of</strong> <strong>FGF</strong> –<strong>FGF</strong>R b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> selected <strong>FGF</strong>s used <strong>in</strong> this paper. Modified from {Olsen, 2006 #25;Mason, 2007 #21;Ornitz, 1996#20;Zhang, 2006 #19}. B-C) Cells were differentiated <strong>in</strong> 10 ng/ml BMP4 (= mesoderm-<strong>in</strong>duction) or 1 ng/mlactiv<strong>in</strong> (= posterior streak/ mesoderm-<strong>in</strong>duction) w/wo <strong>FGF</strong>s, and expression <strong>of</strong> T-GFP was measured at days 3 and5. D) Gsc-GFP <strong>cells</strong> were differentiated <strong>in</strong> 30 ng/ml activ<strong>in</strong> w/wo <strong>FGF</strong>s, and expression <strong>of</strong> GFP was measured atday 5. E) Sox17-GFP <strong>cells</strong> were differentiated <strong>in</strong> 30 ng/ml activ<strong>in</strong> w/wo <strong>FGF</strong>s, and expression <strong>of</strong> GFP wasmeasured at day 5. The mean expression ± S.E.M. <strong>of</strong> 3 <strong>in</strong>dependent experiments is shown, us<strong>in</strong>g a Student’s t-testfor <strong>the</strong> statistical analysis: * = P < 0,05; ** = P < 0,01 compared to <strong>the</strong> BMP4 or activ<strong>in</strong> conditions.76


Figure 3: Activation <strong>of</strong> <strong>FGF</strong>Rb or <strong>FGF</strong>Rc-is<strong>of</strong>orms differentially affects <strong>the</strong> expression <strong>of</strong> PS, DE andmesoderm markers. Sox17-GFP <strong>cells</strong> were differentiated <strong>in</strong> media conta<strong>in</strong><strong>in</strong>g BMP4 or activ<strong>in</strong> w/wo <strong>FGF</strong>s for 3-5days before harvest. Cells were sta<strong>in</strong>ed for markers <strong>of</strong> PS, DE or mesoderm and analysed us<strong>in</strong>g a FACS. A & B)Cells were sta<strong>in</strong>ed for T and analysed on days 3 and 5. Shown here are <strong>the</strong> relative number <strong>of</strong> T + <strong>cells</strong> <strong>in</strong> <strong>the</strong> Sox17-GFP Hi fraction A), or <strong>the</strong> Sox17-GFP –/Lo fraction B). The mean expression ± S.E.M. <strong>of</strong> 2 <strong>in</strong>dependent experimentsare shown, no statistical analysis performed. C-G) Cells were sta<strong>in</strong>ed for FLK1 and EpCAM and analysed <strong>in</strong> ei<strong>the</strong>rs<strong>in</strong>gle channel for C) Sox17-GFP, D) FLK1, E) EpCAM; or <strong>in</strong> multichannel for <strong>the</strong> Sox17-GFP Hi fraction F), orSox17-GFP –/Lo fraction G) divid<strong>in</strong>g data <strong>in</strong>to four fractions: FLK1 – /EpCAM + ; FLK1 + /EpCAM + ; FLK1 – /EpCAM – ;FLK1 + /EpCAM – . The mean expression ± S.E.M. <strong>of</strong> 3 <strong>in</strong>dependent experiments is shown, us<strong>in</strong>g a Student’s paired,two-tailed t-test for <strong>the</strong> statistical analysis: * = P < 0,05; ** = P < 0,01 compared to <strong>the</strong> activ<strong>in</strong> conditions.77


Figure 4: <strong>FGF</strong>s activat<strong>in</strong>g <strong>FGF</strong>Rc-is<strong>of</strong>orms affect early cell growth and proliferation. A wt m<strong>ES</strong> cell l<strong>in</strong>e (E14)was grown <strong>in</strong> media conta<strong>in</strong><strong>in</strong>g activ<strong>in</strong> w/wo <strong>FGF</strong>s and harvested for analysis <strong>of</strong> total cell number and proliferationon days 3 &5. A count <strong>of</strong> total number <strong>of</strong> <strong>cells</strong> and relative proliferation <strong>of</strong> <strong>cells</strong> is shown for day 3 A) and day 5 B).The mean expression ± S.E.M. <strong>of</strong> 3 <strong>in</strong>dependent experiments is shown, us<strong>in</strong>g a Student’s t-test for <strong>the</strong> statisticalanalysis: * = P < 0,05; ** = P < 0,01 compared to <strong>the</strong> activ<strong>in</strong> conditions.Opposite, Figure 5: <strong>FGF</strong>4-<strong>signall<strong>in</strong>g</strong> is dispensable for endoderm <strong>differentiation</strong>. E14, <strong>FGF</strong>4 +/– and <strong>FGF</strong>4 –/– <strong>cells</strong>were sta<strong>in</strong>ed for markers <strong>of</strong> pluripotency and endoderm. A) Undifferentiated <strong>cells</strong> were sta<strong>in</strong>ed for OCT4 andSOX17 and <strong>the</strong> nuclear sta<strong>in</strong> DAPI. B) Cells were differentiated for 5 days <strong>in</strong> 30 ng/ml activ<strong>in</strong> w/wo 5 ng/ml <strong>FGF</strong>4and sta<strong>in</strong>ed for OCT4 and endoderm markers SOX17, FOXA2, E-cadher<strong>in</strong> (Ecad) and DAPI. Representativeimages are shown for each condition. Scale bar: 100 µm.78


Opposite, Figure 6: In <strong>the</strong> absence <strong>of</strong> <strong>FGF</strong>4, DE ra<strong>the</strong>r than VE is formed. Antibody sta<strong>in</strong> and qPCR-analyses <strong>of</strong>DE and VE markers <strong>in</strong> E14, <strong>FGF</strong>4 +/– and <strong>FGF</strong>4 –/– <strong>cells</strong>. A) Undifferentiated <strong>cells</strong> were sta<strong>in</strong>ed for SOX17, E-cadher<strong>in</strong>, SOX7 and <strong>the</strong> nuclear sta<strong>in</strong> DAPI. B) Cells were differentiated for 5 days <strong>in</strong> 30 ng/ml activ<strong>in</strong> w/wo 5ng/ml <strong>FGF</strong>4 and sta<strong>in</strong>ed for <strong>the</strong> same markers. Representative images are shown for each condition. Scale bar: 100µm. C) qPCR data show<strong>in</strong>g <strong>the</strong> relative expression levels <strong>of</strong> Sox17, Cxcr4, Sox7 and Tdh mRNA present <strong>in</strong>undifferentiated and differentiated <strong>cells</strong> <strong>of</strong> each cell l<strong>in</strong>e compared to E14 <strong>ES</strong>Cs, all standardized to <strong>the</strong> housekeep<strong>in</strong>ggene Tbp. The mean expression ± S.E.M. <strong>of</strong> 3 <strong>in</strong>dependent experiments is shown (n=2 for <strong>FGF</strong>4 –/– <strong>cells</strong>treated w/ activ<strong>in</strong> + <strong>FGF</strong>4), us<strong>in</strong>g a Ratio t-test for <strong>the</strong> statistical analysis: # = P < 0,05; ## = P < 0,01 compared to <strong>the</strong>E14 m<strong>ES</strong> cell condition.SUPPLEMENTARY DATAFigure S1: Negative controls <strong>of</strong> EdU-<strong>in</strong>corporation and sort gate. A histogram show<strong>in</strong>g <strong>the</strong> distribution <strong>of</strong>pluripotent E14 m<strong>ES</strong> <strong>cells</strong> with/without EdU-<strong>in</strong>corporation and without EdU-sta<strong>in</strong> (red and black samples); withoutEdU-<strong>in</strong>corporation and with EdU-sta<strong>in</strong> (blue sample); and w/ EdU-<strong>in</strong>corporation and with EdU-sta<strong>in</strong> (sta<strong>in</strong>ed withAlexa-488, i.e. positive control; green sample).81


Figure S2: A few areas <strong>of</strong> SOX7 + <strong>cells</strong> <strong>in</strong> <strong>the</strong> <strong>FGF</strong>4 –/– cell l<strong>in</strong>e after DE-<strong>in</strong>duction. Cells were differentiated for 5days <strong>in</strong> 30 ng/ml activ<strong>in</strong> w/wo 5 ng/ml <strong>FGF</strong>4 and sta<strong>in</strong>ed for SOX17, E-cadher<strong>in</strong>, SOX7 and <strong>the</strong> nuclear sta<strong>in</strong>DAPI. The yellow frame <strong>in</strong>dicates area blown up and shown to <strong>the</strong> right (red signal boosted). Representativeimages are shown for each condition, except for <strong>FGF</strong>4 –/– <strong>cells</strong> <strong>in</strong> activ<strong>in</strong> alone which shows a SOX7 + area <strong>in</strong> <strong>the</strong>culture. White scale bar: 100 µm; yellow scale bar: 50 µm.82


6. General discussionEndoderm <strong>differentiation</strong>Basic culture conditionsOur culture system is based on serum and feeder-free conditions by means <strong>of</strong> gelat<strong>in</strong>e-coatedculture flasks and <strong>the</strong> N2, B27, BMP4 and LIF supplements. Remnants <strong>of</strong> serum and feedershave been removed by grow<strong>in</strong>g <strong>cells</strong> for 3 passages, i.e. 6 days, under <strong>the</strong>se conditions prior toexperimental setup. In <strong>the</strong> presence <strong>of</strong> LIF and BMP4 <strong>cells</strong> do not differentiate, but it is hard todeterm<strong>in</strong>e <strong>the</strong> effect <strong>of</strong> trace amounts <strong>of</strong> BMP4 on <strong>the</strong> very early <strong>differentiation</strong> <strong>in</strong> <strong>the</strong> culture.However, such <strong>differentiation</strong> would most likely be opposed by trace amounts <strong>of</strong> LIF and<strong>the</strong>refore not have any practical effect especially when <strong>cells</strong> are differentiated us<strong>in</strong>g highconcentrations <strong>of</strong> growth factors.A recent study showed that <strong>in</strong>hibition <strong>of</strong> <strong>FGF</strong>Rs, MEK and GSK3 through addition <strong>of</strong> <strong>the</strong> smallmolecule <strong>in</strong>hibitors SU5402, PD184352 and Chir99021 respectively, could ma<strong>in</strong>ta<strong>in</strong> <strong>cells</strong>pluripotent over time (Y<strong>in</strong>g et al. 2008). This protocol was ref<strong>in</strong>ed by us<strong>in</strong>g <strong>the</strong> stronger MEK<strong>in</strong>hibitorPD0325901 <strong>in</strong> comb<strong>in</strong>ation with Chir99021 (Nichols et al. 2009). Thus, LIF andBMP4 are not necessary for ma<strong>in</strong>tenance <strong>of</strong> pluripotency, as <strong>in</strong>hibition <strong>of</strong> <strong>the</strong> MAPK-pathwayand GSK3 is sufficient. This protocol may be preferred <strong>in</strong> <strong>the</strong> future to avoid ma<strong>in</strong>tenance <strong>of</strong><strong>the</strong> pluripotent state through addition <strong>of</strong> e.g. BMP4, a potent <strong>in</strong>ducer <strong>of</strong> mesoderm<strong>differentiation</strong>.‘Mesendoderm’: Does it exist?Nodal and BMP4, both members <strong>of</strong> <strong>the</strong> TGFβ superfamily are expressed <strong>in</strong> <strong>the</strong> PS and ExE,respectively, and act <strong>in</strong> opposite directions to <strong>in</strong>duce DE and mesoderm. These two germ layersderive from <strong>the</strong> same population <strong>of</strong> epiblast <strong>cells</strong> migrat<strong>in</strong>g through <strong>the</strong> PS dur<strong>in</strong>g gastrulation.Cells mov<strong>in</strong>g through <strong>the</strong> PS are bipotent and are collectively termed <strong>the</strong> mesendoderm before<strong>the</strong>y are fur<strong>the</strong>r differentiated <strong>in</strong>to mesoderm and endoderm (Lawson et al. 1991; K<strong>in</strong>der et al.2001; Rodaway and Patient 2001). This mesendoderm population seems much conserved, as itis found from Caenorhabditis elegans (C. elegans) through Xenopus laevis (Xenopus) tozebrafish (Rodaway et al. 1999; Rodaway and Patient 2001). A bipotent mesendoderm cellpopulation has also been shown <strong>in</strong> m<strong>ES</strong> cell work where a pool <strong>of</strong> <strong>cells</strong> express<strong>in</strong>g T orGSC/FOXA2/PDGFRα, i.e. a mesendoderm population, had <strong>the</strong> potential to form bothmesoderm and endoderm dependent on <strong>the</strong> growth factors presented (Kubo et al. 2004; Tada etal. 2005). Indeed, we found that by us<strong>in</strong>g GFP-reporter cell l<strong>in</strong>es for <strong>the</strong> PS markers T, Gsc andMixl1, we could analyse <strong>the</strong> effect <strong>of</strong> anterioris<strong>in</strong>g and posterioris<strong>in</strong>g TGFβ- and WNT<strong>signall<strong>in</strong>g</strong><strong>in</strong> <strong>the</strong> early <strong>differentiation</strong> steps.Although <strong>the</strong> mesendoderm cell population is well-established from C. elegans to <strong>mouse</strong>development, it is challenged by a recent study. By use <strong>of</strong> s<strong>in</strong>gle-cell l<strong>in</strong>eage trac<strong>in</strong>g, <strong>the</strong>authors claim that endoderm and surface ectoderm segregate dur<strong>in</strong>g gastrulation, whereas apool <strong>of</strong> bipotent neuromesoderm persists through all stages <strong>of</strong> axis elongation (Tzouanacou etal. 2009). If <strong>the</strong>se observations hold true, it has implication for <strong>ES</strong> cell <strong>differentiation</strong> <strong>towards</strong><strong>cells</strong> <strong>of</strong> <strong>the</strong> DE l<strong>in</strong>eage, as it will <strong>the</strong>n be better to obta<strong>in</strong> a pool <strong>of</strong> <strong>cells</strong> express<strong>in</strong>g DE markersonly, and not a comb<strong>in</strong>ation <strong>of</strong> DE and mesoderm markers at early stages.O<strong>the</strong>r groups and we have shown derivation <strong>of</strong> DE <strong>cells</strong> from a population <strong>of</strong> <strong>cells</strong> express<strong>in</strong>gapp. 40 – 70% mesendoderm markers (Tada et al. 2005). Whe<strong>the</strong>r <strong>the</strong>se DE <strong>cells</strong> derive from amesendoderm population or ra<strong>the</strong>r from an endoderm population directly, is difficult toestablish without <strong>the</strong> use <strong>of</strong> l<strong>in</strong>eage trac<strong>in</strong>g dur<strong>in</strong>g <strong>differentiation</strong>. Also, any contribution <strong>of</strong>signals from randomly differentiated <strong>cells</strong> to <strong>the</strong> form<strong>in</strong>g DE may prove important, but are asyet not studied <strong>in</strong> depth. All <strong>in</strong> all this mesendoderm population may prove not to have apractical limitation to <strong>ES</strong> cell <strong>differentiation</strong> <strong>in</strong> vitro as long as <strong>the</strong> DE is properly established.83


The def<strong>in</strong>itive problem <strong>of</strong> endodermWhen <strong>in</strong>itiat<strong>in</strong>g <strong>differentiation</strong> <strong>in</strong>to endoderm <strong>the</strong>re is a great concern as to whe<strong>the</strong>r it hasbecome visceral or def<strong>in</strong>itive endoderm. These cell types share many markers (Sox17, Foxa2,E-cadher<strong>in</strong>), and it is <strong>the</strong>refore necessary to test <strong>the</strong> obta<strong>in</strong>ed cell population for <strong>the</strong> diverg<strong>in</strong>gmarkers to make a solid conclusion. In pratice this has proven less important, as <strong>in</strong>duction <strong>of</strong>DE is based on addition <strong>of</strong> activ<strong>in</strong>, <strong>in</strong> which visceral endoderm (VE) does not form (Yasunagaet al. 2005). However, it is still necessary to show more than <strong>the</strong> shared markers to drawconv<strong>in</strong>c<strong>in</strong>g conclusions.In <strong>the</strong> develop<strong>in</strong>g embryo, <strong>the</strong> form<strong>in</strong>g DE <strong>cells</strong> have traditionally been believed to replace <strong>the</strong>outer layer <strong>of</strong> VE, thus form<strong>in</strong>g a homogeneous cell layer. A recent study perform<strong>in</strong>g l<strong>in</strong>eagetrac<strong>in</strong>g<strong>of</strong> VE <strong>cells</strong> <strong>in</strong> <strong>the</strong> <strong>mouse</strong> embryo suggests that DE <strong>cells</strong> <strong>in</strong>sert <strong>in</strong>to <strong>the</strong> VE cellpopulation (Kwon et al. 2008). The VE <strong>cells</strong> are diluted by <strong>the</strong> faster proliferat<strong>in</strong>g DE <strong>cells</strong>, butVE <strong>cells</strong> are found <strong>in</strong> <strong>the</strong> gut tube l<strong>in</strong><strong>in</strong>g as late as <strong>the</strong> 16-18 somite stages. This <strong>in</strong>dicates that<strong>the</strong> VE does <strong>in</strong>deed contribute to <strong>the</strong> embryo proper and suggests that it may not be detrimentalto have a small population <strong>of</strong> VE <strong>cells</strong> <strong>in</strong> <strong>the</strong> differentiat<strong>in</strong>g culture after all.<strong>FGF</strong>R is<strong>of</strong>orm-specific activation <strong>in</strong> <strong>differentiation</strong><strong>FGF</strong>s <strong>in</strong> evolution: why are <strong>the</strong>re so many <strong>in</strong> Mammalia?The temporal and spatial expression <strong>of</strong> <strong>FGF</strong>s and <strong>FGF</strong>Rs determ<strong>in</strong>e <strong>signall<strong>in</strong>g</strong> at any giventime. The large number <strong>of</strong> <strong>FGF</strong>s and <strong>FGF</strong>Rs may seem excessive s<strong>in</strong>ce a simpler system wouldbe more ‘cost-efficient’ to <strong>the</strong> cell. <strong>FGF</strong>s are found only <strong>in</strong> multicellular organisms (metazoa),rang<strong>in</strong>g from <strong>the</strong> nematode C. elegans to <strong>mouse</strong> and human (Itoh and Ornitz 2004). In C.elegans <strong>the</strong>re are two <strong>FGF</strong>s and one <strong>FGF</strong>R and <strong>in</strong> Drosophila melanogaster <strong>the</strong>re are three<strong>FGF</strong>s (Ornitz and Itoh 2001; Itoh and Ornitz 2004). The reason beh<strong>in</strong>d <strong>the</strong> large family <strong>of</strong> <strong>FGF</strong>sfound <strong>in</strong> <strong>mouse</strong> and human lies <strong>in</strong> two phases <strong>of</strong> expansion dur<strong>in</strong>g evolution. The firstexpansion occurred by genome duplication before chordate evolution. The second expansionoccurred dur<strong>in</strong>g early vertebrate evolution by two large-scale gene-duplications, possibly <strong>of</strong> <strong>the</strong>whole genome each time (Itoh and Ornitz 2004). This resulted <strong>in</strong> <strong>the</strong> 22 <strong>FGF</strong>s found <strong>in</strong> miceand humans today. <strong>FGF</strong>Rs co-evolved with <strong>the</strong> <strong>FGF</strong>s and <strong>the</strong>y have s<strong>in</strong>ce evolved splicevariants,which add to <strong>the</strong> complexity <strong>of</strong> ligand-receptor specificity and downstream <strong>signall<strong>in</strong>g</strong>(Itoh and Ornitz 2004). The temporal and spatial expression <strong>of</strong> <strong>FGF</strong>s and <strong>FGF</strong>Rs determ<strong>in</strong>e<strong>signall<strong>in</strong>g</strong> at any given time, and an additional layer <strong>of</strong> complexity is added by <strong>the</strong> evolution <strong>of</strong>HSs, which are also differentially expressed (Allen and Rapraeger 2003).The many different functions <strong>of</strong> <strong>FGF</strong>s dur<strong>in</strong>g development and adult homeostasis is probably<strong>the</strong> basis for <strong>the</strong> abundance <strong>of</strong> <strong>FGF</strong>s and <strong>FGF</strong>Rs found <strong>in</strong> mammals, as specific regulation <strong>of</strong><strong>the</strong>ir function is important. Most null mutants show different phenotypes, argu<strong>in</strong>g for dist<strong>in</strong>ctfunctions <strong>of</strong> each <strong>FGF</strong> dur<strong>in</strong>g development. These specific functions are tissue- and time po<strong>in</strong>tdependent:some <strong>FGF</strong>s are expressed at <strong>the</strong> same time <strong>in</strong> certa<strong>in</strong> tissues, but have dist<strong>in</strong>ctfunctions <strong>in</strong> o<strong>the</strong>r tissues, as is <strong>the</strong> case for <strong>the</strong> <strong>FGF</strong>8 family, compris<strong>in</strong>g <strong>FGF</strong>8, 17 and 18.These are co-expressed <strong>in</strong> <strong>the</strong> midbra<strong>in</strong>-h<strong>in</strong>dbra<strong>in</strong> junction, but <strong>FGF</strong>8 and <strong>FGF</strong>18 showdifferential expression and effects <strong>in</strong> limb and bone development, respectively (Xu et al. 2000;Liu et al. 2002). This overlapp<strong>in</strong>g expression <strong>of</strong> <strong>FGF</strong>s belong<strong>in</strong>g to <strong>the</strong> same sub-family, and<strong>the</strong>ir shared <strong>FGF</strong>R-b<strong>in</strong>d<strong>in</strong>g properties, argue for a functional redundancy among <strong>FGF</strong>s (Itohand Ornitz 2004). Redundancy between sub-families is also seen, for example by <strong>FGF</strong>3 and 8<strong>in</strong> <strong>the</strong> <strong>in</strong>duction <strong>of</strong> otic placode and forebra<strong>in</strong> development <strong>in</strong> zebrafish (Liu et al. 2003; Walsheand Mason 2003). In embryonic development, <strong>the</strong> specific activation <strong>of</strong> <strong>FGF</strong>Rs is not onlydependent on <strong>the</strong> concentration <strong>of</strong> <strong>FGF</strong>s secreted, but also on <strong>the</strong>ir diffusion through <strong>the</strong>extracellular matrix where HS reta<strong>in</strong>s <strong>the</strong>m. The effective dose may <strong>the</strong>refore be differentamong <strong>cells</strong>, and could expla<strong>in</strong> e.g. <strong>the</strong> differential expression <strong>of</strong> epiblast and primitiveendoderm markers <strong>in</strong> <strong>the</strong> ICM, which was recently shown to be <strong>FGF</strong> concentration-dependent(Yamanaka et al. 2010).84


Overall, <strong>the</strong> multitude <strong>of</strong> <strong>FGF</strong>-<strong>signall<strong>in</strong>g</strong> is huge and has to be <strong>in</strong>terpreted <strong>in</strong> <strong>the</strong> spatio-temporalcontext <strong>in</strong> which it is <strong>in</strong>vestigated. In <strong>in</strong> vitro <strong>ES</strong> cell <strong>differentiation</strong>, however, one can makeuse <strong>of</strong> redundant functions <strong>of</strong> <strong>the</strong> different <strong>FGF</strong>s as <strong>the</strong> effect upon <strong>differentiation</strong> is onlydependent on <strong>the</strong> expression <strong>of</strong> <strong>FGF</strong>Rs and not necessarily on <strong>the</strong> endogenous range <strong>of</strong> <strong>FGF</strong>sexpressed. Still, <strong>the</strong> endogenously expressed <strong>FGF</strong>s must be taken <strong>in</strong>to account when aim<strong>in</strong>g for<strong>the</strong> optimal protocol to ensure no conflict<strong>in</strong>g <strong>signall<strong>in</strong>g</strong> is tak<strong>in</strong>g place <strong>in</strong> <strong>the</strong> <strong>cells</strong>.<strong>FGF</strong>R-is<strong>of</strong>orms <strong>in</strong> DE formation and pattern<strong>in</strong>gWe have shown that <strong>FGF</strong>s activat<strong>in</strong>g <strong>FGF</strong>Rc-is<strong>of</strong>orms <strong>in</strong>crease <strong>the</strong> numbers <strong>of</strong> <strong>cells</strong> express<strong>in</strong>gmesendoderm markers but reduce <strong>the</strong> numbers <strong>of</strong> Sox17-GFP + DE <strong>cells</strong>. On <strong>the</strong> o<strong>the</strong>r hand,<strong>FGF</strong>s activat<strong>in</strong>g only <strong>FGF</strong>Rb-is<strong>of</strong>orms have no effect on <strong>the</strong>se <strong>cells</strong>, most likely due to <strong>the</strong>irlack <strong>of</strong> expression. This argues for a beneficial effect <strong>of</strong> <strong>FGF</strong>Rc-activation dur<strong>in</strong>g early stageDE-<strong>in</strong>duction, namely <strong>in</strong> <strong>the</strong> generation <strong>of</strong> a mesendodermal population <strong>of</strong> <strong>cells</strong>, but an<strong>in</strong>hibitory effect <strong>of</strong> <strong>the</strong>se same <strong>FGF</strong>s dur<strong>in</strong>g <strong>the</strong> later DE-specification. Also, <strong>the</strong> concentrations<strong>of</strong> <strong>FGF</strong>s used <strong>in</strong> this study may prove to be important. DE-formation is dependent on <strong>FGF</strong>R<strong>signall<strong>in</strong>g</strong>,as <strong>in</strong>hibition by small molecules <strong>in</strong>hibits Sox17-GFP + <strong>cells</strong>. Likewise, highconcentrations <strong>of</strong> <strong>FGF</strong>s have an <strong>in</strong>hibitory effect on this same population, argu<strong>in</strong>g for anoptimal <strong>in</strong>termediate concentration. Such an <strong>in</strong>termediate concentration is possibly even below<strong>the</strong> endogenous <strong>FGF</strong> concentration, as <strong>the</strong> <strong>FGF</strong>4 +/– cell l<strong>in</strong>e seems to differentiate <strong>in</strong>to DE at ahigher success that <strong>the</strong> wt or <strong>the</strong> <strong>FGF</strong>4 –/– cell l<strong>in</strong>e, even when <strong>the</strong> latter is supplemented with alow concentration <strong>of</strong> <strong>FGF</strong>4.Meanwhile, experiments <strong>in</strong> ‘Step 2’ <strong>of</strong> <strong>the</strong> Pdx1-<strong>in</strong>duc<strong>in</strong>g protocol (Chapter 4) show thataddition <strong>of</strong> <strong>FGF</strong>s <strong>in</strong>creases <strong>the</strong> number <strong>of</strong> Pdx1-GFP + <strong>cells</strong>, possibly through <strong>the</strong>ir mitogeniceffect. Fur<strong>the</strong>rmore, <strong>FGF</strong>7 and 10 function even better than <strong>FGF</strong>4 <strong>in</strong> <strong>in</strong>duction <strong>of</strong> Pdx1-GFP +<strong>cells</strong> (N<strong>in</strong>a Engberg and Claude Rescan, unpublished data), argu<strong>in</strong>g that <strong>FGF</strong>Rb-is<strong>of</strong>orms arepresent and have an additional role to <strong>the</strong> mitogenic alone. These DE <strong>cells</strong> are epi<strong>the</strong>lial and assuch probably require activation <strong>of</strong> <strong>FGF</strong>Rb-is<strong>of</strong>orms dur<strong>in</strong>g DE pattern<strong>in</strong>g and/ ororganogenesis. This would make sense from a developmental po<strong>in</strong>t <strong>of</strong> view as <strong>the</strong> development<strong>of</strong> epi<strong>the</strong>lial components <strong>in</strong> many organs depends on <strong>FGF</strong>10 for epi<strong>the</strong>lio-mesenchymal<strong>in</strong>teractions (M<strong>in</strong> et al. 1998; Ohuchi et al. 2000). Also, <strong>FGF</strong>Rb-is<strong>of</strong>orms are expressed <strong>in</strong>epi<strong>the</strong>lial tissues dur<strong>in</strong>g development (Kathr<strong>in</strong>e Beck Sylvestersen, unpublished data; (Ornitzand Itoh 2001)).Overall, addition <strong>of</strong> <strong>FGF</strong>s activat<strong>in</strong>g <strong>FGF</strong>Rc-is<strong>of</strong>orms dur<strong>in</strong>g mesendoderm formation followedby absence <strong>of</strong> <strong>FGF</strong>s dur<strong>in</strong>g DE-formation and f<strong>in</strong>ally <strong>FGF</strong>Rb is<strong>of</strong>orm-activation dur<strong>in</strong>g<strong>in</strong>duction <strong>of</strong> posterior foregut, i.e. Pdx1-express<strong>in</strong>g <strong>cells</strong>, could prove <strong>the</strong> most beneficial.Successful DE formation <strong>in</strong> an <strong>FGF</strong>4 null cell l<strong>in</strong>eAt a low cell density, we see that <strong>the</strong> <strong>FGF</strong>4 –/– cell l<strong>in</strong>e readily differentiates <strong>in</strong>to DE, show<strong>in</strong>g<strong>in</strong>dependence <strong>of</strong> <strong>FGF</strong>4-<strong>signall<strong>in</strong>g</strong> <strong>in</strong> <strong>in</strong>duction <strong>of</strong> <strong>differentiation</strong>. This was surpris<strong>in</strong>g, as aprevious study showed dependence for <strong>FGF</strong>4 <strong>in</strong> <strong>the</strong> <strong>in</strong>duction <strong>of</strong> ectoderm and mesoderm<strong>differentiation</strong>, thus suggest<strong>in</strong>g that <strong>FGF</strong>4-<strong>signall<strong>in</strong>g</strong> is needed for <strong>cells</strong> to leave <strong>the</strong> pluripotentstate altoge<strong>the</strong>r (Kunath et al. 2007). This <strong>in</strong>hibition <strong>of</strong> <strong>differentiation</strong> could be reverted byaddition <strong>of</strong> <strong>FGF</strong>4, but not by <strong>FGF</strong>5, which is expressed early dur<strong>in</strong>g <strong>differentiation</strong> andactivates <strong>FGF</strong>R1c as does <strong>FGF</strong>4 (Haub and Goldfarb 1991). However, <strong>FGF</strong>4 additionallyactivates <strong>FGF</strong>R2c, 3c and 4 and a redundancy by <strong>FGF</strong>6 or 8(b) may prove significant as <strong>the</strong>seb<strong>in</strong>d <strong>FGF</strong>R1c, 2c, 4 and <strong>FGF</strong>R2c, 3c, 4, respectively, similar to <strong>FGF</strong>4 (Ornitz et al. 1996;Zhang et al. 2006; Mason 2007).From <strong>in</strong> vitro studies <strong>of</strong> mammalian cell cultures, it is known that <strong>the</strong>re is a positive correlationbetween cell density and cellular response, measured by receptor phosphorylation or geneexpression (Polk et al. 1995; Bedr<strong>in</strong> et al. 1997; Batt and Roberts 1998; Mukhopadhyay et al.1998). On <strong>the</strong> o<strong>the</strong>r hand, an <strong>in</strong>verse correlation between cell density and gene expression hasbeen shown <strong>in</strong> o<strong>the</strong>r systems (Li and Goldste<strong>in</strong> 1996; S<strong>in</strong>gh et al. 1996; Posern et al. 1998). In<strong>ES</strong> cell cultures little is known about cell density and gene expression responses. It was shownthat <strong>cells</strong> grown at high densities have a pool <strong>of</strong> β-caten<strong>in</strong> located at <strong>the</strong> cell surface, where it is85


<strong>in</strong>volved <strong>in</strong> WNT-<strong>signall<strong>in</strong>g</strong> and ma<strong>in</strong>tenance <strong>of</strong> <strong>the</strong> pluripotent state (Chang et al. 2010). Thus,here it seems that a high cell density may <strong>in</strong>hibit <strong>differentiation</strong>, which has also been suggestedby Smith and co-workers (Smith et al. 1992). Similarly, we propose <strong>in</strong>hibition by high celldensities <strong>in</strong> <strong>the</strong> <strong>FGF</strong>4 –/– <strong>ES</strong> cell culture, and suggest low seed<strong>in</strong>g densities for optimal<strong>differentiation</strong>.DE pattern<strong>in</strong>gIt seems ra<strong>the</strong>r symptomatic that we successfully reach 40-60% SOX17 + DE <strong>cells</strong>, but havelimited success <strong>in</strong> fur<strong>the</strong>r pattern<strong>in</strong>g this DE to PDX1-express<strong>in</strong>g posterior foregut. We saw an<strong>in</strong>duction <strong>of</strong> PDX1-express<strong>in</strong>g <strong>cells</strong> when add<strong>in</strong>g RA and <strong>FGF</strong> (and Cyclopam<strong>in</strong>e), but nevermore than 2-4% on average. Compet<strong>in</strong>g groups have successfully obta<strong>in</strong>ed 32% PDX1 + <strong>cells</strong> <strong>in</strong>h<strong>ES</strong> cell cultures by us<strong>in</strong>g some <strong>of</strong> <strong>the</strong> same posterior foregut-<strong>in</strong>duc<strong>in</strong>g factors, bas<strong>in</strong>g <strong>the</strong>irscientific approach on <strong>the</strong> same hypo<strong>the</strong>ses as we do (Johannesson et al. 2009; Ameri et al.2010). Therefore <strong>the</strong> reason for our <strong>in</strong>efficient Pdx1-GFP <strong>in</strong>duction shall possibly be soughtelsewhere.The Pdx1-GFP cell l<strong>in</strong>e we use has shown a nice expression pattern with<strong>in</strong> <strong>the</strong> posterior foregutregion when <strong>in</strong>jected <strong>in</strong>to <strong>mouse</strong> blastocysts to form chimaeras (T<strong>in</strong>o Kle<strong>in</strong>, unpublished data).The cell l<strong>in</strong>e works <strong>in</strong> vivo and is pluripotent, and we <strong>the</strong>refore expect it to also work <strong>in</strong> vitro.One po<strong>in</strong>t could be that we have optimized <strong>the</strong> DE-<strong>in</strong>duction step <strong>in</strong> <strong>the</strong> Sox17-GFP and not <strong>the</strong>Pdx1-GFP cell l<strong>in</strong>e. Data from h<strong>ES</strong> <strong>cells</strong> <strong>in</strong>dicate that <strong>the</strong> outcome <strong>of</strong> a <strong>differentiation</strong> protocolvaries much between cell l<strong>in</strong>es (D'Amour et al. 2006; Mfopou et al. 2010). If this is also <strong>the</strong>case for m<strong>ES</strong> <strong>cells</strong>, we will have to redo optimization <strong>of</strong> DE-<strong>in</strong>duction <strong>in</strong> our Pdx1-GFP celll<strong>in</strong>e to have <strong>the</strong> best start<strong>in</strong>g material. However, our protocol <strong>in</strong>duces 2-4% Pdx1 + <strong>cells</strong> <strong>in</strong> E14,Pdx1-LacZ and Pdx1-GFP cell l<strong>in</strong>es, show<strong>in</strong>g robustness <strong>of</strong> <strong>the</strong> protocol.A developmental-based explanation is that <strong>the</strong> DE we have is simply not <strong>the</strong> ‘correct’ one.Us<strong>in</strong>g our protocol, we get many SOX2 + <strong>cells</strong>, suggest<strong>in</strong>g that <strong>the</strong> DE we have after 5 days <strong>in</strong>high concentrations <strong>of</strong> activ<strong>in</strong> may be somehow pre-patterned to respond to pattern<strong>in</strong>g factorspredom<strong>in</strong>antly by <strong>in</strong>duction <strong>of</strong> anterior foregut, marked by SOX2.F<strong>in</strong>ally, <strong>the</strong>re could be one or more components <strong>in</strong> our basic medium or medium supplementsthat <strong>in</strong>hibit <strong>differentiation</strong>. This problem could be overcome by chang<strong>in</strong>g <strong>the</strong> basic medium,medium supplements and <strong>the</strong> culture dish coat<strong>in</strong>g <strong>in</strong>dividually to decipher which may be<strong>in</strong>hibitory.Cell replacement <strong>the</strong>rapy as a future cure for TIDM<strong>ES</strong> <strong>cells</strong> are not <strong>the</strong> only source <strong>of</strong> β <strong>cells</strong> or β-like <strong>cells</strong> envisioned as material for futuretransplantation <strong>in</strong> <strong>the</strong> treatment or even cure for diabetes. Some perspectives <strong>of</strong> <strong>the</strong> variousalternatives are discussed below.Xeno-transplantationXeno-transplantation <strong>of</strong> islets <strong>of</strong> Langerhans from pig to primate is be<strong>in</strong>g <strong>in</strong>vestigated as atreatment for type I diabetes. The use <strong>of</strong> pigs is promis<strong>in</strong>g, as <strong>the</strong>ir vascular physiology issimilar to that <strong>of</strong> humans and <strong>the</strong>y are relatively cheap to breed. Fur<strong>the</strong>rmore, <strong>the</strong> so-calledm<strong>in</strong>i-pigs weigh<strong>in</strong>g app. 120 kg are similar to humans <strong>in</strong> organ and body sizes and can be<strong>in</strong>bred to homozygosity at e.g. <strong>the</strong> porc<strong>in</strong>e major histocompatibility complex (MCH). The latterholds a great potential for manipulation to create customized donor organs/ <strong>cells</strong> and overcomesome <strong>of</strong> <strong>the</strong> problems <strong>of</strong> immune-responses normally seen <strong>in</strong> transplantation. This could bedone by <strong>in</strong>troduc<strong>in</strong>g porc<strong>in</strong>e MHC genes <strong>in</strong>to <strong>the</strong> bone marrow <strong>of</strong> <strong>the</strong> recipient human <strong>in</strong>duc<strong>in</strong>gmixed chimaerism <strong>the</strong>reby <strong>in</strong>troduc<strong>in</strong>g immunological tolerance to <strong>the</strong> xenograft (Hoerbelt andMadsen 2004). Alternatively, pigs could be genetically manipulated not to express geneproducts to which <strong>the</strong> recipient immune system reacts. Of major concern <strong>in</strong> xeno-86


transplantation is <strong>the</strong> spread <strong>of</strong> animal diseases to humans. Some <strong>of</strong> <strong>the</strong> risk factors may beelim<strong>in</strong>ated by breed<strong>in</strong>g homozygous m<strong>in</strong>i-pigs <strong>in</strong> controlled environments.EpiSCs, h<strong>ES</strong>Cs and iPSCsIt has recently been shown that epiblast stem <strong>cells</strong> (epiSCs) derived from post-implantation<strong>mouse</strong> blastocysts show characteristics <strong>of</strong> h<strong>ES</strong> <strong>cells</strong> <strong>in</strong> <strong>the</strong>ir need for pluripotency-ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>gfactors activ<strong>in</strong> and <strong>FGF</strong>2 (Brons et al. 2007; Tesar et al. 2007; Vallier et al. 2009). Also, <strong>the</strong>irresponse to <strong>differentiation</strong>-<strong>in</strong>duc<strong>in</strong>g factors is more similar to h<strong>ES</strong> <strong>cells</strong> than what is seen form<strong>ES</strong> <strong>cells</strong> (Vallier et al. 2009). This close resemblance to h<strong>ES</strong> <strong>cells</strong> may make epiSCs a bettermodel for study<strong>in</strong>g <strong>differentiation</strong>, as extrapolation <strong>of</strong> knowledge to <strong>the</strong> h<strong>ES</strong> cell field mayprove easier and more valuable. One major advantage is that exist<strong>in</strong>g <strong>ES</strong> cell l<strong>in</strong>es can beconverted <strong>in</strong>to epiSCs without new derivation from <strong>mouse</strong> embryos (Guo et al. 2009), mak<strong>in</strong>galready established transgenic cell l<strong>in</strong>es readily transferable by a low work load. This may holdgreat potential for better <strong>in</strong>ter-species protocol transfer between epiSCs and h<strong>ES</strong> <strong>cells</strong>.In 2006, <strong>the</strong> Yamanaka-group showed that mature somatic <strong>cells</strong>, i.e. sk<strong>in</strong> fibroblasts, can be<strong>in</strong>duced to achieve an <strong>ES</strong> cell-like phenotype, i.e. become pluripotent and are reported tobehave <strong>in</strong> <strong>the</strong> same way as m<strong>ES</strong> or h<strong>ES</strong> <strong>cells</strong> upon <strong>differentiation</strong>. These <strong>in</strong>duced pluripotentstem (iPS) <strong>cells</strong> were generated by <strong>in</strong>troduction <strong>of</strong> four transcription factors Oct4, Sox2, Klf4,and C-myc (Takahashi and Yamanaka 2006). This was done <strong>in</strong> mice, and <strong>the</strong> protocol has s<strong>in</strong>cebeen modified <strong>in</strong> several ways and has been transferred to human <strong>cells</strong> (Takahashi et al. 2007;Yamanaka 2009). iPS <strong>cells</strong> hold <strong>the</strong> potential for development <strong>of</strong> patient-specific pluripotentstem cell l<strong>in</strong>es, which can be differentiated <strong>in</strong>to any cell type <strong>of</strong> choice. They <strong>the</strong>reforerepresent a source <strong>of</strong> transplantable <strong>cells</strong>, which elim<strong>in</strong>ates <strong>the</strong> need for immune-suppress<strong>in</strong>gagents to a large degree. Although this is a very positive future application, <strong>in</strong> reality it mayprove much too expensive for actual treatment. iPS <strong>cells</strong> will likely be important tools formodell<strong>in</strong>g <strong>of</strong> and <strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> aetiology <strong>of</strong> (<strong>in</strong>herited) human diseases, which are notdiscovered until <strong>the</strong> disease state is complete. For <strong>in</strong>stance, type I diabetes is normally notdiscovered until patients suffer from high blood glucose levels at which time po<strong>in</strong>t <strong>the</strong>ir β cellmass is practically obsolete (Maehr et al. 2009). Whe<strong>the</strong>r iPS <strong>cells</strong> will serve as material for cellreplacement-<strong>the</strong>rapies is still to be seen. Of major concern is to ensure that <strong>the</strong> genomicreprogramm<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>cells</strong> is complete, a trait believed necessary for <strong>the</strong> <strong>cells</strong> to adopt <strong>the</strong>correct fate upon exposure to <strong>differentiation</strong>-<strong>in</strong>duc<strong>in</strong>g conditions (Yamanaka 2009). Also,teratoma formation from fully reprogrammed iPS <strong>cells</strong> cannot be avoided so far, mak<strong>in</strong>g <strong>the</strong>munsuited for treatment <strong>in</strong> humans at this po<strong>in</strong>t. In general, avoid<strong>in</strong>g teratoma-formation fromdifferentiated cell populations is a major concern <strong>in</strong> transplantation. It is not acceptable to curefor <strong>in</strong>stance diabetes but at <strong>the</strong> same time <strong>in</strong>duce a cancerous condition, and as long as this riskexists with cell <strong>the</strong>rapy-protocols, <strong>the</strong>y will not be approved for treatment.Generation <strong>of</strong> β <strong>cells</strong> from exist<strong>in</strong>g cell sources <strong>in</strong> <strong>the</strong> pancreasThe presence <strong>of</strong> a pancreatic stem cell, which has clonogenic potential, is multipotent and canbe <strong>in</strong>duced to generate <strong>in</strong>sul<strong>in</strong>-produc<strong>in</strong>g <strong>cells</strong> <strong>in</strong> vitro has been suggested <strong>in</strong> both mice andhumans (Ramiya et al. 2000; Seaberg et al. 2004; Zhao et al. 2007). However, it is speculatedthat <strong>the</strong>se <strong>cells</strong> only show such stem cell-like properties due to <strong>the</strong> <strong>in</strong> vitro culture conditions(Baeyens and Bouwens 2008). A more conv<strong>in</strong>c<strong>in</strong>g <strong>in</strong> vivo study showed <strong>the</strong> presence <strong>of</strong> isletprecursors that could be activated upon serious tissue <strong>in</strong>jury by <strong>the</strong> so-called partial ductligation,<strong>in</strong> which facultative multipotent progenitor <strong>cells</strong> <strong>in</strong> <strong>the</strong> ductal l<strong>in</strong><strong>in</strong>g differentiate andproliferate <strong>in</strong>to functional β <strong>cells</strong> (Xu et al. 2008).An alternative approach is to generate β <strong>cells</strong> by reprogramm<strong>in</strong>g <strong>of</strong> exist<strong>in</strong>g endocr<strong>in</strong>e orexocr<strong>in</strong>e <strong>cells</strong> <strong>in</strong> <strong>the</strong> pancreas. Follow<strong>in</strong>g pancreatectomy to a mild or severe degree (70% and95% respectively), regeneration <strong>of</strong> β cell mass is achieved through ei<strong>the</strong>r replication <strong>of</strong> exist<strong>in</strong>gβ <strong>cells</strong> or through neogenesis <strong>of</strong> precursor <strong>cells</strong> <strong>in</strong> addition to replication (Dor et al. 2004;Bouwens and Rooman 2005). Exocr<strong>in</strong>e ductal <strong>cells</strong> show conv<strong>in</strong>c<strong>in</strong>g potential as <strong>the</strong>y seemable to contribute to glucose-responsive β <strong>cells</strong> through reprogramm<strong>in</strong>g (Baeyens and Bouwens87


2008). L<strong>in</strong>eage trac<strong>in</strong>g <strong>of</strong> <strong>the</strong>se <strong>cells</strong> has not yet been performed but will elucidate whe<strong>the</strong>r <strong>the</strong><strong>in</strong>creases <strong>in</strong> β cell mass are truly by neogenesis <strong>of</strong> ductal <strong>cells</strong>. Ac<strong>in</strong>ar <strong>cells</strong> cultured <strong>in</strong> vitroshow de<strong>differentiation</strong>, possibly to <strong>the</strong> stage <strong>of</strong> <strong>the</strong> common ac<strong>in</strong>ar and endocr<strong>in</strong>e cell which isfound dur<strong>in</strong>g pancreas development. They can subsequently be re-specified <strong>in</strong>to hepatocytes <strong>in</strong>human cultures and β <strong>cells</strong> <strong>in</strong> <strong>mouse</strong> cultures, show<strong>in</strong>g a large amount <strong>of</strong> plasticity <strong>of</strong> <strong>the</strong>se<strong>cells</strong> (Lardon et al. 2004; Okuno et al. 2007).Whe<strong>the</strong>r it is possible to circumvent <strong>the</strong> patient’s auto-immune response <strong>towards</strong> <strong>the</strong>se β <strong>cells</strong> isstill to be seen. For <strong>the</strong> moment, life-long treatment with immune-suppressors represents <strong>the</strong>only alternative and is not desirable due to <strong>in</strong>herent side effects.Conclud<strong>in</strong>g remarksThe reason for putt<strong>in</strong>g a large effort <strong>in</strong>to <strong>differentiation</strong> <strong>in</strong> a 2-dimensional, serum and feederfreeprotocol is first <strong>of</strong> all to be able to better control <strong>the</strong> <strong>signall<strong>in</strong>g</strong> events go<strong>in</strong>g on <strong>in</strong> <strong>the</strong> dishand <strong>the</strong>reby better direct <strong>differentiation</strong> <strong>in</strong>to <strong>the</strong> cell types <strong>of</strong> desire. A second and not lessimportant po<strong>in</strong>t is that cell culture with animal products is not desirable due to fear <strong>of</strong> spread <strong>of</strong>disease. The latter especially has major implications <strong>in</strong> xeno-transplantations. Recently, apublication show<strong>in</strong>g derivation and culture <strong>of</strong> a xeno-free h<strong>ES</strong> cell l<strong>in</strong>e was published(Ellerstrom et al. 2006). In <strong>the</strong> future, this could very well be <strong>the</strong> only material we arecomfortable with us<strong>in</strong>g for transplantation and it will as such have major impact on <strong>the</strong>application <strong>of</strong> <strong>the</strong> various <strong>differentiation</strong> protocols applicable to cl<strong>in</strong>ical work.88


AcknowledgementsThe work presented here has been made possible first and foremost by Palle Serup and Helle V.Petersen <strong>of</strong>fer<strong>in</strong>g me a position as a Ph.D.-student <strong>in</strong> <strong>the</strong>ir department and through <strong>the</strong>supervision by Palle Serup. The former Department <strong>of</strong> Developmental Biology (now ‘Dept.s <strong>of</strong>Stem Cell Biology’ and ‘β-Cell Regeneration’) is an <strong>in</strong>spir<strong>in</strong>g and pleasant workplace, bothdur<strong>in</strong>g and outside work-hours. I thank all <strong>of</strong> you for 5 really good years at Hagedorn and <strong>the</strong>stem cell group <strong>in</strong> particular for primarily supply<strong>in</strong>g <strong>the</strong> scientific <strong>in</strong>put. Thanks to Søren R.L<strong>in</strong>dskog and Gurmeet K. S<strong>in</strong>gh for help on practical lab work. A special thanks to N<strong>in</strong>aEngberg, my significant o<strong>the</strong>r <strong>in</strong> <strong>the</strong> lab, <strong>of</strong>fice, cell room and <strong>in</strong> achiev<strong>in</strong>g <strong>the</strong> Master’s degreeand work<strong>in</strong>g through <strong>the</strong> Ph.D. I am grateful to Jan N. Jensen, T<strong>in</strong>o Kle<strong>in</strong> and Mattias Hansson,whose constructive natures helped me at critical time po<strong>in</strong>ts. Thanks to Anette Bjerregaard forbe<strong>in</strong>g <strong>the</strong> social backbone <strong>of</strong> our department.Outside work, I have been lucky to have a very supportive family and friends br<strong>in</strong>g<strong>in</strong>g muchfun, seriousness and good times <strong>in</strong>to my life. I’m always amazed at how many people can bepersuaded to come and party on Mors! I could not have done this without you, Mads: youbelieve <strong>in</strong> me like no one else! A special thanks to Hjalte, my danc<strong>in</strong>g tiger for demand<strong>in</strong>gfocus on what’s important and always mak<strong>in</strong>g me happy.90


7. ReferencesAllen, B.L. and A.C. Rapraeger. 2003. Spatial and temporal expression <strong>of</strong> heparan sulfate <strong>in</strong> <strong>mouse</strong>development regulates <strong>FGF</strong> and <strong>FGF</strong> receptor assembly. J Cell Biol 163: 637-48.Ameri, J., A. Stahlberg, J. Pedersen, J.K. Johansson, M.M. Johannesson, I. Artner, and H. Semb. 2010.<strong>FGF</strong>2 specifies h<strong>ES</strong>C-derived def<strong>in</strong>itive endoderm <strong>in</strong>to foregut/midgut cell l<strong>in</strong>eages <strong>in</strong> aconcentration-dependent manner. Stem Cells 28: 45-56.Armel<strong>in</strong>, H.A. 1973. Pituitary extracts and steroid hormones <strong>in</strong> <strong>the</strong> control <strong>of</strong> 3T3 cell growth. Proc NatlAcad Sci U S A 70: 2702-6.Arnold, S.J. and E.J. Robertson. 2009. Mak<strong>in</strong>g a commitment: cell l<strong>in</strong>eage allocation and axis pattern<strong>in</strong>g<strong>in</strong> <strong>the</strong> early <strong>mouse</strong> embryo. Nat Rev Mol Cell Biol 10: 91-103.Avilion, A.A., S.K. Nicolis, L.H. Pevny, L. Perez, N. Vivian, and R. Lovell-Badge. 2003. Multipotentcell l<strong>in</strong>eages <strong>in</strong> early <strong>mouse</strong> development depend on SOX2 function. Genes Dev 17: 126-40.Baeyens, L. and L. Bouwens. 2008. Can beta-<strong>cells</strong> be derived from exocr<strong>in</strong>e pancreas? Diabetes ObesMetab 10 Suppl 4: 170-8.Bastian, H. and P. Gruss. 1990. A mur<strong>in</strong>e even-skipped homologue, Evx 1, is expressed dur<strong>in</strong>g earlyembryogenesis and neurogenesis <strong>in</strong> a biphasic manner. Embo J 9: 1839-52.Batt, D.B. and T.M. Roberts. 1998. Cell density modulates prote<strong>in</strong>-tyros<strong>in</strong>e phosphorylation. J BiolChem 273: 3408-14.Bayha, E., M.C. Jorgensen, P. Serup, and A. Grap<strong>in</strong>-Botton. 2009. Ret<strong>in</strong>oic acid signal<strong>in</strong>g organizesendodermal organ specification along <strong>the</strong> entire antero-posterior axis. PLoS One 4: e5845.Bedr<strong>in</strong>, M.S., C.M. Abolafia, and J.F. Thompson. 1997. Cytoskeletal association <strong>of</strong> epidermal growthfactor receptor and associated signal<strong>in</strong>g prote<strong>in</strong>s is regulated by cell density <strong>in</strong> IEC-6 <strong>in</strong>test<strong>in</strong>al<strong>cells</strong>. J Cell Physiol 172: 126-36.Ben-Haim, N., C. Lu, M. Guzman-Ayala, L. Pescatore, D. Mesnard, M. Bisch<strong>of</strong>berger, F. Naef, E.J.Robertson, and D.B. Constam. 2006. The nodal precursor act<strong>in</strong>g via activ<strong>in</strong> receptors <strong>in</strong>ducesmesoderm by ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a source <strong>of</strong> its convertases and BMP4. Dev Cell 11: 313-23.Bhushan, A., N. Itoh, S. Kato, J.P. Thiery, P. Czernichow, S. Bellusci, and R. Scharfmann. 2001. Fgf10is essential for ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> proliferative capacity <strong>of</strong> epi<strong>the</strong>lial progenitor <strong>cells</strong> dur<strong>in</strong>g earlypancreatic organogenesis. Development 128: 5109-17.Blaha, P., S. Bigenzahn, Z. Koporc, M. Sykes, F. Muehlbacher, and T. Wekerle. 2005. Short-termimmunosuppression facilitates <strong>in</strong>duction <strong>of</strong> mixed chimerism and tolerance after bone marrowtransplantation without cytoreductive condition<strong>in</strong>g. Transplantation 80: 237-43.Blum, M., S.J. Gaunt, K.W. Cho, H. Ste<strong>in</strong>beisser, B. Blumberg, D. Bittner, and E.M. De Robertis. 1992.Gastrulation <strong>in</strong> <strong>the</strong> <strong>mouse</strong>: <strong>the</strong> role <strong>of</strong> <strong>the</strong> homeobox gene goosecoid. Cell 69: 1097-106.Borowiak, M. and D.A. Melton. 2009. How to make beta <strong>cells</strong>? Curr Op<strong>in</strong> Cell Biol 21: 727-32.Bottcher, R.T. and C. Niehrs. 2005. Fibroblast growth factor signal<strong>in</strong>g dur<strong>in</strong>g early vertebratedevelopment. Endocr Rev 26: 63-77.Bouwens, L. and D.G. Pipeleers. 1998. Extra-<strong>in</strong>sular beta <strong>cells</strong> associated with ductules are frequent <strong>in</strong>adult human pancreas. Diabetologia 41: 629-33.Bouwens, L. and I. Rooman. 2005. Regulation <strong>of</strong> pancreatic beta-cell mass. Physiol Rev 85: 1255-70.Brons, I.G., L.E. Smi<strong>the</strong>rs, M.W. Trotter, P. Rugg-Gunn, B. Sun, S.M. Chuva de Sousa Lopes, S.K.Howlett, A. Clarkson, L. Ahrlund-Richter, R.A. Pedersen, and L. Vallier. 2007. Derivation <strong>of</strong>pluripotent epiblast stem <strong>cells</strong> from mammalian embryos. Nature 448: 191-5.Bullock, S.L., J.M. Fletcher, R.S. Bedd<strong>in</strong>gton, and V.A. Wilson. 1998. Renal agenesis <strong>in</strong> micehomozygous for a gene trap mutation <strong>in</strong> <strong>the</strong> gene encod<strong>in</strong>g heparan sulfate 2-sulfotransferase.Genes Dev 12: 1894-906.Carballada, R., H. Yasuo, and P. Lemaire. 2001. Phosphatidyl<strong>in</strong>ositol-3 k<strong>in</strong>ase acts <strong>in</strong> parallel to <strong>the</strong>ERK MAP k<strong>in</strong>ase <strong>in</strong> <strong>the</strong> <strong>FGF</strong> pathway dur<strong>in</strong>g Xenopus mesoderm <strong>in</strong>duction. Development 128:35-44.Carey, F.J., E.A. L<strong>in</strong>ney, and R.A. Pedersen. 1995. Allocation <strong>of</strong> epiblast <strong>cells</strong> to germ layer derivativesdur<strong>in</strong>g <strong>mouse</strong> gastrulation as studied with a retroviral vector. Dev Genet 17: 29-37.Cartwright, P., C. McLean, A. Sheppard, D. Rivett, K. Jones, and S. Dalton. 2005. LIF/STAT3 controls<strong>ES</strong> cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132: 885-96.92


Chambers, I., D. Colby, M. Robertson, J. Nichols, S. Lee, S. Tweedie, and A. Smith. 2003. Functionalexpression clon<strong>in</strong>g <strong>of</strong> Nanog, a pluripotency susta<strong>in</strong><strong>in</strong>g factor <strong>in</strong> embryonic stem <strong>cells</strong>. Cell 113:643-55.Chang, T.C., Y.C. Chen, M.H. Yang, C.H. Chen, E.W. Hs<strong>in</strong>g, B.S. Ko, J.Y. Liou, and K.K. Wu. 2010.Rho k<strong>in</strong>ases regulate <strong>the</strong> renewal and neural <strong>differentiation</strong> <strong>of</strong> embryonic stem <strong>cells</strong> <strong>in</strong> a cellplat<strong>in</strong>g density-dependent manner. PLoS One 5: e9187.Chawengsaksophak, K., W. de Graaff, J. Rossant, J. Deschamps, and F. Beck. 2004. Cdx2 is essentialfor axial elongation <strong>in</strong> <strong>mouse</strong> development. Proc Natl Acad Sci U S A 101: 7641-5.Chazaud, C., Y. Yamanaka, T. Pawson, and J. Rossant. 2006. Early l<strong>in</strong>eage segregation between epiblastand primitive endoderm <strong>in</strong> <strong>mouse</strong> blastocysts through <strong>the</strong> Grb2-MAPK pathway. Dev Cell 10:615-24.Cho, Y.M., J.M. Lim, D.H. Yoo, J.H. Kim, S.S. Chung, S.G. Park, T.H. Kim, S.K. Oh, Y.M. Choi, S.Y.Moon, K.S. Park, and H.K. Lee. 2008. Betacellul<strong>in</strong> and nicot<strong>in</strong>amide susta<strong>in</strong> PDX1 expressionand <strong>in</strong>duce pancreatic beta-cell <strong>differentiation</strong> <strong>in</strong> human embryonic stem <strong>cells</strong>. Biochem BiophysRes Commun 366: 129-34.D'Amour, K.A., A.D. Agulnick, S. Eliazer, O.G. Kelly, E. Kroon, and E.E. Baetge. 2005. Efficient<strong>differentiation</strong> <strong>of</strong> human embryonic stem <strong>cells</strong> to def<strong>in</strong>itive endoderm. Nat Biotechnol 23: 1534-41.D'Amour, K.A., A.G. Bang, S. Eliazer, O.G. Kelly, A.D. Agulnick, N.G. Smart, M.A. Moorman, E.Kroon, M.K. Carpenter, and E.E. Baetge. 2006. Production <strong>of</strong> pancreatic hormone-express<strong>in</strong>gendocr<strong>in</strong>e <strong>cells</strong> from human embryonic stem <strong>cells</strong>. Nat Biotechnol.Deng, C.X., A. Wynshaw-Boris, M.M. Shen, C. Daugherty, D.M. Ornitz, and P. Leder. 1994. Mur<strong>in</strong>e<strong>FGF</strong>R-1 is required for early postimplantation growth and axial organization. Genes Dev 8:3045-57.Dessimoz, J., R. Opoka, J.J. Kordich, A. Grap<strong>in</strong>-Botton, and J.M. Wells. 2006. <strong>FGF</strong> signal<strong>in</strong>g isnecessary for establish<strong>in</strong>g gut tube doma<strong>in</strong>s along <strong>the</strong> anterior-posterior axis <strong>in</strong> vivo. Mech Dev123: 42-55.Deutsch, G., J. Jung, M. Zheng, J. Lora, and K.S. Zaret. 2001. A bipotential precursor population forpancreas and liver with<strong>in</strong> <strong>the</strong> embryonic endoderm. Development 128: 871-81.Donath, M.Y. and P.A. Halban. 2004. Decreased beta-cell mass <strong>in</strong> diabetes: significance, mechanismsand <strong>the</strong>rapeutic implications. Diabetologia 47: 581-9.Dor, Y., J. Brown, O.I. Mart<strong>in</strong>ez, and D.A. Melton. 2004. Adult pancreatic beta-<strong>cells</strong> are formed by selfduplicationra<strong>the</strong>r than stem-cell <strong>differentiation</strong>. Nature 429: 41-6.Dush, M.K. and G.R. Mart<strong>in</strong>. 1992. Analysis <strong>of</strong> <strong>mouse</strong> Evx genes: Evx-1 displays graded expression <strong>in</strong><strong>the</strong> primitive streak. Dev Biol 151: 273-87.Ellerstrom, C., R. Strehl, K. Moya, K. Andersson, C. Bergh, K. Lund<strong>in</strong>, J. Hyllner, and H. Semb. 2006.Derivation <strong>of</strong> a xeno-free human embryonic stem cell l<strong>in</strong>e. Stem Cells 24: 2170-6.Eswarakumar, V.P., I. Lax, and J. Schless<strong>in</strong>ger. 2005. Cellular signal<strong>in</strong>g by fibroblast growth factorreceptors. Cytok<strong>in</strong>e Growth Factor Rev 16: 139-49.Evans, M.J. and M.H. Kaufman. 1981. Establishment <strong>in</strong> culture <strong>of</strong> pluripotential <strong>cells</strong> from <strong>mouse</strong>embryos. Nature 292: 154-6.Feldman, B., W. Poueymirou, V.E. Papaioannou, T.M. DeChiara, and M. Goldfarb. 1995. Requirement<strong>of</strong> <strong>FGF</strong>-4 for postimplantation <strong>mouse</strong> development. Science 267: 246-9.F<strong>in</strong>ley, M.F., S. Devata, and J.E. Huettner. 1999. BMP-4 <strong>in</strong>hibits neural <strong>differentiation</strong> <strong>of</strong> mur<strong>in</strong>eembryonic stem <strong>cells</strong>. J Neurobiol 40: 271-87.Flaumenhaft, R., D. Moscatelli, and D.B. Rifk<strong>in</strong>. 1990. Hepar<strong>in</strong> and heparan sulfate <strong>in</strong>crease <strong>the</strong> radius<strong>of</strong> diffusion and action <strong>of</strong> basic fibroblast growth factor. J Cell Biol 111: 1651-9.Fukumoto, S. and T. Yamashita. 2007. <strong>FGF</strong>23 is a hormone-regulat<strong>in</strong>g phosphate metabolism--uniquebiological characteristics <strong>of</strong> <strong>FGF</strong>23. Bone 40: 1190-5.Funa, N.S., J. Saldeen, B. Akerblom, and M. Welsh. 2008. Interdependent fibroblast growth factor andactiv<strong>in</strong> A signal<strong>in</strong>g promotes <strong>the</strong> expression <strong>of</strong> endodermal genes <strong>in</strong> differentiat<strong>in</strong>g <strong>mouse</strong>embryonic stem <strong>cells</strong> express<strong>in</strong>g Src Homology 2-doma<strong>in</strong> <strong>in</strong>active Shb. Differentiation 76: 443-53.Futaki, S., Y. Hayashi, T. Emoto, C.N. Weber, and K. Sekiguchi. 2004. Sox7 plays crucial roles <strong>in</strong>parietal endoderm <strong>differentiation</strong> <strong>in</strong> F9 embryonal carc<strong>in</strong>oma <strong>cells</strong> through regulat<strong>in</strong>g Gata-4and Gata-6 expression. Mol Cell Biol 24: 10492-503.Gadue, P., T.L. Huber, M.C. Nostro, S. Kattman, and G.M. Keller. 2005. Germ layer <strong>in</strong>duction fromembryonic stem <strong>cells</strong>. Exp Hematol 33: 955-64.93


Gadue, P., T.L. Huber, P.J. Paddison, and G.M. Keller. 2006. Wnt and TGF-beta signal<strong>in</strong>g are requiredfor <strong>the</strong> <strong>in</strong>duction <strong>of</strong> an <strong>in</strong> vitro model <strong>of</strong> primitive streak formation us<strong>in</strong>g embryonic stem <strong>cells</strong>.Proc Natl Acad Sci U S A 103: 16806-11.Gardner, R.L. 1983. Orig<strong>in</strong> and <strong>differentiation</strong> <strong>of</strong> extraembryonic tissues <strong>in</strong> <strong>the</strong> <strong>mouse</strong>. Int Rev ExpPathol 24: 63-133.Goldfarb, M. 2005. Fibroblast growth factor homologous factors: evolution, structure, and function.Cytok<strong>in</strong>e Growth Factor Rev 16: 215-20.Gospodarowicz, D. 1974. Localisation <strong>of</strong> a fibroblast growth factor and its effect alone and withhydrocortisone on 3T3 cell growth. Nature 249: 123-7.Grap<strong>in</strong>-Botton, A. and D.A. Melton. 2000. Endoderm development: from pattern<strong>in</strong>g to organogenesis.Trends Genet 16: 124-30.Groth, C. and M. Lardelli. 2002. The structure and function <strong>of</strong> vertebrate fibroblast growth factorreceptor 1. Int J Dev Biol 46: 393-400.Guo, G., J. Yang, J. Nichols, J.S. Hall, I. Eyres, W. Mansfield, and A. Smith. 2009. Klf4 revertsdevelopmentally programmed restriction <strong>of</strong> ground state pluripotency. Development 136: 1063-9.Hacohen, N., S. Kramer, D. Su<strong>the</strong>rland, Y. Hiromi, and M.A. Krasnow. 1998. sprouty encodes a novelantagonist <strong>of</strong> <strong>FGF</strong> signal<strong>in</strong>g that patterns apical branch<strong>in</strong>g <strong>of</strong> <strong>the</strong> Drosophila airways. Cell 92:253-63.Hanneken, A. 2001. Structural characterization <strong>of</strong> <strong>the</strong> circulat<strong>in</strong>g soluble <strong>FGF</strong> receptors reveals multipleis<strong>of</strong>orms generated by secretion and ectodoma<strong>in</strong> shedd<strong>in</strong>g. FEBS Lett 489: 176-81.Hardikar, A.A. 2004. Generat<strong>in</strong>g new pancreas from old. Trends Endocr<strong>in</strong>ol Metab 15: 198-203.Haub, O. and M. Goldfarb. 1991. Expression <strong>of</strong> <strong>the</strong> fibroblast growth factor-5 gene <strong>in</strong> <strong>the</strong> <strong>mouse</strong>embryo. Development 112: 397-406.Hebert, J.M., M. Boyle, and G.R. Mart<strong>in</strong>. 1991. mRNA localization studies suggest that mur<strong>in</strong>e <strong>FGF</strong>-5plays a role <strong>in</strong> gastrulation. Development 112: 407-15.Hebrok, M., S.K. Kim, and D.A. Melton. 1998. Notochord repression <strong>of</strong> endodermal Sonic hedgehogpermits pancreas development. Genes Dev 12: 1705-13.Hoerbelt, R. and J.C. Madsen. 2004. Feasibility <strong>of</strong> xeno-transplantation. Surg Cl<strong>in</strong> North Am 84: 289-307.Holland, A.M., S.J. Micallef, X. Li, A.G. Elefanty, and E.G. Stanley. 2006. A <strong>mouse</strong> carry<strong>in</strong>g <strong>the</strong> greenfluorescent prote<strong>in</strong> gene targeted to <strong>the</strong> Pdx1 locus facilitates <strong>the</strong> study <strong>of</strong> pancreas developmentand function. Genesis 44: 304-7.Hsu, Y.R., R. Nybo, J.K. Sullivan, V. Costigan, C.S. Spahr, C. Wong, M. Jones, A.G. Pentzer, J.A.Crouse, R.E. Pacifici, H.S. Lu, C.F. Morris, and J.S. Philo. 1999. Hepar<strong>in</strong> is essential for as<strong>in</strong>gle kerat<strong>in</strong>ocyte growth factor molecule to b<strong>in</strong>d and form a complex with two molecules <strong>of</strong><strong>the</strong> extracellular doma<strong>in</strong> <strong>of</strong> its receptor. Biochemistry 38: 2523-34.Itoh, N. and D.M. Ornitz. 2004. Evolution <strong>of</strong> <strong>the</strong> Fgf and Fgfr gene families. Trends Genet 20: 563-9.-. 2008. Functional evolutionary history <strong>of</strong> <strong>the</strong> <strong>mouse</strong> Fgf gene family. Dev Dyn 237: 18-27.Johannesson, M., A. Stahlberg, J. Ameri, F.W. Sand, K. Norrman, and H. Semb. 2009. <strong>FGF</strong>4 andret<strong>in</strong>oic acid direct <strong>differentiation</strong> <strong>of</strong> h<strong>ES</strong>Cs <strong>in</strong>to PDX1-express<strong>in</strong>g foregut endoderm <strong>in</strong> a timeandconcentration-dependent manner. PLoS One 4: e4794.Johnson, D.E., P.L. Lee, J. Lu, and L.T. Williams. 1990. Diverse forms <strong>of</strong> a receptor for acidic and basicfibroblast growth factors. Mol Cell Biol 10: 4728-36.Johnson, D.E., J. Lu, H. Chen, S. Werner, and L.T. Williams. 1991. The human fibroblast growth factorreceptor genes: a common structural arrangement underlies <strong>the</strong> mechanisms for generat<strong>in</strong>greceptor forms that differ <strong>in</strong> <strong>the</strong>ir third immunoglobul<strong>in</strong> doma<strong>in</strong>. Mol Cell Biol 11: 4627-34.Johnson, D.E. and L.T. Williams. 1993. Structural and functional diversity <strong>in</strong> <strong>the</strong> <strong>FGF</strong> receptormultigene family. Adv Cancer Res 60: 1-41.Jonsson, J., L. Carlsson, T. Edlund, and H. Edlund. 1994. Insul<strong>in</strong>-promoter-factor 1 is required forpancreas development <strong>in</strong> mice. Nature 371: 606-9.Jorgensen, M.C., J. Ahnfelt-Ronne, J. Hald, O.D. Madsen, P. Serup, and J. Hecksher-Sorensen. 2007.An illustrated review <strong>of</strong> early pancreas development <strong>in</strong> <strong>the</strong> <strong>mouse</strong>. Endocr Rev 28: 685-705.Kanai-Azuma, M., Y. Kanai, J.M. Gad, Y. Tajima, C. Taya, M. Kurohmaru, Y. Sanai, H. Yonekawa, K.Yazaki, P.P. Tam, and Y. Hayashi. 2002. Depletion <strong>of</strong> def<strong>in</strong>itive gut endoderm <strong>in</strong> Sox17-nullmutant mice. Development 129: 2367-79.Kharitonenkov, A., T.L. Shiyanova, A. Koester, A.M. Ford, R. Micanovic, E.J. Galbreath, G.E.Sandusky, L.J. Hammond, J.S. Moyers, R.A. Owens, J. Gromada, J.T. Broz<strong>in</strong>ick, E.D.94


Hawk<strong>in</strong>s, V.J. Wroblewski, D.S. Li, F. Mehrbod, S.R. Jaskunas, and A.B. Shanafelt. 2005.<strong>FGF</strong>-21 as a novel metabolic regulator. J Cl<strong>in</strong> Invest 115: 1627-35.K<strong>in</strong>der, S.J., T.E. Tsang, G.A. Qu<strong>in</strong>lan, A.K. Hadjantonakis, A. Nagy, and P.P. Tam. 1999. The orderlyallocation <strong>of</strong> mesodermal <strong>cells</strong> to <strong>the</strong> extraembryonic structures and <strong>the</strong> anteroposterior axisdur<strong>in</strong>g gastrulation <strong>of</strong> <strong>the</strong> <strong>mouse</strong> embryo. Development 126: 4691-701.K<strong>in</strong>der, S.J., T.E. Tsang, M. Wakamiya, H. Sasaki, R.R. Behr<strong>in</strong>ger, A. Nagy, and P.P. Tam. 2001. Theorganizer <strong>of</strong> <strong>the</strong> <strong>mouse</strong> gastrula is composed <strong>of</strong> a dynamic population <strong>of</strong> progenitor <strong>cells</strong> for <strong>the</strong>axial mesoderm. Development 128: 3623-34.Kispert, A. and B.G. Herrmann. 1994. Immunohistochemical analysis <strong>of</strong> <strong>the</strong> Brachyury prote<strong>in</strong> <strong>in</strong> wildtypeand mutant <strong>mouse</strong> embryos. Dev Biol 161: 179-93.Kraushaar, D.C., Y. Yamaguchi, and L. Wang. 2010. Heparan sulfate is required for embryonic stem<strong>cells</strong> to exit from self-renewal. J Biol Chem 285: 5907-16.Kroon, E., L.A. Mart<strong>in</strong>son, K. Kadoya, A.G. Bang, O.G. Kelly, S. Eliazer, H. Young, M. Richardson,N.G. Smart, J. Cunn<strong>in</strong>gham, A.D. Agulnick, K.A. D'Amour, M.K. Carpenter, and E.E. Baetge.2008. Pancreatic endoderm derived from human embryonic stem <strong>cells</strong> generates glucoseresponsive<strong>in</strong>sul<strong>in</strong>-secret<strong>in</strong>g <strong>cells</strong> <strong>in</strong> vivo. Nat Biotechnol 26: 443-52.Kubo, A., K. Sh<strong>in</strong>ozaki, J.M. Shannon, V. Kousk<strong>of</strong>f, M. Kennedy, S. Woo, H.J. Fehl<strong>in</strong>g, and G. Keller.2004. Development <strong>of</strong> def<strong>in</strong>itive endoderm from embryonic stem <strong>cells</strong> <strong>in</strong> culture. Development131: 1651-62.Kumar, M. and D. Melton. 2003. Pancreas specification: a budd<strong>in</strong>g question. Curr Op<strong>in</strong> Genet Dev 13:401-7.Kunath, T., M.K. Saba-El-Leil, M. Almousailleakh, J. Wray, S. Meloche, and A. Smith. 2007. <strong>FGF</strong>stimulation <strong>of</strong> <strong>the</strong> Erk1/2 <strong>signall<strong>in</strong>g</strong> cascade triggers transition <strong>of</strong> pluripotent embryonic stem<strong>cells</strong> from self-renewal to l<strong>in</strong>eage commitment. Development 134: 2895-902.Kwon, G.S., M. Viotti, and A.K. Hadjantonakis. 2008. The endoderm <strong>of</strong> <strong>the</strong> <strong>mouse</strong> embryo arises bydynamic widespread <strong>in</strong>tercalation <strong>of</strong> embryonic and extraembryonic l<strong>in</strong>eages. Dev Cell 15: 509-20.Lardon, J., S. De Breuck, I. Rooman, L. Van Lommel, M. Kruh<strong>of</strong>fer, T. Ornt<strong>of</strong>t, F. Schuit, and L.Bouwens. 2004. Plasticity <strong>in</strong> <strong>the</strong> adult rat pancreas: trans<strong>differentiation</strong> <strong>of</strong> exocr<strong>in</strong>e tohepatocyte-like <strong>cells</strong> <strong>in</strong> primary culture. Hepatology 39: 1499-507.Lawson, K.A., N.R. Dunn, B.A. Roelen, L.M. Ze<strong>in</strong>stra, A.M. Davis, C.V. Wright, J.P. Korv<strong>in</strong>g, andB.L. Hogan. 1999. Bmp4 is required for <strong>the</strong> generation <strong>of</strong> primordial germ <strong>cells</strong> <strong>in</strong> <strong>the</strong> <strong>mouse</strong>embryo. Genes Dev 13: 424-36.Lawson, K.A., J.J. Meneses, and R.A. Pedersen. 1991. Clonal analysis <strong>of</strong> epiblast fate dur<strong>in</strong>g germ layerformation <strong>in</strong> <strong>the</strong> <strong>mouse</strong> embryo. Development 113: 891-911.Lernmark, A. and A. Falorni. 1998. Immune phenomena and events <strong>in</strong> <strong>the</strong> islets <strong>in</strong> <strong>in</strong>sul<strong>in</strong>-dependentdiabetes mellitus. In Textbook <strong>of</strong> Diabetes (ed. J.C. Pickup and G. Williams). BlackwellAcience Ltd., Oxford.Li, M., L. Pevny, R. Lovell-Badge, and A. Smith. 1998. Generation <strong>of</strong> purified neural precursors fromembryonic stem <strong>cells</strong> by l<strong>in</strong>eage selection. Curr Biol 8: 971-4.Li, P.M. and B.J. Goldste<strong>in</strong>. 1996. Cell density-dependent changes <strong>in</strong> <strong>the</strong> <strong>in</strong>sul<strong>in</strong> action pathway:evidence for <strong>in</strong>volvement <strong>of</strong> prote<strong>in</strong>-tyros<strong>in</strong>e phosphatases. J Cell Biochem 61: 31-8.Lim, J., P. Yus<strong>of</strong>f, E.S. Wong, S. Chandramouli, D.H. Lao, C.W. Fong, and G.R. Guy. 2002. Thecyste<strong>in</strong>e-rich sprouty translocation doma<strong>in</strong> targets mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase <strong>in</strong>hibitoryprote<strong>in</strong>s to phosphatidyl<strong>in</strong>ositol 4,5-bisphosphate <strong>in</strong> plasma membranes. Mol Cell Biol 22:7953-66.L<strong>in</strong>g, C. and L. Groop. 2009. Epigenetics: a molecular l<strong>in</strong>k between environmental factors and type 2diabetes. Diabetes 58: 2718-25.Liu, D., H. Chu, L. Maves, Y.L. Yan, P.A. Morcos, J.H. Postlethwait, and M. Westerfield. 2003. Fgf3and Fgf8 dependent and <strong>in</strong>dependent transcription factors are required for otic placodespecification. Development 130: 2213-24.Liu, P., M. Wakamiya, M.J. Shea, U. Albrecht, R.R. Behr<strong>in</strong>ger, and A. Bradley. 1999. Requirement forWnt3 <strong>in</strong> vertebrate axis formation. Nat Genet 22: 361-5.Liu, Z., J. Xu, J.S. Colv<strong>in</strong>, and D.M. Ornitz. 2002. Coord<strong>in</strong>ation <strong>of</strong> chondrogenesis and osteogenesis byfibroblast growth factor 18. Genes Dev 16: 859-69.Ma, Y.G., E. Rosfjord, C. Huebert, P. Wilder, J. Tiesman, D. Kelly, and A. Rizz<strong>in</strong>o. 1992.Transcriptional regulation <strong>of</strong> <strong>the</strong> mur<strong>in</strong>e k-<strong>FGF</strong> gene <strong>in</strong> embryonic cell l<strong>in</strong>es. Dev Biol 154: 45-54.Madsen, O.D. 2005. Stem <strong>cells</strong> and diabetes treatment. Apmis 113: 858-75.95


Madsen, O.D. and P. Serup. 2006. Towards cell <strong>the</strong>rapy for diabetes. Nat Biotechnol 24: 1481-3.Maehr, R., S. Chen, M. Snitow, T. Ludwig, L. Yagasaki, R. Goland, R.L. Leibel, and D.A. Melton.2009. Generation <strong>of</strong> pluripotent stem <strong>cells</strong> from patients with type 1 diabetes. Proc Natl AcadSci U S A 106: 15768-73.Mart<strong>in</strong>, G.R. 1981. Isolation <strong>of</strong> a pluripotent cell l<strong>in</strong>e from early <strong>mouse</strong> embryos cultured <strong>in</strong> mediumconditioned by teratocarc<strong>in</strong>oma stem <strong>cells</strong>. Proc Natl Acad Sci U S A 78: 7634-8.Mason, I. 2007. Initiation to end po<strong>in</strong>t: <strong>the</strong> multiple roles <strong>of</strong> fibroblast growth factors <strong>in</strong> neuraldevelopment. Nat Rev Neurosci 8: 583-96.McCall, M.D., C. Toso, E.E. Baetge, and A.M. Shapiro. 2010. Are stem <strong>cells</strong> a cure for diabetes? Cl<strong>in</strong>Sci (Lond) 118: 87-97.Meier, J.J., A. Bhushan, A.E. Butler, R.A. Rizza, and P.C. Butler. 2005. Susta<strong>in</strong>ed beta cell apoptosis <strong>in</strong>patients with long-stand<strong>in</strong>g type 1 diabetes: <strong>in</strong>direct evidence for islet regeneration?Diabetologia 48: 2221-8.Mfopou, J.K., B. Chen, I. Mateizel, K. Sermon, and L. Bouwens. 2010. Nogg<strong>in</strong>, ret<strong>in</strong>oids, and fibroblastgrowth factor regulate hepatic or pancreatic fate <strong>of</strong> human embryonic stem <strong>cells</strong>.Gastroenterology.Mfopou, J.K., V. De Groote, X. Xu, H. Heimberg, and L. Bouwens. 2007. Sonic hedgehog and o<strong>the</strong>rsoluble factors from differentiat<strong>in</strong>g embryoid bodies <strong>in</strong>hibit pancreas development. Stem Cells25: 1156-65.Micallef, S.J., M.E. Janes, K. Knezevic, R.P. Davis, A.G. Elefanty, and E.G. Stanley. 2005. Ret<strong>in</strong>oicacid <strong>in</strong>duces Pdx1-positive endoderm <strong>in</strong> differentiat<strong>in</strong>g <strong>mouse</strong> embryonic stem <strong>cells</strong>. Diabetes54: 301-5.Micallef, S.J., X. Li, M.E. Janes, S.A. Jackson, R.M. Su<strong>the</strong>rland, A.M. Lew, L.C. Harrison, A.G.Elefanty, and E.G. Stanley. 2007. Endocr<strong>in</strong>e <strong>cells</strong> develop with<strong>in</strong> pancreatic bud-like structuresderived from <strong>mouse</strong> <strong>ES</strong> <strong>cells</strong> differentiated <strong>in</strong> response to BMP4 and ret<strong>in</strong>oic acid. Stem CellRes 1: 25-36.M<strong>in</strong>, H., D.M. Danilenko, S.A. Scully, B. Bolon, B.D. R<strong>in</strong>g, J.E. Tarpley, M. DeRose, and W.S.Simonet. 1998. Fgf-10 is required for both limb and lung development and exhibits strik<strong>in</strong>gfunctional similarity to Drosophila branchless. Genes Dev 12: 3156-61.Mitsui, K., Y. Tokuzawa, H. Itoh, K. Segawa, M. Murakami, K. Takahashi, M. Maruyama, M. Maeda,and S. Yamanaka. 2003. The homeoprote<strong>in</strong> Nanog is required for ma<strong>in</strong>tenance <strong>of</strong> pluripotency<strong>in</strong> <strong>mouse</strong> epiblast and <strong>ES</strong> <strong>cells</strong>. Cell 113: 631-42.Mohammadi, M., S. Froum, J.M. Hamby, M.C. Schroeder, R.L. Panek, G.H. Lu, A.V. Eliseenkova, D.Green, J. Schless<strong>in</strong>ger, and S.R. Hubbard. 1998. Crystal structure <strong>of</strong> an angiogenesis <strong>in</strong>hibitorbound to <strong>the</strong> <strong>FGF</strong> receptor tyros<strong>in</strong>e k<strong>in</strong>ase doma<strong>in</strong>. Embo J 17: 5896-904.Mohammadi, M., G. McMahon, L. Sun, C. Tang, P. Hirth, B.K. Yeh, S.R. Hubbard, and J. Schless<strong>in</strong>ger.1997. Structures <strong>of</strong> <strong>the</strong> tyros<strong>in</strong>e k<strong>in</strong>ase doma<strong>in</strong> <strong>of</strong> fibroblast growth factor receptor <strong>in</strong> complexwith <strong>in</strong>hibitors. Science 276: 955-60.Morrisey, E.E., Z. Tang, K. Sigrist, M.M. Lu, F. Jiang, H.S. Ip, and M.S. Parmacek. 1998. GATA6regulates HNF4 and is required for <strong>differentiation</strong> <strong>of</strong> visceral endoderm <strong>in</strong> <strong>the</strong> <strong>mouse</strong> embryo.Genes Dev 12: 3579-90.Morrison, G.M., I. Oikonomopoulou, R.P. Migueles, S. Soneji, A. Livigni, T. Enver, and J.M.Brickman. 2008. Anterior def<strong>in</strong>itive endoderm from <strong>ES</strong>Cs reveals a role for <strong>FGF</strong> signal<strong>in</strong>g. CellStem Cell 3: 402-15.Moscatelli, D. 1987. High and low aff<strong>in</strong>ity b<strong>in</strong>d<strong>in</strong>g sites for basic fibroblast growth factor on cultured<strong>cells</strong>: absence <strong>of</strong> a role for low aff<strong>in</strong>ity b<strong>in</strong>d<strong>in</strong>g <strong>in</strong> <strong>the</strong> stimulation <strong>of</strong> plasm<strong>in</strong>ogen activatorproduction by bov<strong>in</strong>e capillary endo<strong>the</strong>lial <strong>cells</strong>. J Cell Physiol 131: 123-30.Mukhopadhyay, D., L. Tsiokas, and V.P. Sukhatme. 1998. High cell density <strong>in</strong>duces vascularendo<strong>the</strong>lial growth factor expression via prote<strong>in</strong> tyros<strong>in</strong>e phosphorylation. Gene Expr 7: 53-60.Ng, E.S., L. Azzola, K. Sourris, L. Robb, E.G. Stanley, and A.G. Elefanty. 2005. The primitive streakgene Mixl1 is required for efficient haematopoiesis and BMP4-<strong>in</strong>duced ventral mesodermpattern<strong>in</strong>g <strong>in</strong> differentiat<strong>in</strong>g <strong>ES</strong> <strong>cells</strong>. Development 132: 873-84.Nichols, J., J. Silva, M. Roode, and A. Smith. 2009. Suppression <strong>of</strong> Erk <strong>signall<strong>in</strong>g</strong> promotes ground statepluripotency <strong>in</strong> <strong>the</strong> <strong>mouse</strong> embryo. Development 136: 3215-22.Nichols, J. and A. Smith. 2009. Naive and primed pluripotent states. Cell Stem Cell 4: 487-92.Nichols, J., B. Zevnik, K. Anastassiadis, H. Niwa, D. Klewe-Nebenius, I. Chambers, H. Scholer, and A.Smith. 1998. Formation <strong>of</strong> pluripotent stem <strong>cells</strong> <strong>in</strong> <strong>the</strong> mammalian embryo depends on <strong>the</strong>POU transcription factor Oct4. Cell 95: 379-91.96


Nishikawa, S.I., S. Nishikawa, M. Hirashima, N. Matsuyoshi, and H. Kodama. 1998. Progressivel<strong>in</strong>eage analysis by cell sort<strong>in</strong>g and culture identifies FLK1+VE-cadher<strong>in</strong>+ <strong>cells</strong> at a diverg<strong>in</strong>gpo<strong>in</strong>t <strong>of</strong> endo<strong>the</strong>lial and hemopoietic l<strong>in</strong>eages. Development 125: 1747-57.Niswander, L. and G.R. Mart<strong>in</strong>. 1992. Fgf-4 expression dur<strong>in</strong>g gastrulation, myogenesis, limb and toothdevelopment <strong>in</strong> <strong>the</strong> <strong>mouse</strong>. Development 114: 755-68.Niwa, H. 2007. How is pluripotency determ<strong>in</strong>ed and ma<strong>in</strong>ta<strong>in</strong>ed? Development 134: 635-46.Niwa, H., T. Burdon, I. Chambers, and A. Smith. 1998. Self-renewal <strong>of</strong> pluripotent embryonic stem <strong>cells</strong>is mediated via activation <strong>of</strong> STAT3. Genes Dev 12: 2048-60.Ohtsuka, S. and S. Dalton. 2008. Molecular and biological properties <strong>of</strong> pluripotent embryonic stem<strong>cells</strong>. Gene Ther 15: 74-81.Ohuchi, H., Y. Hori, M. Yamasaki, H. Harada, K. Sek<strong>in</strong>e, S. Kato, and N. Itoh. 2000. <strong>FGF</strong>10 acts as amajor ligand for <strong>FGF</strong> receptor 2 IIIb <strong>in</strong> <strong>mouse</strong> multi-organ development. Biochem Biophys ResCommun 277: 643-9.Okada, Y., T. Shimazaki, G. Sobue, and H. Okano. 2004. Ret<strong>in</strong>oic-acid-concentration-dependentacquisition <strong>of</strong> neural cell identity dur<strong>in</strong>g <strong>in</strong> vitro <strong>differentiation</strong> <strong>of</strong> <strong>mouse</strong> embryonic stem <strong>cells</strong>.Dev Biol 275: 124-42.Okuno, M., K. M<strong>in</strong>ami, A. Okumachi, K. Miyawaki, N. Yokoi, S. Toyokuni, and S. Se<strong>in</strong>o. 2007.Generation <strong>of</strong> <strong>in</strong>sul<strong>in</strong>-secret<strong>in</strong>g <strong>cells</strong> from pancreatic ac<strong>in</strong>ar <strong>cells</strong> <strong>of</strong> animal models <strong>of</strong> type 1diabetes. Am J Physiol Endocr<strong>in</strong>ol Metab 292: E158-65.Omer, A., V. Duvivier-Kali, J. Fernandes, V. Tchipashvili, C.K. Colton, and G.C. Weir. 2005. Longtermnormoglycemia <strong>in</strong> rats receiv<strong>in</strong>g transplants with encapsulated islets. Transplantation 79:52-8.Ornitz, D.M. 2000. <strong>FGF</strong>s, heparan sulfate and <strong>FGF</strong>Rs: complex <strong>in</strong>teractions essential for development.Bioessays 22: 108-12.Ornitz, D.M. and N. Itoh. 2001. Fibroblast growth factors. Genome Biol 2: REVIEWS3005.Ornitz, D.M., J. Xu, J.S. Colv<strong>in</strong>, D.G. McEwen, C.A. MacArthur, F. Coulier, G. Gao, and M. Goldfarb.1996. Receptor specificity <strong>of</strong> <strong>the</strong> fibroblast growth factor family. J Biol Chem 271: 15292-7.Parameswaran, M. and P.P. Tam. 1995. Regionalisation <strong>of</strong> cell fate and morphogenetic movement <strong>of</strong> <strong>the</strong>mesoderm dur<strong>in</strong>g <strong>mouse</strong> gastrulation. Dev Genet 17: 16-28.Pawson, T. 1995. Prote<strong>in</strong>-tyros<strong>in</strong>e k<strong>in</strong>ases. Gett<strong>in</strong>g down to specifics. Nature 373: 477-8.Pease, S., P. Braghetta, D. Gear<strong>in</strong>g, D. Grail, and R.L. Williams. 1990. Isolation <strong>of</strong> embryonic stem (<strong>ES</strong>)<strong>cells</strong> <strong>in</strong> media supplemented with recomb<strong>in</strong>ant leukemia <strong>in</strong>hibitory factor (LIF). Dev Biol 141:344-52.Pellegr<strong>in</strong>i, G., P. Rama, F. Mavilio, and M. De Luca. 2009. Epi<strong>the</strong>lial stem <strong>cells</strong> <strong>in</strong> corneal regenerationand epidermal gene <strong>the</strong>rapy. J Pathol 217: 217-28.Plotnikov, A.N., J. Schless<strong>in</strong>ger, S.R. Hubbard, and M. Mohammadi. 1999. Structural basis for <strong>FGF</strong>receptor dimerization and activation. Cell 98: 641-50.Polk, D.B., G.W. McCollum, and G. Carpenter. 1995. Cell density-dependent regulation <strong>of</strong> PLC gamma1 tyros<strong>in</strong>e phosphorylation and catalytic activity <strong>in</strong> an <strong>in</strong>test<strong>in</strong>al cell l<strong>in</strong>e (IEC-6). J Cell Physiol162: 427-33.Posern, G., C.K. Weber, U.R. Rapp, and S.M. Feller. 1998. Activity <strong>of</strong> Rap1 is regulated by bombes<strong>in</strong>,cell adhesion, and cell density <strong>in</strong> NIH3T3 fibroblasts. J Biol Chem 273: 24297-300.Pye, D.A. and J.T. Gallagher. 1999. Monomer complexes <strong>of</strong> basic fibroblast growth factor and heparansulfate oligosaccharides are <strong>the</strong> m<strong>in</strong>imal functional unit for cell activation. J Biol Chem 274:13456-61.Qi, X., T.G. Li, J. Hao, J. Hu, J. Wang, H. Simmons, S. Miura, Y. Mish<strong>in</strong>a, and G.Q. Zhao. 2004. BMP4supports self-renewal <strong>of</strong> embryonic stem <strong>cells</strong> by <strong>in</strong>hibit<strong>in</strong>g mitogen-activated prote<strong>in</strong> k<strong>in</strong>asepathways. Proc Natl Acad Sci U S A 101: 6027-32.Ramiya, V.K., M. Maraist, K.E. Arfors, D.A. Schatz, A.B. Peck, and J.G. Cornelius. 2000. Reversal <strong>of</strong><strong>in</strong>sul<strong>in</strong>-dependent diabetes us<strong>in</strong>g islets generated <strong>in</strong> vitro from pancreatic stem <strong>cells</strong>. Nat Med 6:278-82.Rathjen, J., J.A. Lake, M.D. Bettess, J.M. Wash<strong>in</strong>gton, G. Chapman, and P.D. Rathjen. 1999. Formation<strong>of</strong> a primitive ectoderm like cell population, EPL <strong>cells</strong>, from <strong>ES</strong> <strong>cells</strong> <strong>in</strong> response to biologicallyderived factors. J Cell Sci 112 ( Pt 5): 601-12.Rhodes, C.J. 2005. Type 2 diabetes-a matter <strong>of</strong> beta-cell life and death? Science 307: 380-4.Ricordi, C. and H. Edlund. 2008. Toward a renewable source <strong>of</strong> pancreatic beta-<strong>cells</strong>. Nat Biotechnol 26:397-8.Robb, L. and P.P. Tam. 2004. Gastrula organiser and embryonic pattern<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>mouse</strong>. Sem<strong>in</strong> CellDev Biol 15: 543-54.97


Rodaway, A. and R. Patient. 2001. Mesendoderm. an ancient germ layer? Cell 105: 169-72.Rodaway, A., H. Takeda, S. Koshida, J. Broadbent, B. Price, J.C. Smith, R. Patient, and N. Holder.1999. Induction <strong>of</strong> <strong>the</strong> mesendoderm <strong>in</strong> <strong>the</strong> zebrafish germ r<strong>in</strong>g by yolk cell-derived TGF-betafamily signals and discrim<strong>in</strong>ation <strong>of</strong> mesoderm and endoderm by <strong>FGF</strong>. Development 126: 3067-78.Rossant, J. 2004. L<strong>in</strong>eage development and polar asymmetries <strong>in</strong> <strong>the</strong> peri-implantation <strong>mouse</strong> blastocyst.Sem<strong>in</strong> Cell Dev Biol 15: 573-81.Rossi, J.M., N.R. Dunn, B.L. Hogan, and K.S. Zaret. 2001. Dist<strong>in</strong>ct mesodermal signals, <strong>in</strong>clud<strong>in</strong>gBMPs from <strong>the</strong> septum transversum mesenchyme, are required <strong>in</strong> comb<strong>in</strong>ation forhepatogenesis from <strong>the</strong> endoderm. Genes Dev 15: 1998-2009.Ross<strong>in</strong>i, A.A., D.L. Gre<strong>in</strong>er, and J.P. Mordes. 1999. Induction <strong>of</strong> immunologic tolerance fortransplantation. Physiol Rev 79: 99-141.Ryan, E.A., B.W. Paty, P.A. Senior, D. Bigam, E. Alfadhli, N.M. Kneteman, J.R. Lakey, and A.M.Shapiro. 2005. Five-year follow-up after cl<strong>in</strong>ical islet transplantation. Diabetes 54: 2060-9.Schroeder, I.S., A. Rolletschek, P. Blyszczuk, G. Kania, and A.M. Wobus. 2006. Differentiation <strong>of</strong><strong>mouse</strong> embryonic stem <strong>cells</strong> to <strong>in</strong>sul<strong>in</strong>-produc<strong>in</strong>g <strong>cells</strong>. Nat Protoc 1: 495-507.Seaberg, R.M., S.R. Smukler, T.J. Kieffer, G. Enikolopov, Z. Asghar, M.B. Wheeler, G. Korbutt, and D.van der Kooy. 2004. Clonal identification <strong>of</strong> multipotent precursors from adult <strong>mouse</strong> pancreasthat generate neural and pancreatic l<strong>in</strong>eages. Nat Biotechnol 22: 1115-24.Segu<strong>in</strong>, C.A., J.S. Draper, A. Nagy, and J. Rossant. 2008. Establishment <strong>of</strong> endoderm progenitors bySOX transcription factor expression <strong>in</strong> human embryonic stem <strong>cells</strong>. Cell Stem Cell 3: 182-95.Semb, H. 2008. Def<strong>in</strong>itive endoderm: a key step <strong>in</strong> coax<strong>in</strong>g human embryonic stem <strong>cells</strong> <strong>in</strong>totransplantable beta-<strong>cells</strong>. Biochem Soc Trans 36: 272-5.Shapiro, A.M., J.R. Lakey, E.A. Ryan, G.S. Korbutt, E. Toth, G.L. Warnock, N.M. Kneteman, and R.V.Rajotte. 2000. Islet transplantation <strong>in</strong> seven patients with type 1 diabetes mellitus us<strong>in</strong>g aglucocorticoid-free immunosuppressive regimen. N Engl J Med 343: 230-8.Sherwood, R.I., C. Jitianu, O. Cleaver, D.A. Shaywitz, J.O. Lamenzo, A.E. Chen, T.R. Golub, and D.A.Melton. 2007. Prospective isolation and global gene expression analysis <strong>of</strong> def<strong>in</strong>itive andvisceral endoderm. Dev Biol 304: 541-55.S<strong>in</strong>gh, R.K., N. Llansa, C.D. Bucana, R. Sanchez, A. Koura, and I.J. Fidler. 1996. Cell densitydependentregulation <strong>of</strong> basic fibroblast growth factor expression <strong>in</strong> human renal cell carc<strong>in</strong>oma<strong>cells</strong>. Cell Growth Differ 7: 397-404.Slack, J.M. 1995. Developmental biology <strong>of</strong> <strong>the</strong> pancreas. Development 121: 1569-80.Smith, A.G., J.K. Heath, D.D. Donaldson, G.G. Wong, J. Moreau, M. Stahl, and D. Rogers. 1988.Inhibition <strong>of</strong> pluripotential embryonic stem cell <strong>differentiation</strong> by purified polypeptides. Nature336: 688-90.Smith, A.G., J. Nichols, M. Robertson, and P.D. Rathjen. 1992. Differentiation <strong>in</strong>hibit<strong>in</strong>g activity(DIA/LIF) and <strong>mouse</strong> development. Dev Biol 151: 339-51.Solter, D. and B.B. Knowles. 1978. Monoclonal antibody def<strong>in</strong><strong>in</strong>g a stage-specific <strong>mouse</strong> embryonicantigen (SSEA-1). Proc Natl Acad Sci U S A 75: 5565-9.Stavridis, M.P., J.S. Lunn, B.J. Coll<strong>in</strong>s, and K.G. Storey. 2007. A discrete period <strong>of</strong> <strong>FGF</strong>-<strong>in</strong>duced Erk1/2<strong>signall<strong>in</strong>g</strong> is required for vertebrate neural specification. Development 134: 2889-94.Strumpf, D., C.A. Mao, Y. Yamanaka, A. Ralston, K. Chawengsaksophak, F. Beck, and J. Rossant.2005. Cdx2 is required for correct cell fate specification and <strong>differentiation</strong> <strong>of</strong> trophectoderm <strong>in</strong><strong>the</strong> <strong>mouse</strong> blastocyst. Development 132: 2093-102.Sun, X., E.N. Meyers, M. Lewandoski, and G.R. Mart<strong>in</strong>. 1999. Targeted disruption <strong>of</strong> Fgf8 causesfailure <strong>of</strong> cell migration <strong>in</strong> <strong>the</strong> gastrulat<strong>in</strong>g <strong>mouse</strong> embryo. Genes Dev 13: 1834-46.Tada, S., T. Era, C. Furusawa, H. Sakurai, S. Nishikawa, M. K<strong>in</strong>oshita, K. Nakao, and T. Chiba. 2005.Characterization <strong>of</strong> mesendoderm: a diverg<strong>in</strong>g po<strong>in</strong>t <strong>of</strong> <strong>the</strong> def<strong>in</strong>itive endoderm and mesoderm<strong>in</strong> embryonic stem cell <strong>differentiation</strong> culture. Development 132: 4363-74.Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka. 2007.Induction <strong>of</strong> pluripotent stem <strong>cells</strong> from adult human fibroblasts by def<strong>in</strong>ed factors. Cell 131:861-72.Takahashi, K. and S. Yamanaka. 2006. Induction <strong>of</strong> pluripotent stem <strong>cells</strong> from <strong>mouse</strong> embryonic andadult fibroblast cultures by def<strong>in</strong>ed factors. Cell 126: 663-76.Tam, P.P. and R.S. Bedd<strong>in</strong>gton. 1992. Establishment and organization <strong>of</strong> germ layers <strong>in</strong> <strong>the</strong> gastrulat<strong>in</strong>g<strong>mouse</strong> embryo. Ciba Found Symp 165: 27-41; discussion 42-9.Tam, P.P., E.A. Williams, and W.Y. Chan. 1993. Gastrulation <strong>in</strong> <strong>the</strong> <strong>mouse</strong> embryo: ultrastructural andmolecular aspects <strong>of</strong> germ layer morphogenesis. Microsc Res Tech 26: 301-28.98


Tanimizu, N., H. Saito, K. Mostov, and A. Miyajima. 2004. Long-term culture <strong>of</strong> hepatic progenitorsderived from <strong>mouse</strong> Dlk+ hepatoblasts. J Cell Sci 117: 6425-34.Tesar, P.J., J.G. Chenoweth, F.A. Brook, T.J. Davies, E.P. Evans, D.L. Mack, R.L. Gardner, and R.D.McKay. 2007. New cell l<strong>in</strong>es from <strong>mouse</strong> epiblast share def<strong>in</strong><strong>in</strong>g features with humanembryonic stem <strong>cells</strong>. Nature 448: 196-9.Thomson, J.A., J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, and J.M.Jones. 1998. Embryonic stem cell l<strong>in</strong>es derived from human blastocysts. Science 282: 1145-7.Toml<strong>in</strong>son, E., L. Fu, L. John, B. Hultgren, X. Huang, M. Renz, J.P. Stephan, S.P. Tsai, L. Powell-Braxton, D. French, and T.A. Stewart. 2002. Transgenic mice express<strong>in</strong>g human fibroblastgrowth factor-19 display <strong>in</strong>creased metabolic rate and decreased adiposity. Endocr<strong>in</strong>ology 143:1741-7.Touboul, T., N.R. Hannan, S. Corb<strong>in</strong>eau, A. Mart<strong>in</strong>ez, C. Mart<strong>in</strong>et, S. Branchereau, S. Ma<strong>in</strong>ot, H.Strick-Marchand, R. Pedersen, J. Di Santo, A. Weber, and L. Vallier. 2009. Generation <strong>of</strong>functional hepatocytes from human embryonic stem <strong>cells</strong> under chemically def<strong>in</strong>ed conditionsthat recapitulate liver development. Hepatology.Tzouanacou, E., A. Wegener, F.J. Wymeersch, V. Wilson, and J.F. Nicolas. 2009. Redef<strong>in</strong><strong>in</strong>g <strong>the</strong>progression <strong>of</strong> l<strong>in</strong>eage segregations dur<strong>in</strong>g mammalian embryogenesis by clonal analysis. DevCell 17: 365-76.Umehara, H., T. Kimura, S. Ohtsuka, T. Nakamura, K. Kitajima, M. Ikawa, M. Okabe, H. Niwa, and T.Nakano. 2007. Efficient derivation <strong>of</strong> embryonic stem <strong>cells</strong> by <strong>in</strong>hibition <strong>of</strong> glycogen synthasek<strong>in</strong>ase-3. Stem Cells 25: 2705-11.Va<strong>in</strong>ikka, S., J. Partanen, P. Bellosta, F. Coulier, D. Birnbaum, C. Basilico, M. Jaye, and K. Alitalo.1992. Fibroblast growth factor receptor-4 shows novel features <strong>in</strong> genomic structure, ligandb<strong>in</strong>d<strong>in</strong>g and signal transduction. Embo J 11: 4273-80.Vallier, L., D. Reynolds, and R.A. Pedersen. 2004. Nodal <strong>in</strong>hibits <strong>differentiation</strong> <strong>of</strong> human embryonicstem <strong>cells</strong> along <strong>the</strong> neuroectodermal default pathway. Dev Biol 275: 403-21.Vallier, L., T. Touboul, Z. Chng, M. Brimpari, N. Hannan, E. Millan, L.E. Smi<strong>the</strong>rs, M. Trotter, P.Rugg-Gunn, A. Weber, and R.A. Pedersen. 2009. Early cell fate decisions <strong>of</strong> human embryonicstem <strong>cells</strong> and <strong>mouse</strong> epiblast stem <strong>cells</strong> are controlled by <strong>the</strong> same <strong>signall<strong>in</strong>g</strong> pathways. PLoSOne 4: e6082.Van Ho<strong>of</strong>, D., K.A. D'Amour, and M.S. German. 2009. Derivation <strong>of</strong> <strong>in</strong>sul<strong>in</strong>-produc<strong>in</strong>g <strong>cells</strong> fromhuman embryonic stem <strong>cells</strong>. Stem Cell Res 3: 73-87.Walshe, J. and I. Mason. 2003. Unique and comb<strong>in</strong>atorial functions <strong>of</strong> Fgf3 and Fgf8 dur<strong>in</strong>g zebrafishforebra<strong>in</strong> development. Development 130: 4337-49.Wandzioch, E. and K.S. Zaret. 2009. Dynamic signal<strong>in</strong>g network for <strong>the</strong> specification <strong>of</strong> embryonicpancreas and liver progenitors. Science 324: 1707-10.Wang, X. and K. Ye. 2009. Three-dimensional <strong>differentiation</strong> <strong>of</strong> embryonic stem <strong>cells</strong> <strong>in</strong>to islet-like<strong>in</strong>sul<strong>in</strong>-produc<strong>in</strong>g clusters. Tissue Eng Part A 15: 1941-52.Wasylyk, B., J. Hagman, and A. Gutierrez-Hartmann. 1998. Ets transcription factors: nuclear effectors<strong>of</strong> <strong>the</strong> Ras-MAP-k<strong>in</strong>ase signal<strong>in</strong>g pathway. Trends Biochem Sci 23: 213-6.Watanabe, K., D. Kamiya, A. Nishiyama, T. Katayama, S. Nozaki, H. Kawasaki, Y. Watanabe, K.Mizuseki, and Y. Sasai. 2005. Directed <strong>differentiation</strong> <strong>of</strong> telencephalic precursors fromembryonic stem <strong>cells</strong>. Nat Neurosci 8: 288-96.Wells, J.M. and D.A. Melton. 1999. Vertebrate endoderm development. Annu Rev Cell Dev Biol 15:393-410.-. 2000. Early <strong>mouse</strong> endoderm is patterned by soluble factors from adjacent germ layers. Development127: 1563-72.Wilk<strong>in</strong>son, D.G., G. Peters, C. Dickson, and A.P. McMahon. 1988. Expression <strong>of</strong> <strong>the</strong> <strong>FGF</strong>-related protooncogene<strong>in</strong>t-2 dur<strong>in</strong>g gastrulation and neurulation <strong>in</strong> <strong>the</strong> <strong>mouse</strong>. Embo J 7: 691-5.Willems, E. and L. Leyns. 2008. Pattern<strong>in</strong>g <strong>of</strong> <strong>mouse</strong> embryonic stem cell-derived pan-mesoderm byActiv<strong>in</strong> A/Nodal and Bmp4 signal<strong>in</strong>g requires Fibroblast Growth Factor activity. Differentiation76: 745-59.Xu, J., Z. Liu, and D.M. Ornitz. 2000. Temporal and spatial gradients <strong>of</strong> Fgf8 and Fgf17 regulateproliferation and <strong>differentiation</strong> <strong>of</strong> midl<strong>in</strong>e cerebellar structures. Development 127: 1833-43.Xu, X., J. D'Hoker, G. Stange, S. Bonne, N. De Leu, X. Xiao, M. Van de Casteele, G. Mellitzer, Z. L<strong>in</strong>g,D. Pipeleers, L. Bouwens, R. Scharfmann, G. Gradwohl, and H. Heimberg. 2008. Beta <strong>cells</strong> canbe generated from endogenous progenitors <strong>in</strong> <strong>in</strong>jured adult <strong>mouse</strong> pancreas. Cell 132: 197-207.Yamaguchi, T.P., K. Harpal, M. Henkemeyer, and J. Rossant. 1994. fgfr-1 is required for embryonicgrowth and mesodermal pattern<strong>in</strong>g dur<strong>in</strong>g <strong>mouse</strong> gastrulation. Genes Dev 8: 3032-44.99


Yamanaka, S. 2009. A fresh look at iPS <strong>cells</strong>. Cell 137: 13-7.Yamanaka, Y., F. Lanner, and J. Rossant. 2010. <strong>FGF</strong> signal-dependent segregation <strong>of</strong> primitiveendoderm and epiblast <strong>in</strong> <strong>the</strong> <strong>mouse</strong> blastocyst. Development 137: 715-24.Yang, L., S. Li, H. Hatch, K. Ahrens, J.G. Cornelius, B.E. Petersen, and A.B. Peck. 2002a. In vitro trans<strong>differentiation</strong><strong>of</strong> adult hepatic stem <strong>cells</strong> <strong>in</strong>to pancreatic endocr<strong>in</strong>e hormone-produc<strong>in</strong>g <strong>cells</strong>.Proc Natl Acad Sci U S A 99: 8078-83.Yang, X., D. Dormann, A.E. Munsterberg, and C.J. Weijer. 2002b. Cell movement patterns dur<strong>in</strong>ggastrulation <strong>in</strong> <strong>the</strong> chick are controlled by positive and negative chemotaxis mediated by <strong>FGF</strong>4and <strong>FGF</strong>8. Dev Cell 3: 425-37.Yasunaga, M., S. Tada, S. Torikai-Nishikawa, Y. Nakano, M. Okada, L.M. Jakt, S. Nishikawa, T. Chiba,and T. Era. 2005. Induction and monitor<strong>in</strong>g <strong>of</strong> def<strong>in</strong>itive and visceral endoderm <strong>differentiation</strong><strong>of</strong> <strong>mouse</strong> <strong>ES</strong> <strong>cells</strong>. Nat Biotechnol 23: 1542-50.Y<strong>in</strong>g, Q.L., J. Nichols, I. Chambers, and A. Smith. 2003a. BMP <strong>in</strong>duction <strong>of</strong> Id prote<strong>in</strong>s suppresses<strong>differentiation</strong> and susta<strong>in</strong>s embryonic stem cell self-renewal <strong>in</strong> collaboration with STAT3. Cell115: 281-92.Y<strong>in</strong>g, Q.L. and A.G. Smith. 2003. Def<strong>in</strong>ed conditions for neural commitment and <strong>differentiation</strong>.Methods Enzymol 365: 327-41.Y<strong>in</strong>g, Q.L., M. Stavridis, D. Griffiths, M. Li, and A. Smith. 2003b. Conversion <strong>of</strong> embryonic stem <strong>cells</strong><strong>in</strong>to neuroectodermal precursors <strong>in</strong> adherent monoculture. Nat Biotechnol 21: 183-6.Y<strong>in</strong>g, Q.L., J. Wray, J. Nichols, L. Batlle-Morera, B. Doble, J. Woodgett, P. Cohen, and A. Smith. 2008.The ground state <strong>of</strong> embryonic stem cell self-renewal. Nature 453: 519-23.Zhang, X., O.A. Ibrahimi, S.K. Olsen, H. Umemori, M. Mohammadi, and D.M. Ornitz. 2006. Receptorspecificity <strong>of</strong> <strong>the</strong> fibroblast growth factor family. The complete mammalian <strong>FGF</strong> family. J BiolChem 281: 15694-700.Zhao, M., S.A. Amiel, M.R. Christie, P. Muiesan, P. Sr<strong>in</strong>ivasan, W. Littlejohn, M. Rela, M. Arno, N.Heaton, and G.C. Huang. 2007. Evidence for <strong>the</strong> presence <strong>of</strong> stem cell-like progenitor <strong>cells</strong> <strong>in</strong>human adult pancreas. J Endocr<strong>in</strong>ol 195: 407-14.100

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!