10.07.2015 Views

Lucia Reining - TDDFT.org

Lucia Reining - TDDFT.org

Lucia Reining - TDDFT.org

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

How to describe…………………1) Linear response in <strong>TDDFT</strong>a) <strong>TDDFT</strong> and spectroscopyb) <strong>TDDFT</strong> in practice2) Linear response in MBPTa) From Kohn-Sham to Quasi-Particlesb) Hedin’s equations and the BSEc) BSE in practice3) Comparisons…..4) …..and Combinations5) Outlook


<strong>TDDFT</strong> and spectroscopyV ext (r,t) ρ(r,t)responseLinear response: ρ ind = χ V extContent of χ ?


What is a spectrum?


hνWhat is a spectrum?


hνWhat is a spectrum?


hνWhat is a spectrum?


hνWhat is a spectrum?


Independent electrons and transitionshνcvIm [χ 0 ] ~ Σ vc || 2 δ (E c -E v -ω)


…but also:Perturbation -- ResponseResponse => Spectrum


Perturbation -- ResponseResponse => SpectrumPerturbation = external macroscopic


Perturbation -- ResponseResponse => SpectrumPerturbation = external macroscopic


Perturbation -- ResponseResponse => SpectrumPerturbation = external macroscopic


Perturbation -- ResponseResponse => SpectrumPerturbation = external macroscopic + inducedinduced = macroscopic


Perturbation -- ResponseResponse => SpectrumPerturbation = external macroscopic + inducedinduced = macroscopic + microscopic


V ind = (δV H /δρ + δV xc /δρ) δρPerturbation -- ResponseResponse => SpectrumPerturbation = external macroscopic + inducedinduced = macroscopic + microscopic


V ind = (δV H /δρ + δV xc /δρ) δρSelf-consistentPerturbation -- ResponseResponse => SpectrumPerturbation = external macroscopic + inducedinduced = macroscopic + microscopic


ρ ind = χ V extχ = χ 0 + χ 0 (v+f xc ) χ


ρ ind = χ V extχ = χ 0 + χ 0 (v+f xc ) χ v=δV H /δρ f xc =δV xc /δρVariation of “internal” potentialsEELS - response to V ext : -Im(χ)Absorption - response to V ext +V Hmacro: Im(χ)χ = χ 0 + χ 0 (v+f xc ) χ ρ ind = χ (V ext +V H macro )v = v – v(G=0)


1b) <strong>TDDFT</strong> in practicei) Finite system: 1 electron V xc = -V H(T+ V ext + V H –V H ) ϕ = ε ϕf xc = -vχ = χ 0χ = χ 0 + χ 0 (v+f xc ) χ“χ 0 is fine….” (for χand χ)more electrons: screening of f xcv becomes dominant“RPA is fine….” (for χand χ)“TDLDA is fine….” (for χand χ)


) Infinite system: long range important!RPA: α=1RPAABS: χ = χ 0 + χ 0 (v- v 0 ) χEELS: χ = χ 0 + χ 0 (v) χGeneral: v-αv 0Sottile et al (2002)EELS: α=0


EELS : v is dominantOlevano and <strong>Reining</strong> 2000


EELS : v is dominant“RPA is fine…”“TDLDA is fine…”Olevano and <strong>Reining</strong> 2000


Absorption: no long range in RPA.Any long range in f xc is therefore dramatic…..


How to get f xc ?hνcvWhat are these?Which interactions ?It is difficult to think in the Kohn-Sham world


So which potential in the “real world”?cv


So which potential ?cv


So which potential ?cv


So which potential ?cvHole - (N-1) electrons


Koopman’s theorem(e.g. Hartee Fock)(-∇ 2 /2 + V ext + V H + V xc ) |n> = E n |n>(-∇ 2 /2 + V ext + V H + Σ x |n> = E n |n>V xc (r) versus Σ x (r,r’)


ExchangeRelaxation - dynamical correlations(-∇ 2 /2 + V ext + V H + Σ x ) |n> = E n |n>(-∇ 2 /2 + V ext + V H + Σ(E n ) ) |n> = E n |n>Σ x (r,r’) versus Σ(r,r’,E n )


Hartree :Hartree - Fock :Beyond :ρ(r)ρ(r,r’)ρ(r,r’,t,t’)


One-particle Green’s function:G(x,x’,t,t’) = -iIf |N> = 1 Slater determinant:for t


From ∂ρ/∂tto:∂/∂t G =……….……leads to G (2) (4 field operators)Introduce potential Σ..... (G -1 = G H-1– Σ)…….to be defined implicitlyPerturbation δV ext Σ = - iGv(δG -1 /δV ext )


From ∂ρ/∂tto:∂/∂t G =……….……leads to G (2) (4 field operators)Introduce potential Σ..... (G -1 = G H-1– Σ)…….to be defined implicitlyPerturbation δV ext Σ = - iGv(δG -1 /δV ext )


Σ = i ∫GWΓW = v + ∫v P WP = - i ∫GGΓΓ = δ + ∫ δΣ/δG GGΓ(G -1 = G H-1– Σ)Hedin’s equations


Σ = i ∫GWΓW = v + ∫v P WP = - i ∫GGΓΓ = δ + ∫ δΣ/δG GGΓ(G -1 = G H-1– Σ)Γ = δ


Σ = i ∫GWΓW = v + ∫v P WP = - i ∫GGΓΓ = δ + ∫ δΣ/δG GGΓ(G -1 = G H-1– Σ)Γ = δ


Σ = i ∫GWΓ = i GWW = v + ∫v P WP = - i ∫GGΓ = -iGGΓ = δ + ∫ δΣ/δG GGΓ(G -1 = G H-1– Σ)Γ = δGW Approximation, Hedin 1965


E c -E v (minimum, eV)DFT-KSΣ=iGWExp.SiliconDiamondMgO0.554.265.31.195.647.81.175.487.83(HF much bigger! Even Silicon……)….this makes the solid so difficult!!!


W = v + ∫v P W(1 -vP) W = vW=(1 -vP) -1 v = ε -1 v = (1+vχ)v“χ” = P + P v χP = - i ∫GGΓ


Γ = δΣ = i ∫GWΓW = v + ∫v P WP = - i ∫GGΓRPA formΓ = δ + ∫ δΣ/δG GGΓ


Γ = δΣ = i ∫GWΓW = v + ∫v P WP = - i ∫GGΓΓ = δ + ∫ δΣ/δG GGΓ-i ∫GGΓ = -i GG -i ∫GG ∫ δΣ/δG GGΓP = P 0 + P 0 δΣ/δG iP Bethe SalpeterΣ = i GWP ≅ P 0 -P 0 W P χ = P 0 + P 0 (v-W) χ


χ = P 0 + P 0 (v-W) χδV H /δρ


χ = P 0 + P 0 (v-W) χδV H /δρδΣ/δG


χ = P 0 + P 0 (v-W) χδV H /δρ δΣ/δG δΣ(12)/δG(34)


Absorption ?cv


Absorption ?cv


Absorption ?cvElectron-hole interactionExcitonic effectsBethe-Salpeter Equation


Absorption ?cVariation of potentialvElectron-hole interactionExcitonic effectsBethe-Salpeter Equation


χ=χ 0 + χ 0 (v-W) χ =


(H el + H hole + H el-hole ) A λ = E λ A λVariation of potentialIm [ε] ~ Σ vc || 2δ (E c -E v -ω)Im [ε] ~ Σ λ | Σ vc A λvc| 2 δ (E λ -ω)->Mixing of transitions->Modification of excitation energies


RPABSE


BSE and <strong>TDDFT</strong>: different worlds, same physics<strong>TDDFT</strong>:χ = χ 0 + χ 0 (v+f xc ) χBSE:(H el + H hole + H el-hole ) A λ = E λ A λ


BSE and <strong>TDDFT</strong>: different worlds, same physics<strong>TDDFT</strong>:χ = χ 0 + χ 0 (v+f xc ) χδV H /δρδV xc /δρBSE:(H el + H hole + H el-hole ) A λ = E λ A λ


BSE and <strong>TDDFT</strong>: different worlds, same physics<strong>TDDFT</strong>:χ = χ 0 + χ 0 (v+f xc ) χδV H /δρδV xc /δρBSE:(H el + H hole + H el-hole ) A λ = E λ A λ(∆E GW + - ) A λ = E λ A λ


BSE and <strong>TDDFT</strong>: different worlds, same physics<strong>TDDFT</strong>:χ = χ 0 + χ 0 (v+f xc ) χδV H /δρδV xc /δρBSE:(H el + H hole + H el-hole ) A λ = E λ A λ(∆E GW + - ) A λ = E λ A λδV H /δρδΣ xc /δG


BSE and <strong>TDDFT</strong>: different worlds, same physics<strong>TDDFT</strong>:χ = χ 0 + χ 0 (v+f xc ) χδV H /δρδV xc /δρBSE:4 χ = 4 χ 0 + 4 χ 0 (v+δΣ xc/ δG) 4 χ(∆E GW + - ) A λ = E λ A λδV H /δρδΣ xc /δG


BSE and <strong>TDDFT</strong>: different worlds, same physics<strong>TDDFT</strong>:χ = χ 0 + χ 0 (v+f xc ) χ(∆E KS + - ) A λ = E λ A λBSE:4 χ = 4 χ 0 + 4 χ 0 (v+ δΣ xc/ δG ) 4 χ(∆E GW + - ) A λ = E λ A λ


BSE and <strong>TDDFT</strong>: different worlds, same physics…….but <strong>TDDFT</strong> direct + fast!!!<strong>TDDFT</strong>:χ = χ 0 + χ 0 (v+f xc ) χ(∆E KS + - ) A λ = E λ A λBSE:4 χ = 4 χ 0 + 4 χ 0 (v+ δΣ xc/ δG ) 4 χ(∆E GW + - ) A λ = E λ A λ


BSE and <strong>TDDFT</strong>: different worlds, same physics…….but <strong>TDDFT</strong> direct + fast!!!<strong>TDDFT</strong>:χ = χ 0 + χ 0 (v+f xc ) χ(∆E KS + - ) A λ = E λ A λf xc = 0 : RPAf xc = δV xcLDA/δρ : TDLDA


TDLDA


Solids: TDLDA ~ RPACan we get f xc from BSE?


BSE and <strong>TDDFT</strong>: different worlds, same physics…….but <strong>TDDFT</strong> direct + fast!!!<strong>TDDFT</strong>:χ = χ 0 + χ 0 (v+f xc ) χ(∆E KS + - ) A λ = E λ A λBSE:(∆E GW + - ) A λ = E λ A λ4 χ = 4 χ 0 + 4 χ 0 (v+ δΣ xc/ δG ) 4 χ


Comparison in“Transition” spaceΦ(n1,n2;r)≡ψ (r)ψ* (r)n1 n2FBSE(n1n2)(n3n4)=−∫drdr'Φ(n1,n3;r)W(r',r)Φ * (n2,n4;r')F<strong>TDDFT</strong>(n1n2)(n3n4)= ∫ drdr'Φ(n1,n2;r)fxc(r,r')Φ * (n3,n4;r')


Comparison in“Transition” spaceΦ(n1,n2;r)≡ψ (r)ψ* (r)n1 n2FBSE(n1n2)(n3n4)=−∫drdr'v,v’c,c’Φ(n1,n3;r)W(r',r)Φ * (n2,n4;r')F<strong>TDDFT</strong>(n1n2)(n3n4)= ∫ drdr'Φ(n1,n2;r)fxc(r,r')Φ * (n3,n4;r')v,c v’,c’


Asymptotic long-range behaviorof the xc KernelΦ (v,k (v,k,c,k ,c,k +q +q ;G ;G =0) =0) q → q 0 0O (q (q))→constq→0F (n1n2)(n3n4) q→0(n1n2)(n3n4)( )ffxc ( ,G G' 0) q 02xc ( q ,G = G' = 0) → q 0 O 1 q 2


<strong>Reining</strong>, Olevano, Rubio, Onida (PRL 2002)


Botti et al (2002)Refraction Index


Botti, Vast, <strong>Reining</strong>, Olevano, Andreani (PRL, 2002)


Botti et al (2002)


•The lack of a long range term in f xcLDAisrelatively weightless in the EEL but iscrucial in Absorption spectra!Our Explanation⎧ EEL ∝ ε −1 =1+vχ⎨⎩ χ=χ (0) +χ (0) (v+ f xc )χ• In the EEL f xc is added to the full Coulombian that already contains along range contribution⎧ ε M =1−vχ⎨⎩ χ =χ (0) +χ (0) (v + f xc )χCoulombianwithout long range termAbsorption• In the Absorption spectra f xc is added to a Coulombian thatdoes not contain a long range contribution


BSE and <strong>TDDFT</strong>: merge!<strong>TDDFT</strong>:χ = χ 0 + χ 0 (v+f xc ) χ


BSE and <strong>TDDFT</strong>: merge!<strong>TDDFT</strong>:χ = χ 0 + χ 0 (v+f xc ) χχ = (1- χ 0 (v+f xc )) -1 χ 0


BSE and <strong>TDDFT</strong>: merge!<strong>TDDFT</strong>:χ = χ 0 + χ 0 (v+f xc ) χχ = (1- χ 0 (v+f xc )) -1 χ 0χ =X (X - χ 0 (v+f xc )X) -1 χ 0X =Σ vc |vc>


BSE and <strong>TDDFT</strong>: merge!<strong>TDDFT</strong>:χ = χ 0 + χ 0 (v+f xc ) χχ =X (X - χ 0 (v+f xc )X) -1 χ 0X =Σ vc |vc>


BSE and <strong>TDDFT</strong>: merge!<strong>TDDFT</strong>:χ = χ 0 + χ 0 (v+f xc ) χχ =X (X - χ 0 (v+f xc )X) -1 χ 0X =Σ vc |vc>


BSE and <strong>TDDFT</strong>:”Mapping theory”<strong>TDDFT</strong>:(∆E KS + - ) A λ = E λ A λBSE:(∆E GW + - ) A λ = E λ A λ


BSE and <strong>TDDFT</strong> :”Mapping theory”<strong>TDDFT</strong>:χ = χ 0 + χ 0 (v+f xc ) χχ =X (X - χ 0 (v+f xc )X) -1 χ 0χ =X (X - χ 0 v X + Τ) -1 χ 0χ 0 with GW energiesT= Σ vc,v’c’ 1/(E c -E v -ω) |vc> > >


Silicon: Optical AbsorptionF. Sottile et al.,Phys Rev. Lett91, 056402 (2003).Parameter-free!!!


Solid Argon: Bound Excitons• Francesco Sottile, PhD thesis (2003)


BSE and <strong>TDDFT</strong> :”Mapping theory”<strong>TDDFT</strong>:χ = χ 0 + χ 0 (v+f xc ) χχ =X (X - χ 0 (v+f xc )X) -1 χ 0χ =X (X - χ 0 v X + Τ) -1 χ 0χ 0 with GW energiesT= Σ vc,v’c’ 1/(E c -E v -ω) |vc> > >


Advantages over BSE: Diago,inversion SumAdvantages of this approach:- interpolation,……- change order of operations no 4point- modelisation (long range etc)<strong>Reining</strong> et al, PRL 88, 066404 (2002); Sottile et al, PRL 91, 056402 (2003)Perturbation theory:- work with χ 0 f xc , not f xc- flexible: χ 0 XAdragna PhD thesis and PRB 68, 165108 (2003),Marini et al PRL 91, 256402 (2003) :X χ 0 )


All of us:•Potentially efficient 2-point simulation of BSE results•Inspired by <strong>TDDFT</strong>•Is it <strong>TDDFT</strong>? (We have still QP energies)χ= χ 0QP+ χ 0QP(v+f xcmb) χχ= χ 0KS+ χ 0KS(v+f xc ) χ f xc = f xcmb+ (χ 0QP) -1 -(χ 0KS) -1


ConclusionWe can get DF quantities from MBPT (well known)The aim is to simplify our life:MBPT is more “understandable”DFT is more “efficient”.The difficulty: get the DF answer without solving the wholemany-body problem first!In the case of the BSE – <strong>TDDFT</strong> this has worked out fine.


How to describe exchange and correlation effectsin the response properties of valence electrons?Answers from <strong>TDDFT</strong> and MBPTSilvana BottiFabien BrunevalApostolos MarinopoulosValerio OlevanoFrancesco SottileNathalie Vast<strong>Lucia</strong> <strong>Reining</strong>Laboratoire des Solides IrradiésPalaiseauNANOPHASE-NANOQUANTA

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!