Deposition of tantalum on steel by sputtering - New Jersey Institute ...

Deposition of tantalum on steel by sputtering - New Jersey Institute ... Deposition of tantalum on steel by sputtering - New Jersey Institute ...

archives.njit.edu
from archives.njit.edu More from this publisher
10.07.2015 Views

ABSTRACTDEPOSITION OF TANTALUM ON STEEL BY SPUTTERING<strong>by</strong>Bhavin ShahRecent interest in <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> depositi<strong>on</strong> comes from two different applicati<strong>on</strong>s. One is inmicroelectr<strong>on</strong>ics where thin <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films (< 1 μm) are used as diffusi<strong>on</strong> barrier layersfor copper interc<strong>on</strong>nects. The other involves its applicati<strong>on</strong> as a material for corrosi<strong>on</strong>and wear resistant coating <strong>on</strong> surfaces that are subjected to high stresses and harshchemical and erosive envir<strong>on</strong>ments.This thesis is a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the investigati<strong>on</strong> d<strong>on</strong>e at the I<strong>on</strong> Beam and Thin FilmResearch Laboratory at NJIT to study the depositi<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s and properties <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>tantalum</str<strong>on</strong>g> thin films. It includes the design and c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Planar D.C. Magnetr<strong>on</strong>Sputtering System and Cylindrical D. C. Magnetr<strong>on</strong> Sputtering System for depositi<strong>on</strong> <strong>on</strong>the planar and cylindrical surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>steel</strong>, respectively. The electrical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g>the cylindrical system were tested in a range <str<strong>on</strong>g>of</str<strong>on</strong>g> pressures and c<strong>on</strong>diti<strong>on</strong>s for initiati<strong>on</strong> andmaintaining <str<strong>on</strong>g>of</str<strong>on</strong>g> discharge were established.The successful completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> planar magnetr<strong>on</strong> system was dem<strong>on</strong>strated <strong>by</strong>depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films. The quality <str<strong>on</strong>g>of</str<strong>on</strong>g> these films has improved with refining <str<strong>on</strong>g>of</str<strong>on</strong>g> thedepositi<strong>on</strong> system and the process procedure.Tantalum films deposited in the planar magnetr<strong>on</strong> <strong>sputtering</strong> system had thicknessin the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 4000 A - 6000 A. As a part <str<strong>on</strong>g>of</str<strong>on</strong>g> a pilot study, the films were analyzed usingpr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilometry, Scanning Electr<strong>on</strong> Microscope (SEM), X-ray Diffracti<strong>on</strong> (XRD) andRutherford Backscattering Techniques (RBS).


The characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the films were str<strong>on</strong>gly dependent <strong>on</strong> the surfacepreparati<strong>on</strong> and the residual gas in the depositi<strong>on</strong> chamber. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen andwater vapor in the residual gas results in films c<strong>on</strong>taining substantial amount <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen.Proper cleaning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>steel</strong> substrates is essential for film integrity and adhesi<strong>on</strong>. Surfacepreparati<strong>on</strong>, including <strong>steel</strong> polishing, also influences crystallinity <str<strong>on</strong>g>of</str<strong>on</strong>g> the films. Typically,alpha and beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> phases are present but there are indicati<strong>on</strong>s that under c<strong>on</strong>trolledc<strong>on</strong>diti<strong>on</strong>s pure alpha phase can be formed.


DEPOSITION OF TANTALUM ON STEEL BY SPUTTERING<strong>by</strong>Bhavin ShahA ThesisSubmitted to the Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>New</strong> <strong>Jersey</strong> <strong>Institute</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Technologyin Partial Fulfillment <str<strong>on</strong>g>of</str<strong>on</strong>g> the Requirements for the Degree <str<strong>on</strong>g>of</str<strong>on</strong>g>Master <str<strong>on</strong>g>of</str<strong>on</strong>g> Science in Materials Science and EngineeringInterdisciplinary Program in Materials Science and EngineeringJanuary 2001


APPROVAL PAGEDEPOSITION OF TANTALUM ON STEEL BY SPUTTERINGBhavin ShahDr. Marek Sosnowski, Thesis AdvisorAssociate Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Electrical and Computer Engineering, NJIT.DateDr. Roland A. Levy, Committee Member DateDistinguished Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, NJIT.Dr. Trevor Tys<strong>on</strong>, Committee MemberAssociate Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, NJIT.Date


This work is dedicated to mybeloved parents and sister


ACKNOWLEDGEMENTWords fail to express my gratitude and appreciati<strong>on</strong> to Dr. Marek Sosnowski, who gaveme opportunity <str<strong>on</strong>g>of</str<strong>on</strong>g> working under his supervisi<strong>on</strong> during my graduate study at NJIT, andserved as my research advisor. I am extremely thankful to him not <strong>on</strong>ly for his patienceand understanding, but also for his expert guidance and invaluable suggesti<strong>on</strong>s. I alsoappreciate his questi<strong>on</strong>s and recommendati<strong>on</strong>s, which made this work and myeducati<strong>on</strong>al goals more meaningful. I have learned from him not <strong>on</strong>ly academically butalso in other general aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> life.I am also highly grateful to Dr. Trevor Tys<strong>on</strong> and Dr. Roland A. Levy for servingas members <str<strong>on</strong>g>of</str<strong>on</strong>g> the committee.My fellow students at the I<strong>on</strong> Beam and Thin Film Research Laboratory,Anamika Patel, Maria Albano, Cheng Li and Younes Abbassi deserve a word <str<strong>on</strong>g>of</str<strong>on</strong>g>appreciati<strong>on</strong> for their c<strong>on</strong>stant support and help. Special recogniti<strong>on</strong> also goes toMr. John Hoinowski for his help in machining comp<strong>on</strong>ents for the system.I would also like to thank Minal Shah, Mahesh Ajga<strong>on</strong>kar, Kiran Shah, SanketShah, Chirag Morakhia and Mihir Tungare who made the period <str<strong>on</strong>g>of</str<strong>on</strong>g> this work a pleasant<strong>on</strong>e.Special recogniti<strong>on</strong> also goes to Anto Yohannan for doing the characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>films and as a helping me as a co-worker.This research was funded in parts <strong>by</strong> a grant provided <strong>by</strong> the US Army.vi


TABLE OF CONTENTSChapterPage1 INTRODUCTION 12 PROPERTIES AND APPLICATIONS OF TANTALUM 52.1 Physical Properties 52.2 Crystal Structure 52.3 Applicati<strong>on</strong>s 83 SPUTTERING AS A DEPOSITION TECHNIQUE 103.1 Introducti<strong>on</strong> 103.2 Physical Vapor <str<strong>on</strong>g>Depositi<strong>on</strong></str<strong>on</strong>g> Methods 113.2.1 Sputtering 113.2.2 Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Sputtering 123.2.3 Sputtering <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals 133.2.4 Mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> Sputtering 143.3 Magnetr<strong>on</strong> Sputtering 163.3.1 Comm<strong>on</strong> C<strong>on</strong>figurati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Sputtering System 203.4 RF Sputtering 214 PLANAR DC MAGNETRON SPUTTERING SYSTEM 224.1 <str<strong>on</strong>g>Depositi<strong>on</strong></str<strong>on</strong>g> Chamber 224.2 Substrate Mounting 254.3 Gas Flow C<strong>on</strong>trol 294.4 Testing <str<strong>on</strong>g>of</str<strong>on</strong>g> the Chamber 31vii


TABLE OF CONTENTS(C<strong>on</strong>tinued)ChapterPage4.5 <str<strong>on</strong>g>Depositi<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tantalum 345 CYLINDRICAL DC MAGNETRON SPUTTERING SYSTEM 365.1 Operating Principle 365.2 Descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the System 375.3 Plasma C<strong>on</strong>trol 416 TANTALUM FILM ANALYSIS 486.1 Introducti<strong>on</strong> 486.2 Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> Film Thickness 486.3 Scanning Electr<strong>on</strong> Microscopy 506.4 X - Ray Analysis 566.5 Rutherford Back Scattering 627 SUMMARY AND CONCLUSIONS 647.1 Testing and Development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Depositi<strong>on</strong></str<strong>on</strong>g> Equipment 647.1.1 Planar D. C. Magnetr<strong>on</strong> Sputtering System 647.1.2 Testing <str<strong>on</strong>g>of</str<strong>on</strong>g> Cylindrical Magnetr<strong>on</strong> Sputtering System 647.2 Tantalum <str<strong>on</strong>g>Depositi<strong>on</strong></str<strong>on</strong>g> 65REFERENCES 67viii


LIST OF TABLESTablePage4.1 Gas Flow Rates for Various Stable Pressure C<strong>on</strong>diti<strong>on</strong>s 316.1 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> XRD results 60ix


LIST OF FIGURESFigurePage3.1 Interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>s with surfaces 153.2 Sputtering — the atomic billiards game 153.3 Schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> a dc <strong>sputtering</strong> system 173.4 Moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> ejected from a surface with velocity v into aregi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic field B parallel to the surface:(a) with no electric field(b) with a linearly decreasing field 183.5 Cylindrical magnetr<strong>on</strong> <strong>sputtering</strong> c<strong>on</strong>figurati<strong>on</strong> 214.1 Planar dc magnetr<strong>on</strong> <strong>sputtering</strong> system 234.2 Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the depositi<strong>on</strong> chamber 244.3 Substrate platter 254.4 Substrate shield 264.5 Substrate platter mounted <strong>on</strong> the shaft inside the chamber 274.6 Steel samples mounted <strong>on</strong> substrate holder 274.7 Different mounting possibilities for stainless <strong>steel</strong> samples<strong>on</strong> substrate 284.8 Substrate holder with the pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> threaded hole (4-40) for mountingsubstrates as shown in Fig 4.7 284.9 Inner view <str<strong>on</strong>g>of</str<strong>on</strong>g> the depositi<strong>on</strong> chamber showing <strong>sputtering</strong> gun and sourceshield 294.10 Schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum and gas flow c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> the depositi<strong>on</strong>chamber 304.11 RGA analysis after 1 1/2 hr baking 324.12 RGA analysis after 10 1/2 hr baking 32x


LIST OF FIGURES(C<strong>on</strong>tinued)FigurePage4.13 RGA reading for the first run <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sputtering</strong> 334.14 RGA reading for the sec<strong>on</strong>d run <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sputtering</strong> 335.1 Substrate mounting and electrical circuit diagram 365.2 Substrate mounting inside the cylindrical chamber 385.3 Initial geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the cylindrical system 395.4 Initial cylindrical magnetr<strong>on</strong> <strong>sputtering</strong> system 405.5 Intermediate geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the cylindrical system 435.6 Final cylindrical magnetr<strong>on</strong> <strong>sputtering</strong> system 455.7 Final geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> cylindrical <strong>sputtering</strong> system 465.8 Initial stable plasma c<strong>on</strong>diti<strong>on</strong> 476.1 Dektak pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> film deposited <strong>on</strong> silic<strong>on</strong> — film thickness6100 A 496.2 Dektak pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> film deposited <strong>on</strong> silic<strong>on</strong> — film thickness4490 A 496.3 SEM image (190X) showing flaky <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films <strong>on</strong> <strong>steel</strong> substratefilm thickness 4000 A 526.4 SEM image (335X) showing rough and n<strong>on</strong>-uniform films <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g><strong>on</strong> <strong>steel</strong> substrate without prior heating — film thickness 4000 A 526.5 SEM image (800X) showing smooth film <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> <strong>on</strong> <strong>steel</strong> substrateafter proper cleaning, polishing and heating — film thickness4000 A 536.6 SEM image (1500X) showing smooth film <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> <strong>on</strong> <strong>steel</strong> substrateafter proper cleaning, polishing and heating — film thickness4000 A 53xi


LIST OF FIGURES(C<strong>on</strong>tinued)FigurePage6.7 SEM image (360X) showing <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films deposited al<strong>on</strong>g polish linespresent <strong>on</strong> <strong>steel</strong> surface — film thickness 6000 A 546.8 SEM image (5000 X) <str<strong>on</strong>g>of</str<strong>on</strong>g> beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> <strong>on</strong> <strong>steel</strong> 556.9 SEM image (5000X) <str<strong>on</strong>g>of</str<strong>on</strong>g> alpha <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> <strong>on</strong> silic<strong>on</strong> 556.10 Standard diffracti<strong>on</strong> lines for alpha <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> 576.11 Standard diffracti<strong>on</strong> lines for beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> 576.12 X-ray analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> film showing peaks for beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> 596.13 Standard diffracti<strong>on</strong> lines for beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> between 20 = 20and 20 = 80 596.14 X-ray analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> film showing peak for alpha <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> 596.15 Standard diffracti<strong>on</strong> lines for alpha <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> between 20 = 20and 20 = 80 596.16 X-ray analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> film showing peak for alpha and beta<str<strong>on</strong>g>tantalum</str<strong>on</strong>g> 616.17 X-ray analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> film showing peak for alpha and beta<str<strong>on</strong>g>tantalum</str<strong>on</strong>g> 616.18 RBS plot <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films deposited <strong>on</strong> silic<strong>on</strong> without baking <str<strong>on</strong>g>of</str<strong>on</strong>g> thechamber and substrate pre-heating 636.17 RBS plot for <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films deposited <strong>on</strong> silic<strong>on</strong> after baking <str<strong>on</strong>g>of</str<strong>on</strong>g> thechamber and substrate pre-heating 63xii


CHAPTER 1INTRODUCTIONThe main aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this research project was to study the depositi<strong>on</strong> process and properties<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films deposited <strong>by</strong> <strong>sputtering</strong>. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> filmshave been carried out using films deposited <strong>by</strong> <strong>sputtering</strong> because <str<strong>on</strong>g>of</str<strong>on</strong>g> the relative easewith which films <str<strong>on</strong>g>of</str<strong>on</strong>g> refractory metals can be sputtered in comparis<strong>on</strong> with othertechniques. Sputtering is widely used to deposit refractory metals like <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>, titanium,tungsten and niobium, which would require very high temperatures for depositi<strong>on</strong>, <strong>by</strong>evaporati<strong>on</strong>. Electr<strong>on</strong> beam evaporati<strong>on</strong> is the <strong>on</strong>ly technique, which would allow thelater. Sputtering is a universal depositi<strong>on</strong> method, which is also used for depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>lower melting point metals like copper and aluminum [1].Tantalum is most widely used in the electr<strong>on</strong>ic industry and as a protectivecoating in many industries because <str<strong>on</strong>g>of</str<strong>on</strong>g> its good resistance to erosi<strong>on</strong>. An extensive interestin the electrical and structural properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> as a thin film material has beenstimulated over the past twenty-five years <strong>by</strong> its use in the microelectr<strong>on</strong>ics industry.With a melting point <str<strong>on</strong>g>of</str<strong>on</strong>g> around 3000 °C stable films <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> may be produced despitethe presence <str<strong>on</strong>g>of</str<strong>on</strong>g> defects or impurities [2].In the current IC generati<strong>on</strong>s where the effective size <str<strong>on</strong>g>of</str<strong>on</strong>g> devices are below 0.18pm, Cu has been introduced as an interc<strong>on</strong>nect metal. But Cu readily diffuses throughSiO2 and then into the silic<strong>on</strong> lattice where it creates deep impurity levels and reducestransistor performance. To counteract this problem Tantalum and Tantalum Nitride isextensively used as a diffusi<strong>on</strong> barrier layer in the modern semic<strong>on</strong>ductor industry [3].


2While pure copper <strong>on</strong> Si reacts at 200 °C, the Ta films prevent Cu silic<strong>on</strong> interacti<strong>on</strong> upto600 °C [4].Sputtered <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films are widely used in the microelectr<strong>on</strong>ics industry as thefilms can be reactively sputtered and thus resistivity and temperature coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g>resistance can be c<strong>on</strong>trolled [5]. Sputtered <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> can be also be used as an effectivecorrosi<strong>on</strong> resistance barrier if the coating is c<strong>on</strong>tinuous, defect free and is adherent to thesubstrate it is intended to protect [6]. Chromium is deposited <strong>on</strong>to gun barrels <strong>by</strong>electroplating. It is typically electroplated from its hexavalent form, which is acarcinogen and thus difficult to handle and has an adverse envir<strong>on</strong>mental effect [7].Moreover, chromium deposited <strong>steel</strong> cannot be recycled easily, because <str<strong>on</strong>g>of</str<strong>on</strong>g> adverseenvir<strong>on</strong>mental problems. Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> various refractory metals such as <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>,molybdenum, niobium and tungsten indicate that these materials can exhibit superiorresistance to erosi<strong>on</strong> processes, which occur at gun tube surfaces. Testing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>coated <strong>steel</strong> liners showed less erosi<strong>on</strong> rate then all other liners including chromiumcoated liners. To avoid degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the gun tube mechanical properties, thick <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>coatings may be applied to the inner tube surface with high rate <strong>sputtering</strong> depositi<strong>on</strong> [8].The refractory nature and high ductility <str<strong>on</strong>g>of</str<strong>on</strong>g> body centered cubic (bcc) phase<str<strong>on</strong>g>tantalum</str<strong>on</strong>g> makes it a suitable material for corrosi<strong>on</strong> and wear resistant coatings <strong>on</strong> surfacesthat are subjected to high stresses and harsh chemical and erosive envir<strong>on</strong>ments [9].This thesis c<strong>on</strong>tains informati<strong>on</strong> pertaining to the work carried out at the I<strong>on</strong>Beam and Thin Film Research Laboratory at NJIT, <strong>on</strong> the design and c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> theplanar dc magnetr<strong>on</strong> <strong>sputtering</strong> system and cylindrical magnetr<strong>on</strong> <strong>sputtering</strong> system, for


3investigating the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films deposited <strong>on</strong> the inner surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>steel</strong>tubes.This work started in a joint collaborati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U. S. Army Industrial EcologyCenter, <strong>New</strong> <strong>Jersey</strong> <strong>Institute</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Nati<strong>on</strong>al Defense Center for Envir<strong>on</strong>mentalExcellence (NDCEE) and <strong>New</strong> Mexico State University.The main objective <str<strong>on</strong>g>of</str<strong>on</strong>g> the research were:1) To design and c<strong>on</strong>struct the planar and cylindrical magnetr<strong>on</strong> <strong>sputtering</strong> system2) To study the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films and their dependence <strong>on</strong> depositi<strong>on</strong>parameters.In the first phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the project <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 4000 A - 6000 Awere deposited in the planar depositi<strong>on</strong> system and the operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cylindricalsystem was studied with a copper target. In the next phase, there are plans to deposit<str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films with 100 μm thickness in the planar system. Also with proper plasmac<strong>on</strong>trol and pumping the copper target in the cylindrical system would be replaced with a<str<strong>on</strong>g>tantalum</str<strong>on</strong>g> target to deposit <strong>on</strong> the inner surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>steel</strong> tube.Chapter 2 deals with the properties and applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> both inmicroelectr<strong>on</strong>ics and as a protective barrier. Chapter 3 describes <strong>sputtering</strong> as adepositi<strong>on</strong> technique. Descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the planar dc magnetr<strong>on</strong> <strong>sputtering</strong> system is givenin Chapter 4. It also explains the mounting <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate inside the depositi<strong>on</strong> system,testing <str<strong>on</strong>g>of</str<strong>on</strong>g> the depositi<strong>on</strong> system and depositi<strong>on</strong> parameters. Chapter 5 describes thecylindrical magnetr<strong>on</strong> <strong>sputtering</strong> system. It explains the principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the system andproblems <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma c<strong>on</strong>trol. Chapter 6 explains the analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the films <strong>by</strong> techniques


4like SEM, XRD and RBS. Summary and c<strong>on</strong>clusi<strong>on</strong> during the course <str<strong>on</strong>g>of</str<strong>on</strong>g> this thesis arediscussed in Chapter 7.


CHAPTER 2PROPERTIES AND APPLICATIONS OF TANTALUM2.1 Physical PropertiesTantalum a group V transiti<strong>on</strong> metal is grayish silver in color and heavy with a density <str<strong>on</strong>g>of</str<strong>on</strong>g>16.6 gcm-3 . It is a refractory metal with a melting point <str<strong>on</strong>g>of</str<strong>on</strong>g> 2996.0 °C. It's a hard metalwith a Brinell Hardness <str<strong>on</strong>g>of</str<strong>on</strong>g> 800 MN/m 2. Heat <str<strong>on</strong>g>of</str<strong>on</strong>g> vaporizati<strong>on</strong> and heat <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> are 743and 31.6 kJ/mol respectively [10]. In pure form, it is ductile and can be drawn into finewire. It is immune to chemical attacks at temperatures below 150 °C. A transiti<strong>on</strong> to thesuperc<strong>on</strong>ducting state is recorded at 4.4 °K [11]. It has two crystalline forms viz. bodycentered cubic (comm<strong>on</strong>ly known as alpha-<str<strong>on</strong>g>tantalum</str<strong>on</strong>g>) and tetrag<strong>on</strong>al metastable phase(comm<strong>on</strong>ly known as beta-<str<strong>on</strong>g>tantalum</str<strong>on</strong>g>). The b.c.c <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> comm<strong>on</strong>ly found in bulk has aresistivity <str<strong>on</strong>g>of</str<strong>on</strong>g> 15-60 μΩcm whereas beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> found in thin films <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> has anas-deposited resistivity <str<strong>on</strong>g>of</str<strong>on</strong>g> 170-210 μΩcm [2][12]. Corresp<strong>on</strong>ding temperaturecoefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance are +500 to +1800 and —100 to +100 p.p.m / °C.2.2 Crystal StructureTwo most comm<strong>on</strong> crystalline structures recognized in thin films <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> are:1) body centered cubic2) tetrag<strong>on</strong>alThere are also reports <str<strong>on</strong>g>of</str<strong>on</strong>g> other structures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> found like the face centeredcubic with an ac, = 4.4-4.5 A which is a metastable phase and the omega phase <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>tantalum</str<strong>on</strong>g> [2].5


6In bulk, <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> has the b.c.c. crystalline structure with a lattice parameter <str<strong>on</strong>g>of</str<strong>on</strong>g>3.303 A. However, depending up<strong>on</strong> the depositi<strong>on</strong> technique used, the as-depositedcrystal structure can also be b.c.c. alpha phase or a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> beta and alpha phase<str<strong>on</strong>g>tantalum</str<strong>on</strong>g> [2][6]. The crystal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> as deposited <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films c<strong>on</strong>tains usually themetastable tetrag<strong>on</strong>al beta phase [12]. Beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> sp<strong>on</strong>taneously reverts to the bccphase at temperatures between 750 and 800 °C.Films with b.c.c. structure are formed as a randomly oriented material or witheither the (111) or (110) plane parallel to the substrate [13]. /3 — Ta has always been foundwith the (100) plane preferentially oriented parallel to the substrate [3].The reas<strong>on</strong>s for the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> and the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>are not clearly resolved. According to Read and Atlmann, who discovered /3 - Ta in 1965at Bell Laboratories, the new <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> phase is formed <strong>on</strong>ly in very pure <strong>sputtering</strong>atmosphere [14]. Work <strong>by</strong> Westwood and Livermore <str<strong>on</strong>g>of</str<strong>on</strong>g> Bell Northern Research showsthat 13 —Ta is formed to accommodate extra gas when the solubility limit is exceeded forthe b.c.c. phase [15]. However, work <strong>by</strong> Croset and Velasco shows that the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>— Ta does not depend <strong>on</strong> the gas c<strong>on</strong>tent but <strong>on</strong> <strong>sputtering</strong> power and/or substratetemperatures [16].According to other investigators, formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> /3 -Ta is caused either <strong>by</strong> impurityatoms adsorbed at the surface or <strong>by</strong> reactive gases added to the <strong>sputtering</strong> atmosphere.The presence <strong>on</strong> the substrate surface <str<strong>on</strong>g>of</str<strong>on</strong>g> O or OH formed <strong>by</strong> reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1420 with thesurface oxide, is necessary for the nucleati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> /3 — Ta, but the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> impurities isnot necessary during the growth stage [17][18]. However studies d<strong>on</strong>e <strong>by</strong> Sato shows thatpure b.c.c phase is yielded when films were deposited <strong>on</strong>to Ta2O5 and SiO2 substrates.Therefore the reas<strong>on</strong> for the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> β —Ta may be related to the difference between


7the depositi<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> atoms <strong>by</strong> magnetr<strong>on</strong> <strong>sputtering</strong> and a c<strong>on</strong>venti<strong>on</strong>al d.c.<strong>sputtering</strong> or to the substrate heating during depositi<strong>on</strong>. In additi<strong>on</strong>, the crystal structure<str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate may be an important factor in defining the b.c.c. structure in bulk<str<strong>on</strong>g>tantalum</str<strong>on</strong>g> [19].The physical picture <str<strong>on</strong>g>of</str<strong>on</strong>g> the β — Ta crystalline structure is such that <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> atomsare tightly packed in a hexag<strong>on</strong>al array within each layer [22]. Since both d.c. and r.fmagnetr<strong>on</strong> <strong>sputtering</strong> can achieve depositi<strong>on</strong> rates an order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude higher than ac<strong>on</strong>venti<strong>on</strong>al d.c. <strong>sputtering</strong> with a relatively low substrate temperature, the packingforces for <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> atoms in the <strong>sputtering</strong> may partially dominate the b.c.c. structuredefiningelectr<strong>on</strong>ic forces with the resultant formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> β phase [19].Marcus and Quigley [21] and Denbigh and Marcus [22] (both used an electr<strong>on</strong>beam evaporati<strong>on</strong> technique) have reported f c. c. phase as a phase stable <strong>on</strong>ly up toapproximately 100 A thick film. For each depositi<strong>on</strong> technique there has been a criticalsubstrate temperature range for f c. c. formati<strong>on</strong> outside which the b.c.c or an amorphousphase has been produced. The increase in the lattice c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g> b.c.c. <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> in thinfilms over that <str<strong>on</strong>g>of</str<strong>on</strong>g> the bulk material is likely due to the inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> impurities in the filmduring the depositi<strong>on</strong> process [2]. This is because the b.c.c-Ta can incorporatec<strong>on</strong>siderably larger amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive gases than β-Ta without changing its structure[13].A b.c.c. based super lattice structure with slight tetrag<strong>on</strong>al distorti<strong>on</strong> has beenobserved <strong>by</strong> Das for films d.c. and r.f sputtered with a negative bias. Experimentalvalues for the lattice c<strong>on</strong>stants are a = b = 10.29 A and c = 9.2 A [23].An investigati<strong>on</strong> <strong>on</strong> the deformati<strong>on</strong> substructure developed within shock-loaded<str<strong>on</strong>g>tantalum</str<strong>on</strong>g> <strong>by</strong> TEM has revealed that a phase change can also take place in <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> under


8a high shock pressure (45 Gpa). A b.c.c. - o) (hexag<strong>on</strong>al) displacive transformati<strong>on</strong> isobserved in <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>. Needle- or plate-like co phase is found to form accompanied withthe { 1 12 } type deformati<strong>on</strong> twins within shock-recovered <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> [24].Although much work has been performed <strong>on</strong> beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>, the detailed structure<str<strong>on</strong>g>of</str<strong>on</strong>g> beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> is still not well understood.2.3 Applicati<strong>on</strong>sWith the current trend <str<strong>on</strong>g>of</str<strong>on</strong>g> IC generati<strong>on</strong>s below 0.18 jam, Cu is being introduced as aninterc<strong>on</strong>nect metal. But Cu readily diffuses through SiO2 and then enters silic<strong>on</strong> lattice,where it creates deep impurity levels that degrade transistor performance and causejuncti<strong>on</strong> leakage. Also unlike Al, Cu does not adhere well to SiO2. To counteract theseproblems materials like Ta / TaN and TiN are used as liners under Cu lines. Ta is anattractive barrier material because <str<strong>on</strong>g>of</str<strong>on</strong>g> its high melting point and immiscibility with Cu. Italso forms str<strong>on</strong>g metal-metal b<strong>on</strong>ds. Thus, it provides a low-resistance ohmic c<strong>on</strong>tactand excellent adhesi<strong>on</strong> to copper above and below it. Doping the Ta with a few percent <str<strong>on</strong>g>of</str<strong>on</strong>g>nitrogen blocks the grain boundary diffusi<strong>on</strong> paths. More heavily nitrided Ta, produced<strong>by</strong> reactive <strong>sputtering</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ta in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen, can also be used as a barrier layer[3].Low resistivity a — Ta has applicati<strong>on</strong>s in thin film capacitors to achieve higherfrequency performance [25]. The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> Ta films used, as a base material for thinfilm capacitors is usually approximately 400nm [18].The refractory nature and high ductility <str<strong>on</strong>g>of</str<strong>on</strong>g> body centered cubic (bcc) phase<str<strong>on</strong>g>tantalum</str<strong>on</strong>g> makes it a suitable material for corrosi<strong>on</strong> and wear resistant coatings <strong>on</strong> surfacesthat are subjected to high stresses and harsh chemical and erosive envir<strong>on</strong>ments [9].


9Sputtered <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> can be used as an effective corrosi<strong>on</strong> resistance barrier if thecoating is c<strong>on</strong>tinuous, defect free and is adherent to the substrate it is intended to protect[4]. Presently the useful life <str<strong>on</strong>g>of</str<strong>on</strong>g> various gun tubes is increased <strong>by</strong> protecting the internalgun tube surface with electro deposited chromium. Chromium may so<strong>on</strong> be replaced <strong>by</strong><str<strong>on</strong>g>tantalum</str<strong>on</strong>g> in this applicati<strong>on</strong>.Though a highly expensive material used for special applicati<strong>on</strong>s, since it has ahigh degree <str<strong>on</strong>g>of</str<strong>on</strong>g> ductility and malleability, almost any equipment design can be c<strong>on</strong>structedfrom <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>. Typical product examples are reactor vessels, columns, bay<strong>on</strong>et heaters,and tube c<strong>on</strong>densers or heater exchangers, lined piping, valves, thermowells, spargers,rupture disks, glass repair kits, filaments for light bulbs, canalizati<strong>on</strong> for switches <str<strong>on</strong>g>of</str<strong>on</strong>g>liquid metals in nuclear reactors, surgical instruments and implants. Tantalum also hasmany applicati<strong>on</strong>s in pharmaceutical plants. Tantalum products are preferred becausethey resist corrosi<strong>on</strong> and preserve product purity [26].


CHAPTER 3SPUTTERING AS A DEPOSITION TECHNIQUE3.1 Introducti<strong>on</strong>A large variety <str<strong>on</strong>g>of</str<strong>on</strong>g> "thin films" are used in today's industry for the fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> variousmicroelectr<strong>on</strong>ic, optical and bioengineering devices. The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such films isaccomplished <strong>by</strong> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> techniques, which can be divided into three groups:1) films grown <strong>by</strong> interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a vapor-deposited species with the substrate2) film formati<strong>on</strong> <strong>by</strong> depositi<strong>on</strong> without causing changes to the substrate material and3) coating <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate with a liquid, which is then dried to form the solid thin film.The first category includes thermal oxidati<strong>on</strong> and nitridati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> single crystal andpolysilic<strong>on</strong>. The sec<strong>on</strong>d group includes two subclasses <str<strong>on</strong>g>of</str<strong>on</strong>g> depositi<strong>on</strong>. The first <str<strong>on</strong>g>of</str<strong>on</strong>g> these ischemical vapor depositi<strong>on</strong> (CVD), in which films are formed <strong>by</strong> chemical reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>vapor phase chemicals that c<strong>on</strong>tains the required c<strong>on</strong>stituent. The sec<strong>on</strong>d is physicalvapor depositi<strong>on</strong> (PVD), in which the species <str<strong>on</strong>g>of</str<strong>on</strong>g> the thin film are physically dislodgedfrom a source and transported to the substrate to form a thin film. The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thinfilms <strong>by</strong> PVD includes the processes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sputtering</strong> and evaporati<strong>on</strong>. The depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aliquid <strong>on</strong> a substrate to form thin films is most comm<strong>on</strong>ly d<strong>on</strong>e <strong>by</strong> spin coating [2].Films <str<strong>on</strong>g>of</str<strong>on</strong>g> refractory materials can also be deposited <strong>by</strong> pulsed laser depositi<strong>on</strong>(PLD). In this technique a high power UV laser operating at repetiti<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 Hz to 1kHz focused <strong>on</strong> a target <str<strong>on</strong>g>of</str<strong>on</strong>g> the material which is deposited as thin film. The substrate islocated in close proximity to the target. The laser pulses used are <str<strong>on</strong>g>of</str<strong>on</strong>g> very short durati<strong>on</strong>ranging from few nano sec<strong>on</strong>ds to few femto sec<strong>on</strong>ds. A set <str<strong>on</strong>g>of</str<strong>on</strong>g> optical comp<strong>on</strong>ents isused to focus and raster the laser beam over the target surface. Alternatively a fixed laser10


11beam is used with a rotary target. Film growth can be carried out in vacuum or in areactive gas, at pressures greater than 10 mTorr. This technique can be used to deposithighly pure films with a good thickness c<strong>on</strong>trol. Other advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> PLD include itsversatility to deposit stoichiometric compound films like GaAs, ZnO, Fe2O3, GeO2.Unlike <strong>sputtering</strong> PLD can be also be used to grow epitaxial films and hetero-structuresat low cost [27][28].3.2 Physical Vapor <str<strong>on</strong>g>Depositi<strong>on</strong></str<strong>on</strong>g> Methods3.2.1 SputteringSputtering is a process in which atoms are ejected from the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> a material (i.e.target) when that surface is struck <strong>by</strong> sufficiently energetic particles (i.e. i<strong>on</strong>s). From thisdefiniti<strong>on</strong>, <strong>sputtering</strong> can be c<strong>on</strong>sidered as an etching process and is used for surfacecleaning and for pattern delineati<strong>on</strong>. Since <strong>sputtering</strong> removes and transports the targetmaterial, it is also used as a method <str<strong>on</strong>g>of</str<strong>on</strong>g> film depositi<strong>on</strong>. It has become the dominanttechnique for depositing a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> metallic films in VLSI and VLSI fabricati<strong>on</strong>,including aluminum alloys, titanium, titanium:tungsten, titanium nitride, <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> andcobalt [3] [29]. Sputtering can further be classified as follows:1) Diode <strong>sputtering</strong>2) Bias <strong>sputtering</strong> (i<strong>on</strong> plating)3) Magnetr<strong>on</strong> <strong>sputtering</strong>4) I<strong>on</strong> beam sputter depositi<strong>on</strong>Sputtering largely displaced the original PVD technique <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong> fordepositing thin films for following reas<strong>on</strong>s:1) Sputtering can be accomplished from large area target.


122) The alloy compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sputter deposited films can be more easily c<strong>on</strong>trolled thanthat <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporated films.3) Important film properties, such as step coverage and grain structure can be c<strong>on</strong>trolled<strong>by</strong> varying the negative bias and heat applied to the substrate.4) Film thickness is relatively easily c<strong>on</strong>trolled <strong>by</strong> selecting a c<strong>on</strong>stant set <str<strong>on</strong>g>of</str<strong>on</strong>g> operatingc<strong>on</strong>diti<strong>on</strong>s [3].Sputtering also has its drawbacks:1) The capital expenditure for <strong>sputtering</strong> equipment is high.2) It's too slow for some applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coating.3) Better step coverage can generally be achieved <strong>by</strong> CVD [3].3.2.2 Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Sputtering1) SPUTTER ETCHINGSputtering process essentially involves knocking out atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> a target <strong>by</strong>the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>s. This leads to the removal <str<strong>on</strong>g>of</str<strong>on</strong>g> material or etching <str<strong>on</strong>g>of</str<strong>on</strong>g> the target. Thetechnique can also be used to generate surface topography, or surface patterns, <strong>by</strong>selectively protecting a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the target material during the sputter etch.2) SPUTTER DEPOSITIONThe ejected atom can under the right circumstances, move through the space until itstrikes and deposits <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> a receiver, which is known as a substrate. Atsufficient bombarding i<strong>on</strong> energy and current a coating <str<strong>on</strong>g>of</str<strong>on</strong>g> several or many atomic layers<str<strong>on</strong>g>of</str<strong>on</strong>g> target material can be built <strong>on</strong> the substrate. This process <str<strong>on</strong>g>of</str<strong>on</strong>g> film depositi<strong>on</strong> is knownas sputter depositi<strong>on</strong> [29].


133.2.3 Sputtering <str<strong>on</strong>g>of</str<strong>on</strong>g> MetalsSputtering is largely used to deposit various kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> materials like aluminum, gold,titanium. In microelectr<strong>on</strong>ics it is used to deposit critical barrier layers like Ta, TaN orTiN and the Cu seed layer (sputtered Cu). For Al — based metallizati<strong>on</strong>, novel approachas i<strong>on</strong>ized magnetr<strong>on</strong> <strong>sputtering</strong> or I-PVD, wherein a large fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the neutralsputtered flux is i<strong>on</strong>ized while being transported to the substrate, is used to createbarrier/liner layers in high aspect ratio c<strong>on</strong>tacts and vias. The depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti and Co forsilicide processes is also performed <strong>by</strong> <strong>sputtering</strong> [3].Sputtering can be d<strong>on</strong>e using i<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> noble gases like arg<strong>on</strong> and krypt<strong>on</strong> wherethere is no chemical reacti<strong>on</strong> between the <strong>sputtering</strong> gas and the target. When reactivegases are introduced into the <strong>sputtering</strong> chamber during the depositi<strong>on</strong> process, whereinthe gases react with the ejected target atoms, compound films are deposited <strong>by</strong> <strong>sputtering</strong>.This process is termed as reactive <strong>sputtering</strong>. The main applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive <strong>sputtering</strong>in microelectr<strong>on</strong>ics fabricati<strong>on</strong> involves in the sputter depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the barrier filmmaterial TiN.By using multi-comp<strong>on</strong>ent targets, alloy film like Al:Cu or Ti:W can also bedeposited <strong>by</strong> <strong>sputtering</strong> [3].


143.2.4 Mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> SputteringAs shown in Fig. 3.1 when an energetic i<strong>on</strong> approaches the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> a solid (target) <strong>on</strong>eor all <str<strong>on</strong>g>of</str<strong>on</strong>g> the following phenomena may occur:• The i<strong>on</strong> may be reflected, being getting neutralized in the process.• The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the i<strong>on</strong> may cause the target to eject an electr<strong>on</strong>, called the sec<strong>on</strong>daryelectr<strong>on</strong>.• The i<strong>on</strong> may become buried in the target.• The i<strong>on</strong> impact might be resp<strong>on</strong>sible for some structural changes in the targetmaterial.• The i<strong>on</strong> impact may set up a series <str<strong>on</strong>g>of</str<strong>on</strong>g> collisi<strong>on</strong>s between atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> the target, leadingto the ejecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the target atoms. This ejecti<strong>on</strong> process is known as <strong>sputtering</strong>[30].The principles <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sputtering</strong> can be understood using a relatively simplemomentum transfer model. Using this model it is possible to visualize how atoms areejected from a surface as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> two binary collisi<strong>on</strong>s. The <strong>sputtering</strong> process is <str<strong>on</strong>g>of</str<strong>on</strong>g>tencompared to the game <str<strong>on</strong>g>of</str<strong>on</strong>g> atomic billiards as shown in Fig. 3.2 in which the cue ball (thebombarding i<strong>on</strong>) strikes the neatly arranged pack (atomic array <str<strong>on</strong>g>of</str<strong>on</strong>g> target), scattering balls(target atoms) in all directi<strong>on</strong>s, including some back towards the target [3].


15Fig 3.2 Sputtering — the atomic billiards game (Ref. Brian Chapman)The series <str<strong>on</strong>g>of</str<strong>on</strong>g> collisi<strong>on</strong>s in the target, generated <strong>by</strong> the primary collisi<strong>on</strong> at thesurface, is known as a collisi<strong>on</strong> cascade. It is a matter <str<strong>on</strong>g>of</str<strong>on</strong>g> probability whether this cascade


16leads to the sputter ejecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an atom from the surface (which will require atleast twocollisi<strong>on</strong>s) or whether the cascade heads <str<strong>on</strong>g>of</str<strong>on</strong>g>f into the interior <str<strong>on</strong>g>of</str<strong>on</strong>g> the target, graduallydissipating the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the primary impact, ultimately to lattice vibrati<strong>on</strong> [3]. Sputteringejecti<strong>on</strong> is rather energy inefficient, with typically 1% <str<strong>on</strong>g>of</str<strong>on</strong>g> the incident energy reappearingas the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the sputtered atom [30]. The rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy is lost in the form <str<strong>on</strong>g>of</str<strong>on</strong>g>heating <str<strong>on</strong>g>of</str<strong>on</strong>g> the chamber walls, parts inside the chamber and the target.3.3 Magnetr<strong>on</strong> SputteringIn a simple d.c. <strong>sputtering</strong> system the material to be sputtered is made the <strong>sputtering</strong>target which becomes the cathode <str<strong>on</strong>g>of</str<strong>on</strong>g> an electrical circuit, and has a high negative voltageV (d.c.) applied to it. The substrate, which is to be coated, is placed <strong>on</strong> an electricallygrounded anode a few inches away as shown in Fig 3.3. These electrodes are kept in achamber, which is pumped to a high vacuum <str<strong>on</strong>g>of</str<strong>on</strong>g> 1x10 -7 T<strong>on</strong> to 1X10-9 Torr. Arg<strong>on</strong> gas isintroduced into the chamber at a pressure in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 30-120 mTorr. The appliedelectric field created <strong>by</strong> applying a voltage in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 V to few kV causesi<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arg<strong>on</strong> atoms, which creates the glow discharge. Positive i<strong>on</strong>s are acceleratedto the target <strong>sputtering</strong> each atom <str<strong>on</strong>g>of</str<strong>on</strong>g> the target, which is deposited <strong>on</strong> the near<strong>by</strong>substrate. However the depositi<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> a simple d.c. <strong>sputtering</strong> system is not very highand hence magnetr<strong>on</strong> <strong>sputtering</strong> systems are used [30].Magnetr<strong>on</strong> <strong>sputtering</strong> uses magnetic fields transverse to the electric field at<strong>sputtering</strong> target surface [29]. Magnetr<strong>on</strong> sources increase the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izing collisi<strong>on</strong>s<strong>by</strong> utilizing magnetic fields to help c<strong>on</strong>fine the electr<strong>on</strong>s near the target surface. As aresult, in magnetr<strong>on</strong> <strong>sputtering</strong> processes, current densities at the target are 10-100mA/cm2, compared to about <strong>on</strong>ly 1 mA/cm2 for dc-diode c<strong>on</strong>figurati<strong>on</strong>s. In additi<strong>on</strong>


17magnetr<strong>on</strong> sources can sustain a glow discharge at much lower pressures than can dcdiodes [3].Fig 3.3 Schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> a dc <strong>sputtering</strong> system (Ref Brian Chapman)The principle <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetr<strong>on</strong> <strong>sputtering</strong> can be described <strong>by</strong> c<strong>on</strong>sidering the moti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> having a charge q, a mass m, and a velocity v. If the electr<strong>on</strong> is moving in aregi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> uniform magnetic field B (into the paper in Fig 3.4a) and zero electric field,then it experiences a force, F = q (v x B) which is perpendicular to both the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>its moti<strong>on</strong> and the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B. This force F will cause it to move in a circular path withradius rg, provided it does not collide en route, and return to the surface with velocity v,whose value is given <strong>by</strong> the equati<strong>on</strong>:


18For electr<strong>on</strong>s and Ar+ i<strong>on</strong>s, the equati<strong>on</strong> for rg can be expressed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> theenergy, E, <str<strong>on</strong>g>of</str<strong>on</strong>g> the particles (in eV) and <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic field B (in gauss) as:From these equati<strong>on</strong>s, it can be seen that Ar+ i<strong>on</strong>s have moti<strong>on</strong> radii, which are300 times larger than the radii <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s for equal values <str<strong>on</strong>g>of</str<strong>on</strong>g> B and particle energy.Thus the radius <str<strong>on</strong>g>of</str<strong>on</strong>g> an i<strong>on</strong>'s circular path is so large that it essentially moves in a straightline when crossing the dark space <str<strong>on</strong>g>of</str<strong>on</strong>g> the cathode. Thus the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> moti<strong>on</strong> isstr<strong>on</strong>gly influenced <strong>by</strong> the magnetic field, which traps the electr<strong>on</strong> near the surface fromwhich it was emitted, while the magnetic field does not significantly change the directi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>s as they cross the dark space.Fig 3.4 Moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> ejected from a surface with velocity v into a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>magnetic field B parallel to the surface:(a) with no electric field(b) with a linearly decreasing field. (Ref Brian Chapman)


19To examine a situati<strong>on</strong> more closer to the magnetic <strong>sputtering</strong> applicati<strong>on</strong>, Fig3 .4b is <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>sputtering</strong> target where there is a str<strong>on</strong>g electric field E in the dark spaceabove its surface, and again a magnetic field B parallel to the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the target. Let theelectric field E decrease linearly across the dark space <str<strong>on</strong>g>of</str<strong>on</strong>g> thickness L. If y is thedimensi<strong>on</strong> away from the target, and the target surface is y = 0, thenwhere E. is the field at the target. The electr<strong>on</strong> is then accelerated away from the target ina directi<strong>on</strong> perpendicular to the target surface <strong>by</strong> the electric field, but it also experiencesa force due to the magnetic field, F = q (v x B).This force changes the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>'s moti<strong>on</strong> so it is no l<strong>on</strong>gerperpendicular to the surface. The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric field <strong>on</strong> the target changes theorbits from circular to cycloidal, provided the electr<strong>on</strong> stays within the dark space. As itapproaches the target surface after having been deflected, the electr<strong>on</strong> is decelerated <strong>by</strong>the electric field. Since rg = my / qB, its instantaneous radius <str<strong>on</strong>g>of</str<strong>on</strong>g> curvature is decreased asit travels further from the target surface, causing the electr<strong>on</strong> to pivot sharply until it isagain moving away from the surface. At that point, the next period <str<strong>on</strong>g>of</str<strong>on</strong>g> the cycloidalmoti<strong>on</strong> is initiated, with the electr<strong>on</strong> again being repelled <strong>by</strong> the E-field. The net result isthat sec<strong>on</strong>dary electr<strong>on</strong>s are trapped near the target surface <strong>by</strong> the combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> themagnetic field and electric fields, and c<strong>on</strong>tinue to move with a cycloidal moti<strong>on</strong> untilthey collide with an Ar atom [3][30]. This reduces the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s going to theanode and walls. Such trapped sec<strong>on</strong>dary electr<strong>on</strong>s do not bombard substrates because <str<strong>on</strong>g>of</str<strong>on</strong>g>the cycloidal moti<strong>on</strong> and thus do not c<strong>on</strong>tribute to increased substrate temperature andradiati<strong>on</strong> damage. This allows the use <str<strong>on</strong>g>of</str<strong>on</strong>g> substrates that are temperature-sensitive withminimum adverse effect. Also magnetr<strong>on</strong> <strong>sputtering</strong> sources produces higher depositi<strong>on</strong>


20rates than c<strong>on</strong>venti<strong>on</strong>al sources and hence are widely used in large area industrialapplicati<strong>on</strong>s [29].3.3.1 Comm<strong>on</strong> C<strong>on</strong>figurati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Sputtering SystemThere are several types <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetr<strong>on</strong>s for practical applicati<strong>on</strong>s. The most comm<strong>on</strong>c<strong>on</strong>figurati<strong>on</strong>s are:1) PlanarIn this type <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetr<strong>on</strong> electrode c<strong>on</strong>figurati<strong>on</strong> the target surface is planar, and the B-field is created <strong>by</strong> permanent magnets behind the targets. This kind <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong> iswidely used in torus magnetr<strong>on</strong> <strong>sputtering</strong> sources. During depositi<strong>on</strong> the substrates arestati<strong>on</strong>ary in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the target. A 'looping' magnetic field is used, and this restricts thesputter erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the target to a 'racetrack' area [3].2) CylindricalThis type <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetr<strong>on</strong> systems has a cylindrical geometry and an axial magnetic field.With the inner cylinder as the target, the arrangement is knows as a cylindrical magnetr<strong>on</strong>or post magnetr<strong>on</strong>. This c<strong>on</strong>figurati<strong>on</strong> has the ability to coat a large area <str<strong>on</strong>g>of</str<strong>on</strong>g> smallsubstrates.When the inside <str<strong>on</strong>g>of</str<strong>on</strong>g> the chamber becomes the target as shown in Fig. 3.5, thearrangement is known as an inverted magnetr<strong>on</strong> and has a capability <str<strong>on</strong>g>of</str<strong>on</strong>g> depositing filmsover strangely shaped substrates placed al<strong>on</strong>g the axis [30].Such type <str<strong>on</strong>g>of</str<strong>on</strong>g> systems are possible when magnetic field is created from outside.But when <strong>steel</strong> tube is used as a substrate, magnetic field must be created from inside thesystem. Such geometry is difficult to achieve and is described later in this work inChapter 6.


21Fig 3.5 Cylindrical magnetr<strong>on</strong> <strong>sputtering</strong> c<strong>on</strong>figurati<strong>on</strong> (Ref. Brian Chapman)3.4 RF SputteringOne <str<strong>on</strong>g>of</str<strong>on</strong>g> the limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> simple d.c. diode systems is that they cannot sputter insulators(dielectrics). This is due to the fact that glow discharges cannot be maintained with a dcvoltage if the electrodes are covered with insulating layers. Hence the technique <str<strong>on</strong>g>of</str<strong>on</strong>g> r. f.<strong>sputtering</strong> was developed wherein an ac voltage is applied to the electrodes [3]. AC glowdischarges are operated at 13.5 MHz frequency. A magnetic field can also be used withr.f <strong>sputtering</strong> to increase the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> depositi<strong>on</strong>. The introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rf <strong>sputtering</strong> greatlyextended the range <str<strong>on</strong>g>of</str<strong>on</strong>g> utility <str<strong>on</strong>g>of</str<strong>on</strong>g> the sputter depositi<strong>on</strong> technique and hence <strong>sputtering</strong> canbe used for a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> materials [29].


CHAPTER 4PLANAR DC MAGNETRON SPUTTERING SYSTEM4.1 <str<strong>on</strong>g>Depositi<strong>on</strong></str<strong>on</strong>g> ChamberThe chamber for depositi<strong>on</strong> <strong>on</strong> planar substrates was designed at the I<strong>on</strong> Beam and ThinFilm Research Laboratory at NJIT, and fabricated <strong>by</strong> Kurt J. Lesker company. Thechamber is essentially cylindrical in geometry with a volume <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 80L. Theoverall inside dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the chamber is 15" in height and 20" in diameter. Thischamber has been designed with the capability <str<strong>on</strong>g>of</str<strong>on</strong>g> carrying out depositi<strong>on</strong> from more than<strong>on</strong>e source/gun. A photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> the chamber is shown in Fig 4.1 and the diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> itsmain internal comp<strong>on</strong>ents in Fig 4.2.The chamber is pumped <strong>by</strong> a mechanical pump to a base pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 mTorr,after which, it is pumped <strong>by</strong> a cryo pump to a base pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.0x10 -7 T<strong>on</strong>. Arg<strong>on</strong> gaspressure during <strong>sputtering</strong> is measured <strong>by</strong> a capacitance manometer (MKS Baratr<strong>on</strong>model Type 626) with a range from 0-1 T<strong>on</strong>.Three halogen bulbs are mounted inside the chamber to bake it before <strong>sputtering</strong>up to a temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 200 °C. Residual gases inside the chamber can be analyzed <strong>by</strong> aresidual gas analyzer (RGA) (Infic<strong>on</strong> Quadrex 200). Tantalum target <str<strong>on</strong>g>of</str<strong>on</strong>g> 2" dia. and0.125" thickness and 99.99% purity is mounted <strong>on</strong> a water-cooled torus magnetr<strong>on</strong><strong>sputtering</strong>gun. The substrates are mounted above the gun facing downwards. This waythe particulate or metal flakes which can form <strong>on</strong> the gun shield or other fixtures areprevented from falling <strong>on</strong> the substrates.22


Fig 4.1 Planar dc magnetr<strong>on</strong> <strong>sputtering</strong> system23


Fig 4.2 Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the depositi<strong>on</strong> chamber24


254.2 Substrate MountingA substrate platter <str<strong>on</strong>g>of</str<strong>on</strong>g> 16.50" dia. as shown in Fig 4.3 was designed to support thesubstrate holders to which substrates were attached. This substrate platter has eightopenings <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.75" dia respectively.Fig 4.3 Substrate platter


26Fig 4.4 Substrate ShieldAs shown in Fig 4.5 the platter is mounted <strong>on</strong> a shaft, which can be rotated fromoutside the chamber. A substrate shield <str<strong>on</strong>g>of</str<strong>on</strong>g> 17.00" diameter, shown in Fig 4.4, issupported <strong>by</strong> four posts mounted <strong>on</strong> the chamber bottom. The shield protects thesubstrate platter from the sputtered material.This substrate shield has four openings <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.75" dia. each located above thedepositi<strong>on</strong> sources. With <strong>on</strong>e <strong>sputtering</strong> source, initially mounted in the chamber, threeshield openings were blocked with blank plugs. This way <strong>on</strong>ly <strong>on</strong>e substrate holder at atime can be positi<strong>on</strong>ed above the source and the corresp<strong>on</strong>ding shield opening, while theother substrate holders are shielded from the deposited material. Rotating the platter shaft<strong>by</strong> 1/8 at a time brings another substrate holder above the depositi<strong>on</strong> source. Presently


27another opening in the shield, opposite from the <strong>sputtering</strong> source, is used for heating <str<strong>on</strong>g>of</str<strong>on</strong>g>substrates prior to depositi<strong>on</strong> with halogen lamps.Fig 4.5 Substrate platter mounted <strong>on</strong> the shaft inside the chamberFig 4.6 Steel samples mounted <strong>on</strong> substrate holderAs shown in Fig 4.6 two types <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>steel</strong> samples <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5"x0.5" and 0.7"x0.7" sizewere mounted <strong>on</strong> a specially designed 2.75" diameter substrate mounting plate (substrate


28holder). The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples was 0.195" and 0.075" respectively. Nine <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5"type samples and four <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.7" type samples can be mounted <strong>on</strong> the holder at a time asshown in Fig 4.7. The substrates are kept in positi<strong>on</strong> <strong>by</strong> 4-40 screws. The substrate holderis kept in positi<strong>on</strong> <strong>on</strong> the substrate platter <strong>by</strong> gravity. All parts were fabricated fromstainless <strong>steel</strong>.Fig 4.7 Different mounting possibilities for stainless <strong>steel</strong> samples <strong>on</strong> substrateFig 4.8 Substrate holder with the pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> threaded hole (4-40) for mounting substratesas shown in Fig 4.7


29In order to avoid depositi<strong>on</strong> <strong>on</strong> the chamber walls additi<strong>on</strong>al shield <str<strong>on</strong>g>of</str<strong>on</strong>g> thinstainless <strong>steel</strong> is placed above the <strong>sputtering</strong> source as shown in Fig 4.9.Fig 4.9 Inner view <str<strong>on</strong>g>of</str<strong>on</strong>g> the depositi<strong>on</strong> chamber showing <strong>sputtering</strong> gun and source shield.The substrates can be heated from the bottom <strong>by</strong> a halogen bulb (300 W) mounted<strong>on</strong> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the four shafts supporting the substrate shield. The distance between the targetand the substrate can be adjusted from 3.0" to 6.0".4.3 Gas Flow C<strong>on</strong>trolA schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> the gas flow c<strong>on</strong>trol is shown in Fig 4.10. During <strong>sputtering</strong>, arg<strong>on</strong> gas isadmitted to the chamber <strong>by</strong> a Mass Flow C<strong>on</strong>troller at a flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 sccm to maintaina pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 mTorr inside the chamber. A capacitance manometer, with a range 0-1Torr, measures the pressure inside the chamber, which gives the input in the form <str<strong>on</strong>g>of</str<strong>on</strong>g> avoltage signal to a PID c<strong>on</strong>troller. The PID c<strong>on</strong>troller c<strong>on</strong>trols the positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a gate valvein fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the cryo pump. Depending <strong>on</strong> the increase or decrease in the arg<strong>on</strong> pressure


30inside the chamber, the PD c<strong>on</strong>troller opens or closes the gate valve. After depositi<strong>on</strong>,the chamber is vented <strong>by</strong> flowing nitrogen through the vent valve.Fig 4.10 Schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum and gas flow c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> the depositi<strong>on</strong> chamberMFC - Mass Flow C<strong>on</strong>troller CG - Capacitance GaugeMP - Mechanical Pump IG - I<strong>on</strong>izati<strong>on</strong> GaugeV1 and V2 - Valves GV - Gate ValveVV - Vent Valve


314.4 Testing <str<strong>on</strong>g>of</str<strong>on</strong>g> the ChamberThe chamber is pumped <strong>by</strong> a mechanical pump to a base pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 mTorr in 10min. and then <strong>by</strong> a cryo pump to a base pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.0x10 -7 T<strong>on</strong>. The base pressureobtained varies with the pumping time. With a 3-4 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> pumping <strong>by</strong> cryopump thebase pressure obtained is in the medium vacuum range with a value around 1.0x10 T<strong>on</strong>.But when the chamber is pumped overnight the base pressure obtained is close to1.0x10 -7 Torr.The values <str<strong>on</strong>g>of</str<strong>on</strong>g> the gas flow rate through the mass flow c<strong>on</strong>troller, for variousstable pressures in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 — 60 mTorr and gate valve positi<strong>on</strong>s is shown in Table4.1.Table 4.1 Gas flow rates for various stable pressure c<strong>on</strong>diti<strong>on</strong>sPressure Gas flow rate % gate valve Set point low Set point high(mTorr) (sccm) closed5 10 79.5 4.6 5.410 10 80.8 9.6 10.420 10 81.0 19.6 20.430 8 81.0 29.6 30.440 11 81.6 39.6 40.450 11 82.4 49.6 50.460 11 83.2 59.6 60.4The data in Table 4.1 shows that the pressure in the chamber is very sensitive tothe gate valve positi<strong>on</strong>. The last two columns show the set range <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>troller gaugefor automatic pressure c<strong>on</strong>trol. The difference between high and low set point determinesthe proporti<strong>on</strong>al band <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>troller — a smaller difference c<strong>on</strong>trols the higher gain.The initial analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the chamber with an RGA analyzer showed that thechamber was c<strong>on</strong>taminated with water, nitrogen, hydrogen and other gaseous species.Oxygen c<strong>on</strong>tent in the chamber was found negligible as a cryo pump effectively pumped


32it. In order to remove these residual gases from the chamber, it was heated with threehalogen bulbs upto a temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 120 °C from outside and pumped overnight with acryopump. The chamber was baked in two steps <strong>on</strong>e with a 1 1/2 hr baking and the other<strong>on</strong>e with 10 1/2 hr baking. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> the RGA for 1 1/2 hr and 10 1/2 hr are shown in Fig.4.11 and Fig. 4.12 respectively.Baking Results(11/2hr)Fig 4.11 RGA analysis after 1 1/2 hr bakingBaking Results (101/2hr)Fig 4.12 RGA analysis after 10 1/2 hr baking


33The charts shows that after 1 1/2 hr baking a significant decrease in the c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g>water and a smaller decrease in nitrogen (N2) and hydrogen was observed. But after 10 1/2hr baking a much larger decrease in the c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> all gases was observed.RGA reading were also taken before and after <strong>sputtering</strong> for 10min each. Theresults for the RGA for the first run are shown in Fig. 4.4 and Fig. 4.5 shows the resultsfor the sec<strong>on</strong>d run.RGA data after first runFig 4.13 RGA reading for the first run <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sputtering</strong>RGA data after sec<strong>on</strong>d runFig 4.14 RGA reading for the sec<strong>on</strong>d run <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sputtering</strong>


34Both after the first and sec<strong>on</strong>d run <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sputtering</strong> an increase in nitrogen, hydrogenand water c<strong>on</strong>tent were observed. This may be due to the heating <str<strong>on</strong>g>of</str<strong>on</strong>g> the chamber while<strong>sputtering</strong>. Oxygen was absent after both the runs as it might have been gettered <strong>by</strong> the<str<strong>on</strong>g>tantalum</str<strong>on</strong>g> target which was observed red-hot after the power to the source was turned <str<strong>on</strong>g>of</str<strong>on</strong>g>f.4.5 <str<strong>on</strong>g>Depositi<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> TantalumThe <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> target <str<strong>on</strong>g>of</str<strong>on</strong>g> 2" in diameter and 0.125" in thickness with 99.999% purity ismounted <strong>on</strong> a water-cooled torus magnetr<strong>on</strong>-<strong>sputtering</strong> gun. Prior to depositi<strong>on</strong> the targetis sputter cleaned for ten minutes with the sample platter rotated to a positi<strong>on</strong> in which allsubstrates are shielded from the gun.<str<strong>on</strong>g>Depositi<strong>on</strong></str<strong>on</strong>g> is usually carried out in the range 700 - 900 watts <str<strong>on</strong>g>of</str<strong>on</strong>g> power. Themaximum power that can be supplied to the <strong>sputtering</strong> gun is limited to 1 kW. The poweris supplied from a d.c. power supply which can operate in either voltage c<strong>on</strong>trol orcurrent c<strong>on</strong>trol mode. Arg<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 99.999% purity is used as the <strong>sputtering</strong> gas and is flowninto the chamber through a mass flow c<strong>on</strong>troller at a flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 sccm to maintain ac<strong>on</strong>stant pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 mTorr. The samples can be heated with a halogen bulb to atemperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 300 °C prior to depositi<strong>on</strong>.The substrates used to deposit <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> were <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>steel</strong> and silic<strong>on</strong>. The <strong>steel</strong>samples were polished with abrasive paper starting with 120 grit size upto 500 grit size inthe order 120, 180, 240 and 500. The samples are finally uniformly polished with a finerlapping compound <strong>on</strong> a lapping plate. The <strong>steel</strong> samples were then cleaned in a bath <str<strong>on</strong>g>of</str<strong>on</strong>g>alc<strong>on</strong>ox (an industrial cleaning agent), acet<strong>on</strong>e and propanol for 20 min each in an


35ultras<strong>on</strong>ic cleaner, while the silic<strong>on</strong> samples were cleaned <strong>on</strong>ly <strong>by</strong> acet<strong>on</strong>e and propanolin an ultras<strong>on</strong>ic cleaner.After mounting the samples inside the chamber, the chamber is baked <strong>by</strong> threehalogen bulbs upto 200 °C and pumped <strong>by</strong> a cryopump overnight to obtain a backgroundpressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.0x10 -7 T<strong>on</strong>. Prior to <strong>sputtering</strong> the samples are heated with a halogen bulbto a temperature in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 °C to 300 °C. Films are deposited at arg<strong>on</strong> pressure<str<strong>on</strong>g>of</str<strong>on</strong>g> 20 mTorr and at a power <str<strong>on</strong>g>of</str<strong>on</strong>g> 900 Watts for 10min. A mass flow c<strong>on</strong>troller regulates thearg<strong>on</strong> gas flow inside the chamber and gas is flown at a flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 sccm.After depositi<strong>on</strong> the samples are allowed to cool in high vacuum. Venting <str<strong>on</strong>g>of</str<strong>on</strong>g> thechamber is d<strong>on</strong>e with pre-purified nitrogen gas (99.998% pure with O 2, CO, CO2, THC,H2O


CHAPTER 5CYLINDRICAL DC MAGNETRON SPUTTERING SYSTEM5.1 Operating PrincipleA schematic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> the d.c. cylindrical magnetr<strong>on</strong> system is shown in Fig 5.1.Fig 5.1 Substrate mounting and electrical circuit diagramIts purpose is to carry out depositi<strong>on</strong> <strong>on</strong> the inside surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>steel</strong> tube. Acylindrical <strong>steel</strong> tube <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.000" dia. was used as the substrate. In order to coat the insidesurface <str<strong>on</strong>g>of</str<strong>on</strong>g> this tube a copper tube <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.50" inside diameter and 0.625" outside diameterwas used as a preliminary target for testing <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. This target was c<strong>on</strong>centric withthe <strong>steel</strong> substrate tube. Since the <strong>steel</strong> tube shields outside magnetic field, the field formagnetr<strong>on</strong> type <strong>sputtering</strong> was provided <strong>by</strong> passing a high dc current inside the target. Asolid copper rod <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.125" dia. was placed inside the target tube. A d.c. current in therange <str<strong>on</strong>g>of</str<strong>on</strong>g> 0-1400 Amps created the magnetic field. To generate a calculated magnetic36


37field <str<strong>on</strong>g>of</str<strong>on</strong>g> 314 Gauss <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the target 1000 Amps current had to flow through thesolid copper rod. Due to the copper rod resistance a power <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.07 kW was dissipated in1m length <str<strong>on</strong>g>of</str<strong>on</strong>g> the rod at 1000 Amps. Hence adequate cooling was required which wasaccomplished <strong>by</strong> flowing water between the target tube and the copper c<strong>on</strong>ductor. Tocreate the plasma, arg<strong>on</strong> gas at a pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 to 200 mTorr was admitted to the systemand a voltage up to 1000 volts was applied between the <strong>steel</strong> tube and the copper target,with the target at ground potential.5.2 Descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the SystemThe cylindrical <strong>sputtering</strong> system was designed and built at the I<strong>on</strong> Beam and Thin FilmResearch Laboratory at NJIT. The vacuum enclosure <str<strong>on</strong>g>of</str<strong>on</strong>g> the system was built out <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>flate comp<strong>on</strong>ents and ceramic insulators and, sealed with copper and vit<strong>on</strong> o-rings.The total height and length <str<strong>on</strong>g>of</str<strong>on</strong>g> the system is 73" and 48" respectively. In the initialgeometry the 2" or 3" diameter substrate tube was supported from inside <strong>by</strong> ceramicsupports which were mounted <strong>on</strong> the target. The substrate was mounted inside the centralsecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the system supported with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> an aluminum ring at both ends andc<strong>on</strong>tact with the stainless <strong>steel</strong> flange is made with a copper wire as shown in Fig. 5.2.Arg<strong>on</strong> gas pressure inside the chamber can be c<strong>on</strong>trolled manually <strong>by</strong> adjustingthe positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the manual needle valve <strong>on</strong> the gas supply cylinder. A capacitancemanometer (MKS Type 122A) m<strong>on</strong>itors pressure during <strong>sputtering</strong>. The target inside thechamber is cooled with a water supply. The chamber is pumped <strong>by</strong> a mechanical pump toa base pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.0x10 -3 T<strong>on</strong> and then <strong>by</strong> a turbo molecular pump to a base pressure <str<strong>on</strong>g>of</str<strong>on</strong>g>2.0x10 T<strong>on</strong>. During depositi<strong>on</strong> the power is supplied to the central flange to initializethe plasma inside the stainless <strong>steel</strong> substrate tube.


38Fig 5.2 Substrate mounting inside the cylindrical chamberThis <strong>sputtering</strong> system had the major problem <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma c<strong>on</strong>trol and heating <str<strong>on</strong>g>of</str<strong>on</strong>g>the chamber walls upto temperatures like 200 °C in less than a minute during <strong>sputtering</strong>and it went through major changes in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> geometry as shown in Fig 5.2, Fig 5.5 andFig 5.7 and pumping as will be described in detail further in this chapter. The initialgeometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the system is shown in Fig. 5.3 and Fig. 5.4. Hence studies were carried outwith a copper target, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> target, during the study <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma c<strong>on</strong>trol forec<strong>on</strong>omical reas<strong>on</strong>s. In future with a proper plasma c<strong>on</strong>trol and chamber heating, coppertarget will be replaced <strong>by</strong> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> target.


Fig 5.3 Initial geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the cylindrical system39


Fig 5.4 Initial cylindrical magnetr<strong>on</strong> <strong>sputtering</strong> system40


415.3 Plasma C<strong>on</strong>trolThe initial geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the system had a pumping port at <strong>on</strong>e end while the gas wasflown inside the chamber at the other end as shown in Fig 5.3. The central tube where thesubstrate was mounted was attached to 6.0" diameter insulators, to insulate the systemfrom the high voltage applied to the central flange. This c<strong>on</strong>figurati<strong>on</strong> gave the plasma abigger geometry <strong>on</strong> both the sides <str<strong>on</strong>g>of</str<strong>on</strong>g> the central tube. It was observed that the plasma wasflowing <strong>on</strong> the right hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> the system easily in the 6" tube, as compared to theleftmost 2 3/4" tube. This was observed at both the polarities <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic field <strong>on</strong> theeither side <str<strong>on</strong>g>of</str<strong>on</strong>g> the system, and at arg<strong>on</strong> pressures ranging from 30 mTorr to 200 mTorr.The plasma was heating up the right hand side flange to 200 °C in less than a minute. Itwas seen that this flange was getting sputtered and a thin coating <str<strong>on</strong>g>of</str<strong>on</strong>g> stainless <strong>steel</strong> wasobserved <strong>on</strong> the copper target.It was noted that the ceramic insulators <strong>on</strong> the either side <str<strong>on</strong>g>of</str<strong>on</strong>g> the central tube werealso getting coated with copper, so even at very low pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 1x10^-5 Torr current wasdrawn from the power supply. In order to prevent the insulators from getting coated aglass tube was kept <strong>on</strong> the target <strong>on</strong> either side in the porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the insulators. Thishelped in preventing the insulators from getting coated further.Also here an attempt was made to keep a metallic ring <strong>on</strong> the top <str<strong>on</strong>g>of</str<strong>on</strong>g> the glass tubeinside the insulator, touching the right hand side flange. It was thought that as themetallic ring is grounded with respect to the central flange, plasma will heat up the ringbut would not proceed further ahead in the flange. But the ring was heated up heavily <strong>by</strong>the plasma and started melting.


42The plasma was seen not flowing <strong>on</strong> the extreme left-hand side, as there was a 23/4" flange attached to the 6.0" insulator, which was reducing the volume. This led to thec<strong>on</strong>clusi<strong>on</strong>1) to keep a smaller cross <strong>on</strong> the right hand side and2) to shift the turbo pump at the center to create a symmetry in geometry with respect topumping.A 2 3/4" flange was kept <strong>on</strong> the right hand side and the pump was shifted in themiddle as shown in Fig 5.5. Also the central tube was replaced with a 6" c<strong>on</strong>flate cross.When the plasma was initialized it was found that the smaller flanges <strong>on</strong> both side<str<strong>on</strong>g>of</str<strong>on</strong>g> the system were preventing the plasma to enter them even at very high pressure (>140mTorr) and at alternative polarities <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic power supply <strong>on</strong> either side <str<strong>on</strong>g>of</str<strong>on</strong>g> thesystem. But it was found that the plasma was heating the bellows kept below the centralflange. Hence the bellows were shifted above the insulator. Now here as the bellow wasin direct c<strong>on</strong>tact with the central flange, it was not getting heated up but the mechanicalgate valve right below the ceramic insulator was getting heated up. This led to thec<strong>on</strong>clusi<strong>on</strong> that whatever was grounded from the central porti<strong>on</strong>, where the high<strong>sputtering</strong> voltage is applied, was getting heated if the plasma is flowing in that porti<strong>on</strong>and that's where the i<strong>on</strong>s give up the energy.The mechanical valve was replaced <strong>by</strong> a pneumatic gate valve and the ceramicinsulator was taken away. An additi<strong>on</strong>al pumping hose was added and was c<strong>on</strong>nected tothe right side 2 3/4" flange for pumping during <strong>sputtering</strong>. The gate valve was shifted atthe top in c<strong>on</strong>tact with the central flange so that it is also at high voltage. The remaining<str<strong>on</strong>g>of</str<strong>on</strong>g> the chamber below the gate valve was grounded <strong>by</strong> small insulating brakes betweenthe pneumatic valve and the stainless <strong>steel</strong> tube. It was assumed that as the gate valve is


Fig 5.5 Intermediate geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the cylindrical system43


44in c<strong>on</strong>tact with the central flange the plasma would not travel into it and as the gate valvewas kept closed during <strong>sputtering</strong> the plasma would not flow below it and would berestricted inside the central flange.Other tests like removing the substrate and observing the plasma flow wereperformed. During these tests it was observed that the small diameter insulators with the2 3/4" tubes at the two ends <str<strong>on</strong>g>of</str<strong>on</strong>g> the system where helping in preventing the plasma fromflowing through them. So it was decided to replace <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the 6" insulator with 2 3/4"insulator <strong>on</strong> the left-hand side and try the plasma flow. With this c<strong>on</strong>figurati<strong>on</strong> it wasobserved that the plasma was not flowing into the 2 3/4" insulator <strong>on</strong> the left-hand side butwas flowing easily into the 6" insulator <strong>on</strong> the right-hand side and was restricted <strong>by</strong> the 23/4" tube further ahead. The plasma flow was tried <strong>by</strong> switching the magnetic fieldpolarities at both the ends <str<strong>on</strong>g>of</str<strong>on</strong>g> the system alternatively, but it was seen to be restricted <strong>by</strong>the reduced geometry <strong>on</strong> the left-hand side. Plasma spreads in a chamber, because it ispositive with respect to the chamber wall so i<strong>on</strong>s are accelerated to the wall. But the 2 3/4"insulator might be getting charged up and counteracting this potential difference.So the 6" insulator <strong>on</strong> the right hand side was also replaced <strong>by</strong> a 2 3/4" insulatorand plasma flow was tried. It was observed that the plasma was now restricted inside thecentral flange. But now this c<strong>on</strong>figurati<strong>on</strong> poses an additi<strong>on</strong>al problem <str<strong>on</strong>g>of</str<strong>on</strong>g> pumping thechamber as the chamber volume is reduced <strong>on</strong> either side <str<strong>on</strong>g>of</str<strong>on</strong>g> the central flange. Efforts are<strong>on</strong> to solve this problem.Once the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> pumping is solved with this final c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the systemcopper target would be replaced with a <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> target and studies would be carried out<strong>on</strong> the <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films obtained with this system.


Fig 5.6 Final cylindrical magnetr<strong>on</strong> <strong>sputtering</strong> system45


Fig 5.7 Final geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> cylindrical <strong>sputtering</strong> systemThe <strong>sputtering</strong> voltages vs. the magnetizing current characteristics for the initialstable plasma c<strong>on</strong>diti<strong>on</strong>s are shown in Fig. 5.8. The magnetizing current helps in creatingmagnetic field, which keeps the electr<strong>on</strong>s c<strong>on</strong>fined to the plasma and reducing loss to thechamber walls as described in secti<strong>on</strong> 3.3. The curve shows that a very limited range <str<strong>on</strong>g>of</str<strong>on</strong>g>


47VI c<strong>on</strong>diti<strong>on</strong>s exists for a pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 mTorr indicating that the plasma is not stablebelow 30 mTorr. At a <strong>sputtering</strong> voltage below about 520 V the plasma extinguishes. Butthe range is widened for higher pressure.Fig 5.8 Initial stable plasma igniti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>


CHAPTER 6TANTALUM FILM ANALYSIS6.1 Introducti<strong>on</strong>This chapter discusses the result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> film analysis <strong>by</strong> various methods, whichinclude:1) Dektak Film Thickness Measurement2) Scanning Electr<strong>on</strong> Microscopy3) X - Ray Diffracti<strong>on</strong> Technique4) Rutherford Back Scattering6.2 Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> Film ThicknessThe thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> film deposited <strong>on</strong> silic<strong>on</strong> was measured with a Sloan Dektak IIfilm thickness measurement unit with a resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1 gm. It works <strong>by</strong> gently dragginga mechanical stylus across a surface. Its output is a graph <str<strong>on</strong>g>of</str<strong>on</strong>g> stylus height vs. positi<strong>on</strong>,from which step height, surface roughness, and other features can be determined. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<str<strong>on</strong>g>of</str<strong>on</strong>g> the surface step were measured at the film edge. The step was formed because thescrews holding the sample masked a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate. Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> the step pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile areshown in the following Fig 6.1 and 6.2.The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the film shown in Fig. 6.1 is 6100 A. The film was deposited at20 mTorr pressure with 918 W <str<strong>on</strong>g>of</str<strong>on</strong>g> power for 15 min. The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the film shown inFig. 6.2 is 4490 A. This film was deposited at a pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 mTorr with a power <str<strong>on</strong>g>of</str<strong>on</strong>g> 875W for 10 min. The films discussed in this thesis ranged from 4000 A to 6000 A.48


49Fig 6.1 Dektak pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> film deposited <strong>on</strong> silic<strong>on</strong> — film thickness6100 AFig 6.2 Dektak pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> film deposited <strong>on</strong> silic<strong>on</strong> — film thickness4490 A


506.3 Scanning Electr<strong>on</strong> MicroscopyA Scanning Electr<strong>on</strong> Microscope c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> accelerator that focuses theelectr<strong>on</strong> beam from a tungsten filament <strong>on</strong> to the specimen with the help <str<strong>on</strong>g>of</str<strong>on</strong>g>electromagnetic lenses and a detecti<strong>on</strong> system measuring the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>sscattered <strong>by</strong> the specimen. An image is formed <strong>by</strong> raster scanning the beam <strong>on</strong> thespecimen [31]. SEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> various films were taken with an Envir<strong>on</strong>mentalScanning Electr<strong>on</strong> Microscope from Electroscan. They included <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> filmsdeposited <strong>on</strong> <strong>steel</strong> and silic<strong>on</strong> under various c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate surfacecleaning, substrate surface treatment prior to depositi<strong>on</strong> and substrate surfacepolishing.As an example in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the observati<strong>on</strong>s it was noted that when a <strong>steel</strong>substrate was polished with a dico brand emery heavy cut buffing compound the<str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films deposited <strong>on</strong> that substrate showed the pattern corresp<strong>on</strong>ding to thepolish lines present <strong>on</strong> the <strong>steel</strong> substrate, as shown in Fig 6.9. The pattern isdifferent from the c<strong>on</strong>formal coverage <str<strong>on</strong>g>of</str<strong>on</strong>g> the fine — polished <strong>steel</strong> shown in Fig. 6.5and 6.6.In <strong>on</strong>e more observati<strong>on</strong> it was seen that flaky and n<strong>on</strong> c<strong>on</strong>tinuous film <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>tantalum</str<strong>on</strong>g> <strong>on</strong> <strong>steel</strong> substrate was obtained as shown in Fig 6.3, when it was cleaned<strong>on</strong>ly with acet<strong>on</strong>e.Hence a proper cleaning and polishing procedure was developed to cleanand polish the substrates prior to depositi<strong>on</strong>. The <strong>steel</strong> substrates were then cleanedand polished as described in secti<strong>on</strong> 4.5.The substrate surface c<strong>on</strong>diti<strong>on</strong> can also be effected <strong>by</strong> treatment in thedepositi<strong>on</strong> chamber, prior to film depositi<strong>on</strong>. In some cases, rough and n<strong>on</strong>-uniform


51films were observed <strong>on</strong> <strong>steel</strong> samples when they were not pre-heated prior todepositi<strong>on</strong>, despite proper cleaning and polishing <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate surface. Anexample is shown in Fig 6.4.But when another set <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>steel</strong> substrates were heated to 300 °C with ahalogen bulb during the same run prior to depositi<strong>on</strong>, the films observed weresmooth and adherent to the substrate. An example is shown in Fig 6.5.Hence the substrates were properly cleaned, polished and heated for thefilms deposited after this observati<strong>on</strong>. The films obtained were smooth andc<strong>on</strong>tinuous. Two examples are shown in Fig 6.5 and Fig. 6.6. This showed thatsubstrate surface c<strong>on</strong>diti<strong>on</strong> plays an important role <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> films deposited.Fine lines visible <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the films in Fig. 6.5 and Fig. 6.6 are due toc<strong>on</strong>formal coverage <str<strong>on</strong>g>of</str<strong>on</strong>g> polishing lines seen also <strong>on</strong> the substrate prior to depositi<strong>on</strong>.A different pattern <strong>on</strong> the surface was observed with a rougher polishing andwithout any pre-heating <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample. The dark irregular surface features appear tobe aligned with the polishing directi<strong>on</strong> but are not c<strong>on</strong>tinuous. They may havedifferent crystalline phase compositi<strong>on</strong> than the lighter areas.The difference in the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> smooth films (<strong>on</strong> polished substrates)which are predominantly <str<strong>on</strong>g>of</str<strong>on</strong>g> either alpha or beta phase is seen under highmagnificati<strong>on</strong> (Fig. 6.7 and Fig. 6.8). The surface <str<strong>on</strong>g>of</str<strong>on</strong>g> beta phase film looks moregrainy and has a pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> fine cracks. Hieber and Mayer also observed such cracksin beta phase <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films deposited <strong>on</strong> Coming 7059-glass [29].


52Fig 6.3SEM image (190X) showing flaky <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films <strong>on</strong> <strong>steel</strong> substrate — filmthickness 4000 AFig. 6.4 SEM image (335X) showing rough and n<strong>on</strong>-uniform film <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> <strong>on</strong><strong>steel</strong> substrate without prior heating — film thickness 4000 A


53Fig 6.5 SEM image (800X) showing smooth film <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> <strong>on</strong> <strong>steel</strong> substrateafter proper cleaning, polishing and heating — film thickness 4000 AFig 6.6 SEM image (1500X) showing smooth films <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> <strong>on</strong> <strong>steel</strong> substrateafter proper cleaning, polishing and heating — film thickness 4000 A


Fig 6.7 SEM image (360X) showing <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films deposited al<strong>on</strong>g polish linespresent <strong>on</strong> <strong>steel</strong> surface — film thickness 6000 A54


55Fig 6.8 SEM image (5000 X) <str<strong>on</strong>g>of</str<strong>on</strong>g> beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> <strong>on</strong> <strong>steel</strong>Fig 6.9 SEM image (5000X) <str<strong>on</strong>g>of</str<strong>on</strong>g> alpha <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> <strong>on</strong> silic<strong>on</strong>


566.4 X - Ray AnalysisX-ray analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the films deposited was d<strong>on</strong>e using Philips Expert MPDinstrument with Cu Ka radiati<strong>on</strong>. The standard peaks for alpha <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> and beta<str<strong>on</strong>g>tantalum</str<strong>on</strong>g> are shown in Fig. 6.10 and Fig. 6.11. These plots were taken from JCPDS- Internati<strong>on</strong>al Center for Diffracti<strong>on</strong> Data (ICDD) PCPDFWIN v. 2.01. no. 04-0788 for alpha <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> and no. 25-1280 for beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>, 1998. They refer topowder samples in which grains are randomly oriented. In case <str<strong>on</strong>g>of</str<strong>on</strong>g> thin films adegree <str<strong>on</strong>g>of</str<strong>on</strong>g> alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> the crystalline grains with respect to the substrate surface isexpected. The alignment may significantly change 2-theta diffracti<strong>on</strong> spectra, as therelative intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> various lines may be very different than for the powder case.XRD spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> films obtained <strong>on</strong> a <strong>steel</strong> substrate and a silic<strong>on</strong> substrate isshown in Fig. 6.12 and 6.13 respectively. The samples were prepared under thesame c<strong>on</strong>diti<strong>on</strong>s. Sputtering was carried out for 10 min. at a power <str<strong>on</strong>g>of</str<strong>on</strong>g> 780 W and at20 mTorr pressure with an arg<strong>on</strong> flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 sccm. Prior to <strong>sputtering</strong> thechamber was baked for 10 1/2 hr and was pumped to 1.0x10-7 Torr base pressure.


57Fig 6.10 Standard diffracti<strong>on</strong> lines for alpha <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>Fig 6.11 Standard diffracti<strong>on</strong> lines for beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>


58Fig. 6.12 shows the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> <strong>on</strong> <strong>steel</strong> with a corresp<strong>on</strong>dingMiller Indices <str<strong>on</strong>g>of</str<strong>on</strong>g> (202), (333) and (641) at 20 = 38.200, 20 = 65.339 and 20 =68.594 respectively. Read and Hensler [13] obtained same type <str<strong>on</strong>g>of</str<strong>on</strong>g> peak for <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>films sputtered <strong>on</strong> glass substrates using the d.c. diode <strong>sputtering</strong> technique. Thepresence <str<strong>on</strong>g>of</str<strong>on</strong>g> beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> is also c<strong>on</strong>firmed when this plot is compared with thestandard chart for beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>, which shows a peak at 20 = 38.2 and 66.708 withIndices (202) and (720) respectively. The fact that not all peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> areseen in Fig. 6.12 may be explained <strong>by</strong> orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the film grown with respect tothe substrate surface. The same reas<strong>on</strong> can be given for absence <str<strong>on</strong>g>of</str<strong>on</strong>g> other majorpeaks for alpha <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> at 20 = 55.549, 69.581 and 121.349. The SEM image forbeta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> is shown in Fig 6.8.Fig. 6.13 shows the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> alpha <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> <strong>on</strong> silic<strong>on</strong> with acorresp<strong>on</strong>ding Miller Indices <str<strong>on</strong>g>of</str<strong>on</strong>g> (110) at 20 = 38.472. Same peak was observed <strong>by</strong>Read and Hensler [13] for <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films sputtered <strong>on</strong> glass substrates using the d.c.diode <strong>sputtering</strong> technique with Miller Indices (110) and d = 2.35 °A. Lee andWindover [33] also observed the same peak for <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films sputtered <strong>on</strong> innerside <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>steel</strong> tube covered with thin niobium layer using the triode <strong>sputtering</strong>technique. Sato has also observed the same peak for <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films deposited <strong>on</strong>aluminum film <strong>on</strong> SiC substrate [19]. This peak (20 = 38.472) can be err<strong>on</strong>eouslyidentified as the (202) beta-Ta as (20 = 38.2) both the peaks are very close with avery small 2θ-difference [13]. The SEM image for alpha <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> is shown in Fig6.9.


59Fig 6.13 Standard diffracti<strong>on</strong> lines for beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> between 20 = 20 and 20 = 80Fig 6.14 X-ray analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> film showing peak for alpha <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>Fig 6.15 Standard diffracti<strong>on</strong> lines for alpha <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> between 20 = 20 and 20 = 80


Also in some cases a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> beta and alpha <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films was obtainedfor films prepared <strong>on</strong> <strong>steel</strong> substrates. These films were sputtered for 10 min. at 20mTorr pressure and at a power <str<strong>on</strong>g>of</str<strong>on</strong>g> 825 W. Prior to <strong>sputtering</strong> the chamber was bakedfor 101/2 hr and was pumped to 1.0x10 -7 Torr base pressure. Two examples areshown in Fig. 6.16 and 6.17 respectively.Fig. 6.16 shows the peak for beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> at 20 = 33.692 (002), 20 =65.339 (333) and 20 = 71.028 (513) and for alpha <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> at 20 = 38.472 (110)and 20 = 55.81 (200). Fig. 6.17 shows the peak for beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> at 20 = 33.692(002), 20 = 66.708 (720) and 20 = 71.028 (513). It also shows peaks for alpha<str<strong>on</strong>g>tantalum</str<strong>on</strong>g> at 20 = 38.472 (110), 20 = 82.461 (220) and 20 = 121.349 (321).Table 6.1 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> XRD resultsStandard Dominant Observed XRD LinesXRD Linesa 13 Sample A Sample B Sample C Sample D33.692 No No Yes Yes38.200 Yes No No No38.472 No Yes No Yes55.810 No No Yes No65.339 Yes No Yes Yes66.708 No No No Yes68.594 Yes No No No71.028 No No Yes Yes82.461 No No No Yes121.349 No No No YesSample A — Fig. 6.12 Sample B — Fig. 6.13Sample C — Fig. 6.16 Sample D — Fig. 6.1760


61Fig 6.16 X-ray analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> film showing peak for alpha and beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>Fig 6.17 X-ray analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> film showing peak for alpha and beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>(Steel 110 peak and 220 peak corresp<strong>on</strong>d to 110 peak and 220 peak <str<strong>on</strong>g>of</str<strong>on</strong>g> Fe,respectively.)


626.5 Rutherford Back ScatteringRBS measurement with 2 MeV He beam were made <strong>on</strong> selected samples usingNati<strong>on</strong>al Electrostatics Tandem Accelerator at Bell Laboratories, Murray Hill, NJand Army Research Laboratory, Aberdeen, Maryland. To facilitate the analysis,<str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films were deposited <strong>on</strong> silic<strong>on</strong> substrates, which were usually mountedfor this purpose <strong>on</strong> the same sample holder with <strong>steel</strong> substrates. Fig. 6.18 showsthe RBS spectrum for a sample deposited with 900 W <str<strong>on</strong>g>of</str<strong>on</strong>g> power at a pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 20mTorr for 10 min. The sample was deposited without baking <str<strong>on</strong>g>of</str<strong>on</strong>g> the chamber orsubstrate preheating. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the data <strong>by</strong> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the measured spectrumwith a simulati<strong>on</strong> d<strong>on</strong>e with a RUMP program (Computer Graphics Service Ltd. v.4.00 [beta], 1999), which is also shown in Fig. 6.18, indicates that film c<strong>on</strong>tains50% <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>. The remaining 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> the film is most likely to be oxygen. Precisedeterminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the oxygen c<strong>on</strong>tent is difficult because oxygen peak in thespectrum is masked <strong>by</strong> a much intensive silic<strong>on</strong> signal.Fig 6.19 shows the RBS plot for samples, which were heated, to 300 °Cprior to depositi<strong>on</strong>. These samples were deposited with a power <str<strong>on</strong>g>of</str<strong>on</strong>g> 900 W at 20mTorr pressure for 5 min. Also prior to depositi<strong>on</strong> the chamber was baked for 10 1/2hr. and was pumped with a cryopump to a base pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.0x10 -7 Torr. The RGAresults after baking <str<strong>on</strong>g>of</str<strong>on</strong>g> the chamber for 10 1/2 hr. are shown in Fig. 4.12. Simulati<strong>on</strong>d<strong>on</strong>e with a RUMP program, which is also shown in Fig. 6.19, indicates that thefilm c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> 100% <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>.


63Fig 6.18 RBS plot <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films deposited <strong>on</strong> silic<strong>on</strong> without baking <str<strong>on</strong>g>of</str<strong>on</strong>g> thechamber and substrate pre-heatingFig 6.19 RBS plot for <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films deposited <strong>on</strong> silic<strong>on</strong> after baking <str<strong>on</strong>g>of</str<strong>on</strong>g> thechamber and substrate pre-heating


CHAPTER 7SUMMARY AND CONCLUSIONSThe results <str<strong>on</strong>g>of</str<strong>on</strong>g> this thesis are summarized in the following secti<strong>on</strong>s.7.1 Testing and Development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Depositi<strong>on</strong></str<strong>on</strong>g> Equipment7.1.1 Planar D. C. Magnetr<strong>on</strong> Sputtering SystemVacuum and gas flow c<strong>on</strong>trol system c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a cryogenic pump, mechanical pump,c<strong>on</strong>trolled gate valve and mass flow c<strong>on</strong>troller was tested. The base vacuum achieved inthe chamber was 1.0x10 -7 Torr. The regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gas pressure inside the depositi<strong>on</strong>chamber was automated with a PD c<strong>on</strong>troller. A planar d.c. magnetr<strong>on</strong> <strong>sputtering</strong> sourcewith 2" diameter target was tested for <strong>sputtering</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> <strong>on</strong> <strong>steel</strong> and silic<strong>on</strong>. A,substrate platter accommodating up to 8 substrate holders was designed and built.7.1.2 Testing <str<strong>on</strong>g>of</str<strong>on</strong>g> Cylindrical D. C. Magnetr<strong>on</strong> Sputtering SystemA cylindrical d.c. magnetr<strong>on</strong> <strong>sputtering</strong> system was tested for vacuum, gas flow andplasma c<strong>on</strong>trol. The system was redesigned during the process <str<strong>on</strong>g>of</str<strong>on</strong>g> testing to its currentgeometry. Stable operati<strong>on</strong> was easily achieved with the reverse biasing, when the tubularsubstrate was negatively biased with respect to the grounded target and the vacuumenclosure. In normal biasing stable discharge could not be maintained with anymagnetizing current up to 1400 A. Sputtering was possible <strong>on</strong>ly after installing <str<strong>on</strong>g>of</str<strong>on</strong>g> aspecial power supply with fast current c<strong>on</strong>trol circuitry. During this operati<strong>on</strong> plasma has64


65the tendency to propagate throughout the system from the positively biased substrate. Theproblem was partially solved <strong>by</strong> restricting the space between the target and insulatingsecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum enclosure. Other soluti<strong>on</strong>s will be tested in future work.7.2 Tantalum <str<strong>on</strong>g>Depositi<strong>on</strong></str<strong>on</strong>g>As part <str<strong>on</strong>g>of</str<strong>on</strong>g> a pilot study <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films were deposited <strong>on</strong> <strong>steel</strong> and silic<strong>on</strong> substrates andanalyzed using pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilometry, SEM, RBS and )D techniques.1. Thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films deposited <strong>on</strong> silic<strong>on</strong> and <strong>steel</strong> substrate was measured<strong>by</strong> a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilometer at the film edge between 4000 °A to 6000 °A.2. <str<strong>on</strong>g>Depositi<strong>on</strong></str<strong>on</strong>g> rate at the source power <str<strong>on</strong>g>of</str<strong>on</strong>g> 900 W and 20 mTorr pressure is found tobe 400 °A/min.3. Integrity, appearance and adherence <str<strong>on</strong>g>of</str<strong>on</strong>g> the films were sharply influenced <strong>by</strong> thesubstrate type, substrate preparati<strong>on</strong> and c<strong>on</strong>diti<strong>on</strong> in the chamber.• Cleaning:It was found that proper cleaning <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>steel</strong> substrates was essential forobtaining smooth and adherent films.• Polishing <str<strong>on</strong>g>of</str<strong>on</strong>g> the surface:Degree <str<strong>on</strong>g>of</str<strong>on</strong>g> polishing influenced the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> SEM <str<strong>on</strong>g>of</str<strong>on</strong>g> the film surface.C<strong>on</strong>formal coverage <str<strong>on</strong>g>of</str<strong>on</strong>g> polishing marks was visible <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> films <strong>on</strong>highly polished <strong>steel</strong> substrates. A more complex pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> light and darkareas <strong>on</strong> rougher <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> surface, aligned with unidirecti<strong>on</strong>al polishingpattern <strong>on</strong> <strong>steel</strong> surface pattern was seen. The image was suggestive <str<strong>on</strong>g>of</str<strong>on</strong>g> thepresence <str<strong>on</strong>g>of</str<strong>on</strong>g> different <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> phases.


66• Substrate preheating:Heating <str<strong>on</strong>g>of</str<strong>on</strong>g> substrates prior to depositi<strong>on</strong> to 300 °C had a substantial influence <strong>on</strong>the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> films produced. The preheating process can be c<strong>on</strong>sidered as the laststep in substrate cleaning, which desorbs gases, particularly water vapor, from thesurface. Films, which were produced without pre-heating <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate, were<str<strong>on</strong>g>of</str<strong>on</strong>g>ten found to be poorly adhering and disc<strong>on</strong>tinuous.4. Film compositi<strong>on</strong>The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the films produced was highly influenced <strong>by</strong> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g>residual gases present in the chamber. An RGA analysis showed a significantdecrease in the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> water vapor and oxygen in the residual gas after bakingthe chamber for several hours, when the chamber walls reached 110 °C. RBSanalysis showed a high oxygen c<strong>on</strong>tent (up to 50%) <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> filmsdeposited without proper substrate and chamber preparati<strong>on</strong>. Close to 100% <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>tantalum</str<strong>on</strong>g> c<strong>on</strong>tent was found in the films deposited after proper chamber andsubstrate baking.5. CrystallinityXRD analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the deposited <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> films showed the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> both alphaand beta <str<strong>on</strong>g>tantalum</str<strong>on</strong>g> phases. The relative intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> the alpha and beta peaks in thespectrum depended <strong>on</strong> the heating <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate. Heating <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate priorto depositi<strong>on</strong> helped in increasing the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> alpha <str<strong>on</strong>g>tantalum</str<strong>on</strong>g>, which requiresfurther investigati<strong>on</strong>.


REFERENCES1. D. Mills, "The Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Sputtered Tantalum", J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Can. Ceram. Soci., vol. 35, pp.48-52, 1966.2. P. N. Baker, "Preparati<strong>on</strong> and Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Tantalum Thin Films", Thin Solid Films,vol., 14, pp. 3-25, 1972.3. S. Wolf and R. N. Tauber, Silic<strong>on</strong> Processing for the VLSI Era Vol. 1 — ProcessTechnology, Lattice Press, Sunset Beach, CA, 2000.4. Karen Holloway and Peter M. Fryer, "Tantalum as a Diffusi<strong>on</strong> Barrier BetweenCopper and Silic<strong>on</strong>", Appl. Phys. Lett., vol. 57, pp. 1736-1738, 1990.5. W. D. Westwood, N. Waterhouse and P. S. Wilcox, Tantalum Thin Films, AcademicPress Inc., NY, 1975.6. Shivramkrishnan Prabha, "Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tantalum Coatings <strong>on</strong> SteelSubstrates", Master's Thesis, January 1999, Materials Science andEngineering, <strong>New</strong> <strong>Jersey</strong> <strong>Institute</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, <strong>New</strong>ark, NJ 07102.7. Sung Min Maeng, "Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Steel Corrosi<strong>on</strong> in an AggressiveEnvir<strong>on</strong>ment", Master's Thesis, August 1999, Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil andEnvir<strong>on</strong>mental Engineering, <strong>New</strong> <strong>Jersey</strong> <strong>Institute</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, <strong>New</strong>ark, NJ07102.8. J. F. Cox and E. D. McClanahan, "High Rate Sputtering <str<strong>on</strong>g>of</str<strong>on</strong>g> Tantalum <strong>on</strong>to GunSteel", Benet Weap<strong>on</strong>s Laboratory, Watervliet, NY, 1982 (requires specialpermissi<strong>on</strong> to get a copy).9. D. W. Mats<strong>on</strong>, M. D. Merz and E. D. McClanahan, "High Rate Sputter <str<strong>on</strong>g>Depositi<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>Wear Resistant Tantalum Coatings", J. Vac. Sci. Techno., vol. 10, no. 4, pp.1791-1796, 1992.10. URL http://chemlab.pc.maricopa.edu/periodic/periodic.html (Oct. 30, 2000).11. Webelement URLhttp ://www. webelements. com/webelements/elements/text/Ta/key.html(Sept. 19, 2000).12. L. A. Clevenger, A. Mutscheller, J. M. E. Harper, C. Cabral Jr. and K . Barmak, "TheRelati<strong>on</strong>ship Between <str<strong>on</strong>g>Depositi<strong>on</strong></str<strong>on</strong>g> C<strong>on</strong>diti<strong>on</strong>s, the Beta to Alpha PhaseTransformati<strong>on</strong>, and Stress Relaxati<strong>on</strong> in Thin Film", J. Appl. Phys., vol. 72,no. 10, pp. 4918-4924, 1992.67


68REFERENCES(C<strong>on</strong>tinued)13. Mildred H. Read and D. H. Hensler, "X-ray Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Sputtered Films <str<strong>on</strong>g>of</str<strong>on</strong>g> BetaTantalum and Body Centered Cubic Tantalum", Thin Solid Films, vol. 10, pp.123-125, 1972.14. M. H. Read and Carl Altman, "A <strong>New</strong> Structure in Tantalum Thin Films", Appl.Phys. Letters, vol. 7, no. 3, pp. 51-52, 1965.15. W. D. Westwood and F. C. Livermore, "Radio Frequency Sputtered Tantalum ThinFilms Deposited in an Oxygen Doped Atmosphere", Thin Solid Films, vol. 8,no. 1, R1-R2, 1971.16. M. Croset and G. Velasco, "Structure and Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Sputtered Tantalum Films<strong>on</strong> Silic<strong>on</strong> Studied <strong>by</strong> Nuclear and X-ray Analysis", J. Appl. Phys., vol. 43,pp. 1444-1447, 1972.17. L. G. Feinstein and R. D. Huttemann, "Factors C<strong>on</strong>trolling the Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> SputteredTantalum Films", Fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> Metal <str<strong>on</strong>g>Depositi<strong>on</strong></str<strong>on</strong>g>, Thin Solid Films,vol. 16, pp.129-143, 1973.18. A. Schauer and W. Peters, "The Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Film Thickness <strong>on</strong> the Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> β —Ta and BCC — Ta", Thin Solid Films, vol. 27, pp. 95-99, 1975.19. Shigehiko SATO, "Nucleati<strong>on</strong> Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Magnetr<strong>on</strong>-Sputtered Tantalum", ThinSolid films, vol. 94, pp. 321-329, 1982.20. R. D. Burbank, "An X-ray Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Beta-Tantalum", J. Appl. Cryst., vol. 6, pp. 217-224, 1973.21. R. B. Marcus and S. Quigley, "Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> F. C. C., B. C. C. and β-Tantalum films<strong>by</strong> Evaporati<strong>on</strong>", Thin Solid Films, vol. 14, no. 2, pp. 467-477, 1972.22. P. N. Denbigh and R. B. Marcus, "Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Very Thin Tantalum andMolybdenum Films", J. Appl. Phys., vol. 37, no. 12, pp. 4325-4330, 1966.23. G. Das, "A <strong>New</strong> Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Sputtered Tantalum", Thin Solid Films, vol. 12, pp.305-311, 1972.24. L. M. Hsiung and D. H. Lassila, "Shock Induced Omega Phase in Tantalum",Scripta Materialia, vol. 38, no. 9, pp. 1371-1376, 1998.25. N. Schwartz and E. D. Feit, "Impurity Effects in the Nucleati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Alpha (bcc) —Tantalum or Beta — Tantalum Coatings", J. Electrochem. Soc., vol. 124, no. 1,pp. 123-131, 1976.


69REFERENCES(C<strong>on</strong>tinued)26. H. C. Starck URL http://www.hcstarckus.com/main44.html (Sept. 19, 2000).27. URL http://www.eecs.umich.edu/USL/MaterialScience/index.html (Dec. 6, 2000).28. Douglas Chrisey and Graham Hubler, Pulsed Laser <str<strong>on</strong>g>Depositi<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Thin Films, JohnWiley & S<strong>on</strong>s Inc., USA, 1994.29. Klaus K. Schuegraf, Handbook <str<strong>on</strong>g>of</str<strong>on</strong>g> Thin Film <str<strong>on</strong>g>Depositi<strong>on</strong></str<strong>on</strong>g> Processes and Techniques,Noyes Publicati<strong>on</strong>s, Park Ridge, NJ, 1988.30. Brian Chapman, Glow Discharge Processes, John Wiley & S<strong>on</strong>s Inc., USA, 1980.31. URL http://hypatia.dartmouth.edu/levey/ssml/equipment/SEM/SEM_intro.html(Nov. 28, 2000).32. K. Hieber and N. M. Mayer, "Structural Changes <str<strong>on</strong>g>of</str<strong>on</strong>g> Evaporated Tantalum DuringFilm Growth", Thin Solid Films, vol. 90, pp. 43-50, 1982.33. S. L. Lee and D. Windover, "Phase, Residual Stress, and Texture in Triode-Sputtered Tantalum Coatings <strong>on</strong> Steel", Surface and Coatings Technology,vol. 108-109, pp. 65-72, 1998.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!