Proximity- Induced Superconductivity in graphene - imaginenano 2013

Proximity- Induced Superconductivity in graphene - imaginenano 2013 Proximity- Induced Superconductivity in graphene - imaginenano 2013

imaginenano.com
from imaginenano.com More from this publisher

<strong>Proximity</strong>- <strong>Induced</strong> <strong>Superconductivity</strong> <strong>in</strong><strong>graphene</strong>:SSC. Li, K. Komatsu, S. Guéron, H. BouchiatGroupe de Physique MésoscopiqueLaboratoire de Physique des Solides, Orsay


Outl<strong>in</strong>e• Superconduct<strong>in</strong>g proximity effect <strong>in</strong> <strong>graphene</strong> at low field(long junction limit): evidence of specificities of <strong>graphene</strong>.• Sensitivity to dop<strong>in</strong>g with Porphyr<strong>in</strong> molecules• Reveal<strong>in</strong>g gate dependent magnetismSNeh• Superconduct<strong>in</strong>g proximity effect <strong>in</strong> the Quantum Hall regime:Inject<strong>in</strong>g Cooper pairs through edge states?eBzEdge stateEdge statesh


Current <strong>in</strong>jection through a SNS junctionS<strong>in</strong>gle electron or holetransport possible only for eV > 2∆-e+e2eS,∆NS current at V=0:one electron reflected <strong>in</strong>to a hole(Andreev reflection)two electrons pass<strong>in</strong>g from N to S


Coherent propagation of pairs through a nonsuperconduct<strong>in</strong>g materialAttractive <strong>in</strong>teractionNoth<strong>in</strong>g to « cement » pairsAttractive <strong>in</strong>teractionS,∆e iϕ 1 S,∆e iϕ 2Propagation of Andreev pairs occurs only if noth<strong>in</strong>g breaks the pairdur<strong>in</strong>g traversal. L < L T , L ϕTypically, 1 micron, T


Specificity of Andreev reflection <strong>in</strong> <strong>graphene</strong>valence bandElectron and hole haveopposite velocities along y


Specificity of Andreev reflection <strong>in</strong> <strong>graphene</strong>E F < ∆valence bandPossible to constructe/h pairs belong<strong>in</strong>gto different bands…Velocity along yis conserved!AccumulatedPhase differencebetween e-htrajectoriesBeenakker 06


Superconduct<strong>in</strong>g proximity effect <strong>in</strong> long<strong>graphene</strong> junctions at low fieldPrevious work:Ojeda-Aristizabal (2010): Pt/TaMorpurgo(2007), Andrei (2008): Ti/AlJoeng (2011): PbIn, Borzenets (2011): Pd/PbL = 200 to 500 nmThis work: Long junction, L=1200 nm >> ξ S ~ 100nm,Contacts Pd/Nb (Tc ≈ 8K)More than 3 times longer thanprevious worksLong junction may be a way to observe specular reflection...


<strong>Proximity</strong> effect at zero field (Nb, L=1200 nm)V (V)I (µA)Zero resistance state at high dop<strong>in</strong>g.Supercurrent (~200nA) at 200 mK, tunable by back gateCritical current suppressed at low dop<strong>in</strong>g.


F<strong>in</strong>d<strong>in</strong>g: I c suppressed around Dirac Po<strong>in</strong>tTheory for long junction:I c =10 E Th /R N with E Th =ħD/L² Thouless energy• I c decreases much fasterthan E Th /R N near the Diracpo<strong>in</strong>t.Komatsu et al. 2012Question: is this becauseof the specular Andreevreflexion specific to<strong>graphene</strong>?


Graphene near the Dirac po<strong>in</strong>t (zero dop<strong>in</strong>g)At half fill<strong>in</strong>g: No carriers? No charge?n c =0 on average. Locally…


Graphene near the Dirac po<strong>in</strong>t (zero dop<strong>in</strong>g)A. Yacoby et al, 2008Puddles, size ~ 100 nmDistribution of dop<strong>in</strong>g, E F ~10-100KDistribution of differently doped pockets


Influence of charge <strong>in</strong>homogeneity on critical current1)Doped <strong>graphene</strong>: homogeneous dop<strong>in</strong>gSuperconductorL < L TW > LTSSUsual Andreev retro-reflection: Coherent conterpropagation ofAndreev pairs; constructive <strong>in</strong>terference (zero phaseaccumulation): Usual critical current expected


Influence of charge <strong>in</strong>homogeneity on critical current2) Graphene near Dirac Po<strong>in</strong>tZero charge regionSSRandom dephas<strong>in</strong>g upon specular reflection and diffusion.Destructive <strong>in</strong>terference: Suppressed critical current near DiracPo<strong>in</strong>t.


Variations on the <strong>Proximity</strong> effect (recent)Pt• Add metal-Porphyr<strong>in</strong>e Molecules(coll. S. Campidelli, A. Filoramo CEA Saclay)• At room temperature after deposition:Dirac po<strong>in</strong>t shifts:• Pophyr<strong>in</strong>es be have as donors• Hysteretic behaviour with gate voltage• Disapear at low temperatureii) Add moleculesi) No molecules


The <strong>Proximity</strong> effect with ionized porphyr<strong>in</strong>son <strong>graphene</strong>porphyr<strong>in</strong>esPtLi et al. <strong>2013</strong>• No supercurrent atpositive gate voltage!


Hysteresis <strong>in</strong> magnetoresistanceat V g >0 but not V g


Why gate dependent magnetism?BS+ + + + +- - - - - - - - - - - - - - -SiO2+++++++++++++++++++SiThe number of ionized porphyr<strong>in</strong>s does notDepend on the gate voltageHysteresis <strong>in</strong> Magnetic field:magnetic correlations??


Localised Magnetic impurities on GrapheneExchange coupl<strong>in</strong>g depends on the polarity of carriers


Exchange coupl<strong>in</strong>g <strong>in</strong> <strong>graphene</strong> can be controlledby gat<strong>in</strong>gUchoa et al. 2008Kondo effect and RKKY <strong>in</strong>teractions are gate voltage dependent


Unipolar supercurrent trough <strong>graphene</strong> grafted with porphyr<strong>in</strong>sNormal stateSuperconduct<strong>in</strong>g stateGate dependent magnetism revealed by proximity effect


The Superconduct<strong>in</strong>g proximity effect <strong>in</strong> theQuantum Hall regime:Can Cooper pairs travel via edge states?BzEdge stateehEdge states


What about with superconduct<strong>in</strong>g contacts?In magnetic field : Partners <strong>in</strong> S pair are no longer time-reversed!Random dephas<strong>in</strong>g dur<strong>in</strong>g propagation.Supercurrent disapears…S,∆e iϕ 1S,∆e iϕ 2But <strong>in</strong> Quantum Hall regime only a few number of channels->Interference should not be washed out BzSupercurrent recovered !Theoretically possible for edge states to carry a supercurrent


Theoretical predictions for supercurrent• Ma, Zyuz<strong>in</strong> (1994):small contact < ξ S =(hD/∆) 1/2eBh• supercurrent α 1/perimeter• Should be <strong>in</strong>dependent of S contact position


Superconduct<strong>in</strong>g electrodes with high Hc2Electrodes: ReW (Hc > 7 T, Tc ~ 5 K), (H. Raffy)Contact distance ~ 0.7µm(Also tried NbN and NbTi)ReW<strong>graphene</strong>ReW wire resistance2 wire measurement


<strong>Proximity</strong> effect with High Hc2 electrodes(Pd/ReW, L=0.7µm) <strong>in</strong> zero fieldH=0TIc tuned by back gate, similar to sample with Pd/Nbelectrodes


Quantum Hall regime (but with only two contacts!)SS• No obvious sign ofsupercurrent <strong>in</strong> QHEregime.• ρ xy is mixed with ρ xx(2wire measurement)Rsquare∝ρ + ρ2xx2xyVisible <strong>in</strong>terference effects


Supercurrent <strong>in</strong> QH regime??2 wire measurement (can’t see zero resistance state)7.5 T0 T• Resistance oscillation related todip <strong>in</strong> dV/dI: Interference ofAndreev pairs.


Conclusion• Supercurrent through <strong>graphene</strong> at low field, with both Pd/Nb and Pd/ReWelectrodes <strong>in</strong> long SGS junctions (~1µm).• Suppression of critical current near zero dop<strong>in</strong>g a sign of specular AndreevreflectionSensitivity to dop<strong>in</strong>g with porphyr<strong>in</strong>s: signature of gate dependent magnetism• At high field, Andreev <strong>in</strong>terference <strong>in</strong> QH regime.But need clearer signature of supercurrent than is achieved <strong>in</strong> two wireresistance measurement.SQUID geometryVia magnetisation measurement?


Why is the proximity effect (<strong>in</strong> a long junction) <strong>in</strong>terest<strong>in</strong>g?l eS,∆e iϕ N 1 S,∆e iϕ 2= ξ SPair correlations diffuse<strong>in</strong>to the N metaldos dos dos∆« N » acquires S propertiesBut is neither a normal metal nor a superconductor

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!