IV) Materials calculations with dynamical mean field theory (DMFT)

IV) Materials calculations with dynamical mean field theory (DMFT) IV) Materials calculations with dynamical mean field theory (DMFT)

static.ifp.tuwien.ac.at
from static.ifp.tuwien.ac.at More from this publisher
10.07.2015 Views

Ab-initio electronic Hamiltonian(non-relativistic/Born-Oppenheimer approximation)kinetic energy lattice potential Coulomb interactionH = X i"− 2 ∆ i2m e+ X l−e 24πɛ 0Z l|r i − R l |#+ 1 2Xi≠je 24πɛ 01|r i − r j |LDA bandstructure corresponds toH LDA = X i"− 2 ∆ i2m e+ X l−e 24πɛ 01|r i − R l | + Zd 3 r#e2 1LDAρ(r) + Vxc (ρ(r i ))4πɛ 0 |r i − r|LDA + local Coulomb interactionĤ = X ɛ LDAklm ĉ†klσĉkmσ+ 1 XU σσ′lm2 ˆn ilσ ˆn imσ ′ − ∆ɛ X ˆn imσU’ U’−Jklmσi lσmσ| {z }′ imσm=1H LDA U• non-local Coulomb interaction → Hartree term (to leading order in 1/Z; contained in LDA)• constrained LDA ⇒ U, J, V =U−2J, ∆ɛ(McMahan et al.’88, Gunnarsson et al.’89)m=2

Constrained LDA1. Calculate LDA energies E(n d ) for constrained problem, i.e., without hopping of d (orf) electrons, for differnet numbers n d of d (or f) electrons.2. Adjust U (J) and ∆ɛ inĤ that these LDA energies are obtained.E000 111000 111000 111000 111n −1 n n +1dd

Constrained LDA1. Calculate LDA energies E(n d ) for constrained problem, i.e., <strong>with</strong>out hopping of d (orf) electrons, for differnet numbers n d of d (or f) electrons.2. Adjust U (J) and ∆ɛ inĤ that these LDA energies are obtained.E000 111000 111000 111000 111n −1 n n +1dd

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!