10.07.2015 Views

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

E.10. ALTERNATING PROJECTION 635By the results in Example E.5.0.0.6([ ]) ([ ])xi PC (xP RS = P i )x R =i P D (x i )[PC (x i ) + P D (x i )P C (x i ) + P D (x i )] 12(1830)This means the proposed variation of alternating projection is equivalent toan alternation of projection on convex sets S and R . If S and R intersect,these iterations will converge to a point in their intersection; hence, to a pointin the intersection of C and D .We need not apply equal weighting to the projections, as supposed in(1826). In that case, definition of R would change accordingly. E.10.2.1Relative measure of convergenceInspired by Fejér monotonicity, the alternating projection algorithm fromthe example of convergence illustrated by Figure 125 employs a redundant∏sequence: The first sequence (indexed by j) estimates point ( ∞ ∏P k )b inthe presumably nonempty intersection, then the quantity( ∞ ∥ x ∏∏i − P k)b∥j=1kj=1k(1831)in second sequence x i is observed per iteration i for convergence. A prioriknowledge of a feasible point (1816) is both impractical and antithetical. Weneed another measure:Nonexpansivity implies( ( ∥ ∏ ∏ ∥∥∥∥ P∥ l)x k,i−1 − P l)x ki = ‖x ki − x k,i+1 ‖ ≤ ‖x k,i−1 − x ki ‖ (1832)llwherex ki ∆ = P k x k+1,i ∈ R n (1833)represents unique minimum-distance projection of x k+1,i on convex set k atiteration i . So a good convergence measure is the total monotonic sequenceε i ∆ = ∑ k‖x ki − x k,i+1 ‖ , i=0, 1, 2... (1834)where limi→∞ε i = 0 whether or not the intersection is nonempty.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!