10.07.2015 Views

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

626 APPENDIX E. PROJECTIONE.10 Alternating projectionAlternating projection is an iterative technique for finding a point in theintersection of a number of arbitrary closed convex sets C k , or for findingthe distance between two nonintersecting closed convex sets. Because it cansometimes be difficult or inefficient to compute the intersection or expressit analytically, one naturally asks whether it is possible to instead project(unique minimum-distance) alternately on the individual C k , often easier.Once a cycle of alternating projections (an iteration) is complete, we theniterate (repeat the cycle) until convergence. If the intersection of two closedconvex sets is empty, then by convergence we mean the iterate (the resultafter a cycle of alternating projections) settles to a point of minimum distanceseparating the sets.While alternating projection can find the point in the nonemptyintersection closest to a given point b , it does not necessarily find it.Dependably finding that point is solved by an elegantly simple enhancementto the alternating projection technique: this Dykstra algorithm (1849)for projection on the intersection is one of the most beautiful projectionalgorithms ever discovered. It is accurately interpreted as the discoveryof what alternating projection originally sought to accomplish: uniqueminimum-distance projection on the nonempty intersection of a number ofarbitrary closed convex sets C k . Alternating projection is, in fact, a specialcase of the Dykstra algorithm whose discussion we defer untilE.10.3.E.10.0.1commutative projectorsGiven two arbitrary convex sets C 1 and C 2 and their respectiveminimum-distance projection operators P 1 and P 2 , if projectors commutefor each and every x∈ R n then it is easy to show P 1 P 2 x∈ C 1 ∩ C 2 andP 2 P 1 x∈ C 1 ∩ C 2 . When projectors commute (P 1 P 2 =P 2 P 1 ), a point in theintersection can be found in a finite number of steps; while commutativity isa sufficient condition, it is not necessary (6.8.1.1.1 for example).When C 1 and C 2 are subspaces, in particular, projectors P 1 and P 2commute if and only if P 1 P 2 = P C1 ∩ C 2or iff P 2 P 1 = P C1 ∩ C 2or iff P 1 P 2 isthe orthogonal projection on a Euclidean subspace. [73, lem.9.2] Subspaceprojectors will commute, for example, when P 1 (C 2 )⊂ C 2 or P 2 (C 1 )⊂ C 1 orC 1 ⊂ C 2 or C 2 ⊂ C 1 or C 1 ⊥ C 2 . When subspace projectors commute, thismeans we can find a point in the intersection of those subspaces in a finite

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!