10.07.2015 Views

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

598 APPENDIX E. PROJECTIONwhere Y = N(1 T ) . We have M = R N , A = [ √ 2V N e 1 ] , and u = e 1 .Thus P u = e 1 1 T is a nonorthogonal projector projecting on R(u) in adirection parallel to a vector in Y (E.3.5), and P Y x = x − e 1 1 T x is anonorthogonal projection of x on Y in a direction parallel to u . E.5.0.0.5 Example. Projecting the origin on a hyperplane.(confer2.4.2.0.2) Given the hyperplane representation having b∈R andnonzero normal a∈ R m ∂H = {y | a T y = b} ⊂ R m (94)orthogonal projection of the origin P0 on that hyperplane is the uniqueoptimal solution to a minimization problem: (1671)‖P0 − 0‖ 2 = infy∈∂H ‖y − 0‖ 2= infξ∈R m−1 ‖Zξ + x‖ 2(1707)where x is any solution to a T y=b , and where the columns of Z ∈ R m×m−1constitute a basis for N(a T ) so that y = Zξ + x ∈ ∂H for all ξ ∈ R m−1 .The infimum can be found by setting the gradient (with respect to ξ) ofthe strictly convex norm-square to 0. We find the minimizing argumentξ ⋆ = −(Z T Z) −1 Z T x (1708)soy ⋆ = ( I − Z(Z T Z) −1 Z T) x (1709)and from (1673)P0 = y ⋆ = a(a T a) −1 a T x =a a T‖a‖ ‖a‖ x = ∆ AA † x = a b (1710)‖a‖ 2In words, any point x in the hyperplane ∂H projected on its normal a(confer (1735)) yields that point y ⋆ in the hyperplane closest to the origin.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!