v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization v2007.09.13 - Convex Optimization

convexoptimization.com
from convexoptimization.com More from this publisher
10.07.2015 Views

584 APPENDIX E. PROJECTION(⇐) To verify assertion (1652) we observe: because idempotent matricesare diagonalizable (A.5), [149,3.3, prob.3] they must have the form (1334)P = SΦS −1 =m∑φ i s i wi T =i=1k∑≤ mi=1s i w T i (1655)that is a sum of k = rankP independent projector dyads (idempotentdyads,B.1.1,E.6.2.1) where φ i ∈ {0, 1} are the eigenvalues of P[298,4.1, thm.4.1] in diagonal matrix Φ∈ R m×m arranged in nonincreasingorder, and where s i ,w i ∈ R m are the right- and left-eigenvectors of P ,respectively, which are independent and real. E.5 ThereforeU ∆ = S(:,1:k) = [ s 1 · · · s k]∈ Rm×k(1656)is the full-rank matrix S ∈ R m×m having m − k columns truncated(corresponding to 0 eigenvalues), while⎡ ⎤Q T = ∆ S −1 (1:k, :) = ⎣w T1.w T k⎦ ∈ R k×m (1657)is matrix S −1 having the corresponding m − k rows truncated. By the0 eigenvalues theorem (A.7.3.0.1), R(U)= R(P ) , R(Q)= R(P T ) , andR(P ) = span {s i | φ i = 1 ∀i}N(P ) = span {s i | φ i = 0 ∀i}R(P T ) = span {w i | φ i = 1 ∀i}N(P T ) = span {w i | φ i = 0 ∀i}(1658)Thus biorthogonality Q T U =I is a necessary condition for idempotence, andso the collection of nonorthogonal projectors projecting on R(U) is the affinesubset P k =UQ T k where Q k = {Q | Q T U = I , Q∈ R m×k }.(⇒) Biorthogonality is a sufficient condition for idempotence;P 2 =k∑s i wiTid est, if the cross-products are annihilated, then P 2 =P .i=1k∑s j wj T = P (1659)j=1E.5 Eigenvectors of a real matrix corresponding to real eigenvalues must be real.(A.5.0.0.1)

E.1. IDEMPOTENT MATRICES 585TxT ⊥ R(Q)cone(Q)cone(U)PxFigure 117: Nonorthogonal projection of x∈ R 3 on R(U)= R 2 underbiorthogonality condition; id est, Px=UQ T x such that Q T U =I . Anypoint along imaginary line T connecting x to Px will be projectednonorthogonally on Px with respect to horizontal plane constituting R 2 inthis example. Extreme directions of cone(U) correspond to two columnsof U ; likewise for cone(Q). For purpose of illustration, we truncate eachconic hull by truncating coefficients of conic combination at unity. Conic hullcone(Q) is headed upward at an angle, out of plane of page. Nonorthogonalprojection would fail were N(Q T ) in R(U) (were T parallel to a linein R(U)).

584 APPENDIX E. PROJECTION(⇐) To verify assertion (1652) we observe: because idempotent matricesare diagonalizable (A.5), [149,3.3, prob.3] they must have the form (1334)P = SΦS −1 =m∑φ i s i wi T =i=1k∑≤ mi=1s i w T i (1655)that is a sum of k = rankP independent projector dyads (idempotentdyads,B.1.1,E.6.2.1) where φ i ∈ {0, 1} are the eigenvalues of P[298,4.1, thm.4.1] in diagonal matrix Φ∈ R m×m arranged in nonincreasingorder, and where s i ,w i ∈ R m are the right- and left-eigenvectors of P ,respectively, which are independent and real. E.5 ThereforeU ∆ = S(:,1:k) = [ s 1 · · · s k]∈ Rm×k(1656)is the full-rank matrix S ∈ R m×m having m − k columns truncated(corresponding to 0 eigenvalues), while⎡ ⎤Q T = ∆ S −1 (1:k, :) = ⎣w T1.w T k⎦ ∈ R k×m (1657)is matrix S −1 having the corresponding m − k rows truncated. By the0 eigenvalues theorem (A.7.3.0.1), R(U)= R(P ) , R(Q)= R(P T ) , andR(P ) = span {s i | φ i = 1 ∀i}N(P ) = span {s i | φ i = 0 ∀i}R(P T ) = span {w i | φ i = 1 ∀i}N(P T ) = span {w i | φ i = 0 ∀i}(1658)Thus biorthogonality Q T U =I is a necessary condition for idempotence, andso the collection of nonorthogonal projectors projecting on R(U) is the affinesubset P k =UQ T k where Q k = {Q | Q T U = I , Q∈ R m×k }.(⇒) Biorthogonality is a sufficient condition for idempotence;P 2 =k∑s i wiTid est, if the cross-products are annihilated, then P 2 =P .i=1k∑s j wj T = P (1659)j=1E.5 Eigenvectors of a real matrix corresponding to real eigenvalues must be real.(A.5.0.0.1)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!