10.07.2015 Views

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

D.1. DIRECTIONAL DERIVATIVE, TAYLOR SERIES 563⎡∇ 2 g mn (X) =⎢⎣⎡∇ 2 g(X) T 1=⎢⎣∇ ∂gmn(X)∂X 11∇ ∂gmn(X)∂X 21.∇ ∂gmn(X)∂X K1∂∇g mn(X)∂X 11∂∇g mn(X)∂X 21⎤∇ ∂gmn(X)∂X 12· · · ∇ ∂gmn(X)∂X 1L∇ ∂gmn(X)∂X 22· · · ∇ ∂gmn(X)∂X 2L∈ R K×L×K×L⎥. . ⎦∇ ∂gmn(X)∂X K2· · · ∇ ∂gmn(X)∂X KL∂∇g mn(X)∂X 12· · ·∂∇g mn(X)∂X 1L∂∇g mn(X)∂X 2L⎤(1586)∂∇g mn(X)=∂X⎢22· · ·⎥⎣ . . . ⎦∂∇g mn(X) ∂∇g mn(X) ∂∇g∂X K1 ∂X K2· · · mn(X)∂X KLRotating our perspective, we get several views of the second-order gradient:⎡⎤∇ 2 g 11 (X) ∇ 2 g 12 (X) · · · ∇ 2 g 1N (X)∇ 2 ∇ 2 g 21 (X) ∇ 2 g 22 (X) · · · ∇ 2 g 2N (X)g(X) = ⎢⎥⎣ . .. ⎦ ∈ RM×N×K×L×K×L (1587)∇ 2 g M1 (X) ∇ 2 g M2 (X) · · · ∇ 2 g MN (X)⎡⎤∇ ∂g(X)∂X 11∇ ∂g(X)∂X 12· · · ∇ ∂g(X)∂X 1L⎡∇ 2 g(X) T 2=⎢⎣∇ ∂g(X)∂X 21.∇ ∂g(X)∂X K1∂∇g(X)∂X 11∂∇g(X)∂X 21.∂∇g(X)∂X K1∇ ∂g(X)∂X 22.· · · ∇ ∂g(X)∂X 2L.∇ ∂g(X)∂X K2· · · ∇ ∂g(X)∂∇g(X)∂X 12· · ·∂∇g(X)∂X 22.· · ·∂∇g(X)∂X K2· · ·∂X KL∂∇g(X)∂X 1L∂∇g(X)∂X 2L.∂∇g(X)∂X KL⎥⎦ ∈ RK×L×M×N×K×L (1588)⎤⎥⎦ ∈ RK×L×K×L×M×N (1589)Assuming the limits exist, we may state the partial derivative of the mn thentry of g with respect to the kl th and ij th entries of X ;∂ 2 g mn(X)∂X kl ∂X ij=g mn(X+∆t elimk e T l +∆τ e i eT j )−gmn(X+∆t e k eT l )−(gmn(X+∆τ e i eT )−gmn(X))j∆τ,∆t→0∆τ ∆t(1590)Differentiating (1570) and then scaling by Y ij∂ 2 g mn(X)∂X kl ∂X ijY kl Y ij = lim∆t→0∂g mn(X+∆t Y kl e k e T l )−∂gmn(X)∂X ijY∆tij(1591)g mn(X+∆t Y kl e= limk e T l +∆τ Y ij e i e T j )−gmn(X+∆t Y kl e k e T l )−(gmn(X+∆τ Y ij e i e T )−gmn(X))j∆τ,∆t→0∆τ ∆t

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!