v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization v2007.09.13 - Convex Optimization

convexoptimization.com
from convexoptimization.com More from this publisher
10.07.2015 Views

538 APPENDIX C. SOME ANALYTICAL OPTIMAL RESULTSthe largest eigenvalue, and v N a normalized eigenvector correspondingto the smallest eigenvalue,v N = arg inf x T Ax (1468)‖x‖=1v 1 = arg sup x T Ax (1469)‖x‖=1For A∈ S N having eigenvalues λ(A)∈ R N , consider the unconstrainednonconvex optimization that is a projection on the rank-1 subset(2.9.2.1) of the boundary of positive semidefinite cone S N + : Definingλ 1 ∆ = maxi{λ(A) i } and corresponding eigenvector v 1minimizex‖xx T − A‖ 2 F = minimize tr(xx T (x T x) − 2Axx T + A T A)x{‖λ(A)‖ 2 , λ 1 ≤ 0=(1470)‖λ(A)‖ 2 − λ 2 1 , λ 1 > 0arg minimizex‖xx T − A‖ 2 F ={0 , λ1 ≤ 0v 1√λ1 , λ 1 > 0(1471)Proof. This is simply the Eckart & Young solution from7.1.2:x ⋆ x ⋆T ={0 , λ1 ≤ 0λ 1 v 1 v T 1 , λ 1 > 0(1472)minimizexGiven nonincreasingly ordered diagonalization A = QΛQ TΛ = δ(λ(A)) (A.5), then (1470) has minimum valuewhere⎧‖QΛQ T ‖ 2 F = ‖δ(Λ)‖2 , λ 1 ≤ 0⎪⎨⎛⎡‖xx T −A‖ 2 F =λ 1 Q ⎜⎢0⎝⎣. ..⎪⎩ ∥0⎤ ⎞ ∥ ∥∥∥∥∥∥2⎡⎥ ⎟⎦− Λ⎠Q T ⎢=⎣∥Fλ 10.0⎤⎥⎦− δ(Λ)∥2(1473), λ 1 > 0

C.2. DIAGONAL, TRACE, SINGULAR AND EIGEN VALUES 539C.2.0.0.1 Exercise. Rank-1 approximation.Given symmetric matrix A∈ S N , prove:v 1 = arg minimize ‖xx T − A‖ 2 Fxsubject to ‖x‖ = 1(1474)where v 1 is a normalized eigenvector of A corresponding to its largesteigenvalue.(Fan) For B ∈ S N whose eigenvalues λ(B)∈ R N are arranged innonincreasing order, and for 1≤k ≤N [9,4.1] [157] [149,4.3.18][267,2] [174,2.1]N∑i=N−k+1λ(B) i = infU∈ R N×kU T U=Ik∑λ(B) i = supi=1U∈ R N×kU T U=Itr(UU T B) = minimizeX∈ S N +tr(XB)subject to X ≼ ItrX = k= maximize (k − N)µ + tr(B − Z)µ∈R , Z∈S N +subject to µI + Z ≽ Btr(UU T B) = maximizeX∈ S N +tr(XB)subject to X ≼ ItrX = k(a)(b)(c)= minimize kµ + trZµ∈R , Z∈S N +subject to µI + Z ≽ B(d)(1475)Given ordered diagonalization B = QΛQ T , (A.5.2) then optimalU for the infimum is U ⋆ = Q(:, N − k+1:N)∈ R N×k whereasU ⋆ = Q(:, 1:k)∈ R N×k for the supremum. In both cases, X ⋆ = U ⋆ U ⋆T .Optimization (a) searches the convex hull of the outer product UU Tof all N ×k orthonormal matrices. (2.3.2.0.1)

C.2. DIAGONAL, TRACE, SINGULAR AND EIGEN VALUES 539C.2.0.0.1 Exercise. Rank-1 approximation.Given symmetric matrix A∈ S N , prove:v 1 = arg minimize ‖xx T − A‖ 2 Fxsubject to ‖x‖ = 1(1474)where v 1 is a normalized eigenvector of A corresponding to its largesteigenvalue.(Fan) For B ∈ S N whose eigenvalues λ(B)∈ R N are arranged innonincreasing order, and for 1≤k ≤N [9,4.1] [157] [149,4.3.18][267,2] [174,2.1]N∑i=N−k+1λ(B) i = infU∈ R N×kU T U=Ik∑λ(B) i = supi=1U∈ R N×kU T U=Itr(UU T B) = minimizeX∈ S N +tr(XB)subject to X ≼ ItrX = k= maximize (k − N)µ + tr(B − Z)µ∈R , Z∈S N +subject to µI + Z ≽ Btr(UU T B) = maximizeX∈ S N +tr(XB)subject to X ≼ ItrX = k(a)(b)(c)= minimize kµ + trZµ∈R , Z∈S N +subject to µI + Z ≽ B(d)(1475)Given ordered diagonalization B = QΛQ T , (A.5.2) then optimalU for the infimum is U ⋆ = Q(:, N − k+1:N)∈ R N×k whereasU ⋆ = Q(:, 1:k)∈ R N×k for the supremum. In both cases, X ⋆ = U ⋆ U ⋆T .<strong>Optimization</strong> (a) searches the convex hull of the outer product UU Tof all N ×k orthonormal matrices. (2.3.2.0.1)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!