10.07.2015 Views

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

506 APPENDIX A. LINEAR ALGEBRAA.6.2Subcompact SVDSome authors allow only nonzero singular values. In that case the compactdecomposition can be made smaller; it can be redimensioned in terms of rankρ because, for any A∈ R m×nρ = rankA = rank Σ = max {i∈{1... η} | σ i ≠ 0} ≤ η (1351)There are η singular values. For any flavor SVD, rank is equivalent tothe number of nonzero singular values on the main diagonal of Σ.Now⎡q T1A = UΣQ T = [ u 1 · · · u ρ ] Σ⎣.⎤∑⎦ = ρ σ i u i qiTqρT i=1(1352)U ∈ R m×ρ , Σ ∈ R ρ×ρ , Q ∈ R n×ρwhere the main diagonal of diagonal matrix Σ has no 0 entries, andR{u i } = R(A)R{q i } = R(A T )(1353)A.6.3Full SVDAnother common and useful expression of the SVD makes U and Qsquare; making the decomposition larger than compact SVD. Completingthe nullspace bases in U and Q from (1350) provides what is called thefull singular value decomposition of A ∈ R m×n [247, App.A]. Orthonormalmatrices U and Q become orthogonal matrices (B.5):R{u i |σ i ≠0} = R(A)R{u i |σ i =0} = N(A T )R{q i |σ i ≠0} = R(A T )R{q i |σ i =0} = N(A)(1354)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!