10.07.2015 Views

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

7.1. FIRST PREVALENT PROBLEM: 445finds D to attain Euclidean distance of vectorized −VHV to the positivesemidefinite cone in ambient isometrically isomorphic R N(N+1)/2 , whereasminimize ‖−VN T(D − H)V N ‖ 2 FD(1114)subject to D ∈ EDM Nattains Euclidean distance of vectorized −VN THV N to the positivesemidefinite cone in isometrically isomorphic subspace R N(N−1)/2 ; quitedifferent projections 7.3 regardless of whether affine dimension is constrained.But substitution of auxiliary matrix VW T (B.4.3) or V † Nyields the sameresult as (1112.1) because V = V W VW T = V N V † N; id est,‖−V (D − H)V ‖ 2 F = ‖−V W V T W (D − H)V W V T W ‖2 F = ‖−V T W (D − H)V W‖ 2 F= ‖−V N V † N (D − H)V N V † N ‖2 F = ‖−V † N (D − H)V N ‖ 2 F(1115)We see no compelling reason to prefer one particular auxiliary V -matrixover another. Each has its own coherent interpretations; e.g.,5.4.2,6.7.Neither can we say any particular problem formulation produces generallybetter results than another.7.1 First prevalent problem:Projection on PSD coneThis first problemminimize ‖−VN T(D − H)V ⎫N ‖ 2 F ⎪⎬Dsubject to rankVN TDV N ≤ ρ Problem 1 (1116)⎪D ∈ EDM N ⎭7.3 The isomorphism T(Y )=V †TN Y V † N onto SN c = {V X V | X ∈ S N } relates the map in(1114) to that in (1113), but is not an isometry.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!