10.07.2015 Views

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

442 CHAPTER 7. PROXIMITY PROBLEMSThis is best understood referring to Figure 108: Suppose nonnegativeinput H is demanded, and then the problem realization correctly projectsits input first on S N h and then directly on C = EDM N . That demandfor nonnegativity effectively requires imposition of K on input H priorto optimization so as to obtain correct order of projection (on S N h first).Yet such an imposition prior to projection on EDM N generally introducesan elbow into the path of projection (illustrated in Figure 109) caused bythe technique itself; that being, a particular proximity problem realizationrequiring nonnegative input.Any procedure for imposition of nonnegativity on input H can only beincorrect in this circumstance. There is no resolution unless input H isguaranteed nonnegative with no tinkering. Otherwise, we have no choice butto employ a different problem realization; one not demanding nonnegativeinput.7.0.2 Lower boundMost of the problems we encounter in this chapter have the general form:minimize ‖B − A‖ FBsubject to B ∈ C(1108)where A ∈ R m×n is given data. This particular objective denotes Euclideanprojection (E) of vectorized matrix A on the set C which may or may not beconvex. When C is convex, then the projection is unique minimum-distancebecause the Frobenius norm when squared is a strictly convex function ofvariable B and because the optimal solution is the same regardless of thesquare (1461). When C is a subspace, then the direction of projection isorthogonal to C .Denoting by A=U ∆ A Σ A QA T and B =U ∆ B Σ B QB T their full singular valuedecompositions (whose singular values are always nonincreasingly ordered(A.6)), there exists a tight lower bound on the objective over the manifoldof orthogonal matrices;‖Σ B − Σ A ‖ F ≤inf ‖B − A‖ F (1109)U A ,U B ,Q A ,Q BThis least lower bound holds more generally for any orthogonally invariantnorm on R m×n (2.2.1) including the Frobenius and spectral norm [244,II.3].[149,7.4.51]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!