v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization v2007.09.13 - Convex Optimization

convexoptimization.com
from convexoptimization.com More from this publisher
10.07.2015 Views

418 CHAPTER 6. EDM CONEIn fact, the smallest face that contains auxiliary matrix V of the PSDcone S N + is the intersection with the geometric center subspace (1761) (1762);F ( S N + ∋V ) = cone { V N υυ T V T N= S N c ∩ S N +In isometrically isomorphic R N(N+1)/2| υ ∈ RN−1}(1043)svec F ( S N + ∋V ) = cone T (1044)related to S N c byaff cone T = svec S N c (1045)6.7.2 EDM criteria in 11 T(confer6.5) Laurent specifies an elliptope trajectory condition for EDM conemembership: [170,2.3]D ∈ EDM N ⇔ [1 − e −αd ij] ∈ EDM N ∀α > 0 (895)From the parametrized elliptope E N tD ∈ EDM N ⇔ ∃ t∈ R +E∈ E N tin6.6.2 we propose} D = t11 T − E (1046)Chabrillac & Crouzeix [53,4] prove a different criterion they attributeto Finsler (1937) [96]. We apply it to EDMs: for D ∈ S N h (845)−V T N DV N ≻ 0 ⇔ ∃κ>0 −D + κ11 T ≻ 0⇔D ∈ EDM N with corresponding affine dimension r=N −1(1047)This Finsler criterion has geometric interpretation in terms of thevectorization & projection already discussed in connection with (1037). Withreference to Figure 102, the offset 11 T is simply a direction orthogonal toT in isomorphic R 3 . Intuitively, translation of −D in direction 11 T is likeorthogonal projection on T in so far as similar information can be obtained.

6.8. DUAL EDM CONE 419When the Finsler criterion (1047) is applied despite lower affinedimension, the constant κ can go to infinity making the test −D+κ11 T ≽ 0impractical for numerical computation. Chabrillac & Crouzeix invent acriterion for the semidefinite case, but is no more practical: for D ∈ S N hD ∈ EDM N⇔(1048)∃κ p >0 ∀κ≥κ p , −D − κ11 T [sic] has exactly one negative eigenvalue6.8 Dual EDM cone6.8.1 Ambient S NWe consider finding the ordinary dual EDM cone in ambient space S N whereEDM N is pointed, closed, convex, but has empty interior. The set of all EDMsin S N is a closed convex cone because it is the intersection of halfspaces aboutthe origin in vectorized variable D (2.4.1.1.1,2.7.2):EDM N = ⋂ {D ∈ S N | 〈e i e T i , D〉 ≥ 0, 〈e i e T i , D〉 ≤ 0, 〈zz T , −D〉 ≥ 0 }z∈ N(1 T )i=1...N(1049)By definition (258), dual cone K ∗comprises each and every vectorinward-normal to a hyperplane supporting convex cone K (2.4.2.6.1) orbounding a halfspace containing K . The dual EDM cone in the ambientspace of symmetric matrices is therefore expressible as the aggregate of everyconic combination of inward-normals from (1049):EDM N∗ = cone{e i e T i , −e j e T j | i, j =1... N } − cone{zz T | 11 T zz T =0}∑= { N ∑ζ i e i e T i − N ξ j e j e T j | ζ i ,ξ j ≥ 0} − cone{zz T | 11 T zz T =0}i=1j=1= {δ(u) | u∈ R N } − cone { V N υυ T V T N | υ ∈ RN−1 , (‖v‖= 1) } ⊂ S N= {δ 2 (Y ) − V N ΨV T N | Y ∈ SN , Ψ∈ S N−1+ } (1050)The EDM cone is not self-dual in ambient S N because its affine hull belongsto a proper subspaceaff EDM N = S N h (1051)

6.8. DUAL EDM CONE 419When the Finsler criterion (1047) is applied despite lower affinedimension, the constant κ can go to infinity making the test −D+κ11 T ≽ 0impractical for numerical computation. Chabrillac & Crouzeix invent acriterion for the semidefinite case, but is no more practical: for D ∈ S N hD ∈ EDM N⇔(1048)∃κ p >0 ∀κ≥κ p , −D − κ11 T [sic] has exactly one negative eigenvalue6.8 Dual EDM cone6.8.1 Ambient S NWe consider finding the ordinary dual EDM cone in ambient space S N whereEDM N is pointed, closed, convex, but has empty interior. The set of all EDMsin S N is a closed convex cone because it is the intersection of halfspaces aboutthe origin in vectorized variable D (2.4.1.1.1,2.7.2):EDM N = ⋂ {D ∈ S N | 〈e i e T i , D〉 ≥ 0, 〈e i e T i , D〉 ≤ 0, 〈zz T , −D〉 ≥ 0 }z∈ N(1 T )i=1...N(1049)By definition (258), dual cone K ∗comprises each and every vectorinward-normal to a hyperplane supporting convex cone K (2.4.2.6.1) orbounding a halfspace containing K . The dual EDM cone in the ambientspace of symmetric matrices is therefore expressible as the aggregate of everyconic combination of inward-normals from (1049):EDM N∗ = cone{e i e T i , −e j e T j | i, j =1... N } − cone{zz T | 11 T zz T =0}∑= { N ∑ζ i e i e T i − N ξ j e j e T j | ζ i ,ξ j ≥ 0} − cone{zz T | 11 T zz T =0}i=1j=1= {δ(u) | u∈ R N } − cone { V N υυ T V T N | υ ∈ RN−1 , (‖v‖= 1) } ⊂ S N= {δ 2 (Y ) − V N ΨV T N | Y ∈ SN , Ψ∈ S N−1+ } (1050)The EDM cone is not self-dual in ambient S N because its affine hull belongsto a proper subspaceaff EDM N = S N h (1051)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!