10.07.2015 Views

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

5.11. EDM INDEFINITENESS 365For presorted eigenvalues, (910) can be equivalently restatedD ∈ EDM N⇔⎧⎪⎨⎪⎩([ 0 1Tλ1 −DD ∈ S N h])∈[ ]RN+∩ ∂HR −(928)Vertex-description of the dual spectral cone is, (272)([ ]) 0 1T ∗λ1 −EDM N =[ ]RN++ ∂H ∗ ⊆ R N+1R −= {[ B T 1 −1 ] b | b ≽ 0 } =From (386) we get a halfspace-description:{ [ }˜BT 1 −1]a | a ≽ 0(929)([ ]) 0 1T ∗λ1 −EDM N = {y ∈ R N+1 | (VN T ˜B T ) † VN T y ≽ 0}= {y ∈ R N+1 | [I −1 ]y ≽ 0}(930)This polyhedral dual spectral cone is closed, convex, has nonempty interiorbut is not pointed. (Notice that any nonincreasingly ordered eigenspectrumbelongs to this dual spectral cone.)5.11.2.4 Dual cone versus dual spectral coneAn open question regards the relationship of convex cones and their duals tothe corresponding spectral cones and their duals. A positive semidefinitecone, for example, is self-dual. Both the nonnegative orthant and themonotone nonnegative cone are spectral cones for it. When we considerthe nonnegative orthant, then that spectral cone for the self-dual positivesemidefinite cone is also self-dual.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!