10.07.2015 Views

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

5.11. EDM INDEFINITENESS 3595.11.1 EDM eigenvalues, congruence transformationFor any symmetric −D , we can characterize its eigenvalues by congruencetransformation: [247,6.3][ ]VT−W T NDW = − D [ V N1 T1 ] = −[VTN DV N V T N D11 T DV N 1 T D1]∈ S N (903)BecauseW ∆ = [V N 1 ] ∈ R N×N (904)is full-rank, then (1312)inertia(−D) = inertia ( −W T DW ) (905)the congruence (903) has the same number of positive, zero, and negativeeigenvalues as −D . Further, if we denote by {γ i , i=1... N −1} theeigenvalues of −VN TDV N and denote eigenvalues of the congruence −W T DWby {ζ i , i=1... N} and if we arrange each respective set of eigenvalues innonincreasing order, then by theory of interlacing eigenvalues for borderedsymmetric matrices [149,4.3] [247,6.4] [244,IV.4.1]ζ N ≤ γ N−1 ≤ ζ N−1 ≤ γ N−2 ≤ · · · ≤ γ 2 ≤ ζ 2 ≤ γ 1 ≤ ζ 1 (906)When D ∈ EDM N , then γ i ≥ 0 ∀i (1249) because −V T N DV N ≽0 as weknow. That means the congruence must have N −1 nonnegative eigenvalues;ζ i ≥ 0, i=1... N −1. The remaining eigenvalue ζ N cannot be nonnegativebecause then −D would be positive semidefinite, an impossibility; so ζ N < 0.By congruence, nontrivial −D must therefore have exactly one negativeeigenvalue; 5.45 [77,2.4.5]5.45 All the entries of the corresponding eigenvector must have the same sign with respectto each other [61, p.116] because that eigenvector is the Perron vector corresponding tothe spectral radius; [149,8.2.6] the predominant characteristic of negative [sic] matrices.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!