10.07.2015 Views

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.3. RANK REDUCTION 251(t ⋆ i) −1 = max {ψ(Z i )λ(Z i ) j , j =1... ρ} (611)When Z i is indefinite, the direction of perturbation (determined by ψ(Z i )) isarbitrary. We may take an early exit from the Procedure were Z i to become0 or wererank [ svec R T iA 1 R i svec R T iA 2 R i · · · svec R T iA m R i]= ρ(ρ + 1)/2 (612)which characterizes the rank ρ of any [sic] extreme point in A ∩ S n + .[174,2.4]Proof. Assuming the form of every perturbation matrix is indeed (605),then by (608)svec Z i ⊥ [ svec(R T iA 1 R i ) svec(R T iA 2 R i ) · · · svec(R T iA m R i ) ] (613)By orthogonal complement we haverank [ svec(R T iA 1 R i ) · · · svec(R T iA m R i ) ] ⊥+ rank [ svec(R T iA 1 R i ) · · · svec(R T iA m R i ) ] = ρ(ρ + 1)/2(614)When Z i can only be 0, then the perturbation is null because an extremepoint has been found; thus[svec(RTi A 1 R i ) · · · svec(R T iA m R i ) ] ⊥= 0 (615)from which the stated result (612) directly follows.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!