10.07.2015 Views

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.1. CONIC PROBLEM 231faces of S 3 + correspond to faces of S 3 + (confer Table 2.9.2.3.1)k dim F(S+) 3 dim F(S 3 +) dim F(S 3 + ∋ rank-k matrix)0 0 0 0boundary 1 1 1 12 2 3 3interior 3 3 6 6Integer k indexes k-dimensional faces F of S 3 + . Positive semidefinitecone S 3 + has four kinds of faces, including cone itself (k = 3,boundary + interior), whose dimensions in isometrically isomorphicR 6 are listed under dim F(S 3 +). Smallest face F(S 3 + ∋ rank-k matrix)that contains a rank-k positive semidefinite matrix has dimensionk(k + 1)/2 by (191).For A equal to intersection of m hyperplanes having independentnormals, and for X ∈ S 3 + ∩ A , we have rankX ≤ m ; the analogueto (232).Proof. With reference to Figure 62: Assume one (m = 1) hyperplaneA = ∂H intersects the polyhedral cone. Every intersecting planecontains at least one matrix having rank less than or equal to 1 ; id est,from all X ∈ ∂H ∩ S 3 + there exists an X such that rankX ≤ 1. Rank 1is therefore an upper bound in this case.Now visualize intersection of the polyhedral cone with two (m = 2)hyperplanes having linearly independent normals. The hyperplaneintersection A makes a line. Every intersecting line contains at least onematrix having rank less than or equal to 2, providing an upper bound.In other words, there exists a positive semidefinite matrix X belongingto any line intersecting the polyhedral cone such that rankX ≤ 2.In the case of three independent intersecting hyperplanes (m = 3), thehyperplane intersection A makes a point that can reside anywhere inthe polyhedral cone. The upper bound on a point in S+ 3 is also thegreatest upper bound: rankX ≤ 3.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!