10.07.2015 Views

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.1. CONIC PROBLEM 227where K is a closed convex cone, K ∗ is its dual, matrix A is fixed, and theremaining quantities are vectors.When K is a polyhedral cone (2.12.1), then each conic problem becomesa linear program [64]. More generally, each optimization problem is convexwhen K is a closed convex cone. Unlike the optimal objective value, asolution to each problem is not necessarily unique; in other words, the optimalsolution set {x ⋆ } or {y ⋆ , s ⋆ } is convex and may comprise more than a singlepoint although the corresponding optimal objective value is unique when thefeasible set is nonempty.When K is the self-dual cone of positive semidefinite matrices in thesubspace of symmetric matrices, then each conic problem is called asemidefinite program (SDP); [203,6.4] primal problem (P) having matrixvariable X ∈ S n while corresponding dual (D) has matrix slack variableS ∈ S n and vector variable y = [y i ]∈ R m : [8] [9,2] [296,1.3.8](P)minimizeX∈ S n 〈C , X〉subject to X ≽ 0A svec X = bmaximizey∈R m , S∈S n 〈b, y〉subject to S ≽ 0svec −1 (A T y) + S = C(D)(546)This is the prototypical semidefinite program and its dual, where matrixC ∈ S n and vector b∈R m are fixed, as is⎡A =∆ ⎣⎤svec(A 1 ) T. ⎦ ∈ R m×n(n+1)/2 (547)svec(A m ) Twhere A i ∈ S n , i=1... m , are given. Thus⎡ ⎤〈A 1 , X〉A svec X = ⎣ . ⎦〈A m , X〉(548)∑svec −1 (A T y) = m y i A iThe vector inner-product for matrices is defined in the Euclidean/Frobeniussense in the isomorphic vector space R n(n+1)/2 ; id est,i=1〈C , X〉 ∆ = tr(C T X) = svec(C) T svec X (31)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!