10.07.2015 Views

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2.13. DUAL CONE & GENERALIZED INEQUALITY 181To find the extreme directions of the dual cone, first we observe that somefacets of each simplicial part K i are common to facets of K by assumption,and the union of all those common facets comprises the set of all facets ofK by design. For any particular polyhedral proper cone K , the extremedirections of dual cone K ∗ are respectively orthogonal to the facets of K .(2.13.6.1) Then the extreme directions of the dual cone can be found amongthe inward-normals to facets of the component simplicial cones K i ; thosenormals are extreme directions of the dual simplicial cones K ∗ i . From thetheorem and Cone Table S (p.167),K ∗ =M⋂K ∗ i =i=1M⋂i=1{X †Ti c | c ≽ 0} (411)The set of extreme directions {Γ ∗ i } for proper dual cone K ∗ is thereforeconstituted by the conically independent generators, from the columnsof all the dual simplicial matrices {X †Ti } , that do not violate discretedefinition (315) of K ∗ ;{ }Γ ∗ 1 , Γ ∗ 2 ... Γ ∗ N{}= c.i. X †Ti (:,j), i=1... M , j =1... n | X † i (j,:)Γ l ≥ 0, l =1... N(412)where c.i. denotes selection of only the conically independent vectors fromthe argument set, argument (:,j) denotes the j th column while (j,:) denotesthe j th row, and {Γ l } constitutes the extreme directions of K . Figure 38(b)(p.123) shows a cone and its dual found via this formulation.2.13.11.0.2 Example. Dual of K nonsimplicial in subspace aff K .Given conically independent generators for pointed closed convex cone K inR 4 arranged columnar inX = [ Γ 1 Γ 2 Γ 3 Γ 4 ] =⎡⎢⎣1 1 0 0−1 0 1 00 −1 0 10 0 −1 −1⎤⎥⎦ (413)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!