10.07.2015 Views

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

v2007.09.13 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

116 CHAPTER 2. CONVEX GEOMETRY2.9.2.6.3 Theorem. <strong>Convex</strong> subsets of positive semidefinite cone.The subsets of the positive semidefinite cone S M + , for 0≤ρ≤MS M +(ρ) ∆ = {X ∈ S M + | rankX ≥ ρ} (219)are pointed convex cones, but not closed unless ρ = 0 ; id est, S M +(0)= S M + .⋄Proof. Given ρ , a subset S M +(ρ) is convex if and only ifconvex combination of any two members has rank at least ρ . That isconfirmed applying identity (215) from Lemma 2.9.2.6.1 to (218); id est, forA,B ∈ S M +(ρ) on the closed interval µ∈[0, 1]rank(µA + (1 −µ)B) ≥ min{rankA, rankB} (220)It can similarly be shown, almost identically to proof of the lemma, any coniccombination of A,B in subset S M +(ρ) remains a member; id est, ∀ζ, ξ ≥0rank(ζA + ξB) ≥ min{rank(ζA), rank(ξB)} (221)Therefore, S M +(ρ) is a convex cone.Another proof of convexity can be made by projection arguments:2.9.2.7 Projection on S M +(ρ)Because these cones S M +(ρ) indexed by ρ (219) are convex, projection onthem is straightforward. Given a symmetric matrix H having diagonalizationH = ∆ QΛQ T ∈ S M (A.5.2) with eigenvalues Λ arranged in nonincreasingorder, then its Euclidean projection (minimum-distance projection) on S M +(ρ)P S M+ (ρ)H = QΥ ⋆ Q T (222)corresponds to a map of its eigenvalues:Υ ⋆ ii ={ max {ǫ , Λii } , i=1... ρmax {0, Λ ii } , i=ρ+1... M(223)where ǫ is positive but arbitrarily close to 0.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!