18.11.2012 Views

Introducing PCF

Introducing PCF

Introducing PCF

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

© Philip Russell, MPL, Erlangen<br />

1


© Philip Russell, MPL, Erlangen<br />

1


© Philip Russell, MPL, Erlangen<br />

Topics<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

<strong>Introducing</strong> <strong>PCF</strong><br />

Out of the strait-jacket<br />

Bars, windows & cages<br />

Cutting the losses<br />

Gas-laser interactions<br />

Laser-driven rockets<br />

Brighter than 10,000 suns<br />

Anomalous cornering<br />

Nano-phononics<br />

Nanowires<br />

Impact & prospects<br />

2


© Philip Russell, MPL, Erlangen<br />

photonic<br />

crystal<br />

fibres<br />

3


© Philip Russell, MPL, Erlangen<br />

diameter of a<br />

human hair<br />

The 1991 idea…<br />

…to trap light inside an<br />

hollow tube using the<br />

photonic band gap effect<br />

4


© Philip Russell, MPL, Erlangen<br />

1991<br />

notes made at CLEO/QELS, 13th May 1991<br />

“Photonic Bloch waves,” NATO ASI, Erice, Sicily, July 1993<br />

5


© Philip Russell, MPL, Erlangen<br />

<strong>PCF</strong> citations (January 2009)<br />

first journal<br />

paper (1995)<br />

NB: approximate<br />

6


© Philip Russell, MPL, Erlangen<br />

1 mm capillary<br />

(pure silica)<br />

rare-earth<br />

doped<br />

high<br />

index<br />

defect<br />

Stacking & drawing<br />

birefringent<br />

core<br />

low index<br />

defect<br />

draw<br />

~1 mm<br />

~1800°C<br />

photonic<br />

crystal fibre<br />

~0.03 mm<br />

7


© Philip Russell, MPL, Erlangen<br />

The World’s Longest Holes<br />

Guinness Book of Records 1998<br />

Interplanetary Channel Tunnel<br />

Earth<br />

An Interplanetary<br />

Channel Tunnel…<br />

…would have the same<br />

aspect ratio as a hole 25 nm<br />

in diameter and 1 km long<br />

Jupiter<br />

8


© Philip Russell, MPL, Erlangen<br />

BlazePhotonics Bath<br />

Bath<br />

Bath<br />

Erlangen<br />

10 μm<br />

photonic<br />

crystal<br />

fibres<br />

Erlangen<br />

BlazePhotonics<br />

Erlangen<br />

9


© Philip Russell, MPL, Erlangen<br />

New Age Crystals<br />

The Economist<br />

21 Nov 1998<br />

10


© Philip Russell, MPL, Erlangen<br />

Iridescence in Nature<br />

sea-mouse<br />

cross-section of hair<br />

11<br />

~1 μm


© Philip Russell, MPL, Erlangen<br />

Alfried Krupp<br />

von Bohlen und<br />

Halbach - Stiftung<br />

Topics<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

<strong>Introducing</strong> <strong>PCF</strong><br />

Out of the strait-jacket<br />

Bars, windows & cages<br />

Cutting the losses<br />

Gas-laser interactions<br />

Laser-driven rockets<br />

Brighter than 10,000 suns<br />

Anomalous cornering<br />

Nanophononics<br />

Nanowires<br />

Impact & prospects<br />

12


© Philip Russell, MPL, Erlangen<br />

•<br />

Wavevectors …<br />

β<br />

kn1<br />

axial wavevector β is conserved<br />

across every region of structure<br />

k = 2 π / λ<br />

t1 t1<br />

transverse<br />

effective wavelength<br />

in material 1<br />

13


© Philip Russell, MPL, Erlangen<br />

Hexagonal lattice silica:air<br />

Birks et al, Electron.Lett. 31 (1941-1942) 1995<br />

normalised frequency ωΛ/c<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

vacuum<br />

full photonic<br />

band gaps<br />

<strong>PCF</strong> cladding<br />

silica<br />

6<br />

6 7 8 9 10 11 12<br />

normalised wavevector along fibre βΛ<br />

propagating<br />

evanescent<br />

propagating<br />

evanescent<br />

propagating<br />

evanescent<br />

•<br />

•<br />

45% air filling<br />

fraction<br />

silica:air index<br />

contrast 1.46:1<br />

β<br />

14


© Philip Russell, MPL, Erlangen<br />

Single-mode fibre strait-jacket<br />

normalised frequency ωΛ/c<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

Anthony Hopkins<br />

(Hannibal Lecter)<br />

vacuum<br />

silica<br />

propagating<br />

evanescent<br />

Ge-doped silica<br />

6<br />

6 7 8 9 10 11 12<br />

normalised wavevector along fibre βΛ<br />

guided<br />

modes<br />

silica<br />

Ge-silica<br />

15


© Philip Russell, MPL, Erlangen<br />

Birks et al, Electron.Lett. 31 (1941-1942) 1995<br />

normalised frequency ωΛ/c<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

vacuum<br />

full photonic<br />

band gaps<br />

<strong>PCF</strong> playing field<br />

<strong>PCF</strong> cladding<br />

silica<br />

6<br />

6 7 8 9 10 11 12<br />

normalised wavevector along fibre βΛ<br />

propagating<br />

evanescent<br />

•<br />

•<br />

45% air filling<br />

fraction<br />

silica:air index<br />

contrast 1.46:1<br />

β<br />

16


© Philip Russell, MPL, Erlangen<br />

Alfried Krupp<br />

von Bohlen und<br />

Halbach - Stiftung<br />

Topics<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

<strong>Introducing</strong> <strong>PCF</strong><br />

Out of the strait-jacket<br />

Bars, windows & cages<br />

Cutting the losses<br />

Gas-laser interactions<br />

Laser-driven rockets<br />

Brighter than 10,000 suns<br />

Anomalous cornering<br />

Nanophononics<br />

Nanowires<br />

Impact & prospects<br />

17


© Philip Russell, MPL, Erlangen<br />

Solid core Δn ∞<br />

~100 μm<br />

> 0 (1995)<br />

traps light by modified total<br />

internal reflection (highly<br />

dispersive cladding crystal)<br />

18


© Philip Russell, MPL, Erlangen<br />

Total internal reflection gives…<br />

glass<br />

air<br />

glass<br />

…unconditional evanescence<br />

anti-resonant<br />

tunnelling<br />

19


© Philip Russell, MPL, Erlangen<br />

Endlessly single-mode <strong>PCF</strong><br />

the first photonic crystal fibre...<br />

20<br />

Knight et al, OFC 1996 PD paper<br />

far-field pattern when<br />

carrying green & red light


© Philip Russell, MPL, Erlangen<br />

Higher order modes are filtered away<br />

evanescence<br />

•<br />

fundamental mode<br />

cannot squeeze<br />

between air-holes<br />

anti-resonant<br />

unit cell<br />

•<br />

resonant<br />

unit cell<br />

higher-order modes can<br />

escape into cladding<br />

21


© Philip Russell, MPL, Erlangen<br />

Resonance & anti-resonance<br />

in nano-tube<br />

anti-resonant<br />

glass<br />

air<br />

glass<br />

resonant<br />

anti-resonant<br />

light fills the tube only at specific angle/colour combinations<br />

22


© Philip Russell, MPL, Erlangen<br />

B<br />

A<br />

Unit cells & evanescence<br />

unit cell boundary<br />

[M] = transfer matrix<br />

•<br />

Bloch wave transfer<br />

matrix [M]:<br />

•<br />

•<br />

1<br />

λλ<br />

real eigenvalues:<br />

evanescence<br />

∗ =<br />

λλ<br />

=<br />

ee<br />

∗ γ −γ<br />

complex eigenvalues:<br />

propagation<br />

λλ<br />

=<br />

e e<br />

∗ iγ−iγ 23


© Philip Russell, MPL, Erlangen<br />

Building a prison for light<br />

the prison<br />

cell<br />

bars of the prison cell<br />

24


© Philip Russell, MPL, Erlangen<br />

We are keeping light<br />

anti-resonant<br />

windows<br />

“behind bars”<br />

anti-resonant<br />

bars<br />

25


© Philip Russell, MPL, Erlangen<br />

~100 μm<br />

The hollow one…<br />

traps light by creating a<br />

complete 2D photonic<br />

band gap in the cladding<br />

26


© Philip Russell, MPL, Erlangen<br />

Alfried Krupp<br />

von Bohlen und<br />

Halbach - Stiftung<br />

Topics<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

<strong>Introducing</strong> <strong>PCF</strong><br />

Out of the strait-jacket<br />

Bars, windows & cages<br />

Cutting the losses<br />

Gas-laser interactions<br />

Laser-driven rockets<br />

Brighter than 10,000 suns<br />

Anomalous cornering<br />

Nanophononics<br />

Nanowires<br />

Impact & prospects<br />

27


© Philip Russell, MPL, Erlangen<br />

State-of-the-art hollow-core <strong>PCF</strong> (2004)<br />

70 μm<br />

115 μm<br />

28<br />

Roberts et al, Opt. Exp. 13 (236-244) 2005<br />

20.5 μm<br />

1 dB/km at 1550 nm


© Philip Russell, MPL, Erlangen<br />

Guidance in hollow core (PBG) fibre<br />

refraction<br />

refraction<br />

photonic<br />

bandgap<br />

air<br />

air<br />

air<br />

light can be guided in<br />

hollow core fibres<br />

using a photonic<br />

bandgap<br />

cross-section of<br />

photonic bandgap<br />

fibre<br />

29


© Philip Russell, MPL, Erlangen<br />

At 1 dB/km: How good are the mirrors?<br />

2.8 million bounces per km (20 μm core, 1550 nm)<br />

0.35 μdB/bounce (reflectivity 0.99999992)<br />

2.8 million cylindrical mirrors<br />

cladding<br />

core<br />

30


© Philip Russell, MPL, Erlangen<br />

Typical attenuation spectrum<br />

Roberts et al, Opt. Exp. 13 (236-244) 2005<br />

Attenuation [dB/km]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1500 1520 1540 1560 1580 1600 1620 1640<br />

Wavelength [nm]<br />

~1.7 dB/km<br />

31


© Philip Russell, MPL, Erlangen<br />

Loss is induced by surface states<br />

effective mode index<br />

blaze photonics<br />

1.001<br />

1.000<br />

0.999<br />

0.998<br />

0.997<br />

0.996<br />

0.995<br />

light line<br />

32<br />

Roberts et al, Opt. Exp. 13 (236-244) 2005<br />

1690 nm 1530 nm 1400 nm<br />

“surface modes”<br />

0.994<br />

14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0<br />

normalised propagation constant [ βΛ<br />

fundamental mode<br />

]


© Philip Russell, MPL, Erlangen<br />

Mode profiles at anti-crossing<br />

fraction of light in glass changes dramatically<br />

with wavelength of the light<br />

33


© Philip Russell, MPL, Erlangen<br />

dB/m<br />

Eliminate surface states…<br />

0.02 dB/m<br />

wavelength<br />

Erlangen result<br />

34<br />

Bath/Southampton, OpEx Jan 2008


© Philip Russell, MPL, Erlangen<br />

Alfried Krupp<br />

von Bohlen und<br />

Halbach - Stiftung<br />

Topics<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

<strong>Introducing</strong> <strong>PCF</strong><br />

Out of the strait-jacket<br />

Bars, windows & cages<br />

Cutting the losses<br />

Gas-laser interactions<br />

Laser-driven rockets<br />

Brighter than 10,000 suns<br />

Anomalous cornering<br />

Nanophononics<br />

Nanowires<br />

Impact & prospects<br />

35


© Philip Russell, MPL, Erlangen<br />

Enhancing nonlinear effects in gases<br />

Need to optimise:<br />

nonlinearity<br />

provided by<br />

gas in hollow core<br />

low loss<br />

required<br />

x path-length<br />

x power/area<br />

small as possible<br />

(single-mode preferred)<br />

36


© Philip Russell, MPL, Erlangen<br />

Depth of focus & spot size<br />

Lord Rayleigh<br />

1842-1919<br />

intensity<br />

∝<br />

1/<br />

a<br />

interaction length<br />

2<br />

Rayleigh length<br />

∝<br />

2<br />

a / λ<br />

37<br />

spot size


© Philip Russell, MPL, Erlangen<br />

Hollow core <strong>PCF</strong>: ~infinite Rayleigh length<br />

holey cladding<br />

holey cladding<br />

intensity<br />

∝<br />

1/<br />

a<br />

absorption length<br />

for gas-laser interactions the<br />

best low loss <strong>PCF</strong> is seven<br />

orders of magnitude better<br />

than a focused beam<br />

2<br />

∝ 1/ α<br />

38<br />

infinite depth of focus


© Philip Russell, MPL, Erlangen<br />

Molecular oscillations in H 2<br />

Q01(1) S00(1) vibrational<br />

(usually dominant)<br />

rotational<br />

(usually much weaker)<br />

125 THz 18 THz<br />

39<br />

Benabid et al, PRL 93 (123903) 2004


© Philip Russell, MPL, Erlangen<br />

Hollow core <strong>PCF</strong> for rotational SRS<br />

18 THz<br />

rotational<br />

anti-Stokes pump<br />

Stokes<br />

40<br />

Benabid et al, PRL 93 (123903) 2004<br />

very high attenuation<br />

for vibrational Stokes<br />

125 THz


© Philip Russell, MPL, Erlangen<br />

transmission<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0 5 10 15 20 25 30<br />

coupled energy (nJ)<br />

SRS conversion<br />

35 m<br />

0 20 40 60 80<br />

coupled energy (nJ)<br />

2.9 m<br />

hydrogen pressure 7 bar<br />

loss at second Stokes is 0.6 dB/m<br />

•<br />

•<br />

single-pass threshold<br />

at energy 1,000,000<br />

times lower (35 m)<br />

near-perfect quantum<br />

efficiency achieved (2.9<br />

m)<br />

multi-pass: Meng et al.,<br />

Opt. Lett. 27 (1226) 2002<br />

41<br />

Benabid et al, PRL 93 (123903) 2004


© Philip Russell, MPL, Erlangen<br />

Alfried Krupp<br />

von Bohlen und<br />

Halbach - Stiftung<br />

Topics<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

<strong>Introducing</strong> <strong>PCF</strong><br />

Out of the strait-jacket<br />

Bars, windows & cages<br />

Cutting the losses<br />

Gas-laser interactions<br />

Laser-driven rockets<br />

Brighter than 10,000 suns<br />

Anomalous cornering<br />

Nanophononics<br />

Nanowires<br />

Impact & prospects<br />

42


© Philip Russell, MPL, Erlangen<br />

laser<br />

beam<br />

gravity<br />

propulsive<br />

force<br />

trapping<br />

forces<br />

Laser tweezer<br />

forces<br />

Arthur Ashkin<br />

(1922-)<br />

43


© Philip Russell, MPL, Erlangen<br />

non-diffracting<br />

laser beam<br />

gravity<br />

constant<br />

propulsive<br />

force<br />

trapping<br />

forces<br />

Laser tweezer<br />

forces<br />

44


© Philip Russell, MPL, University Erlangen of Bath<br />

•<br />

•<br />

•<br />

•<br />

Piped particle<br />

20 μm diameter hollow core<br />

5 μm diameter polystyrene spheres<br />

80 mW at 514 nm<br />

terminal velocity 1.5 cm/sec<br />

45<br />

Benabid et al, Opt. Exp. 10 (1195-1203) 2002


© Philip Russell, MPL, Erlangen<br />

Laser-driven rocket motors<br />

laser light<br />

scattering<br />

acceleration<br />

V = 3 LPn/( r ρ r c)<br />

2<br />

p p c<br />

particle diameter 100 nm,<br />

density 1000 kg/m 3<br />

evacuated hollow core,<br />

10 μm in diameter<br />

1 W laser power<br />

28 km/s (0.7 pJ) after 100 m<br />

46


© Philip Russell, MPL, Erlangen<br />

activating<br />

laser<br />

light<br />

Laser tweezers in hollow core <strong>PCF</strong><br />

hollow core filled<br />

with biochemicals<br />

in aqueous solution<br />

holey<br />

cladding<br />

cell<br />

highly controlled<br />

micro-environment<br />

laser<br />

liquid-filled<br />

hollow core<br />

microfluidic<br />

counter-flow<br />

possible<br />

holey<br />

cladding<br />

47<br />

effectiveness of photochemicals<br />

for killing cancer<br />

cells can be explored


© Philip Russell, MPL, Erlangen<br />

Alfried Krupp<br />

von Bohlen und<br />

Halbach - Stiftung<br />

Topics<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

<strong>Introducing</strong> <strong>PCF</strong><br />

Out of the strait-jacket<br />

Bars, windows & cages<br />

Cutting the losses<br />

Gas-laser interactions<br />

Laser-driven rockets<br />

Brighter than 10,000 suns<br />

Anomalous cornering<br />

Nanophononics<br />

Nanowires<br />

Impact & prospects<br />

48


© Philip Russell, MPL, Erlangen<br />

Supercontinuum<br />

generation<br />

photonics & new materials<br />

Dudley et al, Rev. Mod.<br />

Phys. 78,1135 (2006)<br />

49


© Philip Russell, MPL, Erlangen<br />

Pulse bandwidth & duration<br />

100 wave pulse<br />

time<br />

1000 wave pulse<br />

bandwidth × duration = constant<br />

50


© Philip Russell, MPL, Erlangen<br />

geomagnetic<br />

equator<br />

11°<br />

geomagnetic<br />

axis<br />

Whistlers & dispersion<br />

axis of<br />

rotation<br />

whistler waves<br />

radiation belt<br />

electrons<br />

plasma-sphere<br />

geomagnetic<br />

field lines<br />

51


© Philip Russell, MPL, Erlangen<br />

GVD (ps/nm.km)<br />

300<br />

200<br />

100<br />

0<br />

–100<br />

–200<br />

Dispersion of 800 nm core <strong>PCF</strong><br />

800 nm<br />

<strong>PCF</strong> (measured)<br />

bulk silica<br />

anomalous<br />

normal<br />

–300<br />

0.5 0.6 0.7 0.8 0.9 1.0<br />

zero dispersion can be designed<br />

wavelength (μm)<br />

to lie anywhere in this range<br />

zero chromatic<br />

dispersion (560 nm)<br />

52<br />

Knight et al, Phot Tech Lett, 12 (807-809) 2000<br />

zero at<br />

~1300 nm


© Philip Russell, MPL, Erlangen<br />

Recipe for Supercontinuum:<br />

take solid-core <strong>PCF</strong> with zero<br />

chromatic dispersion wavelength<br />

close to a pulsed laser wavelength<br />

zero chromatic dispersion keeps the<br />

energy packet together and<br />

enhances nonlinear effects<br />

53


© Philip Russell, MPL, Erlangen<br />

Ti:sapphire laser pump (200 fs)<br />

visible spectrum<br />

<strong>PCF</strong><br />

diffraction<br />

grating<br />

higher grating<br />

orders<br />

IR in (76 MHz<br />

200 fsec, 2<br />

nJ)<br />

54<br />

Ranka et al, Opt. Lett. 25 (25-27) 2000<br />

… some 10,000× brighter than the sun,<br />

yielding more than 100 GW m –2sterad –1


© Philip Russell, MPL, Erlangen<br />

•<br />

•<br />

•<br />

optical coherence<br />

tomography<br />

optical spectroscopy<br />

frequency metrology<br />

fs<br />

frequency<br />

comb<br />

Applications<br />

Nobel Prize 2005<br />

John Hall Roy Glauber Ted Hänsch<br />

55


© Philip Russell, MPL, Erlangen<br />

Short pulse laser (10 -13<br />

mirror<br />

mode-locker<br />

amplifying<br />

medium<br />

standing waves of<br />

different frequencies<br />

semi-transparent<br />

mirror<br />

sec)<br />

10 -13<br />

train of femtosecond<br />

sec<br />

pulses<br />

56


© Philip Russell, MPL, Erlangen<br />

E(t)<br />

E(f)<br />

f 0<br />

T<br />

frequency offset<br />

f0 = Δt / T2 Δt 2Δt<br />

laser repetition rate<br />

Fourier transform<br />

frequency<br />

comb<br />

frequency<br />

57<br />

time


© Philip Russell, MPL, Erlangen<br />

precise positioning of the<br />

zero is essential<br />

Using a ruler<br />

then precise distance<br />

can be read off<br />

58


© Philip Russell, MPL, Erlangen<br />

intensity<br />

Measuring with frequency comb<br />

nfR+f0 <strong>PCF</strong> supercontinuum<br />

×2<br />

2(nfR+f0) 2nfR+f0 beat, f 0<br />

59


© Philip Russell, MPL, Erlangen<br />

Nobel Prize for Physics 2005<br />

Roy Glauber, John Hall & Ted Hänsch:<br />

“It is possible to create pulses of this kind with a<br />

sufficiently broad frequency range in so-called photonic<br />

crystal fibres, in which the material is partially<br />

replaced by air filled channels. In these fibres a<br />

broad spectrum of frequencies can be generated by the<br />

light itself. Hänsch and Hall and their colleagues have<br />

subsequently, partly in collaborative work, refined these<br />

techniques into a simple instrument that has already<br />

gained wide use and is commercially available. ”<br />

60


© Philip Russell, MPL, Erlangen<br />

Hand-held SC source with microchip laser<br />

wavelength (μm)<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

30 mW<br />

61<br />

Wadsworth et al, Opt Exp 12 (299-309) 2004<br />

average at 7.25 kHz (0.6 ns, 1064 nm)<br />

= pulse energy 4.1 μJ & peak power 6.9 kW<br />

20 m<br />

0 5 10 15 20 25 30<br />

pump power (mW)<br />

flat to<br />

within<br />

factor<br />

of 2×<br />

<strong>PCF</strong> with ZDW at 1039 nm<br />

6 μm<br />

anomalous dispersion


© Philip Russell, MPL, Erlangen<br />

Supercontinuum source (Fianium<br />

Nd:fibre laser & amplifier (1064 nm, 5 ps, 10-11 W launched)<br />

Repetition rate - 50 MHz, total SC power 6.5 W<br />

4.5 mW/nm 450-800 nm<br />

Ltd)<br />

62


© Philip Russell, MPL, Erlangen<br />

spectral density (dBm/nm)<br />

10.0<br />

0.0<br />

-10.0<br />

-20.0<br />

-30.0<br />

-40.0<br />

-50.0<br />

-60.0<br />

Broad-band light sources<br />

<strong>PCF</strong> SC source<br />

(ps fiber laser)<br />

<strong>PCF</strong> SC source<br />

(ns microchip laser)<br />

SLEDs (4 wavelengths)<br />

incandescent lamp<br />

400 600 800 1000 1200 1400 1600<br />

wavelength (nm)<br />

fiber ASE<br />

source<br />

1 mW/nm<br />

1 µW/nm<br />

1 nW/nm<br />

63


© Philip Russell, MPL, Erlangen<br />

Alfried Krupp<br />

von Bohlen und<br />

Halbach - Stiftung<br />

Topics<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

<strong>Introducing</strong> <strong>PCF</strong><br />

Out of the strait-jacket<br />

Bars, windows & cages<br />

Cutting the losses<br />

Gas-laser interactions<br />

Laser-driven rockets<br />

Brighter than 10,000 suns<br />

Anomalous cornering<br />

Nanophononics<br />

Nanowires<br />

Impact & prospects<br />

64


© Philip Russell, MPL, Erlangen<br />

Photonic band gaps at 1% contrast<br />

“bars” resonant in<br />

pass-bands<br />

pure silica<br />

glass matrix<br />

core<br />

anti-resonant<br />

unit cell<br />

Ge-doped silica<br />

(~1% above silica)<br />

65<br />

Argyros et al., Opt. Exp. 13 (309-314) 2005<br />

Bouwmans et al., Opt. Exp.<br />

13 (8452) 2005 (< 20 dB/km)


© Philip Russell, MPL, Erlangen<br />

Mode patterns in cladding “rods”<br />

transmission (dB)<br />

0<br />

-10<br />

-20<br />

LP 21 LP 02 LP 11<br />

LP 10<br />

-30<br />

450 650 850 1050 1250 1450<br />

wavelength (nm)<br />

66<br />

Argyros et al., Opt. Exp. 13 (309-314) 2005<br />

cladding rods<br />

become resonant in<br />

the visible<br />

NB: these are not<br />

bound waveguide<br />

modes


© Philip Russell, MPL, Erlangen<br />

Bend loss: step index fibre<br />

refractive index<br />

leakage<br />

left<br />

core<br />

straight<br />

core<br />

RH bend<br />

guided<br />

mode<br />

67


© Philip Russell, MPL, Erlangen<br />

refractive index<br />

Band gap guidance<br />

guided mode<br />

T. A. Birks et al.,<br />

"Bend loss in all-solid bandgap fibres,"<br />

Opt. Exp. 14, 5688-5698 (2006)<br />

straight<br />

upper band edge<br />

photonic band gap<br />

lower band edge<br />

68


© Philip Russell, MPL, Erlangen<br />

Anomalous<br />

cornering<br />

index<br />

mode 1<br />

mode 2<br />

leakage left<br />

RH bend<br />

leakage right<br />

upper band edge<br />

photonic band gap<br />

lower band edge<br />

69


© Philip Russell, MPL, Erlangen<br />

Alfried Krupp<br />

von Bohlen und<br />

Halbach - Stiftung<br />

Topics<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

<strong>Introducing</strong> <strong>PCF</strong><br />

Out of the strait-jacket<br />

Bars, windows & cages<br />

Cutting the losses<br />

Gas-laser interactions<br />

Laser-driven rockets<br />

Brighter than 10,000 suns<br />

Anomalous cornering<br />

Nanophononics<br />

Nanowires<br />

Impact & prospects<br />

70


© Philip Russell, MPL, Erlangen<br />

ωopt<br />

frequency<br />

light<br />

optical<br />

SBS<br />

acoustic<br />

Phonon dispersion<br />

0 wavevector<br />

π/a<br />

a<br />

71


© Philip Russell, MPL, Erlangen<br />

anti-Stokes<br />

Brillouin scattering<br />

frequency<br />

Stokes frequency<br />

light<br />

(slope c/ n )<br />

shift changes<br />

with pump<br />

frequency<br />

0<br />

axial wavevector<br />

pump<br />

72<br />

Dainese et al., Opt. Exp. 14, 4141, 2006<br />

very large<br />

phonon<br />

momentum<br />

needed


© Philip Russell, MPL, Erlangen<br />

ωopt<br />

frequency<br />

light<br />

optical<br />

SBS<br />

SRS<br />

acoustic<br />

Phonon dispersion<br />

0 wavevector<br />

π/a<br />

a<br />

73


© Philip Russell, MPL, Erlangen<br />

Acoustic modes in silica strand<br />

frequency<br />

flat bands<br />

Gustavo Wiederhecker<br />

axial wavevector<br />

74


© Philip Russell, MPL, Erlangen<br />

cut-off<br />

frequency<br />

frequency<br />

ω AC<br />

Raman-like scattering<br />

optical<br />

dispersion<br />

ω S2<br />

ω S1<br />

ω AS1<br />

wavevector<br />

ω AS2<br />

ωP multiple scattering<br />

orders possible<br />

acoustic<br />

dispersion<br />

scattering is<br />

Raman-like<br />

frequency shift<br />

independent of<br />

laser fequency<br />

75


© Philip Russell, MPL, Erlangen<br />

•<br />

Polarimetric<br />

• launch equal amounts of<br />

light into both<br />

polarisation states of<br />

birefringent fibre<br />

• use analyser at output to<br />

monitor relative pathlength<br />

changes<br />

• useful for observing<br />

modes that cause<br />

elliptical core distortion<br />

Diagnostic techniques<br />

•<br />

pulsed light<br />

source<br />

Sagnac<br />

• place <strong>PCF</strong> sample<br />

asymmetrically in long<br />

Sagnac loop mirror<br />

• launch 100 ps pump pulses<br />

• observe transmitted signal<br />

pulse<br />

generator<br />

76


© Philip Russell, MPL, Erlangen<br />

Photoacoustic<br />

100 ps pulses launched with CW<br />

probe at a different wavelength<br />

measurements<br />

77<br />

Dainese et al., Opt. Exp. 14, 4141, 2006


© Philip Russell, MPL, Erlangen<br />

Coherent control of phonon resonances<br />

cancellation<br />

reinforcement<br />

1 μm<br />

laser pulses<br />

acoustic<br />

oscillation<br />

time<br />

78<br />

Wiederhecker, PRL 100, 203903 (2008)


© Philip Russell, MPL, Erlangen<br />

Coherent control of waveform<br />

amplitude<br />

0<br />

27 pulses<br />

1 pulse<br />

0 10 20 30 40<br />

time (ns)<br />

•<br />

•<br />

response is more<br />

single-frequency<br />

with 27 pulses<br />

favours a single<br />

resonant mode<br />

79


© Philip Russell, MPL, Erlangen<br />

Growth with number of pulses<br />

two different <strong>PCF</strong>s<br />

theory (including<br />

acoustic lifetime)<br />

80<br />

PRL 100, 203903 (2008)<br />

experiment + theory<br />

(including acoustic<br />

lifetime & EDFA<br />

saturation)


© Philip Russell, MPL, Erlangen<br />

Alfried Krupp<br />

von Bohlen und<br />

Halbach - Stiftung<br />

Topics<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

<strong>Introducing</strong> <strong>PCF</strong><br />

Out of the strait-jacket<br />

Bars, windows & cages<br />

Cutting the losses<br />

Gas-laser interactions<br />

Laser-driven rockets<br />

Brighter than 10,000 suns<br />

Anomalous cornering<br />

Nanophononics<br />

Nanowires<br />

Impact & prospects<br />

81


© Philip Russell, MPL, Erlangen<br />

Gold wire in birefringent <strong>PCF</strong><br />

900 nm wire 600 nm wire<br />

82<br />

Lee et al., APL 93, 111102 (2008)


© Philip Russell, MPL, Erlangen<br />

Spiralling plasmon mode<br />

ε ε ⎛( m −1)<br />

⎞<br />

nm= − , m≥1<br />

ε ε<br />

dielectric metal<br />

mode order<br />

D M<br />

⎜ ⎟<br />

D + M ⎝ ka 0 ⎠<br />

2<br />

Schmidt et al., Opt. Exp. 16 13617 (2008)<br />

metal wire<br />

radius a<br />

83


© Philip Russell, MPL, Erlangen<br />

Experimental set-up<br />

84<br />

Lee et al., APL 93, 111102 (2008)


© Philip Russell, MPL, Erlangen<br />

Transmission spectra<br />

6 mm<br />

25 mm<br />

85<br />

Lee et al., APL 93, 111102 (2008)


© Philip Russell, MPL, Erlangen<br />

Ge<br />

nanowires<br />

600 nm wires 1700 nm wire<br />

conductivity 49 Ω.m<br />

(crystalline Ge 47 Ω.m)<br />

86<br />

Tyagi et al., Opt Exp, 16 17227 (2008)


© Philip Russell, MPL, Erlangen<br />

Micro-Raman signal<br />

μ-Raman<br />

spectrometer<br />

crystalline Ge: 300 cm-1 linewidth 2.4 cm-1 87<br />

Tyagi et al., Opt Exp, 16 17227 (2008)


© Philip Russell, MPL, Erlangen<br />

Alfried Krupp<br />

von Bohlen und<br />

Halbach - Stiftung<br />

Topics<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

<strong>Introducing</strong> <strong>PCF</strong><br />

Out of the strait-jacket<br />

Bars, windows & cages<br />

Cutting the losses<br />

Gas-laser interactions<br />

Laser-driven rockets<br />

Brighter than 10,000 suns<br />

Anomalous cornering<br />

Nanophononics<br />

Nanowires<br />

Impact & prospects<br />

88


© Philip Russell, MPL, Erlangen<br />

transforming fibre optics<br />

intra-fibre devices<br />

biomedical/chemical sensors<br />

Impact & prospects<br />

cold atom guiding<br />

laser guidance of particles/cells<br />

single mode fibre gas cells<br />

dispersion control<br />

nanophononic devices<br />

new regimes for nonlinear optics<br />

broad-band white light<br />

frequency comb measurement<br />

non-silica glass & polymer fibres<br />

metal & semiconductor nanowires<br />

fibre lasers & amplifiers<br />

high power & energy transmission<br />

89

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!