10.07.2015 Views

Intel talk on Interconnect power - UCSD VLSI CAD Laboratory

Intel talk on Interconnect power - UCSD VLSI CAD Laboratory

Intel talk on Interconnect power - UCSD VLSI CAD Laboratory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

14/2/2004 1Interc<strong>on</strong>nect-Power Dissipati<strong>on</strong>in a MicroprocessorN. Magen, A. Kolodny, U. Weiser, N. Shamir<str<strong>on</strong>g>Intel</str<strong>on</strong>g> corporati<strong>on</strong>®Techni<strong>on</strong> - Israel Institute of Technology


14/2/2004 2Interc<strong>on</strong>nect-Power Definiti<strong>on</strong>• Interc<strong>on</strong>nect-Power is dynamic <strong>power</strong> c<strong>on</strong>sumpti<strong>on</strong>due to interc<strong>on</strong>nect capacitance switching– How much <strong>power</strong> is c<strong>on</strong>sumed by Interc<strong>on</strong>necti<strong>on</strong>s ?– Future generati<strong>on</strong>s trends ?– How to reduce the interc<strong>on</strong>nect <strong>power</strong> ?0.13 µm cross-secti<strong>on</strong>, source - <str<strong>on</strong>g>Intel</str<strong>on</strong>g>


14/2/2004 4Outline• Research methodology• Interc<strong>on</strong>nect Power Analysis• Power-Aware Router Experiment• Interc<strong>on</strong>nect Power Predicti<strong>on</strong>• Summary


14/2/2004 5Case study• Low-<strong>power</strong>, state-of-the-art µ-processor• Dynamic switching <strong>power</strong> analysis• Interc<strong>on</strong>nect attributes:‣ Length‣ Capacitance‣ Fan Out (FO)‣ Hierarchy data‣ Net type‣ Activity factors (AF)‣ Miscellaneous.


14/2/2004 6Interc<strong>on</strong>nect Length Model1• Total wire length• Stitched across hierarchies• Summed over repeaters864 41377• Net modelCdiff.CwireCgate


14/2/2004 7Activity Factors Generati<strong>on</strong>Power test vectors generati<strong>on</strong>(worst case for high <strong>power</strong>, unit stressing)RTL full-chip simulati<strong>on</strong>(results in blocks primary inputs: Activity,Probability)M<strong>on</strong>te-Carlo based block inputs generati<strong>on</strong>(based <strong>on</strong> the RTL statistics)Transistor level simulati<strong>on</strong> - per block(Unit delay, tuning for glitches)Per node activity factorSource -”<str<strong>on</strong>g>Intel</str<strong>on</strong>g>® Pentium® M Processor Power Estimati<strong>on</strong>, Budgeting, Optimizati<strong>on</strong>, and Validati<strong>on</strong>”, ITJ 2003


14/2/2004 8Outline• Research methodology• Interc<strong>on</strong>nect Power Analysis• Power-Aware Router Experiment• Interc<strong>on</strong>nect Power Predicti<strong>on</strong>• Summary


14/2/2004 9Interc<strong>on</strong>nect Length Distributi<strong>on</strong>100001000100Number of nets1010.10.01Pentium® 0.5 [um]Pentium® MMX 0.35 [um]Pentium® Pro 0.5 [um]Pentium® II 0.35 [um]Pentium® II 0.25 [um]Pentium® III 0.18 [um]Low Power Processor 0.13 [um]0.0011 10 100 1000 10000 100000Net Length [um]Source: Shekhar Y. Borkar, CRL - <str<strong>on</strong>g>Intel</str<strong>on</strong>g>


14/2/2004 10Interc<strong>on</strong>nect Length Distributi<strong>on</strong>Nets vs. Net Length• Log – Logscale• Exp<strong>on</strong>entialdecrease withlength• Global clock –not includedNumber of Nets10001001010.1LocalGlobal TotalTotal0.010.0011 10 100 1000 10000 100000Length [um]


14/2/2004 11Total Dynamic Power• Total DynamicPower• Global clock –not included• Localnets = 66%• Globalnets = 34%Normalized Dynamic Power1009080706050403020Nets: 390kCap: 10[nF]FO: 2AF: 0.0485Total Power vs. Net LengthPeak 1Peak 2Interc<strong>on</strong>nectLocalGlobal TotalTotal TotalNets: 75kCap: 20[nF]FO: 20AF: 0.0551001 10 100 1000 10000 100000Length [um]


14/2/2004 12Total Dynamic Power BreakdownGlobal clock includedInterc<strong>on</strong>nect51%Gate34%Diffusi<strong>on</strong>15%


14/2/2004 13Power Breakdown by Net TypesGlobal clock includedglobalsignals34%global clock19%local signals27%local clock20%globalsignals21%global clock13%local clock29%local signals37%Interc<strong>on</strong>nect <strong>power</strong>(Interc<strong>on</strong>nect <strong>on</strong>ly)Total <strong>power</strong>(Gate, Diffusi<strong>on</strong> and Interc<strong>on</strong>nect)


14/2/2004 14Interc<strong>on</strong>nect Power Breakdown• Interc<strong>on</strong>nect c<strong>on</strong>sumes 50% of dynamic <strong>power</strong>• Clock <strong>power</strong> ~40% (of Interc<strong>on</strong>nect and total)• 90% of <strong>power</strong> c<strong>on</strong>sumed by 10% of nets• Interc<strong>on</strong>nect design is NOT <strong>power</strong>-aware !• Predictive model can project the interc<strong>on</strong>nect <strong>power</strong>.Interc<strong>on</strong>nect <strong>power</strong> Total <strong>power</strong>100 %global signals90 %80 %34 %global clockLocal signalslocal clock70 %60 %50 %40 %30 %19 %27 %Interc<strong>on</strong>nect51%Gate34%Local local signals clock20 %10 %20 %Diffusi<strong>on</strong>15%0%


14/2/2004 15Outline• Research methodology• Interc<strong>on</strong>nect Power Analysis• Power-Aware Router Experiment• Interc<strong>on</strong>nect Power Predicti<strong>on</strong>• Summary


14/2/2004 16Experiment - Power-Aware Router• Routing Experiment optimizing processor’s blocks• Local nodes (clock and signals) c<strong>on</strong>sume 66% of dynamic <strong>power</strong>• 10% of nets c<strong>on</strong>sume 90% of <strong>power</strong>• Min. spanning trees can save over 20% Interc<strong>on</strong>nect <strong>power</strong>• Routing with spacing can save up to 40% Interc<strong>on</strong>nect <strong>power</strong>Small block’s local clock network


14/2/2004 17Power-Aware Router FlowPower grid routingClock tree:high FO, l<strong>on</strong>g lines, very activeClock tree routingWith spacingAvoiding c<strong>on</strong>gesti<strong>on</strong>Top n% <strong>power</strong> c<strong>on</strong>sumingsignal nets routingGlobal and Detailed Routing -of the un-routed nets(timing and c<strong>on</strong>gesti<strong>on</strong> driven)Rip-up: not high <strong>power</strong> netsAll netsrouted?NoPower-aware Rip upand re-routeYesFollowed by downsizingFinish


14/2/2004 18Results - Power SavingAverageDynamic <strong>power</strong> saving60%Driver Downsizing50%Router Power Saving40%30%Downsize20%saving10%Router0%savingBlock A Block B Block C Block D Block EAverage saving results: 14.3% for ASIC blocks 11 - Estimated based <strong>on</strong> clock interc<strong>on</strong>nect <strong>power</strong>


14/2/2004 19Outline• Research methodology• Interc<strong>on</strong>nect Power Analysis• Power-Aware Router Experiment• Interc<strong>on</strong>nect Power Predicti<strong>on</strong>• Summary


14/2/2004 20Future of Interc<strong>on</strong>nect Power100%Dynamic Power breakdownGate90%80%Diffusi<strong>on</strong>70%60%50%Interc<strong>on</strong>nect40%30%20%10%% G POW% D POW% IC POWSource - ITRS 2001 Editi<strong>on</strong> adapted data0%0.15 0.13 0.1 0.09 0.08 0.07 0.065 0.045 0.032 0.022Generati<strong>on</strong>Technology generati<strong>on</strong> [µm]Interc<strong>on</strong>nect <strong>power</strong> grows to 65%-80% within 5 years !(using optimistic interc<strong>on</strong>nect scaling)


14/2/2004 21Interc<strong>on</strong>nect Power Predicti<strong>on</strong>• The number of netsvs. unit length –Modified Davis modelNumber of Number Nets of (normalized)1001010.10.010.10 .0010 .0000110.010 .00010.001 0100 %Interc<strong>on</strong>nect length projecti<strong>on</strong>Upper local boundLower global boundPowerMeasured1 10 100 1000 10000 100000Length [ um ]Dynamic <strong>power</strong> breakdownmodel• The dynamic <strong>power</strong>average breakdownPowerPower90 %80 %70 %60 %50 %40 %30 %Interc<strong>on</strong>nectDiffusi<strong>on</strong>Interc<strong>on</strong>nectDiffGate20 %10 %Gate0%Local Intermediate Global


14/2/2004 22Interc<strong>on</strong>nect Power Model• Multiplicati<strong>on</strong> of the number of interc<strong>on</strong>nects with <strong>power</strong>breakdowns gives:6Projected dynamic <strong>power</strong> vs. net lengthPower (normalized)Power54321Measured <strong>power</strong>Projecti<strong>on</strong>01 10 100 1000 10000 100000Length [µm][ um ]The <strong>power</strong> model matches processor <strong>power</strong> distributi<strong>on</strong> !


14/2/2004 23Outline• Research methodology• Interc<strong>on</strong>nect Power Analysis• Power-Aware Router Experiment• Interc<strong>on</strong>nect Power Predicti<strong>on</strong>• Summary


14/2/2004 24Summary• Interc<strong>on</strong>nect is 50% of the dynamic <strong>power</strong> of processors, andgetting worse.► Interc<strong>on</strong>nect <strong>power</strong>-aware design is recommended• Clock c<strong>on</strong>sumes 40% of interc<strong>on</strong>nect <strong>power</strong>.► Clock interc<strong>on</strong>nect spacing is suggested• Interc<strong>on</strong>nect <strong>power</strong> is sum of nearly all net lengths and types.► Router level Interc<strong>on</strong>nect <strong>power</strong> reducti<strong>on</strong> addresses all• Interc<strong>on</strong>nect <strong>power</strong> has str<strong>on</strong>g dependency <strong>on</strong> the hierarchy►Per Hierarchy analysis and optimizati<strong>on</strong> algorithms


14/2/2004 25Future Research1. Interc<strong>on</strong>nect Power characterizati<strong>on</strong> and predicti<strong>on</strong>2. Investigate Interc<strong>on</strong>nect <strong>power</strong> reducti<strong>on</strong> techniques:• Interc<strong>on</strong>nect-Spacing for <strong>power</strong>• Interc<strong>on</strong>nect Power-Aware physical design• Aspect Ratio optimizati<strong>on</strong> for <strong>power</strong>• Architectural communicati<strong>on</strong> reducti<strong>on</strong>


14/2/2004 26Questi<strong>on</strong>s ?


14/2/2004 27BACKUP-Slides


14/2/2004 28Processor Case Study• Analysis subject: Processor, 0.13 [µm]• 77 milli<strong>on</strong> transistors, die size of 88 [mm 2 ]• Data sources (AF, Capacitance, Length)• Excluded: L2 cache, global clock, analog units


14/2/2004 29Global Communicati<strong>on</strong>• Global <strong>power</strong> isimportant• Global <strong>power</strong> ismostly IC• For higher <strong>power</strong>benchmarks –Global <strong>power</strong> ishigher• G-clock excludedGlobal Power Percent35%30%25%20%15%10%%GlobalGlobal Power % vs. Test PowerPoly. (%Global )5%0%Total Power [uW]


14/2/2004 30Benchmark Selecti<strong>on</strong>• High <strong>power</strong> test benchmarks• Worst case design• Suitable for: thermal design, <strong>power</strong> grid design• Average <strong>power</strong> is a fracti<strong>on</strong> of peak <strong>power</strong>• Unit stressing benchmarks• Averaging of all high <strong>power</strong> benchmarks• High node coverageITC logo


14/2/2004 31Interc<strong>on</strong>nect Power Implicati<strong>on</strong>s• Interc<strong>on</strong>nect <strong>power</strong> can be reduced byminimizing switched capacitance:• Fabricati<strong>on</strong> process (wire parameters)• Power-driven physical design• Logic optimizati<strong>on</strong> for <strong>power</strong>• Architectural interc<strong>on</strong>nect optimizati<strong>on</strong>


14/2/2004 32Interc<strong>on</strong>nect Capacitance• Side-cap is increasing:70% to 80%self-cap.Layer 3100%90%80%70%60%Global Capacitance breakdownV-cap50%H-capH-capV-capLayer 2Side-cap.40%30%20%V-capH-capSource - ITRS 2001 Editi<strong>on</strong> adapted dataLayer 110%0%0.15 0.13 0.1 0.09 0.08 0.07 0.065 0.045 0.032 0.022Generati<strong>on</strong>Technology generati<strong>on</strong> [µm]The majority of interc<strong>on</strong>nect capacitance is side-capacitance !


14/2/2004 33Fabricati<strong>on</strong> Process –Aspect Ratio (AR)• Interc<strong>on</strong>nect AR =ThicknessWidthThickness• Low AR = Low Interc<strong>on</strong>nect <strong>power</strong>• Low AR = High resistance• Frequency Modeling• Local: average gate, average IC• Global: optimally buffered global ICWidthLocalR intR intR intR int R intR intR int...C intC intC intC int C intC intC intGlobalL critR intC intL critR intC intL critL critR intR int. . .C intC int


14/2/2004 34Aspect Ratio – Trade offs• Power – depends <strong>on</strong> cap.• Frequency:• Local – gates and IC cap.• Global – mostly IC – RC120%110%100%Freq. And Power vs. Relative ARLocal path speed• Per layer AR optimizati<strong>on</strong> !• Scaling ⇒ more <strong>power</strong> save,less frequency loss90%80%PowerFrequency - LocalFrequency - Global70%Global path speedDynamic Power60%50.0% 62.5% 75.0% 87.5% 100.0% 112.5% 125.0% 137.5% 150.0%ARRelative ARAspect Ratio optimizati<strong>on</strong> can save over 10% of dynamic <strong>power</strong> !


14/2/2004 35Physical Design - Spacing• Spacing can save up to 40%120%0.13 [µm] global IC cap. vs. spacing• About 30% is with double space• Spacing advantages: scaling,frequency, reliability, noise,easy to modifymin. spaceCapacitanceRelative capacitance100%80%60%40%20%2X 3X 4XGlobal capacitanc0%1 1.5 2 2.5 3 3.5 4 4.5 5SpacingSpacingWire spacing can save up to 20% of the dynamic <strong>power</strong> !


14/2/2004 36Spacing calculati<strong>on</strong>Back of an envelope estimati<strong>on</strong>:• 10% of Interc<strong>on</strong>nect ⇒ 90% <strong>power</strong>• X2 spacing = extra 20% wiring• Global clock – not spaced (inductance)• Global clock is 20% of interc<strong>on</strong>nect <strong>power</strong>• Save: 30% of (90%-20%) = 20%• Interc<strong>on</strong>nect is 50% ⇒ 10% <strong>power</strong> saveExpected 20% with downsizing• Minor losses - c<strong>on</strong>gesti<strong>on</strong>


14/2/2004 37µ-Architecture - CMP• Comparing two scalingmethods, by IC <strong>power</strong>.Gen. 1 Gen. 2UniprocessorP`• IC - predicted by Rent• L2 - identical, minor• Clock - Identical !• Same average AF.PL2`L2CMPP” P”• Result ~5% less dynamic <strong>power</strong> for CMPL2`


14/2/2004 38Power criticalvs.Timing critical100%90%80%acummulated <strong>power</strong>70%Accumulated Power60%50%40%30%20%10%0%Timing criticalSlack [ps]


14/2/2004 39Outline• Research methodology• Interc<strong>on</strong>nect Power Analysis• Future Trends Analysis• Interc<strong>on</strong>nect Power Implicati<strong>on</strong>s• Summary


14/2/2004 40Interc<strong>on</strong>nect Length Predicti<strong>on</strong>• Technology projecti<strong>on</strong>s - ITRS• Interc<strong>on</strong>nect length predicti<strong>on</strong>s:• ITRS model: 1/3 of the routing space- most optimistic• Davis model:o Rent’s rule basedo Predicts number of nets as functi<strong>on</strong> of:the number of gates and complexity factors• Models calibrated based <strong>on</strong> the case studyTime?


14/2/2004 41Rent’s parametersRent’s rule: T = k N rTNKr= # of I/O terminals (pins)= # of gates= avg. I/O’s per gate= Rent’s exp<strong>on</strong>entcan be: 0 < r < 1 , but comm<strong>on</strong> -(simple) 0.5 < r < 0.75 (complex)N gatesT terminals


14/2/2004 42D<strong>on</strong>ath’s length estimati<strong>on</strong> modelFor the i-th level:There are4 iblocksFor each block there are:⎛k ⋅⎜⎝Assuming two terminal nets :Ni4k2r⎞⎟⎠⎛⋅⎜⎝terminalsNi4r⎞⎟⎠netsThe nets of the i-1 level must be substracted.Nets for level i : ni= 4i⋅k ⎛⋅⎜2 ⎝Ni4r⎞⎟⎠- 4i−1⋅k ⎛ N⋅⎜2 ⎝ 4i−1r⎞⎟⎠= 4i⋅k ⎛⋅⎜2 ⎝Ni4r⎞⎟⎠⋅(r−11−4 )


14/2/2004 43Average interc<strong>on</strong>necti<strong>on</strong> lengthThe wires can be of two types A and D.LA =LD =λ λ λ λ∑∑∑∑[ λ + iA−iB+ jB− jA]i = 1j = 1i = 1j= 1A A B Bλ λ λ λ∑∑∑∑i = 1j = 1i = 1j= 1A A B BThe average: ri=Overall :RI∑i=1=I∑i=14λ2λ+ i[ + j −i− ]niAAB4λ14⋅λ2−9 9⋅λ⋅ rniiequals4 1= ⋅λ−3 3λjB= 2⋅λ29⎛⋅⎜7⋅⎝N4r−0.5Taken from a SLIP 2001 tutorial by Dirk Stroobandtr−0.5−11−N−−11−4r−1.5r−1.5⎞ ⎛ −⋅ 1 4⎟⎜⎠ ⎝1−Nr−1r−1⎞⎟⎠


14/2/2004 44• From Rent’s rule:•IDF:()i l• Where:FOα = ,Davis ModelTr= r⋅N3⎧ α ⋅r⎛l2 ⎞ 2⋅ p−4⋅Γ⋅ 2 N l 2 N l l1 l N : ⎜ − ⋅ ⋅ + ⋅ ⋅ ⎟⋅⎪ ≤ ≤2 3= ⎝ ⎠⎨N l 2 N : α r3⎪ ≤ ≤ ⋅ ⋅2⋅p−4⋅Γ⋅( 2⋅ N ⋅l)⋅l⎪⎩6P−1( )Γ= 2⋅N⋅ 1−N2 1FO + 1 ⎛ ⋅p−p 1+ 2⋅ p−2 1 2⋅N N ⎞⎜−N ⋅ − + − ⎟⎝ p ⋅( 2⋅ p −1) ⋅( p −1) ⋅( 2⋅ p −3)6⋅ p 2⋅ p −1 p −1⎠P• Interc<strong>on</strong>nect total number and length:2⋅N2⋅NNets: I i ζ dζLength:total1• Multipoint Length:= ∫ ( )total ∫ ( )multi_terminalL = i ζ ⋅ζ ⋅dζL = L ⋅χwhere χ=1total4FO+3


14/2/2004 45Davis Model - extensi<strong>on</strong>• C<strong>on</strong>stant factor favors shorter nets.• Short P2P net has higher chance to be a partof a multipoint net.• Correcti<strong>on</strong> factor:• Length:number of point to point nets shorter than lmulti-terminal factor( l) =total point to point netsl1Imulti-terminal() l = i( ζ ) multi-terminal factor( ζ)dζFO∫1110000000.1ExtractedDavis Model100000MeasuredExtended Davis Model10000Nets0.010 .001Number of Nets10001000 .0001100.000011 10 100 1000 10000 100000Length [um ]11 10 100 1000 10000 100000Length |um|


14/2/2004 46RMST - Example


14/2/2004 47Total Dynamic Power• Total DynamicPower• Global clock –not included• Localnets = 66%Globalnets = 34%Power (normalized)Power654321Total Power vs. Net LengthTOTALTotal_IC0Interc<strong>on</strong>nect1 10 100 1000 10000 100000Length [um]Length [µm]


14/2/2004 48Local and Global IC• Local and GlobalIC are different:• Number byLengthbreakdown• IC breakdown –cap and <strong>power</strong>• Fan out• Metal usage• AF is similarPowerPower100 %80 %60 %40 %20 %0%100 %80 %60 %40 %20 %Local Power breakdown vs. Net Length4 .16 8 . 32 16 .64 32 .864 65 .728 131 . 456 262 .496 523 .744 1044 . 99 2084 .99 4160 8300 . 45 16561 .4 33930 83850Length [ um ]Global Power breakdown vs. Net LengthICDiffGateICDiffGate0%4 . 16 8 . 32 16 . 64 32 . 864 65 . 728 131 . 456 262 . 496 523 . 744 1044 . 99 2084 . 99 4160 8300 . 45 16561 . 4 33930 83850Length [ um ]


14/2/2004 4945Benchmarks Comparis<strong>on</strong>Global Dynamic <strong>power</strong> vs. Length40High Power TestsBenchmarks3530Power25201510501 10 100 1000 10000 100000 1000000Length [um ]High <strong>power</strong> tests show similar behavior to average SPEC !


14/2/2004 50Interc<strong>on</strong>nect PeaksTotal wire length vs. Length4MeasuredDavis ModelTotal wire length32120101 0 10 100 Length [ um ] 1000 10000 100000Length [µm]Average gate sizing vs. Length1 . 8Average gate sizing1 . 61 . 4Relative sizing1 . 210 . 80 . 60 . 40 . 201 10 100 1000 10000 100000010 100 1000 10000 100000[ um ]Length [µm]


14/2/2004 51ITRS Power Trends• The ITRS <strong>power</strong> projecti<strong>on</strong> interc<strong>on</strong>nect <strong>power</strong>reducti<strong>on</strong> that happens in 2006-2007 is based <strong>on</strong>:1. Aggressive voltage reducti<strong>on</strong>2. Low-k dielectric improvements• The devices capacitance increase by +30% (trend -15%)• The combined effect:• Interc<strong>on</strong>nect <strong>power</strong> reducti<strong>on</strong> (relative to voltage)• Device <strong>power</strong> remains c<strong>on</strong>stant


[ W]14/2/2004 52Dynamic <strong>power</strong> - ITRS trend600 .00Dynamic <strong>power</strong> projecti<strong>on</strong>500 .00ICPower (normalized)400 .00300 .00200 .00DiffGate100 .000.000 .15 0 .13 0 .1 0 .09 0 .08 0 .07 0 .065 0 .045 0 .032 0 .02Generati<strong>on</strong> 1 /2 min pitchTechnology generati<strong>on</strong> [µm]The Black curve is the ITRS maximum heat removal capabilities


14/2/2004 53Power-Aware FlowPlacement• The reduced IC cap allows fordriver downsizing• On average it reduced thedynamic <strong>power</strong> by 1.4 of the IC<strong>power</strong> saving• Downsizing is timing verified• Cells downsizing reduced thetotal area and leakage by 0.4%• No signal spacing was appliedover 30% unused metal• Post-layout optimizati<strong>on</strong> arepossibleYesPower-aware RoutingRC Extracti<strong>on</strong>Timing Analysis,Power AnalysisAll slackspositive?YesPower drivenTiming c<strong>on</strong>straineddriver downsizingSizingmodified?NoTiming driven -driver upsizingNoFinish


14/2/2004 54FUBS – descripti<strong>on</strong>• A – medium, randomly picked• B – small, highest clock <strong>power</strong>• C – small, good potential• D – medium, good potential• E – worse than averageBlock Name Block A Block B Block C Block D Block E AVERAGEArea [µm 2 ] 138801.6 101274.6 65816.1 164229.1 59766.3 209537.8Devices 14574 8644 7618 18194 6109 16675Inactive Nodes 63.66% 98.78% 82.36% 39.22% 35.38% 52.94%Power [uW] 17170.22 251.15 1786.76 11811.90 6757.11 15373.86RMST potential<strong>power</strong> saving14.3% 17% 22% 29% 4.1% 17%Clock cap. 11.25% 2.59% 12.75% 13.16% 3.27% 8.01%Clock <strong>power</strong> 72.10% 99.99% 96.46% 94.99% 33.84% 60.47%IC cap. 34.00% 27.70% 38.14% 36.05% 29.86% 34.67%IC <strong>power</strong> 28.89% 59.54% 46.74% 48.62% 40.65% 36.83%Clock IC <strong>power</strong> 20.19% 59.54% 45.48% 46.26% 16.87% 23.87%Clock IC length 1.71% 2.34% 2.05% 2.09% 0.74% 3.85%Relative -Capacitance perLength Unit.82.23% 113.15% 87.46% 83.74% 85.97% 88.46%


14/2/2004 55Miller Factor - PowerR1• Opposite directi<strong>on</strong> switching-• The current:• Energy:• That is 4 times a single switching energy.V1CR2V2dQ dC ( ∆Vc)d∆VcIc= = = Cdt dt dtd∆VE I V dt C V dt C V dv C VT T Vddc2c= ∫ c⋅dd⋅ = ∫ ⋅ ⋅dd⋅ = ⋅dd c2dddt∫ = ⋅ ⋅0 0−VddDecoupling by Miller factor of ‘2’.• Same directi<strong>on</strong> switching => no current.Decoupling by Miller factor of ‘0’.• Average case: Miller factor of ‘1’ suitable for <strong>power</strong>averagecase sum metric.


14/2/2004 56Routing Model• Via blockage:• Router efficiency: 0.6• Power grid: 20% of routing• Clock grid: 10% of top tier( ) Low layer pitch High layer pitchLayer multiplier = 1 - blocking fracti<strong>on</strong>• More accurate than ITRS 2001.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!