09.07.2015 Views

Curriculum Vitae - DF-UFPE Pessoal

Curriculum Vitae - DF-UFPE Pessoal

Curriculum Vitae - DF-UFPE Pessoal

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Curriculum</strong> <strong>Vitae</strong>January the 26th, 2007.Personal DataNameAddressLeonardo de Souza MenezesR. Samuel Farias 122, Bl.B/402Santana, Recife-PE52060-430 BrazilDate & place of birth 14.03.1972 in Rio de JaneiroCitizenshipBrazilianFamily status SingleStudies1990-1994 Physics Bachelor degree in Federal University of Rio de Janeiro.1994-1996 Master in Sciences degree in Federal University of Pernambuco.Dissertation approved “with distinction”.1996-2001 Doctor in Sciences degree in Federal University of Pernambuco.Thesis approved “with distinction”.Professional Activities1996-2001 Doctorate student and Teaching Assistant in the PhysicsDepartment, Federal University of Pernambuco.2001-2002 Scientific Assistant in the Physics Department, Federal Universityof Pernambuco.2002-2004 Alexander von Humboldt PostDoc Fellow in the Nano Optics Group,Institut of Physics, Humboldt University of Berlin.2004-2005 PostDoc and Teaching Assistant in the Physics Department,Federal University of Pernambuco.Since 2005 Professor in the Physics Department, Federal University ofPernambuco.Webpagewww.df.ufpe.br/~lmenezes


Leonardo de Souza MenezesPhysicistPublications22. Optical limiting behavior of bismuth oxide-based glass in the visible range.T. R. Oliveira, L. de S. Menezes, E. L. Falcão-Filho, A. S. L. Gomes, Cid B. de Araújo,K. Sakaguchi, F. P. Mezzapesa, I. C. S. Carvalho, P. G. Kazansky. Appl. Phys. Lett. 89,211912 (2006).21. Controlled photon transfer between two individual nanoemitters via sharedhigh-Q modes of a microsphere resonator.S. Götzinger, L. de S. Menezes, A. Mazzei, S. Kühn, V. Sandoghdar, O. Benson. NanoLetters 6, 1151 (2006).20. Optimization of prism coupling to high-Q modes in a microsphere resonatorusing a near-field probe.A. Mazzei, S. Götzinger, L. de S. Menezes, V. Sandoghdar, O. Benson. Opt. Commun.250, 428 (2005).19. Nanoparticles and microspheres: tools to study the interaction of quantumemitters via shared optical modes.L. de S. Menezes, S. Götzinger, A. Mazzei, V. Sandoghdar, O. Benson. Proc. of SPIE5333, 174 (2004).18. Confocal microscopy and spectroscopy of nanocrystals on a high-Qmicrosphere resonator.S. Götzinger, L. de S. Menezes, O. Benson, D. V. Talapin, N. Gaponik, H. Weller, A. L.Rogach, V. Sandoghdar. J. Opt. B: Quantum Semiclass. Opt. 6, 154 (2004).17. Controlled coupling of a single emitter to a single mode of a microsphere:where do we stand?S. Götzinger, L. de S. Menezes, A. Mazzei, O. Benson, D. V. Talapin, N. Gaponik, H.Weller, A. L. Rogach, V. Sandoghdar. Proc. of SPIE 4969, 207 (2003).16. Intensity-dependent excitonic dephasing in polyaniline.L. de S. Menezes, Cid B. de Araújo, E. H. L. Falcão, W. M. de Azevedo. Chem. Phys.Lett. 377, 647 (2003).15. Frequency upconversion in rare-earth doped fluoroindate glasses.Cid B. de Araújo, G. S. Maciel, L. de S. Menezes, N. Rakov, E. L. Falcão-Filho, V. A.Jerez, Y. Messaddeq. C. R. Chimie. 5, 1 (2003).1


Leonardo de Souza MenezesPhysicist14. Phonon-assisted cooperative energy transfer and frequency upconversion ina Yb 3+ /Tb 3+ codoped fluoroindate glass.L. de S. Menezes, G. S. Maciel, Cid B. de Araújo. J. Appl. Phys. 94, 863 (2003).13. Laser-induced conical diffraction due to cross-phase modulation in atransparent medium.V. Pilla, L. de S. Menezes, M. A. R. C. Alencar, Cid B. de Araújo. J. Opt. Soc. Am. B 20,1269 (2003).12. Optimization of spectrally flat and broadband single pump fiber opticparametric amplifiers.C. Floridia, M. L. Sundheimer, L. de S. Menezes, A. S. L. Gomes. Opt. Commun. 223,381 (2003).11. Blue upconversion enhancement by a factor of 200 in Tm 3+ -doped telluriteglass by codoping with Nd 3+ ions.N. Rakov, G. S. Maciel, M. L. Sundheimer, L. de S. Menezes, A. S. L. Gomes, Y.Messaddeq, F. C. Cassanjes, G. Poirier, S. J. L. Ribeiro. J. Appl. Phys. 92, 6337(2002).10. Thermally enhanced frequency upconversion in Nd 3+ -doped fluoroindateglass.L. de S. Menezes, G. S. Maciel, Cid B. de Araújo. J. Appl. Phys. 90, 4498 (2001).9. Ultrafast dynamics of mesoionic liquid solutions studied with incoherent light.L. de S. Menezes, Cid B. de Araújo, M. A. R. C. Alencar, P. F. Athayde-Filho, J. Miller,A. M. Simas. Chem. Phys. Lett. 347, 163 (2001).8. Stimulated effects in one photon resonant interferometric four-wave mixingwith incoherent light.V. Kozich, L. de S. Menezes, Cid B. de Araújo. Opt. Lett. 26, 206 (2001).7. Interference effects in time-delayed degenerate four-wave mixing withbroadband noisy light.V. Kozich, L. de S. Menezes, Cid B. de Araújo. J. Opt. Soc. Am. B 17, 973 (2000).6. Light-induced inhomogeneous broadening in dye solution probed by wavemixingwith broadband lasers.V. Kozich, L. de S. Menezes, Cid B. de Araújo. Opt. Commun. 171, 125 (1999).5. Violet and blue light amplification in Nd 3+ -doped fluoroindate glasses.G. S. Maciel, L. de S. Menezes, Cid B. de Araújo. J. Appl. Phys. 85, 6782 (1999).4. Continuous wave ultraviolet frequency upconversion due to triads of Nd 3+ ionsin fluoroindate glass.L. de S. Menezes, Cid B. de Araújo, G. S. Maciel. Appl. Phys. Lett. 70, 683 (1997).3. Frequency upconversion in Nd 3+ -doped fluoroindate glass.L. de S. Menezes, Cid B. de Araújo, Y. Messaddeq, M. A. Aegerter. J. Non-Cryst. Sol.213&214, 256 (1997).2


Leonardo de Souza MenezesPhysicist2. Infrared-to-visible CW frequency upconversion in Er 3+ -doped fluoroindateglasses.Cid B. de Araújo, L. S. Menezes, G. S. Maciel, L. H. Acioli, A. S. L. Gomes. Appl. Phys.Lett. 68, 602 (1996).1. Temperature sensor based on frequency upconversion in Er 3+ -dopedfluoroindate glass.G. S. Maciel, L. de S. Menezes, A. S. L. Gomes, Cid B. de Araújo, Y. Messaddeq, A.Florez, M. A. Aegerter. IEEE Photon. Technol. Lett. 7, 1474 (1995).Invited Talks• Japan-German Colloquium 2004 on Quantum Optics, 09.02.-12.02.2004, WildbadKreuth, GermanySeminar Talks:• Federal University of Pernambuco, Pernambuco, Brazil, 07 th April 2006.• Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil, 06 th June 2006.• Federal University of Paraíba, Paraíba, Brazil, 27 th July 2006.Federal University ofAlagoas, Alagoas, Brazil, 14 th November 2006.Presbiterian University Mackenzie,São Paulo, 13 th December 2006.3


Leonardo de Souza MenezesPhysicistResearch interestsThe experimental study of light-matter interaction in nanoscale, in afundamentally quantum level, is my main research interest. In order to do this, aNano Optics Laboratory is being implemented at the Physics Department of the FederalUniversity of Pernambuco. The idea is to concentrate on the investigation of modelsystems, through which it is expected to learn how to control the light-matter interaction,so that it becomes possible to study in detail the quantum effects which govern it.An isolated quantum light emitter, which can be a semiconductor quantum dot ordielectric nanocrystals containing rare-earth ions or organic molecules, isattached to the end of a sharp optical fiber tip. Using techniques borrowed from theScanning Near-field Optical Microscopy (SNOM) as a nanomanipulation tool, onemakes the nanoemitter interact with the eigenmodes of a dielectric microcavity (amicrosphere or a microtoroid made of silica), which present ultra-high quality factors,the so-called “whispering-gallery modes”.The microspherical resonators are produced by controllably melting ultra-puresilica, exposing it to the radiation of a CO 2 laser. Using a narrow linewidth tunablediode laser, it is possible to couple radiation to the cavity’s eigenmodes by using opticalcouplers, such as high refractive index prisms or optical fiber tapers. In this way, thedecay time of the electromagnetic field in these modes easily achieves a microsecond.Using a system like this, it may be possible to observe the “single quantum emitterlaser” phenomenon, among other effects related to cavity quantum electrodynamics inthe optical regime. In particular, the technological development of fiber taperingtechniques is interesting for nonlinear optical applications, like generation of white light,which has direct use in optical metrology.The use of SNOM probes is faced as a twofold capability tool: they may be usedas nanotools for manipulating particles which are hundreds of times smaller thenthe optical wavelength. More interestingly, however, is the fact that they allow one toprobe the electromagnetic field with a spatial resolution of tens of nanometers. By usingsuch a technique, it is possible to map a microcavity’s eigenmodes and to optimize thecoupling of radiation to one of them, at will.4


Leonardo de Souza MenezesPhysicistThe most attractive quantum emitters are the semiconductor nanocrystals. Due totheir nanometric dimensions, it is possible to reach the quantum confinement regime ofcharge carriers and quantum effects, like single-photon emission, may be observedeven at room temperature. The spectral properties of a semiconductor quantum dotmay also be manipulated in a very simple way, by choosing the materials from which itis made, by controlling the nanocrystal’s size (meaning to say, to control the strength ofthe quantum confinement effects) or even by applying an electric field around the regionwhere it is located. These quantum dots may also be used as sources of quantumradiation, through the generation of single photons on-demand due to the decay of anexciton. By exploiting the biexcitonic decay in these structures, one can obtain pair ofentangled photons, which may very useful for transmitting and processing quantuminformation.It is also a research interest to perform linear and nonlinear laser spectroscopiesof isolated nanoscopic particles (dielectric and metallic), by using laser scanningconfocal and near-field microscopy techniques.5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!