05.07.2015 Views

II. Applications of the Josephson Effect

II. Applications of the Josephson Effect

II. Applications of the Josephson Effect

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 4<br />

<strong>Applications</strong><br />

<strong>of</strong> <strong>the</strong><br />

<strong>Josephson</strong> <strong>Effect</strong>


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

<strong>II</strong>. <strong>Applications</strong> <strong>of</strong> <strong>the</strong> <strong>Josephson</strong> <strong>Effect</strong><br />

AS-Chap. 4 - 2<br />

large number <strong>of</strong> analog and digital applications:<br />

• I s m = I s m B :<br />

magnetic field sensors (SQUIDs) (ch. 4)<br />

• β C ≫ 1:<br />

bistability: zero/voltage state<br />

switching devices, <strong>Josephson</strong> computer (ch. 5)<br />

• 2 nd <strong>Josephson</strong> equation dφ/dt = 2eV/ħ<br />

VCO, voltage standard (ch. 6)<br />

• nonlinear IVC<br />

mixers up to THz, oscillators (ch. 7)<br />

• macroscopic quantum behavior<br />

superconducting qubits (ch. 9)


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4. Superconducting Quantum Interference Devices<br />

Superconducting Quantum Interference Devices = SQUID<br />

single <strong>Josephson</strong> junction as can be used as<br />

magnetic field sensor: I s m = I s m B<br />

- sensitivity: dI s /dΦ ≈ I s m /Φ 0 = I s m /B 0 t B L<br />

increase t B L to increase sensitivity<br />

• superconducting loop with one or more <strong>Josephson</strong> junctions<br />

relevant area: loop area<br />

• dual or multi-beam interference:<br />

Superconducting Quantum Interference Devices (SQUIDs)<br />

• relevant physics:<br />

flux quantization in superconducting loops and <strong>Josephson</strong> effect<br />

• SQUIDs = most sensitive detectors for magnetic flux<br />

• can detect every quantity that can be converted into magnetic flux:<br />

magnetic field, field gradient, current, voltage, displacement, …<br />

• most relevant types <strong>of</strong> SQUIDs:<br />

direct current (dc) and radio frequency (rf) SQUIDs<br />

• dc-SQUIDs: highest energy sensitivity at low temperatures<br />

AS-Chap. 4 - 3


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

Die Kalmare (Teuthida) stellen mit rund 300 Arten die größte Gruppe innerhalb der Kopffüßer<br />

dar. Gemeinsam mit den Echten Tintenfischen (Sepiida), den Zwergtintenfischen (Sepiolida) und<br />

dem Posthörnchen (Spirula spirula), das allein eine eigene Gruppe Spirulida darstellt, bilden sie<br />

die Gruppe der Zehnarmigen Tintenfische (Decapoda).<br />

AS-Chap. 4 - 4


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

AS-Chap. 4 - 5<br />

4.1 The dc-SQUID<br />

4.1.1 The Zero Voltage State<br />

2 JJs (lumped elements) connected in parallel, identical I c


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.1 The Zero Voltage State<br />

AS-Chap. 4 - 6<br />

total phase change along closed contour = 2¼n:<br />

use:


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.1 The Zero Voltage State<br />

AS-Chap. 4 - 7<br />

• substitution:<br />

• integration <strong>of</strong> A:<br />

closed loop total flux Φ 0 threading <strong>the</strong> loop<br />

• integration for J s :<br />

J s vanishes deep inside electrode material ∫ ΛJ s ⋅ dl vanishes<br />

• result: phase differences are not independent but linked via <strong>the</strong> fluxoid quantization:<br />

• if Φ = Φ ext : maximum possible supercurrent is obtained for sin(…) = 1 as<br />

problem solved!


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.1 The Zero Voltage State<br />

AS-Chap. 4 - 8<br />

• problem: finite inductance L <strong>of</strong> <strong>the</strong> loop <br />

• for a symmetrical loop we can write:<br />

average supercurrent<br />

circulating current<br />

equations have to be solved<br />

self-consistently<br />

maximum I s m : maximize I s with<br />

respect to φ 1 with constraint


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.1 The Zero Voltage State<br />

AS-Chap. 4 - 9<br />

• relevance <strong>of</strong> finite inductance is characterized by<br />

screening parameter:<br />

• negligible screening: β L ≪ 1<br />

flux due to circulating current can be neglected<br />

maximum supercurrent for given Φ ext :<br />

from dI s /dφ 1 = 0 <br />

A = 2 mm 2 ,<br />

B ext = 1 nT<br />

Φ ext =<br />

Φ 0


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.1 The Zero Voltage State<br />

AS-Chap. 4 - 10<br />

• large screening: β L ≫ 1<br />

LI c ≫ Φ 0 circulating current compensates external field<br />

total flux in <strong>the</strong> loop tends to be quantized:<br />

transport current:<br />

circulating current:<br />

constraint:<br />

for given I and Φ: 2 equations for φ 1,2 ⇒ Φ cir = LI cir and Φ ext<br />

e.g.: for I ≃ 0: sin φ 1 ≃ − sin φ 2 and:<br />

in summary we get: Φ Φ ext<br />

• how does Φ Φ ext look like in detail ?


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.1 The Zero Voltage State<br />

• finite screening:<br />

β L > 0<br />

• small β L : single valued/non-hysteretic Φ Φ ext<br />

• maximum value <strong>of</strong> Φ cir ≃ LI c<br />

• single valued Φ Φ ext curve for: |Φ cir | ≤ Φ 0<br />

⇒ LI 2 c ≤ Φ 0<br />

2<br />

(more precisely: β L ≤ 2/π)<br />

⇒<br />

β L ≤ 1<br />

AS-Chap. 4 - 11


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.1 The Zero Voltage State<br />

AS-Chap. 4 - 12<br />

• how does I m s Φ ext look like?<br />

- qualitative discussion for large β L<br />

I cir → 0 for large I → I s m ≃ 2I c<br />

start with n = 0:<br />

small screening current I cir ≃ −Φ ext /L screens field<br />

I 1 decreases, I 2 increases with increasing Φ ext I 2 ≤ I c<br />

modulation depth <strong>of</strong> I s m Φ ext is strongly reduced with increasing β L (∝ 1/β L )


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.2 The Voltage State<br />

• negligible screening: ¯L ¿ 1, strong damping: ¯C ¿ 1<br />

total flux = applied flux<br />

displacement current can be neglected:<br />

total current = <strong>Josephson</strong> + resistive current<br />

• identical junctions:<br />

• define new phase:<br />

with F ' F ext = const <br />

IVC ´ IVC <strong>of</strong> single junction with flux dependent I c<br />

mechanical analogue: two pendula, for ¯L ¿ 1 rigid coupling <strong>of</strong> <strong>the</strong> pendula<br />

AS-Chap. 4 - 13


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.2 The Voltage State<br />

AS-Chap. 4 - 14<br />

• single junction IVC for ¯C ¿ 1:<br />

periodic IVCs, period: © 0<br />

V(© ext ): periodic<br />

minima and maxima at same positions<br />

maximum modulation for I ' 2I c


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.2 The Voltage State<br />

AS-Chap. 4 - 15<br />

• finite screening: ¯L » 1, intermediate damping: ¯C » 1<br />

- increase flux threading loop: larger loops large L<br />

- consider displacement + noise current<br />

numerical solution required !<br />

• basic equations:<br />

relates voltage to phase change<br />

fluxoid quantization<br />

coupling


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.2 The Voltage State<br />

AS-Chap. 4 - 16<br />

• mechanical analogue: 2 pendula with mass M and length l coupled via twistable bar<br />

- for negligible screening (¯L ¿ 1): rigid bar<br />

relative angle 1 - 2 = 2¼© ext /© 0 fixed by external flux<br />

single combined pendulum with mass 2M, distance from pivot point: l cos(( 1 - 2 )/2)<br />

without torque: pendula reside at ( 1 - 2 )/2<br />

with torque (bias current): combined pendula rotate<br />

I = 0 I > 0


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.3 Operation and Performance <strong>of</strong> dc-SQUIDs<br />

¯C < 1 non-hysteretic IVCs<br />

I > 2I c<br />

AS-Chap. 4 - 17


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.3 Operation and Performance <strong>of</strong> dc-SQUIDs<br />

¯C < 1 non-hysteretic IVCs<br />

I > 2I c<br />

AS-Chap. 4 - 18


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.3 Operation and Performance <strong>of</strong> dc-SQUIDs<br />

AS-Chap. 4 - 19<br />

• important parameters for practical applications <strong>of</strong> SQUIDs<br />

flux-to-voltage transfer coefficient (measure <strong>of</strong> sensitivity to flux):<br />

maximum at steepest point <strong>of</strong> hVi(F ext )<br />

flux to voltage transducer<br />

equivalent flux noise (measure <strong>of</strong> flux resolution)<br />

S V (f): power spectral density <strong>of</strong> voltage<br />

noise at fixed bias current<br />

noise energy (measure <strong>of</strong> energy resolution, good for comparison <strong>of</strong> different SQUID geometries)<br />

sets energy resolution<br />

should be as small as possible


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.3 Operation and Performance <strong>of</strong> dc-SQUIDs<br />

for given S V (f): maximize H and L:<br />

1. bias current: I ¸ I c : largest modulation <strong>of</strong> hVi(F ext )<br />

2. flux bias: close to (2n+1) F 0 /4<br />

3. junction critical current: coupling energy E J À k B T<br />

simulations show: I c ¸ 5¢I th ´ 5¢2¼k B T/F 0<br />

@ 4.2 K: I c ¸ 1 ¹A<br />

4. loop inductance: should be large<br />

but: <strong>the</strong>rmal noise flux (k B TL) 1/2 ¿ F 0<br />

define <strong>the</strong>rmal inductance: L th I th = F 0 /2<br />

simulations: L · 0.2¢L th<br />

@ 4.2 K: L · 1 nH<br />

define:<br />

5. screening parameter: ¯L = 2I c L/© 0 < 1 no hysteresis in hVi(F ext )<br />

small L, but large area choose ¯L » 1<br />

small I c ≈ 1 ¹A @ 4.2 K L · 1 nH<br />

6. Stewart-McCumber parameter: ¯c < 1 no hysteresis in IVC (external shunt)<br />

choose ¯c ' 1 for large voltage output<br />

AS-Chap. 4 - 20


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.3 Operation and Performance <strong>of</strong> dc-SQUIDs<br />

AS-Chap. 4 - 21<br />

• detailed numerical simulations:<br />

²(f) minimum for ¯L » 1, ¯c ' 1 at (2n+1)F 0 /4, at max. voltage modulation (≈I c R N )<br />

<strong>the</strong>n:<br />

• small signal analysis in white noise regime (@ optimal point):<br />

T, C<br />

J c , ! p


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.3 Operation and Performance <strong>of</strong> dc-SQUIDs<br />

• improve performance od dc-SQUID: decrease T and C, increase J c<br />

- ²(f) is given in units <strong>of</strong> ~ ' 10 -34 Js<br />

• optimized SQUIDs: ²(f) approaches quantum limit, practical SQUIDs: ²(f) ≈ 10 ~<br />

• dimensionless parameter:<br />

• reduced noise energy:<br />

rapid increase for<br />

°¯L > 0.2<br />

<strong>the</strong>rmal noise rounding<br />

<strong>of</strong> IVC<br />

D. Kölle et al., Rev. Mod. Phys. 71, 631 (1999)<br />

AS-Chap. 4 - 22


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.4 Practical dc-SQUIDs<br />

AS-Chap. 4 - 23<br />

we need:<br />

- antenna,<br />

- SQUID,<br />

- room temperature electronics


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.4 Practical dc-SQUIDs<br />

AS-Chap. 4 - 24<br />

• today:<br />

fabrication:<br />

SQUIDs and antenna consist <strong>of</strong> thin film structures<br />

by optical and electron beam lithography<br />

• washer type SQUID:<br />

- large sensitivity large area<br />

- but large L deterioration <strong>of</strong> performance<br />

large effective area &<br />

small inductance:<br />

perfect diamagnetism<br />

washer type<br />

easy coupling to<br />

antenna:<br />

planar spiral coil


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.4 Practical dc-SQUIDs<br />

AS-Chap. 4 - 25<br />

• loop currents around inner opening defines L = 1.25 ¹ 0 D (for W À D)<br />

effective area: A eff / D¢W<br />

• limit: flux trapping in washer area flux noise by <strong>the</strong>rmally activated motion<br />

• flux focusing effect in washer-type YBCO grain boundary junction dc SQUID<br />

M.B. Ketchen et al.,<br />

Appl. Phys. Lett. 40, 736 (1982)<br />

R. Gross et al.,<br />

Appl. Phys. Lett. 57, 727 (1990)


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.4 Practical dc-SQUIDs<br />

spiral input coil:<br />

coil inductance:<br />

mutual inductance:<br />

coupling coefficient:<br />

L S : stripline inductance<br />

n: # <strong>of</strong> turns<br />

n 2 L: coil geometric self inductance<br />

example: D = 20 ¹m L ' 30 pH<br />

n = 50 L i ' 75 nH and M i ' 1.5 nH (® ex ' 0.6 – 0.8)<br />

AS-Chap. 4 - 26


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.4 Practical dc-SQUIDs<br />

low-T c dc-SQUIDs:<br />

- multilayer thin film technology<br />

- high plasma frequency (high J c )<br />

- small junctions<br />

( small capacitance)<br />

- Nb/AlO x /Nb technology<br />

specific problem: capacitance between spiral input coil and square washer<br />

LC resonances excess noise<br />

AS-Chap. 4 - 27


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

AS-Chap. 4 - 28<br />

4.1.4 Practical dc-SQUIDs<br />

high-T c dc-SQUIDs:<br />

- heteroepitaxial growth <strong>of</strong> <strong>the</strong> different SC layers<br />

- low reproducibility <strong>of</strong> junctions<br />

- alternatives: flip-chip design, directly coupled SQUID (only 1 SC layer required)


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

AS-Chap. 4 - 29<br />

4.1.5 Read-Out Schemes<br />

• flux-locked loop operation<br />

- hVi(F ext ) curve is nonlinear<br />

- linearization by feedback circuit<br />

linear input – output relation<br />

- oscillating flux, amplitude F 0 /2<br />

- f mod ≈ 100 kHz – several MHz<br />

• quasistatic flux = nF 0 : rectified input<br />

2f mod component<br />

lock-in detection at f mod zero<br />

• quasistatic flux = (n+1/4) F 0 :<br />

maximum lock-in output signal<br />

• detection <strong>of</strong> ac voltage:<br />

cooled transformer:<br />

SQUID impedance matching:<br />

R d N 2 R d<br />

low-noise preamplifier


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.1.5 Read-Out Schemes<br />

flux-locked loop:<br />

L f :<br />

feedback coil<br />

small flux change ±F to SQUID positive output / ±F<br />

increase <strong>of</strong> integrator output voltage<br />

increase <strong>of</strong> current through feedback coil<br />

compensates ±F<br />

SQUID voltage (and integrator output) stay constant null detector<br />

±V in / ±F ±I f = ±V in /R f ±F f = k 2 L f ±I f<br />

<strong>the</strong>n from |±F f | = |±F |:<br />

f mod » 100 kHz – several MHz: bandwidth up to 100 kHz, dynamic range ¸ 140 dB<br />

“slew rate”: up to 10 7 © 0 /s<br />

AS-Chap. 4 - 30


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

AS-Chap. 4 - 31<br />

4.1.5 Read-Out Schemes<br />

• bias current reversal:<br />

- bias current is modulated (to suppress low-frequency noise <strong>of</strong> <strong>Josephson</strong> junctions)<br />

- asymmetric part <strong>of</strong> critical current fluctuations can be eliminated<br />

double modulation technique<br />

• additional positive feedback:<br />

- asymmetric hVi(F ext ) (part <strong>of</strong> <strong>the</strong> bias current is used)<br />

- steeper slope larger V/F<br />

direct read-out with RT electronics<br />

• digital read-out schemes:<br />

- cryogenic digital feedback schemes compact, wide bandwidth<br />

digitized output signals for transmission to RT<br />

• relaxation oscillation schemes:<br />

- hysteretic junctions<br />

- SQUID shunted by series LR<br />

- frequency <strong>of</strong> relaxation oscillations depends on flux<br />

large SQUID output voltage


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.2 The rf-SQUID<br />

AS-Chap. 4 - 32<br />

requires only 1 <strong>Josephson</strong> junction:<br />

- rf current is applied via tank circuit inductively coupled to SQUID loop<br />

- measure time-averaged tank circuit voltage<br />

advantage: only 1 JJ, no dc-current to SQUID<br />

disadvantage: energy resolution (limited by read-out electronics)<br />

4.2.1 The zero voltage state<br />

total phase change:<br />

using:<br />

and:


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.2.1 The zero voltage state<br />

substitution:<br />

integration <strong>of</strong> A total flux<br />

large thickness: 2 nd integral can<br />

be omitted<br />

supercurrent:<br />

total flux:<br />

screening parameter:<br />

¯L,rf >1:<br />

unstable regions<br />

negative slope<br />

practically relevant<br />

at © ext = © ext,c :<br />

junction critical current reached<br />

flux quantum enters SQUID ring<br />

hysteresis loop<br />

AS-Chap. 4 - 33


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.2.2 Operation and Performance <strong>of</strong> rf SQUIDs<br />

AS-Chap. 4 - 34<br />

operation <strong>of</strong> rf-SQUIDs:<br />

- SQUID loop inductively coupled to LC tank circuit<br />

- quality factor Q = R T /! rf L T<br />

! rf2 = 1/L T C T<br />

- mutual inductance M = ®(L T L) 0.5<br />

- rf current in tank circuit: I T = QI rf<br />

for ¯L,rf < 1:<br />

©(© ext ) non-hysteretic<br />

rf-SQUID as nonlinear inductor<br />

periodic modulation <strong>of</strong> resonance frequency (L T,eff C T ) -1/2<br />

operation close to resonance frequency: strong change in rf-voltage


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.2.2 Operation and Performance <strong>of</strong> rf SQUIDs<br />

AS-Chap. 4 - 35<br />

for ¯L,rf > 1:<br />

©(© ext ) hysteretic<br />

total flux through SQUID:<br />

for © S + © rf > © ext,c hysteresis loop<br />

energy loss / area<br />

damping <strong>of</strong> tank circuit:<br />

minimum close to n¢© 0<br />

maximum close to (2n+1)/2¢© 0<br />

tank voltage is periodic in applied flux


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

dependence <strong>of</strong> V T on © S and © rf :<br />

start at © S = n¢© 0 , n = 0:<br />

V T increases linearly with I rf as long as © rf = MQI rf < © ext,c<br />

critical rf-current: I rf,c = © ext,c /M<br />

tank voltage:<br />

for I rf > I rf,c : jump to k = +1 or k = -1 branch<br />

hysteresis loop, energy loss, decrease <strong>of</strong> rf-current<br />

no hysteresis loops until tank circuit has recovered<br />

fur<strong>the</strong>r increase <strong>of</strong> I rf (A B)<br />

transitions at higher rate<br />

at I rf,r : 1 transition in each rf cycle<br />

start at © S = (n+1/2)¢© 0 , n = 0:<br />

transition to k = +1 branch at: © ext,c - © 0 /2<br />

transition to k = -1 branch at:- (© ext,c +© 0 )/2<br />

first horizontal branch at:<br />

V T (I rf ) curves for intermediate values:<br />

between © S = © 0 /2 and © S = 0<br />

AS-Chap. 4 - 36


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.2.2 Operation and Performance <strong>of</strong> rf SQUIDs<br />

AS-Chap. 4 - 37<br />

dependence <strong>of</strong> V T on © S and © rf :<br />

- start at © S = n¢© 0 , n = 0:<br />

- V T increases linearly with I rf as long as © rf = MQI rf < © ext,c<br />

- critical rf-current: I rf,c = © ext,c /M<br />

- tank voltage:<br />

for I rf > I rf,c : jump to k = +1 or k = -1 branch<br />

hysteresis loop, energy loss, decrease <strong>of</strong> rf-current<br />

no hysteresis loops until tank circuit has recovered<br />

fur<strong>the</strong>r increase <strong>of</strong> I rf (A B)<br />

transitions at higher rate<br />

at I rf,r : 1 transition in each rf cycle<br />

start at © S = (n+1/2)¢© 0 , n = 0:<br />

transition to k = +1 branch at: © ext,c - © 0 /2<br />

transition to k = -1 branch at:- (© ext,c +© 0 )/2<br />

first horizontal branch at:


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.2.2 Operation and Performance <strong>of</strong> rf SQUIDs<br />

change <strong>of</strong> V T from © S = 0 to © 0 /2: ! rf L T © 0 /2M<br />

flux-to-voltage transfer function near © S = © 0 /4:<br />

lower bound for M / ®: <strong>the</strong>re must be I rf that intersects <strong>the</strong> first step <strong>of</strong> V T (I rf )<br />

point F has to be to <strong>the</strong> right <strong>of</strong> E<br />

operation: stay on step for all © S , flux locked loop with flux modulation<br />

AS-Chap. 4 - 38


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.2.2 Operation and Performance <strong>of</strong> rf SQUIDs<br />

AS-Chap. 4 - 39<br />

additional topic: noise in rf-SQUIDs:<br />

- switching k = 0 k = 1: stochastic fluctuations (<strong>the</strong>rmal activation)<br />

noise in step voltage V T flux noise:<br />

noise causes finite slope <strong>of</strong> horizontal branches<br />

extrinsic noise source: preamplifier, lines T amp<br />

eff<br />

energy resolution:<br />

high frequencies (few GHz), cold amplifiers: ² ≈ 3£10 -32 J/Hz<br />

comparison:<br />

rf-SQUID: ² ≈ k B T/! rf<br />

dc-SQUID: ² ≈ k B T/! c (! c = 2¼IcR N /© 0 ≈ 100 GHz)<br />

better energy resolution <strong>of</strong> dc-SQUID because: ! c À ! rf


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.2.3 Practical rf-SQUIDs<br />

AS-Chap. 4 - 40<br />

low T c rf SQUIDs:<br />

- early versions: toroidal configuration machined from Nb<br />

- operated at 10 MHz, ² ≈ 5£ 10 -29 J/Hz<br />

- now: thin film technology, ² ≈ 10 -32 J/Hz<br />

high T c rf-SQUIDs:<br />

- operating at 77 K<br />

- washer-type rf-SQUIDs incorporated in ¸/2 microstrip resonator


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.3 additional topic: O<strong>the</strong>r SQUID Configurations<br />

4.3.1 The DROS (Double Relaxation Oscillation SQUID)<br />

AS-Chap. 4 - 41<br />

large flux-to-voltage transfer coefficient, large modulation voltage<br />

direct read-out by RT amplifier<br />

hysteretic dc-SQUID (¯C > 1), hysteretic junction in series + L-R shunt<br />

DROS as comparator <strong>of</strong> <strong>the</strong> two critical currents<br />

voltage output behaves like square wave<br />

flux-to-voltage coefficients up to 3 mV/© 0


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.3.2 The SQIF<br />

AS-Chap. 4 - 42<br />

for ¯L ¿ 1: dc-SQUID double slit configuration<br />

steeper I sm (© ext ) for optical grid analogue: N junctions in parallel<br />

experimental problem: uniformity <strong>of</strong> junctions and loops<br />

irregular parallel array <strong>of</strong> JJ: Superconducting Quantum Interference Filters<br />

I sm (© ext ) shows sharp peak at zero flux


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.3.3 Cartwheel SQUID<br />

AS-Chap. 4 - 43<br />

SQUID loop: several loops in parallel reducing total SQUID inductance


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

Summary: dc Squid<br />

AS-Chap. 4 - 44<br />

flux-to-voltage transfer coefficient<br />

equivalent flux noise<br />

noise energy


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.4 Instruments Based on SQUIDs<br />

• SQUIDs sense any signal that can be converted to flux<br />

• SQUID based instrument: antenna determines quantity to be measured:<br />

• input circuit influences signal and noise properties <strong>of</strong> SQUID<br />

• reduction <strong>of</strong> SQUID inductance<br />

® 2 : coupling coefficient<br />

mutual inductance:<br />

AS-Chap. 4 - 46


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.4.1 Magnetometers<br />

AS-Chap. 4 - 51


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.4.1 Magnetometers<br />

AS-Chap. 4 - 52


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.4.2 Gradiometers<br />

AS-Chap. 4 - 53<br />

for biomagnetic measurements:<br />

reduce perturbing environmental magnetic fields<br />

- non-magnetic materials<br />

- ¹-metal shields<br />

- magnetically shielded rooms<br />

and/or: n th -order gradiometers suppression <strong>of</strong> remote signals<br />

PTB Berlin:<br />

7 ¹-metal shields<br />

1 Al layer<br />

active field reduction<br />

shielding factor:<br />

2£ 10 6 @ 0.01 Hz<br />

2£ 10 8 @ 5 Hz


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.4.2 Gradiometers<br />

AS-Chap. 4 - 54<br />

axial gradiometer<br />

planar gradiometer<br />

1 st order 2 nd order 1 st order, dB z /dx 1 st order, dB z /dy


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.4.3 Susceptometers<br />

measurement <strong>of</strong> magnetic properties <strong>of</strong> materials<br />

- 1 st or 2 nd order gradiometer & sample in static B field<br />

- sample in one <strong>of</strong> <strong>the</strong> pick-up loops<br />

non-magnetic sample<br />

sample with susceptibilty Â<br />

no output signal<br />

additional flux detected by SQUID<br />

commercial systems: 2 nd order gradiometer, sample axially moving<br />

 with resolution <strong>of</strong> 10 -8 emu @ 1.8 – 400 K up to 7 T<br />

AS-Chap. 4 - 55


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.4.4 Voltmeters<br />

AS-Chap. 4 - 57<br />

voltage transformed into current via input resistor<br />

- feedback <strong>of</strong> SQUID output to input resistor<br />

flux locked loop (null-balancing <strong>of</strong> voltage)<br />

resolution:<br />

≈ 10 -12 V/(Hz) 1/2 for R i = 0.01 <br />

≈ 10 -10 V/(Hz) 1/2 for R i = 100 <br />

superior for low impedance samples<br />

applications:<br />

transport, noise, <strong>the</strong>rmoelectric properties <strong>of</strong> metallic/superconducting samples


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.4.5 Radi<strong>of</strong>requency Amplifiers<br />

AS-Chap. 4 - 58<br />

tuned amplifier:<br />

- input circuit: R i , C i , and L i<br />

- for frequencies up to 100 MHz<br />

- noise temperature close to <strong>the</strong> quantum limit T N ≈ hn / k B


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.5 <strong>Applications</strong> <strong>of</strong> SQUIDs<br />

4.5.1 Biomagnetism<br />

AS-Chap. 4 - 60<br />

biomagnetic method:<br />

- non-invasive detection <strong>of</strong> magnetic signals from human body<br />

biomagnetic imaging:<br />

- field map <strong>of</strong> heart / brain activity source location<br />

(only simple volume conductor models are needed)<br />

MEG: magnetoencephalography<br />

MCG: magnetocardiography<br />

extremely small fields:<br />

brain: 100 fT (one neuron: 0.1 fT), heart: 10 pT<br />

highly sensitive SQUID magnetometers<br />

low 1/f noise<br />

spatial and temporal magnetic<br />

field distribution:<br />

array <strong>of</strong> SQUID sensors (multichannel systems)<br />

(or scan single SQUID)


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.5.1 Biomagnetism<br />

AS-Chap. 4 - 61<br />

signal reconstruction<br />

- current distribution cannot be calculated from<br />

measured field distribution<br />

inverse problem has no unique solution<br />

model assumptions<br />

based on elementary current dipoles<br />

(= short localized conductor segments &<br />

volume backflow)


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

AS-Chap. 4 - 62<br />

4.5.1 Biomagnetism<br />

Magnetocardiography (MCG):<br />

heart signals ≈ 100 pT, fine structure (≈ pT) clinically relevant<br />

source <strong>of</strong> pathological signals with high precision in 3 dimensions<br />

• planar sensor loops B z component<br />

positive and negative components<br />

instantaneous field maps<br />

eg.: false color maps<br />

• each patient: own fingerprint<br />

• use noise suppression techniques<br />

MFMS: magnetic field map sequences<br />

healthy<br />

heart<br />

ventricular<br />

tachycardia


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.5.1 Biomagnetism<br />

AS-Chap. 4 - 63<br />

11 SQUIDs:<br />

vector components B x , B y , B z on two planes:<br />

B x ~ (B x1 + B x2 )/2<br />

gradient:<br />

B x /x ~ (B x1 - B x2 )<br />

magnetic field during R-peak above thorax <strong>of</strong> healthy heart:


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.5.1 Biomagnetism<br />

AS-Chap. 4 - 64<br />

Magnetoencephalography (MEG)<br />

functional brain mapping (in contrast to CT/MRI)<br />

intercellular neuronal currents<br />

spatial resolution 2 mm, temporal resolution: 1 ms<br />

optimum SQUID resolution, noise suppression<br />

completely non-invasive, undistorted biosignals<br />

epilepsy, localizing eloquent cortex


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.5.2 Nondestructive Evaluation (NDE)<br />

non-invasive identification <strong>of</strong> structural or material defects<br />

(sub-) surface cracks in aircrafts<br />

reinforcing rods in concrete strutures<br />

short distance between inner<br />

cold and out warm wall<br />

(spatial resolution)<br />

HTS SQUIDs (@ 77 K)<br />

advantageous<br />

eddy-current techniques:<br />

- alternating field<br />

- eddy currents disturbed by material defects<br />

AS-Chap. 4 - 65


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.5.2 Nondestructive Evaluation (NDE)<br />

AS-Chap. 4 - 66


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.5.3 SQUID Microscopy<br />

AS-Chap. 4 - 67<br />

image magnetic field distribution, high sensitivity, modest spatial resolution<br />

- initially: low-T c dc SQUIDs, now: high-T c SQUIDs @ 77 K<br />

- frequency: dc up to 1 GHz<br />

spatial resolution:<br />

- cold samples: 5 ¹m (with s<strong>of</strong>t magnetic focusing tip: 0.1 ¹m)<br />

- RT-samples: 30 – 50 ¹m<br />

applications.<br />

- diagnostics <strong>of</strong> SC devices<br />

- properties <strong>of</strong> ultra-thin magnetic films<br />

- analysis <strong>of</strong> semiconducting devices<br />

SQUID – sample separation:<br />

75 ¹m Sapphire window: 150 ¹m<br />

3 ¹m Si x N y window: 15 ¹m


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.5.3 SQUID Microscopy<br />

AS-Chap. 4 - 68<br />

alignment track <strong>of</strong> 5.25”<br />

floppy disk<br />

magnetic ink in 1 $ note<br />

flux quanta trapped in<br />

SQUID washer


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

4.5.4 Gravity Wave Antennas and Gravity Gradiometers<br />

topics: inertial navigation, general relativity, deviations from 1/r 2 , and gravitational waves:<br />

e.g. collapsing stars, rotating double stars<br />

expansion and contraction oscillations<br />

expected length change ¢l/l ~ 10 -19<br />

required resolution ~ 10 21<br />

resonant mass transducer<br />

displacement current<br />

antenna mK regime<br />

resolution: zero point motion<br />

quantum limited antenna<br />

typical resonance frequency: 1 kHz T< ~! ant /k B ≈ 50 nK<br />

but: increase <strong>of</strong> Q increase <strong>of</strong> effective noise temperature T eff<br />

assume: gravitational pulse, length ¿, antenna decay time Q/! ant :<br />

quantum limit (bar energy > k B T eff ) T < Q~/k B ¿<br />

for Q = 2£10 6 and ¿ = 1 ms T ≈ 20 mK<br />

quantum limited sensor is required<br />

presently: sensitivities ¢l/l ≈ 10 -18 , no gravity waves reported yet<br />

AS-Chap. 4 - 69


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

AS-Chap. 4 - 70<br />

4.5.4 Gravity Wave Antennas and Gravity Gradiometers<br />

gravity gradiometer:<br />

gravity gradient separation <strong>of</strong> test masses coil induction<br />

mapping earth’s gravity gradient, test <strong>of</strong> 1/r 2 law<br />

4.5.5 Geophysics<br />

SQUIDs used to probe <strong>the</strong> magnetic properties <strong>of</strong> earth<br />

• rock magnetometry<br />

• mapping earth magnetic field / em impedance<br />

• geophysical surveying


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

Summary<br />

negligible screening ¯L = 2LI c /© 0<br />

¿ 1 © » © ext<br />

strong damping:<br />

large screening ¯L = 2LI c /© 0 À 1 © = © ext + LI cir » n© 0<br />

intermediate ¯L: I sm (© ext ) self-consistently from ©(© ext ) and I sm (©)<br />

performance:<br />

optimum operation (¯L » 1, ¯C » 1):<br />

operation in flux-locked-loop as null detector<br />

AS-Chap. 4 - 71


R. Gross, A. Marx, and F. Deppe © Wal<strong>the</strong>r-Meißner-Institut (2001 - 2013)<br />

Summary (rf-SQUID)<br />

operation: inductive coupling to tank circuit<br />

performance:<br />

operation in flux-locked-loop as null detector<br />

Summary (SQUID based instruments)<br />

• antenna, SQUID (flux-to-voltage transformer), read-out electronics<br />

• magnetometer, gradiometer, voltmeter, susceptometer, …<br />

• magnetic field resolution: few fT/(Hz) 1/2<br />

• application: magnetocardiography/-encephalography, NDE, microscopy, geophysics<br />

AS-Chap. 4 - 72

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!