04.07.2015 Views

studies-on-neutralizing-effect-of-ophiorrhiza-mungos-root-extract-against-daboia-russelii-venom

studies-on-neutralizing-effect-of-ophiorrhiza-mungos-root-extract-against-daboia-russelii-venom

studies-on-neutralizing-effect-of-ophiorrhiza-mungos-root-extract-against-daboia-russelii-venom

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Journal <strong>of</strong> Ethnopharmacology 151 (2014) 543–547<br />

C<strong>on</strong>tents lists available at ScienceDirect<br />

Journal <strong>of</strong> Ethnopharmacology<br />

journal homepage: www.elsevier.com/locate/jep<br />

Studies <strong>on</strong> <strong>neutralizing</strong> <strong>effect</strong> <strong>of</strong> Ophiorrhiza <strong>mungos</strong> <strong>root</strong> <strong>extract</strong><br />

<strong>against</strong> Daboia <strong>russelii</strong> <strong>venom</strong><br />

S. Anaswara Krishnan a , R. Dileepkumar b,n , Achuthsankar S. Nair c , Oommen V. Oommen d<br />

a Department <strong>of</strong> Zoology, University <strong>of</strong> Kerala, Thiruvananthapuram 695581, Kerala, India<br />

b Centre for Venom Informatics, University <strong>of</strong> Kerala, Thiruvananthapuram 695581, Kerala, India<br />

c Department <strong>of</strong> Computati<strong>on</strong>al Biology and Bioinformatics, University <strong>of</strong> Kerala, Thiruvananthapuram 695581, Kerala, India<br />

d Kerala State Biodiversity Board, Pallimukku, Pettah, Thiruvananthapuram 695024, Kerala, India<br />

article info<br />

Article history:<br />

Received 2 August 2013<br />

Received in revised form<br />

25 October 2013<br />

Accepted 9 November 2013<br />

Available <strong>on</strong>line 23 November 2013<br />

Keywords:<br />

Ophiorrhiza <strong>mungos</strong><br />

Daboia <strong>russelii</strong><br />

Antisera<br />

Yolk sac membrane<br />

abstract<br />

Ethnopharmacological relevance: The folklore or traditi<strong>on</strong>al therapy in southern India widely utilizes a<br />

plethora <strong>of</strong> local herbs to treat the patients challenged with snake <strong>venom</strong>. Despite the widespread<br />

implementati<strong>on</strong> <strong>of</strong> antisera therapy, the local populati<strong>on</strong> <strong>of</strong> the country still relies <strong>on</strong> this century's old<br />

medicinal formulas mainly due to the cost <strong>effect</strong>iveness, lesser side <strong>effect</strong>s and also its cultural<br />

acceptability. The present study aims to validate the <strong>neutralizing</strong> ability <strong>of</strong> <strong>on</strong>e such traditi<strong>on</strong>ally<br />

acclaimed antidote Ophiorrhiza <strong>mungos</strong> <strong>root</strong> <strong>extract</strong> <strong>against</strong> Russell's viper (Daboia <strong>russelii</strong>) <strong>venom</strong> in the<br />

early developing chick embryos.<br />

Materials and methods: The disc impregnated with <strong>venom</strong>, <strong>root</strong> <strong>extract</strong> or the combinati<strong>on</strong> <strong>of</strong> both was<br />

placed <strong>on</strong> the yolk sac membrane preferably over the anterior blood vessel <strong>of</strong> 6th day chick embryo. The<br />

neutralizati<strong>on</strong>/inhibiti<strong>on</strong> <strong>of</strong> <strong>venom</strong>-induced lethality or hemorrhage was achieved by incubating <strong>venom</strong><br />

and <strong>extract</strong> before being applied to the embryo. The membrane stabilizing properties <strong>of</strong> <strong>root</strong> <strong>extract</strong> was<br />

estimated by HRBC lysis method. The preliminary phytochemical analysis was d<strong>on</strong>e to assess the phyto<br />

c<strong>on</strong>stituents in the <strong>root</strong> <strong>extract</strong>.<br />

Results: The LD 50 <strong>of</strong> Russell's viper <strong>venom</strong> in 6th day chick embryo was found to be 3 μg/μl. The<br />

neutralising <strong>effect</strong> <strong>of</strong> <strong>root</strong> <strong>extract</strong> was achieved by pre-incubating <strong>venom</strong> with various c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong><br />

<strong>extract</strong> and at the c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> 10 μg/μl, 100% recovery <strong>of</strong> embryos was observed after 6 h <strong>of</strong><br />

incubati<strong>on</strong>. Higher c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> <strong>root</strong> <strong>extract</strong> showed remarkable results by completely abolishing<br />

traces <strong>of</strong> hemorrhagic lesi<strong>on</strong>s induced by viper <strong>venom</strong>.<br />

C<strong>on</strong>clusi<strong>on</strong>s: The above observati<strong>on</strong>s c<strong>on</strong>firmed that the <strong>root</strong> <strong>extract</strong> <strong>of</strong> Ophiorrhiza <strong>mungos</strong> possess<br />

potent anti snake <strong>venom</strong> <strong>neutralizing</strong> compounds, which inhibit the activity <strong>of</strong> viper <strong>venom</strong>. The chick<br />

embryo, a new insensate model used in the present study is significant in <strong>venom</strong> research as it reduces<br />

the ruthless suffering <strong>of</strong> higher mammalian experimental models.<br />

& 2013 Elsevier Ireland Ltd. All rights reserved.<br />

1. Introducti<strong>on</strong><br />

Despite <strong>of</strong> recent advances, snake en<strong>venom</strong>ing is still a major<br />

socio-medical and an ec<strong>on</strong>omic dilemma <strong>of</strong> all tropical countries<br />

including India. The annual estimate <strong>of</strong> ophidian accident in India<br />

al<strong>on</strong>e is more than 200,000 cases with 35,000–50,000 deaths<br />

approximately (Chippaux, 1998; Bawaskar, 2004). Out <strong>of</strong> 3000<br />

snake species are known to science, 30% are <strong>venom</strong>ous and fatal to<br />

humans (Cher et al., 2005). Snake en<strong>venom</strong>ing causes a variety <strong>of</strong><br />

pathophysiological manifestati<strong>on</strong>s including severe local tissue<br />

damage with my<strong>on</strong>ecrosis, edema and hemorrhage, which may<br />

result in irreversible lesi<strong>on</strong>s and even amputati<strong>on</strong> <strong>of</strong> the affected<br />

n Corresp<strong>on</strong>ding author. Tel.: þ919447830909; fax: þ914712308759.<br />

E-mail address: dileepkamukumpuzha@gmail.com (R. Dileepkumar).<br />

limb (Otero et al., 2002). The cocktail acti<strong>on</strong> <strong>of</strong> toxic proteins in the<br />

<strong>venom</strong> which includes phospholipase A2, myotoxins, hemorrhagic<br />

and coagulant factors, cytotoxins, cardiotoxins etc. coupled with a<br />

series <strong>of</strong> biochemical events in victim's body assists in pathophysiology<br />

following the en<strong>venom</strong>ati<strong>on</strong>.<br />

Daboia russselli (Russell's viper) appears to be the most comm<strong>on</strong><br />

cause <strong>of</strong> fatal snake bite in southern India (Woodhams et al.,<br />

1990). The most c<strong>on</strong>venti<strong>on</strong>al clinical approach is the administrati<strong>on</strong><br />

<strong>of</strong> polyvalent anti-snake <strong>venom</strong> (ASV) prepared from sera <strong>of</strong><br />

horses or sheep. Unfortunately, this polyspecific ASV does not<br />

provide adequate protecti<strong>on</strong> <strong>against</strong> <strong>venom</strong>-induced hemorrhages,<br />

necrosis and nephrotoxicity and <strong>of</strong>ten produces serum reacti<strong>on</strong> in<br />

some patients (Sutherland, 1977; Corrigan et al., 1978; Stahel et al.,<br />

1985; Alam and Gomes, 1998). In additi<strong>on</strong>, antiserum development<br />

in animals is highly expensive, time c<strong>on</strong>suming and requires<br />

ideal storage c<strong>on</strong>diti<strong>on</strong>s (Cheng et al., 2001). C<strong>on</strong>sidering the<br />

0378-8741/$ - see fr<strong>on</strong>t matter & 2013 Elsevier Ireland Ltd. All rights reserved.<br />

http://dx.doi.org/10.1016/j.jep.2013.11.010


544<br />

A.S. Krishnan et al. / Journal <strong>of</strong> Ethnopharmacology 151 (2014) 543–547<br />

limitati<strong>on</strong>s <strong>of</strong> ASV, scientific attenti<strong>on</strong> has turned back to systematic<br />

investigati<strong>on</strong> <strong>of</strong> plant-based tribal remedies for snakebite is<br />

justified.<br />

In India, the folklore health care system has deep <strong>root</strong>ed history<br />

am<strong>on</strong>g tribal populati<strong>on</strong>s inhabiting different parts <strong>of</strong> the country.<br />

The folklore medicinal system is based <strong>on</strong> natural products and/or<br />

its derivatives for its therapeutic rati<strong>on</strong>ale, but the treasure <strong>of</strong><br />

knowledge is passed through generati<strong>on</strong>s without documentati<strong>on</strong>s,<br />

except for a few (Perumal Samy and Ignacimuthu, 1998, 2000). Many<br />

antisnake <strong>venom</strong> plants are recommended by the folklore remedy to<br />

treat patients challenged with snake <strong>venom</strong> and it is claimed that a<br />

surprising number <strong>of</strong> those herbal antidotes have c<strong>on</strong>siderable<br />

therapeutic <strong>effect</strong> even in the advanced stage <strong>of</strong> <strong>venom</strong> toxicity.<br />

Ophiorrhiza (Rubiaceae), is <strong>on</strong>e such acclaimed antidote plant and<br />

the genus Ophiorrhiza is represented by 49 species in India and<br />

different species <strong>of</strong> the genus have been use in traditi<strong>on</strong>al medicines<br />

<strong>against</strong> snake bite, stomatitis, ulcers and wound healing (Kirthikar<br />

and Basu, 1975). The tribal groups inhabited in the southern India<br />

have been extensively utilizing the <strong>root</strong>s <strong>of</strong> Ophiorrhiza <strong>mungos</strong> to<br />

treat snake bitten patients (Anaswara Krishnan et al., 2013). The<br />

present study is the first <strong>of</strong> its kind to examine the potential <strong>of</strong><br />

Ophiorrhiza <strong>mungos</strong> <strong>root</strong> <strong>extract</strong> to act as an antidote to neutralize<br />

Russells viper <strong>venom</strong> using in-vitro and in-vivo methods.<br />

2. Materials and methods<br />

2.1. Venom collecti<strong>on</strong><br />

The <strong>venom</strong> was milked from two week fasted Russell's viper<br />

(GO (Rt) No. 94/2009/F &WLD dated 25/02/2009) housed in the<br />

Poojappura government serpentarium, Thiruvananthapuram, India.<br />

The <strong>extract</strong>ed <strong>venom</strong> was lyophilized and was kept at 20 1C until<br />

further use. The <strong>venom</strong> c<strong>on</strong>centrati<strong>on</strong> was expressed in terms <strong>of</strong> dry<br />

weight.<br />

2.2. Preparati<strong>on</strong> <strong>of</strong> plant material<br />

The whole plant <strong>of</strong> Ophiorrhiza <strong>mungos</strong> was collected from Kallar<br />

regi<strong>on</strong> <strong>of</strong> south-western India (08130′N latitudeand076156′E l<strong>on</strong>gitude).<br />

The botanical identificati<strong>on</strong> was performed in Department <strong>of</strong><br />

Botany, University <strong>of</strong> Kerala, Thiruvananthapuram, India and a voucher<br />

specimen was deposited in the herbarium <strong>of</strong> the same department<br />

under the number KUBH-5841. The hairy <strong>root</strong> was air-dried under<br />

shade for four weeks and was pulverized with the aid <strong>of</strong> mortar and<br />

pestle.<br />

2.3. Extracti<strong>on</strong> <strong>of</strong> plant material<br />

A 20 g <strong>of</strong> air dried, finely powdered <strong>root</strong>s were added to 100 ml<br />

distilled water, mixed thoroughly and boiled for 8 h in water bath<br />

with c<strong>on</strong>tinuous stirring. Thereafter, the soluti<strong>on</strong> was filtered and<br />

the <strong>extract</strong>s were evaporated to dryness under reduced pressure.<br />

The yield <strong>of</strong> the <strong>extract</strong> was calculated and stored at 0–4 1C until<br />

further use.<br />

2.4. Preliminary phytochemical analysis<br />

Phytochemical tests were carried out <strong>on</strong> the methanolic, ethyl<br />

acetate, diethyl ether, chlor<strong>of</strong>orm, benzene and n-butanolic <strong>extract</strong>s<br />

<strong>of</strong> Ophiorrhiza <strong>mungos</strong> <strong>root</strong> using standard procedures to identify the<br />

phytoc<strong>on</strong>stituents as described by Onwukaeme et al. (2007).<br />

2.5. In-vitro anti-snake <strong>venom</strong> activity<br />

Anti-snake <strong>venom</strong> activity <strong>of</strong> Ophiorrhiza <strong>mungos</strong> was assessed<br />

through inhibiti<strong>on</strong> <strong>of</strong> in-vitro Human Red Blood Corpuscles (HRBC)<br />

lysis. The hypo-saline induced hemolysis was evaluated in-vitro by<br />

the method <strong>of</strong> Roel<strong>of</strong>sen et al. (1971) and Balu and Alagesaboopathy<br />

(1995). This method was modified in the present study by <strong>venom</strong><br />

induced hemolysis. Blood was collected from healthy human volunteers<br />

by vein puncture. Heparin was used as an anticoagulant. The<br />

collected blood was washed three times with saline. The preparati<strong>on</strong><br />

<strong>of</strong> cell suspensi<strong>on</strong> was carried out as described by Murugesh et al.<br />

(1981). Venom <strong>of</strong> Russell's viper was dissolved in physiological saline<br />

soluti<strong>on</strong> to make a stock soluti<strong>on</strong> <strong>of</strong> 100 mg/ml. The different tubes<br />

are filled with 1 ml <strong>of</strong> <strong>venom</strong> (100 mg/ml), 1 ml phosphate buffer<br />

pH 7.4 and 1 ml <strong>of</strong> 1% HRBC and varying c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> aqueous<br />

<strong>extract</strong> <strong>of</strong> Ophiorrhiza <strong>mungos</strong> (20, 40, 60 and 80 mg/ml). C<strong>on</strong>trol had<br />

the same compositi<strong>on</strong> but was free <strong>of</strong> <strong>extract</strong>. The mixtures were<br />

incubated at 37 1C for30minandthencentrifugedat1000rpmfor<br />

3 min. The absorbance <strong>of</strong> the supernatant was measured at 540 nm<br />

using a spectrophotometer (Systr<strong>on</strong>ics). The inhibiti<strong>on</strong> percent <strong>of</strong><br />

hemolysis was calculated by the following equati<strong>on</strong>,<br />

Inhibiti<strong>on</strong> % hemolysis ¼ A c<br />

100<br />

A c<br />

A c<br />

A t<br />

absorbance <strong>of</strong> c<strong>on</strong>trol ðwithout <strong>extract</strong>Þ<br />

A t<br />

absorbance <strong>of</strong> test ðwith <strong>extract</strong>Þ in <strong>venom</strong> soluti<strong>on</strong><br />

2.6. In-vivo <str<strong>on</strong>g>studies</str<strong>on</strong>g> in chicken embryo model<br />

2.6.1. Shell-less egg preparati<strong>on</strong><br />

Eggs were prepared using a standard method with slight<br />

modificati<strong>on</strong>s (Dunn and Bo<strong>on</strong>e, 1976; Sells et al., 1997). In brief,<br />

hatching eggs <strong>on</strong> day 1 were purchased from Regi<strong>on</strong>al Poultry<br />

Farm, Thiruvananthapuram, Kerala, India and incubated until day<br />

4at371C in a humid incubator. On day 4, each egg was wiped<br />

with 70% ethanol, cracked out <strong>of</strong> its shell into a cling film<br />

hammock and covered with a sterilized petri dish lid. Incubati<strong>on</strong><br />

was c<strong>on</strong>tinued until day 6 when the experiments were carried out.<br />

Discs <strong>of</strong> 2 mm were cut from Whatman no. 1 filter paper using a<br />

hand punch. Venom, <strong>root</strong> <strong>extract</strong> or mixture in a total volume <strong>of</strong><br />

2.0 ml was impregnated to each disc and was placed over anterior<br />

vitelline vein <strong>on</strong> the yolk sac membrane. C<strong>on</strong>trol tests were carried<br />

out using normal saline (0.9%) instead <strong>of</strong> <strong>venom</strong>.<br />

2.6.2. Acute toxicity <strong>of</strong> <strong>root</strong> <strong>extract</strong><br />

Four groups <strong>of</strong> six embryos each were used per <strong>root</strong> <strong>extract</strong><br />

diluti<strong>on</strong> (5, 10, 20 and 30 mg/ml) and a total volume <strong>of</strong> 2 ml was<br />

impregnated to each disc with different c<strong>on</strong>centrati<strong>on</strong>s were<br />

placed over anterior vitelline vein <strong>on</strong> the yolk sac membrane <strong>of</strong><br />

the experimental embryos. C<strong>on</strong>trol group received 2 ml <strong>of</strong> saline<br />

instead <strong>of</strong> the <strong>extract</strong>. The embryos were observed in hourly<br />

intervals for 24 h for any lethality. Each test was carried out using<br />

triplicate egg preparati<strong>on</strong>s.<br />

2.6.3. Measurement <strong>of</strong> <strong>venom</strong> lethality<br />

The <strong>venom</strong> was tested at different c<strong>on</strong>centrati<strong>on</strong>s (0.5 to 5 mg/ml)<br />

for finding the lethal toxicity <strong>of</strong> viper <strong>venom</strong> in the 6th day chick<br />

embryo, using groups <strong>of</strong> six embryos for each <strong>venom</strong> dose. A total <strong>of</strong><br />

2.0 ml <strong>of</strong> <strong>venom</strong> was applied <strong>on</strong> the disc with different c<strong>on</strong>centrati<strong>on</strong><br />

was placed <strong>on</strong> the yolk sac membrane preferably over the anterior<br />

vitelline vein. C<strong>on</strong>trol groups received normal saline instead <strong>of</strong><br />

<strong>venom</strong>. The LD 50 was calculated with the c<strong>on</strong>fidence limit at 50%<br />

probability by the analysis <strong>of</strong> death occurring within 24 h <strong>of</strong> <strong>venom</strong><br />

injecti<strong>on</strong>. All tests were carried out using triplicate egg preparati<strong>on</strong>s.


A.S. Krishnan et al. / Journal <strong>of</strong> Ethnopharmacology 151 (2014) 543–547 545<br />

2.6.4. Measurement <strong>of</strong> anti<strong>venom</strong> activity<br />

Venom sample (3 LD 50 ) was incubated with equal volume <strong>of</strong><br />

different c<strong>on</strong>centrati<strong>on</strong>s (2.5, 5 and 10 mg/ml) <strong>of</strong> <strong>root</strong> <strong>extract</strong> at<br />

37 1C for 30 min before being applied to the yolk sac membrane.<br />

Positive c<strong>on</strong>trol embryo received same amount <strong>of</strong> <strong>venom</strong> without<br />

<strong>root</strong> <strong>extract</strong>s. A total <strong>of</strong> 2.0 ml volumes <strong>of</strong> each <strong>venom</strong> and<br />

anti<strong>venom</strong> diluti<strong>on</strong> were expanded to accommodate testing <strong>on</strong><br />

six eggs. C<strong>on</strong>trol tests using 2 ml <strong>of</strong> saline were also carried out.<br />

The embryos were observed at 1, 2, 4 and 6 hourly intervals and<br />

the number <strong>of</strong> survivors at 6 h was recorded for the analysis. The<br />

death <strong>of</strong> the embryo was a clear end point with cessati<strong>on</strong> <strong>of</strong> the<br />

heart beat followed by submergence <strong>of</strong> the yolk sac membrane<br />

into the yolk.<br />

2.6.5. Measurement <strong>of</strong> hemorrhage<br />

A cor<strong>on</strong>a <strong>of</strong> hemorrhage surrounding discs impregnated with<br />

hemorrhagic <strong>venom</strong>s could be visualized after 2–4 h <strong>of</strong> incubati<strong>on</strong><br />

at 37 1C. The c<strong>on</strong>centrati<strong>on</strong> required to cause a hemorrhagic cor<strong>on</strong>a<br />

2 mm wide was accepted as a standard hemorrhagic dose (SHD).<br />

Neutralizing or inhibitory activity was determined by incubating <strong>on</strong>e<br />

SHD <strong>of</strong> <strong>venom</strong> with various c<strong>on</strong>centrati<strong>on</strong>s (2.5, 5, 10 and 20 mg/ml)<br />

<strong>of</strong> the <strong>root</strong> <strong>extract</strong> at 37 1C for 30 min. The mixture incorporating<br />

<strong>on</strong>e SHD, was applied to the disc which was then placed <strong>on</strong> the<br />

membrane as previously described and left for 3 h to form a<br />

hemorrhagic cor<strong>on</strong>a. The minimum amount <strong>of</strong> <strong>extract</strong> required to<br />

abolish hemorrhage was recorded as the minimum <strong>effect</strong>ive <strong>neutralizing</strong><br />

dose (MEND). All tests were carried out using triplicate egg<br />

preparati<strong>on</strong>s.<br />

3. Results<br />

3.1. Plant <strong>extract</strong><br />

The <strong>extract</strong> was dried under rotary vacuum evaporator and the<br />

yield <strong>of</strong> the <strong>extract</strong> was found to be 1.38% w/w.<br />

3.2. Phytochemical analysis<br />

The results <strong>of</strong> preliminary phytochemical screening <strong>of</strong> different<br />

<strong>extract</strong>s <strong>of</strong> Ophiorrhiza <strong>mungos</strong> revealed the presence <strong>of</strong> terpenes,<br />

phenols, flavanoids, alkaloids, quin<strong>on</strong>es, tannins, glycosides and<br />

cardiac glycosides. The result also noted the absence <strong>of</strong> sap<strong>on</strong>ins in<br />

any <strong>extract</strong> <strong>of</strong> <strong>root</strong>.<br />

3.3. In-vitro anti-snake <strong>venom</strong> activity<br />

In-vitro anti-snake <strong>venom</strong> activity was carried out by HRBC<br />

membrane stabilizati<strong>on</strong> method. In the present investigati<strong>on</strong> aqueous<br />

<strong>extract</strong>s <strong>of</strong> the <strong>root</strong>s <strong>of</strong> Ophiorrhiza <strong>mungos</strong> at the c<strong>on</strong>centrati<strong>on</strong><br />

<strong>of</strong> 20, 40, 60, and 80 mg/ml were used to evaluate the activity. These<br />

<strong>extract</strong>s inhibit the hemolysis induced by Russell's viper <strong>venom</strong> at<br />

lower c<strong>on</strong>centrati<strong>on</strong> but decrease the percentage <strong>of</strong> inhibiti<strong>on</strong> when<br />

the c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> <strong>extract</strong> increases (Fig. 1).<br />

3.4. Acute toxicity<br />

Acute toxicity analysis <strong>of</strong> <strong>root</strong> <strong>extract</strong> showed that aqueous<br />

<strong>extract</strong> was safe and no record <strong>of</strong> death up to 20 mg/ml <strong>of</strong> <strong>extract</strong><br />

treatment in the 6th day chicken embryos. At higher c<strong>on</strong>centrati<strong>on</strong><br />

<strong>of</strong> <strong>root</strong> <strong>extract</strong> treatment, embryo lethality was observed within<br />

the 6 h <strong>of</strong> experiment.<br />

Inhibiti<strong>on</strong> %<br />

Inhibiti<strong>on</strong> Percentage <strong>of</strong> HRBC lysis<br />

20<br />

b<br />

18<br />

16<br />

Extract (20 µg/mL)<br />

14<br />

a<br />

12<br />

Extract (40 µg/mL)<br />

10<br />

c<br />

Extract (60 µg/mL)<br />

18.26<br />

8<br />

d Extract (80 µg/mL)<br />

6 11.55<br />

9.6<br />

4<br />

6.1<br />

2<br />

0<br />

Experimental Groups<br />

Fig. 1. In-vitro HRBC stabilizati<strong>on</strong> properties <strong>of</strong> Ophiorrhiza <strong>mungos</strong> <strong>root</strong> <strong>extract</strong>.<br />

Percentage <strong>of</strong> Live embryos<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

3.5. Venom lethality<br />

The 6th day embryo with a vascularised yolk sac displays a<br />

primitive embry<strong>on</strong>ic heart with normal blood circulati<strong>on</strong>, the<br />

arrest <strong>of</strong> which provides a clear end point for lethality test. The<br />

LD 50 <strong>of</strong> Russell's viper <strong>venom</strong> in 6th day chick embryo was found<br />

to be 3 μg/μl.<br />

3.6. Anti <strong>venom</strong> efficacy<br />

The <strong>neutralizing</strong> <strong>effect</strong> <strong>of</strong> <strong>root</strong> <strong>extract</strong> was achieved by preincubating<br />

<strong>venom</strong> with various c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> <strong>extract</strong>. The<br />

result exhibits the neutralizati<strong>on</strong> capacity <strong>of</strong> <strong>root</strong> <strong>extract</strong> <strong>on</strong> viper<br />

<strong>venom</strong> lethality in a dose dependent fashi<strong>on</strong> (Fig. 2). The heart<br />

beat in embryos treated with <strong>venom</strong> was arrested within the first<br />

hour <strong>of</strong> the experiment (Fig. 3A). It was noted that the <strong>root</strong> <strong>extract</strong><br />

at the c<strong>on</strong>centrati<strong>on</strong> 10 μg/μl showed 100% recovery (Fig. 3B) <strong>of</strong><br />

embryos after 6 h <strong>of</strong> incubati<strong>on</strong> when compared to the c<strong>on</strong>trol.<br />

The negative c<strong>on</strong>trol group received saline al<strong>on</strong>e was survived<br />

during the experimental period (Fig. 3C).<br />

3.7. Hemorrhagic activity<br />

0<br />

Survival rate Percentage<br />

50<br />

75<br />

Viper <strong>venom</strong> at c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> 2 to 5 mg/μl produced hemorrhagic<br />

cor<strong>on</strong>as increasing from 1.0 mm to approximately 3.0 mm. The<br />

standard hemorrhagic dose <strong>of</strong> 4 mg/μl produced approximately 2 mm<br />

<strong>of</strong> hemorrhagic cor<strong>on</strong>a around the disc within 3 h (Fig. 3D). The viper<br />

<strong>venom</strong> produced a cor<strong>on</strong>a <strong>of</strong> hemorrhage surrounding the disc with<br />

100<br />

Experimental groups<br />

Negative c<strong>on</strong>trol (Saline)<br />

Positive c<strong>on</strong>trol (9 µg/µl<br />

Venom)<br />

Treatment (2.5 µg/µl<br />

Extract)<br />

Treatment (5 µg/µl<br />

Extract)<br />

Treatment (10 µg/µl<br />

Extract)<br />

Fig. 2. Results <strong>of</strong> survival rate <strong>of</strong> embryos treated with the mixture <strong>of</strong> viper <strong>venom</strong><br />

and Ophiorrhiza <strong>mungos</strong> <strong>extract</strong> after pre-incubati<strong>on</strong>.


546<br />

A.S. Krishnan et al. / Journal <strong>of</strong> Ethnopharmacology 151 (2014) 543–547<br />

Fig. 3. (A) Embryo treated viper <strong>venom</strong> (3 LD 50 ) after 1st hour. (B) Embryo treated with pre-incubated viper <strong>venom</strong> with 10 mg/μl <strong>root</strong> <strong>extract</strong> after 6th hour. (C) Embryo<br />

treated with saline (0.9%) after 6th hour. (D) Embryo treated with viper <strong>venom</strong> (4 mg/μl) al<strong>on</strong>e shows haemorrhagic cor<strong>on</strong>a around the disc.<br />

Table 1<br />

Effect <strong>of</strong> Ophiorrhiza <strong>mungos</strong> <strong>root</strong> <strong>extract</strong> <strong>on</strong> viper <strong>venom</strong>-induced hemorrhage.<br />

Extract/<strong>venom</strong><br />

c<strong>on</strong>centrati<strong>on</strong>s<br />

Salineþ4 mg/μl<br />

<strong>venom</strong><br />

2.5 mg/μl Extractþ<br />

4 mg/μl <strong>venom</strong><br />

5 mg/μl Extractþ<br />

4 mg/μl <strong>venom</strong><br />

10 mg/μl Extractþ<br />

4 mg/μl <strong>venom</strong><br />

20 mg/μl Extractþ<br />

4 mg/μl <strong>venom</strong><br />

marked vaso-c<strong>on</strong>stricti<strong>on</strong> in the positive c<strong>on</strong>trol group, while the <strong>root</strong><br />

<strong>extract</strong> treatment neutralized the hemorrhagic lesi<strong>on</strong> induced by<br />

viper <strong>venom</strong>. The results showed that the Ophiorrhiza <strong>mungos</strong> <strong>root</strong><br />

<strong>extract</strong> was <strong>effect</strong>ive in <strong>neutralizing</strong> the hemorrhage induced by viper<br />

<strong>venom</strong> and the minimum c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> <strong>extract</strong> needed to abolish<br />

the hemorrhage was recorded as 10 μg/μl (Table 1).<br />

4. Discussi<strong>on</strong><br />

Hemorrhagic<br />

z<strong>on</strong>e (mm)<br />

Reducti<strong>on</strong><br />

from<br />

c<strong>on</strong>trol (%)<br />

MEND<br />

(μg/μl)<br />

2 – Alive<br />

1 50 Alive<br />

0.5 75 Alive<br />

No<br />

hemorrhagic<br />

z<strong>on</strong>e<br />

No<br />

hemorrhagic<br />

z<strong>on</strong>e<br />

100 10 Alive<br />

100 Alive<br />

State <strong>of</strong><br />

embryo<br />

in 3rd hour<br />

The herbal comp<strong>on</strong>ents are a c<strong>on</strong>gregati<strong>on</strong> <strong>of</strong> thousands <strong>of</strong><br />

novel molecules with high therapeutic potential. In recent years<br />

there is a spurt in the popularity <strong>of</strong> herbal medicines mainly due to<br />

its lesser side <strong>effect</strong>s and good compatibility with the human body<br />

and also due to the toxicity <strong>of</strong> allopathic medicines. India has <strong>on</strong>e<br />

<strong>of</strong> the richest plant's medical heritage in the world with approximately<br />

20,000 medicinal plant species been recorded recently. The<br />

traditi<strong>on</strong>al folklore medicinal system greatly explores numerous<br />

plants or plant derived products for the snake bite treatment;<br />

which remains an attractive research focus for alternative therapies.<br />

Some <strong>of</strong> these species have been scientifically investigated<br />

and proved for its anti-snake <strong>venom</strong> potency either in the crude<br />

form or its isolated active principles. The bioactive comp<strong>on</strong>ents in<br />

the herbal <strong>extract</strong> may bind with the various toxic comp<strong>on</strong>ents in<br />

the <strong>venom</strong> and result in the detoxificati<strong>on</strong> <strong>of</strong> <strong>venom</strong>. The present<br />

study is the first <strong>of</strong> its kind and the results provide an experimental<br />

and scientific support for the use <strong>of</strong> Ophiorrhiza <strong>mungos</strong><br />

<strong>root</strong> in case <strong>of</strong> snake bite accident with viper <strong>venom</strong>. This<br />

significant finding suggests that <strong>root</strong> <strong>extract</strong> may c<strong>on</strong>tain different<br />

endogenous inhibitors <strong>of</strong> viper <strong>venom</strong>-induced lethality.<br />

The preliminary phytochemical investigati<strong>on</strong> <strong>of</strong> Ophiorrhiza <strong>mungos</strong><br />

<strong>root</strong> revealed the presence <strong>of</strong> flavanoids, cardiac glycosides and<br />

phenolics. Phenolic compounds are the important c<strong>on</strong>stituents <strong>of</strong><br />

plants with anti snake <strong>venom</strong> potential. Flav<strong>on</strong>oids have been shown<br />

to inhibit phospholipase A2, an important comp<strong>on</strong>ent in snake<br />

<strong>venom</strong>s (Alcaraz and Hoult, 1985). The in-vivo study was c<strong>on</strong>ducted<br />

in shell less egg culture that has been used in the recent decades for a<br />

variety <strong>of</strong> toxicity <str<strong>on</strong>g>studies</str<strong>on</strong>g> (Rosenbruch, 1990; Herzinger et al., 1995).<br />

This insensate model is useful in <strong>venom</strong> research especially for<br />

viperidae <strong>venom</strong> as hemorrhage is c<strong>on</strong>sidered to be <strong>on</strong>e <strong>of</strong> its<br />

principal lethal <strong>effect</strong>s. The lethal c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> 3 mg/μl produces<br />

approximately 3 mm <strong>of</strong> hemorrhagic cor<strong>on</strong>a around the disc within<br />

3 h <strong>of</strong> applicati<strong>on</strong>. The disc applied with the pre-incubated <strong>venom</strong><br />

and increasing c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> <strong>extract</strong> mixture in the treatment<br />

groups showed the eliminati<strong>on</strong> <strong>of</strong> <strong>venom</strong> induced hemorrhagic<br />

lesi<strong>on</strong> in a dose depended manner. This remarkable result shows<br />

that the <strong>root</strong> <strong>extract</strong> <strong>of</strong> Ophiorrhiza <strong>mungos</strong> not <strong>on</strong>ly inhibits the


A.S. Krishnan et al. / Journal <strong>of</strong> Ethnopharmacology 151 (2014) 543–547 547<br />

<strong>venom</strong> induced lethality but also completely reduced any trace <strong>of</strong><br />

hemorrhagic activity <strong>of</strong> viper <strong>venom</strong>. The activity <strong>of</strong> the crude <strong>extract</strong><br />

may be due to the presence <strong>of</strong> enzymatic inhibitors, chemical<br />

inactivators, or immunomodulators present in its isolates. The results<br />

<strong>of</strong> in-vitro study have shown that the <strong>root</strong> <strong>extract</strong> significantly inhibit<br />

the hemolysis induced by viper <strong>venom</strong>. Hemolysis is <strong>on</strong>e <strong>of</strong> the<br />

principal lethal <strong>effect</strong>s <strong>of</strong> snake en<strong>venom</strong>ati<strong>on</strong>, as the snake <strong>venom</strong><br />

c<strong>on</strong>tains phospholipase and haemolysin (Rosenberg, 1979), which act<br />

<strong>on</strong> membrane associated phospholipids to liberate lysolecithin.<br />

Lysolecitihin acts <strong>on</strong> the membrane <strong>of</strong> HRBC causing hemolysis<br />

(Maeno et al., 1962). The percentage inhibiti<strong>on</strong> <strong>of</strong> hemolysis activity<br />

<strong>against</strong> <strong>venom</strong> induced hemolysis is may be due to the stabilizati<strong>on</strong><br />

<strong>of</strong>theproteininthemembrane<strong>of</strong>HRBC(Abe et al., 1991). Hence, it<br />

may be suggested that the <strong>extract</strong> may interact with Russell's viper<br />

<strong>venom</strong> and stabilize the protein in the membrane.<br />

5. C<strong>on</strong>clusi<strong>on</strong>s<br />

The demand and use <strong>of</strong> alternative medicine c<strong>on</strong>tinues to grow<br />

every year, still the treasure <strong>of</strong> traditi<strong>on</strong>al and cultural knowledge<br />

are in peril. The outcome <strong>of</strong> the present study is encouraging and<br />

intended to bridge the gap between traditi<strong>on</strong>al knowledge and the<br />

science behind the anti-snake <strong>venom</strong> activity <strong>of</strong> Ophiorrhiza <strong>mungos</strong>.<br />

The preliminary data indicates that the aqueous <strong>root</strong> <strong>extract</strong> have<br />

the potential to directly neutralize the viper <strong>venom</strong> induced lethality<br />

and hemorrhage in chick embryo model. The alternative model used<br />

in the <strong>venom</strong> study eliminates the excessive suffering in <strong>venom</strong><br />

research by reducing the practice <strong>of</strong> c<strong>on</strong>venti<strong>on</strong>al mammalian<br />

experimental animals. Further researches <strong>on</strong> isolati<strong>on</strong> <strong>of</strong> active<br />

principles and the elucidati<strong>on</strong> <strong>of</strong> exact mechanism <strong>of</strong> acti<strong>on</strong> resp<strong>on</strong>sible<br />

for the observed biological activity could lead to the development<br />

<strong>of</strong> a new natural antidote for snake en<strong>venom</strong>ing.<br />

Acknowledgments<br />

This work was funded by Kerala State Council for Science,<br />

Technology and Envir<strong>on</strong>ment (KSCSTE), Govt. <strong>of</strong> Kerala, India. The<br />

first author also would like to acknowledge the wet lab facilities <strong>of</strong><br />

SIUCEB, Department <strong>of</strong> Computati<strong>on</strong>al Biology and Bioinformatics,<br />

University <strong>of</strong> Kerala and SAP facility at Department <strong>of</strong> Zoology,<br />

University <strong>of</strong> Kerala.<br />

References<br />

Abe, H., Katada, K., Orita, M., Nishikibe, M., 1991. Effects <strong>of</strong> calcium antag<strong>on</strong>ists <strong>on</strong><br />

the erytrocyte membrane. J. Pharm. Pharmacol. 43 (1), 22–26.<br />

Alam, M.I., Gomes, A., 1998. Adjuvant <strong>effect</strong>s and antiserum acti<strong>on</strong> potentiati<strong>on</strong> by a<br />

(herbal) compound 2-hydroxy-4-methoxy benzoic acid isolated from the <strong>root</strong><br />

<strong>extract</strong> <strong>of</strong> the Indian medicinal plant ‘Sarsaparilla’ (Hemidesmus indicus R. Br.).<br />

Toxic<strong>on</strong> 36, 1423–1431.<br />

Alcaraz, M.J., Hoult, J.R.S., 1985. Effect <strong>of</strong> hypolaetin-8-glucoside and related<br />

flav<strong>on</strong>oids <strong>on</strong> soyabean lipoxygenase and snake <strong>venom</strong> phospholipase A2.<br />

Arch. Int. Pharmacodyn. Ther. 278, 4–12.<br />

Anaswara Krishnan, S., Dileepkumar, R., Anoop, P.K., Oommen., Oommen V., 2013.<br />

Ethno-botanical survey <strong>of</strong> medicinal plants for the treatment <strong>of</strong> snakebites used<br />

by Kani tribes in Kallar–P<strong>on</strong>mudi regi<strong>on</strong> <strong>of</strong> Western Ghats. Sci. Chr<strong>on</strong>. 2, 53–62.<br />

Balu, S., 1995. Alagesaboopathy, 1995. Antisnake <strong>venom</strong> activities <strong>of</strong> some species<br />

<strong>of</strong> Andrographis wall. Ancient Sci. Life 14 (3), 187–190.<br />

Bawaskar, H.S., 2004. Snake <strong>venom</strong>s and anti<strong>venom</strong>s: critical supply issues. J Assoc<br />

Physicians India 52, 11–13.<br />

Cheng, A.C., Winkel, K., Bawasker, H.S., Bawasker, P.H., 2001. Call for global snake<br />

bite c<strong>on</strong>trol and procurement funding. Lancet 357, 1132–1133.<br />

Cher, C.D.N., Armugham, A., Zhu, Y.Z., Jeyaseelan, K., 2005. Molecular basis <strong>of</strong><br />

cardiotoxicity up<strong>on</strong> cobra en<strong>venom</strong>ati<strong>on</strong>. Cell. Mol. Life Sci. 62, 105–118.<br />

Chippaux, J.P., 1998. Snake-bites: appraisal <strong>of</strong> the global situati<strong>on</strong>. Bull. World<br />

Health Organ. 76, 515–524.<br />

Corrigan, P., Russel, F.E., Wainschal, J., 1978. Clinical reacti<strong>on</strong>s to antivenin. In:<br />

Rosenburg, P. (Ed.), In: Toxins <strong>of</strong> Animal, Plant and Microbial. Pergam<strong>on</strong> Press,<br />

New York, pp. 457–464.<br />

Dunn, B.E., Bo<strong>on</strong>e, M.A., 1976. Growth <strong>of</strong> the chick embryo in-vitro. Poult. Sci. 55,<br />

1067–1071.<br />

Herzinger, T., Korting, H.C., Maibach, H.I., 1995. Assessment <strong>of</strong> cutaneous and ocular<br />

irritancy: a decade <strong>of</strong> research <strong>on</strong> alternatives to animal experimentati<strong>on</strong>.<br />

Fundam. Appl. Toxicol. 24, 29–41.<br />

Kirthikar, K.R., Basu, B.D., 1975. Indian Medicinal Plant, sec<strong>on</strong>d ed. Bisehen Singh<br />

Mahendrapal Singh, New Delhi, pp. 1268–1269.<br />

Maeno, H., Mitsuhashi, S., Ok<strong>on</strong>ogi, T., Hoshi, S., Homma, M., 1962. Studies <strong>on</strong> Habu<br />

snake <strong>venom</strong> (V). Myolysis caused by phospholipase A in Habu snake <strong>venom</strong>.<br />

Jpn. J. Exp. Med. 32, 55–64.<br />

Murugesh, N., Vembar, S., Damodaran, C., 1981. Studies <strong>on</strong> erythrocyte membrane<br />

IV: in vitro haemolytic activity <strong>of</strong> oleeander <strong>extract</strong>. Toxicol. Lett. 8, 33–38.<br />

Onwukaeme, D.N., Ikuegbvweha, T.B., As<strong>on</strong>ye, C.C., 2007. Evaluati<strong>on</strong> <strong>of</strong> phytochemical<br />

c<strong>on</strong>stituents, antibacterial activities and <strong>effect</strong> <strong>of</strong> exudate <strong>of</strong> Pycanthus<br />

angolensis Weld Warb (Myristicaceae) <strong>on</strong> corneal ulcers in rabbits. Trop. J.<br />

Pharm. Res. 6 (2), 725–773.<br />

Otero, R., Gutierrez, J., Mesa, M.B., Duque, E., Rodrıguez, O., Arango, J.L., Gomez, F.,<br />

Toro, A., Cano, F., Rodrıguez, L.M., Caro, E., Martınez, J., Cornejo, W., Gomez, L.M.,<br />

Uribe, F.L., Cardenas, S., Nun ~ez, V., Dı az, A., 2002. Complicati<strong>on</strong>s <strong>of</strong> Bothrops,<br />

Porthidium, and Bothriechis snakebites in Colombia. A clinical and epidemiology<br />

study <strong>of</strong> 39 cases attended in a university hospital. Toxic<strong>on</strong> 40, 1107–1114.<br />

Perumal Samy, R., Ignacimuthu, S., 1998. Screening <strong>of</strong> 34 Indian medicinal plants<br />

for antibacterial properties. J. Ethnopharmacol. 62, 173–182.<br />

Perumal Samy, R., Ignacimuthu, S., 2000. Antibacterial activity <strong>of</strong> some <strong>of</strong> folklore<br />

medicinal plants used by tribals in Western Ghats <strong>of</strong> India and their herbal<br />

medicine. J. Ethnopharmacol. 69, 63–71.<br />

Roel<strong>of</strong>sen, B., Zwaal, R.F., Comfurius, P., Woodward, C.B., V<strong>on</strong> Deenen, L.L., 1971.<br />

Acti<strong>on</strong> <strong>of</strong> pure phospholipase A2 and phospholipase C <strong>on</strong> human erytrocytes<br />

and ghosts. Biochim. Biophys. Acta 241 (3), 925–929.<br />

Rosenberg, P., 1979. Snake Venom. Springer. Verlag, New York, pp. 403–447.<br />

Rosenbruch, M., 1990. Toxicity <str<strong>on</strong>g>studies</str<strong>on</strong>g> <strong>of</strong> the incubated chicken egg with special<br />

reference to the extra-embry<strong>on</strong>al vascular systems. Dermatosen Beruf Urnwelt<br />

38, 5–11.<br />

Sells, P.G., Richards, A.M., Liang, G.D., Theakst<strong>on</strong>, R.D., 1997. The use <strong>of</strong> hen's egg as<br />

an alternative to the c<strong>on</strong>venti<strong>on</strong>al invivo rodent assay for antidotes to hemorrhagic<br />

<strong>venom</strong>s. Toxic<strong>on</strong> 36, 1413–1421.<br />

Stahel, E., Wellamer, R., Freyvogel, T.A., 1985. Verzidt<strong>on</strong>gen durch einheimische<br />

(Vipera vipera berus and Vipera aspis) A reterospective study <strong>on</strong> 113 patients.<br />

Schweiz. Med. Wochenschr. 115, 890–896.<br />

Sutherland, S.K., 1977. Serum reacti<strong>on</strong>s. An analysis <strong>of</strong> commercial anti<strong>venom</strong> and<br />

the possible role <strong>of</strong> anticomplimentary activity in de-novo reacti<strong>on</strong>s to<br />

anti<strong>venom</strong>s and antitoxins. Med. J. Aust. 1, 613–615.<br />

Woodhams, B.J., Wils<strong>on</strong>, S.E., Xin, B.C., Hutt<strong>on</strong>, R.A., 1990. Differences between the<br />

<strong>venom</strong>s <strong>of</strong> two sub species <strong>of</strong> Russells viper: vipepra russelli pulchella and Vipera<br />

russelli siamensis. Toxic<strong>on</strong> 28, 427–433.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!