International Road Tunnel Fire Detection Research Project - istss

International Road Tunnel Fire Detection Research Project - istss International Road Tunnel Fire Detection Research Project - istss

03.07.2015 Views

International Road Tunnel Fire Detection Research Project Z. G. Liu, A. Kashef, G. Crampton and G. Lougheed, National Research Council Canada, Canada Daniel T. Gottuk, Hughes Associates, Inc. Kathleen H. Almand, Fire Protection Research Foundation

<strong>International</strong> <strong>Road</strong> <strong>Tunnel</strong> <strong>Fire</strong> <strong>Detection</strong><br />

<strong>Research</strong> <strong>Project</strong><br />

Z. G. Liu, A. Kashef, G. Crampton and G. Lougheed,<br />

National <strong>Research</strong> Council Canada, Canada<br />

Daniel T. Gottuk, Hughes Associates, Inc.<br />

Kathleen H. Almand, <strong>Fire</strong> Protection <strong>Research</strong> Foundation


<strong>Project</strong> Background<br />

The tunnel fire detection project was initiated in<br />

1999 at the request of Port Authority of New<br />

York and New Jersey and Boston <strong>Fire</strong><br />

Department.<br />

• Phase I – literature review;<br />

• Phase II – full-scale experiments.<br />

Phase I – literature review was completed in<br />

2003.<br />

Phase II – full scale testing was initiated in 2006<br />

by FPRF and NRC.


<strong>Project</strong> Objectives<br />

Investigate performance of current fire<br />

detection technologies;<br />

• <strong>Detection</strong> capability for realistic fire scenarios<br />

• Reliability in tunnel environments<br />

Provide technical data for developing<br />

standards and guidelines;<br />

Assist in optimization of technical<br />

specifications and installation requirements<br />

for tunnel fire protection.


Tasks & Methodology<br />

Task 1: Identify technologies and develop test<br />

protocols<br />

Task 2: <strong>Fire</strong> tests in a laboratory tunnel<br />

Task 3: Computer modeling<br />

Task 4: <strong>Fire</strong> tests in an operating tunnel in Montreal<br />

Task 5: Environmental tests in Lincoln <strong>Tunnel</strong> in New<br />

York<br />

Task 6: Demonstration fire tests in Lincoln tunnel in<br />

New York<br />

Task 7: Ventilated fire tests in a laboratory tunnel


Task 1: <strong>Detection</strong> Technologies,<br />

<strong>Fire</strong> Test Protocols


Detectors in <strong>Project</strong><br />

Technology<br />

Linear heat<br />

System<br />

No.<br />

D-1L1<br />

System Information<br />

Fiber optic heat detection system<br />

Flame D-3F1 Multi-IR flame detector<br />

CCTV<br />

Spot heat<br />

Smoke<br />

D-2L2<br />

D-4C1<br />

D-5C2<br />

D-6C3<br />

D-7H1<br />

D-8H2<br />

D-9S1<br />

Analogue (co-axial cable) heat<br />

detection system<br />

Visual based flame/smoke detector<br />

Visual based flame/smoke detector<br />

Visual based flame detector<br />

Frangible bulb heat detector<br />

Rate-anticipation heat detector<br />

Air sampling system


Performance Criteria<br />

for <strong>Detection</strong> Systems<br />

<strong>Detection</strong> capability<br />

• Detecting fire scenarios;<br />

• Locating fire position;<br />

• Monitoring fire development.<br />

<strong>Detection</strong> reliability<br />

• Reliable in detecting a fire – low false alarm rate;<br />

• Reliable in working in harsh environment – limited<br />

maintenance requirements.


<strong>Tunnel</strong> <strong>Fire</strong> Scenario #1<br />

Pool fires: fast growing fires (gasoline, propane)<br />

• Open space fires (125 kW);<br />

• <strong>Fire</strong>s underneath a vehicle (125 ~ 3400 kW);<br />

• <strong>Fire</strong>s behind a large vehicle (650 ~ 3400 kW)


<strong>Tunnel</strong> <strong>Fire</strong> Scenario #2<br />

Stationary vehicle fires: slowly growing fires (wood,<br />

foam, gasoline)<br />

• Engine compartment fires (~2000 kW)<br />

• Passenger compartment fires (100~1500 kW)


<strong>Tunnel</strong> <strong>Fire</strong> Scenario #3<br />

Moving vehicle fires: fast moving fires (~150 kW)<br />

• <strong>Fire</strong>s moving in two directions: facing and away from<br />

detectors<br />

• Two speeds: 25 km/h, 50 km/h


Task 2&7:<br />

<strong>Fire</strong> Tests in a Laboratory <strong>Tunnel</strong>


Detectors in Tests<br />

Schematic of detection systems in the tunnel<br />

CCTV 1<br />

Linear<br />

cables 1&2<br />

spot 1<br />

spot 2<br />

smoke<br />

CCTV 2<br />

Flame<br />

CCTV 3<br />

2.5 m<br />

5 m<br />

4.1 m<br />

Wind<br />

<br />

<br />

<br />

<strong>Fire</strong> detectors faced openings of the tunnel;<br />

The wind was toward detectors;<br />

Three air velocities: 0 m/s, 1.5 m/s, 3 m/s


Task 4: Field <strong>Fire</strong> Tests in<br />

Montreal <strong>Tunnel</strong>


Detectors<br />

– D-1L1: fiber optic linear heat detection system<br />

– D-2L2: co-axial cable linear heat detection systems<br />

– D-3F1: IR3 optical flame detector<br />

– D-4C1: visual-based CCTV flame smoke detector<br />

– D-5C2: visual-based CCTV flame/smoke detector<br />

– D-6C3: visual-based CCTV flame detector


<strong>Fire</strong> Detectors & Scenarios<br />

CCTV 1<br />

CCTV 2<br />

Flame<br />

Linear<br />

cables<br />

1&2<br />

Jet fan<br />

CCTV 3<br />

55 m<br />

FP1<br />

FP3<br />

30 m<br />

FP2<br />

30 m<br />

FP4<br />

Wind<br />

4-lanes<br />

<br />

<br />

<br />

<br />

Dimensions of tunnel: 600 m long,<br />

16.8 m wide (4 lanes), 5 m high;<br />

Four jet fans in tunnel;<br />

Six detectors/detection systems;<br />

<strong>Fire</strong> at four locations


<strong>Fire</strong> Tests in Montreal<br />

<strong>Tunnel</strong> (Task 4)<br />

<strong>Fire</strong> scenarios: small open fires, pool fires under a vehicle and<br />

pool fires behind a large vehicle<br />

Four wind speeds: 0 m/s, 1.3 m/s, 2 m/s, 2.4 m/s


Task 3 – Numerical<br />

Modeling<br />

Preliminary<br />

Comparison<br />

<strong>Tunnel</strong> Ventilation<br />

Systems<br />

<strong>Tunnel</strong> Length<br />

Conduct CFD simulations to assist in the preparation of fullscale<br />

experiments conducted in the laboratory tunnel facility<br />

Conduct CFD simulations to compare numerical predictions<br />

against the full-scale experimental data (Tasks 2, 4, 7)<br />

Conduct CFD simulations to investigate the impact of tunnel<br />

ventilation conditions (longitudinal, semi-transverse and fullytransverse<br />

ventilation systems) on the development and<br />

distribution of the temperature and smoke<br />

Conduct CFD simulations to study the impact of tunnel length<br />

on the development and distribution of temperature and<br />

smoke in the tunnel


Task 3 – Comparisons<br />

against Task 7<br />

58<br />

33<br />

28<br />

Temperature ( 'C )……<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

Temprature at Thermocouple #58<br />

1.5 m/s<br />

2.0-1.5m/s Slot 58<br />

Tun2BV25 T38<br />

Temperature ( 'C )……<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Temperature at Thermocouple # 28<br />

Plume fluctuations<br />

Airflow conditions at entrance<br />

Radiation<br />

0 100 200 300 400<br />

Time ( s )<br />

2.0-1.5m/s Slot 28<br />

Tun2BV25 T8<br />

20<br />

0<br />

0 100 200 300 400<br />

300<br />

Temperature at Thermocouple #33<br />

Time ( s )<br />

250<br />

1.0 m x 2.0 m Gasoline 3300~3400 kW 1.5 m/s 21 o C<br />

<strong>Fire</strong> Behind<br />

Vehicle<br />

Temperature ( 'C )……<br />

200<br />

150<br />

100<br />

50<br />

2.0-1.5m/s Slot 33<br />

Tun2BV25 T13<br />

0<br />

0 100 200 300 400<br />

Time ( s )


Task 5: Environmental Field Tests in<br />

Lincoln <strong>Tunnel</strong> at New York City<br />

Daniel T. Gottuk, Ph.D., P.E.


Program Overview<br />

• Impacts of real tunnel environments on reliability of<br />

fire detection systems, including their false alarm<br />

rates and maintenance requirements investigated.<br />

• Evaluation of 3 fire detection technologies<br />

– Video Image <strong>Detection</strong> (VID) for flame and smoke<br />

– Optical Flame <strong>Detection</strong> (OFD)<br />

– Smoke Aspiration <strong>Detection</strong><br />

• 4 <strong>Detection</strong> systems installed and being monitored<br />

• Long-term ( 1 year) monitoring of fire detection<br />

systems and fire demonstration tests


<strong>Detection</strong> Systems<br />

ID Technology System<br />

Information<br />

D-3F1 OFD Flame<br />

Hardware<br />

Location<br />

<strong>Road</strong>way<br />

D-4C1 VID Smoke and Flame <strong>Tunnel</strong> Cameras<br />

with Unit in<br />

Admin. Building<br />

D-6C3 VID Flame<br />

<strong>Road</strong>way<br />

D-9S1 ASD Smoke<br />

Exhaust plenum


Environment in <strong>Tunnel</strong> – 10 month period<br />

•Outside temperatures ranged from -12°C C to 33°C.<br />

•The snow fall was 2.5 cm and the rain fall was<br />

19.2 cm.<br />

•High soot and dirt levels from traffic<br />

•Overspray from periodic washing of the tunnel<br />

walls and ceiling with a water and soap


Task 6: Demo <strong>Fire</strong> Tests in Lincoln<br />

<strong>Tunnel</strong> at New York City


<strong>Fire</strong> Demonstrations<br />

• November 11, 2007<br />

• 5 fire events<br />

– Diesel pan fires in back of stripped-down van<br />

– ~1 MW to 2 MW<br />

– Burn time ~5 minutes<br />

– Rear of vehicle toward detectors<br />

– Flame visible through window openings (area 0.44<br />

m 2 )<br />

• 2 fires near NJ portal<br />

• 3 fires near center of tunnel


Findings


Findings – <strong>Fire</strong> Effects on System<br />

Performance


Findings – <strong>Fire</strong> Effects on<br />

System Performance


Findings – Ventilation Effects on<br />

System Performance


Findings - CFD<br />

Temperature ( 'C )……<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Temperature at Thermocouple # 28<br />

Plume fluctuations<br />

Airflow conditions at entrance<br />

Radiation<br />

2.0-1.5m/s Slot 28<br />

Tun2BV25 T8<br />

0<br />

0 100 200 300 400<br />

Time ( s )


Lincoln <strong>Tunnel</strong><br />

Environment Performance<br />

ID Technology System Information Nuisance<br />

Alarms<br />

Trouble and Maintenance<br />

Issues<br />

D-3F1 OFD Flame 3 Numerous optical faults<br />

D-4C1 VID Smoke and Flame 164 Multiple trouble<br />

D-6C3 VID Flame 0<br />

D-9S1 ASD Smoke 1


Lincoln <strong>Tunnel</strong><br />

Demonstration Test<br />

Results<br />

Test ID<br />

<strong>Fire</strong> Location<br />

Dis. From<br />

Dets. (m)<br />

Results<br />

Demo 1 Near NJ Portal 61 No detection<br />

Demo 2 Near NJ Portal 30 Only OFD alarmed<br />

Demo 3 Near Center 61 No detection<br />

Demo 4 Near Center 30 Only ASD alarmed<br />

Demo 5 Near Cener 15 OFD and ASD alarmed


General Findings –<br />

Lincoln <strong>Tunnel</strong><br />

• Dirt and grime a major factor in all types of system<br />

performance<br />

• Sunshine and headlights a factor in VID performance<br />

• Direction of traffic flow (induced ventilation) a factor in<br />

performance


Recommendations for<br />

Further <strong>Research</strong><br />

• The impact of transverse or semi-transverse<br />

ventilation, on the performance of fire<br />

detection systems<br />

• More studies on the development of flame and<br />

smoke under wind conditions for VID systems<br />

• False alarm propensity of for linear heat<br />

detection<br />

• Refinement of CFD modeling tools for CCTV<br />

and flame detection


Summary<br />

A test protocol for evaluating various fire<br />

detection systems for tunnel protection has<br />

been developed;<br />

<strong>Detection</strong> capability and reliability of detection<br />

systems in tunnel environments were<br />

systematically investigated with full-scale tests<br />

in laboratory and operating tunnels, as well as<br />

computer modeling;<br />

The strength and weakness of current<br />

detection systems in tunnel applications have<br />

been identified;


Summary<br />

Technical data provided from the project can<br />

be used for development of standards and<br />

guidelines; improvement of fire detection<br />

technologies and their applications in tunnels,<br />

as well as tunnel safety.


Acknowledgements<br />

Authors would like to acknowledge the contributions<br />

of following organizations to the project:<br />

• Port Authority of New York and New Jersey; Ministry of<br />

Transportation of Quebec; Ministry of Transportation of<br />

Ontario; Ministry of Transportation of British Columbia; City<br />

of Edmonton; Carleton University;<br />

• Siemens Building Technologies; VisionsUSA; AxonX/Johnson<br />

Control; Tyco <strong>Fire</strong> Products; Sureland Industries <strong>Fire</strong> Safety;<br />

Micropack; United Technologies <strong>Research</strong> Corporation; Det-<br />

Tronics; J-power System/Sumitomo Electric; Honeywell;<br />

• A & G Consultants; PB Foundations;<br />

• members of Technical Panel and other NRC staff

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!