02.07.2015 Views

First Italian-Spanish Congress Seiano di Vico Equense and Amalfi ...

First Italian-Spanish Congress Seiano di Vico Equense and Amalfi ...

First Italian-Spanish Congress Seiano di Vico Equense and Amalfi ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MINERALOGICA<br />

ET<br />

PETROGRAPHICA<br />

ACTA<br />

già "ACTA GEOLOGICA ALPINA"<br />

<strong>First</strong> <strong>Italian</strong>-<strong>Spanish</strong> <strong>Congress</strong><br />

<strong>Seiano</strong> <strong>di</strong> <strong>Vico</strong> <strong>Equense</strong> <strong>and</strong> <strong>Amalfi</strong><br />

September 24-28, 1984<br />

A. Pozzuoli, E<strong>di</strong>tor<br />

Volume XXIX-A<br />

1985<br />

E<strong>di</strong>to a cura dell'<br />

ISTITUTO DI MINERALOGIA E PETROGRAFIA<br />

DELL'UNIVERSITÀ DI BOLOGNA<br />

<strong>di</strong>rettore della rivista Gianfranco Simboli


MINERALOGieA<br />

ET<br />

PETROGRAPHICA<br />

ACTA<br />

gia "ACTA GEOLOGICA ALPINA"<br />

Procee<strong>di</strong>ngs<br />

CLAYS AND<br />

CLAY MINERALS<br />

<strong>First</strong> I talian':..<strong>Spanish</strong> <strong>Congress</strong><br />

<strong>Seiano</strong> <strong>di</strong> <strong>Vico</strong> <strong>Equense</strong> <strong>and</strong> <strong>Amalfi</strong><br />

September 24-28, 1984<br />

A. Pozzuoli, E<strong>di</strong>tor<br />

Volume XXIX-A<br />

1985<br />

E<strong>di</strong>to a cura dell'<br />

ISTITUTO-DI MINERALOGIA f. PETROGRAFIA<br />

DELL'UNIVERSITA DJ BOLOGNA '<br />

<strong>di</strong>rettore della rivista Gianfranco Simboli


!<br />

:!<br />

~~------~------·-- -- Il--presente~volume-e- stato~-realizzato sotto<br />

gli auspici e con il contributo finanziario:<br />

del Consiglio Nazionale delle Ricerche<br />

e dell'Universita <strong>di</strong> Bologna.<br />

TIPOGRAFIA COMPOSITOR!- BOLOGNA~ 1986


PREFAC-E<br />

This volume of Procee<strong>di</strong>ngs contains forty-five papers presented at the <strong>First</strong><br />

<strong>Italian</strong>-<strong>Spanish</strong> <strong>Congress</strong> on Clays <strong>and</strong> Clay Minerals together with eight General<br />

Lectures <strong>and</strong> those extended abstracts (41) approved by the Scientific Committee<br />

for presentation at the poster session.<br />

The <strong>Congress</strong> was held in <strong>Seiano</strong> <strong>di</strong> <strong>Vico</strong> <strong>Equense</strong> <strong>and</strong> <strong>Amalfi</strong> (Italy) on<br />

September 24-28, 1984, <strong>and</strong> organized by the <strong>Italian</strong> <strong>and</strong> <strong>Spanish</strong> clay groups.<br />

Although a binational meeting, the <strong>Congress</strong> was also attended by clay scientists<br />

from Czechoslovakia, France, Hungary, Israel, the Netherl<strong>and</strong>s, Portugal <strong>and</strong><br />

Venezuela.<br />

The Procee<strong>di</strong>ngs are an example ofthe Gruppo <strong>Italian</strong>o dell'AIPEA's policy to<br />

establish useful contacts with in<strong>di</strong>vidual European <strong>and</strong> non-European clay<br />

groups in ·order to develop better relationships from both the personal <strong>and</strong> scientific<br />

points of view.<br />

The publication of these Procee<strong>di</strong>ngs was made possible mainly -through the<br />

financial support of the National Research Council of Italy, the University of<br />

Naples, the University of Bologna <strong>and</strong> the Vesuvius Observatory at Ercolano.<br />

Other economic assistance, both <strong>di</strong>rect <strong>and</strong> in<strong>di</strong>rect, was received from Banco <strong>di</strong><br />

Napoli, Consejo Superior de Investigaciones Cientificas - Madrid, Dipartimento<br />

<strong>di</strong> Geofisica e Vulcanologia ,dell'Universita degli Stu<strong>di</strong> <strong>di</strong> Napoli, Ente Provinciale<br />

per il Turismo <strong>di</strong> Salerno, Gruppo <strong>Italian</strong>o dell'AIPEA, the Moon Valley <strong>and</strong><br />

Scrajo Hotels in <strong>Vico</strong> <strong>Equense</strong>, Ideal-St<strong>and</strong>ard SpA - Milano, Instituto Espafiol<br />

de Santiago - Napoles, Istituto <strong>di</strong> Chimica Agraria dell'Universita degli Stu<strong>di</strong> <strong>di</strong><br />

Napoli, Istituto <strong>di</strong> Ricerca per la Protezione Idrogeologica - Cosenza, Istituto<br />

Sperimentale per la Nutrizione delle Piante - Roma, Istituto Sperimentale per lo<br />

Stu<strong>di</strong>o e la Difesa del Suolo - Firenze, Italcementi SpA - Bergamo, Philips SpA -<br />

Monza, Regione Calabria <strong>and</strong> Regione Campania. Valuable assistance was also<br />

provided by the Mayors <strong>and</strong> local authorities of <strong>Amalfi</strong>, Casoria <strong>and</strong> <strong>Vico</strong> Equen­<br />

. se in Campania, <strong>and</strong> of Spinazzola in Apulia.<br />

I wish to express my deepest gratitude to Professor Jose Maria Serratosa,<br />

President of the Scientific Committee, Professor Lorenzo Mangoni, Dean of the<br />

Faculty of Science at the University of Naples, <strong>and</strong> the members of the Scientific<br />

Committee for all their effort <strong>and</strong> cooperdtion in the more important scientific<br />

<strong>and</strong> organizational aspects of the <strong>Congress</strong>.<br />

Particular thanks are due to Doctor Vincenzo Rizzo <strong>and</strong> Professors Purificaci6n<br />

Fenoll Hach-Alf, Jose Antonio Rausell-Colom, Jose Linares, Naris Moran<strong>di</strong>,<br />

Luigi Dell'Anna, Fern<strong>and</strong>o Ve.niale <strong>and</strong> Gianfranco Simboli for their fundamental<br />

contributions in both key administrative <strong>and</strong> scientific questions related to the<br />

<strong>Congress</strong> itself as well as the production of these Procee<strong>di</strong>ngs.<br />

V


All the papers presented in this volume were critically read <strong>and</strong> the English<br />

corrected by Doctor Sally Wentworth Rossi, an extensive work for which sincere<br />

appreciation is expressed here. Thanks also are due to Professor Girolamo Pompameo<br />

for his careful revision of the <strong>Italian</strong> version of the Memorial~to Professor-­<br />

Juan Luis Martin Vival<strong>di</strong>. Almost the figures reproduced in the Procee<strong>di</strong>ngs were<br />

redrawn by Antonio <strong>and</strong> Fer<strong>di</strong>n<strong>and</strong>o Maria Musto.<br />

This volume of Procee<strong>di</strong>ngs is de<strong>di</strong>cated to the memory of Professor Juan Luis<br />

Martin Vival<strong>di</strong>.<br />

Antonio Pozzuoli<br />

E<strong>di</strong>tor<br />

VI<br />

,,.


. SCIENTIFIC COMMITTEE<br />

President<br />

JOSE MARIA SERRATOSA<br />

Secretaries<br />

LUIGI DELL'ANNA <strong>and</strong> FERNANDO VENIALE<br />

Members<br />

EMILIO GALAN, JOSE LINARES, CARLO PALMONARI,<br />

MARIA SANCHEZ-CAMAZANO, PIETRO VIOLANTE<br />

REFEREES<br />

The E<strong>di</strong>tor is grateful to the following scientists who acted as referees<br />

during the preparation of this volume<br />

R. ALLMAN J. KONTA LTH. ROSENQVIST<br />

S. DE AzA L KRAUS E. Rurz-HrTZKY<br />

J.A. BAIN ,-B. KUBLER J .D. Ru'SSELL<br />

E. BARAHONA G.'LAG_ALY M. SANCHEZ-CAMAZANO<br />

J. BENAYAS J. LINARES J. SANZ<br />

J. CORNEJO F. LoPEZ-AGUAYO R.A. ScHOONHEYDT<br />

L. DELL' ANNA P. MATTIAS C.J. SERNA<br />

E. GALAN M. 0RTEGA HUERTAS U. SCHWERTMANN<br />

A. GARCIA VERDUCH C. PALMONARI A. SINGER<br />

B.A. GOODMAN J .L. PEREZ RODRIGUEZ J. SRODON<br />

J .L. GUARDIOLA A. PozzuoLI J. TORRENT<br />

M.H.B. HAYES J .A. RAUSELL-COLOM F. VENIALE<br />

L. HELLER-KALLAI G.G. RISTORI P. VIOLANTE<br />

VII


CONTENTS<br />

Page<br />

Preface<br />

Juan Luis Martin Vival<strong>di</strong><br />

V<br />

XIII<br />

GENERAL LECTURES<br />

Do Clay Minerals Act as Catalysts in the Thermal Alteration of Organic Matter in<br />

Nature ? Problems of Simulation Experiments,<br />

b:y LISA HELLER-KALLAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

The Process of Bentonite Formation in Cabo de Gata, Almeria, Spain,<br />

by JOSE LINARES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

Quantitative Determinations of the Fine Structural Features in Clays by Modelling of<br />

the X-ray Diffraction Patterns, .<br />

by CYRIL TCHOUBAR . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

Crystalline Defects in Layer Silicates,<br />

by MANUEL RODRIGUEZ GALLEGO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55<br />

High-Resolution MAS-NM"R Spectra of Layer Silicates. Ordering of Tetrahedral<br />

Cations,<br />

by JOSE MARIA SERRATOSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71<br />

The Upper Basin of the Ofanto River: Some Grain Size, Mineralogical <strong>and</strong> Chemical<br />

Factors which Show the Se<strong>di</strong>mentation Pattern <strong>and</strong> Mineral Source,<br />

by LUIGI DELL'ANNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85<br />

The Role of Microfabric in Clay Soil Stability,<br />

by FERNANDOVENIALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lOl<br />

Crystalline Minerals <strong>and</strong> Chemical Maturity of Suspended Solids of Some Major<br />

World Rivers, "-<br />

by JIRI KONTA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121<br />

SECTION I: SURFACE CHEMISTRY AND INTERACTIONS<br />

Measurements of Total <strong>and</strong> External Surface· Area of Homoionic Smectites by p­<br />

Nitrophenol Adsorption,<br />

by G .G. RrsTORI, E. SPARVOLI, P. Fusr, J .P. QUIRK, <strong>and</strong> C. MARTELLONI . . . . . . . . . . . . . . . . 137<br />

Adsorption of Chloropropham (CIPC) by Clay Minerals <strong>and</strong> Soils,<br />

by G. Dros CANCELA, J.A. GUILLEN ALFARO, <strong>and</strong> S. GONZALEZ GARCIA . . . . . . . . . . . . . . . . . . 145<br />

Interaction of Chlor<strong>di</strong>meform with a Vermiculite-Decylammonium Complex in<br />

Aqueous <strong>and</strong> Butanol Solutions,<br />

by J.L PEREZRODRIGUEZ, E. MORILLO, <strong>and</strong>M.C. HERMOSIN . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

Anion-Exchanged Forms of Lithium Hydroxide Dialuminate,<br />

by G. MASCOLO ' ...... ··............................................................ 163<br />

Interaction of Chlorthiamid with AI- <strong>and</strong> Ca-Morttmorillonite,<br />

by P. Fusr, M. FRANCI, <strong>and</strong> G.G. RrsTORI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171<br />

Abstracts<br />

179<br />

SECTION 11: GEOLOGY AND GENESIS<br />

Hydrothermal Solutions Related to Bentonite Genesis, Cabo de Gata Region, Almeria,<br />

SE Spain,<br />

by E. CABALLERO, E. REYES, J. LINARES, <strong>and</strong> F. HUERTAS.............................. 187<br />

IX


The Origin of Palygorski,te in Villamayor S<strong>and</strong>stone, Salamanca, Spain,<br />

by M.A. VrcENTE <strong>and</strong>J. VICENTE-HERNANDEZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197<br />

Weathering Products of Vulture Volcanites, Lucania, Southern Italy,<br />

by M. Dr PIERRO, M. MoRES!, <strong>and</strong> F. VuRRo ................... '· ._ .._.. '-"--·-~--~'-'-·-·~,-·" ,_____205_.,,._.__ ._<br />

Compositional Characteristics of «Argille Varicolori» from Outcrops of Bisaccia <strong>and</strong><br />

Calitri, Avellino Province, Southern Italy,<br />

by M. Dr PIERRO <strong>and</strong> M. MoRES! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217<br />

Mineral Composition of the Jurassic Se<strong>di</strong>ments in the Subbetic Zone, Betic Cor<strong>di</strong>llera,<br />

SE Spain,<br />

by M. 0RTEGA HUERTAS, I. PALOMO DELGADO, <strong>and</strong> P. FENOLL HACH-ALI . . . . . . . . . . . . . . . . 231<br />

Pelagic Cretaceous Black-Greenish Mudstones in the Southern Iberian Paleomargin,<br />

Subbetic Zone, Betic Cor<strong>di</strong>llera,<br />

by A. LOPEZ GALINDO, M.C. COMAS MINONDO, P. FENOLL HACH-ALI, <strong>and</strong> M. 0RTEGA<br />

HUERTAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245<br />

Clay Minerals of Miocene-Pliocene Materials at the Vera Basin, Almer-'ia, Spain.<br />

Geological Interpretation,<br />

by E. GALAN, M. GONZALEZ LOPEZ, C. FERNANDEZ NIETO, <strong>and</strong> I. GONZALEZ DIEZ 259<br />

Clay Mineral Distribution in the Evaporitic Miocene Se<strong>di</strong>ments of the Tajo Basin,<br />

Spain,<br />

byJ.M.BRELL,M.DoVAL,<strong>and</strong>M.CARAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267<br />

Fluvial Pelitic Supplies from the Apennines to the Adriatic Sea. I - The Rivers of the<br />

Abruzzo Region,<br />

by L. TOMADIN, P. GALLIGNANI, V. LANDUZZI, <strong>and</strong> F. 0LIVERI ......... :. . . . . . . . . . . . . . . . 277<br />

Polygenesis of Sepiolite <strong>and</strong> Palygorskite in a Fluvio-L


Perturbation of V oH Infrared Frequencies by Inter layer-C~tions in Homoionic Vermiculites.<br />

Structural Implications,<br />

by J .A. RAUSELL-COLOM <strong>and</strong> J .M. SERRATOSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409<br />

Abstracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425<br />

SECTION IV: SOIL MINERALOGY AND GEOCHEMISTRY<br />

Mineralogical Characteristics of the Fine Fraction of Soils from the Emilia-Rorhagna<br />

Region, Northern Italy,<br />

by G. FELICE, G.C. GRILLINI, N. MoRANDI, <strong>and</strong> G. VIANELLI . . . . . . . . . . . . . . . . . . . . . . . . . . 437<br />

Quantitative Determination of Minerals in Clays from Profiles in the West of Central<br />

Spain by Differential Scanning Calorimetry,<br />

by M.T. MARTIN PATINO, C. TURRION, M .V. Roux, J. SAAVEDRA, <strong>and</strong> A. MILLAN . . . . . . . . . . 455<br />

Mineralogical <strong>and</strong> Geochemical Relationships in Pedological Profiles of Soils,<br />

by N. MORANDI, M.C. NANNETTI, <strong>and</strong> G.C. GRILLINI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461<br />

On the Effectiveness of the Extractable Forms of Fe, Al <strong>and</strong> P in Identifying Soil<br />

Chronosequence Terms,<br />

by E. ARDUINO, E. ZANINI, E. BARBERIS, V. BoERO, <strong>and</strong> F. AJMONE MARSAN . . . . . . . . . . . . 473<br />

Geochemistry of Available Micronutrients in Soils from Vega de Velez, Malaga,<br />

Spain,<br />

by A. Rurz, S. JAIME, A. AGUILAR, E. BARAHONA, F. HUERTAS, <strong>and</strong> J. LINARES . . . . . . . . . . . . 483<br />

Geochemistry of Soils from Peridotite in Los Reales, Malaga, Spain,<br />

by A. YUSTA, E. BARAHONA, F. HUERTAS, E. REYES, J .. YANEZ, <strong>and</strong> J. LINARES 489<br />

The Effect of Gypsum on the Poral System Geometry in Two Clay Soils,<br />

by A.B. DELMAS, C. BINI, <strong>and</strong> J. BERRIER ................................· . . . . . . . . . . 499<br />

511<br />

Abstracts ······ ········ ... ········. ······ ...... ······· ..... ······· ·············<br />

SECTION V: CERAMIC CLAYS<br />

Drying Properties of Ceramic Clays from Granada Province, Spain,<br />

by E. BARAHONA, F. HUERTAS, A. PozzuoLI, <strong>and</strong> J. LINARES ........................... .<br />

Clays <strong>and</strong> Complementary Raw Materials for Stoneware Tiles,<br />

byB.FABBRi<strong>and</strong>C.FroRI ......................· ................................. .<br />

Manufacture of Heavy-Clay Products with the Ad<strong>di</strong>tion of Residual Sludges from<br />

Other Ceramic Industries,<br />

by C. PALMONARI <strong>and</strong> A. TENAGLIA .................... : . ......................... .<br />

High Temperature Reactions <strong>and</strong> Use of Bronze Age Pottery from La Mancha, Central<br />

Spain,<br />

by J. CAPEL, F. HUERTAS, <strong>and</strong> J. LINARES ...... ········· ····· ............ ·········.<br />

Firing Properties of Ceramic Clays from Granada Province, Spain,<br />

by E. BARAHONA, F. HUERTAS, A. PozzuoLI, <strong>and</strong> J. LINARES ........................... .<br />

Degradation of Ceramic Sculptures on the Cathedral of Seville,<br />

by C. MAQUEDA, J .L. PEREZ RODRIGUEZ, <strong>and</strong> A. JUSTO ERBEZ ......................... .<br />

Abstracts ................................................................... · .. .<br />

521<br />

535<br />

547<br />

563<br />

577<br />

591<br />

599<br />

SECTION VI: GEOTECHNICAL PROPERTIES AND APPLICATIONS<br />

Mineralogical Composition <strong>and</strong> Geotechnical Properties of the Pelitic Antognola Formation<br />

from the Baiso Area, Northern Apennines,<br />

by A. CANCELLI, A. FAILLA, <strong>and</strong> N. MORANDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609<br />

XI


Geomorphological <strong>and</strong> Geotechnical Aspects of the Fissured Clays of Lucera, Apulia<br />

Region, Southern Italy,<br />

by C. CHERUBINI <strong>and</strong> A. GUERRICCHIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621<br />

Geological <strong>and</strong> Mineralogical Aspects of <strong>and</strong> Geotechnical Approach to the _l:a!ldsliges_ ..<br />

in the «Crete Nere» Formation in the Noce River Valley, Lucania, Souiliern Italy,<br />

by L. DELL'ANNA, M. Dr PIERRO, A. GUERRICCHIO, <strong>and</strong> G. MELIDORO . . . . . . . . . . . . . . . . . . 629<br />

Upper Miocene Clays from Vallone Salina, SW Cosenza, Calabria: Textural <strong>and</strong><br />

Compositional Characteristics with Geotechnical <strong>and</strong> Paleoenvironmental Aspects,<br />

by F. BALENZANO, L. DELL'ANNA, M. Dr PIERRo, <strong>and</strong> V. Rrzzo ............... , . . . . . . . . 647<br />

Techniques of Analysis for Lithostratigraphic Correlations in the Subsoil of'Milan,<br />

by V. FRANCANI, L. ScEsr, F. VENIALE, A. CANCELLI, F. PREVITALI, A. FARINI, <strong>and</strong> I. Assr<br />

............... ····· ..... ······ ············ .................... ······· ······· .. .<br />

Paleontological, Mineralogical <strong>and</strong> Geotechnical Characterization of Nardo Clays,<br />

by L. ALBANESE, C. CHERUBINI, M. Dr PrERRO, C.I. GrAsr, F.M. GUADAGNO, A. PEDE, <strong>and</strong><br />

F.P. RAMUNNI ................................................................. .<br />

Effects of Particle Geometry on Treatment <strong>and</strong> Processing of Clays,<br />

by R.A. KUHNEL ............................................................... .<br />

On Some Characteristics of Compacted Cohesive Soils,<br />

by G. DENTE <strong>and</strong> L. ESPOSITO .......... ': ........................................ .<br />

Abstracts ............................................................. , ....... .<br />

AUTHOR INDEX<br />

SUBJECT INDEX<br />

·········· ...... ··········· .. ········ ······· ................. .<br />

········ ······ ····· ········ ............ ····· .. ······ ......... .<br />

661<br />

671<br />

681<br />

693<br />

703<br />

713<br />

717<br />

,I,<br />

11'<br />

I'<br />

'<br />

XII


Juan Luis Martin Vival<strong>di</strong>


Il Professore Juan Luis Martin Vival<strong>di</strong> nacque a Granada illO Maggio 1918<br />

e mori prematuramente a Madrid il 7 Gennaio 1974, stroncato purtroppo da<br />

un fulmineo infarto.<br />

Dotato <strong>di</strong> eccezionale talento, compi con successo gli stu<strong>di</strong> secondari, conseguendo<br />

poi nel 1940 la laurea in Scienze Chimiche presso l'Universita <strong>di</strong><br />

Granada. Da allora ha inizio una feconda attivita <strong>di</strong> pensiero e <strong>di</strong> ricerca che<br />

nel volger <strong>di</strong> pochi anni, lo porta ad affermarsi parallelamente nel campo<br />

universitario ed in quello strettamente scientifico. Dopo il dottorato-in Scienze<br />

Chimiche conseguito con la piu alta votazione ed il plauso della Commissione<br />

nel 1949 a Madrid, <strong>di</strong>fendendo la Tesi « Hidrataci6n de silicatos de<br />

estructura laminar con cationes de cambio>>, ed un intenso periodo <strong>di</strong> stu<strong>di</strong><br />

relativo all'ambito chimico-fisico dei minerali delle argille, svolto con zelo e<br />

passione negli Stati Uniti d' America dal Maggio 1950 al Dicembre del1951 in<br />

collaborazione con il Dott. S.B. Hendricks, Martin Vival<strong>di</strong> risulta vincitore<br />

della cattedra <strong>di</strong> Cristalografia, Mineralogia y MineralotecrLia a Granada nel<br />

1962, e vi insegna per sei,. anni ottenendo successivamente, per concorso <strong>di</strong><br />

merito, il trasferimento all'UJ?-iversita <strong>di</strong> Madrid dove continua a profondere<br />

ai giovani con lungimiranza, impegno e rigore morale il meglio della sua<br />

profonda dottrina.<br />

Altrettanto intenso il suo curriculum scientifico in seno al Consiglio delle<br />

Ricerche Spagnolo dove percorre, in rapida, brillante successione, tappe<br />

fondamentali per la Sua carriera <strong>di</strong> stu<strong>di</strong>oso: borsista a Granada gia nel 1946-<br />

47, assistente alla Sezione Chimico-Fisica nel1948-49, collaboratore scientifico<br />

dall950 al1954 sempre a Granada e quin<strong>di</strong> ricercatore dal1955 al1971.<br />

Significativi in questi anni tal~.mi delicati incarichi affidati alla singolare<br />

competenza ed esperienza <strong>di</strong> Martin Vival<strong>di</strong> che dal 1957 al 1968 e responsabile<br />

della Sezione <strong>di</strong> Mineralogia dell'Istituto <strong>di</strong> Ceramica e Vetro del Patronato<br />

Juan de la Cierva <strong>di</strong> Granada nonche Vice Direttore della Stazione<br />

Sperimentale del Zai<strong>di</strong>n e capp della locale Sezione -<strong>di</strong> Mineralogia delle<br />

Argille, precisamente dal 1962 al 1968. Dall'Ottobre del 1968 la scienza ufficiale<br />

ne sottolinea le gran<strong>di</strong> capacita scientifico-organizzative, ricorioscendo- _<br />

lo ariche capo delle Sezioni ma~rilene <strong>di</strong> Mineralogia dell'Istituto Lucas<br />

Mallada e del Museo <strong>di</strong> Scienze Naturali nonche <strong>di</strong> Mineralogia e Tecnologia<br />

delle Argille del Dipartimento <strong>di</strong> Geologia Economica. Nel 1972 eccolo Profesor<br />

de Investigaci6n, il piu alto dei riconoscimenti scientifici e Consejero<br />

Adjunto, quest'ultima, alta e prestigiosa carica politico-scientifica.<br />

XV


I I<br />

'I<br />

I'<br />

L'attivita <strong>di</strong> ricerca del Professore Martin Vival<strong>di</strong> <strong>and</strong>o abbracci<strong>and</strong>o nel<br />

tempo numerosi campi delle Scienze della Terra. I suoi interessi riguardavano<br />

tematiche <strong>di</strong> Mineralogia e Cristallochimica, la Geochimica, la Genesi<br />

Minerale e la Petrogenesi, la Chimico-Fisica e la Reologia~delle Argille; il<br />

campo dei Giacimenti e quello della Sintesi Minerale, quest'ultima estesa<br />

anche all'approfon<strong>di</strong>mento <strong>di</strong> ricerche specifiche condotte su alcuni fillosilicati<br />

e zeoliti in con<strong>di</strong>zioni <strong>di</strong> bassa temperatura e ciistallinita. Originale fu il<br />

suo contributo alia Vulcanologia ed alia Geologia Se<strong>di</strong>mentaria, quest'ultima<br />

comprendente anche tematiche <strong>di</strong> carattere pedologico. Vennero cosi affrontati<br />

e risolti, per sua iniziativa, con ampia inter<strong>di</strong>sciplinarieta, stu<strong>di</strong> relativi<br />

ai giacimenti caolinici e bentonitici <strong>di</strong> Spagna e Marocco, ai se<strong>di</strong>menti triassici<br />

e cretacici nonche a quelli argillosi <strong>di</strong> bacini endoreici spagnoli, ed ai suoli<br />

delle Province <strong>di</strong> Granada e Salamanca. Attraverso tali stu<strong>di</strong> si consolidava in<br />

tempi brevi una Scuola agile e moderna nel campo della Geologia e della<br />

Geochimica della Dinamica e dei Processi <strong>di</strong> Alterazione e <strong>di</strong> Neoformazione<br />

della Superficie Terrestre, che degnamente si affiancava in Europa a quella<br />

francese <strong>di</strong> Strasburgo. Martin Vival<strong>di</strong> si <strong>di</strong>stinse, in particolare, per alcune<br />

ricerche riguardanti il delicato settore dei minerali a strati misti, d<strong>and</strong>o<br />

particolare risalto a quelli <strong>di</strong> tipo corrensite. Nacque cosi l'esigenza del neces-<br />

~~-·-~---~~.9:rjQ_erofonciimento della 11


Per la sua alta esperienza in campo geologico, nel 1964 tenne conferenze<br />

negli Stati Uniti d'America sul Tema delle Bentoniti e nel1968 fu nominata<br />

membro del Comitato Esecutivo Internazionale «Kaolin Correlation Program>>,<br />

quest'ultimo operante sotto il Patrocinio della UNESCO. Per i suoi<br />

contributi dati al campo dell'Analisi Termica Differenziale, svolse funzioni <strong>di</strong><br />

Liaison Officer per la Spagna, nell'ambito dell'International Confederation<br />

for Thermal Analysis.<br />

Qu<strong>and</strong>o ebbi la ventura <strong>di</strong> conoscere il Professore MartfnVival<strong>di</strong>, Don Juan<br />

cosi come affettuosamente a pochi era concesso <strong>di</strong> chiamarlo, erano gli inizi<br />

del 1970. Fui da lui accolto come un figlio, e come un figlio premuroso mi<br />

accorsi subito che reagiva con estremo vigore alle tante <strong>di</strong>fficolta che il nuovo<br />

ambiente universitario <strong>di</strong> Madrid gli <strong>and</strong>ava procur<strong>and</strong>o <strong>di</strong> giorno in giorno.<br />

Era troppo forte e troppo gr<strong>and</strong>e la sua personalita da evitargli problemi <strong>di</strong><br />

ogni genere. E reagiva cosi con illavoro, con l'organizzazione della Reunion<br />

Hispano-Belga de Minerales de la Arcilla che si sarebbe celebrata <strong>di</strong> li a poco,<br />

proprio a Madrid, con la preparazione della International Clay Conference del<br />

1972 che, anche per. suo merito, avrebbe visto la Spagna fra le protagoniste <strong>di</strong><br />

tale importante manifestazione. Alle <strong>di</strong>fficolta sopra accennate, egli reagiva<br />

inoltre, favorendo il completamento delle Tesi dottorali da lui <strong>di</strong>rette, e<br />

programm<strong>and</strong>o le future linee <strong>di</strong> ricerca che dovevano abbracciare il decennia<br />

1970-1980. Di Tesi dottorali ne <strong>di</strong>resse <strong>di</strong>eci.<br />

Questa in sintesi la luminosa carriera <strong>di</strong> Martin Vival<strong>di</strong>, uomo <strong>di</strong> straor<strong>di</strong>nario<br />

sapere e <strong>di</strong> elevate d.oti umane, ricco <strong>di</strong> interessi e <strong>di</strong> problematiche, che<br />

lo videro in rapporto con var:i Paesi del mondo tra cui l'Italia alla quale era<br />

anche legato da vincoli affettivi per antica <strong>di</strong>scendenza.<br />

Infaticabile organizzatore <strong>di</strong> gruppi <strong>di</strong> ricerca non solo a Granada, ma<br />

anche altrove, cultore per <strong>di</strong>retta esperienza <strong>di</strong> stu<strong>di</strong>o e <strong>di</strong> soggiorno in <strong>di</strong>versi<br />

Paesi anglosassoni, della lingua inglese, sempre partecipe a congressi <strong>di</strong> ogni<br />

livello, animatore <strong>di</strong> ogni iniziativa scientifica, Egli resta percio uno Scienziato<br />

insigne - chimico, mineralogista, geologo - del nostro tempo, sempre<br />

sorretto da illuminata intelligenza ed incisiva versatilita. La Sua valentia<br />

scientifica si armonizzava con la bonta del carattere, aperto, gioviale, socievole,<br />

anche se triste per natura, sempre pronto a cogliere e penetrare la psicologia<br />

altrui, amante del bello in senso la to, in una continua ricerca della verita.<br />

Da tale sintonia <strong>di</strong> valori emerge la forte personalita dell'Uomo che de<strong>di</strong>c<strong>and</strong>o<br />

una vita iritera alla scienza, e oggi, a buon <strong>di</strong>ritto, universalmente rimpianto<br />

ed ammira to.<br />

A. Pozzuoli<br />

XVII


Professor Juan Luis Martin Vival<strong>di</strong> was born in Granada, Spain on May 10,<br />

1918 <strong>and</strong> <strong>di</strong>ed prematurely at the age of 55, struck down by a heart attack in<br />

Madrid on January 7, 1974.<br />

Martin Vival<strong>di</strong> was a man of exceptional talent. After successfully completing<br />

his secondary stu<strong>di</strong>es, in 1940 he received his undergraduate degree in Chemistry<br />

from the University of Granada. This marked the beginning of a long period of<br />

fertile thought <strong>and</strong> research which in just a few years led to his parallel affirmation<br />

in both teaching <strong>and</strong> strictly scientific endeavours. In 1949 he received his<br />

doctor's degree in Chemistry with highest honours from the University of Madrid,<br />

defen<strong>di</strong>ng the thesis «H idrataci6n de silicatos de estructura laminar con cationes<br />

de cambio». After an intense period of study relative to the physical-chemistry of<br />

clay minerals carried out with enthusiasm <strong>and</strong> passion in the U.S.A. (May 1950<br />

to December 1951) in collaboration with Dr. S.B. Hendricks, Martin Vival<strong>di</strong> was<br />

(lppointed full professor ofCrystallography, Mineralogy <strong>and</strong> Mineral Techniques<br />

at the University of Granada in 1962. After 6 years in Granada, he applied for <strong>and</strong><br />

received a transfer to the University of Madrid where he continued to de<strong>di</strong>cate his<br />

time <strong>and</strong> boundless energy to the teaching of young people, imparting the best of<br />

his profound doctrine with far-sightedness, care <strong>and</strong> moral exactitude.<br />

Equally intense was his scientific curriculum as part of the <strong>Spanish</strong> Research<br />

Council where in rapid, brilliant succession he occupied the following positions<br />

at the Experimental Station of Zai<strong>di</strong>n in Granada, fundamental for the development<br />

of his career as a scientist: research fe}low, 1946-47; assistant in the<br />

Physical Chemistry Section of the Experimental Station of Zai<strong>di</strong>n, 1948-49;<br />

s~ie~tific collaborator, 1950-54 <strong>and</strong> research associate 1955-1971. During these<br />

years, various positions held by Martin Vival<strong>di</strong> were of particular significance,<br />

·representative of his singular competency <strong>and</strong> experience. From 1957 to 1968, he<br />

was Director of the Mineralogy Section of the Instituto de Ceramica y Vidrio del<br />

Patronato Juan de la Cierva of Granada as well as the Vice Director of the<br />

Experimental Station· of Zai<strong>di</strong>n <strong>and</strong> head of the Clay Mineralogy Section from<br />

1962 to 1968. In October 1968, in recognition of his scientific <strong>and</strong> organizational<br />

abilities, Martin Vival<strong>di</strong> was appointed head of the Madrid Section of Mineralogy<br />

of the Lucas Mallada Institute <strong>and</strong> of the Museum of Natural Science as well as<br />

Chairman of the Clay Mineralogy <strong>and</strong> Technology Section in the Department of<br />

Economic Geology at the University of Madrid. Four years later, in 1972, he<br />

received the titles of Profesor de Investigaci6n, the highest possible scientific<br />

recognition <strong>and</strong> Consejero Adjunto, a prestigious, high-level, scientific-political<br />

position.<br />

XIX


i'<br />

I<br />

I'<br />

I<br />

The research activities of Professor Martin Vival<strong>di</strong> with time encompassed<br />

numerous areas of earth science. His interests included topics in mineralogy <strong>and</strong><br />

crystal chemistry, geochemistry, mineral genesis <strong>and</strong> petrogenesis, physical chem-<br />

. is try <strong>and</strong> rheology of clays, clay deposits <strong>and</strong> mineral synthesis. In particular,<br />

Martin Vival<strong>di</strong>'s work on mineral synthesis included thorough stu<strong>di</strong>es of several<br />

layer silicates <strong>and</strong> zeolites at low temperature <strong>and</strong> crystallinity. His original<br />

contributions to volcanology <strong>and</strong> se<strong>di</strong>mentary geology were exceptional <strong>and</strong> in the<br />

latter area also included topics in pedology. Because of his initiative, widely<br />

inter<strong>di</strong>sciplinary stu<strong>di</strong>es were confronted <strong>and</strong> carried to completion regar<strong>di</strong>ng<br />

kaolinite <strong>and</strong> bentonite deposits in Spain <strong>and</strong> Morocco, Triassic <strong>and</strong> Cretaceous<br />

se<strong>di</strong>ments <strong>and</strong> clay mineral deposits of <strong>Spanish</strong> endorheic basins, <strong>and</strong> the soils of<br />

the Provinces of Granada <strong>and</strong> Salamanca. In a short time, these stu<strong>di</strong>es led to the<br />

consolidation of an agile <strong>and</strong> modem school in the fields of geology, geochemistry,<br />

dynamics of alteration processes <strong>and</strong> neoformation of the earth's crust,<br />

which took its place in Europe alongside that of the French school in Strasbourg.<br />

Martin Vival<strong>di</strong> stood out, in particular, for certain research regar<strong>di</strong>ng the complex<br />

sector of mixed-layer minerals, with particular emphasis on corrensite type minerals.<br />

This research served as the startingpoint for further important stu<strong>di</strong>es on the<br />

nature of the interstratified clay minerals which could be <strong>di</strong>stinguished on the<br />

basis of their expansion characteristics <strong>and</strong> peculiar behaviours during various<br />

-· ---------thermal treatments.<br />

Martin Vival<strong>di</strong> was expert in many instrumental techniques, excelling, among<br />

others, in X-ray <strong>di</strong>ffraction, thermal analysis <strong>and</strong> electron microscope techniques.<br />

He was one of the pioneers, in Spain, in the field of <strong>di</strong>fferential thermal analysis<br />

where he was known for its application in the field of clay-organic complexes <strong>and</strong><br />

for his considerable contribution to the study <strong>and</strong> the characterization of minerals<br />

such as sepiolite <strong>and</strong> attapulgite. Of particular value in the field of X-ray<br />

<strong>di</strong>ffraction analysis were the mo<strong>di</strong>fications he developed for the Philips Camera<br />

which made it possible to <strong>di</strong>stinguish <strong>and</strong> study the <strong>di</strong>ffraction effects at very low<br />

angles by some types of swelling clay minerals.<br />

The <strong>di</strong>dactic activity of Professor Martin Vival<strong>di</strong> was intense <strong>and</strong> profitable for<br />

all those who had the fortune to know <strong>and</strong> follow him, both before <strong>and</strong> after<br />

receiving their degrees. His courses on crystallography <strong>and</strong> mineralogy, geochemistry,<br />

crystal chemistry <strong>and</strong> pedology were of the highest level. He also taught<br />

fundamental <strong>and</strong> integrative courses on X-ray <strong>di</strong>ffraction analysis, geology <strong>and</strong><br />

mineralogy of clays <strong>and</strong> <strong>di</strong>fferential thermal analysis. He was particularly clear in<br />

<strong>di</strong>scussion <strong>and</strong> presenting details of all topics, but especially so for those representing<br />

starting points for wider <strong>and</strong> more interesting stu<strong>di</strong>es. Because of his<br />

gr<strong>and</strong> communicative ability, he gave to everyone, sooner or later, the possibility<br />

to be included in always modem <strong>and</strong> constructive cultural <strong>di</strong>scussions.<br />

Because of his wide experience in the field of geology, in 1964, Martin Vival<strong>di</strong><br />

held conferences in the U.S.A. on the subject of bentonites <strong>and</strong> in 1968 was<br />

XX


nominated a member of the International Executive Committee of the «Kaolin<br />

Correlation Program» operating under the UNESCO. His contributions in the<br />

field of <strong>di</strong>fferential thermal analysis, led to his role as Liaison Officer for Spain<br />

within the framework of the International Confederation for Thermal Analysis.<br />

I had the good fortune to know Professor Martin Vival<strong>di</strong>, Don Juan, as few<br />

were affectionately permitted to call him, at the beginning of the 1970's. He<br />

accepted me like a son <strong>and</strong> like an affectionate son, I soon became aware that he<br />

reacted with extreme energy <strong>and</strong> vigour to the many <strong>di</strong>fficulties arising from the<br />

new university environment in Madrid. He was too strong <strong>and</strong> his personality too<br />

powerful to allow him to avoid any type of problem. This was his reaction to work,<br />

to the organization of the Reunion Hispano-Belga de Minerales de la Arcilla<br />

which was soon to be held in Madrid <strong>and</strong> to the preparation of the 1972 International<br />

Clay Conference, which, thanks to Martin Vival<strong>di</strong>, was held in Spain. In<br />

ad<strong>di</strong>tion to such activities as these, Professor Martin Vival<strong>di</strong> was also involved in<br />

advising studens in their thesis research <strong>and</strong> programming future areas of<br />

research for the 10-year period 1970-1980. Hewas advisor for 10 doctoral theses.<br />

This, in synthesis was the luminous career of Martin Vival<strong>di</strong>, a man of extraor<strong>di</strong>nary<br />

knowledge <strong>and</strong> noble human qualities, with a wide range of interests that<br />

brought him into contact with many people from many countries throughout the<br />

world, inclu<strong>di</strong>ng Italy, for which he had a particular affection because of ancestral<br />

ties. ,<br />

Untiring organizer of research groups not only in Granada, but also elsewhere,<br />

skilled in English, through <strong>di</strong>r'ect experience during stu<strong>di</strong>es <strong>and</strong> visits to various<br />

Anglo-Saxon countries, active participant in congresses of all types, leader of.<br />

numerous scientific initiatives, for these reasons Martin Vival<strong>di</strong> st<strong>and</strong>s out as an<br />

illustrious scientist - chemist, mineralogist, geologist - of our time, always<br />

upheld by an illuminated intelligence <strong>and</strong> incisive versatility. His scientific prowess<br />

was in complete harmony with the goodness of his character, open, jovial,<br />

sociable, even though sad by nature, always ready to receive <strong>and</strong> underst<strong>and</strong> the<br />

feelings of others, lover of the good in life, in continuous search for the truth.<br />

From this syntony of values emerges the strong personality of Professor Juan Luis<br />

Martin Vival<strong>di</strong>, a man, who, after de<strong>di</strong>cating his whole life to science, is today,<br />

with reason, universally missed <strong>and</strong> admired.<br />

A. Pozzuoli<br />

XXI


General<br />

Lectures


Miner. PetrQgr. Acta<br />

Vol. 29-A, pp. 3-16 (1985)<br />

Do Clay Minerals Act as Catalysts in the Thermal<br />

Alteration of Organic Matter in Nature?<br />

Problems of Simulation Experiments<br />

LISA HELLER-KALLAI<br />

Department of Geology, Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel<br />

ABSTRACT- A review of the literature on the evolution of kerogen in rocks of<br />

<strong>di</strong>fferent lithology, on bitumen associated with carbonates <strong>and</strong> silicates-in<br />

the same rocks <strong>and</strong> on the effect of natural thermal events on the decomposition<br />

of kerogen does not provide conclusive evidence for systematic catalytic<br />

effects of minerals on kerogen catagenesis. In laboratory experiments with<br />

kerogen in open systems two effects of clay minerals were <strong>di</strong>stinguished:<br />

retention <strong>and</strong> catalysis. It is tentatively concluded that with in<strong>di</strong>genous clays<br />

retention of organic matter may be more important than catalysis. On<br />

migration the organic matter encounters fresh mineral surfaces, which may<br />

act as catalysts. Such surfaces may also be exposed in response to mechanical<br />

effects.<br />

Model experiments with carboxylic acids showed that. <strong>di</strong>fferent features of<br />

clay minerals cause retention, decarboxylation <strong>and</strong> cracking at elevated<br />

temperatures. Conversion of the aci<strong>di</strong>c into the ionic form, which occurs<br />

more rea<strong>di</strong>ly ··with trioctahedral than with <strong>di</strong>octahedral minerals, causes<br />

stronger retention of the organic matter by clays. Conversion of. montmorillonite<br />

to an 'Organo-montmorillonite increases retention of carboxylic<br />

acid but reduces catalytic activity ··of the clay <strong>and</strong> conversion of the acid to<br />

the ionic form. Organo-clays may most closely resemble in<strong>di</strong>genous clays in<br />

oil-prone. rocks. Oxidation-reduction reactions between the organic matter<br />

<strong>and</strong> the mineral matrix are strongly dependent on the rate of removal of the<br />

reaction products.<br />

The experiments with carboxylic acids demonstrate that the interactions<br />

between clay minerals <strong>and</strong> organic matter <strong>di</strong>ffer in open, semi-closed <strong>and</strong><br />

closed systems, which may simulate reactions in <strong>di</strong>fferent types of pores in<br />

rocks. No single set of experimental con<strong>di</strong>tions can be expected to reproduce<br />

the complex processes occurring in nature. Pooling the products obtained<br />

under <strong>di</strong>fferent con<strong>di</strong>tions with mixtures of clay minerals may lead to improved<br />

simulation experiments.<br />

Introduction<br />

It . is now generally accepted that<br />

petroleum is derived from _kerogen,<br />

insoluble macromolecules formed by<br />

<strong>di</strong>agenesis of organic debris on burial<br />

in a subsi<strong>di</strong>ng basin. The elemental<br />

composition of kerogen, which depends<br />

on the parent material, follows<br />

<strong>di</strong>fferent evolution patterns on burial.<br />

These are conveniently expressed<br />

in <strong>di</strong>agrams of the type shown in


--·----~-<br />

4 L. Heller-Kallai<br />

11,<br />

11<br />

11<br />

, I<br />

1.<br />

i<br />

I'<br />

! ~<br />

I<br />

~<br />

,l'!<br />

u<br />

.,.<br />

.s 1.5<br />

"'<br />

..._<br />

u<br />

"' :::.11<br />

1.0 -1--1~1--t-----f-----· -·-· ··-··<br />

0.5<br />

0 20 30<br />

~-·a;·c-<br />

il-tomic R"ai:io (x 1oo)<br />

Fig. 1 - Elemental evolution of various types of<br />

kerogen (After DURAND, 1980c.) The arrows<br />

in<strong>di</strong>cate increasing evolution.<br />

Fig. 1. On maturation kerogen begins<br />

to generate liquids <strong>and</strong>, at greater<br />

depth, gas as shown in the figLJ.re. At<br />

the oil-generating stage cleavage of<br />

heterobonds in the kerogen produces<br />

fragments, which may be converted<br />

to petroleum hydrocarbons (HC's).<br />

These HC's or their precursors migrate<br />

from source rocks to reservoirs,<br />

where they accumulate. To account<br />

for the relatively low temperatures at<br />

which cracking reactions occur<br />

( > (A)


Do Clay Minerals Act as Cataly;ts in the Thermal ... 5<br />

<strong>and</strong> «open pores>> (B). Lighter hydrocarbons<br />

could move in <strong>and</strong> out of<br />

pores B, but probably only out of A.<br />

The presence of closed pores in natural<br />

systems was demonstrated by<br />

several investigators (e.g. SAJGO<br />

et al., 1983) by comparing the solventsoluble<br />

extract of total rock samples<br />

with that from the same rock after<br />

crushing. The <strong>di</strong>fference was attributed<br />

to bitumen in closed pores.<br />

BRUKNER & VETO (1981) found<br />

that this <strong>di</strong>fference decreased with<br />

increasing carbonate content of the<br />

rocks, in<strong>di</strong>cating that fractionation<br />

was more efficient in marls than in<br />

carbonates. In modelling such systems,<br />

should an open scheme be<br />

adopted, in which the products are<br />

removed from the reactants <strong>and</strong><br />

secondary reactions are r~duced, a<br />

not be reviewed here (e.g. FOSCO­<br />

LOS & POWELL, 1979; JOHNS,<br />

1979; 1982; PEARSON et al., 1982;<br />

HURST, 1982). Although there are<br />

consistent relationships between<br />

changes in clay minerals <strong>and</strong> <strong>di</strong>agenesis<br />

of the organic matter, a<br />

causal connection has not been definitely<br />

established.<br />

In the present paper an attempt is<br />

made to review the information<br />

available on possible catalytic effects<br />

. of clay minerals on the evolution of<br />

kerogen in nature <strong>and</strong> in laboratory<br />

simulation experiments. Some of the<br />

conclusions will be <strong>di</strong>scussed in the<br />

light of results obtained in experiments<br />

with carboxylic acids.<br />

Natural systems<br />

closed one or an interm~<strong>di</strong>ate<br />

arrangement in which products may<br />

slowly <strong>di</strong>ffuse or be transported away<br />

from the reactants?<br />

The problem of the transporting<br />

me<strong>di</strong>um is no less complex. It may<br />

vary with the degree of maturation<br />

of the kerogen. TISSOT & WELTE<br />

(1978) suggest that in argillaceous<br />

se<strong>di</strong>ments the carrier is water at shallower<br />

depths but on deeper burial<br />

migration takes place in an oil or gas<br />

, phase. The pores are water wet. The<br />

nature of any organo-clay complexes<br />

formed <strong>and</strong> the aci<strong>di</strong>ty of potential<br />

clay catalysts will, of course, be.<br />

affected by the fluid phase present.<br />

The correlation of oil migration ··<br />

<strong>and</strong> HC cracking with dehydration<br />

If minerals catalyse the decomposition<br />

reactions, the evolution path<br />

of kerogen will depend upon the surroun<strong>di</strong>ng<br />

me<strong>di</strong>um. DURAND (1980b)<br />

reported that a type Ill kerogen <strong>di</strong>sseminated<br />

in a clay matrix (predominantly<br />

illite <strong>and</strong> kaolinite) was identical<br />

with kerogen in coal beds intercalated<br />

between these clays, suggesting<br />

that kerogen composition <strong>and</strong><br />

burial history alone determined the<br />

evolution path. WILLIAMS & DOUG­<br />

LAS (1981) found that the organic<br />

matter in carbonate, clay <strong>and</strong> shale<br />

fractions of Kimmeridge clay was<br />

similar, with minor variations in the<br />

carbonate rocks. They attributed<br />

these to catalytic effects of carbonates.<br />

<strong>and</strong> <strong>di</strong>agenesis of clay minerals has<br />

In contrast IVANOV &<br />

been extensively <strong>di</strong>scussed <strong>and</strong> will SHCHERBAR (1983) concluded that


~- -- ~-- -----~-===----------...... -<br />

6 L. Heller-Kallai<br />

-- 1 I· ,<br />

l<br />

lithology significantly influenced the<br />

nature of the organic matter <strong>and</strong> that<br />

more He's were formed in clay than<br />

in carbonate rocks. They based their<br />

conclusions on comparison of<br />

kerogen from various basins,<br />

irrespective of <strong>di</strong>fferences in the parent<br />

material <strong>and</strong> in the physical<br />

properties of the rocks. JONES (1984)<br />

observed systematic <strong>di</strong>fferences between<br />

oils derived from carbonates<br />

<strong>and</strong> shales, but attributed these to<br />

variations in the parent material <strong>and</strong><br />

in the porosity <strong>and</strong> permeability of<br />

the rocks.<br />

In natural systems it is always <strong>di</strong>f- .<br />

ficult to <strong>di</strong>stinguish between the<br />

effects of the physical properties of<br />

' -----~~--tlie-rocks-:-such as-po~osi ty' ~~cl-p~ssible<br />

catalytic activity. This problem<br />

was overcome in stu<strong>di</strong>es of SPIRO<br />

(1980) <strong>and</strong> JEONG & KOBYLINSKI<br />

(1983), who examined the bitumic<br />

nous fraction associated with carbonates<br />

<strong>and</strong> silicates of the same rock<br />

samples (oil shales from Israel <strong>and</strong><br />

Colorado, respectively) by stepwise<br />

degradation of the mineral components<br />

followed by extraction with<br />

organic solvents. The data in Table 1<br />

demonstrate that there-are some resemblances<br />

but also some <strong>di</strong>fferences<br />

between the two occurrences, confirming<br />

Spiro's view that, although<br />

there is preferred adsorption by silicates,<br />

it is limited by the availability<br />

of the components during deposition<br />

<strong>and</strong> early <strong>di</strong>agenesis. This concept received<br />

further support from similar<br />

stu<strong>di</strong>es on occurrences which had<br />

been affected by natural thermal<br />

events: oil shales from Israel which<br />

were partly pyrolysed by heat derived<br />

from subsurface oxidation <strong>and</strong><br />

bituminous shales from Greenl<strong>and</strong><br />

into which a dyke had intruded<br />

(SPIRO & AIZENSHTAT, 1981;<br />

SPIRO, 1984). In both instances the<br />

kerogen had been exposed to higher<br />

temperatures for relatively short<br />

periods of time <strong>and</strong> samples of the<br />

same kerogen at <strong>di</strong>fferent <strong>di</strong>stances<br />

from the thermal events could be<br />

stu<strong>di</strong>ed. Spiro detected some effect<br />

of the minerals on the nature of the<br />

organic matter, but noted that the<br />

trends were frequently contrasting,<br />

because catalysis could only take<br />

TABLE 1<br />

Comparison of bituminous fractions associated with carbonates <strong>and</strong> silicates in oil shales<br />

(data from SPIRO, 1980, <strong>and</strong> JEONG & KOBYLINSKI, 1983). S =silicates; C =carbonates<br />

Selected features<br />

Colorado<br />

Oil shale<br />

Israel<br />

I<br />

I'<br />

I<br />

I<br />

I<br />

Amount of bitumen S>C Depends on sample, mostly S > C<br />

Polar substances S>C S>C<br />

C=O S>C Erratic<br />

C = C (Aliphatic)<br />

C-H<br />

C>S<br />

S>C<br />

Aromatics S=C S>C


Do Clay Minerals Act as Catalysts in the Thermal ... 7<br />

place when the mineral surfa~es were<br />

available for adsorption.<br />

Laboratory simulation experiments<br />

of the thermal decomposition of<br />

kerogen<br />

Experiments in closed systems<br />

Very few such experiments have<br />

been reported. MITTERER & HOER­<br />

ING (1966) found that the nC15-C31<br />

HC's obtained from some Recent<br />

se<strong>di</strong>ments <strong>and</strong> from the correspon<strong>di</strong>ng<br />

kerogens on heating in sealed<br />

tubes were qualitatively <strong>and</strong> quantitatively<br />

similar. The authors imply<br />

that these results supplement earlier<br />

ones (HOERING & ABELSON, 1962)<br />

which showed that the presence of<br />

the rock matrix <strong>di</strong>d not affect the <strong>di</strong>stribution<br />

of light HC's from a wide<br />

range of se<strong>di</strong>ments. It should be<br />

noted, however, that the earlier experiments<br />

were performed under entirely<br />

<strong>di</strong>fferent experimental con<strong>di</strong>tions,<br />

with a Toeppler pump removing<br />

the volatile products from the<br />

reactants.<br />

Experiments, in open systems<br />

Many more experiments were carried<br />

out in open systems ( « blilk<br />

flow»), primarily for the practical<br />

purpose of assessing the oil potential<br />

of source rocks. In recent years instruments<br />

of the Rock Eval type<br />

(ESPITALIE et al., 1977) have been<br />

widely used. For routine work with<br />

these instruments It IS very important<br />

to establish whether. the mineral<br />

matrix affects the course of pyrolysis.<br />

In early experiments (GIRAUD, 1970;<br />

SOURON et al., 1975) no <strong>di</strong>fferences<br />

were detected, but more recent stu<strong>di</strong>es<br />

have shown that in the presence<br />

of the rock matrix the total yield of<br />

HC's was reduced <strong>and</strong> the proportion<br />

of light He's was increased relative to<br />

the heavier ones (CLA YPOOL &<br />

REED, 1976; MONIN et al., 1979;<br />

ESPITALIE et al., 1980; ORR, 1981;<br />

DAVIS & STANLEY, 1982; DEMBIC­<br />

KI et al., 1983; KATZ, 1983). This<br />

was attributed to two effects: retention<br />

of HC's by the mineral matrix,<br />

particularly by clays, .<strong>and</strong> subsequent<br />

cracking to. produce lower<br />

HC's. Retention of some of the products<br />

by the mineral matrix has been<br />

established beyond doubt. It is greater<br />

for types II <strong>and</strong> Ill kerogens (i.e.<br />

kerogens with more oxygen containing<br />

functional groups) than for Type<br />

·I <strong>and</strong> decreases with increasing maturity<br />

(decreasing oxygen content)<br />

<strong>and</strong> increasing concentration of the<br />

kerogen. Catalysis by in<strong>di</strong>genous minerals<br />

seems to be less firmly established:<br />

either only relative amounts of<br />

the HC's were determined (e.g. HORS­<br />

FIELD & DOUGLAS, 1980) or it was<br />

found that the total yield was decreased<br />

by the mineral matrix (ESPI­<br />

TALIE et al., 1980). An increase in the<br />

relative amount of light HC's may be<br />

primarily due to preferential retention<br />

of the heavier ones. It seems possible<br />

that most catalytic sites of in<strong>di</strong>genous<br />

minerals may have been deac- .<br />

tivated in the course of catagenesis.


1 _ prod:t~:c:~s<br />

8 L. Heller-Kallai<br />

In contrast, when minerals were<br />

mixed with kerogen or added to whole<br />

rock samples, or when the thermal<br />

decomposition products were percolated<br />

through plugs of various minerals,catalyticeffectswereclearlydemonstrated,<br />

in ad<strong>di</strong>tion to retention.<br />

ESPITALIE et al. (1980; 1984) showed<br />

that the absolute yield of light HC's<br />

increased in the presence of montmorillonite<br />

<strong>and</strong>, to a lesser degree, with(<br />

illite <strong>and</strong> kaolinite. Similar results<br />

with montmorillonite were obtained<br />

by HETENYI (1983). Retention by<br />

clay minerals depended on the surface<br />

area; of the minerals examined<br />

palygorskite retained the volatile<br />

__ .!ll


Do Clay Minerals Act as Catalysts in the Thermal ... 9<br />

tions. Simultaneously some calcite<br />

reacted with organically derived<br />

sulphur to give anhydrite, whether<br />

due to elevated temperatures only or<br />

in part also to attack of calcite by<br />

, acid gases is uncertain.<br />

Other reactions which may occur<br />

on pyrolysis of organic matter <strong>and</strong><br />

that do not seem to have received<br />

much attention are oxidationreduction<br />

reactions involving the mineral<br />

matrix. KONCZ (1979) suggested<br />

that the ratio of residual carbon<br />

after pyrolysis to total organic carbon<br />

may be reduced by metal oxides<br />

of <strong>di</strong>fferent valency present in clay<br />

minerals, which promote formation<br />

of carbon monoxide at elevated temperatures.<br />

These examples show that in laboratory<br />

experiments minerals,- can participate<br />

in reactions with organic<br />

matter or undergo other changes<br />

which may affect the products obtained<br />

from kerogen pyrolysis.<br />

Whether such changes actually occur<br />

in natural systems remains to be<br />

established.<br />

Burial causes <strong>di</strong>agenetic changes<br />

in clay mineral~. It has been postulated<br />

that, in ad<strong>di</strong>tion to supplying water<br />

for transporting organic matter,<br />

<strong>di</strong>agenetic changes of clays. may increase<br />

their' catalytic activity, but<br />

this, too, requires· substantiation<br />

(FRIPIAT & CRUZ-CUMPLIDO, 1974).<br />

Simulation experiments with model<br />

organic compounds<br />

In general the object of such experiments<br />

was to demonstrate that various<br />

organic compounds, which may<br />

be regarded as petroleum precursors<br />

or thermal decomposition products<br />

of kerogen, can be transformed into<br />

petroleum HC's with the aid of min"<br />

eral catalysts. The results obtained in<br />

other experiments, not specially d~signed<br />

for this purpose, were also u­<br />

tilised. Various minerals have been ><br />

employed together with model compounds<br />

ranging from very complex<br />

molecules like marine algae (EVANS<br />

& FELBECK, 1983) to simpler molecules<br />

with functional groups, e.g.<br />

alcohols (GALWEY, 1970; 1972) to<br />

long-chain HC's (TARAFA et al., 1983;<br />

DEMBICKI et al., 1983; GOLD­<br />

STEIN, 1983) <strong>and</strong> terpenes (FREN­<br />

KEL & HELLER-KALLAI, 1977). Fate<br />

ty acids are probably the most extensively<br />

stu<strong>di</strong>ed model compounds<br />

(JOHNS, 1979; HELLER-KALLAI et<br />

al., 1984 <strong>and</strong> references therein). It is<br />

well established that clay minerals<br />

" can retain organic matter <strong>and</strong> catalyse<br />

a wide range of chemical reactions,<br />

some of which may lead to petroleum<br />

constituents, b~t the <strong>di</strong>stribution<br />

patterns obtained generally<br />

- <strong>di</strong>ffer from those of natural oils. One<br />

possible cause is the choice of the reagents,<br />

another that of the experimental<br />

con<strong>di</strong>tions. It has been shown that<br />

the HC's obtained from stearic acid<br />

heated in the presence of cla:ys in<br />

open <strong>and</strong> closed systems are very <strong>di</strong>fferent:<br />

in open systems saturated <strong>and</strong><br />

unsaturated cracking products were<br />

obtained, with little skeletal isomerization;<br />

in sealed tubes branched<br />

chain hydrocarbons were formed <strong>and</strong><br />

unsaturated hydrocarbons were less


10 L. Heller-Kallai<br />

abundant (WILSON & GALWEY,<br />

1976; HELLER-KALLAI et al., 1984).<br />

The purpose of the following sections<br />

is to illustrate how experimental con<strong>di</strong>tions<br />

can affect the stability <strong>and</strong><br />

thermal decomposition reactions of<br />

long-chain fatty acids in the presence<br />

of clay minerals. The products obtained<br />

will not be <strong>di</strong>scussed in detail.<br />

Experiments with fatty acids<br />

Reactions in closed systems - Reactions<br />

of fatty acids with clay minerals<br />

in closed systems were reviewed by<br />

JOHNS (1979), who concluded that<br />

. ------~------- the formation of alkanes from fatty<br />

acids proceeds in two stages: decarboxylation<br />

catalysed by one type of<br />

active· sites followed by cracking,<br />

which is catalysed by other sites activated<br />

at higher temperatures. The<br />

extent of the decarboxylation was<br />

inferred from the amount of fatty<br />

acid consumed.<br />

Reactions in open systems- In reactions·<br />

carried-out under ,-bulk flow»<br />

con<strong>di</strong>tions the amount of C0 2 produced<br />

by decarboxylation could be<br />

<strong>di</strong>rectly determined. Three <strong>di</strong>fferent<br />

effects of clay minerals were <strong>di</strong>stinguished:<br />

decarboxylation, cracking<br />

<strong>and</strong> retention (HELLER-KALLAI et<br />

al., 1984). These may operate sim~ltaneously<br />

but depend on <strong>di</strong>fferent<br />

properties of the clays.<br />

-Decarboxylation <strong>and</strong> cracking-,<br />

The data summarised in Table 2<br />

show that trioctahedral minerals<br />

cause more decarboxylation than the<br />

correspon<strong>di</strong>ng <strong>di</strong>octahedral ones. Catalytic<br />

cracking is due to entirely <strong>di</strong>fferent<br />

features. Thus conversion of<br />

montmorillonite into H+ montmorillonite<br />

greatly increased its activity as<br />

a cracking catalyst, but <strong>di</strong>d not affect<br />

the decarboxylation reaction.<br />

- Retention- This depends on various<br />

factors. Palygorskite <strong>and</strong> sepiolite,<br />

which sorb fatty acids in the<br />

structural channels (YARIV &<br />

TABLE 2<br />

Decarboxylation <strong>and</strong> cracking of stearic acid (data from HELLER-KALLAI et al., 1984)<br />

Mineral<br />

Pyrophy lli te<br />

Talc<br />

Kaolinite<br />

Lizar<strong>di</strong>te<br />

Palygorskite<br />

Sepiolite<br />

Montmorillonite<br />

H Montmorillonite ·<br />

Nontronite<br />

Saponite<br />

Laponite<br />

Decarboxylation<br />

(% of maximum possible)<br />

0<br />

13.2<br />

0<br />

7.8<br />

8.1<br />

11.6<br />

4.0<br />

1.5<br />

0.5<br />

23.0<br />

14.4<br />

Cracking<br />

w<br />

s<br />

VS


Do Clay Minerals Act as Catalysts in the Thermal ... 11<br />

. HELLER-KALLAI, 1984) retained<br />

them most effectively without causing<br />

cracking, in agreement with the<br />

results obtained by ESPIT ALIE et al.<br />

(1984) with pyrolysis products of kerogen.<br />

By adsorbing the acids, clay<br />

minerals retain them in the pyroprobe,<br />

thereby exposing them to a more<br />

prolonged thermal treatment. The<br />

delicate balance between stabilisa-.<br />

tion of the acid by adsorption <strong>and</strong> the<br />

enhanced thermal <strong>and</strong> catalytic decomposition<br />

reactions is determined<br />

by the nature of the clay mineral, the<br />

chain length of the acid <strong>and</strong> the experimental<br />

con<strong>di</strong>tions (AIZENSHTAT et<br />

al., 1984). In open systems the choice<br />

of the homologue of . the acid for<br />

model experiments is therefore expected<br />

to be much more critical than<br />

for experiments in closed 1)ystems.<br />

Reactions in confined systems -<br />

Thermal changes of fatty acids in<br />

the presence of various clay minerals<br />

were stu<strong>di</strong>ed in alkali halide <strong>di</strong>sks.<br />

'These simulate a semi-closed environment<br />

from which volatile products<br />

are gradually lost. Under these con<strong>di</strong>tions<br />

the adsorption complexes<br />

formed <strong>and</strong> the changes occurring<br />

on heating could be stu<strong>di</strong>ed by IR<br />

spectroscopy, Some of the results<br />

relevant to the present <strong>di</strong>scussion will<br />

be briefly s~mmarized.<br />

In the confined space of alkali halide<br />

<strong>di</strong>sks the organic matter was 'retained<br />

to higher temperatures than in<br />

open systems. Carboxylic acids are<br />

adsorbed on clays in the acid ·form,<br />

but can be partially converted into<br />

the ionic form, which is generally<br />

more firmly retained. This was<br />

brought about by grin<strong>di</strong>ng alkali haljde<br />

<strong>di</strong>sks of stearic acid associations<br />

with any of the clays listed in Table 2.<br />

With some minerals the ionic form<br />

was also obtained on heating the carboxylic<br />

acid-clay associations. In<br />

open systems most or all of the organic<br />

material was lost before the ions<br />

could form. In alkali halide <strong>di</strong>sks the<br />

ionic form developed with some minerals<br />

at elevated temperatures without<br />

previous grin<strong>di</strong>ng, but not with<br />

others e.g. with talc but not with pyrophyllite.<br />

Accor<strong>di</strong>ngly, under the<br />

con<strong>di</strong>tions of the experiments, talc retained<br />

organic matter more tenaciously<br />

than pyrophyllite (Fig. 2) (HEL­<br />

LER-KALLAI et al., 1986). In general<br />

the ionic form was obtained more<br />

rea<strong>di</strong>ly in the presence of trioctahedral<br />

than with the correspon<strong>di</strong>ng<br />

<strong>di</strong>octahedral minerals due to the<br />

more basic nature of their edge surfaces.<br />

These results illustrate how the experimental<br />

con<strong>di</strong>tions can affect the<br />

conversion of carboxylic acid into<br />

carboxylate ions, thereby changing<br />

the amount retained under a particular<br />

thermal regime. Whether decomposition<br />

of the aci<strong>di</strong>c <strong>and</strong> ionic forms<br />

follows <strong>di</strong>fferent reaction paths remains<br />

to be determined. It is also unclear<br />

whether the same property of<br />

the clay minerals causes conversion<br />

to the ionic form <strong>and</strong> decarboxylation,<br />

both of which occur more rea<strong>di</strong>ly<br />

with trioctahedral than with <strong>di</strong>octahedral<br />

minerals.<br />

Organo-montmorilloni te (beritone)<br />

retained more stearic acid in alkali<br />

halide <strong>di</strong>sks than other montmoril-


L. H eller-Kallai<br />

-CH -<br />

1<br />

-COOH<br />

-COO-<br />

)-__l<br />

-CH -<br />

~2<br />

A<br />

-coo-<br />

-cooH +<br />

J------<br />

2<br />

2900 1700 1600<br />

Talc<br />

2900<br />

Pyrophyll ite<br />

1700 1600<br />

Fig. 2 - Selected features of FTIR spectra of stearic acid with talc or pyrophyllit'e in KBr <strong>di</strong>sks<br />

heated at 250°C (After HELLER-KALLAI et al., 1986). (Note conversion of aci<strong>di</strong>c to ionic form<br />

without loss of organic matter with talc in contrast to pyrophyllite, where no conversion occurred<br />

<strong>and</strong> organic matter was stea<strong>di</strong>ly lost).


Do Clay Minerals _Act as Catalysts iiitlie Thermal ... 13<br />

lonites, but, in contrast, carboxylate<br />

ions were not formed, even on repeated<br />

grin<strong>di</strong>ng of the <strong>di</strong>sks (unpublished).<br />

Oxidation-reduction reactions- Reduction<br />

of structural iron of clay minerals<br />

on heating with stearic acid<br />

depends on the experimental con<strong>di</strong>tions.<br />

Mossbauer spectra showeq that ~<br />

with nontronite <strong>and</strong> montmoi-illonite<br />

Fe 3 + was partially reduced in<br />

closed systems but not under «bulk<br />

flow» con<strong>di</strong>tions. In alkali halide<br />

<strong>di</strong>sks montmorillonite was reduced<br />

but nontronite was not (unpublished).<br />

Thes.e results demonstrate that<br />

oxidation-reduction reactions involving<br />

the mineral matrix depend on<br />

the clay mineral <strong>and</strong> on the experimental<br />

con<strong>di</strong>tions: in sealed ampoules<br />

in a nitrogen atmosphrre, <strong>and</strong><br />

in alkali halide <strong>di</strong>sks which werebeat-<br />

ed in air, some reduction occurred,<br />

but on heating in an open system urider<br />

inert con<strong>di</strong>tions structural iron<br />

was not reduced. It appears that reduction<br />

of structural iron is a secondary<br />

reaction between the clay <strong>and</strong><br />

the pyroproducts.<br />

Conclusions<br />

An attempt to integrate the<br />

observations on natural systems with<br />

the results obtained in laboratory experiments<br />

with kerogen leads to the,<br />

following, very tentative concepts regar<strong>di</strong>ng<br />

the possible effect of clay<br />

minerals on the decomposition reaction<br />

of the organic material.<br />

The first stage of the reaction is<br />

'<br />

partial fragmentation of kerogen due<br />

to thermal effects. Clay minerals can<br />

r-retain some of the products <strong>and</strong> cause<br />

cracking. It seems that with in<strong>di</strong>genous<br />

clays retention is more important<br />

than cracking, due to partial or<br />

complete poi~oning of the catalytic<br />

sites by. preferentially adsorbed species.<br />

Retention ofHC-like compounds<br />

by in<strong>di</strong>genous clays may be envisaged<br />

as adsorption by organo-clays,<br />

- which do not act as cracking<br />

catalysts. On migration of the organic<br />

matter, or in response to mechanical<br />

action, which exposes fresh<br />

mineral surfaces (REED & OERTEL,<br />

1978.) catalytic effects may become<br />

more important. The HC's may be<br />

generated in open or in closed pores<br />

containing <strong>di</strong>fferent amounts of wa- .<br />

ter.<br />

If these concepts are correct, they<br />

lead to the conclusion that no single<br />

set of experimental con<strong>di</strong>tions can<br />

simulate the complex pr-ocess of<br />

formation of petroleum hydrocarbons.<br />

The combined products from<br />

several experiments may more closely<br />

resemble the <strong>di</strong>stribution observed<br />

in natural samples, e.g. experiments<br />

in open, semi-closed ·<strong>and</strong> closed systems<br />

may emulate reactions in open<br />

<strong>and</strong> closed pores or reactions before<br />

<strong>and</strong> after expulsion, <strong>and</strong> experiments<br />

with organo-clays <strong>and</strong> with variously<br />

ground clay minerals may model<br />

adsorption by in<strong>di</strong>genous clays <strong>and</strong><br />

freshly exposed clay surfaces. The-experiments<br />

with fatty acids showed<br />

how some of these variables affect the<br />

model systems. Because retention,<br />

decarboxylation <strong>and</strong> crac~ing de-


14 L. Heller-Kallai<br />

pend on <strong>di</strong>fferent features of the<br />

minerals, the products obtained with<br />

mixtures of clays are expected to <strong>di</strong>ffer<br />

from the sum of those obtained in<br />

separate reactions- one clay may retain<br />

the organic material facilitating<br />

decarboxylation or cracking caused<br />

by another.<br />

Various combinations of reagents<br />

<strong>and</strong> experimental con<strong>di</strong>tions may<br />

lead to improved simulation,<br />

although many variables will necessarily<br />

be neglected <strong>and</strong> the basic<br />

problems of substituting<br />

temp~ratuJ:e~ .. focg~ological<br />

of time will always persist.<br />

Acknowledgements<br />

higher<br />

periods<br />

I wish to thank Prof. Z. Aizenshtat<br />

<strong>and</strong> Dr. Y. Nathan for helpful <strong>di</strong>scussion,<br />

Dr. B. Carlson for critical rea<strong>di</strong>ng<br />

of the manuscript <strong>and</strong> Dr. B.<br />

Spiro <strong>and</strong> Dr. J. Trichet for preprints<br />

of their papers.<br />

REFERENCES<br />

AIZENSHTAT Z., MILOSLAVSKI I., HELLER-KALLAI L., 1984. The effect of montmorillonite on the thermal<br />

----------------tlecompositiorioffiilfYaC:las unaer ~


Do Clay Minerals Act as Catalysts tnthe Thermal ... 15<br />

GIRAUD A., 1970. Application of pyrolysis <strong>and</strong> gas chromatography to geochemical characterization of<br />

kerogen in se<strong>di</strong>mentary rocks. Buil. AAPG 54, 439-455.<br />

GoLDSTEIN T.P., 1983. Geocatalytic reactions in formation <strong>and</strong> maturation of petroleum. Bull. AAPG<br />

67, 152-159. .<br />

HELLER-K.ALLAI L., AIZENSHTAT Z., MILOSLAVSKI !., 1984. The effect of various clay minerals on the<br />

thermal decomposition of stearic acid under «bulk flow» con<strong>di</strong>tions. Clay Minerals 19, 779-788.<br />

HELLER-K.ALLAI L., ESTERSON G., AIZENSHTAT Z., PISMEN M., 1984. Mineral reactions of Israeli oil shale.<br />

J. Applied Pyrolysis 6, 375-389.<br />

HELLER-KALLAI L., YARIV S., FRIEDMAN 1., 1986. Thermal analysis of the interaction between stearic<br />

acid <strong>and</strong> pyrophyllite or talc- IR <strong>and</strong> DTA stu<strong>di</strong>es. J. Thermal Anal. (in press).<br />

HETENYI M., 1983. Experimental evolution of oil shales <strong>and</strong> kerogens isolated from them. Acta Miner.<br />

Petrogr. Szeged XXVI/I, 73-85.<br />

HoERING T.C., ABELSON P.H., 1962. Hydrocarbons from kerogen. Carnegie Inst. of Washington Year<br />

Book 1962, 229-234.<br />

HoRSFIELD B., DouGLAS A.G ., 1980. The influence of minerals on the pyrolysis of kerogens. Geochim.<br />

Cosmochim.Acta44, 1119-1131.<br />

HuRST A., 1982. The clay mineralogy of Jurassic shales from Bora, N.E. Scotl<strong>and</strong>. Pp. 677-684, in:<br />

Proc. Int. Clay Conf. 1981, Bologna <strong>and</strong> Pavia (H. van Olphen <strong>and</strong> F. Veniale, e<strong>di</strong>tors), Developments<br />

in Se<strong>di</strong>mentology 35.<br />

IvANOV V .V., SHCHERBAR 0 .V., 1983. Mineral matrix influence on the dynamics <strong>and</strong> products of organic<br />

matter catagenetic transformation. Org. Geochem. 4, 185-194.<br />

JEoNG K.M., KoBYLINSKI T.P., 1983. Organic-mineral matter interactions in Green River oil shale.<br />

Amer. Chem. Soc. Symposium 230, 493-512.<br />

JEONG K.M., PA~ZER J .F. II, 1983. In<strong>di</strong>genous mineral matter effects in pyrolysis of Green River oil<br />

shale. Amer. Chem. Soc. Symposium 230, 529-542. ·<br />

JoHNS W .D., 1979. Clay mineral catalysis <strong>and</strong> petroleum generation. Ann. Rev. Earth <strong>and</strong> Planet. Sci.<br />

7, 1983-1998.<br />

JoHNS W.D., 1982. The role of the clay minerals matrix in petroleum generation during burial <strong>di</strong>agenesis.<br />

Pp. 655-664, in: Proc. Int. Clay. Conf. 1981, Bologna <strong>and</strong> Pavia (H. van Olphen <strong>and</strong> F.<br />

Veniale, e<strong>di</strong>tors), Developments in Se<strong>di</strong>mentology 35.<br />

JoNES R.W., 1984. Comparison of carbonate <strong>and</strong> shale source rocks. (Abstract). Bull. AAPG 68,494.<br />

K.ATZ B.J., 1983. Limitations of Rock-Eval pyrolysis for typing organic matter. Org. Geochem. 4,<br />

19~1~. '<br />

KoNcz 1., 1979. Examination of factors affecting the results of high temperature pyrolysis stu<strong>di</strong>es used<br />

to characterize non-soluble <strong>di</strong>sperse organic material in se<strong>di</strong>mentary rocks. Critical evaluation of<br />

Gransch <strong>and</strong> Eisma~s method. Acta Miner. Petrogr. Szeged 24/1, 125-136.<br />

MITTERER R.M., HOERING T.C., 1966. Production of hydrocarbons from the organic matter in a recent<br />

se<strong>di</strong>ment. Carnegie Institute Year Book 1966, 510-514.<br />

MONIN J.C., DURAND B., VANDERBROUKE M., Hue A.Y., 1979. Experimental simulation of the natural<br />

transformation of kerogen. Pp. 517-530, in: Advances in Organic Geochemistry (A.G. Douglas<br />

<strong>and</strong> J.R. Maxwell, e<strong>di</strong>tors), Pergamon Press.<br />

ORR W .L., 1981. Comments on pyrolytic hydrocarbon yields in source rock evaluation. Pp. 775-787, in:<br />

Advances in Organic Geochemistry (M. Bjon!ly, e<strong>di</strong>tor), J. Wiley & Sons.<br />

PEARSON M.J., WATKINS D., SMALL J.S., 1982. Clay <strong>di</strong>agenesis <strong>and</strong> organic maturation in Northern<br />

North Sea se<strong>di</strong>ments. Pp. 665-675, in: Proc. Int. Clay Conf. 1981, Bologna <strong>and</strong> Pavia (H. van<br />

Olphen <strong>and</strong> F. Veniale, e<strong>di</strong>tors). Developments in Se<strong>di</strong>mentology 35.<br />

REED W.E., 0ERTEL G., 1978. Is compaction a factor in organic <strong>di</strong>agenesis? Geo!. Soc. Am. Bull. 89,<br />

658-662.<br />

SAJGO Cs., MAXWELL J .R., MAcKENZIE A.S., 1983. Evaluation of fractionation effects during the early<br />

stages of prirrzary migration. Org. Geochem. 5, 65-73.<br />

SouRoN C., BouLET R., EsPITALIE J., 1975. Etude par spectrometrie de masse de la decomposition<br />

thermique de roches se<strong>di</strong>mentaires contenant de la matiere organique de deux types <strong>di</strong>fferents et<br />

comparaison avec les kerogens correspon<strong>di</strong>:mts. Pp. 797-820, in: Advances in Organic Geochemistry<br />

(R. Gompes <strong>and</strong> J. Gen, e<strong>di</strong>tors).<br />

SPIRO B., 1980. Preferential lipid-mineral associations in some «oil shales». Chem. Geol. 31, 27-35.<br />

SPIRO B., AIZENSHTAT Z., 1981. Natural combustibn <strong>and</strong> pyrolysis of bituminous rocks at the margin of<br />

Hartrurim, Israel. Pp. 799-807, in: Advances in Organic Geochemistry (M. Bjor0y, e<strong>di</strong>tor), J.<br />

Wiley & Sons.<br />

SPIRO B., 1984. Effects of the mineral matrix on the <strong>di</strong>stribution of geochemical markers in thermally<br />

affected se<strong>di</strong>mentary sequences. Pp. 543-559, in: Advances in Organic Geochemistry (P.A.<br />

Schenck, J.W. De Leenw <strong>and</strong> J.W.M. Lijmbach, e<strong>di</strong>tors), Pergamon Press.<br />

TARAFA M.E., HuNT J.M., ERICSSON I., 1983. Effect of hydrocarbon volatility <strong>and</strong> adsorption on sourcerock<br />

pyrolysis. J. Geochem. Expl. 18,75-85.


16 L. H eller-Kallai<br />

TrssoT B.P., WELTE D.H., 1978. Petroleum Formation <strong>and</strong> Occurrence. p. 293, Springer-Verlag, Berlin,<br />

Heidelberg, New York.<br />

WrLLIAMS P .F.V., DouGLAS A.G ., 1981. The effectoflithologic variation on organic geochemistry in the<br />

Kimmeridge clay of Britain. Pp. 568-575, in: Advances in Organic Geochemistry (M. Bjor0y,<br />

e<strong>di</strong>tor), J. Wiley & Sons. ,<br />

WrLSON M.C., GALWEY A.K., 1976. Reactions of stearic acid, of dodecanol <strong>and</strong> of cyclohexanol on the<br />

clay minerals illite, kaolinite <strong>and</strong> montmorillonite. J. Chim. Phys. 73 (4), 441-446.<br />

YARIV S., HELLER-KALLAI L., 1984. Thermal treatment of sepiolite <strong>and</strong> palygorskite stearic acid associations.<br />

Chem. Geol. 45, 313-327.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 17-33 (1985)<br />

The Process of Bentonite Formation in<br />

Cabo de Gata, Almeria, Spain<br />

JOSE LINARES<br />

Estaci6n Experimental del Zai<strong>di</strong>n; C.S.I.C., Profesor Albareda 1, 18008 Granada, Espaii.a<br />

I am especially honoured to have this opportunity to pay homage to the memory of a man who was<br />

not only a respected teacher but also a very dear friend, Professor J. L. Martin·Vival<strong>di</strong>, to :whose<br />

-memory my lecture <strong>and</strong> this <strong>Congress</strong> are de<strong>di</strong>cated. .<br />

I wish also to express my affection for Professor A. Pozzuoli, Chairman of the <strong>Congress</strong> <strong>and</strong> to thank<br />

him <strong>and</strong> the Organizing Committee of the <strong>First</strong> <strong>Italian</strong>-<strong>Spanish</strong> <strong>Congress</strong> on Clays <strong>and</strong> Clay Minerals<br />

for inviting me to present this Invited Lecture.<br />

AB.STRACT- A genetic model for hydrothermal bentonites must include data<br />

on the origin <strong>and</strong> nature of alteration solutions, ·physical system of solution<br />

transport, aptitude of parent materials, temperature <strong>and</strong> pressure effects, the<br />

whole frame of mineral-solution equilibria, reaction ti_me, etc.<br />

Numerous mineralogical <strong>and</strong> geochemical results collected, over a long<br />

period of time, from the volcanic region of Cabo de Gata now allow some<br />

hypotheses to, be made regar<strong>di</strong>ng the pFocess that has given rise to the bentonite<br />

deposits.<br />

The region is a p'art of the volcanic complex of the SE of Spain, with a s.s.<br />

calcalkaline volcanism, aged from 17 to 8 my. Several volcanic cycles can be<br />

<strong>di</strong>stinguished, characterized by the series: pyroclastics, agglomeratesconglomerates<br />

<strong>and</strong> la vas. In some places two types of hydrothermal alterations<br />

are recognized: one, with kaolinite, alunite <strong>and</strong> jarosite as principal<br />

alteration minerals, <strong>and</strong> the other, whose characteristic mineral is a smectite.<br />

Only in this case, the alteration produces big deposits of economic value.<br />

The bentonitic alteration involves cinerites, ignimbrites, agglomerates <strong>and</strong><br />

conglomerates. All the alteration zones are associated with fractures, normally<br />

with <strong>di</strong>rections close to NE-SW. Field evidence suggests .that the<br />

bentonites have not undergone any type of transport. or remanagement after<br />

their formation, thus, the transformation rock-to-bentonite must be considered<br />

to have taken place in situ.<br />

The colour of the bentonites (due to trace elements) is variable: white, green,<br />

blue, red <strong>and</strong> black, with all the interme<strong>di</strong>ate colours. The main mineralogical<br />

component is always a smectite accompanied by smaller quantities of<br />

plagioclase, quartz, K-feldspar, <strong>di</strong>sordered tridymite, amphiboles <strong>and</strong><br />

mordenite. The smectites can be ascribed to the ri:J.onfmorillonite-beidellitenontroniteseries.<br />

Some variability in chemical compositfon, tetrahedral <strong>and</strong><br />

total charge is observed even within a particular deposit. The magnesium<br />

content of smectites is.,always higher than that of the parent rock.<br />

The bentonite formation process consists of the hydrolysis (hydrogen metasomatism)<br />

of porous volCanic materials by solutions of meteoric origin with<br />

temperatures close to 50°C, as shown by oxygen <strong>and</strong> hydrogen isotope<br />

geochemistry, It is suggested that the main solution is a so<strong>di</strong>um-chloride<br />

type, as deduced from the relationship between extractable anions <strong>and</strong> cations.<br />

The enrichment in solutes must be a result of wall-rock alteration. The<br />

magnesium content must proceed from the metamorphic basement of the


18 J. Linares<br />

volcanic complex. In the process,-the VolCanic materials, essentially vitreous,<br />

are transformed to bentonite, while silica <strong>and</strong> alkalines are removed in solution.<br />

In some cases the losses of matter <strong>and</strong> volume are high.<br />

The results of hydrothermal synthesis of smectites, although contra<strong>di</strong>ctory in<br />

some cases, are useful to conlude that with increasing temperature of formation,<br />

the range of chemical composition is restricted <strong>and</strong> the tetrahedral<br />

charge also is increased. The pressure effect on the equilibrium is complex.<br />

The presence of mordenite <strong>and</strong> <strong>di</strong>sordered tridymite helps, to complete the<br />

picture of the genetic process of bentonite.<br />

Application of the phase rule to the process in<strong>di</strong>cates that the presence of<br />

great numbers of mobile components reduces the amount of phases, in such a<br />

way that in some cases the product of the reaction is monomineralic. ·<br />

The thermodynamics of irreversible processes allow the time needed for the<br />

formation of a bentonite deposit to be calculated. Calculated times range<br />

over a million of years for the biggest deposit of the region.<br />

Finally, a physical model is suggested for the geothermal alteration system,<br />

<strong>and</strong> a (P, T) tentative phase equilibrium <strong>di</strong>agram for 2:1 phyllosilicates is<br />

proposed.<br />

I<br />

I<br />

The bentonites of Cabo de Gata<br />

The r~gion of Cabo de Gata is a part<br />

of the volcanic complex located in the<br />

southeastern corner of the Iberian<br />

peninsula (Fig. 1) (ARANA & VEGAS,<br />

1974). Here, the most extended type<br />

of volcanism is calcalkaline, with<br />

an age ranging from 17 to 8 million<br />

years (BELLON & BROUSE, 1977;<br />

LOPEZ & RODRIGUEZ, 1980). The<br />

volcanic events have been cyclic <strong>and</strong><br />

are occasionally separated by fossiliferous<br />

episodes (FUSTER et al.,<br />

1965; COELLO & CASTANON, 1965;<br />

PAEZ & SANCHEZ, 1965; SAN­<br />

CHEZ, 1968; MELENDEZ et al.,<br />

1964; ESTEBAN & GINER, 1980).<br />

There is no evidence of recent<br />

magmatic activity or important<br />

geothermal anomalies.<br />

Two definite geographical units<br />

can be considered in the region: a)<br />

The «Serrata de Nijar», located, at<br />

the west <strong>and</strong> b) the «Sierra de Gata>><br />

that lies parallel to the coast. In both<br />

areas there are zones of hydrothermal<br />

alteration (LINARES, 1963; LI-<br />

NARES et al., 1972). " Two types of alterations<br />

can be <strong>di</strong>stinguished: the<br />

first one is aci<strong>di</strong>c, with formation of<br />

kaolinite, alunite <strong>and</strong> jarosite as alteration<br />

products. The other i~ nearly<br />

neutral, <strong>and</strong> has lead to the formation<br />

of thick bentonite deposits.<br />

Associated with these alteration 1 -<br />

zones are the auriferous complexes of<br />

Rodalquilar <strong>and</strong> some sulphide deposits.<br />

This paper deals' only with the alterations<br />

which gave rise to bentonite<br />

formation.<br />

The oldest <strong>and</strong> most alkaline rocks<br />

of the region occur in the «Serrata de


The Process of Bentonite Formation ...<br />

•<br />

1<br />

19<br />

Zone 3<br />

"'<br />

Murcia<br />

•<br />

I<br />

I.<br />

/<br />

I<br />

I<br />

I<br />

I<br />

I<br />

/<br />

/<br />

I Vera<br />

I e:<br />

Z o n e 1<br />

Zoo• Z {:::=<br />

Zone 3<br />

Q<br />

C 1 llliiii!Ill]<br />

Calcalkaline Volcanism<br />

Potassic Volcanism<br />

Basaltic Volcanism<br />

Cabo de Gata<br />

0<br />

20 40<br />

60 km<br />

Fig. 1 -Volcanic complex of SE Spain (ARANA & VEGAS, 1974).<br />

Nijar». Volcanism is related to faults • blue <strong>and</strong> occasionally white. The collying<br />

in the <strong>di</strong>rection N60E (MAR- , our hues are due to. the presence of<br />

TINEZ, 1972). The bentonite deposits Mn, Fe 2 +, Cr, Cu, etc. (LINARES et al.,<br />

are associated to amphibolic dacite 1973). Some deposits occur as <strong>di</strong>amaterials<br />

<strong>and</strong> to vitrophyric tuffs pires, intru<strong>di</strong>ng through massive '<br />

(CABALLERO, 1982). The bentonite rocks, or forming deposits <strong>di</strong>ffering a<br />

colours are bright: red, green, black, great deal in size. In this zone, smec-


20 J. Linares<br />

I'<br />

I<br />

tites are richer in Fe <strong>and</strong> Mg than is very high, smectites ten<strong>di</strong>ng to<br />

those from «Sierra de Gata» (CABAL- nonti"onite, --~-~~~--~--~·<br />

LERO, 1982).<br />

In several previous papers of the<br />

In the «Sierra de Gata» the altered forementioned authors some ideas<br />

materials were ignimbrites, tuffs, about the plausible process of bentonconglomerates<br />

<strong>and</strong> volcanic ite formation have been suggested,<br />

agglomerates. The alterations took mainly on the basis of the result of<br />

place in situ, as in the«Serrata de HEMLEY et al. (1961). Accor<strong>di</strong>ng to<br />

Nijar», although occasionally there is these authors, an hydrothermal soluevidence<br />

of some transport (AUGUS- tion, with a rather restricted corn-·<br />

TIN, 1974). Most deposits are related position, can alter plagioclase, a chief<br />

to NE-SW fracture <strong>and</strong> are very big component of volcanic material<br />

in size. Bentonites show very pale (TRICHET, 1969), to montmorilloncolours,<br />

ranging from green to yel- ite, at temperatures going from 325<br />

low, but with predominance of white octo room temperature. As a matter<br />

(REYES et al., 1980a,b). A type de- of fact, the absence of paragonite jus-<br />

, posit is that occurring at «Morr6n de tifies the upper temperature limit.<br />

______________ M~~o>~, P!"Odl.lc:ec.l_ by_ (llteration of The presence of zeolite of the<br />

<strong>and</strong>esitic-pyroxenic tuffs. In other mordenite-clinoptilolite type, occurcases,<br />

for instance at «Los Trancos», ring occasionally in bentonites, in<strong>di</strong>bentonites<br />

derive from amphibolic cates a lower temperature limit,<br />

dacite agglomerates <strong>and</strong> tuffs. In this which must be close to the surface<br />

case the smectites are of the beidel- temperatllre.<br />

lite type.<br />

Quite recently, it has been possible<br />

to make more pretise statements on<br />

The mineralogy of all these bentonthe<br />

formation of bentonites, as well<br />

ites is very simple. They consist<br />

as on .the origins of hydrothermal<br />

largely of smectite, accompanied by<br />

solutions, on the basis of stu<strong>di</strong>es of<br />

minor quantities of plagioclase,<br />

light stable isotopes (LEONE et al.,<br />

quartz, amphibole, biotite, K-<br />

1983). Actually, it was shown that<br />

fe_ldspar, zeolite <strong>and</strong> low temperature 1<br />

isotopic data are in agreement with a<br />

tridymite. The last three minerals are<br />

formation temperature of about 70 oc<br />

considered to be related to the profor<br />


ta de Nijar» <strong>and</strong> at the southern zone.<br />

These are the most important facts<br />

known up to the present time, stated<br />

in a very simplified way.<br />

What follows will deal with some<br />

comparative <strong>and</strong> even speculative<br />

aspects, which may contribute to a<br />

better understan<strong>di</strong>ng of the formation<br />

process of bentonites <strong>and</strong> of the<br />

environmental con<strong>di</strong>tions of the hydrothermal<br />

system.<br />

Smectite synthesis<br />

The first point to be known is the<br />

data reported about smectite synthesis<br />

in the laboratory.<br />

A review of the literature confirms<br />

a well knownfact: the <strong>di</strong>fficulty of interpreting<br />

results which are very<br />

often contra<strong>di</strong>ctory.<br />

'-<br />

The synthesis experiments sometimes<br />

do not allow equilibrium to be<br />

reached either between the mineral<br />

to be attacked <strong>and</strong> the solution or between<br />

the components of a mixture.<br />

The <strong>di</strong>versity of materials, grain size<br />

<strong>di</strong>stribution, experimental devices<br />

used, <strong>and</strong> the rather short reaction<br />

times employed, are the the reasons<br />

why the results obtained are often<br />

found lacking in coherence.<br />

It has been possible to demonstrate<br />

that reaction times as long as at least<br />

a month are needed to achieve a cer'­<br />

tain reliability in the relationships '<br />

between phases <strong>and</strong> to obtain sufficient<br />

material, so that satisfactory<br />

crystallochemical identifications can<br />

be made (VELDE, 1977).<br />

By selecting the data that meet<br />

The Process of Bentonite Formation ... 21<br />

these specifications, some general<br />

conclusions can be drawn. For instance,<br />

ROY & ROY (1955) <strong>and</strong> SAND<br />

et al. (1957) have shown that for the<br />

system Si-Mg-Al-HzO, the field of<br />

chemical composition of smectites<br />

becomes smaller as temperature increases.<br />

In our case we are dealing<br />

with temperatures below 100 oc <strong>and</strong>,<br />

consequently, the variability in chemical<br />

composition of the smectites is<br />

very great.<br />

Other authors (VELDE, 1977, review)<br />

have shown that potassium<br />

<strong>di</strong>octahedral smectites are more unstable<br />

(250 oc as upper temperature<br />

limit) than the Na <strong>and</strong> Ca ones (400<br />

°C), <strong>and</strong> also that Mg-Fe-Al smectites<br />

may form even at temperatures close<br />

to room temperature.<br />

A not yet well established fact is<br />

that as temperatures increase, synthetic<br />

smectite exhibits a higher<br />

tetrahedral charge. This could be the<br />

case for our zone in the «Los Trancos»<br />

deposit mentioned above, where<br />

the formation temperature is somewhat<br />

higher than in the rest of the<br />

deposits. However, other deposits of<br />

similar formation temperatures show<br />

a zero tetrahedral charge. Therefore,<br />

other factors must also influence the<br />

tetrahedral substitution, among<br />

them, probably, the Al content <strong>and</strong><br />

the pH of the hydrothermal solution.<br />

The influence of pressure upon<br />

equilibria has been stu<strong>di</strong>ed by several<br />

authors (ROY & ROY, 1955; SAND<br />

.et al., 1957; HEMLEY, 1959). It was<br />

found in all cases that changes in<br />

pressure, ranging from 100 to 2000<br />

atm do not shift the equilibrium


22 J. Linares<br />

temperatures by more than 30 °C:<br />

Therefore, in this case, the effect of<br />

pressure must be <strong>di</strong>sregarded.<br />

Briefly, the experimental synthesis<br />

provides data supporting a stability<br />

field for smectite always below 350<br />

°C. If solutions contain potassium,<br />

smecti tes are transformed to illi te/<br />

montmorilloni te interstra tifica tions<br />

<strong>and</strong>, finally, to illite, even at temperatures<br />

under 200 °C, as will be seen<br />

later. Besides, it is also patent that<br />

further experimental work on smectite<br />

synthesis must be carried out in<br />

order to make clear the existent relationship<br />

between formation temperatures<br />

<strong>and</strong> composition of smectites.<br />

A particular field of smectite<br />

synthesis~is that~carried out strictly<br />

from solutions at room temperature.<br />

In this respect, we have contributed<br />

with some results than can be very<br />

illustrative (REYES et al., 1982a,b).<br />

Shown in Fig." 2 are the compositions<br />

of synthetic precipitates, as a<br />

function of the composition of the<br />

starting solutions, for several equilibrium<br />

pH values. It can be observed<br />

that smectite forms at any given pH,<br />

<strong>and</strong> that a fixed smectite composition<br />

may be req.ched at several pH values,<br />

by only varying the composition of<br />

the original solution.<br />

These results evidence the vast<br />

100<br />

10<br />

(!)<br />

....,<br />

....,<br />

"'<br />

·:;_<br />

u<br />

(!)<br />

S-<br />

a.<br />

:;:<br />

'-<br />

::;;: "'<br />

10<br />

100<br />

/<br />

/<br />

/<br />

/<br />

Mg/Al<br />

starting solution<br />

100 10<br />

10 1 ()0<br />

Fig. 2 - Compositional relations between starting solutions <strong>and</strong> precipitates. A = Beidellite -<br />

Montmorillonite; B = Palygorskite; C = Talc; D = Saponite; E = Sepiolite.


possibilities in smectite compositions<br />

<strong>and</strong> the great <strong>di</strong>versity of their formation<br />

con<strong>di</strong>tions.<br />

Taking into account all the available<br />

data on experimental synthesis,<br />

as well as the observations under<br />

natural con<strong>di</strong>tions, the following parameters<br />

governing the existence <strong>and</strong><br />

composition of smectite can be<br />

enumerated:<br />

1) nature <strong>and</strong> texture of parent rocks;<br />

2) composition of mineralizing solution;<br />

3) temperature during the formation<br />

process;<br />

4) presence or absence of Mg (HAR­<br />

DER, 1972);<br />

5) alteration degree of parent material.<br />

Presence of <strong>di</strong>sordered tridymite,<br />

Other factors to be considered are<br />

the con<strong>di</strong>tions of formation of minerals<br />

paragenetic with smectites. In<br />

our case, we have, for instance, K­<br />

feldspar, zeolites <strong>and</strong> <strong>di</strong>sordered<br />

tridymite. I will only refer to tridymite,<br />

since the con<strong>di</strong>tions of formation<br />

of zeolites <strong>and</strong> K-feldspar at low<br />

temperatures are well known.<br />

The presence of <strong>di</strong>sordered cristobalite<br />

in behtonites has been reported<br />

many times (GRIM &<br />

GUVEN, 1978). As a matter of fact).<br />

this component should be referred to<br />

as u-tridymite, accor<strong>di</strong>ng to results of<br />

WILSON et al. (1974). The crystalline<br />

structure of this material may be described<br />

as a turbostratic stacking,<br />

with a r<strong>and</strong>om transversal shifting<br />

The Process of Bentonite Foiiiiiiiion ... 23<br />

normal to the axis. RENDER­<br />

SON et al. (1971) were first to demonstrate,<br />

from isotopic stu<strong>di</strong>es on oxygen,<br />

that the formation temperature<br />

of tridymites found in bentonites,<br />

was close to 25 °C, <strong>and</strong> that tridymite<br />

was singenetic with bentonite. This<br />

fact has been corroborated later by<br />

many authors. It can be stated, therefore,<br />

that tridymite is not a primary<br />

mineral, but an alteration mineral,<br />

associated with bentonites.<br />

MIZUTANI (1966) stu<strong>di</strong>ed the <strong>di</strong>agenetic<br />

evolution of these <strong>di</strong>sordered<br />

tridymites from a kinetic<br />

point of view, <strong>and</strong> concluded that it is<br />

a low temperature mineral, evolving<br />

into guartz with time.<br />

In our case, rto data are available<br />

on isotopic fractionation of oxygen in<br />

tridymites, but without doubt, their ·<br />

formation temperature should be<br />

similar to that of bentonites. On the<br />

other h<strong>and</strong>, the formation of tridymite<br />

is an almost necessary fact,<br />

since during the bentonite formation,<br />

important quantities of silica are released,<br />

as will be seen later. Although<br />

the solubility of this polymorph variety<br />

of silica is high, its precipitation<br />

may be triggered by temperature<br />

changes taking place near the ground<br />

surface (FOURNIER & ROWE, 1977;<br />

CARR & FYFE, 1958).<br />

The origin of solutions<br />

It has been already mentioned,<br />

that in the region stu<strong>di</strong>ed, the solutions<br />

contributing to the formation of<br />

smectite were of meteoric origin. As


24 J. Linares<br />

will be seen in another communica- caused by <strong>di</strong>fferences in hydrostatic<br />

tion in· this <strong>Congress</strong>, the meteoric _.. head, litlw~tatic. pressures, osmotic<br />

water should derive from aquifers pressure (membrane effects in shales,<br />

recharged in metamorphic forma- etc.),_ density gra<strong>di</strong>ents <strong>and</strong> intrusion<br />

tions located to the north of the zone . of magmatic or meteoric solutions.<br />

· («Sierra Alamilla» <strong>and</strong> «Sierra Ca- In our case, the cinerite beds<br />

brera>>) (CABALLERO, 1985). When should provide an excellent porous<br />

meteoric water percolates through me<strong>di</strong>um for the easy transport of<br />

the rocks a light enrichment in so- solutions·. As will be <strong>di</strong>scussed later,<br />

lutes takes place, due to hydrolysis the meteoric water should come by<br />

<strong>and</strong> extraction of soluble salts (CAR- gravity forces through fractures,<br />

ROL, 1970; LOUGHNAN, 1969). Dur- down to volcanic cinerites. The soluing<br />

the transport of solutions to deep tions, once heated, would alter this<br />

levels, the temperature rises <strong>and</strong> the material during the process of infilconcentration<br />

of solutes increases. tration, with a new enrichment in<br />

From isotopic data, the possibility solutes (KHITAROV, 1957; TOVARof<br />

contamination from magmatic OVA, 1958).<br />

solutions cannot be excluded, Given the previously mentioned<br />

·~-·--~-----a:IthouglnlriscontfibU.fion should be temperatures (40 oc <strong>and</strong> 70 °C) the<br />

no greater than about 5%.<br />

solution does not have to reach to<br />

In order that these solutions be great depths in order to become heatable<br />

to act, they should be brought to ed. Consequently, cinerite should<br />

an appropriate temperature by some occur at shallow depths. Field<br />

transport mechanism through ciner- obser~ations clearly in<strong>di</strong>cate that the<br />

ite beds.<br />

maximum depth of emplacement of<br />

pyroclastic material does not exceed<br />

100 m in any case. Under these con<strong>di</strong>tions,<br />

Transport of solutions<br />

the pressure of solutions<br />

were subjected to, should not be over<br />

a few tens of atmospheres. These data<br />

are in agreement with those obtained<br />

for other mineral deposits of hydrothermal<br />

origin, which were subjected<br />

to pressure under 1 Kb (SKIN­<br />

NER, 1979).<br />

Several con<strong>di</strong>tions are recognized<br />

as necessary for the existence of an<br />

hydrothermal alteration process:<br />

· a) a geological structure allowing the<br />

flow of water at deep levels;<br />

b) a slow flow of the solution <strong>and</strong> a<br />

large contact area between solution<br />

<strong>and</strong> rock;<br />

c) a returning path towards the surface<br />

through faults, fractures or<br />

permeable strata.<br />

On the other h<strong>and</strong>, the driving<br />

force moving the solutions may be<br />

Thermal characteristics of the process<br />

For the existence of an hydrothermal<br />

system, some type of geothermal<br />

anomaly must be present. The ther-


mal energy of the earth's crust may.<br />

be derived from any of the following<br />

processes:<br />

a) magma emplacement from subcrusta!<br />

zones;<br />

b) ra<strong>di</strong>oactive decay of 4 °K, 238 U <strong>and</strong><br />

232Th;<br />

c) removal of stresses along faulted<br />

zones;<br />

d) exothermic reactions between<br />

solutions <strong>and</strong> minerals.<br />

In this case, none of the first three<br />

processes needs to be invoked. Sim-<br />

, ply, the existence of deep fractures,<br />

together with a normal geothermal<br />

gra<strong>di</strong>ent, would suffice for the heating<br />

of meteoric water. However, the<br />

'influence of a cooling magmatic<br />

chamber is not to be <strong>di</strong>scarded, since<br />

some evidence exists, that the hydrothermal<br />

alterations took place not<br />

later than the regional volcani~m.<br />

It has been feasible to calculate<br />

(NORTON & CAl'HLES, 1979) the<br />

temperature changes taking place<br />

around an igneous intrusive body.<br />

For a pluton, 2.55 km under the<br />

ground surface with . an initial<br />

temperature of 750 °C, the thermal<br />

anomalies have been calculated as a<br />

function of <strong>di</strong>stance to the pluton, for<br />

several cooling times. These calculations<br />

have. shown that the thermal<br />

halo lasts for extended periods of<br />

time·, so that, for instance, 40000<br />

years after the pluton emplacement,<br />

temperatures at a depth of 700 m, ·<br />

may be as high as 100 °C. This<br />

temperature is fairly higher than that<br />

correspon<strong>di</strong>ng to a normal geothermal<br />

gra<strong>di</strong>ent.<br />

The Process of Bentonite Form~tion ... 25<br />

An energy source such as that described<br />

above c0uld have heated the<br />

solution which infiltra!ed through<br />

fractures, caused by the pluton emplacement<br />

or by subvolcanic rocks,<br />

the latter being frequently found in<br />

the Cabo de Gata region.<br />

On the other h<strong>and</strong>, SCHOEN et al.<br />

(1974) developed a model for hydrothermal<br />

convection which is also<br />

valid in our case. It can be briefly described<br />

as a convection system originating<br />

from the infiltration of<br />

meteoric water along a thermal gra<strong>di</strong>ent<br />

caused by a magmatic focus. I<br />

want to stress that this focus is by no<br />

means necessary, the presence of<br />

deep cracks <strong>and</strong> of a normal geotherma1<br />

gra<strong>di</strong>ent being sufficient. Water<br />

penetrates deeply <strong>and</strong> its temperature<br />

raises until a porous me<strong>di</strong>um :<br />

such as volcanic cinders, in our case<br />

-is reached. The circulation of water<br />

in this permeable zone proceeds<br />

at constant pressure, <strong>and</strong> is accompanied<br />

by a further increase in temperature.<br />

If a fracture system is presentsuch<br />

as the one with a NE-SW <strong>di</strong>rection<br />

existing in our zone - the solution<br />

will begin to ascend. Eventually,<br />

the heated fluid could pass to a<br />

vapour phase <strong>and</strong> back again to a<br />

liquid phase in zones where the adequate<br />

pressure or fluid composition<br />

is attained, but this process is not<br />

necessary. Finally, the solution<br />

reaches the surface, undergoing an<br />

important drop in pressure <strong>and</strong><br />

temperature, <strong>and</strong> emerges as thermal<br />

springs.<br />

Whether such an intrusive body<br />

existed or not in the zone of Cabo de<br />

Gata is not clear on the basis of our


26 J. Linares<br />

results. The only assertion that can<br />

be made is that no contamination by<br />

magmatic solutions is detected anywhere.<br />

Now, I want to point out a subject<br />

that has passed unnoticed by many<br />

authors,namely, thead<strong>di</strong>tionalenergy<br />

input due to the reactions of hydrothermal<br />

alteration.<br />

Accor<strong>di</strong>ng to NORTON & CATH­<br />

LES (1979) the heat of hydrolysis<br />

reactions may be caused by: a) irreversible<br />

<strong>di</strong>ssolution of primary minerals,<br />

b) reversible precipitation <strong>and</strong><br />

<strong>di</strong>ssolution heats of hydrothermal<br />

minerals, c) association <strong>and</strong> <strong>di</strong>ssociation<br />

heats of aqueous complexes, <strong>and</strong><br />

d) heats of redox fractions between<br />

~--~-~--- componentsin-soru-tion-.<br />

In the hydrothermal system acting<br />

at Cabo de Gata, the processes c) <strong>and</strong><br />

d) were, seemingly, of minor importance.<br />

However, the heat of hydrolysis<br />

of vitreous cinerites <strong>and</strong> that caused<br />

by the precipitation of smectite must<br />

be taken into a,ccount.<br />

I have calculated the change in enthalpy<br />

produced by the hydrolysis of<br />

albite glass with the aid of thermodynamic<br />

data reported by ROBIE &<br />

WALDBAUM (1968). The results<br />

obtained are -48.79 kcal per mol<br />

of albite. Therefore, the reaction is<br />

exothermic.<br />

This is a very important fact, since<br />

it implies that once started, the hydrolytic<br />

reactions in a pyroclastic<br />

bed, will continue spontaneously, releasing<br />

energy <strong>and</strong> keeping or even<br />

raising the temperature of the system.<br />

In accordance with these data,<br />

one cubic meter of cinerite, with<br />

characteristics similar to those of the<br />

Cabo~de,Cata region, will be enough<br />

to increase in the temperature of 150<br />

liters of solution 1 °C.<br />

The calculated value for the hydrolytic<br />

reaction of albite is in agreement<br />

with others found by several<br />

authors. Thus, HELGESON et al.<br />

(1969) <strong>and</strong> HEMLEY (1959) calculated<br />

an enthalpy of about several<br />

tens of kcal per mol for other hydrolysis<br />

reactions. As a general fact, it can<br />

be stated that for silicate hydrolysis,<br />

reaction enthalpies are in the order of<br />

10 4 kcal per mol.<br />

Account also must be taken of the<br />

fact that hydrolysis enthalpies decrease<br />

as temperature increases<br />

(HELGESON et al., 1969). At low<br />

temperatures, the mass ratio between<br />

destroyed <strong>and</strong> neoformed<br />

minerals is higher, <strong>and</strong> the high<br />

values for the <strong>di</strong>ssolution enthalpy<br />

are. added to the total energy.<br />

Therefore, the effect of hydrolysis<br />

reactions on an hydrothermal system<br />

will be that of enlargening the duration<br />

of the thermal anomaly, specially<br />

during low temperature stages.<br />

This provides further supporting evidence<br />

that an intrusive body is not<br />

needed as an energy source in the<br />

hydrothermal system working at<br />

Cabo de Gata. A normal temperature<br />

gra<strong>di</strong>ent, together with the hydrolysis<br />

enthalpies were probably sufficient<br />

to alter the pyroclastic beds to<br />

bentonites.<br />

Now, then, from a strictly thermodynamic<br />

point of view, it is not sufficient<br />

to know whether the reaction is<br />

exothermic. More important is to


The Process of Bentonite Formation ...<br />

27<br />

know whether the change in free<br />

energy is negative. In this way, not<br />

only the enthalpy, but also the effects<br />

due to enthropy will be taken into<br />

account.<br />

For the sake of simplification, the<br />

type reaction for the system at Cabo<br />

de Gata has been expressed as:<br />

1.17 Sh OsAlNa + L04 H+ + 3.32 H20<br />

~ 1.6ISi(OH)4 + Na+ + 0.5 Sb.67 Ah.33<br />

Nao.33 010 (OHh<br />

So, albite is hydrolyzed, with the<br />

formation cif smectite <strong>and</strong> elimination<br />

of so<strong>di</strong>um <strong>and</strong> silica in the solution.<br />

<strong>First</strong> of all, the variation in free<br />

energy under normal con<strong>di</strong>tions was<br />

calculated, <strong>and</strong> then recalculated as a<br />

function of temperature (KERN &<br />

WEISBROD, 1964; GARRELS &<br />

CHRIST, 1965). To accomplish'-this,<br />

the thermodynamic data derived by<br />

ROBIE & WALBAUM (1968) <strong>and</strong> by<br />

WEAST & ASTLE (1982) were used.<br />

Thus, for the st<strong>and</strong>ard free energy of<br />

reaction a value of -46.75 kcal was<br />

obtained. The equation expressing<br />

the variation of free energy with<br />

temperature is as follows:<br />

LlGP.T = -46750 + 1.39 (T - 298)<br />

This result in<strong>di</strong>cates that the<br />

formation of smectite starting from<br />

albite will be always spontaneous, at<br />

practically any given temperature. ,<br />

Hence, it can be stated that smectite<br />

formation is a sort of a feed-back or<br />

selfcatalized process that will lead to<br />

complete destruction of the original<br />

materials.<br />

The phase rule<br />

The dynamic aspect of hydrothermal<br />

reactions has lead to the belief<br />

that con<strong>di</strong>tions of equilibrium cannot<br />

be attained in an authentic thermodynamic<br />

sense. Several authors suggest<br />

the term «local or mosaic>><br />

equilibrium (KORZf~JNSKII, 1955;<br />

THOMPSON, 1955). HELGESON et<br />

al. (1969) termed it «partial equilibrium»,<br />

which means that equilibrium<br />

exists only between the solution<br />

<strong>and</strong> the new forming phases.<br />

A consequence of this controversy<br />

was the mo<strong>di</strong>fication of Gibb's phase<br />

rule as follows:<br />

where P is the maximum number of<br />

phases present in a system at a determined<br />

pressure, temperature <strong>and</strong><br />

solution composition, I is the total<br />

number of« inert» components <strong>and</strong> M<br />

is the number of «mobile>> components,<br />

whose concentration or chemical<br />

potential depends on the external<br />

con<strong>di</strong>tions of the system.<br />

For this reason, in many hydrothermal<br />

systems, where the number<br />

of mobile components is very high,<br />

the number of resulting phases is<br />

minimal, or even a single one. This is<br />

the reason why in our zone four<br />

phases, at most, appear, as alteration<br />

products. These are smectite, zeolite,<br />

tridymite <strong>and</strong> some K-feldspar. As<br />

mobile components, nearly all common<br />

elements, Si, Mg, Ca, Na <strong>and</strong><br />

even Al, Fe <strong>and</strong> Ti can be considered.


28 J. Linares<br />

The hydrolytic process on small <strong>and</strong><br />

large scales<br />

The process on a small scale<br />

should begin with the' hydratation of<br />

feldspathic vitreous material in~<br />

eluded in cinerite layers. This is followed<br />

by devitrification, accompanied<br />

by the appearance of nuclei of<br />

growing neoformed crystals.<br />

The hydration process consists of<br />

the rupture of Si-0-Si groups, forming<br />

part of more or less vitreous<br />

structures, to form silanolic groups<br />

-SiOH, which results in an expan- ·<br />

sion of the Si0 4 network.<br />

The speed of this process as a function<br />

of temperature has been stu<strong>di</strong>ed<br />

. -~-~~---- --~---by-seVeraT___ 3ilthOrs (FRIEDMAN &<br />

SMITH, 1960; MARSHALL, 1961) because<br />

of its importance as an aid for<br />

dating obsi<strong>di</strong>ane artifacts through<br />

the thickness of their hydration halo<br />

or for the study of palagonite in submarine<br />

igneous materials (MOORE,<br />

1966; NOAK, 1981).<br />

Devitrification is a far more complex<br />

phenomenon, since it includes,<br />

in our case, the nucleation <strong>and</strong> growth<br />

of smectite crystals. LOFGREN (1970)<br />

showed that hydration proceeds at<br />

a faster rate (3 or 4 times in order of<br />

magnitude) than devitrification.<br />

LOFGREN also pointed out the great<br />

influence of solution composition on<br />

the process of devitrification. As an<br />

example, the presence of minute<br />

quantities of alkaline cations increases<br />

the devitrification rate by 4<br />

or 5 orders of magnitude.<br />

It has been also shown that the net-<br />

work expansion, taking place during<br />

the hydration process, allows for a<br />

_ gre_ater _interchange _between elements<br />

contained in the vitreous<br />

material <strong>and</strong> those in solution.<br />

Therefore, the presence of electrolytes<br />

in the hydrothermal solutions<br />

must accelerate the hydrolysis reac~<br />

tions. Since these are mass interchange<br />

reactions between solution<br />

<strong>and</strong> solid material, the solubility<br />

product of smectite should be easily<br />

attained, in our case.<br />

From a macroscopic point of view,<br />

the smectite formation promotes important<br />

losses of matter, as can be<br />

seen in this type of reaction equation.<br />

For the case of smectite formation<br />

from an albite rich material it can be<br />

calculated that near 500 g of smectite<br />

are formed per kg of albite, <strong>and</strong><br />

the remainder of matter is lost, inclu<strong>di</strong>ng<br />

Si <strong>and</strong> Na, in this case. Great<br />

quantities of hydrothermal solution<br />

are needed for the removal of silica in<br />

soluble form. Now, then, given the<br />

great instability of these solutions,<br />

silica precipitates forming low<br />

temperature tridymite when- the<br />

temperature decreases slightly.<br />

As for complete deposits, it was<br />

feasible to calculate the loss of matter<br />

taking place during bentonite formation,<br />

by using a geochemical balance<br />

such as that of BARTH (1948) <strong>and</strong><br />

taking into account the density of parent<br />

rocks <strong>and</strong> bentonites. So, for the<br />

«Sierra de Gata» the matter <strong>and</strong><br />

volume losses are 25% <strong>and</strong> 6%, respectively,<br />

while for the «Serrata de<br />

Nijar» they are are 40% <strong>and</strong> 25%.<br />

Therefore, the formation of bentonite<br />

maybe considered as one of the most


destructive processes existing in nature.<br />

The higher volume loss in the<br />

«Serrata de Nijar>> probably caused<br />

the collapse of volcanic strata over-<br />

. lying the bentonite level, <strong>and</strong> promoted<br />

its extrusion through fractures,<br />

giving place to <strong>di</strong>apiric structures.<br />

Mass transfer <strong>and</strong> reaction rates<br />

The process of hydrothermal alteration<br />

is a typical example of an irreversible<br />

phenomenon. As a conse-<br />

\··<br />

quence, the study of equilibria cannot<br />

be made on the basis of methods of<br />

classical thermodynamics. HELGE­<br />

SON (1968; 1971) <strong>and</strong> HELGESON et<br />

al., (1969; 1970a) were first in applying<br />

the methods of thermodynamics<br />

of irreversible processes to natural<br />

systems, together with., the<br />

theories of fluid mechanics, chemical<br />

kinetics, transport theory <strong>and</strong> computer<br />

technology.<br />

The system utilized by HELGE­<br />

SON is based on establishing the<br />

reaction of alteration, as well as all<br />

possible reactions between the<br />

minerals <strong>and</strong> the species in solutions,<br />

knowing the correspon<strong>di</strong>ng equilibrium<br />

constant. In this way, a matrix<br />

of stoichiometric reactions is<br />

obtained. The correspon<strong>di</strong>ng system<br />

of equations must be resolved as a<br />

function of a parameter called «reaction<br />

advancement>>. For each value oL<br />

this parameter, the number of mols<br />

of <strong>di</strong>ssolved minerals or species in<br />

solution, <strong>and</strong> that of minerals<br />

neoformed by precipitation, if solubility<br />

products have been reached,<br />

The Process of Bentonite For;;_~tion ... 29<br />

are calculated. In this way, the kinetics<br />

of hydrolysis proce~ses can be<br />

stu<strong>di</strong>ed <strong>and</strong> the quantities of destroyed<br />

<strong>and</strong> neoformed minerals can<br />

be calculated for infinite stages of<br />

evolution in the alteration process.<br />

These stu<strong>di</strong>es have strongly aided<br />

the understan<strong>di</strong>ng of the processe~<br />

of hydrothermal alteration, not only<br />

· in regard to problems of phyllosilicate<br />

neoformation, but also; <strong>and</strong><br />

more important, in regard to the<br />

formation of hydrothermal ore deposits<br />

(HELGESON, 1979), whose<br />

materials are transported in the complexed<br />

form by solutions <strong>and</strong> precipitated<br />

as a consequence of changes in<br />

pressure, temperature or variations<br />

in the chemical composition of fluids.<br />

But this is a theme to be developed.<br />

elsewhere.<br />

A <strong>di</strong>rect consequence of the study<br />

of irreversible processes is the possibility<br />

of calculating the time expended<br />

in the formation of a bentonite<br />

deposit. To do this, it was necessary<br />

to use the equation derived by<br />

HELGESON (1970b). The reacting<br />

capacity of a solution is defined by its<br />

H+ activity (HEMLEY & JONES,<br />

1964). The more acid the solution, the<br />

greater will be its reactivity. Thus, a<br />

rate function can be derived<br />

where:<br />

ID; - n:tl = 2 ~T}Kt 1 / 2<br />

m; = molatility of «i» species;<br />

n:tl = molatility of «i>> species at zero<br />

time;<br />

~ ratio of the surface area of the<br />

reactant mineral to that of the<br />

rock exposed to the solution;


30<br />

K<br />

t<br />

J. Linares<br />

ratio of the surface area of the For porous me<strong>di</strong>a:<br />

pores to the mass of water in<br />

the system;<br />

T]<br />

rate constant;<br />

Po<br />

elapsed time. Ag mean surface of the grains;<br />

Geothermal Gra<strong>di</strong>ent<br />

1---------------;<br />

15°C/Km<br />

40°C/Km<br />

4 Km<br />

0<br />

0<br />

X<br />

s...<br />

.Cl<br />

"'<br />

8<br />

3<br />

s<br />

6<br />

2<br />

Py<br />

4<br />

2<br />

(S ML)<br />

-------~-----<br />

~ ---<br />

100 200<br />

Fig. 3- P,T <strong>di</strong>agram for 2:1 phyllosilicates (mo<strong>di</strong>fied, after VELDE, 1977). S = Smectite; ML =<br />

Mixed-layers, <strong>di</strong>sordered; AI = Allevar<strong>di</strong>te; I-Chl = Illite <strong>and</strong> Chlorite; Py = Pyrophyllite. Dotted<br />

zone = Data from recent geothermal areas (ELLIS, 1979); Rectangle= Data from Cabo de Gata<br />

bentonites.<br />

'<br />

300<br />

oc


The Process of Bentonite Porfiiation ... 31<br />

Ng = number of grains per liter;<br />

Po = porosity.<br />

If we suppose:<br />

porosity = 0.25 (CABALLERO et al.;<br />

1985);<br />

ra<strong>di</strong>us of grains = 10- 3 cm;<br />

s = 0.8 (accor<strong>di</strong>ng to mineralogical<br />

<strong>and</strong> normative evidences);<br />

K = 10- 9 (HELGESON, 1971);<br />

mi - rrtl = 10- 3 (HELGESON et al.,<br />

1969),<br />

it can be concluded that:<br />

t = 5·10- 3 days;<br />

t for altering 1 kg of rock = 13 .3 days;<br />

t for altering 5 ·10 5 Tm deposit<br />

1.8·10 6 years;<br />

water for altering the deposit<br />

2.67·10 9 kg.<br />

All these figures, although spe'Culative<br />

are within the order of magnitude<br />

of data reported for some other<br />

well known deposits (SKINNER,<br />

1979).<br />

Phase <strong>di</strong>agram for 2:1 phyllosilicates<br />

Finally, it will be oCinterest to<br />

compare our set of data with others<br />

derived for geothermal areas active<br />

at present <strong>and</strong> to try to construct a<br />

phase <strong>di</strong>agram for 2:1 phyllosilicates,<br />

as a global result.<br />

, Recently, ELLIS (1979) made a<br />

compilation of existing data on<br />

' geothermal areas. Some of them,<br />

more <strong>di</strong>rectly related to our theme,<br />

are summarized in Table 1.<br />

The maximum temperatures of<br />

persistence of montmorillonte <strong>and</strong><br />

mordenite are shown. In some cases,<br />

the maximum depth is in<strong>di</strong>cated.<br />

Beyond these temperatures, smectite<br />

is inexorably transformed to illite/<br />

smectite interstratifications <strong>and</strong> then<br />

to illite.<br />

It can be concluded that the maximum<br />

temperature for the existence<br />

of montmorillonite is 200 °C, <strong>and</strong> the ..<br />

maximum depth 400 m.<br />

All these values can be compared<br />

with those of VELDE's phase <strong>di</strong>agram<br />

(1977) for <strong>di</strong>agenetized se<strong>di</strong>ments<br />

(Fig. 3); all data correspon<strong>di</strong>ng<br />

to smectites plot into the smectite<br />

field. However, it should be pointed<br />

·out that the field of smectites should<br />

be reduced in extension, since no<br />

smectites are found in hydrothermal<br />

environments at depths below 400 m.<br />

, TABLE 1<br />

Maximum temperature or depth for smectite <strong>and</strong> mordenite in modem geothermal areas<br />

(data from ELLIS, 1979)<br />

Locality<br />

Hverager<strong>di</strong>, Icel<strong>and</strong><br />

Reykjavik, Icel<strong>and</strong><br />

Reykjanes, Icel<strong>and</strong><br />

Wairakei, New Zeel<strong>and</strong><br />

Yellowstone, USA<br />

Hatchobaru, Japan<br />

Salton Sea, USA<br />

Smectite<br />

100 m<br />

200 m<br />

400 m, 200°C<br />

130 oc<br />

100-200 oc<br />

100°C<br />

Mordenite<br />

120°C<br />

230°C<br />

1oooc<br />

170°C


J. Linares<br />

REFERENCES<br />

ARAl'iA V., VEGAS R., 1974. Plate tectonics <strong>and</strong> volcanism in the Gibraltar arc .. Tectonophysics 24,<br />

197-212.<br />

AUGUSTIN~V., 1974. Estu<strong>di</strong>o geoquimico de las alteraciones de rocas volcanicas en el sector del Pozo de<br />

los Frailes, Cabo de Gata, Almeria. Thesis, University of Granada, Spain.<br />

BARTH T.W., 1948. Oxygen in rocks: a basis for petrographic calculations. J. Geol. 56, 60-61.<br />

BELLON H., BRousE R., 1977. Le magmatisme perime<strong>di</strong>terraneen accidental. Essay de synthese. Bull.<br />

Soc. Geol. France 19, 469-480.<br />

CABALLERO E., 1982. Composici6n quimica y mineral6gica de las bentonitas de la Serrata de Nijar,<br />

Almeria. Thesis, University of Granada, Spain.<br />

CABALLERO E., 1985. Geoquimica del proceso de bentonitizaci6n. Ph.D. Thesis, University of Granada,<br />

~~- ... .<br />

CABALLERO E., REYES E., HUERTAS F., LINARES J., 1985. Hydrothermal Solutions Related to Bentonite<br />

·-Genesis, Cabo de Gata Region, Alme:ia, ~E SJJain. The~~ Proc~~~~ngs, .<br />

CARR R.M., ·FYFE W.S., 1958. Some observations on the crystallinization of amorphous silica. Am.<br />

Miner. 43, 908-916.<br />

CARROL D., 1970. Rock Weathering. Plenum Press, New York.<br />

CoELLO J., CASTANON A., 1965. Las sucesiones volcanica de la zona de Carboneras, Almeria. Estu<strong>di</strong>os<br />

geol. 21, 145-166. . ·<br />

ELLIS A.J ., 1979. Explored geothermal systems. Chapter 13. In: (H.L. Barnes, e<strong>di</strong>tor), J. Wiley & Sons, New York.<br />

EsTEBAN M., GINER J ., 1980. Messinian Coral reefs <strong>and</strong> erosion surfaces in Cabo de Gata, Almeria, SE<br />

Spain. Acta Geol. Hispania 15, 97-104.<br />

FouRNIER R.O., RowE J.J., 1977. The solubility of amorphous silica in water at high temperatures <strong>and</strong><br />

---- -- -- -pressures. Am. Miner. 62, 1052-1056.<br />

FRIEDMAN J.J., SMITH R.L., 1960. A new dating method using obsi<strong>di</strong>an. Part I: The development of the<br />

method. Antiquity 25, 476-522.<br />

FusTER J.M., AGUILAR M.J., GARCIA A., 1965. Las sucesiones volcanicas en la zona del Pozo de los<br />

Frailes, Almeria. Estu<strong>di</strong>os geol. 21, 199-222 ..<br />

GARRELS R.M., CHRIST C.L., 1965. Solutions, Minerals <strong>and</strong> Equilibria. Harper & Row, New York. ·<br />

GRIM R.E., GDVEN N., 1978. Bentonites. Elsevier 1 Amsterdam. ·<br />

HARDER H., 1972. The role of magnesium in the formation of smectite minerals. Chem. Geol. 10,31-39.<br />

HELGESON H.C., 1968. Evaluation of irreversible reactions in geochemical processes involving minerals<br />

<strong>and</strong> aqueous solutions. I. Thermodynamics relations. Geochim. Cosmochim. Acta 32, 853-877.<br />

HELGESON H. C., GARRELS R.M., MACKENZIE F.T ., 1969. Evaluation of irreversible reactions in geochemical<br />

processes involving minerals <strong>and</strong> aqueous solutions. II. Applications. Geochim. Cosmochim.<br />

Acta 33, 455-481.<br />

HELGESON H.C., BROWN T .H., NIGRINI A., J ONES T .A., 1970a. Calculation of mass transfer in geochemical<br />

processes involving aqueous solutions. Geochim. Cosmochim. Acta 34, 569-592. ·<br />

HELGESON H.C., 1970b. Reaction rate in hydrothermal flow systems. Econ. Geol. 65, 299-303.<br />

HELGESON H.C., 1971. Kinetics of mass transfer among silicates <strong>and</strong> aqueous solutions. Geochim.<br />

Cosmochim. Acta. 35, 421-469.<br />

HELGESON H.C .., 1979. Mass transfer among minerals <strong>and</strong> hydrothermal solutions. Chapter 1 L In:<br />

(H.L. Barnes, e<strong>di</strong>tor), J. Wiley & Sons, New<br />

York.<br />

HEMLEY J.J., 1959. Some mineralogical equilibria in the system K20-Al20 3 -SiOrH20. Amer. J. Sci.<br />

257, 241-270.<br />

HEMLEY J.J., MEYER C., RICHTER D.H., 1961. Some alteration reactions in the system.Na20-Al20 3 -<br />

Si02-H20. Geol. Surv. Res. D338-340.<br />

HEMLEY J.J., JoNES W.R., 1964. Chemical aspects of hydrothermal alteration with emphasis on hydrogen<br />

metasomatism. Econ. Geol. 59, 538-569.<br />

HENDERSON J.H., lACKSON M.L., SYERS J.K., CLAYTON R.N., REX R.W., 1971. Cristobalite authigenic<br />

origin in relation to montmorillonite <strong>and</strong> quartz origin in bentonites. Clays Clay Miner. 19,<br />

229-238.<br />

KERN R., WEISBROD A., 1964. Thermodynamique de base pour mineralogistes, petrographes et geologues.<br />

Masson et ci•, Paris. .<br />

KHITAROV N.I., 1957. The chemical properties of solutions arising as a result of the interactions of water<br />

with rocks at elevated temperatures <strong>and</strong> pressures. Geochemistry 6, 566-578.<br />

KoRZHINSKII D.S., 1955. The theory of systems with perfectly mobile components <strong>and</strong> processes of<br />

mineral formation. Amer. J. Sci. 263, 193-205.


p<br />

The Process of Bentonite Fo~ation ... 33<br />

LEONE G., REYES E., CORTECCI G., PoCHINI A., LINARES J ., 1983. Genesis of bentonites from Cabo de<br />

Gata, Almeria, Spain: A stable isotope study. Clay Minerals 18, 227-238.<br />

LINARES J., 1963. Las bentonitas de Almeria. Ph.D. Thesis, University of Granada, Spain.<br />

LINARES J., HUERTAS F., PUY J.L., AUGUSTIN V., TERRER A., MARTINEZ J., 1972. Bentonite deposits,<br />

Almeria, Field Trip Guide. Proc. Int. Clay Conf. 1972, Ill, 4-59.<br />

LINARES J ., HUERTAS F., LACHICA M., REYES E., 1973. Geochemistry of trace elements during the genesis<br />

of coloured bentonites. Pp. 351-360, in: Proc. Int. Clay Conf. 1972, Madrid (J.M. Serratosa,<br />

e<strong>di</strong>tor), C.S.I.C.<br />

LoFGREN G., 1970. Experimental devitrification rate of rhyolite glass. Geol. Soc. Am. Bull. 81, 553-560.<br />

LoPEZ J., RoDRIGUEZ E., 1980. La region volcemica neogena del sureste de Espaiia. Estu<strong>di</strong>os geol. 36,<br />

5-63.<br />

LouGHNAN F.C., 1969. Chemical Weathering of the Silicate Minerals. Elsevier, New York.<br />

MARSHALL R.R., 1961. Devitrification of natural glass. Geol. Soc.Am. Bull. 72, 1493-1520.<br />

MARTINEZ J ., 1972 Volcanismo de la Serrata de Nijar, Almeria. Thesis, University of Granada, Spain.<br />

MELENDEZ B., AGUIRRE E., BAUTISTA M.C., 1984. Estu<strong>di</strong>o paleontologico del Mioceno de Cabo de Gata,<br />

Almeria. Estu<strong>di</strong>os geol. 20, 229-234.<br />

MIZUTANI S., 1966. Transformation of silica under hydrothermal con<strong>di</strong>tions. J. Earth Sci. (Nagoya)<br />

14, 56-58.<br />

Moo RE J .G., 1966. Rate of palagonitization of submarine basalt adjacent to Hawaii. Geol. Surv. Res.<br />

Prof. Paper 5500, 163-171.<br />

NoAK Y., 1981. La palagonite: caracteristiques, facteurs d'evolution et mode de formation. Bull.<br />

Mineral. 104, 36-46.<br />

NoRTON D., CATHLES L.M., 1979. Thermal aspects of ore deposition. Chapter 12. In: «Geochemistry of<br />

Hydrothermal Ore Deposits•• (H.L. Barnes e<strong>di</strong>tor), J. Wiley & Sons, New York.<br />

PAEZ A., SANCHEZ P., 1965. Volcanologia del Cabo de Gata entre San Jose y Vela Blanca. Estu<strong>di</strong>os geol.<br />

21, 223-246.<br />

RE YES E., 1977. M ineralogia y geoquimica de las bentonitas de la zona norte-del Cabo de Gat a, Almeria.<br />

Ph.D. Thesis, University of Granada, Spain. ·<br />

REYES E., HUERTAS F., LINARES J., 1980a. Bentonitas de Andalucia, Espaiia: Yacimientos hidrotermales<br />

del norte de Rodalquilar, Almeria. Pp. 125-14 7, in: Proc. lint. Congr. Bentoni tes 1978,<br />

Sassari-Cagliari (Italy), Gallizzi, Sassari.<br />

REYES E., HUERTAS F., LINARES J.; 1980b. Genesis y geoqu!misa de esmectitas de Andalucia. Pp.<br />

149-173, in: Proc. I Int. Congr. Be·ntonites 1978, Sassari-Cagliari (Italy), Gallizzi, Sassari.<br />

REYES M., HuERTAS F., LINARES J ., REYES E., 1982a. Estu<strong>di</strong>o del sistema Si(OH) 4 -Al 3 + -Mfl+ -Na+ -H20<br />

a temperatura y presi6n or<strong>di</strong>narias. I. Precipitaci6n de silicio, aluminio y magnesia. An. Edaf.<br />

Agrobiol. 41, 1291-1310. · .<br />

REYES M., HUERTAS F., LINARES J ., REYES E., 1982b. Estu<strong>di</strong>o del sistema Si(OH) 4 -Al 3 + -Mfl+ -Na+ -H20<br />

a temperatura y presi6n or<strong>di</strong>narias. ll. Composici6n de Ios precipitatos. An. Edaf. Agrobiol. 41,<br />

1311-1323.<br />

RoBIE R.A., W ALDBAUM D .R., 1968. Thermodynamic properties of mineral <strong>and</strong> related substances at<br />

298.15 °K <strong>and</strong> one atmosphere pressure <strong>and</strong> at higher temperatures. Geol. Surv. Bull. 1259.<br />

RoY D.M., RoY R., 1955. Synthesis <strong>and</strong> stability of mineral in the system MgO-Al203-Si02-H20. Am.<br />

Miner. 40, 147-178. ·<br />

SANCHEZ V., 1968. Estu<strong>di</strong>o petrografico de las sucesiones volcanicas del sector central de la formaci6n ·<br />

del Cabo de Gata, Almeria. Estu<strong>di</strong>os geol. 24, 1-38.<br />

SAND L.B., RoY R., OsBORN E.F., 1957. Stability relations ofsome minerals in the Na20-Al20 3-Si0r<br />

H20 system. Econ. Geol. 52, 169-179.<br />

SCHOEN R., WHITE D.E., HEMLEY J.J., 1974. Argillization by descen<strong>di</strong>ng acid at Steamboat Springs,<br />

Nevada. Clays Clay Miner. 22, 1-22.<br />

SKINNER B.J., 1?79. TJie many origins of hydrothermal mineral deposits. Chapter 1. In: «Geochemistry<br />

of Hydrothermal Ore Deposits» (H.L. Barnes, e<strong>di</strong>tor), J. Wiley & Sons, New York.<br />

THOMPSON J.B., 1955 .. The thermodynamic basis for the mineral facies concept. Amer. J. Sci. 253,<br />

65-103. .<br />

TovAROVA 1.1., 1958. Removal of water-soluble substances from the pyroclastic rocks of the volcano<br />

Bezymyannyi. Geochemistry 7, 856-860 ..<br />

TRICHET J ., 1969. Etude petrographique de la structure des verres volcaniques. Bull. Soc. Geol. France<br />

.11, 762-769.<br />

VELDE B., 1977. Clays <strong>and</strong> Clay Minerals in Natural <strong>and</strong> Synthetic Systems. Elsevier, Amsterdam.<br />

WEAST R.C., ASTLE M.J. (e<strong>di</strong>tors), 1982. H<strong>and</strong>book of Chemistry .<strong>and</strong> Physics. CRC Press, Inc. Boca<br />

Raton, Florida.<br />

WILSON R.C., RussELL J.D., TAIT J.M., 1974. A new interpretation of the structure of a-cristobalite.<br />

Contrib. Mineral. Petrol. 47, 1-6.


Miner. Petrogr .. Acta<br />

Vol. 29-A, pp. 35-54 (1985)<br />

Quantitative Determination of the Fine Structural Features<br />

in Clays by Modelling of the X-ray Diffraction Patterns<br />

CYRIL TCHOUBAR<br />

Laboratoire de Cristallographie U.A. 810, U.F.R. de Sciences Fondamentales et Appliquees, BP 6759, Universite<br />

d'Orleans, Rue de Chartres, 45067 Orleans Cedex 2, France<br />

ABSTRACT- Actual structure of any clay mineral always shows important<br />

departures from the ideal well-ordered structure which symbolizes each<br />

group of microcrystallized phyllosilicates. Every departure forms a structural<br />

defect in regard to the ideal structure. Structural defects in clays can be<br />

classified in three categories: those affecting the layers themselves (cis- or<br />

trans-vacancies, order-<strong>di</strong>sorder in the isomorphous substitutions, etc.), those<br />

specific of the interlamellar space (positions of the cation <strong>and</strong> of the intercalated<br />

molecules) <strong>and</strong> stacking faults (inclu<strong>di</strong>ng ~ change in the nature of<br />

stacked layers): In ad<strong>di</strong>tion, powder experimental patterns are generally<br />

perturbed by a partial orientation of the particles in the powder. The paper<br />

describes the influence of defects on the patterns <strong>and</strong> presents a general,<br />

approach to the determination of the nature <strong>and</strong> abundance of defects in<br />

clays with an in<strong>di</strong>rect method of analysis. The intensities <strong>and</strong> shapes of the<br />

<strong>di</strong>ffraction b<strong>and</strong>s are calculated for model structures <strong>and</strong> are fitted to the<br />

experimental patt~rn. Such a method is applied to the determination of fine<br />

structural characteristics of various clay minerals.<br />

Introduction<br />

It is obvious that the microcrystallized<br />

lamellar silicates keep track,· in<br />

their structural characteristics, of various<br />

mo<strong>di</strong>fications of the physicochemical<br />

<strong>and</strong> thermodynamical con<strong>di</strong>tions<br />

they have gone through dur-,<br />

ing their geological «history». Therefore,<br />

knowing the crystallochemical<br />

specificities of these minerals enables<br />


36 C. Tchoubar<br />

the stacking of the layers within<br />

particl~s. So we may observe, for in~<br />

stance, mo<strong>di</strong>fications of the ion localization<br />

in <strong>di</strong>fferent crystallographic<br />

sites, especially the octahedral sites<br />

(for <strong>di</strong>octahedral silicates). As well, a<br />

degree, more or less important, of<br />

order-<strong>di</strong>sorder can exist in the <strong>di</strong>stribution<br />

of isomorphous substitutions,<br />

or of the cations <strong>and</strong> of the<br />

molecul.es intercalated in the interlamellar<br />

space. Finally the structural<br />

defects may affect the stacking mode<br />

<strong>and</strong> the nature of the layers in every<br />

particle, as well as the existence of<br />

stacking faults of various types.<br />

In order to obtain quantitatively<br />

these various parameters, one often<br />

-----------~--- -n.eeas-to--use-jOTntiY- the <strong>di</strong>ffractometric<br />

<strong>and</strong> spectroscopic methods<br />

of investigation. Yet, the basic<br />

method, while presenting its own<br />

limits, remains X-ray <strong>di</strong>ffraction.<br />

Every attempt to interpret parameters<br />

collected by means of other<br />

methods of investigation has necessarily<br />

to be backed by the results<br />

achieved tl].rough the X-ray technique.<br />

Thus, for a mineral with structural<br />

defects, the <strong>di</strong>ffraction pattern varies<br />

considerably with the nature <strong>and</strong><br />

concentration of these defects as<br />

well as with the shapes <strong>and</strong> sizes of<br />

the interferential coherent domains.<br />

These <strong>di</strong>fferences concern at once the<br />

positions, the intensities <strong>and</strong> the<br />

shapes of the reflections. This used<br />

to make impossible, up to the last fe-w<br />

years, the interpretation of such patterns<br />

through the classical method of<br />

<strong>di</strong>rect analysis of experimental data.<br />

Then one could usually just put for~<br />

__ war.d some __)]ypgth,eses 0r1 the nature<br />

of defects; but these hypotheses could<br />

not be confirmed in a sufficient way<br />

<strong>and</strong>, a fortiori, it was impossible to<br />

determine either the concentration of<br />

the defects or the rule of their <strong>di</strong>stribution<br />

in the crystal. BRINDLEY &<br />

ROBINSON (1946) were among the<br />

first ones to use this approach in the<br />

study of clay minerals, to interpret<br />

patterns of <strong>di</strong>sordered kaolinites <strong>and</strong><br />

to explain the simultaneous appearance<br />

of hkt reflections when k = 3n<br />

(n integer) <strong>and</strong> of (hk) <strong>di</strong>ffraction<br />

b<strong>and</strong>s when k i= 3n.<br />

In fact, when dealing with poorly<br />

crystallized minerals with an high<br />

content of defects, the only way to<br />

effectively obtain their actual structure<br />

is to use an in<strong>di</strong>rect method of<br />

analysis· of the experimental patterns,<br />

that we shall call the modelling<br />

method.<br />

This method consists in forecasting,<br />

by means of calculation, the<br />

effect of each kind of defect on the<br />

<strong>di</strong>ffraction phenomenon. Then, by<br />

combining <strong>di</strong>fferent defects in various<br />

proportions in a mathematical<br />

structural model adapted to each<br />

clay mineral stu<strong>di</strong>ed, one calculates a<br />

synthetic <strong>di</strong>agram that will be compared<br />

with the experimental pattern.<br />

By mo<strong>di</strong>fying next the values of the<br />

parameters characterizing each defect,<br />

the theoretical <strong>di</strong>agram is fitted<br />

to the experimental one, always looking<br />

for agreement of the positions<br />

<strong>and</strong> shapes of the reflections as well<br />

as of their relative intensities. The<br />

final structural model correspon<strong>di</strong>ng


Quantitative Determination of the Fi~~-Structural ... 37<br />

to this agreement constitutes the actual<br />

structure of the lamellar silicate<br />

stu<strong>di</strong>ed.<br />

Such in<strong>di</strong>rect approaches, as well<br />

as the use of modelling methods, are<br />

widely spread in various fields of<br />

physics. As for the investigation of<br />

phyllosilicates, this method has been<br />

mainly developed in the French <strong>and</strong><br />

the Soviet laboratories of clay crystallography.<br />

Principle of the mathematical formalism<br />

for calculation of theoretical<br />

<strong>di</strong>agrams<br />

Depen<strong>di</strong>ng on the authors <strong>and</strong> accor<strong>di</strong>ng<br />

to the nature of the minerals<br />

or to the kind of reflections, <strong>di</strong>fferent<br />

mathematical formalisms have 'been<br />

put forward to calculate the <strong>di</strong>ffrac- ·<br />

tion phenomenon produced by powder<br />

lamellar systems. These formalisms<br />

gave an interpretation of the experimental<br />

patterns, at first qualitative<br />

<strong>and</strong> then quantitative. A good<br />

survey of the correspon<strong>di</strong>ng papers is<br />

given in the book e<strong>di</strong>ted by BRIND­<br />

LEY & BROWN (1980). We shall just<br />

point out a few fundamental works:<br />

those of MERING (who was the first<br />

to explain qua'Iitatively, by means of<br />

a mathematical formalism, the main<br />

features of powder patterns of clay~<br />

<strong>and</strong>, in particular, of the <strong>di</strong>ffraction<br />

b<strong>and</strong>s - MERING, 1949). In the<br />

same way, MAcEWAN (MAcEWAN et<br />

al., 1961), DRITS (DRITS & SAKHA­<br />

ROV, 1976) <strong>and</strong> REYNOLDS (1980)<br />

have given principles of calculation<br />

of the OOl intensity <strong>di</strong>stribution for<br />

the intestratified clay minerals.<br />

Yet we must point out that the<br />

most powerful mathematical formalism,<br />

to investigate the most general<br />

cases, is the matrix notation. HEN­<br />

DRICKS <strong>and</strong> TELLER introduced it<br />

in 1942, for the study of lamellar systems·;<br />

it was then completed <strong>and</strong><br />

adapted to clay stu<strong>di</strong>es <strong>and</strong> to <strong>di</strong>fferent<br />

kinds of reflections by various<br />

authors (KAKINOKI & KOMURA,<br />

1952; DRITS & SAKHAROV, 1976;<br />

PLAN(:ON & TCHOUBAR, 1976;<br />

1977; PLAN(:ON, 1981; SAKHAROV<br />

et al., 1982a,b; PLAN(:ON et al.,<br />

1983).<br />

In the general case, for a powder<br />

with particle orientation <strong>and</strong> various<br />

thicknesses of the coh'etent domains,<br />

the intensity <strong>di</strong>ffracted at the· 28<br />

angle by an hk rod is given by:<br />

Ihk(s) = - 1 -<br />

sQcr M<br />

L a(M) J N(


38 C. Tchoubar<br />

vectors <strong>and</strong> a plane normal to the hk<br />

rod. Summation <br />

systems can be <strong>di</strong>stin-.<br />

guished (PLAN> system, on the


Quantitative Detemzination qf the Fine Structural ... ~9<br />

contrary, the concentration of defects<br />

. of a given kind is only defined in average<br />

for the powder, <strong>and</strong> varies from<br />

a particle to another (Markovian model).<br />

Most of the clays belong to this<br />

latter case.<br />

We can remark that the very principle<br />

of the modelling method (to determine<br />

the actual structure of a clay<br />

by fitting of calculated <strong>and</strong> experimental<br />

patterns) leads imme<strong>di</strong>ately<br />

to a question:<br />

- Wouldn't it be possible to obtain<br />

virtually the same calculated <strong>di</strong>agram,<br />

starting from several totally<br />

<strong>di</strong>fferent models?<br />

For the purpose of answering this<br />

question, a systematic analysis of<br />

each possible model, based on the<br />

crystallochemical viewpoint, has<br />

been carried out for <strong>di</strong>octahedral<br />

phyllosilicates. This analysis investi-<br />

./<br />

gated the relationships between<br />

structural characteristics <strong>and</strong> specificities<br />

of <strong>di</strong>ffraction patterns (DRITS<br />

et al., 1984). This study has shown<br />

that each kind of defect <strong>and</strong> structural<br />

characteristic leads to a specific<br />

feature in defined parts of the pattern,<br />

<strong>and</strong> is insensitive in others.<br />

Nevertheless, the uniqueness of solution<br />

for determining the fine structure<br />

of a clay will be reasonably<br />

asserted, only if the investigation<br />

process includes:<br />

1. Successive considerations of al1<br />

models which are crystallochemical-'<br />

ly possible.<br />

2. Calculations of intensity <strong>di</strong>stribution<br />

<strong>and</strong> profile variation in all accessible<br />

domains of the reciprocal<br />

space, obtained by changing only one·<br />

parameter at a time that defines the<br />

specific features <strong>and</strong> mo<strong>di</strong>fications in<br />

the pattern, due to this parameter<br />

(e.g., cation <strong>di</strong>stribution in the in<strong>di</strong>vidual<br />

layers, nature of stacking<br />

faults, etc.).<br />

3. A systematic analysis of the calculated<br />

patterns, to establish the <strong>di</strong>ffraction<br />

criteria which will help to<br />

interpret the experimental data.<br />

4. Agreement of the calculated <strong>and</strong><br />

experimental patterns, inclu<strong>di</strong>ng the<br />

position, shapes <strong>and</strong> relative intensities<br />

of the various reflections used<br />

- <strong>and</strong> this in a 28 angle range as<br />

large as possible.<br />

5. Finally, to make possible the comparison<br />

between theoretical <strong>and</strong> experimental<br />

data, it is essential to use<br />

experimental patterns that have been·<br />

obtained in very strict recor<strong>di</strong>ng con<strong>di</strong>tions,<br />

as shown in the following<br />

paragraph.<br />

Recor<strong>di</strong>ng con<strong>di</strong>tions of the experimental<br />

patterns<br />

To be effective the modelling<br />

method requires first of all the recor<strong>di</strong>ng<br />

of patterns in experimental<br />

con<strong>di</strong>tions in which all the functions<br />

that can perturbe the <strong>di</strong>ffraction phenomenon<br />

itself are controlled: mainly<br />

monochromatic ra<strong>di</strong>ation should<br />

be used <strong>and</strong> the height <strong>and</strong> width of<br />

the beam <strong>and</strong> slits, the thickness of<br />

the sample <strong>and</strong> the orientation of<br />

particles in the powder should be<br />

controlled. Another point is to use a<br />

detector with energy <strong>di</strong>scrimination<br />

that gives good accuracy in the in-


40 C. Tchoubar<br />

tensity measurements <strong>and</strong> a strong<br />

angular resolution. Therefore, it isessential<br />

to use equipment with a<br />

«step by step>> recor<strong>di</strong>ng system or<br />

with a linear detector.<br />

Some of the perturbing functions<br />

can be minimized so as to introduce<br />

in patterns only mo<strong>di</strong>fications several<br />

times smaller than those due to the<br />

structural defects of the mineral stu<strong>di</strong>ed.<br />

This occurs, for instance, with<br />

the optical functions (<strong>di</strong>mension of<br />

the beam <strong>and</strong> slits, monochromaticity,<br />

etc.).<br />

Other perturbing functions, on the<br />

contrary, cannot be minimized <strong>and</strong><br />

they have then to be included in the<br />

_calculation to . establish their effect.<br />

This is the case in particular with the<br />

residual orientation of particles in<br />

powder, that virtually cannot be<br />

avoided with clay minerals.<br />

The particle orientation function is<br />

experimentally determined from the<br />

OO.f reflections (TAYLOR & NOR­<br />

RISH, -1966;· DE· COURVILLE et al.,<br />

1979). Calculations prove that<br />

orientation mo<strong>di</strong>fies relative intensities<br />

as well as the profiles of every<br />

reflection (PLAN(ON & TCHOUBAR,<br />

1977; PLAN(ON, 1980). Figure 1<br />

illustrates this phenomenon for the<br />

case of a partly <strong>di</strong>sordered kaolinite.<br />

The curves in this Figure correspond<br />

to the 002 <strong>and</strong> 003 reflections, <strong>and</strong> to<br />

the (02,11) <strong>and</strong> (20,13) b<strong>and</strong>s. The <strong>di</strong>agram<br />

in dashed lines was calculated<br />

for the case of a totally r<strong>and</strong>om<br />

orientation of particles in powder<br />

(ideal case of non-residual orientation);<br />

<strong>and</strong> the curves in solid line<br />

were obtained by introducing in the<br />

calculation the particle orientation<br />

function given in Fig. 2. This function<br />

was experimentally determined for a<br />

given partly <strong>di</strong>sordered kaolinite. It<br />

corresponds to a rather small particle<br />

orientation in powder. In Fig. 2, the<br />

1.000<br />

500<br />

(02, 11) b<strong>and</strong><br />

n<br />

'\ (002) reflection<br />

h<br />

11<br />

11<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

,.,}<br />

I<br />

.,, (20, 13) b<strong>and</strong><br />

0.21 0.25<br />

0.30<br />

0.35<br />

0.40 s


Quantitative Determination of the Fine-Structural ... 41<br />

Ne(~)<br />

absorption on the experimental pattern.<br />

Let us remember that intensity I<br />

after absorption is related to the intensity<br />

I 0 without absorption ,by<br />

(GUINIER, 1964):<br />

I= K IoSo<br />

1 x . sin a sin y<br />

J..LPX ·sin a sin a - sin y<br />

[<br />

exp( -~) -exp.( -~)]<br />

sm a<br />

sm y<br />

~(deg)<br />

o+--.--~-.--r--.-.--,-~~<br />

0 10 30 50 70 90<br />

Fig. 2 - N (~)function that characterizes· the<br />

orientation of particles in the powder.<br />

dashed line represents the orientation<br />

function - after normalization­<br />

-for a r<strong>and</strong>om <strong>di</strong>stribution of parti- .<br />

des. ~ is the angle between the (001)<br />

plane of a particle <strong>and</strong> the plane of<br />

the powder holder (~ = 90° corresponds<br />

to particles perpen<strong>di</strong>cular to<br />

the plane of the holder); the dashed<br />

line is horizontal because, for a r<strong>and</strong>om<br />

orientation, the proportion of<br />

particles at a given ~ angle is independent<br />

of the ~value.<br />

In the same way, effects due to<br />

ra<strong>di</strong>ation absorption, beam polarization<br />

<strong>and</strong> the presence of <strong>di</strong>fferent<br />

backgrounds due to air, to camera<br />

windows <strong>and</strong> to sample-holders, etc.<br />

cannot be avoided. So it is necessary:<br />

1. To measure the absorption coefficient<br />

<strong>and</strong> to correct the effects of<br />

where:<br />

K is a constant;<br />

S 0 is the section of the incident beam;<br />

a <strong>and</strong> y respectively the angles be­<br />

, tween the incident beam <strong>and</strong> the<br />

1sample plane, <strong>and</strong> between the scattered<br />

beam <strong>and</strong> the sample. We have/<br />

the following relationship:<br />

y = a+29 (29 being the scattering<br />

angle);<br />

x is the thickness of the sample;<br />

pis the volume density of the sample,<br />

<strong>and</strong><br />

J..l is its coeffiCient of absorption per<br />

mass unit.<br />

This relationship corresponds to<br />

·non-symmetrical 9,29 recor<strong>di</strong>ng con<strong>di</strong>tions<br />

by transmission; J..LPX is experimentally<br />

measured.<br />

2 . .To correct the pattern of the effects<br />

of X-ray beam polarization that results<br />

from the beam reflection firstly<br />

on the monochromator (for instance,<br />

curved quartz) <strong>and</strong> secondly on the<br />

sample. The total correction to be<br />

brought to the experimental pattern<br />

consists in multiplying each intensity


il<br />

, I<br />

'<br />

42 C. Tchoubar<br />

by a P factor given by (GUINIER,<br />

1964):<br />

where:<br />

P=<br />

1 + cos 2 28 0<br />

8 0 is the angle of reflection on the<br />

monochroma tor.<br />

28 is the scattering angle.<br />

such a fault between two adjacent<br />

layers; ------------ -----<br />

- Faults which we will name


Quantitative Detennination ofthe Firie_S-tructurai ... 43<br />

ts.ooo<br />

I<br />

3000 I<br />

10.000<br />

5.000 1000<br />

0.225 0.250<br />

0.400 0.425<br />

Fig. 3 - Calculed profiles of <strong>di</strong>ffraction b<strong>and</strong>s for a cis-vacant <strong>di</strong>octaheqral smectite in two-waterlayer<br />

homogeneous hydration state, containing r<strong>and</strong>om stacking faults (PA = 0.74). a: (02,11)<br />

b<strong>and</strong>; b: (20,13) b<strong>and</strong>. Fig__:_3a corresponds also to (02,11) b<strong>and</strong> profile calculated using st<strong>and</strong>ard<br />

deviation 1? = 0.05 a 2 . The intensities are given in electron units.<br />

for both types of stacking faults, in<br />

the case of a two-water-layer <strong>di</strong>octahedral<br />

smectite (BEN BRAHIM,<br />

1985). Figure 3 corresponds to the<br />

presence of totally r<strong>and</strong>om faults<br />

(due to arbitrary translations or rotations<br />

of layers in their plane) 1<br />

Whose<br />

probability PAis 0.74; Figure 4 sh«ws<br />

the calculated <strong>di</strong>agram in the case of<br />

an average translation to (to<br />

-0.3Ht), the same for all firstneighbouring<br />

layers, but with an<br />

3000 l<br />

1000<br />

0.400 0.425 stA- 1 J<br />

Fig. 4 - Calculated profile of (20,13) <strong>di</strong>ffraction<br />

b<strong>and</strong> for a cis-vacant <strong>di</strong>octahedral smectite in<br />

two-water-layer homogeneous hydration state,<br />

containing stacking faits by fluctuation (8 2 =<br />

0.05 a 2 ) around an average translation Cfo =<br />

-0.311i') of the layers in their plane. The intensities<br />

are given in electron units.<br />

arbitrary fluctuation 8 = ~to around<br />

this value such that the st<strong>and</strong>ard deviation<br />

8 2 is 0.05a 2 • The values of 8 2<br />

<strong>and</strong> PA were chosen so as to obtain an<br />

identity of the calculated (02,11)<br />

b<strong>and</strong> profiles (Fig. 3a). So we can<br />

observe that the presence of r<strong>and</strong>om<br />

faults (Fig. 3b) gives a much more<br />

modulated (20,13) b<strong>and</strong> than when<br />

faults exist with fluctuations around<br />

to (Fig. 4).<br />

On the other h<strong>and</strong>, if the mineral<br />

contains only «partly defined» stacking<br />

faults, the mo<strong>di</strong>fications on the<br />

pattern <strong>di</strong>ffer accor<strong>di</strong>ng to the investigated<br />

(hk) domains; moreover<br />

some domains remain insensitive to<br />

such stacking faults. Thanks to these<br />

<strong>di</strong>fferences, it is possible to identify<br />

each kind of these faults.<br />

It is well-known, for instance, that<br />

the (20,13) domain is mo<strong>di</strong>fied very<br />

,little (or not at all) by ±120° rotationb<br />

al or ±- translational stacking<br />

3<br />

faults. On the other h<strong>and</strong>, both categories<br />

of faults can be <strong>di</strong>stinguished<br />

by the e)):amination of the (02,11)


44 C. Tchoubar<br />

130 100<br />

65<br />

80<br />

60<br />

40<br />

20<br />

0.22 0.24 0.26 0.28<br />

Fig. 5 - Calcul::tted profile of the (02,11) b<strong>and</strong><br />

for an anhydrous cis-vacant <strong>di</strong>octahedral smectite<br />

containing ±120° rotational stacking faults<br />

(PR = 0.67). The intensities are given i) on the<br />

left part in electron units x 10- 2 , ii) on the<br />

_ :right part in arbitrary units.<br />

b<strong>and</strong>s. Indeed one can observe that<br />

the presence of ± - faults is ex-<br />

3<br />

pressed by the appearance of a<br />

b<br />

stea<strong>di</strong>ly decreasing (02,11) b<strong>and</strong>,<br />

lea<strong>di</strong>ng-~te~~an~-- effect---similar- to a<br />

two-<strong>di</strong>mensional structure; on the<br />

contrary the presence of ± 120°<br />

rotational faults leads to a profile of<br />

the (02,11) b<strong>and</strong> where a minimum<br />

of intensity, more or less pronounced,<br />

can be found around s = 0.24A- 1 •<br />

Figures 5 <strong>and</strong> 6 illustrate this fact<br />

by giving the (02,11) b<strong>and</strong> profiles<br />

of an anhydrous <strong>di</strong>octahedral<br />

smectite with cis-vacant octahedral<br />

positions <strong>and</strong> with the highest quantity<br />

of faults (P = 0.67), respectively<br />

b<br />

of ± 120° <strong>and</strong> ± - types (DRITS et<br />

3<br />

al., 1984).<br />

The same kind of <strong>di</strong>stinction exists<br />

too, though not as obviously, when<br />

comparing the effects of n60° <strong>and</strong><br />

130 100<br />

200-130<br />

201-131<br />

95 100<br />

80<br />

80<br />

201-132<br />

60<br />

65 60<br />

47.5<br />

202-131<br />

b<br />

40<br />

40<br />

20<br />

*<br />

0.22 0.24 0.26 0.28 s ,;.:1)<br />

0.38 .0,40 0.42 S(,~-1)<br />

Fig. 6 - Calculated b<strong>and</strong>s profiles for an anhydrous cis-vacant <strong>di</strong>octahedral smectite containing ±<br />

translation faults (PT= 0.67). a: (02,11) b<strong>and</strong>; b: (20,13) b<strong>and</strong>. The intensities are given i) on the left<br />

part in electron ·units x 10- 2 , ii) on the right part in arbitrary units.<br />

20


Quantitative Determination of the Ftize-Structural... 45<br />

faults. Figures 7 <strong>and</strong> 8 show calculated<br />

(02,11) <strong>and</strong> (20,13) b<strong>and</strong>s for the<br />

same smectite as in Figs 5 <strong>and</strong> 6, l;mt<br />

with faults respectively of n60° <strong>and</strong><br />

types in equal quantities, e.g., p =<br />

0.67 (DRITS et al., 1984). A superficial<br />

qualitative examination of the curves<br />

of Figs 7 <strong>and</strong> 8 seems to reveal a strict<br />

analogy between the patterns correspon<strong>di</strong>ng<br />

to n60° <strong>and</strong><br />

faults: for both types of faults there<br />

exists only one modulation on the<br />

two (20,13) b<strong>and</strong>s at s = 0.415A- 1 ,<br />

while both (02,11) b<strong>and</strong>s show a<br />

strong trend towards a: two-<br />

<strong>di</strong>mensional structure. But in fact a<br />

quantitative comparison .of both patterns<br />

shows that the (20,13) b<strong>and</strong> correspon<strong>di</strong>ng<br />

to n60° faults presents a<br />

more clearly pronounced minimum<br />

at s = 0.4oA.- 1 than the one correspon<strong>di</strong>ng<br />

to<br />

faults. Furthermore, for this latter<br />

kind of faults, the (02;11) b<strong>and</strong> presents<br />

an almost regular decrease between<br />

s = 0.23A- 1 <strong>and</strong> s = 0.3oA.- 1 ,<br />

while for the model with n60° faults,<br />

the same b<strong>and</strong> shows a minimum at s<br />

= 0.2sA.- 1 <strong>and</strong> a modulation centred<br />

on s = 0.30A - 1 • Besides, if we compare<br />

only qualit~tively the (02,11)<br />

b<strong>and</strong>s on Figs 5 <strong>and</strong> 7, we might come<br />

to the conclusion that the ± 120°<br />

faults cannot be <strong>di</strong>stinguished from<br />

136 (20,13)<br />

136 I<br />

(02, 11)<br />

68<br />

68<br />

0.22 0.24 0.26 0.28<br />

0.38<br />

Fig. 7- Calculated b<strong>and</strong> profiles for an anhydrous cis-vacant <strong>di</strong>octahedral smectite containing n60°<br />

rotational stacking faults (PR =_0.67). a: (02,11) b<strong>and</strong>; b: (20,13) b<strong>and</strong>. The intensities are given in<br />

electron units X 10- 2 . - . _


I<br />

I'<br />

46 C. Tchoubar<br />

134<br />

(20, 13)<br />

134 I<br />

67<br />

67<br />

0.22 0.24 0.26 0.28 0.38 0.42 s cA- 1 ><br />

Fig. 8 - Calculated b<strong>and</strong> profiles fo; an anhydrous cis-vacant <strong>di</strong>octahedral smectite containing<br />

-- - -- ---( -n 1 :c·m. 1-nn:·=--o-or 1; m = 0 or T) translational stacking faults (Pr = 0.67). a: (02,11) b<strong>and</strong>;<br />

b: (20,13) b<strong>and</strong>. The intensities are given in electron units X 10- 2 .<br />

the n60° faults, <strong>and</strong> that the ± -<br />

3<br />

faults cannot be <strong>di</strong>stinguished from·<br />

the<br />

faults (Figs 6 <strong>and</strong> 8). In fact, the <strong>di</strong>stinction<br />

within both categories of<br />

faults can be made imme<strong>di</strong>ately by<br />

examining the (20,13) domain, which<br />

is highly mo<strong>di</strong>fied only for the n60° or<br />

faults. This is obvious when comparing<br />

the profiles of the (20,13) b<strong>and</strong>s<br />

in Fig. Sb <strong>and</strong> in Fig. 6b.<br />

b<br />

2. Determination of the defects inside<br />

the layers<br />

In a general way, in clays, defects<br />

inside the layers are mo<strong>di</strong>fications<br />

concerning either the position of<br />

atoms in the unit cell, or the nature of<br />

the cations (isomorphous substitu-.<br />

tions, for instance). As a result of the<br />

weakness of the X-ray atomic scattering<br />

power, it is often <strong>di</strong>fficult to detect<br />

these categories of defects in the<br />

patterns. obtained from natural, untreated<br />

clays. Such samples generally<br />

contain a large amount of stacking<br />

faults which give intensity mo<strong>di</strong>fications<br />

that are higher than those due<br />

to the defects inside the layer. So, to<br />

reveal these defects, the effects of<br />

stacking faults have to be minimized<br />

by reorganizing the stack. There are


Quantitative Determination. of the -pZ:r!e Structural ... 47<br />

20 20<br />

10 10<br />

\~-·-<br />

o·-.1-~""'o!;-.22-~--0,..-.24--r-_ -0.~26--,---~,-,,;--:"'- 1 1 _.<br />

0.22<br />

' '<br />

..<br />

'·<br />

\'----<br />

0.24 0.25 s ($.-11<br />

Fig. 9- Experimental profiles of (02,11) b<strong>and</strong>s of two anhydrous Na-beidellites. a: Black Jack Mine<br />

beidellite; b: Rupsroth beidellite. The intensities are given in electron units.<br />

two ways to obtain a better order in<br />

the layer stackings: the first one is to<br />

saturate the mineral with potassium<br />

<strong>and</strong> to use several wetting <strong>and</strong> drying<br />

cycles (MAMY & GAULTIER, 1976).<br />

The second one is even more simple<br />

<strong>and</strong> consists only in saturating the<br />

clay with cesium (BESSON et al.,<br />

1983).<br />

For ir,tstance, if our objective"is to<br />

determine the nature of octahedral<br />

vacancies in a <strong>di</strong>octahedral smectite,<br />

the analysis of the non-saturated<br />

mineral does not lead to any conclusion.<br />

Figure 9 shows the experimental<br />

(02,11) b<strong>and</strong>s of the anhydrous Nabeidellite<br />

from Black Jack Mine (Fig.<br />

9a) <strong>and</strong> from Rupsroth (Fig. 9b): we<br />

can see that both b<strong>and</strong>s <strong>di</strong>ffer littie<br />

from each other <strong>and</strong> that, moreover,<br />

the slight <strong>di</strong>fferences appear in a part<br />

of the patterns sensitive to stacking<br />

faults. Therefore these recor<strong>di</strong>ngs do<br />

not permit any statement about<br />

octahedral vacancy positions. But cal- '<br />

culations show that the <strong>di</strong>ffraction<br />

(02,11) domain for a model of anhydrous<br />

Cs-beidellite presents great <strong>di</strong>fferences<br />

when the vacant sites are in<br />

«trans>> positions (Fig.-10a) or «cis»<br />

positions (Fig. lOb), or are statistically<br />

<strong>di</strong>stributed between all octahedral<br />

sites (Fig. lOc). If we compare these<br />

Fig. 10 ~-Calculated profiles of (02,11) b<strong>and</strong>s<br />

for Cs-beidellites with three <strong>di</strong>fferent positions<br />

of the octahedral vacancies. a: transvacant<br />

beidellite; b: cis-vacant beidellite; c:<br />

beidellite with statistical <strong>di</strong>stribution of octahedral<br />

vacancies between the three octahedral<br />

site types.


48 C. Tchoubar<br />

theoretical patterns with the experimental<br />

ones obtained from Black<br />

Jack Mine <strong>and</strong> Rupsroth anhydrous<br />

Cs-beidellites (Figs 11a, b), we can<br />

come to the conclusion, without any<br />

ambiguity <strong>and</strong> on the single basis of a<br />

qualitative comparison, that the<br />

Black Jack Mine beidellite is a<br />

«trans»-vacant mineral while Rup-<br />

..<br />

. .<br />

20 ..<br />

sroth beidellite has «cis»-vacant<br />

octahedral-~sheets---(BESSON, 1980;<br />

BESSON et al., 1983). A quantitative<br />

study, based on the agreement of profiles<br />

<strong>and</strong> intensities between the<br />

calculated <strong>and</strong> experimental patterns,<br />

shows that the presence of<br />

faults in the octahedral vacancy positions<br />

cannot be detected if the pro-<br />

a<br />

r...<br />

•<br />

10 I \<br />

20<br />

I<br />

·. :..'<br />

\ ..<br />

.... ~<br />

/<br />

./'<br />

;<br />

.<br />

. .<br />

; '<br />

0+--A~.----.-----.-----.----.-----.----.-----.--~<br />

10<br />

0.22<br />

\<br />

-~<br />

0.24<br />

,<br />

· rol · i<br />

........ . ;"-..;.,.,<br />

•• jll<br />

·~<br />

.. .. .­;<br />

;.<br />

.<br />

•<br />

\<br />

0.26 0.28<br />

b<br />

.<br />

!' ..<br />

\<br />

....<br />

s (fl.-1 l<br />

i<br />

0.22<br />

0.24<br />

0.26 0.30<br />

s (A- 1 l<br />

Fig. 11 -Experimental profiles of (02,11) b<strong>and</strong>s of two anhydrous Cs-beidellites. a: Black Jack Mine<br />

beidellite; b: Rupsroth beidellite.


Quantitative Detennination oftherlne Structural ... 49<br />

portion of these faults is lower than<br />

10% (because of the existence of residual<br />

stacking faults in the Csminerals).<br />

3. Determination of the <strong>di</strong>stribution of<br />

atoms <strong>and</strong> molecules in the interlamellar<br />

space<br />

guish: i) sites projected close to basic<br />

oxygens of the layer (A1 sites), ii)<br />

those projected close to the tetrahedral<br />

cations (B sites), <strong>and</strong> iii)<br />

those projected close to the centre of<br />

the «hexagonal» cavities (C sites).<br />

Having i:wticed that the two categories<br />

of sites B<strong>and</strong> C can be deduced<br />

one from another by changing their y<br />

1<br />

coor<strong>di</strong>nates into y ± -, the authors<br />

. . 3<br />

have considered the simultaneous<br />

presence of identical change of y­<br />

cobr<strong>di</strong>nates of the A1 sites, lea<strong>di</strong>ng to<br />

two enantiomorphic site <strong>di</strong>stributions<br />

called Az <strong>and</strong> A3 (see Figs 12b, c).<br />

The calculation of theoretical patterns<br />

from these <strong>di</strong>fferent models<br />

leads to the following conclusions:<br />

1. The (20,13) domain does not permit<br />

one to <strong>di</strong>stinguish A1, Az, A3 sites<br />

from one another, orB sites from C<br />

sites. In this domain, the profiles <strong>and</strong><br />

intensities of reflections an~ only<br />

sensitive to the ratio (A1+Az+A3)/<br />

(B+C), where (A1+Az+A3) <strong>and</strong> (B+C)<br />

To illustrate this case, we want to<br />

describe a work about the investigac<br />

tion, by X-ray <strong>di</strong>ffraction, of Rupsr6th<br />

Na-beidellite in homogeneous<br />

hydration states correspon<strong>di</strong>ng to a<br />

two-water-layer hydrate (dool<br />

15.2SA; BEN BRAHIM et al.;. 1984)<br />

<strong>and</strong> to a one-water-layer hydrate (dooi<br />

= 12.4A; BEN BRAHIM et al., 1986).<br />

a) Three <strong>di</strong>fferent categories of<br />

sites are put forward in the literature<br />

for clays with water molecules in<br />

two-water-layer homogeneous,l:J.ydration<br />

state.<br />

Figure 12a shows the projection of<br />

the possible positions of water molecules<br />

on the {i,b) plane: we <strong>di</strong>stina)<br />

b)<br />

Fig. 12 - Projection on the (a, b) plane of possible water molecule sites in a two-waterclayer<br />

· ·homogeneous hydration state of smectite.<br />

. c)


so<br />

C. Tchoubar<br />

are the total amounts of water molecules<br />

in the A <strong>and</strong> (B+C) sites.<br />

2. In the (02,11) domain, the <strong>di</strong>agram<br />

is mo<strong>di</strong>fied accor<strong>di</strong>ng to the<br />

ratio B/C; but the pattern remains entirely<br />

insensitive to the <strong>di</strong>stribution<br />

of water molecules between the <strong>di</strong>fferent'<br />

A-site types.<br />

3. On the contrary, the (04,22) domain<br />

shows significant mo<strong>di</strong>fication<br />

when the A1 sites or the Az sites are<br />

occupied by water. Yet it is impossible<br />

to <strong>di</strong>stinguish the two enantiomorphic<br />

occupations Az <strong>and</strong> A3.<br />

Lastly when comparing the calculated<br />

<strong>and</strong> experimental patterns in<br />

the (04,22) domain, we can conclude<br />

that the A 1 -sites are vacant <strong>and</strong> that<br />

·---------- "--<br />

the water molecules in the A-site are<br />

situated only in the Az or A3 sites,<br />

Moreover, this comparison shows<br />

that the simultaneous occupation of<br />

the Az <strong>and</strong> A3 sites in the same water<br />

sheet must be excluded.<br />

The number of water molecules<br />

per ~-uni LcdL<strong>and</strong>~their_z-coor<strong>di</strong>nates<br />

are defined from the comparison of<br />

the ratios Ioodloo3 <strong>and</strong> Ioodloos (BEN<br />

BRAHIM et al., 1983). Lastly, the a­<br />

mount of the water molecules <strong>di</strong>stributed<br />

on the B, C <strong>and</strong> Az (or A3) sites<br />

are determined by fitting profiles <strong>and</strong><br />

intensities of the calculated pattern<br />

with the experimental one, simultaneously<br />

in the three (02,11), (20,13)<br />

<strong>and</strong> (04,22) domains.<br />

The final agreement is shown in<br />

Figs 13 <strong>and</strong> 14 where the calculated<br />

spectra are represented by solid lines<br />

while the experimental intensities,<br />

point by point, are represented by<br />

triangles. Figure 13 corresponds to<br />

the (02,11) b<strong>and</strong> <strong>and</strong> Figure 14 to<br />

both (20,13) <strong>and</strong> (04,22) b<strong>and</strong>s; in this<br />

latter Figure the curve represented<br />

by squares corresponds to the calculated<br />

(04,22) b<strong>and</strong>, before superimposition<br />

of the (20,13) b<strong>and</strong> (dashed<br />

46 I<br />

23<br />

0.225 0.250<br />

0.275 s (.~-1)<br />

Fig. 13 - Two-water-layer Na-beidellite in an homogeneous hydration state: final agreement<br />

between the calculated (solid line) <strong>and</strong> experimental (triangles) profiles in the (02,11) b<strong>and</strong><br />

domain. The intensities are given in arbitrary units.


Quantitative Determination of ihe-Fi~e Structural ... 51<br />

9 I<br />

0.375<br />

Fig. 14 - Two-water-layer homogeneous hydrated Na-beidellite: final agreement between the<br />

calculated <strong>and</strong> experimental profiles in the (20,13) <strong>and</strong> (04,22) b<strong>and</strong> domains. The intensities are<br />

given in arbitrary units.<br />

line part). This agreement is obtained<br />

with the following values of structural<br />

characteristics:<br />

- Basal <strong>di</strong>stance door = 15.250 ±<br />

o.oo5 A.<br />

- Probability of arbitrary stacking<br />

faults PA = 0.74.<br />

- z-coor<strong>di</strong>nates of water molecules z<br />

=; ±6.3A (origin at the center of the<br />

octahedral sheet).<br />

-Total number of water molecules<br />

per 1,1nit cell = 10.8.<br />

- Number of water molecules per<br />

unit cell, in the A2 (or A 3 ) sites: 7.5; in<br />

B-sites: 2.6; in C-sites: 0.7.<br />

b) A similar investigation was carded<br />

out in the case of a one-waterlayer<br />

homogeneous hydrate; the <strong>di</strong>fferent<br />

occupation sites of the water<br />

molecules, still being the sites Ar, A2,<br />

A 3 , B<strong>and</strong> C. It was proved that, once'<br />

again, these molecules are <strong>di</strong>stributed<br />

between A, B<strong>and</strong> C-sites so as to<br />

build an hexagonal insaturated plane<br />

network. This water sheet is situated<br />

in the middle of the· interlamellar<br />

space, while the Na+ cations remain<br />

inserted in the pseudo-hexagonal cavities.<br />

The use of the modelling method<br />

has put forward· a <strong>di</strong>stinctive<br />

feature in the structure of Na-beidellite<br />

in the one-water-layer state, the<br />

first-neighbouring layers systematically<br />

show a translation along b,<br />

b b<br />

equal, arbitrary, to +-or--; this<br />

.. 3 3<br />

had not been observed either in the<br />

·two-water-layer hydrate, or in the<br />

anhydrous state of the Na-beidellite<br />

(BESSON, 1980). The consequence of<br />

the presence of such translations is<br />

that, in each interlamellar space, the<br />

basic oxygens <strong>and</strong> the Na+ cations,<br />

situated on both sides of the water<br />

molecules plane show an identical<br />

configuration in regard to the water<br />

molecules: this constitutes for the<br />

latter ones a symmetrical <strong>and</strong> stable<br />

configuration which could not be realb<br />

ized without±- translations.<br />

3<br />

The final agreement between the


52 C. Tchoubar<br />

90 I<br />

0.225 0.250 o.m s !A·'><br />

Fig. 15 - One-water-layer homogeneous hydrated<br />

Na-beide!lite: final agreement between<br />

the calculated <strong>and</strong> experimental profiles in the<br />

(02,11) b<strong>and</strong> domain. The intensities are given<br />

in arbitrary units.<br />

b<br />

_al stacking Jault_s equal to + -<br />

3<br />

b<br />

or<br />

3<br />

- z-coor<strong>di</strong>nates of water molecules:<br />

z = ±6.2A (origin at the center of the<br />

octahedral sheet).<br />

-Total number of water molecules<br />

per unit cell: 6.<br />

-Number of water molecules, per<br />

unit cell, in A sites: 4; in B sites: 1; in<br />

C sites: 1.<br />

experimental <strong>and</strong> the calculated patterns<br />

is shown in Figs 15 <strong>and</strong> 16. This<br />

agreement is obtained with the following<br />

values:<br />

- Basal <strong>di</strong>stance doo1 = 12.400 ±<br />

0.005 A.<br />

- Probability of arbitrary stacking<br />

faults: PA = 0.70.<br />

-Systematic existence of translation-<br />

Conclusions<br />

The modelling. method of powder<br />

patterns is the only way to solve a<br />

significant part of the problems connected<br />

with the determination of the<br />

actual structure of clays by using X­<br />

ray <strong>di</strong>ffraction. It remains effective<br />

27<br />

0.400<br />

0.425 0.450<br />

Fig. 16 - One-water-layer homogeneous hydrated Na-beidellite: final agreement between the<br />

calculated <strong>and</strong> experimental profiles in the (20,13) <strong>and</strong> (04,22) b<strong>and</strong> domains. The. intensities are<br />

given in arbitrary units.


Quantitative Determination of the Fine Structural ... 53<br />

even when the experimental pattern<br />

is reduced to a series of slightly modulated<br />

(hk) b<strong>and</strong>s. However, to obtain<br />

the fine structural characteristics of<br />

each clay as well as the proportion<br />

<strong>and</strong> the nature of main structural defects,<br />

it is necessary, in all cases, firstly<br />

to use «good>> experimental patterns·<br />

(e.g., recorded in strictly controlled<br />

experimental con<strong>di</strong>tions);<br />

secondly to fit quantitatively the<br />

calculated <strong>and</strong> experimental patterns,<br />

not only on the basis of profile<br />

<strong>and</strong> peaks position agreement, but<br />

also by comparing the intensity<br />

values. Obviously, the better the<br />

ordering of each stacking the more<br />

precise the final solution will be.<br />

We emphasize the fact that devising<br />

a model that contains structural<br />

defects does not result from an arbitrary<br />

choice between an infinite number<br />

of possibilities. The choice of a<br />

model must always be based on <strong>and</strong><br />

controlled by crystallochemical considerations.<br />

It also depends on the various<br />

independent parameters that<br />

may be obtained through <strong>di</strong>verse<br />

techniques, especially others than<br />

<strong>di</strong>ffractometric ones. In such con<strong>di</strong>tions<br />

the number of models which<br />

must be taken into consideration is<br />

considerably reduced; it is then fairly<br />

easy to test them <strong>and</strong> find out which<br />

one corresponds to the physical reality<br />

of the mineral stu<strong>di</strong>ed.<br />

'REFERENCES<br />

BEN BRAHIM. J., 1985. Contribution a /'etude des systemes eau-argile par <strong>di</strong>ffraction de rayons X.<br />

Structure des couches inserees et mode d'empilement des feuillets dans les hydrates homogenes a<br />

une et deux couches d'eau de la beidellite-Na. Ph. D. Thesis, University of Orleans, France.<br />

BEN BRAHIM J., ARMAGAN N., BESSON G., TCHOUBAR C.,.1983. X-ray <strong>di</strong>ffraction stu<strong>di</strong>es on the arrangement<br />

of water molecules in a smectite. I. Homogeneous two-water-layer Na-beidellite. J. appl.<br />

Crystallogr. 16, 264-269. -<br />

BEN BRAHIM J., BESSON C., TCHOUBAR C., 1984. Etude des profils des b<strong>and</strong>es de <strong>di</strong>ffraction X d'une<br />

beidellite-Na hydratee a deux couches d'eau. Determination du mode d'empilement des feuillets et<br />

des sites occupes par I' eau. J. appl. Crystallogr. 17, 179-188.<br />

BEN BRAHIM J., DRITS V.A., TcHOUBAR C., 1986. Determination, par <strong>di</strong>ffraction X, des caracteristiques<br />

structurales fines d'une beidellite-Na a l'etat d'hydrate homogene a une couche d'eau (d 001 = 12.4<br />

A). To be published in Clay Minerals. .<br />

BESSON G., 1980. Structur~ des smectites <strong>di</strong>octa.edriques. Parametres con<strong>di</strong>tionnant les fautes d'empilement<br />

des feuillets. Ph. D. Thesis, University of Orleans, France.<br />

BEssoN G., GLAESER R., TcHouBAR C., 1983. Le cesium, reve[ateur de structure de smectites. Clay<br />

Minerals 18, 11-19.<br />

BRINDLEY G.W., BROWN G., 1980. Crystal Structures of Clay Minerals <strong>and</strong> their X-ray Identification<br />

(G.W. Brindley <strong>and</strong> G. Brown, e<strong>di</strong>tors), Mineralogical Society, Monogr: no. 5, London.<br />

BRINDLEY G.W., ME.RING J., 1951: Diffraction des rayons X par les st;ructures en couches desordonnees.<br />

Acta crystal!ogr. 4, 441-447. ·<br />

BRINDLEY G.W, RoBINSON, K, 1946. R<strong>and</strong>omness in the structures ofkaolinitic clay minerals. Trans.<br />

Faraday Soc. 42B, 198-205. ·<br />

DE COURVILLE J., TCHOUBAR D., TCHOUBAR C., 1979. Determination experimentale de la fonction d'orientation;<br />

son application dans le calcul des b<strong>and</strong>es. J. appl. Crystallogr. 12, 332-338.<br />

DRITS V.A., PLAN90N A, SAKHAROV B.A., BESSON G., TSIPURSKY S.l., TcHOUBAR C., 1984. Diffraction<br />

effects calculated for structural models of K-saturated montmorillonite containing <strong>di</strong>fferen,t types<br />

of defects. Clay Minerals 19, 541-561.


54 C. Tchoubar<br />

DRITS V.A., SAKHAROV B.A., 1976. X-ray Structure Analysis of Interstratified Minerals. (In Russian).<br />

Nauka, Monogr. 295, Moscow. . ·<br />

GurNIER A., 1964. Theorie et Technique de la Ra<strong>di</strong>ocristallographie.,Dunod;-Paris,--<br />

HENDRICKS S.B., TELLER E., 1942. X-ray interference in partially ordered layer lattices. J. chem. Phys.<br />

10, 147-167.<br />

KAKINOKI J ., KoMURA Y., 1952. Intensity ofX-ray <strong>di</strong>ffraction by one <strong>di</strong>mensionally <strong>di</strong>sordered crystal. I.<br />

General derivation in cases of the «Reichweite» S = 0 <strong>and</strong> I. J. phys. Soc. Japan 7, 30-35.<br />

MAcEwAN D.M.C., Rurz AMIL A., BROWN G., 1961. Interstratified Clay Minerals, in: The X-ray Identification<br />

<strong>and</strong> Crystal Structures of Clay Minerals (G. Brown, e<strong>di</strong>tor), Mineralogical Society,<br />

London.<br />

MAMY J ., GAULTIER J .P ., 1976. Les phenomenes de <strong>di</strong>ffraction des rayonnements X et electroniques par<br />

les reseaux atomiques. Application a /'etude de l'ordre cristallin dans les mineraux argileux. II.<br />

Evolution structurale de la montmorillonite associee au phenomene de fixation irreversible du<br />

potassium. Ann. Agron. 27-1, 1-16.<br />

MERING J ., 1949. Interferences des rayons X dans le systemes a stratification desordonnee. Acta crystallogr.<br />

2, 371-377.<br />

PLANt;:ON A., 1980. The calculation of intensifies <strong>di</strong>ffracted by a partially oriented powder with a layer<br />

structure. J. appl. Crystallogr. 13, 524-528.<br />

PLANt;:ON A., 1981. Diffraction by layer structures containing <strong>di</strong>fferent kinds of layers <strong>and</strong> stacking<br />

faults. J. appl. Crystallogr. 14, 300-304.<br />

PLANt;:ON A., DRITS V.A., SAKHAROV B.A., GILAN Z.I., BEN BRAHIM J ., 1983. Powder <strong>di</strong>ffraction by layered<br />

minerals containing <strong>di</strong>fferent layers <strong>and</strong>/or stacking defects. Comparison between markovian <strong>and</strong><br />

non-markovian models. J. appl. Crystallogr. 16, 62-69.<br />

PLANt;:ON A., TcHOUBAR C., 1976. Etude des fautes d'empilement dans les kaolinites partiellement desordonnees.<br />

II. Modele d'empilement comportant des fautes par rotation. J. appl. Crystallogr. 9,<br />

279-285.<br />

Pl::A,I'It;:O_NA., TcHOUBAR C., _1977. Determination of structural defects in phyllosilicates by X-ray <strong>di</strong>ffraction.<br />

I. Principle of calculation of the <strong>di</strong>ffraction phenomena. Clays Clay Miner. 25, 430-435.<br />

REYNOLDS R.C., 1980. Interstratified Clay Minerals, in: Crystal Structures of Clay Minerals <strong>and</strong> their<br />

X-ray Identification (G.W. Brindley <strong>and</strong> G. Brown, e<strong>di</strong>tors), Mineralogical Society, Monogr.<br />

no. 5, London. · .<br />

SAKHAROV B.A., NAUMOV A.S., DRITS V.A., 1982a. X-ray <strong>di</strong>ffraction by mixed layer structures with<br />

r<strong>and</strong>om <strong>di</strong>stribution of stacking faults. (In Russian). Dokl. Akad. Nauk SSSR 265, 339-343.<br />

SAKHAROV B.A., NAUMOV A.S., DRITS V.A., 1982b. X-ray intensities scattered by layer structure with<br />

short range ordering parameters S > I <strong>and</strong> G > I. (In Russian). Dokl. Akad. Nauk SSSR 265,<br />

871-874.<br />

TAYLOR R.M., NoRRISH K., 1966. The measurement of orientation <strong>di</strong>stribution <strong>and</strong> its applications to<br />

quantitative X-ray <strong>di</strong>ffraction analysis. Clay Minerals 6, 127-141.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 55-70 (1985)<br />

Crystalline Defects in Layer Silicates<br />

MANUEL RODRIGUEZ GALLEGO<br />

Departamento de Cristalografia y Mineralogia, Facultad de Ciencias, Universidad de Granada, 18002 Granada,<br />

Espafia<br />

ABSTRACT- Sheet silicates contain a wide variety of deviations from perfect<br />

crystalline perio<strong>di</strong>city. Such structural imperfections can be classified into<br />

the following groups:<br />

1) Point defects;<br />

2) Line defects (i.e. <strong>di</strong>slocations);<br />

3) Plane defects (i.e. stacking faults, etc.);<br />

.4) Volume defects (intergrowths,Jamellar exsolutions, grain boundary, etc.).<br />

'Since the early days much attention has been paid to plane defects (polytypism)<br />

<strong>and</strong> volume defects (mixed-layers, intergrowths), due to the well known ,<br />

fact that such kinds ofimperfections are easily treated, by X-ray <strong>di</strong>ffraction<br />

analysis, or more recently, by high resolution transmission electron microscopy.<br />

Thanks to the latter technique, beautiful examples of detailed photographs<br />

of these defects can be obtained. ·<br />

Unfortunately, point defects suchs as: ordering, vacant sites, interstitial<br />

atoms, <strong>and</strong> electron-holes, are less treatable by conventional X-ray <strong>di</strong>ffraction<br />

stu<strong>di</strong>es. For the most part, single-crystal techniques (the only reliable<br />

method) can not be used, due to the frequent small crystal size of most of the'<br />

layer silicates .(clays).<br />

Other methods used for quantitative or semiquantitative work such as: X­<br />

rays <strong>and</strong> neutrons'in powder profile-refinement, nuclear magnetic resonance<br />

spectroscopy <strong>and</strong> ultJmately induced thermoluminescence, show potential<br />

for qualitative <strong>and</strong> quantitative research work.<br />

In fact, the technique of induced thermoluminiscence yields information<br />

easily quantifiable, through de-excitation spectra (analysis of the glow curve<br />

intensity) <strong>and</strong> electron trap activation energy, which can be related to both,<br />

number of defects present <strong>and</strong> chemical composition of the clay mineral, as a<br />

whole. Different examples of .the mentioned facts are shown.<br />

Since extrinsic factors, such as impurities in the crystal <strong>and</strong> oxidation state<br />

(when multivalence elements such as iron, titanitJ.m, etc., are present) can<br />

affect the defective character of a mineral, it follows that the study of defects<br />

can yield valuable information about the geological behaviour of the clay<br />

minerals. Keeping in mind that the kind <strong>and</strong> number of crystalline imperfections<br />

present in a certain structure is the result of its «geological history>>, it<br />

can be concluded that the «correct rea<strong>di</strong>ng» of such a


56 M. Rodriguez Gallego<br />

rent degrees of ordering, altogether,<br />

are familiar facts to the clay mineralogist<br />

that early became familiar<br />

with their defective character.<br />

However, not allthe <strong>di</strong>fferent types of<br />

crystalline ·imperfections have been<br />

object of the same attention by the<br />

clay mineralogists. As a matter of fact<br />

much attention has been paid to certain<br />

kinds of defects (i.e. polytypism<br />

intergrowths, etc.); on the other<br />

h<strong>and</strong>, until recently, the most popular<br />

techniques used in clay research,<br />

such as X-ray <strong>di</strong>ffraction, <strong>and</strong> electron<br />

microscopy, often are not the<br />

best ones to study some of them (i.e.<br />

point defects).<br />

Two well known facts related to<br />

-----~-------------- --- ffi.e- most 'frequent-- crystallirle imperfections<br />

in clay phyllosilicates are<br />

easily detected in a powder <strong>di</strong>ffracto- .<br />

gram:<br />

1.- The presence or absence(l) of a<br />

rational sequence of higher orders of<br />

reflection <strong>and</strong><br />

2. - The broadening of the reflections,<br />

which in accordance to the well<br />

known Scherrer's law, is related to<br />

the crystal size or better, to the «crystallinity»<br />

of the material (2). This<br />

measure of crystallinity has ·been<br />

related to the chemical composition<br />

(RODRIGUEZ GALLEGO et al., 1964;<br />

1969) <strong>and</strong> with genetical characteristics<br />

such as <strong>di</strong>agenesis (ESQUEVIN,<br />

1969).<br />

Certainly, such <strong>di</strong>verse facts are included<br />

in the relationship in such a<br />

way that to obtain a useful analysis of.<br />

the phenomepon, ~- systematic<br />

approach to the <strong>di</strong>fferent kinds of<br />

crystalline defects present in clays,<br />

has to be done.<br />

Exclu<strong>di</strong>ng quantum defects, re~<br />

lated to lattice vibrations (phonons,<br />

excitons, etc.), crystalline imperfec"<br />

tions can be classified into the following<br />

groups:<br />

. 1. Point defects;<br />

2. Line defects or <strong>di</strong>slocations;<br />

3. Plane defects (polytypism, etc.);<br />

4. Volume defects (intergrowth, exsolutions,<br />

etc.).<br />

Point defects<br />

Since silicates are mainly of ioniccharacter;<br />

the so-called intrinsic defects<br />

i.e., vancancies <strong>and</strong> <strong>di</strong>fferent<br />

charge imperfections, are of outstan<strong>di</strong>ng<br />

importance. Their only<br />

limitation is that the global electrical<br />

neutrality of the lattice be preserved.<br />

Such defects play a fundamental role<br />

in intrareticular <strong>di</strong>ffusion, which<br />

affects deeply mineralogenetical processes.<br />

Certainly, the <strong>di</strong>ffusion coefficient<br />

is influenced considerably by<br />

the kinds <strong>and</strong> energy of the point defects,<br />

as far as an atom can move<br />

from a certain lattice position to a<br />

near by vacant site, provided that<br />

enough energy (thermal) is available,<br />

to surpass the potential barrier I<br />

(activation energy).<br />

(1) As REYNOLDS & ROWER (1970) have shown it can be due to the existence of very thin<br />

crystallites. .<br />

(2) Also, stress, microtwinning, <strong>di</strong>shomogeneities, ben<strong>di</strong>ng, etc. can induce the same effect of<br />

broadening.


Crystalline Defects in Layer Silicates 57<br />

In general the <strong>di</strong>ffusion coefficient<br />

can be expressed by an equation such<br />

as:<br />

Equation (1) can be rewritten:<br />

0 = !lo - RT ln (yX) then:<br />

Do = D;v Xv exp ( - :T ) wher~: ln (yX) =<br />

!lo<br />

RT<br />

<strong>and</strong>:<br />

d = <strong>di</strong>stance of <strong>di</strong>splacement of the<br />

atom;<br />

Xv = fraction of vacant sities in the<br />

lattice;<br />

!l = potential barrier;<br />

v = vibrational frequency (in general,<br />

a fraction of the Debye crystal vibrational<br />

frequency). ·<br />

Certainly, the exponential term<br />

<strong>and</strong> Xv are dependent on temperature<br />

as will be shown. A thermodynamic<br />

approach to the problem, provided<br />

that certain premises can be<br />

accepted, is the following: "<br />

1.- A vacancy can be formulated<br />

as a chemical equilibrium such as:<br />

0 = Va• + Yx·<br />

2.- A vacant structure can be expressed<br />

as an ideal solid solution:<br />

ideal structure-vacancies.<br />

3.-A vacancy is a lattice site with<br />

chemical potential null: !l = 0.<br />

The classical expression of the<br />

chemical potential is:<br />

for:<br />

!l = !lo- RT ln (y X) (1)<br />

y X = fraction of vacant sites <strong>and</strong> !lo<br />

the free energy of defect formation:<br />

yX = exp<br />

<strong>and</strong> sub~tituting<br />

in (2),<br />

yX = exp ( - :~x), <strong>and</strong> if<br />

is the concentration of defects c,<br />

<strong>and</strong> finally:<br />

c = exp.<br />

AHx -. ARSTx )<br />

( RT<br />

The calculated values for AHx in<br />

oxides are 30-50 kcal!mol (i.e. 1 to 2<br />

CV).<br />

The double dependence of the<br />

<strong>di</strong>ffusion coefficient Do, on the<br />

temperature is shown by the above<br />

expression.<br />

On the other h<strong>and</strong> the "energy of<br />

migration measured in oxides is a­<br />

bout 50-80 kcal/mol for cations.<br />

The following empirical relationship<br />

can . be used to calculate<br />

<strong>di</strong>ffusion<br />

QD<br />

D = Do exp - --· where<br />

RT<br />

y<br />

X<br />

(2) . QD = activation energy, <strong>di</strong>rectly re-


58 M. Rodrfguez ·Gallego<br />

lated to the vacancy enthalpy AHx<br />

(LASAGA, 1980).<br />

Electron-ho?e<br />

These kinds of defects have been<br />

extensively stu<strong>di</strong>ed in halides <strong>and</strong><br />

oxides, but until recently they have<br />

not attracted the attention of clay<br />

researchers.<br />

Defects of such nature have been<br />

stu<strong>di</strong>ed by MARFUNIN (1979) in<br />

quartz. If Si atoms are replaced by<br />

multi-valence elements (Ti, Fe) orAl,<br />

electrons can be identified with TP+<br />

ions (Ti 4 ++e-) <strong>and</strong> «holes» by AP+ or<br />

.. __ ~ -~-~ __ Ee 3 +. In order: to stabilize an «electron>><br />

(Ti 4 ++e-), a «compensator ion>> is required,<br />

usually H+, Li+, Na+ K+; in<br />

their absence the defect be> is stabilized by an oxygen<br />

ion comparted by two silicon ions:<br />

oz- ____,. o- + e-: o-Al orAl 0 4 -4. So<br />

the quartz irra<strong>di</strong>ation induces<br />

«holes» Al 0 4 + 4 <strong>and</strong> a «compensator>><br />

ion (H+, Li+, Na+) changes to zero<br />

charge.<br />

In the case of Fe 3 + the


is the half-width of the thermoluminescence<br />

curve at its half-height,<br />

<strong>and</strong> T is the peak temperature of the<br />

de-excitation curve.<br />

LEEMONS & McATEE (1983) have<br />

stu<strong>di</strong>ed activated smectites with<br />

<strong>di</strong>fferent degrees of octahedral <strong>and</strong><br />

tetrahedral substitutions, <strong>and</strong> also<br />

with <strong>di</strong>fferent exchange cations. In<br />

Na samples an excellent correlation<br />

between glow intensity <strong>and</strong><br />

octahedral charge deficit, has been<br />

found. The same authors detected an<br />

increase in the number of «holes» in<br />

Li <strong>and</strong> K samples. In the latter, the<br />

number of «holes» is proportional to<br />

the tetrahedral charge deficit. This<br />

increment is proportional to the total<br />

charge deficit for the Li samples.<br />

These results are not valid for nontronite<br />

whose high Fe content quenches<br />

the thermoluminescence signal. '<br />

In this way we have begun research<br />

on thermoluminescence induced<br />

by ~-ra<strong>di</strong>ation: on biotite, vermiculite,<br />

chromium mica (mariposite)<br />

<strong>and</strong> regular mixed layer illitebeidellite<br />

(RODRIGUEZ GALLEGO ·<br />

& ALIAS, 1965). The results are in<br />

general in agreement with LEEMONS<br />

& McATEE's (1983) mentioned<br />

above.<br />

Other methods<br />

With respect to the mentioned,<br />

mariposite (MARTIN RAMOS &<br />

RODRIGUEZ GALLEGO, 1982) after<br />

a structure refinement, we detected<br />

ordering in the octahedral vacancies,<br />

such that the symmetry of the lattice<br />

Crystalline Defects in LaYer-Silicates 59<br />

was inconsistent with the c character,<br />

in accordance with the presence<br />

of extragroup reflections h + k =<br />

2n-1. On the contrary, no conclusion<br />

was reached related to possible<br />

ordering in the Si,Al tetrahedral replacement.<br />

In this respect, NMR (Nuclear<br />

Magnetic Resonance) has been much<br />

more resolutive, thanks to the results<br />

obtained by FYFE et al. (1983) <strong>and</strong><br />

more recently by SANZ & SERRA­<br />

TOSA (1.984). Only the perturbing<br />

effect induced by the Fe content, so<br />

frequent in clay minerals, casts a shadow<br />

on the possibilities of this technique.<br />

On the other h<strong>and</strong> NMR yields<br />

excellent results in stu<strong>di</strong>es of the Al<br />

<strong>di</strong>stribution, between the tetrahedral<br />

<strong>and</strong> octahedral layers of clay phyllo-,<br />

silicates with low Fe contents as<br />

shown recently by THOMPSON<br />

(1984).<br />

Line. defects<br />

Dislocations<br />

In opposition to the previously<br />

mentioned imperfections, line, plane,<br />

<strong>and</strong> volume defects are irreversible<br />

<strong>and</strong> <strong>di</strong>fficult to quantify.<br />

There are two main types:<br />

a) Edge <strong>di</strong>slocations <strong>and</strong><br />

b) Screw <strong>di</strong>slocations.<br />

The former occurs by the slip of a<br />

reticular plane with respect to the<br />

· next, for a few atomic positions. The<br />

perturbation takes place along a row<br />

of atoms. As a consequence the lattice<br />

rests un<strong>di</strong>storted or unstrained,


60 M. Rodriguez Gallego<br />

y<br />

Fig. 1 - HRTEM photography of a <strong>di</strong>slocation<br />

in goethite. The arrow in<strong>di</strong>cates terminating<br />

lattice fringe (from SMITH & EGGLETON,<br />

1983).<br />

Without them, they would not have<br />

place.at the crystaLsurface.<br />

Related to the screw <strong>di</strong>slocations,<br />

they define a limit between a slipped<br />

plane <strong>and</strong> the normal one (un<strong>di</strong>storted)<br />

but in this case, the frontier<br />

among them is parallel to the creep<br />

<strong>di</strong>rection.<br />

The <strong>di</strong>slocations play an outstan<strong>di</strong>ng<br />

role in the acceleration of the following<br />

genetic processes:<br />

a) Diffusion;<br />

b) Heterogenous nucleation <strong>and</strong> exsolution<br />

phenomena;<br />

c) Crystal growth.<br />

Closely related to the screw <strong>di</strong>slocation<br />

are the Moiree figures, or<br />

peculiar images in transmission electron<br />

microscopy, in excee<strong>di</strong>ngly thin<br />

particles of layer silicates.<br />

If the crystalline layers are<br />

homogenously settled (Fig. 2a) the<br />

except in the surroun<strong>di</strong>ngs of the <strong>di</strong>slocation<br />

(Fig. 1).<br />

This <strong>di</strong>slocation needs a small<br />

strain to be <strong>di</strong>splaced, with the obvious<br />

bon<strong>di</strong>ng breakage <strong>and</strong> rebon<strong>di</strong>ng.<br />

Since the elasticity of the crystal<br />

changes (by a factor of hundred!) the<br />

role of such <strong>di</strong>slocations on the plas- .<br />

ticity of the minerals is outstan<strong>di</strong>ng.<br />

On the other h<strong>and</strong>, the possibility<br />

of their <strong>di</strong>splacement, adds a new<br />

capacity for mo<strong>di</strong>fication in the concentration<br />

of point defects. Therefore,<br />

they are a most important factor in<br />

the maintenance of the thermal<br />

equilibrium of such imperfections.<br />

Fig. 2 - Model of: a) Crystalline layer homogeneously<br />

settled. b) Crystalline layer homogeneously<br />

perturbated by a screw <strong>di</strong>slocation<br />

(from BOLLMANN, 1976).


phenomenon does not occur but if<br />

screw <strong>di</strong>slocations are present (Fig.<br />

2b) in the transmission electron<br />

micrograph, alternate clearer <strong>and</strong><br />

darker areas are observed, as can be<br />

seen in (Fig. 3) in a regular mixedlayer<br />

illite-beidellite stu<strong>di</strong>ed by ·us<br />

(RODRIGUEZ GALLEGO, 1968),<br />

with a layer thickness of about 100 A.<br />

Plane defects<br />

In this part defects related to<br />

order-<strong>di</strong>sorder in the stacking of<br />

layers of identical nature will be examined.<br />

Such defects are of two<br />

kinds:<br />

a) Translation <strong>and</strong> rotation defects;<br />

b) Interstratification.<br />

••<br />

Fig. 3- Transmission electron microscope photography<br />

of a regular illite-beidellite mixedlayer<br />

(x 40.000) (from RODRIGUEZ GALLEGO,<br />

1968). -<br />

Crystalline Defects in LayerSil{cates 61<br />

The first phenomenon causes that<br />

no perio<strong>di</strong>city occurs in the lattice, in<br />

the ao <strong>and</strong> bo <strong>di</strong>rections. A multilattice<br />

in the C 0 <strong>di</strong>rection has to be<br />

considered. As a consequence, the<br />

(001) reflections are not affected but<br />

the (hkO) <strong>and</strong> (hkl) reflections resolve<br />

in asymmetrical b<strong>and</strong>s or vanish.<br />

Such facts induce subtle <strong>di</strong>fferences.in<br />

the lattice free energy. Then,<br />

the affected minerals can grow in<br />

<strong>di</strong>fferent geological environments. So<br />

the 3T polytype muscovite seems to<br />

be igneous only, although we (MAR­<br />

TIN RAMOS & RODRIGUEZ GAL­<br />

LEGO, 1980) have found this poly- ·<br />

type in gneiss. But the most frequent<br />

polytypes in white metamorphic<br />

_ micas are the ZM1 <strong>and</strong> 1M.<br />

In several cases, we (MARTIN<br />

RAMOS & RODRIGUEZ GALLEGO,<br />

1980) ·have found microcrystals of<br />

metamorphic mica with the lM<br />

<strong>and</strong> ZM1 polytypes coexisting.<br />

TCHOUBAR (1980) has shown<br />

beautiful pictures (Fig. 4) from High<br />

Resolution Transmission Electron<br />

Microscopy (HRTEM) of margarite,<br />

with both polytypes coexisting in<br />

contiguous crystalline dominions of<br />

the same crystallite.<br />

The second case to be examined results<br />

from the stacking of layers with:<br />

<strong>di</strong>fferent chemical compositions.<br />

Such an occurrence is a very common<br />

one in clay phyllosilicates (but not<br />

~xclusive to them). They are the<br />

mixed layer or interstratified minerals.<br />

Since early days two broad.<br />

groups have been established:<br />

1) Regular mixed-layer minerals <strong>and</strong><br />

2) R<strong>and</strong>om mixed-layer minerals.


62 M. Rodriguez Gallego<br />

Fig. 4- HRTEM photography of margarite. Polytypes !M <strong>and</strong> IM1 coexisting (from TCHOUBAR,<br />

1980).<br />

Regular mixed-layers<br />

These kinds of materials have a definite<br />

perio<strong>di</strong>city, <strong>and</strong> they are built<br />

by layers, which alternate quite regularly,<br />

with a lattice sum of both<br />

«elemental» lattices. So, the mineral<br />

chlorite can be defined as a regular<br />

interstratification of talc layers <strong>and</strong><br />

brucite layers. BUSECK & VEBLEN<br />

(1981) have obtained beautiful pictures<br />

of clinochlore by High Resolution<br />

Electron Microscopy, where it is<br />

possible to detect the talc layer <strong>and</strong><br />

the brucite layer (Fig. 5).<br />

In the majority of the described<br />

materials, such elemental layers<br />

show evident chemical <strong>and</strong> structural<br />

similarities. Then, it can be<br />

assumed that these slight <strong>di</strong>fferences<br />

evolve from defects which have clustered<br />

in alternate layers. Some facts<br />

support this hypothesis. We have described<br />

a regular mixed-layer (RO-<br />

Fig. 5- HRTEM photography of clinochlore. Alternate<br />

ofbrucite-like (B) <strong>and</strong> talc-like (T) layers<br />

are visible (from BUSECK & VEBLEN, 1981).


DRIGUEZ GALtEGO &<br />

Crystalline pefects in Layer sifi~~tes 63<br />

GARCIA<br />

CERVIGON, 1974) exceptionally well<br />

crystallized (Fig. 6), built by alternate<br />

layers of swelling chlorite <strong>and</strong> a<br />

vermiculite like mineral with a (001)<br />

basal spacing at 28 A, exp<strong>and</strong>able<br />

with ethylene glycol to 31 A, <strong>and</strong> after<br />

heating to 500 oc collapsing to 22 A.<br />

When a Li+ saturated sample was<br />

heated to 200 °C, the (001) reflection<br />

vanished <strong>and</strong> only a (002) reflection<br />

at 13.3 A was observed (Table 1). It<br />

can be assumed that the swelling<br />

chlorite octahedral layers have<br />

vacant positions, <strong>and</strong> Li+ migrates<br />

into them. Such layers obtain analogous<br />

electronic density with respect<br />

to the vermiculite layers. Then, the<br />

(001) reflection <strong>di</strong>sappears, only un-.<br />

mixed reflections i.e. (002) persist.<br />

The circumstance that IIfOSt of<br />

such minerals have Fe 2 +, m~kes<br />

possible the creation of vacancy defects,<br />

through the oxidation of Fe 2 +,<br />

<strong>and</strong> the subsi<strong>di</strong>ary expulsion of other<br />

ions (Mg, Fe 2 +) as a function of the<br />

oxi<strong>di</strong>zing con<strong>di</strong>tions. Such hypoth- .<br />

eses have been verified (NIETO &<br />

RODRIGUEZ GALLEGO, 1981) by<br />

studying the oxidative attacks of iron<br />

D.A.+SD~<br />

D.A.+550 2 C<br />

D.A.+EG<br />

O.A.<br />

N<br />

"'<br />

N<br />

45 40 35 30 25 20 15 10 5 2<br />

Degrees 29 CuKa<br />

Fig. 6 - X-ray <strong>di</strong>ffractograms of oriented<br />

aggregates of a regular mixed-layer swelling<br />

chlorite-vermiculite natural <strong>and</strong> after <strong>di</strong>fferent<br />

treatments (from RODRIGUEZ GALLEGO &<br />

GARCIA CERVIGON, 1974). EG: ethylene<br />

glycol.<br />

rich chlorites with <strong>di</strong>fferent oxidants<br />

(Hz0 2 , bromide). We could check the<br />

expulsion from the lattice of Fe <strong>and</strong>/<br />

or Mg, depen<strong>di</strong>ng on whether the<br />

reactive solution was removed or not.<br />

. TABLE 1<br />

Spa~ings values (A) for the (001) reflection in < 2 J.trn fraction<br />

Sample<br />

OA<br />

OA+EG<br />

200°C+EG<br />

28.84<br />

28.75<br />

27.20<br />

28.11<br />

31.30<br />

30.76<br />

13.3 31.3<br />

22.6<br />

OA, oriented aggregate; OA + EG, oriented aggregate treated with ethylene glycol; 200°C,<br />

oriented aggregate heated at 200°C for one hour; 200°C+ EG, oriented aggregate treated with<br />

ethylene glycol after heating at 200°C for one hour; 500°C, oriented aggregate heated at 500°C<br />

for one hour. In the case of 0~+ EG the spacings values have been obtained by counting in a<br />

scanning speed zero


v'<br />

64 M. Rodriguez Gallego "<br />

As a result of these attacks mixedlayer<br />

structures developed.<br />

R<strong>and</strong>om mixed-layers<br />

It is evident that these are highly<br />

defective structures, whose growth<br />

probably is controlled by:<br />

1. Chemical composition;<br />

2. Original structure (polytype);<br />

3. Chemical environment.<br />

Due to the aleatory character of<br />

the defects <strong>and</strong> causes mentioned,<br />

their variety can be practically infinite,<br />

making their classification nearly<br />

impossible.<br />

Volume defects<br />

Up to now, we have considered imperfections<br />

related to elementary<br />

structural units. The defects to be<br />

considered in this section, deal with<br />

several structural units from the<br />

same material, or substance with<br />

<strong>di</strong>fferent chemical composition.<br />

In the first case, we will review<br />

grain boundaries <strong>and</strong> )n the second<br />

one intergrowths,: lamellar precipitates,<br />

<strong>and</strong> finally exsolutions.<br />

The most frequent of the tri<strong>di</strong>mensional<br />

defects are grain boundaries<br />

in polycrystalline materials.<br />

They can be oriented or r<strong>and</strong>om. If<br />

any symmetrical relationship (axial<br />

or specular) between them exists, in<br />

fact, a twin may be considered.<br />

If the grain orientation is at ran~<br />

dorn, the angles between grains, are<br />

of outstan<strong>di</strong>ng importance. Their·<br />

particular reactivity can make them<br />

responsible for recrystallization <strong>and</strong><br />

sintering. In fact, they induce a characteristic<br />

mobility of grain boundaries.<br />

Such mobility seems con<strong>di</strong>tioned<br />

by grain orientation, in such<br />

a way that when the angle between<br />

the boundaries is small, the mobility<br />

of the grain boundary i~ greater when<br />

the degree of <strong>di</strong>sorientation is lower.<br />

Fig. 7- HRTEM photographies showing a low-angle grain boundaries in chlorite: a) a boundary<br />

parallel to the crystal; b) low magnification view of an irregular boundary, 1, 2 <strong>and</strong> 3 crystals<br />

with <strong>di</strong>fferent orientation; c) a boundary nearly normal to the chlorite layer (from VEBLEN,<br />

1983).


-.-<br />

.<br />

..<br />

..<br />

Crystalline Defects in Layer Silicates 65<br />

boundaries with small angles between<br />

grains of <strong>di</strong>fferent nature, i.e.<br />

chlorite-wonesite (Fig. 8). This latter<br />

fact is <strong>di</strong>scussed further in the next<br />

section.<br />

I ntergrowths<br />

Fig. 8 - HRTEM photographies showing a lowangle<br />

boundary between wonesite <strong>and</strong> chlorite<br />

(from VEBLEN, 1983).<br />

Recently, High Resolution Electron<br />

Microscopy photographs (Fig. 7)<br />

have shown that grain boundaries<br />

are relatively frequent, at least in<br />

chlorites (VEBLEN, 1983). The most<br />

common being parallel to (001), but<br />

not in micas where this angle is about<br />

8°. Also, VEBLEN has observed grain<br />

Intergrowths take place among<br />

materials with similar chemical<br />

characteristics <strong>and</strong> no necessary<br />

lamellar habit. MARTIN VIVALDI &<br />

LINARES GONZALEZ (1962) have<br />

described a r<strong>and</strong>om intergrowth of<br />

sepiolite <strong>and</strong> attapulgite.<br />

Recently BUSECK & VEBLEN<br />

(1981) described a talc-chloritelizar<strong>di</strong>te<br />

intergrowth (Fig. 9).<br />

More striking are the intergrowths ··<br />

among minerals with limited<br />

structural similarities. The above<br />

Tc<br />

Chi<br />

s<br />

~<br />

~-<br />

~~-............... ~~ _....,.y.,<br />

~ -~-~<br />

¥-·~,.........---...~-~~ ..,, ..--~ ___.......,....... _____ ~~- ~- """'-" _<br />

,..,__..- --<br />

-~ ...<br />

----.... _<br />

.......,___ ~-- _, __<br />

~-"--~-- ... ""- .. _.....,._ ,.,._~<br />

""'~~...--~-..--,.--,.--~-<br />

. -- __..._ --· - ~ - ~ -.--<br />

,._,,.,__....,.. -....,... -- . " .. - .<br />

--<br />

- ~<br />

~" ·- . -·--- - .'- - .. ... - --<br />

.<br />

-_.,.~ .-~<br />

__ .. __ ~<br />

~~ ---­<br />

~~- ............_<br />

- -=..~~ ..-.-.::..:=·:- V--::-:.:. : -' ..... - ~~ ~- :~ . <<br />

-I'~ ,....--~--- ~ ,.,. + --- - _......,._._ -- --<br />

. ~ ~<br />

Fig. 9- HRTEM photography of a talc-chlorite-lizar<strong>di</strong>te (serpentine) intergrowth (from BUSECK &<br />

VEBLEN, 1981).


66<br />

M. Rodriguez Gallego<br />

mentioned authors, also described an<br />

amphibole-talc intergrowth (Fig. 10).<br />

However, it seems probable that such<br />

an occurrence can be ascribed to<br />

topotactic transformations. We have<br />

found a <strong>di</strong>opside-saponite transformation<br />

(unpublished) of this kind.<br />

ILHIMA & ZHU (1982) have stu<strong>di</strong>ed<br />

the transformation muscovite-biotite<br />

(Fig. 11) <strong>and</strong> incidentally, shown an<br />

incipient chloritization of the latter.<br />

Lamellar precipitates <strong>and</strong> exsolutions<br />

Fig. 10 - HRTEM photography of an amphibole-talc<br />

intergrowth (from BUSECK &<br />

VEBLEN, 1981).<br />

Such phenomena were postulated<br />

many years ago: CAILLERE &<br />

HENIN (1949) postulated interlamellar<br />

precipitates of Fe <strong>and</strong> Mg hydroxides<br />

in the chloritization process of<br />

smectites. MARTIN VIVALDI & MAC<br />

EWAN (1957) proposed analogous<br />

processes, in order to explain the<br />

Fig. 11 - HRTEM photography of a muscovite-biotite transformation. Inside a circle an incipient<br />

chlorization of biotite is shown (from ILHIMA & ZHU, 1982).


Crystalline Defects in Layer Silicates 67<br />

Fig. 12- HRTEM photographies of examples of microprecipitates lying in planes where biotite has<br />

been altered to chlorite (from VEBLEN & FERRY, 1983).<br />

-thermal <strong>and</strong> solvation behaviour of<br />

swelling chlorites. Recently VEBLEN<br />

& FERRY (1983) have described such<br />

occurrences through HR TEM in the<br />

alteration of biotite to chlorite (Fig.<br />

12). BANOS et al. (1983) with the<br />

same technique detected intercalations<br />

of brucite layers between mica<br />

layers (Fig. 13).<br />

Exsolutions<br />

Recently VEBLEN (1983) has<br />

shown interesting pictures, by bright<br />

field electron microscopy, of what<br />

seems to be a talc-so<strong>di</strong>um-biotite<br />

(wonesite) intergrowth (Fig. 14). It<br />

may be pointed out that the intergrowth<br />

does not take place along the<br />

C 0 , but oblique to it, nearly along the<br />

{269} or {135} planes. The fact that<br />

such peculiarities were not related to<br />

pores, fissures, etc. eliminates their<br />

possible origin from weathering <strong>and</strong><br />

supports exsolution.<br />

The existence of syngenetic talcmica<br />

is a well known fact which supports<br />

the hypothesis of an exsolution<br />

mechanism, keeping in mind that an<br />

immiscibility gap between talc <strong>and</strong><br />

so<strong>di</strong>um-biotite must exist. The peculiar<br />

orientation observed must be due<br />

to one of two possible causes:<br />

1) Unmatching among the lattice<br />

<strong>di</strong>mensions between talc <strong>and</strong> mica;<br />

Fig. 13- HRTEM photography of the interlayering of a brucite-like sheet between mica layers (from<br />

BANOS et al., 1983).


68 M. Rodriguez Gallego<br />

Fig. 14 - Low-resolution, bright-field electron micrograph of lamellar microstructure in wonesite<br />

(Talc: T) <strong>and</strong> So<strong>di</strong>um Biotite (Na-Bi). Schematic <strong>di</strong>agram to show that lamellae are not parallel<br />

to the structural layers. Solid circles represent interlayered alkali sites (from VEBLEN,<br />

1983).<br />

2) Kinetics of the process, where<br />

migration parallel to the so<strong>di</strong>um<br />

<strong>and</strong> potassium interlayers is much<br />

easier than in the <strong>di</strong>rection perpen-<br />

Fig. 15- HRTEM photography showing a damage<br />

by electron beam irra<strong>di</strong>ation in 1M biotite<br />

(from BANOS et al., 1983).<br />

<strong>di</strong>cular to the layers.<br />

Some of the above mentioned facts<br />

are questionable. How many of these<br />

phenomena are mere experimental<br />

artifacts? Certainly the irra<strong>di</strong>ation by<br />

ions (in preparing thin sections of the<br />

sample previous to examination) <strong>and</strong><br />

electrons (during observation) can induce<br />

serious damage in the morphology<br />

of the minerals stu<strong>di</strong>ed (Fig. 15).<br />

However, more positive conclusions<br />

can be reached:<br />

1) A critical review of the isomorphic<br />

substitutions should be carried<br />

out, since many of the mentioned<br />

phenomena i.e. heterogeneities, impurities,<br />

lamellar precipitates, etc.,<br />

cast a shadow on the accepted chemical<br />

composition of clay minerals;<br />

2) In relation to the above mentioned<br />

facts, the importance of X-ray<br />

<strong>di</strong>ffraction, <strong>and</strong> its ability to reach


Crystalline Defects in Layer- Silicates 69<br />

the true chemical composition of the<br />

minerals could be enhanced. Up to<br />

now, it is the only available technique<br />

that avoids many of the problems<br />

mentioned;<br />

3) «The last but not the least».<br />

The possible correlation: mineral<br />

imperfections-geological behaviour<br />

of clays. Everyday new facts improve<br />

our knowledge on the crystalline imperfections<br />

as a result of geological<br />

processes. During its complex history<br />

the clay was not a mute <strong>and</strong> passive<br />

witness. It only remains for us to decipher<br />

information co<strong>di</strong>fied in the<br />

form of mineral imperfections.<br />

REFERENCES<br />

BANOS J.O., AMOURIC M., DE FOUQUET C.H., BARONNET A., 1983. Interlayering <strong>and</strong> interlayer slip in<br />

biotites as seen by HRTEM. Am. Miner. 68, 754-758.<br />

BOLLMANN W., 1976. Crystal Defects <strong>and</strong> Crystalline Interfases. Springer-Vedag, Berlin.<br />

BusECK P.R., VEBLEN D.R., 1981. Defects in minerals as observed with high resolution transmission<br />

electron microscopy. Bull. Mineral. 104, 249-260.<br />

CAILLERE S., HENIN S., 1949. Experimental formation of chlorites. Mineral. Mag. 28, 612-620.<br />

EsouEVIN J., 1969. Influence de la composition chimique des illites sur leur cristallinite. Bull. Centre<br />

Rech. Pau S.N.P.A. 3, 147-154.<br />

FYFE C.A., THOMAS J.M., KLINOWSKI J., GOBBI G.C, 1983_ Magic-Angle-Spinning NMR (MAS-NMR)'<br />

Spectroscopy <strong>and</strong> Structure ofZeolites. Angew. Chem. Int. Ed. Engl. 22, 259-275.<br />

ILHIMA A.S., ZHU J., 1982. Electron microscopy of a muscovite-biotite interface. Am. Miner. 65,<br />

1195-1205. ""<br />

LASAGA A.C., 1980. Defect calculations in silicates: olivine. Am. Miner. 65, 1237-1248.<br />

LEEMONS K.W., McATEE JR. J.L., 1983. The parameters of induced thermoluminescence of some<br />

selected phyllosilicates: a crystal defect structure study. Am. Miner. 68, 915-923.<br />

MARFUNIN A.S., 1979. Spectroscopy, Luminescence <strong>and</strong> Ra<strong>di</strong>ation Center in Minerals. Springer­<br />

Ver!ag, New York<br />

MARTIN RAMOS J .D., RODRIGUEZ GALLEGO M., 1980. Coexistencia de moscovitas 3T y 2M 1 en gneises de<br />

la unidad de la Caldera (Cor<strong>di</strong>lleia Betica). Estu<strong>di</strong>os geol. 36, 201-204.<br />

MARTIN RAMOS J .D., RODRIGUEZ GALLEGO M., 1982. Chromian mica from Sierra Nevada, Spain. Mineral.<br />

Mag. 46, 269-272.<br />

MARTIN VIVALDI J.L., MAC EwAN D.M.C., 1957. Triassic chlorites from the Jura <strong>and</strong> the Catalan Coastal<br />

Range. Clay Miner. Bull. 3, 177'183.<br />

MARTIN VIVALDI J .1., LINARES GONZALEZ J ., 1962_ A r<strong>and</strong>om intergrowth of sepiolite <strong>and</strong> attapulgite.<br />

Clays Clay Miner. 9, 592-602.<br />

NIETO-F., RoDRIGUEZ GALLEGO M_, 1981. Alteraci6n experimental de Cloritas_ Rev. Acad. Ciencias<br />

Granada I, 108-124. ·<br />

REYNOLDS R.C., HoWER J ., 1970. The nature of interlayering in mixed-layer illite-montmorillonite. Clays<br />

Clay Miner. 18, 25-36.<br />

RODRIGUEZ GALLE'GO M., MARTIN VIVALDI J.L., MARTIN POZAS J.M., 1964. Analisis cuantitativo de<br />

filosilicatos de la arcilla por <strong>di</strong>fraccion de ray os X. I IJ: I nfluencia de la sustituci6n isom6rfica y de<br />

la cristalinidad. II Reuni6n Grupo Espaiiol Cristalografia Pura y Aplicada, Madrid, Octubre<br />

1964, Abstract, pp. 17-18; 1969. An. R. Soc. esp. Fis. Quim. 65,25-29.<br />

RODRIGUEZ GALLEGO M., ALIAS L.J., 1965. A regular mixed layer Mica-Beidellite. Clay Miner. Bull. 6,<br />

119-123. .<br />

RoDRIGUEZ GALLEGO M., 1968_ Una interestratificaci6n regular Mica-Beidellite. 11. An_ Ciencias Univ.<br />

Murcia 16, 1-10.<br />

RODRIGUEZ GALLEGO M., GARCIA-CERVIGON A., 1974. Interstratified minerals in ophites hydrothermally<br />

alterated from NW Murcia province (Spain). 2eme Reun. Gr..Europ. Argiles, Strasbourg, Abstract,<br />

p. 45.<br />

SANZ J ., SERRATOSA J .M., 1984. Distinction of tetrahedrally <strong>and</strong> octahedrally coor<strong>di</strong>nated Al in phyllosilicated<br />

by NMR spectroscopy. Clay Minerals 19, 113-115.


70<br />

M. Rodriguez Gallego<br />

SMITH K.L., EGGLETON R.A., 1983. Botryoidal goethite: A transmission electron microscopy study.<br />

Clays Clay Miner. 31, 392-396.<br />

TcHOUBAR C., 1980. Determination des parametres d' ordre et aJsordre dans qiielques solids a structure<br />

lamellaire (silicates, carbones). Bull. Mineral. 193, 404-418.<br />

THOMPSON J .G., 1984. 29Si <strong>and</strong> 27 AI nuclear magnetic. resonance spectroscopy of 2:1 clay minerals. Clay<br />

Minerals 19, 229-236.<br />

VEBLEN D.R., 1983. Microstructures <strong>and</strong> mixed layering in intergrowth wonesite, chlorite, talc, biotite,<br />

<strong>and</strong> kaolinite. Am. Miner. 68, 566-580. ·<br />

VEBLEN D.R., FERRY J.M., 1983. A TEM study of the biotite-chlorite reaction <strong>and</strong> comparation with<br />

petrologic observations. Am. Miner. 68, 1160-1168.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 71-83 (1985)<br />

High-Resolution MAS-NMR Spectra of Layer Silicates.<br />

Ordering of Tetrahedral Cations C*J ·<br />

JOSE MARIA SERRATOSA<br />

Instituto de Fisico-Quimica Mineral, C.S.I.C., Serrano 115 - dpdo., 28006 Madrid, Espaiia<br />

ABSTRACT- High resolution 29 Si <strong>and</strong> 27 AI MAS-NMR spectra of layer silicates<br />

has allowed a clear <strong>di</strong>stinction between four <strong>and</strong> six coor<strong>di</strong>nated AI <strong>and</strong><br />

identification of <strong>di</strong>fferent environments of tetrahedrally coor<strong>di</strong>nated Si. Chemical.<br />

shifts of 29 Si <strong>and</strong> 27 Al signals depend on the nature of second neighbour<br />

cations located in the tetrahedral <strong>and</strong> octahedral sheets <strong>and</strong> in the interlayer<br />

space. Moreover, a quantitative analysis of the NMR components associated<br />

to the <strong>di</strong>fferent Si environments in<strong>di</strong>cates that Si,Al <strong>di</strong>stribution in the tetrahedral<br />

sheet of phyllosilicates is mainly controlled by the electrostatic<br />

requirement of homogeneous <strong>di</strong>spersion of charges. This requirement includes<br />

as a partial aspect, the rule of Loewenstein which forbids the presence<br />

of AI in contiguous tetrahedra.<br />

Introduction<br />

The general features of phyllosilicate<br />

structures have been known for<br />

many years, but there are certain<br />

aspects concerning the <strong>di</strong>stribution<br />

of ions in the <strong>di</strong>fferent structural sites<br />

that have not been well established.<br />

This <strong>di</strong>stribution of isomorphous replacements<br />

is an important crystallochemical<br />

characteristic that controls<br />

the stability of the structure <strong>and</strong><br />

the physico-chemical behaviour of<br />

these minerals. However, its determination<br />

by <strong>di</strong>ffraction methods pr~sents<br />

serious <strong>di</strong>fficulties because iso-'<br />

morphous replacements does not<br />

necessarily follow a regular perio<strong>di</strong>c<br />

......<br />

pattern. Moreover, in the case of the<br />

analysis of ordering in tetrahedral<br />

sites, the similarity of the atomic<br />

scattering factors of Si <strong>and</strong>.Al, constitutes<br />

an ad<strong>di</strong>tional <strong>di</strong>fficulty for the<br />

determination of their <strong>di</strong>stribution.<br />

Spectroscopic methods provide<br />

valuable information on these<br />

structural aspects, since they permit<br />

the identification of the <strong>di</strong>fferent env;ironments<br />

around certain ions forming<br />

the silicate structures. For example,<br />

the study of the infrared absorption<br />

b<strong>and</strong>s associated with structural<br />

OH groups, <strong>and</strong> the analysis of 1 H <strong>and</strong><br />

19<br />

F NMR signals, have allowed the<br />

establishment of certain trends for<br />

the cation <strong>di</strong>stribution in the<br />

octahedral sheet of micas<br />

('') This general lecture is a summary of the results of recent stu<strong>di</strong>es by C.P. Herrero, J. Sanz <strong>and</strong><br />

J.M. Serratosa from the "Instituto de Fisico-Quimica Mineral", C.S.I.C., Madrid, Spain.


72<br />

J.M. Serratosa<br />

(RAUSELL-COLOM et al., 1979;<br />

SANZ & STONE, 1983). Other examples<br />

refer to the determination by<br />

Mossbauer spectroscopy of the oxidation<br />

state <strong>and</strong> location of iron in <strong>di</strong>fferent<br />

structural sites (tetrahedral <strong>and</strong><br />

M 1<br />

<strong>and</strong> M 2<br />

octahedral positions)<br />

(SANZ et al., 1978). Recently, high resolution<br />

MAS-NMR spectroscopy has<br />

been applied to the analysis of several<br />

aluminosilicate structures. This<br />

technique permits a clear <strong>di</strong>stinction<br />

between 4- <strong>and</strong> 6-coor<strong>di</strong>pated Al<br />

(MULLER et al., 1981), as well as the<br />

identification of <strong>di</strong>fferent environments<br />

of tetrahedrally coor<strong>di</strong>nated Si<br />

(LIPPMAA et al., 1980). Moreover, the<br />

~---------analysis of the relative intensities of<br />

the NMR components associated<br />

with those Si environments, provides<br />

useful information on the Si,Al <strong>di</strong>stribution<br />

in tetrahedral frameworks<br />

(ENGELHARDT et al., 1981;<br />

KLINOWSKl et al., 1982; FYFE et<br />

al., 1983).<br />

In the first part of this lecture we<br />

will present the results of a systematic<br />

study of well characterized phyllosilicates<br />

by MAS-NMR spectroscopy.<br />

Aluminium in tetrahedral <strong>and</strong><br />

octahedral sheets has been clearly<br />

identified. Appropriate selection of<br />

samples has allowed us to analyze<br />

the influence of the nature of second<br />

neighbour cations located in the<br />

three <strong>di</strong>fferent structural sites (tetrahedral,<br />

octahedral <strong>and</strong> interlayer)<br />

on the chemical shift of Si <strong>and</strong> Al nuclei<br />

(SANZ & SERRATOSA, 1984). The<br />

second part of this lecture is concerned<br />

with Si, Al ordering in the tetrahedral<br />

sheet. Several schemes of<br />

Si,Al <strong>di</strong>stribution have been considen~d-tanging<br />

from--a r<strong>and</strong>om <strong>di</strong>stribution<br />

to models in which con~<br />

straints imposed by crystallochemical<br />

factors known to be operative in<br />

this type of structure have been taken<br />

into account. Comparison between<br />

experimental <strong>and</strong> model-generated<br />

Si NMR intensities has permitted us<br />

to determine the model which gave<br />

the best fit <strong>and</strong> consequently to determine<br />

the factors which govern the<br />

Si,Al <strong>di</strong>stribution in phyllosilicates<br />

(HERRERO et al., 1985a <strong>and</strong> b).<br />

MAS-NMR spectra of phyllosilicates<br />

27 Al MAS-NMR spectra.<br />

27<br />

Al MAS­<br />

NMR spectra of phyllosilicates consist<br />

of one or two principal components<br />

<strong>and</strong> a series of side b<strong>and</strong>s<br />

associated with the spinning of the<br />

samples (Fig. 1). Accor<strong>di</strong>ng to previous<br />

work (MULLER et al., 1981) the<br />

central line at - 0 ppm must be<br />

assigned to octahedral Al ions <strong>and</strong><br />

the line at- 70 ppm to tetrahedral Al<br />

ions. These assignments are in agreement<br />

with the structural compositions<br />

of these samples. Thus,<br />

pyrophyllite contains only Alocv<br />

while muscovite has both Aloct <strong>and</strong><br />

Altet·<br />

In principle, a quantitative determination<br />

of the Altet/Aloct ratio seems<br />

to be possible considering· the high<br />

resolution of the spectra. However,<br />

when we compared Altet/Aloct ratios<br />

obtained from· NMR spectra <strong>and</strong><br />

from the mineralogical formulae, the<br />

agreement was poor. In the case of


High-Resolution MAS-NMR Spectrao(Layer Silicates ... 73<br />

Pyrophyllite<br />

.Muscovite<br />

100 0 -100 ppm 100 0 -100 ppm<br />

Fig. 1 - 27 Al MAS-NMR spectra of pyrophyllite <strong>and</strong> muscovite recorded at 78.2 MHz, showirig the<br />

lines correspon<strong>di</strong>ng to tetrahedral <strong>and</strong> octahedral Al. Chemical shifts are given from Al(H20)6 3 +.<br />

muscovite, the NMR spectrum overestimates<br />

the Altet content. The <strong>di</strong>fferences<br />

observed must be .a conseq\.tence<br />

of se'cond-order quadq~:tpolar<br />

effects whose elimination in both signals<br />

would require the use of higher<br />

magnetic fields.<br />

29Si MAS-NMR spectra. 29 Si MAS­<br />

NMR spectra of the <strong>di</strong>fferent species<br />

of phyllosilicates are given in Figures<br />

2 <strong>and</strong> 3. Talc <strong>and</strong> pyrophyllite have<br />

only Si in the tetrahedral sheet, <strong>and</strong><br />

consequently all silicon ions have the<br />

same tetrahedral environment, i.e.,<br />

Pyrophyll i te ·<br />

Talc<br />

-60 -80 -100 -120<br />

ppm<br />

-60 -80 -100 -120<br />

ppm<br />

Fig. 2- 29 Si MAS-NMR spectra of pyrophyllite <strong>and</strong> talc, recorded at 59.6 MHz. Chemical shifts are<br />

given from TMS ..


74 J.M. Serratosa<br />

Phlogopite<br />

1<br />

Vermiculite<br />

1<br />

2<br />

2<br />

0<br />

0<br />

-60<br />

-80<br />

-100 -120<br />

ppm<br />

-60<br />

-80<br />

-100 -120<br />

ppm<br />

Muscovite<br />

1<br />

Margari te<br />

3<br />

0<br />

-60<br />

-80<br />

-100 -120<br />

pp m<br />

-60<br />

-80<br />

-100 -120<br />

pp m<br />

Fig. 3 - 29 Si MAS-NMR spectra of phlogopite, vermiculite, muscovite <strong>and</strong> margarite recorded at<br />

59.6 MHz. Chemical shifts are given from TMS. The number of AI around Si is in<strong>di</strong>cated over each<br />

peak.<br />

Si surrounded by 3Si. The NMR spectra<br />

of these samples show a single<br />

component that appears at -97<br />

ppm for talc <strong>and</strong> at -94 ppm for<br />

pyrophyllite. The <strong>di</strong>fference in chemical<br />

shift between these samples, as<br />

will be <strong>di</strong>scussed later, is a consequence<br />

of <strong>di</strong>fferences in composition<br />

of the octahedral sheet.<br />

In the micas phlogopite <strong>and</strong><br />

muscovite, approxima telyone{Ql,±_rt_b<br />

of the Si in the tetrahedral sheet is<br />

replaced by Al. For each composition,<br />

all silicon atoms of the tetrahedral<br />

sheet have the same second neighbours<br />

in both the interlayer space<br />

<strong>and</strong> the octahedral sheet. Therefore,<br />

<strong>di</strong>fferences of environments for Si


High-Resolution MAS-NMR Spectfa-o(Layer Silicates ... 75<br />

can be only a consequence of the Al,<br />

Si <strong>di</strong>stribution. There exist four<br />

possible <strong>di</strong>stinct environments for Si<br />

within the tetrahedral sheet of micas,<br />

i.e .., Si04 surrounded ·by 3Si04,<br />

2Si04Al04, 1Si042Al04 <strong>and</strong> 3Al04.<br />

By analogy to the case of zeolites<br />

(KLiNOWSKI et al., 1982), they will<br />

give signals with less negative values<br />

for the chemical shift as the Al content<br />

increases. The 29 Si MAS-NMR<br />

spectra of these micas show three<br />

well-resolved components at -91,<br />

-86 <strong>and</strong> -82 ppm for phlogopite <strong>and</strong><br />

-89, -85 <strong>and</strong> -81 ppm for muscovite.<br />

Considering that in these micas<br />

the Si/Al ratios are near 3, the 3Al04<br />

environment should have a very low<br />

probability <strong>and</strong> consequently the<br />

· observed lines should be assigned to<br />

Si surrounded by 3Si, 2~i1Al <strong>and</strong><br />

1Si2Al, respectively. This assig~ment<br />

agrees with the structural formulae<br />

of the two samples. Thus, in the<br />

phlogopite sample with a higher tetrahedral<br />

Al content (Sh.84Alu6) than<br />

that in muscovite (Si 3 .16Alo.s4), the<br />

signal correspon<strong>di</strong>ng to the 1 Si2Al<br />

environment has a higher relative intensity<br />

than in the muscovite spectrum,<br />

while the signal correspon<strong>di</strong>ng<br />

to the Si(Si 3 ) environment follows<br />

the reverse trend. :<br />

In vermiculite with the same ideal<br />

composition as phlogopite but in<br />

which interlayer potassium has been<br />

substituted by hydrated Mg ions, the,<br />

spectrum shows also three lines that<br />

appear at -92, -88 <strong>and</strong> -83.5 ppm.<br />

The relative intensities of the three<br />

lines are similar to those of phlogopites<br />

as. one might expect from the<br />

composition of the tetrahedral sheet<br />

of vermiculite (Si 2 .89Al1. 11 ) which is<br />

.close to that of phlogopite. Margarite<br />

with a Si/Al near 1 shows a single line<br />

at -73 ppm (Fig. 3), in<strong>di</strong>cating the<br />

existence of only one kind of environment<br />

for the Si atoms. By its position<br />

the line observed at -73 ppm in the<br />

NMR spectrum should be assigned to<br />

the Si(Ab) environment.<br />

Influence of second neighbour cdtions<br />

on the position of 29 Si <strong>and</strong> 27 Al<br />

signals. The effect that second neighbour<br />

cations located in <strong>di</strong>fferent sites<br />

of the structure, tetrahedral sheet,<br />

octahedral sheet, <strong>and</strong> interlayer<br />

space, exert on the chemical shift of<br />

the Si <strong>and</strong> Al signals can be analyzed<br />

separately by comparison of pairs of<br />

samples with appropriate compositions.<br />

The positions of Al <strong>and</strong> Si signals<br />

for the samples analyzed in this<br />

work are given in Table 1.<br />

The influence of the nature of tetrahedral<br />

cations on the Si <strong>and</strong> Altet<br />

line positions has already been men­<br />

. tioned in the case of phlogopite <strong>and</strong><br />

/muscovite. The several Si lines<br />

observed in the mica spectra reflect<br />

the <strong>di</strong>fferent· tetrahedral environments<br />

of this cation. The position of<br />

these signals shifts by equal increments<br />

toward less negative values as<br />

the number of Al around Si increases.<br />

On the contrary, the spectra show<br />

only one Altet signal, in<strong>di</strong>cating that<br />

this cation has always the same tetrahedral<br />

environment.<br />

The second factor that influences<br />

the position of the tetrahedral Si <strong>and</strong><br />

Al signals is the composition of the


76 J.M. Serratosa<br />

TABLE 1<br />

27 Al <strong>and</strong> 29 Si isotropic chemical shifts in ph~llosilicates *<br />

Al signal<br />

Si signal<br />

mineral species Al,., Aloct Si(Si 3 ) Si(Si 2 Al) Si(SiAlz) Si(Al 3 )<br />

pyrophyllite +1 -94<br />

muscovite +67 +1.5 -89 -85 -81<br />

margarite +71 +2 -73<br />

talc -97<br />

phlogopite PS +63.5 +6 -91 -86 -82<br />

vermiculite +62.5 +5 -92 -88 -83.5<br />

* Values are given in ppm from Al(H 2 0) 6<br />

3 + <strong>and</strong> Me4Si, respectively<br />

octahedral sheet. When we compared<br />

samples having the same tetrahedral<br />

<strong>and</strong> interlayer compositions (talcpyrophyllite,<br />

phlogopite-muscovite),<br />

it was observed that the.positions of<br />

- ---- --------------equivalent tetrahedral Si <strong>and</strong> Allines<br />

shift toward higher values when passing<br />

from trioctahedral (three Mg) to<br />

<strong>di</strong>octahedral (two Al <strong>and</strong> one vacancy)<br />

samples.<br />

The effect of the nature of interlayer<br />

cations on the line position is<br />

ascertained by comparison of the Si<br />

signal correspon<strong>di</strong>ng to the three Si<br />

environment in samples with the<br />

same octahedral composition. In<br />

the pairs talc-phlogopite .<strong>and</strong><br />

pyrophyllite-muscovite the presence<br />

of K+ as second neighbour shifts that<br />

line to more positive values. A similar<br />

shift is observed when interlayer<br />

potassium is substituted by Ca 2 +<br />

(margarite). For this mica, a single<br />

line is observed a -73 ppm that corresponds<br />

to -Si surrounded by 3A(<br />

This value is more positive than the<br />

value one would expect for the same<br />

environment in muscovite, assuming<br />

a constant shift for each Al incorporated<br />

into the Si environment. The<br />

same tendency is observed for the signal<br />

of Altet when passing from muscovite<br />

(67 ppm) to margarite (71 ppm).<br />

With respect to the Aloe~ signal, it is<br />

observed that its position is almost<br />

-independent of the nature of interlayer<br />

cations, which are too far to exert<br />

a significant influence, <strong>and</strong> also of<br />

the composition of the tetrahedral<br />

sheet. Thus, in the <strong>di</strong>octahedral phyllosilicates,<br />

pyrophyllite, muscovite<br />

<strong>and</strong> margarite, Aloct lines appear at<br />

about the same value (1-2 ppm). On<br />

the contrary, the composition of the<br />

octahedral sheet mo<strong>di</strong>fies slightly the<br />

position of the Aloct signal.- In trioctahedral<br />

minerals that contain small<br />

amounts of Al in the octahedral sheet<br />

~ (phlogopite <strong>and</strong> vermiculite), each Al<br />

ion must be surrounded by six Mg<br />

ions <strong>and</strong> the Aloct line appears at S-6<br />

ppm, a value which is higher than<br />

those observed for <strong>di</strong>octahedral<br />

minerals where each Al ion is surrounded<br />

by three Al <strong>and</strong> three vacancies.<br />

In summary, the results show that<br />

the line positions of tetrahedral Si<br />

<strong>and</strong> Al depend on the nature of the<br />

cations located as second neighbours


High-Resolution MAS-NMR Spectra of Layer Silicates ... 77<br />

of these nuclei in the tetrahedral<br />

sheet, the octahedral sheet <strong>and</strong> the<br />

interlayer space. In the case of Alocv<br />

the position of the NMR line seems to<br />

depend only on the nature of cations<br />

located as second neighbours in the<br />

octahedral sheet.<br />

Ordering of tetrahedral cations<br />

(Si,Al)<br />

The relative intensities of the <strong>di</strong>fferent<br />

components in the 29 Si NMR<br />

spectra ofmicas are a consequence of<br />

the Si,Al <strong>di</strong>stribution for each particular<br />

sample. In the case of margarite<br />

(Si/Al= 1), the interpretation of<br />

29Si NMR spectrum is straightforward.<br />

The presence of a single NMR<br />

component (-73 ppm) incj.icates the<br />

existence of a unique envir~n~ent for<br />

Si confirming the <strong>di</strong>stribution model<br />

found by X-ray <strong>di</strong>ffraction analysis<br />

(GUGGENHEIM & BAILEY, 1978),<br />

i.e. strictly alternating Si <strong>and</strong> Al<br />

occupying the tetrahedral sites.<br />

For other micas <strong>and</strong>, in general, for<br />

phyllosilicates with (Si/Al)tet ratios<br />

smaller than 1 , the presence of several<br />

components in the 29 Si NMR spectrum<br />

is compatible in principle with<br />

numerous Si,Al <strong>di</strong>stribution patterns.<br />

Information about the reliability<br />

of a given model can be obtained<br />

by two <strong>di</strong>fferent approaches:<br />

a) by the use of certain parameters<br />

deduced from the NMR spectra th~t<br />

give information about the nature of<br />

first <strong>and</strong> second neighbouring.cations<br />

of AI, <strong>and</strong><br />

b) by comparison -between the experimental<br />

<strong>and</strong> model generated Si<br />

NMR intensities.<br />

Various <strong>di</strong>stribution schemes have<br />

been tested ranging from a r<strong>and</strong>om<br />

<strong>di</strong>stribution to models in which restrictions<br />

of crystallographic or electrostatic<br />

nature have been considered.<br />

The restrictions which have<br />

been introduced in successive steps<br />

are: (i) avoidance of Al-0-Allinkages<br />

(LOEWENSTEIN, 1954)· <strong>and</strong> (ii)<br />

homogeneous <strong>di</strong>spersion of Al in<br />

order to minimize the electrostatic<br />

energy. For micas with Si/Al ratios<br />

close to 3, this restriction implies also<br />

local compensation of interlayer cations.<br />

a) <strong>First</strong> approach - Informatiop a­<br />

bout first neighbour cations of Al is<br />

obtained by comparison of fractional<br />

Al contents, x, calculated from the<br />

structural formulae with those deduced<br />

from the NMR spectra. x<br />

values are calculated from the 29 Si<br />

NMR spectra accor<strong>di</strong>ng to the expressions:<br />

y 3Io + 2Il + I2<br />

--------<br />

for the r<strong>and</strong>om <strong>di</strong>stribution <strong>and</strong><br />

Y<br />

X<br />

3 I<br />

3<br />

i=O<br />

Il + 2I2 + 3I3<br />

when the restriction of Loewenstein' s<br />

rule is introduced. In these expressions<br />

x <strong>and</strong> y are fractional contents of<br />

Al <strong>and</strong> Si respectively <strong>and</strong> Ii are the<br />

intensities of the components in the


78 J.M. Serratosa<br />

29Si NMR spectra correspon<strong>di</strong>ng to<br />

environments of Si with iAl. As<br />

shown in Table 2, only the model in<br />

which Loewenstein's restriction has<br />

been introduced reproduces reasonably<br />

well the x values deduced from<br />

the structural formulae, thus confirming<br />

the avoidance of Al in contiguous<br />

tetrahedra. Small <strong>di</strong>fferences<br />

observed in some cases are probably<br />

a consequence of the uncertainty involved<br />

in the method used to normalize<br />

the analytical chemical data into<br />

values of the structural formulae. The<br />

fact that phyllosilicates comply with<br />

the rule of Loewenstein allows a<br />

quick <strong>and</strong> <strong>di</strong>rect determination of tet-<br />

----------~-----r_abeciral Sif!\!_rati~ f_!"Slll:l__ !!J.e 29 _Si<br />

MAS-NMR spectra.<br />

Information about second neighbour<br />

cations of Al can be obtained<br />

from the parameter P 2 :<br />

Pz = -~I~ 2 ~+_3~I~ 3 _<br />

I 1 + 2Iz + 3I3<br />

which gives the probability that the<br />

second neighbour of an Al be also an<br />

Al. In this expression_II>h an,d_I 3 ar~.<br />

the intensities of the components in<br />

the experimental or simulated NMR<br />

spectra correspon<strong>di</strong>ng to associations<br />

of Si with 1, 2 or 3Al. I 2 + 3I3 is proportional<br />

to the number of Al-Si-Al<br />

associations <strong>and</strong> the denominator<br />

takes into account the normalization<br />

over the Al-Si-Si <strong>and</strong> Al-Si-Al triads.<br />

Table 2 shows that P 2 values deduced<br />

from experimental spectra are significantly<br />

smaller that those calculated<br />

from a r<strong>and</strong>om model in which<br />

Loewenstein's rule has been introduced,<br />

in<strong>di</strong>cating that Al ions are, on<br />

the average, more separated than<br />

what is required by a model in which<br />

the only restriction is the avoidance<br />

of Al-0-Allinkages.<br />

b) Second approach -A more complete<br />

information on Si,Al <strong>di</strong>stribution<br />

is obtained by the second<br />

approach in which all the experimental<br />

intensities are compared<br />

with those correspon<strong>di</strong>ng to the <strong>di</strong>f-<br />

TABLE 2<br />

Fractional AI contents (x) <strong>and</strong> probabilities (P 2 ) of the <strong>di</strong>fferent models of Si, AI <strong>di</strong>stribution<br />

in the tetrahedral sheet of phyllosilicates. Values of x obtained from the structural formulae<br />

<strong>and</strong> of P 2<br />

obtained from the experimental 29 Si NMR spectra are given for comparison<br />

Samples<br />

Fractional Al Probabilities P 2<br />

content x (ref. 10)<br />

r. L.r. s.f. L.r. NMR<br />

Natural(•)<br />

Muscovite 0.28 0.22 0.21 0.28 0.14<br />

Phlogopite 0.36 0.27 0.29 0.37 0.21<br />

Vermiculite 0.38 0.28 0.28 0.39 0.27<br />

Synthetic (b)<br />

I 0.13 0.12 0.12 0.13 0.00<br />

II 0.17 0.15 0.17 0.18 0.08<br />

Ill 0.25 0.20 0.19 0.25 0.13<br />

IV 0.35 0.26 0.27 0.35 0.23<br />

(•) HERRERO et al. (1985a); (b) LIPSICAS et al. (1984);<br />

r.: r<strong>and</strong>om <strong>di</strong>stribution; L.r.: Loewenstein's restriction; s.f.: structural formula


High-Resolution MAS-NMR Spectri:OJf Layer Silicates ... 79<br />

ferent considered models. Calculation<br />

of the relative intensities of the. components<br />

in the 29 Si NMR spectra can<br />

be made <strong>di</strong>rectly from the AI <strong>and</strong> Si<br />

fractional contents of each sample for<br />

the r<strong>and</strong>om <strong>di</strong>stribution model <strong>and</strong><br />

for the model in which the only restriction<br />

is Loewenstein's rule. In<br />

other cases, the models have been<br />

simulated in a computer following a<br />

Monte Carlo procedure.<br />

I<br />

For the r<strong>and</strong>om <strong>di</strong>stribution model,<br />

relative intensities of the components<br />

in the 29 Si NMR spectra should<br />

be reproduced by a statistical binomial<br />

<strong>di</strong>stribution. If x <strong>and</strong> y are respectively<br />

the tetrahedral AI <strong>and</strong> Si<br />

fractional contents, the calculated<br />

probabilities for the four possible<br />

environments of Si, i.e .. Si(3Si),<br />

Si(2Si1Al), Si(1Si2Al) <strong>and</strong> ~i(3Al), are<br />

respectively y 3 , 3y 2 x, 3yx 2 <strong>and</strong> x 3 •<br />

Values obtained for this model "(Table<br />

3) depart considerably from the experimental<br />

ones, demonstrating that<br />

a r<strong>and</strong>om <strong>di</strong>stribution does not apply<br />

to these minerals. From 1Jhe data of<br />

Table 3 it is evident that in micas <strong>and</strong><br />

vermiculite, the environments 2Si1Al<br />

<strong>and</strong> 1Si2Al are favoured at the expense<br />

of the environment 3Si with regard<br />

to a r<strong>and</strong>om <strong>di</strong>stribution.<br />

In the model in which the only restriction<br />

is Loewenstein's rule, the two<br />

possible associations of contiguous<br />

tetrahedra are Si-0-Al <strong>and</strong> Si-O~Si.<br />

Thus, if x <strong>and</strong> y are again the tetrahedral<br />

AI <strong>and</strong> Si fractional contents,<br />

the probability for Si-0-Al asso-·<br />

dation will be 2x because the probability<br />

for AI is x <strong>and</strong> the neighbour of<br />

an AI is always a Si; consequently,<br />

the probability for Si-0-Si will be<br />

1-2x. If now, we restrict our analysis<br />

to cases in which the first tetrahedron<br />

in the pair contains Si, then<br />

the normalised probabilities for Si-0-<br />

Al <strong>and</strong> Si-0-Allinkages will be:<br />

Psi-O-Al = x/[x + (1 - 2x)] = x/y = a<br />

Psi-o-s; = (1 - 2x)/y = 1-x/y = s<br />

On this basis, the probabilities of<br />

the four possible environments of Si<br />

will be given by the terms ofthe binomial<br />

<strong>di</strong>stribution:<br />

The correspon<strong>di</strong>ng calculated intensities<br />

for the phyllosilicate samples,<br />

are given in Table 3.1t is evident<br />

that the restriction of Loewenstein's<br />

rule improves appreciably the fitting<br />

between experimental <strong>and</strong> modelgenerated<br />

intensities. However, there<br />

are significant <strong>di</strong>fferences in<strong>di</strong>cating<br />

the existence of other factors, in ad<strong>di</strong>tion<br />

to this rule, which impose ad<strong>di</strong>tional<br />

restrictions for the Si,Al <strong>di</strong>stribution<br />

in the tetrahedral sheet of<br />

these minerals. In particular, it is evident<br />

that experimental intensities do<br />

not follow a binomial <strong>di</strong>stribution<br />

<strong>and</strong> that in the tetrahedral sheet of<br />

micas, the environment Si(2Si1Al) is<br />

clearly favoured.<br />

When the con<strong>di</strong>tion of homogeneous<br />

<strong>di</strong>spersion of charges is<br />

introduced, the intensities of the<br />

components in the 29 Si NMR spectra<br />

are calculated from models simulated<br />

in a computer following a<br />

Monte Carlo procedure as described


I<br />

. TABLE 3 I<br />

Experimental <strong>and</strong> calculated probabilities of the four possible environments of Si in the tetrahedral sheet of phyllosilicates for <strong>di</strong>fferent Si, AI<br />

<strong>di</strong>stribution model~<br />

Muscovite Phlogopite Vermiculite<br />

Distribution<br />

model'' 3Al 1 Si2Al 2Si1Al 3Si 3Al 1Si2Al 2Si1Al : 3Si 3Al 1Si2Al 2Si1Al 3Si<br />

l<br />

R<strong>and</strong>om 1.0 11.1 40.0 47.9 1.9 15.5 42.9 :39.7 2.1 16.7 43.4 37.8<br />

Loewenstein's restriction 2.2 16.7 43.5 37.5 4.7 24.9 44.2 !26.2 5.6 27.2 43.7 23.5<br />

Homogeneous <strong>di</strong>spersion of 0.3 12.1 58.2 29.4 0.7 24.8 56.5 !18.0 0.8 29.5 53.1 16.6<br />

charges I<br />

Experimental''* 11.8 60.2 28.0 2D 62.1 :14.8 -,- 30.5 54.0 15.5<br />

I (x=0.115) II (x=0.15) Ill (x=0.20) IV (x=0.26)<br />

Distribution<br />

model* 3Al 1Si2Al 2Si1Al 3Si 3Al 1Si2Al 2Si1Al 3Si 3Al 1Si2Al 2Si1Al 3Si 3Al 1Si2Al 2Si1Al 3Si<br />

R<strong>and</strong>om 0.2 3.5 27.0 69.3 0.3 5.7 32.6 61.4 0.8 9,6 38.4 51.2 1.8 15.0 42.7 : 40.5<br />

Loewenstein's restriction 0.2 4.4 29.5 65.9 0.5 7.7 35.9 56.9 1.5 14.1 42.2 42.2 4.3 24.0 44.4 . 27.3<br />

Homogeneous <strong>di</strong>spersion of 39.0 61.0 3.0 46.6 50.4 0.2 8.1 58.2 33.5 0.7 23.6 56.2 19.5<br />

charges<br />

Experimental** 39 61 - 4 44 52 10 55 35 24 57 19<br />

'' Each model includes the restrictions of the precee<strong>di</strong>ng schemes; ** Values from LIPSICAS et al. (1984)<br />

00<br />

0<br />

:--.<br />

~<br />

(/)<br />

"'<br />

~<br />

0<br />

"' !:><br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

Natural samples)<br />

Synthetic samples


High-Resolution MAS-NMR Spectra of Layer Silicates ... 81<br />

by HERRERO et al. (1985a <strong>and</strong> b).<br />

The con<strong>di</strong>tion of homogeneous <strong>di</strong>spersion<br />

of Al is introduced by imposing<br />

that the number of Al ions per<br />

hexagonal ring should be as close as<br />

possible to the average value correspon<strong>di</strong>ng<br />

to each composition. Two<br />

cases are considered:<br />

a) For compositions 1!3


82<br />

J.M. Serratosa<br />

analysis of the data in this table, it is<br />

evident that Loewenstein's restriction<br />

improves only slightly the fitting<br />

of the spectra, while when the con<strong>di</strong>tion<br />

of homogeneous <strong>di</strong>spersion of Al<br />

is introduced in the simulated models,<br />

a significant drop in S values is<br />

achieved. Also the fitting of experimental<br />

P 2 values, a parameter<br />

which reflects a partial aspect of Al<br />

<strong>di</strong>stribution, is considerably improved<br />

for the simulated models<br />

complying with the criterion of<br />

homogeneous <strong>di</strong>spersion of Al.<br />

The result of this analysis shows<br />

that tetrahedral cation <strong>di</strong>stribution is<br />

mainly controlled by a requirement<br />

-- ___________ oL ___ homogeneous ___ <strong>di</strong>sper:_sion of<br />

charges in order to minimize the electrostatic<br />

energy. This requirement includes<br />

Loewenstein's principle as a<br />

partial aspect, with respect to which<br />

it can be considered as an extension<br />

in the sense that it con<strong>di</strong>tions the Al<br />

substitution in tetrahedral sites<br />

beyond the first nearest neighbour.<br />

Finally, it seems also clear from this<br />

analysis, that the factors found to be<br />

operative in Si,Al <strong>di</strong>stribution do not<br />

necessarily require that this <strong>di</strong>stribution<br />

follows a regular pattern. This<br />

conclusiQIJ. ___ ~i!g:ree!§ with those<br />

·obtained by <strong>di</strong>ffraction methods<br />

accor<strong>di</strong>ng to which there are only a<br />

few cases giving clear evidences of<br />

long range order (BAILEY, 1984).<br />

Conclusions<br />

The information obtained from the<br />

29Si <strong>and</strong> 27 Al MAS-NMR spectra can<br />

be summarized as follows:<br />

1) Distinguish tetrahedral from<br />

octahedral Al.<br />

2) Quantitatively determine Si/Al ·<br />

tetrahedral ratios.<br />

3) Identify four <strong>di</strong>fferent environments<br />

of Si: Si(nAl), n = 0 to 3.<br />

4) Confirm the avoidance of Al-0-<br />

Al linkages; tetrahedral Al is always<br />

surrounded by 3Si (Loewenstein's<br />

rule).<br />

5) Prove that tetrahedral Al is<br />

homogeneously <strong>di</strong>spersed <strong>and</strong> longrange<br />

<strong>di</strong>sordered (meta/para - 2).<br />

For Si/Al - 3 (common micas) hexagonal<br />

rings contain 1 or-2 Al implying<br />

a local balance of interlayer<br />

K+.<br />

REFERENCES<br />

BAILEY S.W., 1984. Review of cation ordering in micas. Clays Clay Miner. 32, 81-92.<br />

ENGELHARDT V.G., LOHSE U ., LIPPMAA E., TORMAK M., MAGI M., 1981. 29 Si-NMR-Untersuchungen zur<br />

Verteilung der Silicium-und Aluminiumatome in Alumosilicatgitter von Zeolithen mit Faujasit­<br />

Struktur. Z. Anorg. Allg. Chem. 482, 49-64.<br />

FYFE C.A., THOMAS J.M., KLINOWSKI J., GOBBI G.G., 1983. Magic-Angle-Spinning NMR (MAS-NMR)<br />

Spectroscopy <strong>and</strong> the Structure of Zeolites. Angew. Chem. Int. Ed. Engl. 22, 259-275.<br />

GUGGENHEIM S., BAILEY S.W., 1978. Refinement of the margarite structure in subgroup symmetry:<br />

correction, further refinemen,t <strong>and</strong> comments. Am. Miner. 63, 186-187.<br />

HERRERO C.P ., SANZ J ., SERRATOSA J .M., 1985a. Si, AI <strong>di</strong>stribution in micas: analysis by high resolution<br />

29Si NMR spectroscopy. J. Phys. C.: Solid State Phys. 18, 13-22.<br />

HERRERO C.P., SANZ J., SERRATOSA J.M., 1985b. Tetrahedral cation ordering in layer silicates by 29 Si<br />

NMR spectroscopy. Solid State Comm. S3, 151-154.


High-Resolution MAS-NMR Spectriio(Layer Silicates ... 83<br />

KLINOWSKI J., RAMDAS S., THOMAS J.M., FYFE C.A., HARTMAN J.S., 1982. A Re-examination of Si, AI<br />

Ordering in Zeolites NaX. <strong>and</strong> NaY. J. Chem. Soc. Faraday Trans. 78 (II), 1025-1050.<br />

LIPPMAA E, MXGI M., SAMOSON A., ENGELHARDT G., GRIMMER A.R., 1980. Structural Stu<strong>di</strong>es of Silicates<br />

by Solid-State High-Resolution 29 Si NMR. J. Am. Chem. Soc. 102, 4889-4893.<br />

LIPSICAS M., RAYTHATHA R.H., PINNAVAIA T.J., JOHNSON I.D., GIESE R.F. Jr., COSTANZO P.M., ROBERT<br />

J.L., 1984. Silicon <strong>and</strong> aluminium site <strong>di</strong>stribution in 2:1 layered clays. Nature 309, 604-607.<br />

LOEWENSTEIN W., 1954. The <strong>di</strong>stribution of aluminium in the tetrahedra of silicates <strong>and</strong> aluminates.<br />

Am. Miner. 39, 92-96.<br />

MDLLER D., GESSNER W., BEHRENS H.J ., ScHELER G., 1981. Determination of the aluminium coor<strong>di</strong>nation<br />

in aluminium-oxygen compounds by solid-state high resolution 27 Al NMR. Chem. Phys. Lett.<br />

79, 59-62.<br />

RAUSELL-COLOM J .A., SANZ J ., FERNANDEZ M., SERRATOSA.J .M., 1979. Distribution of octahedral ions in<br />

phlogopites <strong>and</strong> biotites. Pp. 27-36, in: Proc. 6th Int. Clay Conf. 1978, Oxford (M.M. Mortl<strong>and</strong><br />

<strong>and</strong> V.C. Farmer, e<strong>di</strong>tors), Developments in Se<strong>di</strong>mentology 27.<br />

SANZ J ., SERRATOSA J .M., 1984. 29 Si <strong>and</strong> 27 AI High-Resolution MAS-NMR Spectra of Phyl/osilicates. J.<br />

Am. Chem. Soc. 106, 4790-4793.<br />

SAN~ J., StoNE W.E., 1983. NMR study of minerals. Ill. The <strong>di</strong>stribution of Mg2+ <strong>and</strong> Fe 2 + around the<br />

OH groups in micas. J. Phys. C.: Solid State Phys. 16, 1271-1281.<br />

SANZ J., MEYERS J., V!ELVOYE L., STONE W.E.E., 1978. The location <strong>and</strong> content of iron in natural<br />

biotites <strong>and</strong> phlogopites: A comparison of several methods. Clay Minerals 13, 45-52.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 85-100 (1985)<br />

The Upper Basin of the Ofanto River: Some Grain Size,<br />

Mineralogical <strong>and</strong> Chemical Factors which Show the<br />

Se<strong>di</strong>mentation Pattern <strong>and</strong> Mineral Source<br />

LUIGI DELL'ANNA<br />

Dipartimento Geomineralogico dell'Universita <strong>di</strong> Bari, Campus, Via G. Salvemini, 70124 Bari, Italia<br />

This general lecture, delivered by L. Dell'Anna, was prepared by F. Balenzano, L. Dell'Anna, M. Di<br />

Pierro <strong>and</strong> M. Moresi. -<br />

ABSTRACT- Through a study of 220 samples coming from deposits of the<br />

Lower-Middle Pliocene basin in the Valley of the Ofanto River (southern<br />

Italy), it has been possible to point out that the se<strong>di</strong>mentation took place in<br />

shallow sea-water which tends to deepen during deposition of the middle<br />

part of the pelitic sequence examined. The clastic material is made up mainly<br />

by clay minerals (illite, smectite, chlorite, kaolinite <strong>and</strong> rare mixed-layer<br />

illite-smectite), muscovite, quartz, feldspars, calcite <strong>and</strong> dolomite originating<br />

from the Irpinian Units <strong>and</strong> the so called «argille varicolori». Material<br />

from the «(irgille varicolori» has been found chiefly in the central part of<br />

the basin, whereas material from the Irpinian Units involved mainly the<br />

Campania areas nearS. Angelo dei Lombar<strong>di</strong>, Lioni, Calitri <strong>and</strong> S. Andrea <strong>di</strong><br />

Conza. The textural <strong>and</strong> compositional trends <strong>and</strong> factors found are common<br />

to other Lower-Middle Pliocene basins in southern Italy.<br />

Introduction<br />

The se<strong>di</strong>ments examined are to be<br />

found in rather extensive deposits<br />

along the Ofapto River Valley from<br />

Mt. Vulture to Ariano Irpino, within<br />

the <strong>di</strong>stricts of Ruvo del Monte,<br />

Rapo_ne, Calitri, Conza della Campa~<br />

nia, Teora,, Lioni, Morra de Sanctis, S. '<br />

Angelo dei Lombar<strong>di</strong> <strong>and</strong> Guar<strong>di</strong>a<br />

Lonibar<strong>di</strong>, in Campania (southern<br />

Italy). The deposits cover an area of<br />

approx 200 km 2 ; they are locally<br />

several meters deep <strong>and</strong> date from<br />

the Lower-Middle Pliocene. They witness<br />

a foredeep se<strong>di</strong>mentary marine<br />

basin (Fig. 1) which developed during<br />

the Lower-Middle Pliocene, after the<br />

Apulo-Gargano forel<strong>and</strong> subsided<br />

<strong>and</strong> the Apennine chain arose. The<br />

deposits were originally more exten­<br />

.sive <strong>and</strong> in a <strong>di</strong>fferent position, because<br />

the Middle Pliocene tectonic<br />

This research was carried out with the financial support of the Ministry of Public Education of<br />

Italy (M.P.I. 40%). -


86 L. Dell'Anna<br />

2<br />

~<br />

3<br />

~<br />

E5::53<br />

6<br />

lilllliilil<br />

Fig. i - Geologic map of Ofanto River Valley (Campania Region, southern Italy). 1: Carbonate<br />

platform Units (Upper Triassic-Lower Miocene); 2:


The Upper Basin of the Ofant6-Rive~ ... 87<br />

coming from several outcrops of the<br />

Ofanto River Valley showed a grainsize<br />

<strong>and</strong> compositional behaviour in<br />

accordance with the stratigraphic<br />

<strong>and</strong> topographic position of the <strong>di</strong>fferent<br />

parts of the pelitic sequence.<br />

Comparable behaviour has been<br />

found also in other se<strong>di</strong>ments of<br />

southern Italy. This lecture attempts<br />

to show the grain-size <strong>and</strong> compositional<br />

features which have been<br />

found in relation to their geologic significance.<br />

Grain size <strong>and</strong> compositional data<br />

reported in the following work were<br />

used: DI PIERRO & MORES! (1982;<br />

1984), DELL'ANNA & LAVIANO<br />

(1982), BALENZANO & DE MARCO<br />

(1984), BALENZANO (1984). They<br />

also supplied detailed data of the various<br />

areas of the basin, the analytical<br />

methods, the location of samples<br />

considered <strong>and</strong> the detailed geologic<br />

setting of the Ofanto River Valley.<br />

The present lecture aims at showing<br />

the help which clay mineralogy<br />

•% ~<br />

30<br />

20<br />

10<br />

a)<br />

b)<br />

E 'd" CO<br />

_ "' I<br />

.,. .,.<br />

V<br />

E<br />

:>_<br />

M<br />

"' A<br />

Fig_ 2 - Grain size composition of pelitic sequence from se<strong>di</strong>ments of the Ofanto River Valley. a)<br />

Average size frequency <strong>di</strong>stribution (with graphic representation of ascertained maxima) with b)<br />

range from maximum for each grain size grade; c) Average clay (63!lm) frequency <strong>di</strong>stribution with d) range from maximum to minimum; e) Triangular <strong>di</strong>agram<br />

showing the size <strong>di</strong>stribution of the samples (n = 220) in form of s<strong>and</strong>-silt-clay percentages (after<br />

- SHEPARD, 1954).<br />

S<strong>and</strong><br />

ilt


88<br />

lends to geology <strong>and</strong> also the importance<br />

of some analyses, such· as<br />

the quantitative analysis of clay<br />

minerals. Results from this analysis,<br />

when they are reproducible, are scientifically<br />

valid in spite of their being<br />

occasionally inexact.<br />

Grain size<br />

L. Dell'Anna<br />

The fine-grained se<strong>di</strong>ments of the<br />

Ofanto River Valley consist almost<br />

exclusively of materials ranging from<br />

63J.!m size grade; while the<br />

positive correlations between the size<br />

grades 2-4Jlm, 4-8J.1m <strong>and</strong> 8-16J.1m <strong>and</strong><br />

the negative correlation between the<br />

size grades 8-l6J.1m <strong>and</strong> 32-63J.1m have<br />

made it possible to determine the<br />

other maximum in the 8-32J.1m grain<br />

size grade. From the frequency <strong>di</strong>stribution<br />

(Fig. 2) <strong>and</strong> the correlations<br />

which have .. beenfound (Jal:>kl),<br />

three grain size grades of the clastic<br />

materials can be pointed out: clay<br />

(


fi"Ff' _ =•···"' ~o>hAAUA%» ->


90 L. Dell'Anna<br />

40<br />

%<br />

30<br />

a)<br />

N<br />

N<br />

20<br />

10<br />

"' "<br />

+<br />

ea<br />

+<br />

c)<br />

i<br />

max.<br />

med.<br />

min.<br />

0 0<br />

N N<br />

"" "'<br />

Fig. 3 - Compositional characteristics of pelitic sequence from se<strong>di</strong>ments of the Ofanto River<br />

Valley. a) Average mineralogical <strong>di</strong>stribution with b) range from minimum to maximum for each<br />

mineral; c) Average chemical <strong>di</strong>stribution with d) range from minimum to maximum for each<br />

oxide. S: smectite; I + Mu: illite + muscovite; K: kao!inite; Ch: chlorite; Q: quartz; F: feldspars;<br />

Ca: calcite; Do: dolomite.<br />

groups can be pointed out through<br />

the relationship between the main<br />

minerals <strong>and</strong> the three grain size<br />

grades above identified (Table 2). S<br />

<strong>and</strong> K are positively correlated; to the<br />

clay size grade; I <strong>and</strong> Ch to the silt<br />

size grade; Q, F, Ca <strong>and</strong> Do to the<br />

s<strong>and</strong> grade. Thus, concerning the<br />

se<strong>di</strong>mentation behaviour, S <strong>and</strong> K<br />

are connected to the clayey contribution,<br />

I <strong>and</strong> Ch to the silty contribution,<br />

Q, F, Ca <strong>and</strong> Do to the s<strong>and</strong>y<br />

contribution; K is also connected to<br />

the silty contribution. This relationship<br />

was confirmed by the results<br />

of a mineralogical analysis carried<br />

out on the clay-silt-s<strong>and</strong> grain size<br />

grades of the samples from deposits<br />

of Cairano <strong>and</strong> Conza della Campania<br />

(Table 3).<br />

The chemical behaviour <strong>and</strong> the<br />

statistical Table of the chemical data


.<br />

TABLE 2<br />

Relationships between main minerals <strong>and</strong> between each mineral <strong>and</strong> clay, silt, <strong>and</strong> s<strong>and</strong> grain size grades<br />

s a = -0.0161 0.0584 -0.0540 -0.3889 -0.3790 -0.1564 -0.0564<br />

x = 22% b = 21.3835 2.5225 8.3749 24.4891 16.1261 21.7509 5.0117<br />

r = -0.0293 0.3256 -0.2735 -0.7086 -0.7103 -0.4054 -0.3552<br />

I+ Mu a = 0.1504 0.1491 -0.4992 -0.2361 -0.3733 -0.1214<br />

x = 21% b = 0.6653 4.0345 26.2896 12.6180 26.1031 6.3017<br />

r = 0.4620 0.4159 -0.5008 -0.2437 -0.5329 -0.4205<br />

K a = 0.3880 -1.4124 -1.7180 -1.0620 -0.4661<br />

x = 4% b = 5.6831 21.2010 14.2298 22.3193 5.5340<br />

r = 0.3524 -0.4613 -0.5772 -0.4935 -0.5258<br />

~<br />

Ch a = -0.2064 -0.1803 -0.5313 ~0.1445<br />

x "'<br />

= 7% b = 17.2748 8.9469 22.0627 4.7862 ~<br />

'"


92 L. Dell'Anna<br />

TABLE 3<br />

Average mineralogical composition of clay, silt, <strong>and</strong> s<strong>and</strong> grain size grades from samples of<br />

Cairano <strong>and</strong> Conza della Campania (DELL'ANNA~&TA:VIAN0T~t982) -~<br />

% clay<br />

smectite 49<br />

I+ Mu 28<br />

kaolinite 6<br />

chlorite 5<br />

quartz 4<br />

feldspars 1<br />

calcite 7<br />

dolomite<br />

I + Mu: illite + muscovite<br />

support the observation related<br />

above. Besides the carbonate components<br />

<strong>and</strong> very small amounts of<br />

Ti02, P 2 0s, CaO, MnO <strong>and</strong> Na20, the<br />

main oxides are Si02, Alz03, H20+,<br />

--~-~~-~- --~Fe-z03;KzO~<strong>and</strong>--MgO-,--with SiOz prevailing<br />

over all, Alz03 quite abundant,<br />

<strong>and</strong> all the others represented<br />

by small quantities (Fig. 3). Si02 is<br />

negatively correlated to all the other<br />

· main oxides, <strong>and</strong> this agrees with the<br />

reasonable amount of quartz. The<br />

positive correlation between almost<br />

all the possible couples which can be<br />

formed from Alz03, H20+, Fe203, KzO<br />

<strong>and</strong> MgO is in agreement with the<br />

presence of clay minerals. The positive<br />

correlation (Table 4) SiOz-s<strong>and</strong><br />

appears to be due to a large amount<br />

of quartz in this size grade, while the<br />

positive correlation between the<br />

amount of each main oxide (Alz03,<br />

Fe20 3, MgO, K20 <strong>and</strong> H20+) <strong>and</strong> the<br />

amounts of clay <strong>and</strong> silt respectively<br />

appear to be related to the almost<br />

exclusive presence of clay minerals in<br />

these two size grades. The positive<br />

correlations between Alz03 <strong>and</strong> Fez03<br />

<strong>and</strong> between each of these two oxides<br />

<strong>and</strong> H20+ seem to support the pressilt<br />

s<strong>and</strong><br />

17<br />

26 17<br />

6<br />

9 5<br />

13 24<br />

6 25<br />

20 25<br />

3 4<br />

ence of Fe-Al hydroxides in agreement<br />

whit the results of X-ray analysis.<br />

Origins<br />

The proximity to the source shown<br />

by the texture, <strong>and</strong> the scarce <strong>di</strong>agenesis<br />

pointed out by mineralogy<br />

in<strong>di</strong>cate parent rock with lithofacies<br />

consistent with the compositional<br />

characteristics of the se<strong>di</strong>ments of<br />

the basin. The references (BOENZI et<br />

al., 1968; OGNIBEN, 1969; HIEKE<br />

MERLIN et al., 1971; PIERI &<br />

WALSH, 1973; MAGGIORE &<br />

WALSH, 1975; HUERTAS et al.,<br />

1977; PESCATORE, 1978; PESCA­<br />

TORE et al., 1980; LOJACONO, 1981;<br />

1983; ORTOLANI & TORRE, 1981;<br />

DI PIERRO & MORESI, 1982) suggest<br />

that the source-rock of the Ofanto<br />

Valley se<strong>di</strong>ments could be found in<br />

the Irpinian Units, as the «Serra<br />

Palazzo Formation>>, «Castelvetere<br />

Flysch» <strong>and</strong> «Gorgoglione Flysch».<br />

The arenaceous <strong>and</strong>/or silty or/<strong>and</strong><br />

pelitic series of these units, which are<br />

chiefly composed of quartz, feld-


TABLE 4<br />

Relationships between main oxides <strong>and</strong> between each oxide <strong>and</strong> clay, silt, <strong>and</strong> s<strong>and</strong> grain size grades<br />

Si0 2 a = -0.3309 -0.1988 -0.0807 -0.2692 -0.3545<br />

x = 65.0% b = 38.6624 17.7744 7.6202 4.7958 27.9983<br />

r = -0.8068 -0.6867 -0.7182 -0.4505 -0.8251<br />

Al 2 0 3 a = 0.2838 0.1767 0.0769 0.4298<br />

x = 17.2% b = -0.0106 -0.6532 1.7249 -2.4077<br />

r = 0.4030 0.6485 0.5293 0.4111<br />

Fez03 a = 0.1158 0.0053 0.8810<br />

x = 4.9% b = 1.8181 3.0207 0.6873<br />

r = 0.2993 0.0259 0.5935 ~<br />

"'<br />

MgO a = 0.2254 1.9611 ~<br />

/ ~<br />

x = 2.4% b = 2.5101 0.3015<br />

"' ....<br />

r = 0.4224 0.5113 bl<br />

!'><br />

K 2 0 a = 1.5485 "' s·<br />

x = 3.1% b = 0.2541 ~<br />

r = 0.2154 s.<br />

"'<br />

HzO ~<br />

~'>•<br />

x = 5.0%<br />

;:l•<br />

0:<br />

!:J:j<br />

Si0 2 Al 203 Fe 203 MgO K 2 0 H 2 0<br />

~·<br />

CLAY a - -0.1044 0.0454 0.0225 0.0079 0.0027 0.0325<br />

x = 39.1% b = 54.1330 11.4670 0.8720 1.5251 2.2399 2.5600<br />

r = -0.4311 0.5260 0.4284 0.4115 0.2171 0.4468<br />

SILT a = -0.0280 0.0155 0.0199 0.0086 0.0034 0.0335<br />

x = 48.0% b = 51.4018 12.4947 2.7930 1.4227 2.1803 2.2180<br />

r = -0.0910 0.1413 0.2985 0.3501 0.2170 0.3626<br />

SAND a = 0.1115 -0.0500 -0.0319 -0.0121 -0.0044 -0.0487<br />

x = 12.9% b = 48.6192 13.8845 4.1633 1.9911 2.4027 4.4981<br />

r = 0.4834 -0.6083 -0.6367 -0.6572 -0.3707 -0.7009<br />

Symbols as in Table 1<br />

\0<br />

w


'£.<br />

TABLE 5<br />

Compositional characteristics of samples from Calitri, Gor~oglione Flysch <strong>and</strong> «argille varicolori»<br />

whole sample<br />

I<br />

Gorgoglione Gorgoglione «argille varicolori» (2)<br />

Calitri (1) Flysch (1) Calitrii (1) Flysch (1)<br />

clay minerals 49 51 Si0 2 51.0 50.9 smectite<br />

quartz 18 19 Al 2 0 3 13.1' 15.1 I+ Mu<br />

feldspars 10 10 Fe 2 03 3.4 5.0 kaolinite<br />

calcite 19 18 M gO 2.9 2.6 chlorite<br />

dolomite 4 2 CaO 12.1 9.1 quartz<br />

clay fraction<br />

Na 2 0 1.1 1.3 feldspars<br />

smectite 58 18<br />

illite 29 61 K 2 0 2.3 3.0 calcite<br />

K+ Ch 13 13<br />

other 8 H 2 0 + C0 2 13.5 12.4 dolomite<br />

(1) from Dl PIERRO & MORESI (1982); (2) from ABBATICCHIO et al. (1981) <strong>and</strong> Dl PIERRO & MORESI (1986).<br />

I + Mu: illite + muscovite; K + Ch: kaolinite + chlorite; tr: traces<br />

60<br />

12<br />

13<br />

6<br />

5<br />

2<br />

2<br />

tr<br />

!:"""'<br />

tl<br />

:::::::<br />

"'<br />

;..:<br />

;;<br />

;;<br />

~


The Upper Basin of the Ofa·ntoRiver ... 95<br />

spars, muscovite, carbonates in<br />

coarse size grade, <strong>and</strong> of clay minerals<br />

(illite, smectite, chlorite <strong>and</strong><br />

kaolinite) in fine size grade, seem to<br />

be the probable parent rocks. On the<br />

other h<strong>and</strong> the compositional characteristics<br />

of the pelitic se<strong>di</strong>ments from<br />

the «Gorgoglione Flysch» of the lrpinian<br />

Units compared with those from<br />

Calitri <strong>and</strong> S. Andrea <strong>di</strong> Conza of the<br />

Ofanto basin (DI PIERRO & MORE­<br />

SI, 1982) (Table 5), seem to support<br />

this supposition. However, the pelitic<br />

se<strong>di</strong>ments from the Ofanto River Valley<br />

which have been found (Table 5)<br />

(DI PIERRO & MORES!, 1982), in<br />

comparison with those from the Irpinian<br />

Units, richer in smectite <strong>and</strong><br />

poorer in Ab03, Fe203 <strong>and</strong> K20, in<strong>di</strong>­<br />

.cate the presence of clastic material<br />

from rich-smectite pelitic sources, as<br />

is to be found in the pelitic mernl?ers<br />

of «argille varicolori>> (BELVISO et<br />

al., 1977; AMICARELLI et al., 1977;<br />

ABBATICCHIO et al., 1981). DI PIER­<br />

RO & MORES!, 1985). This clastic<br />

contribution seems to account for the<br />

presence of Fe-Al hydroxides from<br />

«argille varicolori» <strong>and</strong> also to explain<br />

the large grain size range of<br />

some minerals, such as K (Table 2),<br />

whose presence is consistent both<br />

with the detrital material from the<br />

Irpinian basin <strong>and</strong> with that from<br />

« argille varicolori ».<br />

Such hypotheses agree with the re-\<br />

gional geology. As a matter of fact the<br />

Campania-Lucania carbonate platform,<br />

the Lagonegro basin, the<br />

Abruzzo-Campania carbonate platform<br />

<strong>and</strong> the Molisano basin, which<br />

made up the southern paleo-<br />

Apennine, since the Lower Miocene<br />

changed their original paleogeographic<br />

setting because of various<br />

tectonic events (ORTOLANI & TOR­<br />

RE, 1981). Thus, during the Lower<br />

Miocene in the Apennine area, which<br />

at present includes the Ofanto Valley,<br />

the Campania-Lucania platform<br />

broke up <strong>and</strong> the «argille varicolori»<br />

overthrust the broken-up platform<br />

deposits <strong>and</strong> part of the Lagonegro<br />

basin. A new se<strong>di</strong>mentary basin, the<br />

Irpinian basin, set in on the overthrust<br />

<strong>and</strong> the undeformed<br />

Lagonegro Units; during successive<br />

Miocenic <strong>and</strong> Lower Pliocenic events<br />

the units of this basin shifted to their<br />

present position. The successive<br />

marine invasion over the eastern<br />

Apennines gave rise to various<br />

se<strong>di</strong>mentary basins <strong>and</strong> also the<br />

basin of the Ofanto River Valley.<br />

Therefore, because of their<br />

paleogeographic <strong>and</strong> tectonicstratigraphy,<br />

the Irpinian Units <strong>and</strong><br />

the


96 L. Dell'Anna<br />

basin development <strong>and</strong> the <strong>di</strong>stribution<br />

trends of the minerals. However;<br />

by using the statistical table bf data<br />

from the grain size, mineralogical<br />

<strong>and</strong> chemical analyses of samples<br />

taken in series from the pelitic sequence,<br />

<strong>and</strong> by detailed field observations<br />

it was possible to place most<br />

of the sample (n = 195) in an adequate<br />

stratigraphic position. Thus, the<br />

correct stratigraphic position of the<br />

samples made it possible also to recognize<br />

some grain size, mineralogical<br />

<strong>and</strong> chemical trends (Fig. 4) <strong>and</strong> to<br />

<strong>di</strong>stinguish the bottom part, which<br />

settled during marine invasion, from<br />

the top one, which settled during the<br />

-------retreat of the sea, <strong>and</strong> both from the<br />

middle part of the pelitic sequence of<br />

the Ofantose<strong>di</strong>ments.'I'he grain size,<br />

mineralogical <strong>and</strong> chemical characteristics<br />

<strong>di</strong>stinguishing the middle<br />

part from the bottom <strong>and</strong> the top<br />

ones are more sharply outlined than<br />

those which <strong>di</strong>stinguish the bottom<br />

<strong>and</strong> the top parts. However, the middle<br />

samples (n = 91) are richer (Table<br />

6) in clay, smectite <strong>and</strong> Fe203, <strong>and</strong><br />

po~rer in s<strong>and</strong>, quartz <strong>and</strong> SiOz,<br />

when compared to the other samples<br />

(Student's t-test in<strong>di</strong>cates statistical<br />

significance P 2:99.9%). The bottom<br />

samples (n = 43) contain more<br />

s<strong>and</strong> than the top samples (n = 61)<br />

<strong>and</strong> less clay, smectite, <strong>and</strong> Fe203<br />

(Student's t-test in<strong>di</strong>cates P 2:99.9%).<br />

S<strong>and</strong> 50<br />

Silt<br />

%<br />

16<br />

":>.<br />

M<br />

"'<br />

'Ill ill~'<br />

N b)<br />

'<br />

M<br />

,<br />

:;-_<br />

0 0 15 63 I'-m<br />

3,0 %<br />

_§bottom<br />

~middle<br />

OJIIlll top<br />

-<br />

50<br />

-<br />

'if-=-<br />

)f<br />

/.I<br />

~ ,;<br />

80<br />

0<br />

~<br />

Al203.<br />

50<br />

Fig. 4 - Grain size, mineralogical <strong>and</strong> chemical trends in three parts of pelitic sequence from<br />

se<strong>di</strong>ments of the Ofanto River Valley. a) s<strong>and</strong>-silt-clay, c) smectite-feldspars-quartz, d) Si02-Al20 3-<br />

Fe203 trends <strong>and</strong> b) <strong>di</strong>agram of32-63flm size grade against >63flm one of samples from bottom,<br />

middle <strong>and</strong> top parts of pelitic sequence. S: smectite; F: feldspars; Q:.quartz.<br />

Fe 2 o 3<br />

20<br />

Al203


TABLE 6<br />

Main .grain size, mineralogical <strong>and</strong> chemical characteristics <strong>di</strong>stinguishing samples from three parts of the pelitic sequence<br />

Parts Thickness Nomenclature after Clay Silt /S<strong>and</strong> 63~m/ s Q c~i0 2 Al203<br />

m SHEPARD (1954) 32-63~m<br />

top -30 silty clay to s<strong>and</strong>y 38.1 46.4 15.5 2.0 21 17 66.2 17.3<br />

(n = 61) clayey silt<br />

middle -120 silty clay to clayey 45.0 51.3 3.7 0.6 34 13 63.3 17.5<br />

(n = 91) silt<br />

bottom -so silty clay to silty 32.5 49.3 18.2 3.6 17 18 66.3 16.9<br />

(n = 43) s<strong>and</strong><br />

In parentheses number of samples from several parts; other numbers represent average values; symbols as in Table 2<br />

Fe203<br />

4.7<br />

5.4<br />

4.3<br />

S;l<br />

"'<br />

~<br />

,'


98 L. Dell'Anna<br />

The behaviour of clay, smectite<br />

<strong>and</strong> s<strong>and</strong> suggests a deepening of the<br />

se<strong>di</strong>mentary basin during the settling<br />

of the middle part of the pelitic sequence<br />

<strong>and</strong> in<strong>di</strong>cates that during<br />

the se<strong>di</strong>mentation of the bottom part<br />

the sea-water was more shallow than<br />

that of the top part. The increase of<br />

clay <strong>and</strong> smectite could have been<br />

caused not only by deepening but<br />

.also by the contribution of material<br />

from ><br />

found in the middle part of the pelitic<br />

sequence outcropping in the area of<br />

Calitri.<br />

Concerning the areal <strong>di</strong>stribution<br />

of the main minerals in the middle<br />

part, which is the most clearly recognizable<br />

by grain size, mineralogical<br />

<strong>and</strong> chemical characteristics, the following<br />

areas were noted (Fig. 5): an<br />

area located in the central part of the<br />

present basin showing the highest<br />

amountsofclay-minerals (C.m.)<strong>and</strong><br />

S associated with the lowest amounts<br />

of Q + F <strong>and</strong> carbonates (C. a.); two<br />

areas, one sprea<strong>di</strong>ng from S. Angelo<br />

dei Lombar<strong>di</strong> to Lioni, <strong>and</strong> the other<br />

from Calitri to S. Andrea <strong>di</strong> Conza,<br />

which show the lowest amount of C.<br />

m. <strong>and</strong> S associated with the highest<br />

amounts of Q + F <strong>and</strong> me<strong>di</strong>um<br />

amounts of C. a.; finally, three other<br />

areas, the first SW of S. Angelo dei<br />

Lombar<strong>di</strong>, the second sprea<strong>di</strong>ng from<br />

Guar<strong>di</strong>a Lombar<strong>di</strong> to Teora, <strong>and</strong> the<br />

third located E of Calitri, in which<br />

the main minerals are present in<br />

me<strong>di</strong>um amounts. Therefore, the<br />

seem to be the<br />

chief parent rocks of the central part,<br />

while the Irpinian Units contributed<br />

to the other. two areas; the clastic<br />

se<strong>di</strong>ments of the last three areas seem<br />

to come equally from the two sourceunits.<br />

If these hypotheses are true, the<br />

paleogeographic <strong>di</strong>sposition of the<br />

pre-Pliocenic units surroun<strong>di</strong>ng the<br />

basin during se<strong>di</strong>mentation was not<br />

ITIIIIIIl > 65% 25% > 5.0 < 15% < 20%<br />

~<br />

m; 55-65% 25% 3.0-4.5 16 - 20% 20 - 25%<br />

20% 20 - 25%<br />

0 10 15km<br />

Fig. 5 - Main minerals pattern in middle part of pelitic sequence from se<strong>di</strong>ments of the Ofanto<br />

River Valley. C.m.: clay minerals; S: smectite; Q + F: quartz+ feldspars; C.a.: carbonates.


The Upper Basin of the OfantoRi1Jer ... 99<br />

very <strong>di</strong>fferent from the present one<br />

(Fig. 1).<br />

Conclusions<br />

The grain size <strong>and</strong> mineralogical<br />

trends found make it possible to<br />

point out that:<br />

a) the pelitic sequence se<strong>di</strong>mentation<br />

of the Lower-Middle Pliocene<br />

basin of the upper Ofanto River Valley<br />

took place in shallow sea-water<br />

with a deepening during the deposition<br />

of the middle part;<br />

b) the grain size <strong>and</strong> compositional<br />

characteristics of the clastic material<br />

in<strong>di</strong>cate three main grain size contributions:<br />

clay rich in $ <strong>and</strong> K, silt<br />

rich in I (with Mu) <strong>and</strong> Ch, <strong>and</strong> finally<br />

s<strong>and</strong> rich in Ca, Do, Q :;tnd F;<br />

c) the source-areas are two: the<br />

Irpinian Units <strong>and</strong> the «argille varicolori>>.<br />

The former provided m\inly<br />

clay minerals (I + Mu <strong>and</strong> subor<strong>di</strong>nately<br />

S, Ch <strong>and</strong> K) as well as Q, F, Ca<br />

<strong>and</strong> Do, the latter mainly smectiterich<br />

clay minerals <strong>and</strong> Fe-Al hydroxides;<br />

d) the clastic material from «argille<br />

varicolori» became more abundant<br />

starting from the beginning of<br />

the middle part se<strong>di</strong>mentation of the<br />

pelitic sequence <strong>and</strong> was deposited<br />

with more abundance in the central<br />

part of the basin;<br />

e) the clastic material from the<br />

Irpinian Units prevailed in the areas<br />

located nearS. Angelo dei Lombar<strong>di</strong>,<br />

Lioni, Calitri <strong>and</strong> S. Andrea <strong>di</strong> Conza;<br />

f) both types of clastic material are<br />

equally abundant in the areas located<br />

SW of S. Angelo dei Lombar<strong>di</strong>, near<br />

Guar<strong>di</strong>a Lombar<strong>di</strong> <strong>and</strong> Teora, <strong>and</strong><br />

finally E of Calitri.<br />

The evidence collected from the<br />

stu<strong>di</strong>es being carried out suggests<br />

that much of the grain-size, chemical<br />

<strong>and</strong> mineralogical behaviour found<br />

in the upper Ofanto Valley basin is<br />

common to other Lower-Middle<br />

Pliocenic se<strong>di</strong>ments of the southern<br />

Apennines.<br />

REFERENCES<br />

ABBATICCHIO P., AMICAREiir V., DELL'ANNA L., Dr PIERRO M., 1981. Argille varicolori della zona <strong>di</strong><br />

Stigliano (MT): indagini mineralogiche, chimiche e granulometriche. Rend. Soc. It. Min. Petr. 37,<br />

195-211. '<br />

AMICARELLIV., DELL'ANNA L., Dr PIERRO M., GUERRICCHIO A., MELIDORO G., PETRELLA M., 1971.Alcuni<br />

dati sulla composizione chimico-mineralogica e sui caratteri geotecnici delle argille varicolori dellli<br />

Calabria. Atti 2° Congr. Naz. sulle Argille 1976, Bari, Geol. Appl. Idrogeol. 12, 429-451.<br />

BALENZANO F., 1984. Caratteri granulometrici, mineralogici e chimici ed aspetti paleoambientali delle<br />

«Argille azzurre» <strong>di</strong> S. Angelo dei Lombar<strong>di</strong>, Morra de Sanctis, Teora e Lioni (AV). Geol. Appl.<br />

Idrogeol. (in press).<br />

BALENZANO F., DE MARCO A., 1984. Caratteri granulometrici, mineralogici e chimici e aspetti paleoambientali<br />

delle «Argille azzurre» <strong>di</strong> Guar<strong>di</strong>a Lombar<strong>di</strong> (AV). Geol. Appl. IdrogeoL 19, 1-15.<br />

BELVISO R., CHERUBINI C., COTECCHIA V., DEL PRETE M., FEDERICO A., 1977. Dati. <strong>di</strong> composizione<br />

mineralogica delle argille varicolori affioranti nell'Italia Meri<strong>di</strong>onale fra i fiumi Sangro e Sinni.<br />

Atti 2° Congr. Naz. sulle Argille 1976, Bari, Geol. Appl. Idrogeol. 12, 123-142.<br />

BoENZI F., CrARANFI N., PIERI P., 1968. Osservazioni geologiche nei <strong>di</strong>ntorni <strong>di</strong> Accettura e <strong>di</strong> Oliveto<br />

Lucano. Mem. Soc. Geol.- It. 8, 379-392.


100<br />

L. Dell'Anna<br />

DELL'ANNA L., LAVIANO R., 1982. Composizione mineralogica, granulometrica e chimica delle argille<br />

grigio-azzurre inframesoplioceniche <strong>di</strong> Cairano e Conza della Campania. Rend. Soc.lt. Min. Petr.<br />

38, 871-881. . - - -~--· ~· ~~.----~·---<br />

DEL PRETE M., TRISORIO Lruzzr G., 1981. Risultati dello stu<strong>di</strong>o preliminare della frana <strong>di</strong> Calitri (AV)<br />

mobilitata dalla scossa sismica del 23 novembre 1980. Geol. Appl. Idrogeol. 16, 1-13.<br />

Dr PrERRO M., MoRES! M., 1982. Caratteri granulometrici, mineralogici e chimici dei se<strong>di</strong>menti pelitici<br />

inframesopliocenici <strong>di</strong> Calitri e S. Andrea <strong>di</strong> Conza (AV). Rend. Soc. It. Min. Petr. 38, 353-366.<br />

Dr PrERRO M., MoRES! M., 1984. Caratteri granulometrici, mineralogici e chimici dei se<strong>di</strong>menti pelitici<br />

inframesopliocenici <strong>di</strong> Rapone e Ruvo del Monte. Geol. Appl. Idrogeol. 19, 107-120. ·<br />

Dr PrERRO M.,-MORESI M., 1985. Compositional Characteristics of «Argille Varicolori» from Outcrops<br />

of Bisaccia <strong>and</strong> Calitri, Avellino Province, Southern Italy. These Procee<strong>di</strong>ngs.<br />

HIEKE MERLIN 0., LA VoLPE 1., NAPPI G., PICCARRETA G., REDINI R., SANTAGATI G., 1971.Note illustrative<br />

della Carta Geologica d'Italia. Fogli 186 e 187 «S. Angelo dei Lombar<strong>di</strong>», «Melfi>>, 1-188,<br />

Roma.<br />

HUERTAS F., bNARES J ., PESCATORE T ., POZZUOLI A., 1977. Risultati preliminari sui depositi pelitici <strong>di</strong><br />

mare profondo nel Flysch <strong>di</strong> Gorgoglione (Appennino Meri<strong>di</strong>onale, Italia). Atti 2° Congr. Naz.<br />

sulle Argille 1976, Bari, Geol. Appl. Idrogeol. 12, 251-259.<br />

LoJACONO F., 1981. Contributo alia ricostruzione paleogeografica del bacino <strong>di</strong> se<strong>di</strong>mentazione del<br />

Flysch <strong>di</strong> Gorgoglione (Lucania). Boll. Soc. Geol. It. 100, 193-211.<br />

LoJACONO F., 1983. Nuovi dati sui caratteri deposizionali del Flysch <strong>di</strong> Gorgoglione. Considerazioni<br />

sulla paleomorfologia del bacino. Dipartimento <strong>di</strong> Geologia e Geofisica, Bari 1-37, Adriatica Ed.,<br />

Bari.<br />

MAGGIORE M., WALSH N., 1975. I depositi plio-pleistocenici <strong>di</strong> Acerenza (Potenza). Boil. 'soc. Geol. It.<br />

94, 93-109.<br />

OGNIBEN L., 1969. Schema introduttivo alia Geologia del confine calabro-lucano. Mem. Soc. Geol.lt.<br />

8, 453-763. .<br />

--- -~~----~-CJRTOLANI F.·; To-:R'RE M:;-t98 L Guida all'escursione dell' area interessata dal terremoto del 23 novembre<br />

1980. Rend. Soc. Geol.lt. 4, 173-214.<br />

PESCATORE T., 1978. Evoluzione tettonica del Bacino Irpino (Italia Meri<strong>di</strong>onale) durante il Miocene.<br />

Boll. Soc. Geol. It. 97, 781-805.<br />

PESCATORE T ., POZZUOLI A., STANZIONE D., TORRE M., HuERTAS F., LINARES J ., 1980. Caratteri mineralogici<br />

e geochimici dei se<strong>di</strong>menti pelitici. del Flysch <strong>di</strong> Gorgoglione (Lucania, Appennino Meri<strong>di</strong>onale).<br />

Per. Min. 49, 293-330.<br />

PrERI P ., WALSH N., 1973. Osservazioni stratigrafiche sulla formazione <strong>di</strong> Serra Palazzo nell'ambito del<br />

po 187 «Melfi>>. Boll. Soc. Naturalisti in Napoli 82, 171-190.<br />

SHEPARD F.P., 1954. Nomenclature based on s<strong>and</strong>-silt-clay ratios. J. Se<strong>di</strong>ment. Petrol. 24, 151-158.


Miner. Petrogr. Acta<br />

Vol. 29·A, pp. 101-119 (1985)<br />

The Role of Microfabric in Clay Soil Stability·<br />

FERNANDO VENIALE<br />

Dipartimento <strong>di</strong> Scienze della Terra, Sezione mineralogico-petrografica, Universitit <strong>di</strong> Pavia, Via A. Bassi 4, 27100<br />

Pavia, Italia<br />

This general lecture, delivered by F. Veniale, was prepared in association with N. Augustithis 1 ,F.<br />

Caucia, S. Cocito, A. Federico 2 <strong>and</strong> L. Vacchini.<br />

1 Hymettou 89 - Pagrati, Athens, Greece<br />

2 Istituto <strong>di</strong> Geologia Applicata e Geotecnica, Facoltit <strong>di</strong> Ingegneria, Universitit <strong>di</strong> Bari, Via Re David 200, 70125<br />

Bari, Italia<br />

ABSTRACT- Microfal;Jric analysis of clayey l<strong>and</strong>slide bo<strong>di</strong>es, as investigated<br />

by scanning electron microscopy (SEM), is a suitable tool for helping to<br />

underst<strong>and</strong> the causes of soil movements <strong>and</strong> slope instability, as.well as<br />

other mechanical properties <strong>and</strong> behaviour.<br />

Clay shale type materials are frequently found in Italy (varicoloured shales,<br />

interbeds in Flysch formations). The transitional character ·of their properties<br />

between those of stiff clays <strong>and</strong> soft rocks is a cause of uncertainty with<br />

respect to their behaviour in civil engineering works. The factors that control<br />

the behaviour of clay shales are: a) the presence of.true clay minerals, b) the<br />

gra<strong>di</strong>ng of clay fractions, c) the type of clay mineral. d) the strength of bonds,<br />

e) the permanence of bonds, f) the effective stresses <strong>and</strong> degree of saturation,<br />

g) the density <strong>and</strong> geological stress history, h) the nature <strong>and</strong> strength of<br />

<strong>di</strong>scontinuities, <strong>and</strong> i) the influence of <strong>di</strong>scontinuities on the in situ permeability.<br />

Several field examples <strong>and</strong> laboratory experiments with mixtures of <strong>di</strong>fferent<br />

clay minerals illustrate various con<strong>di</strong>tions: loose network <strong>and</strong> «domain>><br />

texture with microfissures in smectitic <strong>and</strong> kaolinitic soils, respectively; influence<br />

of the variations ·of water content (drying/wetting cycles), <strong>and</strong> of<br />

• electrolyte concentration in pore water solutions, on the fabric of soil composed<br />

of swelling or inert clay minerals; rearrangement of clay particles<br />

under shearing stress actions, <strong>and</strong> its influence on shear strength; as well as<br />

the effect of precipitates (calcite, gypsum) on friction strength. Weathering<br />

processes play an important role in mo<strong>di</strong>fying the particle arrangement <strong>and</strong><br />

weakening the bon<strong>di</strong>ng forces.<br />

In the case of overconsolidated clays, the influence of fabric mo<strong>di</strong>fication<br />

(from iso-oriented packing to more open arrangement of the clay particles)<br />

, due to ,«softening» by unloa<strong>di</strong>ng, which is the cause of tension <strong>di</strong>sturbance<br />

<strong>and</strong> bon<strong>di</strong>ng relaxation, is suggested as a possible mechanism of development<br />

of failure.


102 F. Veniale<br />

Introduction<br />

Clayey soils <strong>and</strong> their relevant<br />

properties are of primary concern for<br />

specialists dealing with l<strong>and</strong>slide<br />

problems. The considerable complexity<br />

of these materials certainly warrants<br />

separate treatments of the sub-·<br />

ject, <strong>and</strong> a detailed knowledge of<br />

their mechanical, hydraulic, geotechnical<br />

<strong>and</strong> engineering parameters requires<br />

a reasonably comprehensive<br />

account of the relationship among<br />

the wide range of factors governing<br />

soil behaviour, i.e. its response to<br />

<strong>di</strong>fferent stimuli. A number of <strong>di</strong>fferent<br />

sequences of con<strong>di</strong>tions <strong>and</strong><br />

___________ events can set the stage for failure.<br />

There are still a number of unknown<br />

<strong>and</strong> unexpected behaviours, <strong>and</strong><br />

their recognition <strong>and</strong> testing is fundamental<br />

for understan<strong>di</strong>ng the<br />

causes of strength loss <strong>and</strong> failure.<br />

The conventional methods of<br />

analysis do not satisfactorily model<br />

the field behaviour of clayey soils; in<br />

fact, although soil mechanics theory<br />

is adequate to describe the occurrence<br />

of soil mass movements in<br />

mathematical terms, little is known<br />

about the factors <strong>and</strong> processes involved<br />

in natural slope stability <strong>and</strong><br />

how to pre<strong>di</strong>ct or control their<br />

occurrence, except in very specific instances.<br />

Moreover, <strong>di</strong>screpancies exist<br />

between geological <strong>and</strong> engineering<br />

approaches. Geologists tend to<br />

place greater emphasis on mineralogical<br />

<strong>and</strong> textural analysis, while<br />

geotechnical engineers rely more on<br />

practical tests along with analytical<br />

approaches. Therefore, even limited<br />

to the interface problems between<br />

geologicaLsciences __ <strong>and</strong>. geothecnical<br />

engineering, here is a need for the<br />

development of a common base of<br />

knowledge <strong>and</strong> a common language.<br />

In this inter<strong>di</strong>sciplinary light,<br />

when combined with mineralogy <strong>and</strong><br />

geological history, detailed information<br />

concerning the soil microfabric<br />

will help in understan<strong>di</strong>ng the nature<br />

of the problems relating to slope instability,<br />

susceptibility to erosion<br />

<strong>and</strong> permeation, <strong>and</strong> also in devising<br />

suitable reme<strong>di</strong>al measures.<br />

Scanning electron microscopy<br />

(SEM) (now becoming routinely<br />

available because of its increased<br />

use) is a tool offering many possibilities<br />

in the study of soil fabric, properties<br />

<strong>and</strong> behaviour. Although the<br />

usual observations with SEM do not<br />

produce quantifiable results (in<br />

terms of the engineering properties of<br />

soils) that can be <strong>di</strong>rectly applicable<br />

in practice, they can be very valuable<br />

in soil mechanics research for qualitative<br />

appreciation <strong>and</strong> confirmation<br />

of soil properties. Namely, SEM<br />

observations can visually illustrate<br />

properties otherwise in<strong>di</strong>rectly derived,<br />

as well as provide an insight<br />

into the behaviour of soils (compaction,<br />

cohesion, permeability, drainage,<br />

swelling con<strong>di</strong>tions, strength, intact<br />

<strong>and</strong> remoulded states, fabric induced<br />

by shearing <strong>and</strong> by reconstitution,<br />

etc.). At present there· is an increasing<br />

trend towards quantifying<br />

fabric analysis, renewing <strong>and</strong> stimulating<br />

the interest in such a tool for.<br />

the study of soil properties <strong>and</strong> behaviour.


The Role of Microfabric in Clay Soil Stability 103<br />

Importance of micro-fabric in l<strong>and</strong>slide<br />

researches<br />

Soils are «particulate me<strong>di</strong>a», i.e.<br />

substances having a framework of<br />

more or less easily separable solid<br />

components (skeleton= s<strong>and</strong>- <strong>and</strong><br />

silt- size grains of quartz, feldspars,<br />

carbonates, etc.; plasma = clays <strong>and</strong><br />

other colloidal particles), which enclose<br />

interconnected voids of irregular<br />

size <strong>and</strong> shape. The void spaces<br />

may be wholly or partly filled with<br />

liquids, generally water, <strong>and</strong> gases<br />

(air, etc.). The nature,


104 F. Veniale<br />

changes in the chemical composition<br />

of pore solution favouring the <strong>di</strong>spersion<br />

of the solid particles. The spontaneous<br />

intake of moisture by cohesive<br />

soils is associated with volume<br />

increase. If this is prevented, pressure<br />

develops. The swelling pressure decreases<br />

with increasing moisture content<br />

<strong>and</strong> porosity. Volume expansion<br />

during water intake may be viewed<br />

as reverse consolidation.<br />

Plasticity is influenced by the characteristics<br />

of the clay-liquid system<br />

such as (clay) mineral composition,<br />

specific particle surface, clay particle<br />

shape <strong>and</strong> size, type <strong>and</strong> concentration<br />

of the solution ions. Any funda-<br />

____ ----~--mental inquiry into the mechanical<br />

properties of soils requires a knowledge<br />

of the changes in the chemistry<br />

of the pore fluids accompanying<br />

variations in applied stresses.<br />

Accor<strong>di</strong>ng to <strong>di</strong>fferent points of<br />

view there are <strong>di</strong>fferent «kinds» of<br />

water: pore(mobile), solvatation,<br />

adsorbed (held) water. Different re"<br />

taining forces act on the soil water<br />

<strong>and</strong> govern its mobility; for example,<br />

size <strong>and</strong> shape of pore voids influence<br />

the value of the capillary forces.<br />

Also, the adsorption of water molecules<br />

on the particle surfaces (surface<br />

tension forces), <strong>and</strong> the suction (work<br />

for removal) of water from the soil<br />

pores are to be considered. Moisture<br />

transport (water flow under the influence<br />

of a hydraulic gra<strong>di</strong>ent) is the<br />

'mechanism most often of practical<br />

interest in determining the con<strong>di</strong>tion<br />

(degree) of saturation.<br />

It should be emphasized that water<br />

encountered in soils generally contains<br />

electrolytes in solution, a fact<br />

which- adds~ to--the_ complexities of<br />

analysing its behaviour.<br />

Pore size <strong>and</strong> shape, <strong>and</strong> the nature<br />

<strong>and</strong> concentration of electrolytes in<br />

interstitial pore solutions are factors<br />

influencing drainage con<strong>di</strong>tions (permeability<br />

to water transport).<br />

The coefficient of permeability is<br />

dependent upon fluid properties (viscosity,<br />

electrolyte concentration) <strong>and</strong><br />

me<strong>di</strong>um properties (grain size, void<br />

ratio, pore geometry); it is related to<br />

the interaction between charged soil<br />

particles <strong>and</strong> the ions of the soil water.<br />

The process of drainage is accompanied<br />

by <strong>di</strong>ssipation of pore water<br />

pressure <strong>and</strong> by volume changes, resulting<br />

from simultaneous changes in<br />

fabric.<br />

Shearing resistance <strong>and</strong> failure,<br />

<strong>and</strong> the resultant movements are<br />

mainly determined by variations of<br />

the moisture regime, <strong>and</strong> by the factors<br />

_ influencing water transport<br />

movement through the channel network<br />

of the soild; resulting increase/<br />

decrease of pore water pressure, water<br />

uptake/release by swelling clay<br />

minerals (<strong>and</strong> other matter),<br />

<strong>di</strong>ssolution/precipitation of intergranular<br />

cement(s), change of pore<br />

water composition, wetting/drying<br />

<strong>and</strong> frost actions, all will. alt~r the interparticle<br />

«bon<strong>di</strong>ng>> con<strong>di</strong>tions.<br />

Fabric rearrangement (as a consequence<br />

of loa<strong>di</strong>ng, sli<strong>di</strong>ng, etc.) to<br />

closer/looser configuration with correspon<strong>di</strong>ng<br />

reduction/increase of the<br />

void ratio <strong>and</strong> water content will<br />

mo<strong>di</strong>fy the mechanical <strong>and</strong> hydraulic


. The Role of Microfabric in Clay Soil Stability 105<br />

properties <strong>and</strong> the behaviour of the<br />

soils.<br />

Deformational responses such as<br />

the process of consolidation (i.e. the<br />

time-dependent <strong>di</strong>ssipation of porewater<br />

pressure after loa<strong>di</strong>ng) <strong>and</strong> the<br />

consequent volume changes are influenced<br />

by the swelling capacities of<br />

clay constituents.<br />

· Consolidation processes in clay<br />

soils can be active for a lgng time <strong>and</strong><br />

comprise aging effects; moreover, the<br />

tensional history can give rise to<br />

overconsolidation con<strong>di</strong>tions. The<br />

analysis of these phenomena should<br />

account for the relative movement of<br />

the soil skeleton-plasma when water<br />

is extruded.<br />

The swelling processes in clay soils<br />

may be viewed as due essentially to<br />

osmotic forces within the extremely<br />

thin capillary voids functioning as<br />

semi-permeable membranes. Reduction<br />

of the amount of swelling by<br />

hardening of clay soils may be attributed<br />

to the time dependent reformation<br />

of interparticle bonds, with concomitant<br />

reduction of the final moisture<br />

content.<br />

The absence of swelling clay<br />

minerals does not mean necessarily<br />

that the probability of failure is substantially<br />

less. Critical con<strong>di</strong>tions<br />

can occur also in soils devoid of<br />

swelling clay minerals: changes in<br />

the pre-existing interparticle «bond~<br />

ing>> forces can be due to variations in<br />

moisture content <strong>and</strong> electrolyte concentration<br />

in pore water. Dramatic<br />

movements may take place quickly, if<br />

not suddenly, with catastrophic damages<br />

( slides in periarctic,<br />

glacial areas such as Scan<strong>di</strong>navia,<br />

Canada, etc.).<br />

Causes <strong>and</strong> consequences of fabric<br />

mo<strong>di</strong>fications for slope stabilityfailure<br />

Fundamental investigations have<br />

shown the influence of <strong>di</strong>fferent<br />

mineralogy on the soil fabric, as well<br />

as the effect of the nature <strong>and</strong> electrolyte<br />

concentration of the interstitial<br />

water on <strong>di</strong>fferent aspects of clay<br />

particle arrangement.<br />

Several examples from the Oltrepo<br />

area (Province of Pavia, northern<br />

Apennines, Italy) illustrate the influence<br />

of <strong>di</strong>fferent clay mineralogy on<br />

the soil fabric (Plate I).<br />

The water content in soils may<br />

have <strong>di</strong>fferent effects on the microtexture,<br />

depen<strong>di</strong>ng on the predominating<br />

kind of clay constitutents.<br />

Soils mainly composed of «inert>><br />

clay minerals (such as kaolinite,<br />

mica-illite, chlorite) tend to open the<br />

voids with increasing moisture (Plate<br />

II); on the contrary, when swelling<br />

smectite is the dominant clay mineral,<br />

pores <strong>and</strong> fissures seem to become<br />

obliterated after high water contents.<br />

In such a con<strong>di</strong>tion the soil is virtually<br />

impermeable. Partially swelling<br />

vermiculite has an interme<strong>di</strong>ate behaviour.<br />

On the other h<strong>and</strong>, drying<br />

can give rise to shrinkage (thus increasing<br />

the friction), cause collapse<br />

of open particle arrangements, prevailing<br />

development of domain type<br />

aggregates in kaolinitic soils <strong>and</strong>


106<br />

F. Veniale<br />

Plate I - Soil derived from varicoloured shale (the most common constituents are kaolinite,<br />

mica-illite <strong>and</strong> chlorite): the fabric is characterized by clusters («domains>>) of clay particles,<br />

bordered by microfissures, <strong>and</strong> inclu<strong>di</strong>ng larger cystals of carbonate (A) <strong>and</strong> of irregularly shaped<br />

quartz (B). (C) <strong>and</strong> (D): soil composed also of vermiculite. (E) <strong>and</strong> (F): soil derived by weathering of<br />

marls (largely composed of smectite, plus vermiculite <strong>and</strong> «Open>> illite) showing loose alveolate<br />

(«honeycomb>>) network with «Onion-skin>> <strong>and</strong> curly appearance of the tactqides.<br />

formation of tension cracks in the<br />

smectitic ones (Plate Ill).<br />

An other factor influencing the<br />

space arrangement of the clay particles<br />

is the concentration of electrolytes<br />

in the interstitial water (see<br />

Plates Ill <strong>and</strong> IV). Looser or closer<br />

fabric will influence porosity <strong>and</strong><br />

drainage, pore water pressure <strong>and</strong><br />

swelling pressure, <strong>and</strong> therefore, hydraulic<br />

<strong>and</strong> mechanical behaviour of<br />

the soils. This also constitutes the


The Role of Microfabric in Clay Soil Stability 107<br />

Plate 11- Weathered s<strong>and</strong>stone: (A) air-dried, <strong>and</strong> (B) wetted by suction of water at pF= I. Vermiculitic<br />

soil constituting the weathering residue after leaching of the carbonate components from a<br />

marly rock, respectively, (C) in air-dried <strong>and</strong> (D) in wetted con<strong>di</strong>tions. The void obliteration is less<br />

developed than in smectitic materials. Smectitic material derived from marly Flysch (gli<strong>di</strong>ng<br />

surface of l<strong>and</strong>slide body): (E) air-dried, (F) water content 30% (pF= 1.5). The fissures have been<br />

· virtually obliterated by wetting. ~


108 F. Veniale<br />

Plate Ill- Lateral slip surface in the main track of a mudflow in variegated clays (smectite is the<br />

predominant component). (A): fabric with evident iso-oriented arrangement of the clay particles<br />

(smoothed surface); (B): the same sample dried. Note shrinkage micro-fissures giving rise to<br />

mechanical obstacles. Kaolin (relative liquid limit 63%) remoulded <strong>and</strong> moisted (saturated) with<br />

<strong>di</strong>stilled water at various consistency states: w=63% (C), 117% (D) <strong>and</strong> 159% (E). At lower water<br />

content, particles are anisotropically associated face-to-face <strong>and</strong> clustered in large «domains>>; by<br />

increasing water content, the size of domains is gradually reduced, until a <strong>di</strong>screte alveolate fabric<br />

has been formed (which can be compared with the type) with larger porosity. Contacts via<br />

connecting bridges are locally constituted by single particles only.<br />

basis for stabilization treatments by<br />

salt <strong>di</strong>ffusion. Mechanical factors<br />

such as loa<strong>di</strong>ng <strong>and</strong> stress mo<strong>di</strong>fy the<br />

mutual spatial relations between<br />

clay particles; at large strain (residual<br />

con<strong>di</strong>tions), it induces a pecu-


The Role of Microfabric in Clay Soil Stability 109<br />

Plate IV- Effect of KC! <strong>di</strong>ffusion on the fabric of a soil stabilized by such treatment: (A) before<br />

treatment, (B) after 12 months, <strong>and</strong> (C) after 24 months of KC! <strong>di</strong>ffusion (


110 F. Veniale<br />

Plate V- «Scaly>> clay composed of mica-illite, kaolinite-<strong>di</strong>ckite <strong>and</strong> chlorite. (A): cross-section<br />

showing «domains» (clusters) <strong>and</strong> single particles arranged without preferential orientation, constituting<br />

a matrix which includes larger platelets; (B): detail of the scaly surface (see also top of (A))<br />

with iso-oriented <strong>and</strong> welded particles in a planar configuration, <strong>di</strong>sturbed by packing of lamellae<br />

(C) perpen<strong>di</strong>cular to the scale surface. (D)-+(E)-+(F): gradual <strong>and</strong> progressive iso-orientation of the<br />

clay particles along a slip surface (l<strong>and</strong>slide).


The Role of Microfabric in Clay Soil Stability 111<br />

Plate VI- Variegated shale with <strong>di</strong>agenetic <strong>di</strong>ckite along scaly surfaces. (A): cross-section; the<br />

action of shearing stresses has originated a smoothed iso-oriented coating film (see detail in (B))<br />

with sub-parallel orientation (C), <strong>and</strong>/or curving <strong>and</strong> breaking (F) of <strong>di</strong>ckite lamellae. (D): detail of<br />

r<strong>and</strong>om fabric in the layer underlying the <strong>di</strong>ckite film. When freely grown in «open» space, the<br />

<strong>di</strong>ckite particles are r<strong>and</strong>omly deposited along the fissility surface (E).


112<br />

F. Veniale<br />

Plate VII- (A) <strong>and</strong> (B): pore spaces partially or completely filled with calcite crystals. (C), (D) <strong>and</strong><br />

(E): irregular grains of calcite <strong>and</strong> flakes of gypsum deposited within the interlayering of laminated<br />

clays (cross-section). (F): detail of a laminated surface (parallel view).


The Role of Microfabric in-Clay Soil Stability 113<br />

Plate VIII'--- «Val Luretta» Flysch formation, torrent Versa (PV), northern Apennines. Unweathered<br />

clayey layer (A) showing an iso-oriented compact texture. (B) <strong>and</strong> (C) are incipient <strong>and</strong> deep<br />

degrees of weathering of the same as observed at the root <strong>and</strong> within the debris flow (slide mass) of<br />

a· l<strong>and</strong>slide body, respectively. A more isotropic rearrangement <strong>and</strong> <strong>di</strong>stancing of clay particles,<br />

carbonate-quartz-feldspar grains, as well as increased porosity, are evident. (D) corresponds to an<br />

interme<strong>di</strong>ate stage: a lense remnant of unaltered scaly clay is s<strong>and</strong>wiched by weathered material,<br />

looser <strong>and</strong> porous. (e) <strong>and</strong> (f) are analogous situations of an unaltered <strong>and</strong> a weathered carbonate<br />

aggregate, respectively, as observed in a marly layer of the same se<strong>di</strong>ment.


114 F. Veniale<br />

Plate IX-Varicoloured shale (mainly illi te), Val Chiarone (PC), northern Apennines. (A) una! tered,<br />

(B) weakly, <strong>and</strong> (C) deeply weathered scaly surface. Varicoloured shale (mainly kaolinite), Val<br />

Tidone (PC), northern Apennines. (a)-+(b)-+(c): fabric mo<strong>di</strong>fication with increasing weathering, as<br />

observed on a sli<strong>di</strong>ng plane.<br />

mentation has been identified as an<br />

important cause of an apparent pre­<br />

.. consolidation.<br />

Weathering processes have a considerable<br />

effect on the mutual<br />

arrangement of the clay particles <strong>and</strong><br />

other mineral grains (see Plates VIII<br />

<strong>and</strong> IX), which results in greater <strong>di</strong>stances<br />

between the grains of solid<br />

particles, weakened, ~


The Role of Microfabric in Clay Soil Stability 115<br />

Plate X- Overconsolidated clay, Santa Barbara quarry, San Giovanni Valdarno, central Apennines.<br />

(A) compact iso-oriented fabric of a deep' (m 30) sample. (B) <strong>and</strong> (C) open loose texture<br />

of


116 F. Veniale<br />

Plate XI- Overconsolidated clay, Santa Barbara quarry, San Giovanni Valdarno, central Apennines.<br />

(A, left) red<strong>di</strong>sh film of Fe-oxyhydroxides coating fissure walls. (B) <strong>and</strong> (C) details of iron<br />

oxyhydroxide films on fissure walls: «wet>> <strong>and</strong> partially stage, respectively, the. latter with<br />

detached flakes. (D) <strong>and</strong> (E) progressive shrivelling of Fe-oxyhydroxide fissure coating with increased<br />

drying: microspherules become spaced <strong>and</strong> cracks also form.<br />

clays are involved. Tension <strong>di</strong>sturbance<br />

<strong>and</strong> bon<strong>di</strong>ng relaxation due to<br />

by unloa<strong>di</strong>ng have been<br />

correlated with fabric mo<strong>di</strong>fications<br />

of the clay mass <strong>and</strong> along fissure<br />

sidewalls (see Plates X <strong>and</strong> XI), which<br />

are suggested as a possible mechanism<br />

of failure development.


The Role of Microfabric in Clay Soil Stability 117<br />

Conclu<strong>di</strong>ng remarks<br />

Mineralogy <strong>and</strong> fabric analysis can<br />

help. in establishing soil properties<br />

such as sensitivity, cohesion, swelling,<br />

anisotropy, etc., as well as contribute<br />

to the understan<strong>di</strong>ng of the<br />

mechanisms involved in the strength<br />

<strong>and</strong> deformation behaviour. Moisture<br />

content <strong>and</strong> drainage (transport) of<br />

water (with electrolytes) are mutually<br />

influenced by the spatial configuration<br />

of void/solid phases. With<br />

reference to deformability, the nature<br />

of interparticle bonds may explain<br />

how a clay soil behaves when it is<br />

loaded or unloaded. For very soft<br />

clays (<strong>and</strong> also for weathered shales),<br />

chemical bonds between particles<br />

seem to play a more important role<br />

than frictional resistance, ,<strong>and</strong> this is<br />

an aspect that only minerl:!:logical<br />

<strong>and</strong> fabric analyses can fully explain.<br />

In the case of overconsolidated clays,<br />

the influence of fabric on possible<br />

alternative mechanisms of development<br />

of failure (progressive <strong>di</strong>stension,<br />

release of energy) has been suggested.<br />

Acknowledgements<br />

The authors are indebted to M.lle<br />

J. Berrier <strong>and</strong> Dr. D. Tessier (Laboratoire<br />

des Sols - INRA, Versailles,<br />

France), Dr. A. Le Roux (Laboratoire<br />

Central des Pontes et Chaussees,<br />

Paris), Prof. J. Gillott (Department of<br />

Civil Engineering, University of Calgary,<br />

Canada), <strong>and</strong> Dr. W.J. McHardy<br />

(Macaulay Institute for Soil Research,<br />

Aberdeen, Scotl<strong>and</strong>) for their<br />

assistance during SEM investigations.<br />

REFERENCES<br />

AuGUSTITHIS N., 1983. Micro-tessiture <strong>di</strong> materiali in frana (0/trepo Pavese). Stu<strong>di</strong>o a/ microscopic<br />

e/ettronico a scansione. Thesis, University of Pavia, Italy; 181 pages, 19 plates. .<br />

BARDEN L., McGowN A., 1972. The influence of se<strong>di</strong>mentary electrolyte concentration on the microstructure<br />

of some postglacial clays. Pp. 763-769, in: Proc. 5th Int. Clay Conf., Madrid.<br />

BENNET R.H., 1977. Clay fabric <strong>and</strong> geotechnical properties of selected submarine se<strong>di</strong>ment cores from<br />

the Mississippi Delta (with a Literature Review- Clay Fabric). Prof. Paper 9, NOAA, U.S. Dept.<br />

Commerce, 1-86.<br />

BENNETT R.H., BRYANT W.R., KELLER G.H., 1981. Clay fabric of selected submarine se<strong>di</strong>ments: fundamenta/propertie,s<br />

<strong>and</strong> models. J. Se<strong>di</strong>ment. Petrol. 51,217-231.<br />

BENTLEY S.P., SMALLEY J., 1978. Interparticle cementation in Cana<strong>di</strong>an postg/acial clays <strong>and</strong> the<br />

problem of high sensitivity. Se<strong>di</strong>mentology 2, 297-303.<br />

BULLOCK P., MURPHY C.P., 1980. Towards the quantification of soil structure. J. Microscopy 120,<br />

317-328.<br />

CHIOU W.A., SHEPARD L.E., BRYANT W.R., LooNEY Ill P.P., 1983. A technique for preparing high water<br />

content clayey se<strong>di</strong>ments for thin <strong>and</strong> ultrathin section study. Se<strong>di</strong>mentology 30, 295-299.<br />

CoTECCHIA V., FEDERrco A., 1980. Sui/a <strong>di</strong>pendenza del/a resistenza a/ taglio residua drenata <strong>di</strong> terreni<br />

coesivi dal live/la <strong>di</strong> sforzo norma/e efficace. Atti XIV Convegno Naz. Geotecnica, Firenze, 2,<br />

317-324.<br />

COTECCHIA V., FEDERICO A., TRIZZINO R., 1982. Microtessiture <strong>di</strong> se<strong>di</strong>menti argillosi. Analisi delle<br />

tipologie e terminologie, ed app/icazioni ne/ campo del/a geotecnica. Geol. A pp!. Idrogeol. 17, 1-34.<br />

COTECCHIA V., FEDERICO A., TRIZZINO R., 1982. Microtessiture <strong>di</strong> se<strong>di</strong>menti argil/osi. Esperimenti su<br />

kaolinite e bentonite ad esempi <strong>di</strong> se<strong>di</strong>menti argillosi dell'Italia meri<strong>di</strong>onale. Geol. Appl. Idrogeol.<br />

17, 53-78. -


118 F. Veniale<br />

DEL PRETE M., BELVISO R., CHERUBINI C., FEDERICO A., VENIALE F., SOGGETTI F., 1979. La <strong>di</strong>ckite nelle<br />

argille varicolori dell'Appennino Sannitico-Irpino e Lucano(Italia meri<strong>di</strong>onale). Atti Soc. Ita!.<br />

Sci. Nat. 120, 111-125. · -~~~----<br />

DIAMONDS., 1970. Pore size <strong>di</strong>stribution in.clays. Clays Clay Miner. 18,7-25.<br />

Esu F., 1983. Geologia, geomorfologia e geotecnica. AGI Notizie 2, 6.<br />

FEDERICO A., 1982. Proposta <strong>di</strong> una tipologia semplificata degli aspetti microtessiturali <strong>di</strong> terreni<br />

argillosi. Nota 1: Argille non espansive. Geol. Appl. Idrogeol. 17, 197-202.<br />

FosTER R.H., DE P .K., 1971. Optical <strong>and</strong> electron microscopic investigation of shear induced structure<br />

in lightly consolidated (hard) kaolinite. Clays Clay Miner. 19, 31-47.<br />

G!LLOTT J .E., 1969. Study of the fabric of fine-grained se<strong>di</strong>ments with the SEM. J. Se<strong>di</strong>ment. Petrol.<br />

39, 90-105.<br />

GILLOTT J .E., 1980. Use of the scanning electron microscopy <strong>and</strong> F ourier methods in characterization<br />

of microfabric <strong>and</strong> texture of se<strong>di</strong>ments. J. Mic~;oscopy 120, 261-277.<br />

HANSBO S., 1978. Mechanical behaviour of clay explained in microstructural terms. Pp. 263-269, in:<br />

Proc. Int. Conf. on Mechanics of Deformation <strong>and</strong> Fracture, Lulea, Sweden; 1.<br />

KELLER W.D., 1982. Applications of scanning electron microscopy to clays <strong>and</strong> other fine-grained<br />

minerals. Pp. 245-261, in: Proc. AIME Meeting, Dallas.<br />

KRIZEK R.J., 1977. Fabric effects on strength <strong>and</strong> deformation of kaolin clay. Pp. 169-176, in: Proc. 9th<br />

Int. Conf. SMFE, Tokyo, 1.<br />

LEROUX A., 1972. Caracteristiques mecaniques des roches argileuses en relation avec leur texture. Bull.<br />

Lab. Central Ponts Chaussees 61, 155-178.<br />

LEROUX A., 1975. Les <strong>di</strong>fferentes textures. Leur influence sur le comportement des sols argileux et<br />

marneux. Geol. Appl. Idrogeol. 10, 67-85.<br />

LEROUX A., 1976. Mise en evidence des textures des sols. Approche de leur influence sur les caracteristiques<br />

mecaniques. Colloque Mecanique des Sols, Saint-Maxim, France, 58-67.<br />

L0KEN T., 1970. Recent research at the Norwegian Geotechnical Institute concerning the influence of<br />

chemical ad<strong>di</strong>tions on quick clays. Geol. Forein. Stockholm 92, 133-147.<br />

LUPIN! J.F., HIGHT D.W., CAVOUNIDIS S., 1980. Some observations on microfabric <strong>and</strong> their role in<br />

understa<strong>di</strong>ng soil behaviour. Riv. Ita!. Geotecnica 14, 112-123.<br />

MATSUO J. KAMON M., 1977. Microscopic study on deformation <strong>and</strong> strength of clays. Pp. 201-204, in:<br />

Proc. 9th Int. Conf. SMFE, Tokyo, 1.<br />

MEADE R.H., 1964. Removal of water <strong>and</strong> rearrangement of particles during the compaction of clayey<br />

se<strong>di</strong>ments. Rev. Geol. Survey Prof. Paper 497-B, 1-23.<br />

MELIDORO G., VENIALE F. (e<strong>di</strong>tors), 1975. Mineralogia delle Argille e Meccanica dei Terreni. Applicazione<br />

allo Stu<strong>di</strong>o delle Frane. Proc. Int. Meeting, Pavia, Geol. Appl. Idrogeol. 10, 268 pages.<br />

MITCHELL J.K., 1976. Fundamentals of soil behaviour. Wiley.<br />

MooN C.F., 1972. The microstructure of clay se<strong>di</strong>ments. Earth Sci. Rev. 8, 303-321.<br />

MoRGENSTERN N.R., TcHLENKO J.S., 1967. Microstructural observation on shear zones from slips in<br />

natural clays. Pp. 147-152, in: Proc. Geotech. Conf., Oslo.<br />

O'BRIEN N.R., 1970. The fabric of shales. An electron-microscopy study. Se<strong>di</strong>mentology 15, 229-246.<br />

PEDRO G., 1976. Sols argileux et argiles. Elements generaux en vue d'une introduction a leur etude.<br />

Science du Sol 2, 69-84.<br />

PERCEVAUX P., 1980. Etude microscopique et macroscopique du gonflement de sols argileux. These<br />

Univ. P. et M. Curie- Paris VI, 266 pages.<br />

PuscH R., 1978a. Cohesion in fine-grained soils. Pp. 129-136, in: Proc. Int. Conf. on Mechanics of<br />

Deformation <strong>and</strong> Fracture, Lulea, Sweden, 1.<br />

PuscH R., 1978b. Creep mechanism in clays. Pp. 292-300, in: Proc. Int. Conf. on Mechanics of<br />

Deformation <strong>and</strong> Fracture, Lutea, Sweden, 1.<br />

RoMANAZZI L., VENIALE F. (e<strong>di</strong>tors), 1979. Movimenti Franosi e Dinamica dei Versanti. Proc. Workshop,<br />

Salice Terme (Pavia), Geol. Appl. Idrogeol. 14, 612 pages.<br />

RosENQVIST LT., 1975. Clay mineralogy applied to mechanics of l<strong>and</strong>slides. Pp. 21-30, in: Proc. Int.<br />

Meeting Mineralogia delle Argille e Meccanica dei Terreni. Applicazioni allo Stu<strong>di</strong>o delle<br />

Frane, Pavia, Geol. Appl. Idrogeol. 10.<br />

SERGEYEV Y.M., GRABOWSKA-0LSZEWSKA B., OsrPov V .I., SoKOLOV V.N., KoLOMENSKI Y.N., 1980. The<br />

classification of microstructures of clay soils. J. Microscopy 120.<br />

SFONDRINI G., 1975. Caratteristiche microtessiturali e microstrutturali <strong>di</strong> alcuni se<strong>di</strong>menti argillosi<br />

connesse con la natura ed il tipo delle sollecitazioni subite. Geol. App. Idrogeol. 10, 87-124.<br />

SMART P., TovEY K., 1981. Electron microscopy of soils <strong>and</strong> se<strong>di</strong>ments: examples. Clarendon Press,<br />

Oxford.<br />

TESSIER D., 1975. Recherches experimentales sur !'organisation des particules dans les argiles. These<br />

Univ. Paris, 231 pages (see also State Thesis, submitted in February 1984; in press).<br />

TESSIER D., BERRIER J ., 1978. Observations d' argiles hydratees en microscopie electronique a balayage.<br />

Importance et choix de la technique de preparation. Pp. 117-135, in: Proc. 5th Int. Working<br />


The Role of M icrofabric in Clay· Soil Stability 119<br />

Meeting Soil Morphology, Granada (Spain).<br />

TESSIER D., BERRIER J., 1979. Utilisation de la microscopie electronique a balayage dans /'etude des<br />

sols. Observations de sols humides soumis a <strong>di</strong>fferents pF. Sci. Sol. 67-82.<br />

TESSIER D., PEDRO G., 1976. Les modalites de /'organisation des particules dans les materiaux argileux.<br />

Science du Sol 2, 85-99.<br />

TovEY K.N ., 1980. A <strong>di</strong>gital computer technique for orientation analysis of micrographs of soil fabric.<br />

J. Microscopy 120.<br />

VENIALE F., 1982. Stabilization-consolidation for soft clayey soils. Pp. 1-10, in: Proc. <strong>First</strong> Int. Symposium<br />

«Soil, Geology <strong>and</strong> L<strong>and</strong>forms: Impact on L<strong>and</strong> Use Planning in Developing Countries>>,<br />

Bangkok, A-21.<br />

VENIALE F., SoGGETTI F., SETT! M., CAUCIA F., 1981. Clay mineralogy, microtexture <strong>and</strong> geotechnical<br />

characteristics of l<strong>and</strong>slide bo<strong>di</strong>es in northern Apennines (Italy) <strong>and</strong> effectiveness of electroosmosis<br />

(Al-Al-anode-cathode) stabilization treatment. AIPEA, 7th Int. Clay Conf., Bologna <strong>and</strong><br />

Pavia, Abstracts, 323.<br />

WHALLEY W.B., 1978. Scanning electron microscopy in the study of se<strong>di</strong>ments. Proc. Symposium,<br />

Swansea, Geo-Abstracts, 414 pages. .<br />

YoNG R.N., WARKETING B.P., 1975. Soil Properties <strong>and</strong> Behaviour. Devel. Geotech. Eng. 5, Elsevier,<br />

449 pages.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 121-133 (1985)<br />

Crystalline Minerals <strong>and</strong> Chemical Maturity of<br />

Suspended Solids of Sonie Major World Rivers<br />

JIRI KONTA<br />

Department of Petrology, Charles University, Albertov 6, Prague 2, Czechoslovakia<br />

ABSTRACT- Clay minerals predominate in the lutite supensions of the Mackenzie,<br />

the St. Lawrence, the Orinoco, the Caroni, the Parana, the Nile, the<br />

Niger, the Orange, the Indus, the Ganges, the Brahmaputra <strong>and</strong> the Padma;<br />

amorphous silica with cristobalite is the major solid constituent of the<br />

Waikato. Dioctahedral mica is the principal <strong>and</strong> omnipresent sheet silicate<br />

with the exception of the Niger, where kaolinite dominates over mica. Chlorite<br />

<strong>and</strong> kaolinite occur in 9 rivers out of 13 rivers stu<strong>di</strong>ed. Kaolinite is typical<br />

in larger portions for the tropical rivers (Niger, Orinoco, Caroni, Parana).<br />

Montmorillonite was found only in some tropical or subtropical rivers, i.e.<br />

the Caroni, the Nile, the Niger <strong>and</strong> the Orange <strong>and</strong> also in the Waikato. Of the<br />

nonclay minerals quartz, acid plagioclase <strong>and</strong> potassium feldspar are common.<br />

Amphibole occurs rarely. Calcite <strong>and</strong>/or dolomite occur in seven rivers<br />

draining either arid regions or those with high relief.<br />

Suspended solids of the tropical rivers ( + the Waikatof<strong>di</strong>splay the greatest,<br />

chemical maturity (ChM), i.e. the ratio %Al:% (Na+Mg+Ca) calculated from'<br />

the data obtained by EDAX, whereas the rivers draining typical arid basins<br />

are characterized by low values of ChM. Chemical maturity has a slight<br />

positive tendency'to a linear dependence on the annual rainfall, but a low<br />

relief of the stream always contributes to an increase of ChM. The chemical<br />

maturity of the suspended solids of rivers is primarily influenced by the<br />

degree of continentality (climatic factor) <strong>and</strong> secondarily by the height of the<br />

relief (tectonic <strong>and</strong> time factor). The specific amount of suspended solids<br />

reflecting the rate of erosion largely increases with rising relief, <strong>and</strong> lack of<br />

vegetation accelerates the erosion still further.<br />

Introduction<br />

The detrital material transported<br />

by rivers into the seas <strong>and</strong> oceans<br />

represents accor<strong>di</strong>ng to LISITZIN ·<br />

(1972) about 70% of the se<strong>di</strong>mentary<br />

matter, i.e. 12.696 x 10 9 tons yr- 1 • The<br />

supply of terrigenous material due to<br />

shore erosion is only about 0.15 x 10 9<br />

tons (GILLULY, 1955). The rest<br />

belongs to volcanoclastic (11.2%),<br />

glacial (5.6%) <strong>and</strong> eolian material<br />

(5.6%), whereas the small remaining<br />

portion falls to biogenic <strong>and</strong> precipitated<br />

material (LISITZIN, 1972).<br />

The rivers carry in suspension 3.5<br />

times more material than in solution<br />

<strong>and</strong> 12.5 times more than in bed load<br />

(LOPATIN, 1952).<br />

Clay minerals predominate in river<br />

suspended solids. Their association is


122 J. Konta<br />

···~~~---------con<strong>di</strong>tions,<br />

greatly influenced by the composition<br />

of the eroded soil horizons occurring<br />

in the correspon<strong>di</strong>ng river basin.<br />

The quality of the great soil groups of<br />

the world (GRIM, 1953) <strong>and</strong> their influence<br />

on the Recent oceanic clay<br />

mineral se<strong>di</strong>mentation is well known<br />

(RATEEV, 1960; GOLDBERG &<br />

GRIFFIN, 1964; BISCAYE, 1965;<br />

MILLOT, 1979). Some major rivers,<br />

however, flow across several climatic<br />

zones <strong>and</strong> intrazonal climatic regions.<br />

This is especially valid for very<br />

long rivers flowing in the meri<strong>di</strong>an<br />

<strong>di</strong>rections, such as the Nile <strong>and</strong> the<br />

Parana. Other rivers stu<strong>di</strong>ed also<br />

transect regions of <strong>di</strong>fferent climatic<br />

e.g. the -Nigei", Brahmac<br />

putra <strong>and</strong> Ganges (see Fig. 1).<br />

The quantitative ratios of clay <strong>and</strong><br />

nonclay minerals in the suspended<br />

solids of any stream oscillate only<br />

slightly with the seasons o.f the year.<br />

The natur-al~homogenization of the<br />

solid suspended matter in a river environment<br />

is so profund that KONTA<br />

(1983) could express the following<br />

opinion: «Mineral association in the<br />

aqueous suspension of each river is as<br />

characteristic as a finger print for<br />

man>>. It is understood that sampling<br />

must be done under constant con<strong>di</strong>tions<br />

<strong>and</strong> at the same place. In contrast<br />

the amounts of suspended solids<br />

vary within large limits with the seasons<br />

of tl).e year in each river.<br />

The investigation of minerals in<br />

suspensions of the river streams is<br />

significant for 1) se<strong>di</strong>mentary pet-rology,<br />

2) soil science (rate of erosion<br />

<strong>and</strong> main inorganic nutrients), 3)<br />

geochemical balance of the Earth's<br />

surficial processes, 4) environmental<br />

hydrology.<br />

Fig. 1 -The basins of the rivers stu<strong>di</strong>ed occur in <strong>di</strong>fferent regions of the continents <strong>and</strong> in various.<br />

geographic latitudes. The solid circles mean sites of the respected meteorological stations in the'<br />

river basins.


Samples<br />

Sampling on membrane or glass<br />

filters was carried out in the thirteen<br />

rivers stu<strong>di</strong>ed by experts in the respective<br />

countries. The samples represent<br />

solid particles caught from<br />

fine lutite suspensions taken from<br />

water in each river stream approximately<br />

0.1 to 1.0 m below the water<br />

surface in various months <strong>and</strong> at various<br />

dates at <strong>di</strong>stinct stations (see<br />

KONTA, 1983; 1985). The basins of<br />

the rivers stu<strong>di</strong>ed occur in <strong>di</strong>fferent<br />

regions of the continents <strong>and</strong> in various<br />

geographic latitudes (Fig. 1).<br />

Crystalline minerals in the suspensions<br />

The determination of the crystalline<br />

minerals in the river suspensions<br />

was carried out by X-ray <strong>di</strong>ffraction<br />

of samples oriented on sampling filters.<br />

The results were published by<br />

KONTA (1983; 1985). The quantitative<br />

or semiquantitative ratios of the<br />

crystalline minerals, calculated as<br />

average values of all samples stu<strong>di</strong>ed,<br />

are given in Fig. 2. The average ratios<br />

for rivers with less than 5 samples<br />

must be considered as preliminary.<br />

The following numbers of samples<br />

were stu<strong>di</strong>ed from the rivers (with in<strong>di</strong>cation<br />

of the sampling stations, Fig.<br />

1): 9 the Mackenzie (before the con-,<br />

fluence with the Arctic Red River); 14<br />

St. Lawrence (position 46°45'34" N,<br />

71°15'23" W); 2 the Orinoco (Puente<br />

Angosture - Middle); 1 the Caroni<br />

(Parque Cachamay); 23 the Parami<br />

Crystalline Minerals <strong>and</strong> ChemicafMaturity ... 123<br />

(Santa Fe); 10 the Nile (five stations:<br />

'I, 2", Nile East, Nile West, Assiut<br />

Nile); 34 the Niger (9 stations: Niger<br />

Jebba, Kaduna, Benue, Malendo,<br />

Kontagora, Niger Kotonkarfi, NSH<br />

Shintaku, Sabongari, Eku, see more<br />

in KONTA, 1983); 3 the Orange (stations<br />

not given); 12 the Indus (Jamshoro);<br />

8 the Brahmaputra (Nagarbari);<br />

2 the Ganges (Kazirghat); 7 the<br />

Padma (Kazirghat); 20 the Waikato<br />

(Mercer). The sampling dates, mostly<br />

at one month intervals, were in the<br />

years 1981 <strong>and</strong> 1982, some also in<br />

1983.<br />

Figure 2 shows that <strong>di</strong>octahedral<br />

mica, i.e. illite + clastic muscovite, is<br />

the principal <strong>and</strong> omnipresent sheet<br />

silicate in the river suspensions stu<strong>di</strong>ed.<br />

Only ~he suspensions of the Ni"<br />

ger contain more kaolinite than mica.<br />

The Waikato (in Fig. 2 not given) is<br />

extremely rich in amorphous silica<br />

<strong>and</strong> cristobalite, <strong>and</strong> illite occurring<br />

in small admixtures only along with<br />

_quartz, acid plagioclase, potassium<br />

. feldspar <strong>and</strong> montmorillonite.<br />

Two other common clay minerals<br />

are kaolinite <strong>and</strong> chlorite, kaolinite<br />

being typical in larger portions in the<br />

rivers flowing through tropical regions<br />

(Niger, Orinoco, Caroni, Parana);<br />

only the St. Lawrence, Orange,<br />

Ganges <strong>and</strong> Waikato do not contain<br />

kaolinite. An accessory admixture of<br />

gibbsite in some samples of the Niger<br />

is in good concordance with the predominating<br />

portion of kaolinite in<br />

the suspension of this river. Chlorite<br />

was found in nine rivers out of the 13<br />

rivers stu<strong>di</strong>ed. Chlorite occurs especially<br />

in suspensions poor in kaolinite


124 J. Konta<br />

o/o<br />

.,_-k:::::.::::J-G;<br />

OK<br />

-Mi<br />

.mMi/l~o<br />

§r~o<br />

~K-F<br />

.. Na-F<br />

~Am<br />

~ea<br />

~§moo<br />

so-<br />

60-<br />

40-<br />

zo-<br />

o-<br />

Fig. 2 - The quantitative or semiquantitative ratios of the crystalline minerals in suspended<br />

solids, calculated as average values of all samples stu<strong>di</strong>ed for each river. Gi: gibbsite; K: kaolinite;<br />

Mi: <strong>di</strong>octahedral mica; Mo: montmodllonite; Q: quartz; Ch: chlorite; K-F: potassium feldspar;<br />

Na-F: acid plagioclase; Am: amphibole; Ca: calcite; Do: dolomite.<br />

or without kaolinite. If, however,<br />

enough kaolinite along with chlorite<br />

is present (Orinoco) then the suspension<br />

contains no montmorillonite.<br />

Montmorillonite is the fourth clay<br />

mineral in the river suspensions investigated.<br />

It was found only in some<br />

tropical or subtropical rivers, i.e. the<br />

Caroni, the Nile, the Niger <strong>and</strong> the<br />

Orange; the suspension ofthe Waikato<br />

contains only a very small admixture<br />

of montmorillonite. In thre~ rivers<br />

montmorillonite occurs along<br />

with kaolinite (Caroni, Niger, Nile).<br />

The association of the nonclay<br />

minerals detectable by X-ray <strong>di</strong>ffraction<br />

of the lutite river suspensions is<br />

surprisingly simple but· specifically<br />

<strong>di</strong>fferent. A considerable portion or<br />

admixture of quartz is always present<br />

in the suspensions of the rivers<br />

with the sole exception of the Caroni<br />

where, however, only one sample was<br />

available. The remaining nonclay<br />

minerals are: potassium feldspar,<br />

acid plagioclase, amphibole, calcite,<br />

dolomite (<strong>and</strong> in the Waikato, opal<br />

with cristobalite). Quartz, acid pla-


gioclase ·<strong>and</strong> potassium feldspar are<br />

the commonly occurring primary<br />

clastic minerals in the suspensions of<br />

the rivers stu<strong>di</strong>ed from <strong>di</strong>fferent regions<br />

of the world. Amphibole is the<br />

fourth primary silicate sometimes<br />

occurring in the lutite suspension of<br />

the rivers (St. Lawrence, Brahmaputra,<br />

Padma). The reason for the common<br />

occurrence of quartz, K-feldspar<br />

<strong>and</strong> acid plagioclase in the river suspensions<br />

is their strong prevalence<br />

among the ten most common rockforming<br />

.minerals in the plutonic<br />

rocks of the uppermost part of the<br />

Earth's crust (WEDEPOHL, 1969).<br />

Amphibole. occupies fourth place.<br />

Calcite <strong>and</strong>/or dolomite, two extremely<br />

unstable rockforming minerals<br />

during weathering, occur in seven<br />

out of the thirteen rivers hitherto stu<strong>di</strong>ed.<br />

Their presence in the river suspension<br />

is con<strong>di</strong>tioned by the occurrence<br />

of enough limestones <strong>and</strong>/or<br />

dolomites in the drained basins, by<br />

arid climatic con<strong>di</strong>tions (Mackenzie,<br />

Nile, Indus) <strong>and</strong> relatively high relief<br />

(Ganges, Brahmaputra + Padma, Indus).<br />

Calcite <strong>and</strong> dolomite also rank<br />

among the main rock-forming minerals<br />

of the uppermost zone, i.e. the<br />

se<strong>di</strong>mentary lithosphere.<br />

In the aqueous environment relatively<br />

less· stable primary silicates<br />

<strong>and</strong> strongly unstable carbonates<br />

along with relatively unstable chlorite<br />

occur in larger portions in t~e<br />

suspensions of the rivers flowing<br />

either through regions with lower<br />

annual rainfall (Nile, Indus, Mackenzie,<br />

St. Lawrence) or with high relief<br />

(Ganges, Brahmaputra + Padma).<br />

Crystalline Minerals <strong>and</strong> Chemical Maturity ... 125<br />

"<br />

The rivers Niger, Orinoco, Caroni, Parana<br />

<strong>and</strong> Orange contain the lowest<br />

amounts of unstable clastic minerals<br />

<strong>and</strong> no clastic carbonates. 'fhe first<br />

four of those rivers collect waters<br />

from tropical regions where the .energy<br />

of the chemical weathering is the<br />

highest. The only exception is the suspension<br />

of the Orange which contains<br />

a low portion of relatively unstable<br />

silicates despite its draining a region<br />

of low annual rainfall <strong>and</strong> high relief.<br />

Major chemical elements <strong>and</strong> chemical<br />

maturity of the suspeJ1.ded solids<br />

The contents of major chemical<br />

elements in the suspended solids of<br />

rivers were determined by EDAX<br />

(Table 1). Only oxygen <strong>and</strong> hydrog~n<br />

are not involved because their <strong>di</strong>rect<br />

determination by EDAX is impossible.<br />

The extremely high contents of sili-<br />

- con accompanied by the lowest contents<br />

of aluminium in the suspended<br />

solids of the Nile <strong>and</strong> the Waikato is<br />

caused by the remarkably high concentration<br />

of <strong>di</strong>atoms. The amorphous<br />

constituents in the suspended<br />

solids of the rivers stu<strong>di</strong>ed, i.e. the<br />

opal <strong>and</strong> iron oxide pigment part,<br />

could not be detected by X-ray <strong>di</strong>ffraction.<br />

The opal skeletons of <strong>di</strong>atoms<br />

were found by SEM in each<br />

river but mostly in low concentrations.<br />

The contents of major chemical<br />

elements are in good accordance with<br />

the average mineral composition of<br />

the samples stu<strong>di</strong>ed (Fig. 2).<br />

The chemical maturity ( ChM), of the


~ ~~.....--<br />

1<br />

126 J. Konta<br />

TABLE 1<br />

Weight per cent of major chemical elements in the suspended solids of thirteen rivers,<br />

calculated to 100% without oxygen <strong>and</strong> hydrogen <strong>and</strong> chemical maturity (ChM = %AI :<br />

----o--o-<br />

--~~----<br />

. -~<br />

%/Na+Mg+Ca/) of the suspended solids<br />

River Na Mg AI Si s K Ca Ti Fe ChM<br />

Mackenzie n.v. 3.36 17.99 56.32 0.35 4.54 3.97 0.40 13.07 2.5<br />

St. Lawrence 2.91 5.24 17.73 51.80 n.v. 4.59 3.13 0.92 13.68 1.6<br />

Orinoco 1.28 2.12 18.04 47.72 n.v. 3.79 0.38 1.02 25.65 4.8<br />

Caroni 2.05 2.51 24.44 50.84 0.71 2.07 1.41 0.57 15.40 4.1<br />

Par ami 1.06 1.87 18.92 55.11 n.v. 7.26 0.61 0.88 14.29 5.3<br />

Nile n.v. 2.81 14.02 61.72 2.23 1.86 8.44 0.88 8.05 1.2<br />

Niger 1.38 3.20 29.23 55.84 n.v. 1.45 0.70 0.58 7.63 5.5<br />

Orange 5.21 2.85 17.27 57.69 n.v. 4.74 2.89 1.15 8.20 1.6<br />

Indus 1.48 4.21 17.86 53.14 0.83 5.02 6.37 0.38 10.70 1.5<br />

Ganges 4.00 2.37 14.22 54.44 n.v. 6.28 4.92 1.63 12.15 1.3<br />

Brahmaputra 1.57 4.30 19.01 50.25 n.v. 6.56 1.47 0.85 15.99 2.6<br />

Pa:dma 0.28 2.40 16.19 52.00 n.v. 6.90 4.06 0.74 17.42 2.4<br />

Waikato n.v. 0.61 11.57 67.98 1.25 2.12 1.50 0.27 12.38 5.5<br />

Remark: Waikato Cl 0.75%, Mn 1.57%; n.v. = no line visible<br />

~---~-------su.s-periaed solids in the rivers stu<strong>di</strong>ed<br />

is expressed by a simple ratio% Al: %<br />

(Na+Mg+Ca). The Niger <strong>and</strong> the Parana<br />

with the largest values of ChM of<br />

their suspended solids also contain<br />

the largest portions of kaolinite +<br />

<strong>di</strong>octahedral mica of the rivers stu<strong>di</strong>ed.<br />

The Niger moreover contains a<br />

small admixture of gibbsite. In contrast,<br />

the rivers draining typical arid<br />

basins are characterized by low<br />

values of ChM. The high chemical<br />

maturity of the suspended solids of<br />

the Waikato river testifies to the<br />

strong leaching of the rock material<br />

in this river basin, probably due to<br />

recent <strong>and</strong> subrecent postvolcanic<br />

hydrothermal activity. The chemical<br />

maturity values obtained are the<br />

most characteristic <strong>and</strong> sensitive<br />

material properties of the suspended<br />

solids suitable for correlation with<br />

the environmental factors of the rivers<br />

stu<strong>di</strong>ed <strong>and</strong> their basins.<br />

Environments of rivers<br />

Table 2 contains a numerical expression<br />

of some of the most important<br />

properties or suitable factors of<br />

the rivers <strong>and</strong> their basins.<br />

Theoretically, the chemical maturity<br />

of suspended solids transported<br />

by the rivers depends on the exposed<br />

rocks <strong>and</strong> the intensity of the weathering<br />

processes in the drainage<br />

basins. The intensity of weathering<br />

of the eroded rocks reflected in the<br />

chemical maturity (ChM) of the<br />

suspended solids depends on several<br />

primary factors (KONTA, 1984):<br />

ChM = f (R, E,, A+H, Em, t)', (1)<br />

where ChM is the chemical maturity<br />

of the crystalline <strong>and</strong> noncrystalline<br />

solid particles in the aqueous suspension;<br />

R represents the rocks exposed<br />

in the drained river basin; E, is the<br />

accepted solar energy; A denotes the<br />

eomposition of the atmosphere, in-


Crystalline Mirzerals <strong>and</strong> Cherrizc;iMaturity ... 127<br />

TABLE 2<br />

Numerical expression of some of the most important factors obtained for major world rivers<br />

stu<strong>di</strong>ed<br />

Rivers<br />

River basins<br />

1 2 3 4 5<br />

River ChM Simple measure Suspended Continentality Annual<br />

of the relief, solids, degree, rainfall,<br />

(Sh:L) X 100 g·m-3 K= [1.7 XA/sin(cp+ 10°)] -4 mm<br />

Mackenzie 2.5 10 184 68.0 282<br />

St. Lawrence 1.6 6 9 60.3 796<br />

Orinoco 4.8 58 178 10.6 1 990<br />

Caroni 4.1 308 ? 0.2 1 716<br />

Parana 5.3 49 49 22.0 1 240<br />

Nile 1.2 32 1 371 31.3 506<br />

Niger 5.5 34 26 30.5 1 250<br />

Orange 1.6 151 1 681 32.1 466<br />

Indus 1.5 167 2 879 51.5 399<br />

Ganges 1.3 180 2 721 40.9 1 098<br />

Brahmaputra 2.6 162 1 270 30.2 1 830<br />

Padma 2.4 171 1 970 34.2 1 465<br />

Waikato 5.5 53<br />

Remarks to the columns: 2) Calculated from the data accor<strong>di</strong>ng to NETOPIL (1972) or<br />

BALEK (1983) or GERASIMOV et al. (1964). 3) After DEGENS (1982), for the Orange after<br />

LISITZIN (1972), for the Waikato after the recent samplings. 5) After GERASIMOV et al.<br />

(1964); the number <strong>and</strong> sites of the respected meteorological stations are in<strong>di</strong>cated in Fig. 1<br />

by solid circles<br />

elu<strong>di</strong>ng the soil atmosphere; His the<br />

hydrosphere <strong>and</strong> denotes the amount<br />

of water which has penetrated into<br />

the surface rocks <strong>and</strong> its chemical<br />

aggressiveness; Em denotes the energy<br />

_of tectonic movements expressed<br />

mostly by the relief; t is the duration<br />

of the 'action.<br />

It is very <strong>di</strong>fficult or impossible to<br />

express numerically the primary factors<br />

in the above equation. It is<br />

however possible to use for rivers <strong>and</strong><br />

their drainage basins other reliable \<br />

values in which the primary factors<br />

are involved. Table 2 contains some<br />

accessible data for the rivers stu<strong>di</strong>ed<br />

<strong>and</strong> their drainage basins. In this<br />

"table, column 1) ChM is the chemical<br />

maturity, i.e. % Al: % (Na+Mg+Ca)<br />

ratio based on the EDAX data. Column<br />

2), (Sh:L) x 100, is a simple<br />

measure of the relief, strongly depen<strong>di</strong>ng<br />

on Em, where Sh denotes<br />

height of the spring area of the river<br />

above sea level in metres <strong>and</strong> L is the<br />

length of the river in km. Column 3),<br />

suspended solids in g·m- 3 , involves<br />

several primary factors, mainly Em, R<br />

<strong>and</strong> also A+H <strong>and</strong> Es. Listed in column<br />

4) is the continentality degree, K<br />

= [(1.7 A)/sin (


128 J. Konta<br />

Correlation analysis between all<br />

<strong>and</strong> A+ H. Column 5), annual rainfall Correlation <strong>di</strong>agrams<br />

in mm, involves the main value of the<br />

primary factor H.<br />

/ /<br />

Other potential factors were also<br />

examined, namely mineral maturity,<br />

MM, expressed as% sum of relatively<br />

stable minerals <strong>di</strong>vided by % sum of<br />

relatively nonstable minerals (from<br />

Fig. 2 quartz+ clay minerals without<br />

chlorite are the stable minerals<br />

whereas chlorite + remaining minerals<br />

below quartz are the nonstable<br />

minerals); the <strong>di</strong>scharge of rivers in<br />

factors given in Table 2 has shown<br />

that the chemical maturity has the<br />

expected although only slight positive<br />

tendency to a linear dependence<br />

on the annual rainfall (Fig. 3). The increase<br />

of water precipitations penetrated<br />

into the exposed rock profiles<br />

leads to a higher removal of so<strong>di</strong>um,<br />

magnesium <strong>and</strong> calcium <strong>and</strong> to a relative<br />

increase of aluminium. The experimental<br />

m 3·sec-1 ; the relative portion of<br />

points in this correlation<br />

accepted solar energy (% Es); a simple<br />

measure of ari<strong>di</strong>ty (/Es: annual<br />

rainfall! x 100). Factor analysis ·<strong>and</strong><br />

.. ----~-- _]egr~ss_i_Oll._aJ:}


Crystalline Minerals <strong>and</strong> Chemical Maturity ... 129<br />

maturity of the suspended solids.<br />

The most sensitive correlation (Fig.<br />

4) exists between the chemical<br />

maturity <strong>and</strong> the degree of continentality.<br />

The experimental points are<br />

grouped into two separate fields.<br />

There exists a strong tendency to an<br />

in<strong>di</strong>reCt dependence between the chemical<br />

maturity <strong>and</strong> the degree of continentality.<br />

The tropical rivers Niger,<br />

Parana, Orinoco <strong>and</strong> Caroni carry<br />

lutite suspended solids of high chemical<br />

maturity. The low degree of continentality<br />

connected with high rainfall<br />

in their drainage basins is the<br />

prevailing factor determining their<br />

high values of ChM. It is of great significance,<br />

however, that the ex­<br />

_perimental points of these four tropical<br />

rivers are linearly grouped in<br />

100 .,.,<br />

dependence on the secondary important<br />

factor, i.e. the relief. The rising<br />

relief of these rivers leads to a decrease<br />

of the chemical maturity of the<br />

eroded suspended matter due to<br />

growing erosion.<br />

The situation in the other group of<br />

the rivers stu<strong>di</strong>ed is not so simple.<br />

<strong>First</strong> the experimental points of the<br />

Brahmaputra <strong>and</strong> the Padma show<br />

their <strong>di</strong>stinct transitional position<br />

between both linerar groupings in<strong>di</strong>cated<br />

by dotted lines. The drainage<br />

basins of the Brahmaputra <strong>and</strong> the<br />

Padma approach the basins of the<br />

tropical rivers by the values of very<br />

high annual rainfall <strong>and</strong> relatively<br />

low to me<strong>di</strong>um degrees of continentality.<br />

Experimental points for the.<br />

rivers Mackenzie, St. Lawrence, In-<br />

80 -;::: LOfi/RELIEF<br />

8 I<br />

4- I<br />

o<br />

I<br />

~ I<br />

e Mackenzie<br />

~ St. Lawrence /<br />

60 o • I<br />

40<br />

Indus /<br />

e I<br />

I<br />

· Ganges I<br />

e I<br />

I<br />

Ni 1 e I Orange<br />

• I •·<br />

I<br />

Padma<br />

Brahmaputra<br />

• •<br />

HIGH RELIEF<br />

• Niger<br />

20<br />

MIDDLE<br />

RELIEF<br />

Caroni Ch~ ,<br />

1 % Al:% (Na+Mg+Ca)<br />

o+-----T-----r----,r---~----~-----r•ee----r--~,,----~,----,,<br />

1 .3 4<br />

Fig. 4 -Correlation between the chemical maturity (ChM) of suspended solids <strong>and</strong> the degree of<br />

continentality (K) of the river basins.


130<br />

]. Konta<br />

dus, Ganges <strong>and</strong> Orange, draining regions<br />

of arid to mild humid climates<br />

are also linearly grouped. This means<br />

that the chemical maturity of finegrained<br />

suspended solids in the rivers<br />

draining basins with the lowest<br />

values of the annual rainfall also decreases<br />

with rising relief. The only exception<br />

represents the material of the<br />

Nile with the lowest ChM value<br />

although the stream has a relatively<br />

me<strong>di</strong>um relief. This sole deviation<br />

can be explained by the extreme<br />

length of the Nile <strong>and</strong> the prevailing<br />

source of the suspended mud in the<br />

uppermost part of the stream. A simple<br />

measure of the Nile relief, calcu-<br />

- ~la-tea only -for . the actual -shorter<br />

source region of the mud, would be<br />

much higher than 32 (see Table 2)<br />

<strong>and</strong> would conform with the values<br />

for the Gangt!s, the Indus or the<br />

-orange~----------~-- =~~-~--~~-~~~ --<br />

The steeper slope of the dotted line<br />

intersecting this second field of experimental<br />

points belonging to the<br />

rivers flowing through arid to mild<br />

humid regions shows that the chemical<br />

maturity of the suspended<br />

solids rises with falling relief less<br />

markedly than in tropical rivers. The<br />

cause of this phenomenon lies in the<br />

lower annual rainfall <strong>and</strong> less intense<br />

chemical weathering in the river<br />

basins of arid <strong>and</strong> mild humid zones.<br />

The correlation <strong>di</strong>agram in Fig. 4<br />

helped to show that the chemical<br />

maturity of the suspended solids of<br />

rivers is primarily influenced by the<br />

degree of continentality (climatic factor)<br />

<strong>and</strong> secondarily by the height of<br />

the relief (tectonic factor).<br />

300 0<br />

~<br />

"<br />

::J<br />

.


Crystalline Minerals <strong>and</strong> Chemical Maturity ... 131<br />

Figure 5 demonstrates another correlation<br />

that shows a strong tendency<br />

to a linear dependence between the<br />

specific amounts of suspended solids<br />

(g·m- 3 as the annual mean) <strong>and</strong> a<br />

simple measure of the relief of the<br />

stream. The specific amount of suspended<br />

solids reflecting the rate of<br />

erosion largely increases with rising<br />

relief which is in agreement with the<br />

conclusions of SCHUMM (1963),<br />

JUDSON & RITTER (1964),<br />

AHNERT (1970) <strong>and</strong> FAIRBRIDGE &<br />

FINKL (1979). Experimental points<br />

for the Nile, the Indus <strong>and</strong> the Mackenzie,<br />

most remote from the intersectional<br />

dotted line in the lower part of<br />

the field (Fig. 5), testify to ~nother<br />

important factor which accelerates<br />

erosion, although these river basins<br />

rank among those with ,the lowest<br />

annual rainfall. Lack of watc;r leads<br />

to a lack of vegetation, the natural<br />

protective cover against erosion in<br />

the arid drainage basins whether hot<br />

or cold. The influence of this secondary<br />

factor on the rate of erosion, i.e.<br />

the density of vegetation must never<br />

be neglected.<br />

Conclusion<br />

The fine· particles of suspended<br />

solids occurring in any river represent<br />

fairly homogenized soil material<br />

eroded in the drainage basins. This<br />

follows from the X-ray identification<br />

of the crystalline .minerals <strong>and</strong> the<br />

EDAX analyses of the suspended<br />

solids sampled under constant con<strong>di</strong>tions<br />

at <strong>di</strong>stinct stations over a<br />

period of several months. EDAX data<br />

enable calculation of the chemical<br />

maturity (ChM) of the suspended<br />

solids.<br />

ChM = f (K, Sh:L, R) (2)<br />

that means that ChM can be realistically<br />

expressed as a function of the<br />

degreee of continentality (K), the relief<br />

(Sh:L) <strong>and</strong> the source rock (R). K<br />

<strong>and</strong> Sh:L can easily be calculated for<br />

any stream or its drainage basin (see<br />

Table 2). R is the most <strong>di</strong>fficult factor<br />

to be expressed quantitatively. But<br />

the source rocks R determine the<br />

final association of the subor<strong>di</strong>nate<br />

nonclay minerals <strong>and</strong> also the<br />

chlorite/kaolinite ratio (i.e. 2:2 to 1:1<br />

sheet silicates) in those regions wh~re<br />

the energy of chemical weathering<br />

is not extremely high. Chlorites<br />

completely <strong>di</strong>sappear in the tropical<br />

or subtropical regions where extremely<br />

intensive chemical weathering<br />

exists (the Niger, the Caroni but<br />

also the Waikato) or where only sheet<br />

silicates with T:O ratio 2:1 occur (the<br />

Orange). The present results reveal<br />

that kaolinite is not the only clay<br />

mineral poor in silica from the warm<br />

humid climatic zones <strong>and</strong> chlorite<br />

the only clay mineral poor in silica<br />

from the cold <strong>and</strong> arid climatic<br />

zones. Both these sheet silicates with<br />

the same T:O ratio, either 2:2 or 1:1,<br />

are the result of weathering in those<br />

environments where the major<br />

octahedral elements (AI, Mg, Fe 2 +·3+)<br />

occur with the Si atoms in the ratio of<br />

1:1. Thus the climatic con<strong>di</strong>tions are<br />

not the single factor determining the<br />

occurrence of kaolinite <strong>and</strong> chlorite


132<br />

J. Konta<br />

in the soil profiles although magnesium<br />

<strong>and</strong> iron chlorites are the-least<br />

stable crystalline clay minerals in an<br />

aqueous environment. The geochemistry<br />

of the source rocks also influences<br />

the final chlorite to kaolinite<br />

ratio· in the solid suspensions of rivers.<br />

The 2:2 <strong>and</strong> 1:1 sheet silicates<br />

substitute each other in any river environment<br />

with the exception of<br />

some tropical rivers draining basins<br />

having an extremely high energy of<br />

chemical decomposition.<br />

Only the most common original<br />

rock-forming silicates can be detected<br />

by X-ray <strong>di</strong>ffraction, i.e. quartz, acid<br />

plagioclase, potassium feldspar <strong>and</strong><br />

-- somet1mes-·accessory- ·a:mphibole in<br />

the river suspensions. In rivers draining<br />

arid regions or those of high relief,<br />

calcite <strong>and</strong>/or dolomite occur as<br />

· ·subord.inate-detrital-minerals of the<br />

suspended solids ..<br />

The above equation (2) is also a<br />

more suitable expression of the intensity<br />

of weathering in any place of<br />

the world. The primary factors Es <strong>and</strong><br />

A+H from the first equation (1) are<br />

involved in the factor K <strong>and</strong> the<br />

primary factors Em (<strong>and</strong> t) are involved<br />

in the factor Sh:L.)<br />

The correlation <strong>di</strong>agram in Fig. 4<br />

can be used for the investigation of<br />

the continental clay <strong>and</strong> lutite se<strong>di</strong>ments<br />

or the fine-grained portions of<br />

residual rocks. It can help to reconstruct<br />

the geological history of continental<br />

fine-grained silicate material<br />

that has not undergone substantial<br />

<strong>di</strong>agenetic change.<br />

REFERENCES<br />

AHNERT F., 1970. Functional relationship between denudation, relief <strong>and</strong> uplift in large mid-latitude<br />

drainage basins. Amer. J. Sci. 268, 243-253. ·<br />

BALEK J ., 1983. Hydrology <strong>and</strong> Water Resources in Tropical Regions. Developments in Water Science<br />

18, Elsevier, Amsterdam.<br />

BISCAYE I;' .E., 1965. Mineralogy <strong>and</strong> se<strong>di</strong>mentation of recent deep-sea clay in the Atlantic Ocean <strong>and</strong><br />

.adjacent seas <strong>and</strong> oceans. Geol. Soc. Amer. Bull. 76, 803-832.<br />

CoNRAD V., PoLLAK L.W., 1950. Methods in Climatology. Cambridge, Mass.<br />

DEGENS E.T ., 1982. Riverine carbon- an overview. Mitt. Geol.-Palaont. Inst. Univ. Hamburg, SCOPE/<br />

UNEP Sonderb<strong>and</strong>, Heft 52, 1-12.<br />

FAIRBRIDGE R.W ., FINKL CH.W ., 1979. Cratonic erosional unconformities <strong>and</strong> peneplains. J. Geol. 88,<br />

69-86.<br />

GERASIMOV l.P. ET ALII, 1964. Fiziko-geograficheskij atlas mira. 298 pp., Akad. nauk i·GGK SSSR,<br />

Moskva. ·<br />

GILLULY J.J., 1955. Geologic contrast between continents <strong>and</strong> ocean basins. In: Crust of the Earth (A.<br />

Poldervaart, e<strong>di</strong>tor), Geol. Soc. America Spec. Paper 62, Waverly, Baltimore.<br />

GoLDBERG E.D., GRIFFIN J .J ., 1964. Se<strong>di</strong>mentation rates <strong>and</strong> mineralogy in the south Atlantic. Jour.<br />

Geophys. Res. 69, No. 20, 4293-4309.<br />

GRIM R.E., 1953. Clay Mineralogy. McGraw-Hill, New York.<br />

JuosoN S., RITTER D.F., 1964. Estimated rates of denudation for the United States. Jour. Geophys. Res.<br />

69, 3395-3401.<br />

KNOCH K., ScHULZE A., 1954. Methoden der Klimaklassifikation. Justus Perthes, Gotha.<br />

KoNTA J., 1983. Crystalline suspended particles in the Niger, Par<strong>and</strong>, Mackenzie <strong>and</strong> Waikato Rivers.<br />

In: Transport of Carbon <strong>and</strong> Minerals in Major World Rivers; Mitt. Geol.-Palaont. Inst. Univ.<br />

Hamburg, SCOPE/UNEP Sonderb<strong>and</strong>, Part 2, Heft 55, 505-523.


Crystalline Minerals <strong>and</strong> Chemical Maturity ... 133<br />

KONTA .J., 1984. Supergenesis <strong>and</strong> se<strong>di</strong>mentogenesis: Transport <strong>and</strong> accumulation of se<strong>di</strong>ments in<br />

<strong>di</strong>fferent environments. Se<strong>di</strong>mentology, 27th lnt. Geol. <strong>Congress</strong> (Moscow), p. 3-10, VNU Sci.<br />

Press, Utrecht.<br />

KoNTA J., 1985. Mineralogy <strong>and</strong> chemical maturity of suspended matter in major rivers sampled under<br />

the SCOPEIUNEP Project (with 23 Figures <strong>and</strong> 5 Tables). Mitt. Geol.-Palaont. Inst. Univ. Hamburg,<br />

SCOPE/UNEP Sonderb<strong>and</strong>, Part 3, Heft 58, 569-592.<br />

LISITZIN A.P., 1972. Se<strong>di</strong>mentation in the World Ocean, Society of Economic Paleont. <strong>and</strong> Mineralogists<br />

Spec. Pub!. No. 17 (K.S. Rodolfo, e<strong>di</strong>tor), Tulsa, Oklahoma.<br />

·LoPATIN G.V., 1952. River Deposits of USSR (in Russian). Ak. nauk, Moskva.<br />

MILLOT G., 1979. Clay. Scientific Amer. 240, No. 4, 109-118.<br />

NETOPIL R., 1972. Hydrologie pevnin. (Hydrology of Continents). Academia, Praha.<br />

RATEEV M .A., 1960. Rol klimata i tektoniki v genezise glinistykh mineralov osadochnykh porod. Doklady<br />

k sobraniyu mezhdunarodnoj komissii po izuch. glin. AN SSSR, 77-83.<br />

ScHUMM S.A., 1963. The <strong>di</strong>sparity between present rates of denudation <strong>and</strong> orogeny. US Geol. Surv.<br />

Prof. Paper 154H, 1-13, Washington.<br />

WEDEPOHL K.H., 1969. H<strong>and</strong>book o{Geochemistry. Vol. I, Springer-Verlag, Heidelberg, New York.


Section I<br />

Surface Chemistry <strong>and</strong> Interactions


M in~r. Petrogr. Acta<br />

Vol. 29-A, pp. 137-143 (1985)<br />

Measurements of Total <strong>and</strong> External Surface Area of<br />

Homoionic Smectites by p-Nitrophenol Adsorption<br />

G.G. RISTORP, E. SPARVOLP, P. FUSF, J.P. QUIRK 3 , C. MARTELLONP<br />

1 Ce.ntro <strong>di</strong> Stu<strong>di</strong>o per i Colloi<strong>di</strong> del Suolo del C.N.R., Piazzale delle Cascine 28, 50144 Firenze, Italia<br />

2 Istituto <strong>di</strong> Chimica Agraria e Forestale dell'Universita <strong>di</strong> Firenze, Piazzale delle Cascine 28,50144 Firenze, Italia<br />

3 Waite Agricultural Research Institute, Glen Osmond-South Australia 5064, Australia<br />

ABSTRACT- The adsorption of para-nitrophenol (pNP) was used for measuring<br />

the external <strong>and</strong> total surface area of homoionic (Na, K, Mg, Ca) montmorillonite<br />

<strong>and</strong> beidellite.<br />

Adsorption isotherms at 20 oc from a pNP solution in Xylene, were obtained:<br />

a) after heating the clay samples at 160 oc; b) after equilibrating at <strong>di</strong>fferent<br />

relative humi<strong>di</strong>ty (R.H.) (10%, 42%, 90%).<br />

A plateau at the monolayer capacity on external clay surface was only<br />

obtained for the heated clays saturated with monovalent cations. The derived<br />

specific surface area.was in good agreement with the specific area obtained<br />

by Nz sorption.<br />

In contrast unheated clays with <strong>di</strong>valent cations have a plateau at high<br />

equilibrium concentration after equilibration atJO% R.H. It is assumed that<br />

the plateau in<strong>di</strong>cates the completion of a monolayer coverage on the external<br />

<strong>and</strong> internal surface. The specific area obtained from this plateau closely<br />

approaches that calculated from the clay structure.<br />

"<br />

Introduction<br />

The use of solute adsorption<br />

isotherms for measurements of specific<br />

surface area of soils (GREEN­<br />

LAND & QUIRK, 1964) <strong>and</strong> of other<br />

finely <strong>di</strong>vided solids (GILES et al.,<br />

1960; 1962; 1974) has been extensively<br />

investigated.<br />

Accor<strong>di</strong>ng to GILES et al, the<br />

adsorption of p-Nitrophenol (pNP) at<br />

room temperature is suitable for specific<br />

surface area determinations on a<br />

wide variety of organic <strong>and</strong> inorganic<br />

substances. Generally, good agree-<br />

ment was found with BET -surface<br />

areas, but few data are reported for<br />

clay minerals. It is widely recognized<br />

that the adsorption mechanism of<br />

polar neutral organic molecules (such<br />

as pNP) by 2/1 type clay mineni.ls<br />

·depends primarily on the nature <strong>and</strong><br />

the polarizing power of the exchangeable<br />

cation <strong>and</strong>, to a lesser extent, on<br />

the physico-chemical properties of<br />

the clay surface (MORTLAND, 1970;<br />

THENG, 1974). From IR stu<strong>di</strong>es,<br />

SALTZMAN & YARIV (1975) were<br />

able to suggest some <strong>di</strong>fferent ass.ociations<br />

between pNP <strong>and</strong> the interlayer<br />

cations of homoionic mont-


-.<br />

138 G.G. Ristori, E. Sparvoli, P. Fusi, J.P. Quirk, C. Martelloni<br />

morillonite, depen<strong>di</strong>ng on the hydratation<br />

status of the clay.<br />

The adsorption of pNP by a vermiculite<br />

<strong>and</strong> its acid activation products<br />

have been investigated by<br />

JIMENEZ LOPEZ & LLEDO RUIZ<br />

(1981). The adsorption isotherms are<br />

of the « L » type accor<strong>di</strong>ng to the classification<br />

of Giles <strong>and</strong> the retention<br />

capacity decreases with increasing<br />

temperature.<br />

Because water competes with pNP<br />

for lig<strong>and</strong> positions around the cations<br />

of the clay minerals, <strong>and</strong> little<br />

· · or no adsorption takes place from <strong>di</strong>lute<br />

aqueous solution, pNP must be<br />

used in non polar organic solvents.<br />

__ --------------~_____Ee_~rewrts are _


concentrations were rapidly· added.<br />

b) The_ same procedures also were<br />

employed for unheated clay samples<br />

equilibrated at 10%, 42% <strong>and</strong> 90%,<br />

relative humi<strong>di</strong>ty (in desiccators containing<br />

saturated salt solutions) to<br />

evaluate the influence of water on the<br />

adsorption of pNP.<br />

All tests were duplicated. For comparison,<br />

the external surface area of<br />

the homoionic clays was determined<br />

by Nz sorption, at liquid Nz temperature<br />

after degassing the samples<br />

overnight at 70 °C, using C. Erba<br />

Sorptomatic equipment, <strong>and</strong> the<br />

classical B.E.T. equation for calcula-<br />

. tions.<br />

Measurements of Total <strong>and</strong> Exiein;;i Surface Area ... 139<br />

The total surface area as calculated<br />

from structural data is reported in<br />

Table 1.<br />

The variations of the basal spacing<br />

with pNP adsorption were \ietermined<br />

by X-ray powder <strong>di</strong>ffraction<br />

(28 = 3°-10°, Cu Ka ra<strong>di</strong>ation).<br />

After adsorption, some selected<br />

clay samples were centrifuged, the<br />

supernatant decanted <strong>and</strong> the solid<br />

dried at 50 °C. The X-ray analyses<br />

were then obtained (i) at room con<strong>di</strong>tions,<br />

<strong>and</strong> (ii) imme<strong>di</strong>ately after heating<br />

at 125 °C, in a controlled dry<br />

atmosphere maintained by protecting<br />

the heated sample holder with a<br />

Mylar film.<br />

Results <strong>and</strong> <strong>di</strong>scussion<br />

The most significant results of this<br />

preliminary study can be summarized<br />

as follows:<br />

Samples heated at 160 oc. The smectites<br />

are completely dehydrated, as<br />

confirmed by the collapse of the basal<br />

spacing to 10 A. The pNP adsorption<br />

isotherms are reported in Fig. 1. For<br />

both clays, <strong>di</strong>fferent types of the<br />

curves occur depen<strong>di</strong>ng on the nature<br />

of the exchangeable cation. The first<br />

section of the curves always follows<br />

an L (Langmuir) type isotherm. The<br />

samples with monovalent cations<br />

have a plateau followed by a C (constant<br />

partition) branch. For clays saturated<br />

with <strong>di</strong>valent cations, the<br />

isotherms show only a change in the<br />

slope (point X) after the L section,<br />

<strong>and</strong> then follow a C type isotherm .<br />

Accor<strong>di</strong>ng to GILES et al. (1962) the<br />

plateau could in<strong>di</strong>cate the completion<br />

of a pNP monolayer. Assuming<br />

flatly adsorbed pNP molecules, the<br />

specific surface area (S) of the clay is<br />

calculated from S = Xm · N ·A, (Xm =<br />

the monolayer capacity (moles/g); N<br />

=Avogadro's Number, A= the area<br />

occupied by a pNP molecule (52.5<br />

A 2 )). In the absence of the plateau the<br />

change in the slope (point X) was<br />

used for calculating S.<br />

Good agreement with the values<br />

from Nz measurements was found for·<br />

both smectites with monovalent cations,<br />

<strong>and</strong> for Mg <strong>and</strong> Ca beidellite<br />

(Table 1). The basal spacing of all<br />

clay-pNP complexes, except Mg <strong>and</strong><br />

Ca bentonite, after heating at 125 °C,<br />

collapsed to about 10 A, for adsorp-<br />

. tion values correspon<strong>di</strong>ng to the<br />

· plateau or point X. At point X, Mg<br />

<strong>and</strong> Ca bentonites had higher spacings<br />

(11.4-11.6 A) in<strong>di</strong>cating penetration<br />

of pNP into the interlayer region.


140 G.G. Ristori, E. Sparvoli, P. Fusi, J.P. Quirk, C. Martelloni<br />

1000<br />

a)<br />

800<br />

600<br />

>, 400<br />

"'<br />

"<br />

·s::<br />

QJ<br />

" <br />

0<br />

..... "'<br />

c..<br />

z:<br />

c.<br />

"'<br />

QJ<br />

200<br />

---~---~-TOo-D - ..<br />

0<br />

s:...<br />

u<br />

800<br />

600<br />

400<br />

200<br />

• K<br />

o Na<br />

• ea<br />

X (Point X)<br />

10 20 30 ' 40<br />

mmo 1 es pNP /1<br />

Fig. 1 -Adsorption isotherms of pNP from Xylene at 20°C, clay samples heated to 160°C (referred to<br />

weight after drying at 2_00°C). a) Wyoming bentonite; b)~Mondaino beidellite.<br />

Penetration was also observed in all<br />

samples with adsorption values correspon<strong>di</strong>ng<br />

to the C linear branch of<br />

the isotherms: the basal spacing increased<br />

with the amount of pNP<br />

adsorbed, to a maximum of 12.4-12.6


Measurements of Total <strong>and</strong> E~ternal Surface Area ... 141<br />

TABLE 1<br />

Specific surface area of homoionic sinectites determined by N 2 sorption <strong>and</strong> pNP adsorption<br />

Specific surface area m 2 /g(•)<br />

external<br />

total<br />

N 2 sorption pNP adsorption(h) calculated(~) pNP adsorption(d)<br />

Na W. BENTONITE 36.0 34.5 740<br />

K 44.4 43.7 723<br />

Mg 28.2 (206)(•) 753 750<br />

Ca 37.1 (115)(•) 742<br />

740<br />

Na M. BEIDELLITE 158<br />

K<br />

Mg<br />

152<br />

128<br />

Ca 118<br />

152<br />

155<br />

134<br />

116<br />

715<br />

703<br />

723<br />

717<br />

710<br />

735<br />

(a) related to the mass of oven-dried samples (at 200°C); (b) adsorption by 160°C heated<br />

samples; (c) calculated from structural data; (d) adsorption by unheated samples, equilibrated<br />

at 10% R.H.; (e) calculated for comparison ·<br />

A. These data confirm that the<br />

plateau obtained with monovalent<br />

cations can be used foJ;"- calculating<br />

the external surface area, while the X<br />

point is not always significant, as<br />

shown by Ca <strong>and</strong> Mg bentonites.<br />

Unheated samples. The adsorption<br />

isotherms of unheated samples,<br />

stored at 10% R.H. exhibit a more<br />

uniform shape (Fig. 2, a <strong>and</strong> b): for<br />

all homoionic smectites the L branch<br />

is imme<strong>di</strong>ately followed by the C<br />

branch. In all samples the pNP largely_<br />

penetrates the interlayer. This is<br />

revealed by basal spacings which collapse<br />

(on heating at 125 oc after<br />

adsorption) to 13.2-13.4 A at\ the<br />

plateau, <strong>and</strong> approach the 9.9 A value<br />

of untreated clays as the amount of<br />

adsorbed pNP decreases.<br />

The <strong>di</strong>fference in basal spacing of<br />

about 3.5 A is close to the st<strong>and</strong>ard<br />

thickness of aromatic rings; this<br />

seems to in<strong>di</strong>cate that the pNP mole­<br />

~cule is adsorbed parallel to the silicate<br />

layers.<br />

It is assumed that the plateau in<strong>di</strong>cates<br />

total surface coverage. The surface<br />

area is calculated accor<strong>di</strong>ng to<br />

the formula: S tot. = S ext. + (Xm<br />

tot. -Xm ext.)·N·A; it has to be<br />

taken into account that the pNP<br />

molecule in the interlayer covers two<br />

silicate layers <strong>and</strong> the effective area<br />

for a molecule of pNP is 2 ·52 .5 = 1 OS<br />

A 2 • The surface area calculated from<br />

the pNP adsorption closely<br />

approaches the ideal surface area as<br />

derived from the <strong>di</strong>mensions of the<br />

unit cells. The isotherms obtained<br />

from samples stored at higher R.H.<br />

(42%, 90%) have the same shape, but<br />

the affinity of smectites for pNP is reduced<br />

by the presence of the water.<br />

The influence of water seems to be<br />

stronger in Mg <strong>and</strong> Ca samples <strong>and</strong><br />

the p-lateau is not attained.


142<br />

G.G. Ristori, E. Sparvoli, P. Fusi, J.P. Quirk, C. Martelloni<br />

1000<br />

600<br />

>,<br />

u "'<br />

-o<br />

(I)<br />

·;:::<br />

-o<br />

I<br />

<br />

0<br />

....... "'<br />

200<br />

. ---~~--~-----------C...- --- -- ------ --.<br />

z<br />

Cl.<br />

"' (I)<br />

0<br />

E<br />

0<br />

S-<br />

u<br />

·e;<br />

1000<br />

b)<br />

600<br />

200<br />

o Na<br />

• K<br />

c, Mg<br />

• ea<br />

10 30<br />

mmoles pNP/1<br />

Fig. 2 - Adsorption isotherms of pNP from Xylene at 20°C, unheated clay samples (R.H. 10%)<br />

(referred to weight after drying at 200°C). a) Wyoming bentonite; b) Mondaino beidellite.<br />

50<br />

Conclusion<br />

it seems possible to state that the<br />

adsorption of pNP by homoionic<br />

Although the results obtained smectites largely depends on the<br />

merit further detailed investigations, polarizing power of the exchangeable


0<br />

thus<br />

the<br />

Measurements ofTotal <strong>and</strong> External Surface Area ... 143<br />

cations. The heated Ca <strong>and</strong> Mg<br />

Wyoming bentonite exhibit the highest<br />

affinity for pNP; it is not possible<br />

to establish the pNP equilibrium concentration<br />

at which the organic molecule<br />

begins to penetrate into the interlayers,<br />

as the coverage of the external<br />

surface <strong>and</strong> the entering into the<br />

interlayer spaces probably occur<br />

simultaneously. The change in the<br />

slope of the adsorption isotherms at<br />

point X might be in<strong>di</strong>cative of the<br />

starting penetration in less ac- ~<br />

0<br />

cessible sites between the layers.<br />

InCa <strong>and</strong> Mg beidellites the polarizing<br />

power of the exchangeable cations<br />

is reduced. T~is is ascribed to<br />

the shortening of the <strong>di</strong>stance between<br />

the cation <strong>and</strong> the negative<br />

charges of the tetrahedral layers. The<br />

<strong>di</strong>fference in the affinity of the external<br />

<strong>and</strong> internal surfaC:es to pNP<br />

0<br />

molecules is more pro'iJ.Ounced.<br />

The change in the slope of the adsorption<br />

isotherms (point X) may be<br />

ascribed, in this case, to the completion<br />

of external surface c;overage.<br />

In the case of monovalent cations<br />

with lower polarizing power a well<br />

defined plateau at adsorption levels<br />

correspon<strong>di</strong>ng to the external clay<br />

surface supports the above conception.<br />

In the unheated samples pNP can<br />

easily penetrate int~ the interlayer of<br />

smectites, but only with <strong>di</strong>valent cations<br />

<strong>and</strong> at low relative humi<strong>di</strong>ty is<br />

a plateau attained that corresponds<br />

to a monolayer on the external <strong>and</strong><br />

internal surfaces.<br />

It is suggested that reliable values<br />

of the external specific surface of<br />

smectites can be obtained from clays<br />

0<br />

saturated with monovalent cations<br />

<strong>and</strong> heated at 160 °C, <strong>and</strong> that it may<br />

be possible to measure total surface<br />

area for Mg <strong>and</strong> Ca samples using<br />

pNP adsorption if the samples are<br />

equilibrated at low water vapour<br />

pressures prior to the adsorption<br />

from a non-polar liquid.<br />

Further stu<strong>di</strong>es on the nature of the<br />

isotherms are now in progress to<br />

ascertain in detail the role of clay<br />

structure, of relative humi<strong>di</strong>ty, <strong>and</strong> of<br />

in<strong>di</strong>vidual cations.<br />

REFERENCES<br />

BoEHM H.P., GROMES W., 1959. Bestimmung d,er spesifischen Oberflache hydrophiler Stoffe aus der<br />

Phenol-Adsorption. Angew."Chem. 71, 65-69.<br />

GILES C.H., McEwAN Z.H., NAKHWA S.N., SMITH D., 1960. Stu<strong>di</strong>es in adsorption. Part XI. A system of<br />

classification of solution adsorption isotherms, <strong>and</strong> its use in <strong>di</strong>agnosis of adsorption mechanisms<br />

<strong>and</strong> in measurement of specific surface areas of solids. J. Chem. Soc., 3973-3993.<br />

GILES C.H., NAKHWA S.N ., 1962. Stu<strong>di</strong>es in adsorption. XVI. The measurement of specific surface areas<br />

of finely <strong>di</strong>vided solids by solution adsorption. J. appl. Chem. 12, 266-272.<br />

GrLES C.H., D'SILVA A.P., EASTON LA., 1974. A general treatment <strong>and</strong> classification of the solute<br />

adsorption isotherms. Part I!. Experimental interpretation. J. Colloid & Interface Sci. 47, 766-777.<br />

GREENLAND D.J., QUIRK J.P., 1964. Determination of the total specific surface area of soils by adsorp,<br />

tion of cetylpyri<strong>di</strong>nium bromide. J. Soil Sci. 15, 178-191.<br />

JrMENEZ LOPEZ A., LLEDO Rurz F, 1981. Retenciqn de p-Nitrofenol sabre una vermiculita y su producto<br />

de activacion acida. An. Edaf. Agrobiol. 40, 21-35.<br />

MoRTLAND M.M., 1970. Clay-organic complexes <strong>and</strong> interactions. Adv. Agron. 22,75-117.<br />

SALTZMAN S., YARIV S., 1975. Infrared study of sorption of Phenol <strong>and</strong> p-Nitrophenol by Montmorillonite.<br />

Soil Sci. Soc. Amer. Proc. 39, 474-478.<br />

THENG B.K.G., 1974. The Chemistry of Clay-Organic Reactions. Adam Hilger, London.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 145-154 (1985)<br />

Adsorption of Chloropropham (CIPC)<br />

by Clay Minerals <strong>and</strong> Soils<br />

G. DIOS CANCELA, J.A. GUILLEN ALFARO, S. GONZALEZ GARCIA<br />

Estaci6n Experimental del Zai<strong>di</strong>n, C.S.I.C., Profesor Albareda 1, 18008 Granada, Espana<br />

ABSTRACT - The adsorption of Chloropropham (CIPC) by clay minerals<br />

(montmorillonite, kaolinite, illite) <strong>and</strong> a peat sample was stu<strong>di</strong>ed. Also the<br />

adsorption of this herbicide by six characteristic soils of the Province of<br />

Granada (southern Spain) was stu<strong>di</strong>ed. All the isotherms of natural <strong>and</strong><br />

oxi<strong>di</strong>zed soils, as well as those from the clay minerals <strong>and</strong> the peat, fit well to<br />

Freundlich's model.<br />

High correlations were obtained between adsorption capacity of natural<br />

soils <strong>and</strong> <strong>di</strong>fferent physico-chemical characteristics of the soils such as<br />

organic matter, <strong>and</strong> C.E.C. In the oxi<strong>di</strong>zed soils there are good correlations<br />

between K' <strong>and</strong> C.E.C.,% illite <strong>and</strong>% montmorillonite plus kaolinite.<br />

The thermodynamic parameters ~G 0 , ~S 0 , ~Ho <strong>and</strong> the isosteric adsorption<br />

heats of the adsorption processes were .determined in order to elucidate the<br />

mechanisms governing this process.<br />

Introduction<br />

The adsorption of herbicides by ac-<br />

. tive soil surfaces is one of the main<br />

processes controlling herbicide phytotoxicity,<br />

its persistence in soil <strong>and</strong><br />

its resistance to degradation.<br />

Although Chloropropham (CIPC) is<br />

a herbicide used extensively in agriculture,<br />

stu<strong>di</strong>es of its adsorption by<br />

clay minerals <strong>and</strong> soils are very<br />

scarce. In this context, the work of<br />

BAILEY et al. (1968) may be cite~;<br />

these authors stu<strong>di</strong>ed the adsorption<br />

of <strong>di</strong>fferent herbicide families by<br />

montmorillonite <strong>and</strong> found that<br />

chloropropham is adsorbed following<br />

Freundlich's equation. Subsequently<br />

BRIGGS (1969) stu<strong>di</strong>ed the adsorption<br />

of carbamate herbicides <strong>and</strong> its<br />

relationship with Hammett's, Taft's<br />

. <strong>and</strong> Hansch's constants. Finally,<br />

MOREALE & VAN BLADEL (1981)<br />

showed the existent relationship between<br />

adsorption capacity <strong>and</strong> solubility.<br />

Since the information about CIPC<br />

adsorption by soils is very scarce, we<br />

thought it interesting to study the retention<br />

of this herbicide by some clay<br />

1<br />

minerals, a peat sample <strong>and</strong> by some<br />

soils of the Granada Province (south-<br />

. ern Spain) in order to obtain in-<br />

, formation about the retention capacity<br />

of the herbicide by <strong>di</strong>fferent<br />

adsorbents <strong>and</strong> to determine the<br />

thermodynamic parameters control-·<br />

ling the adsorption process.


146 G. Dios Cancela, J.A. Guillen Alfaro, S. Gonzalez Garcia<br />

Materials <strong>and</strong> methods<br />

Adsorbents<br />

The


Adsorption of Chioropropham ... 147<br />

was analyzed for CIPC by spectrophotometry<br />

at 235 nm.<br />

Experimental results <strong>and</strong> <strong>di</strong>scussion<br />

Adsorption isotherms of CIPC by clay<br />

minerals <strong>and</strong> peat<br />

In Fig. 1 the adsorption isotherms<br />

of CIPC, at 20 oc <strong>and</strong> 27 °C,, by three<br />

clay minerals <strong>and</strong> peat are shown.<br />

The amount adsorbed in !J.g/g of sample<br />

is plotted against the relative.<br />

equilibrium concentration, C/Co, in<br />

order to eliminate the solubility<br />

effect on adsorption. The isotherms<br />

adjust to Freundlich's model X/M =<br />

K' (C/Co) 11 n where K' is the amount<br />

adsorbed when C/Co = 1 while 1/n is<br />

a measure of the degrye of nonlinearity<br />

of the isotherms. ~eat fit<br />

well to an equation of the type x/m =<br />

a+ K' (C/Co) 11 n which has an origin<br />

intercept. As a consequence, the<br />

adsorption of CIPC by these adsorbents<br />

can be considered as an adsorption<br />

on an heterogeneous surface.<br />

The K' values, shown in Table 2,<br />

are ordered in the following sequence:<br />

kaolinite > montmorillonite<br />

> illite which is the inverse of the relationship<br />

to the specific surface of<br />

these minerals; consequently, the<br />

adsorption must take place in the<br />

more active points of the surfaces,<br />

namely exchange cations <strong>and</strong> broken<br />

crystal bonds, to which the CIPC<br />

molecules will be bonded by ion<strong>di</strong>pole<br />

type interactions. The greater<br />

retention capacity of kaolinite may<br />

be related to the presence .of -OH<br />

groups on one of its surfaces, to<br />

which the herbicide can be fixed by<br />

hydrogen bon<strong>di</strong>ng (BRINDLEY et al.,<br />

1963). It is also possible that inter-<br />

8000 Peat<br />

7000<br />

6000<br />

1000<br />

Montmorill onite<br />

5000<br />

4000<br />

0.2<br />

0.4 0.6 0.8<br />

0.2 0.4 0.6 0.8<br />

3000<br />

2000<br />

1000 Ill ite<br />

20'C<br />

~27'C<br />

~c~•<br />

~~·~<br />

C/Co 00o•- C/CO<br />

01+---~---,--~--~---<br />

0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8<br />

Fig. 1 -Adsorption isotherms of CIPC by clay minerals <strong>and</strong> peat.


148 G. Dios Cancela, J.A. Guillen Alfaro, S. Gonzalez Garcia<br />

TABLE 2<br />

Freundlich's constants K', 1/n <strong>and</strong> a values for adsorption of CIPC by clay minerals, peat<br />

<strong>and</strong> soils-··-<br />

K' 1/n a<br />

20"C 27°C 20°C 27°C 20°C 27°C<br />

Ti<strong>di</strong>nit Montmorillonite 739.1 730.0 0.86 1.0 0 0<br />

Beavers Bend Illite 646.4 624.7 1.0 1.0 0 0<br />

Lage Kaolinite 1179.6 1077.6 0.95 1.0 0 0<br />

peat 12959.0 13122.0 1.0 1.0 162.4 151.0<br />

P-8 2105.0 1808.0' 0.674 0.748 0 0<br />

P-9 1308.0 1234.6<br />

P-10 1246.0 1112.0<br />

P-11 794.5 800.0<br />

P-12 1877.8 1750<br />

M-128 750.0 756.0<br />

P-8 oxi<strong>di</strong>zed 1971.0 1648.4<br />

P-9 oxi<strong>di</strong>zed 1011.0 942.0<br />

P-10 oxi<strong>di</strong>zed 2269.0 2500.0<br />

P-11 oxi<strong>di</strong>zed 885.0 813.0<br />

P-12 oxi<strong>di</strong>zed 1080.0 940.0<br />

a: y axis intercept<br />

1.0 1.0 0 0<br />

0.88 0.96 0 0<br />

0.99 1.05 0 0<br />

0.91 0.96 0 0<br />

1.0 1.0 0 0<br />

1.0 0.995 0 0<br />

1.167 L202 0 0<br />

1.367 1.65 0 0<br />

1.004 0.97 0 0<br />

1.05 0.973 0 0<br />

:li<br />

'' ,, !<br />

•I<br />

:I<br />

I<br />

'I I<br />

'I<br />

I<br />

i:<br />

I<br />

crystalline pores intervene in the<br />

adsorption process. The size <strong>and</strong><br />

shape of intercrystalline pores in<br />

particle aggregates depend on the<br />

crystallinity, uniformity <strong>and</strong> <strong>di</strong>mensions<br />

of the particles.<br />

Peat exhibits a great affinity for<br />

CIPC at low equilibrium concentra-.<br />

tions that may be explained by the<br />

presence of hydrophobic groups by<br />

which CIPC is strongly retained. It·<br />

can be observed that the adsorption<br />

power of peat is 10 times greater than:<br />

that of the clay minerals; this is in'<br />

agreement with that found by other<br />

authors (SALTZMAN et al., 1972).<br />

Thennodynamic parameters related to<br />

adsorption<br />

In order to know the thermodynamic,<br />

parameters controlling the retention<br />

process <strong>and</strong> to pre<strong>di</strong>ct the possible<br />

adsorption mechanisms, the<br />

values of LlG 0 , LlS 0 <strong>and</strong> LlH 0 associated<br />

with the adsorption ofCIPC by clay<br />

minerals <strong>and</strong> peats, were calculated<br />

following the methods of BIGGAR &<br />

CHEUNG (1973).<br />

The LlG 0<br />

values are negative <strong>and</strong><br />

range from -6.2 kcal!mol, for the<br />

peat, to -3.4 kcal!mol for illite, following<br />

an order analogous to that of<br />

the adsorption capacity. This negative<br />

value of LlG 0 accounts for the persistence<br />

<strong>and</strong> resistence to degradation<br />

of this herbicide in soils.<br />

The LlS 0 values are negative, except<br />

for the illite, which suggests a lower<br />

degree of liberty of this herbi~ide in<br />

the adsorbed phase. In the illite,<br />

these values are positive, possibly be-.<br />

cause the adsorption of CIPC involves<br />

the previous desorption of other·<br />

molecules such as water.<br />

All LlH 0<br />

values are negative, this<br />

implies that the adsorption process<br />

for CIPC is exothermic. But the mag-


nitude of AH 0<br />

is an average value for<br />

the adsorption process, so that this<br />

param~ter does not allow clarification<br />

of the mechanism which governs<br />

the process. For this reason, it is<br />

necessary to calculate the isosteric<br />

1000<br />

,<br />

2o•c / . /<br />

.../ z· _.z:,id,,"<br />

• /",..Xunoxi<strong>di</strong>zed<br />

./<br />

.....<br />

j/ ,.....<br />

7 / 0 / Soi 1 P - 8<br />

,.<br />

......<br />

0 .<br />

1000<br />

0<br />

1000<br />

12000<br />

12000<br />

Adsorption of Chloropropham ... 149<br />

0.4 0.8<br />

1000<br />

0.4 0.8<br />

1 ODD<br />

adsorption heats as a function of the<br />

degreee of coverage using the expression:<br />

AH =<br />

0.4 0.8<br />

12000 ./ .....<br />

./ .,.., .......<br />

/./ ,,o ... o<br />

......... • .,.V" ... o"<br />

/•/,..o_..o .. ""<br />

,• ._.- Soi 1 P - 9<br />

.... •::- .... -<br />

0.4 0.8<br />

E<br />

-.._<br />

X<br />

0<br />

1 DD 0<br />

' Soil P- 1 D<br />

0.4 0.8<br />

0.4 0.8<br />

0<br />

1000<br />

12000<br />

0.4 0.8<br />

,<br />

~ '.·<br />

,o'<br />

..<br />

/,9"·<br />

o~•<br />

,~soil P-.11<br />

0.4 0.8<br />

1 ODD / ./1000<br />

12000 /• .,.,...,.o"" ,<br />

(" _..--·/•<br />

e.,.o'<br />

/<br />

·-- ----·<br />

o/<br />

_. Soi 1 P- 12<br />

0.4 0.8<br />

C I Co<br />

0.4 0.8<br />

Fig. 2 - Adsorption isotherms of CIPC by unoxi<strong>di</strong>zed <strong>and</strong> oxi<strong>di</strong>zed soils.


150 G. Dios Cancela, J.A. Guillen Alfaro, S. Gonzalez Garcia<br />

In Fig. 2 the values obtained are<br />

plotted against the amounts of adsorbent.<br />

The q., values of montmorillonite<br />

change exponentially with the coverage,<br />

a characteristic of adsorption on<br />

heterogeneous surfaces.<br />

The q., range from 14.5 kcal!mol,<br />

for low coverages, to 1.8 kcal!mol for<br />

high X/m values. For low coverages,<br />

these values can be interpreted on the<br />

basis of ion-<strong>di</strong>pole type interactions<br />

between the CIPC molecules <strong>and</strong> the<br />

external exchange cations, or crystal<br />

broken bonds. For coverage values<br />

over 200 J..Lglg the herbicide adsorption<br />

must be governed either by the<br />

--~-~---------~layer: of oxygen atoms of the_ external<br />

surface to which the herbicide will be<br />

weakly linked by hydrogen bonds or<br />

by the pores within particle aggregates<br />

into which the CIPC will be<br />

fixed by weak Van der Waals forces.<br />

In the case of thekaolinite, the q.,<br />

values also change in exponential<br />

form with the degree of coverage, <strong>and</strong><br />

the existence of a first stretch of curve<br />

at low coverage having high q.,<br />

values, can be noted; this suggests<br />

that the CIPC is retained on the exchange<br />

cations by ion-<strong>di</strong>pole interactions<br />

as in the case of montmorillonite.<br />

Nearly constant values of qst (- 3<br />

kcal!mol) were obtained for x/m<br />

values over 400 J..Lg/g, in<strong>di</strong>cation that<br />

the CIPC molecules are linked to the<br />

-OH groups of the hydroxyl layer by<br />

hydrogen bonds. The q., values for<br />

illite are very low (about 1 kcal!mol),<br />

suggesting that the exchange cations<br />

in this mineral do not participate in<br />

the retention process <strong>and</strong> that this<br />

process is restricted either to the<br />

bon<strong>di</strong>ng~ofCIPCmolecules to surface<br />

oxygens of the layers by weak<br />

hydrogen-bonds or to its retention in<br />

intercrystalline pores by weak Van<br />

der Waals forces.<br />

In the peat, we can also observe the<br />

existence of a first stretch for low<br />

coverages showing high values of q.,<br />

which must correspond to a strong<br />

ion-<strong>di</strong>pole type interaction between<br />

cations <strong>and</strong> CIPC molecules. These<br />

values decrease abruptly <strong>and</strong>, over<br />

980 J..Lg/g for the q., values, are more in<br />

accordance with an interaction of<br />

hydrogen-bonds or Van der Waals<br />

type forces.<br />

CIPC adsorption by soils<br />

f'<br />

In Fig. 3 the adsorption isotherms<br />

of CIPC at 20 oc <strong>and</strong> 27 oc by <strong>di</strong>fferent<br />

natural <strong>and</strong> oxi<strong>di</strong>zed soils are shown.<br />

All the isotherms fit Freundlich's<br />

model expressed by the equation<br />

x/m = K' (C/C 0 ) 11 n<br />

so that the CIPC adsorption by these<br />

soils can be considered as an adsorption<br />

on an heterogeneous surface. The<br />

values of K' <strong>and</strong> 1/n for the <strong>di</strong>fferent<br />

soils at two temperatures are shown<br />

in Table 2.<br />

The correlation between the K'<br />

values at 20 oc for the natural soils<br />

(unoxi<strong>di</strong>zed) <strong>and</strong> the physicochemical<br />

characteristics of these<br />

soils, included in Table 1, were stu<strong>di</strong>ed<br />

<strong>and</strong> the following facts found.<br />

K' is significantly related to organic<br />

matter content accor<strong>di</strong>ng to the equation:<br />

K' = 696 + 92.5 (% OM) 2 ; (r =<br />

0.92'"') <strong>and</strong> also is linearly related to


Adsorption of Chloropriipham ...<br />

151<br />

12 \<br />

! Kaol inite<br />

6 \.<br />

: ........ .<br />

: :·---·---·-,-<br />

2 I I I<br />

I I o<br />

200 600<br />

t<br />

14 \<br />

10 \<br />

.,<br />

6 ----~'t.,<br />

Montmorillonite<br />

: ·~<br />

l ·,,<br />

2 : ......... __<br />

200 600<br />

22<br />

18<br />

•\ Peat<br />

...,<br />

V><br />

14<br />

10<br />

6<br />

2000<br />

"" 16 \unoxi<strong>di</strong> z.ed<br />

4000<br />

16<br />

10<br />

llllte<br />

\<br />

.-- -----;,,<br />

~ 2 ' --<br />

"":::. I ·-·-·---•-•-<br />

·-·.-·-·-·-<br />

200 400 600<br />

16<br />

" .,<br />

12<br />

·~. Soil P-8 Soil P-9 12 SoilP-10<br />

8<br />

oxi<strong>di</strong>zed<br />

...... ........<br />

·-·-<br />

4 _.1.-.-·-·-·--·-<br />

500 1500<br />

500 1500<br />

500<br />

1500<br />

16 16<br />

16<br />

12 SoilP-11 12<br />

Soil p- 12<br />

12 Soil M-128<br />

8 8<br />

4 4<br />

'•<br />

'·<br />

_o_o_o_o:=!:-8-e- --·-<br />

8<br />

4<br />

500<br />

x;m<br />

1500 500<br />

1500<br />

Fig. 3- Isosteric adsorption heats of clay minerals,.peat, unoxi<strong>di</strong>zed <strong>and</strong> oxi<strong>di</strong>zed soils.<br />

C.E.C. (r = 0.77), % illite (r = -0.78)<br />

<strong>and</strong> %kaolinite plus montmorillonite<br />

(r = 0.464). Taking into account the<br />

existing relationship between K' <strong>and</strong><br />

soil organic matter content, an expression<br />

for the adsorption of CIPC<br />

.. by Granada Province soils can be<br />

obtained. As a matter of fact, if we<br />

substitute 696 + 92.5 (% OM}) for K'<br />

in the equation x/m = K' (C/Co) 11 n, we


152 G. Dios Cancela, J.A. Guillen Alfaro, S. Gonzalez Garcfa<br />

-<br />

obtain the expression x/m = (696 +<br />

92.5 (% OM) 2 ) (C/Co) 11 n, where 1/n can<br />

take the mean value of this magnitude<br />

for all the soils stu<strong>di</strong>ed.<br />

The data obtained through this<br />

equation fit the experimental data<br />

fairly well. An analogous equation<br />

was found by WAHID & SETHU­<br />

NATHAN (1978) for the adsorption of<br />

parathion by soils.<br />

The results obtained in this study<br />

suggest that the organic matter content<br />

is the most important single factor<br />

governing CIPC adsorption by<br />

this type of soils. This fact is not<br />

strange if we take into consideration<br />

that the organic matter can be associated<br />

with clay minerals masking<br />

- -·-~-~--- partJ.YtheeffedofilieEne.fraction on<br />

the adsorpti_on process.<br />

The role played by other fractions<br />

on the CIPC adsorption by soils is<br />

clearly made evident when the organic<br />

matter is removed from the soils by<br />

treatment with HzOz. In this case, the<br />

K' values (Table 2) at 20 oc are linearly<br />

correlated with C.E.C. (r = 0.92H),<br />

% illite (r = -0.92~"') <strong>and</strong> % montmorillonite<br />

plus kaolinite (r<br />

0.97~'*''); this suggests that the<br />

adsorption increases with the C.E.C.<br />

<strong>and</strong> with montmorillonite + kaolinite<br />

content, <strong>and</strong> decreases with illite<br />

content in soils.<br />

Thermodynamic parameters related to<br />

adsorption<br />

In order to elucidate the possible<br />

mechanisms governing CIPC adsorption<br />

by soils, values of ~G 0 , ~so <strong>and</strong><br />

~W~~et:(;! __ _£a}£1:1.l~!~llo"\Ving the<br />

method of BIGGAR & CHEUNG<br />

(1973). The values obtained are<br />

shown in Table 3. ~Go is always negative<br />

in both unoxi<strong>di</strong>z 0.05; '"'P = 0.01; '""'P = 0.001.


Adsorption of Chloropropham ... 153<br />

TABLE 3<br />

Values of AG 0 , AS 0 , <strong>and</strong> AH 0 associated with the adsorption by clay minerals, peat <strong>and</strong> soils<br />

(oxi<strong>di</strong>zed <strong>and</strong> unoxi<strong>di</strong>zed)<br />

Ti<strong>di</strong>nit Montmorillonite<br />

Lage Kaolinite<br />

Beavers Bend Illite<br />

Peat<br />

P-8<br />

P-9<br />

P-10<br />

P-11<br />

P-12<br />

M-128<br />

P-8 oxi<strong>di</strong>zed<br />

P-9 oxi<strong>di</strong>zed<br />

P-10 oxi<strong>di</strong>zed<br />

P-11 oxi<strong>di</strong>zed<br />

P-12 oxi<strong>di</strong>zed<br />

t°C<br />

20<br />

27<br />

20<br />

27<br />

20<br />

27<br />

20<br />

27<br />

20<br />

27<br />

20<br />

27<br />

20<br />

27<br />

20<br />

27<br />

20<br />

27<br />

20<br />

27<br />

20<br />

27<br />

20<br />

27<br />

,· 20<br />

27<br />

20,<br />

27<br />

20<br />

27<br />

AG 0 AS 0 AH 0<br />

-4.0<br />

-4.0<br />

-20.8<br />

-20.3<br />

-10.0<br />

-5.3<br />

-5.2<br />

-12.6<br />

-12.7<br />

- 9.0<br />

-3.4 + 1.7<br />

-3.4 + 1.7<br />

- 2.9<br />

-6.2<br />

-6.2 -<br />

9.5<br />

9.5<br />

- 9.0<br />

-4.9 -33.0<br />

-4.7 -33.0<br />

-14.6<br />

-3.8<br />

-3.8<br />

+ 1.3<br />

+ 1.2<br />

- 3.4<br />

-4.2 -24.5<br />

-11.4<br />

-4.1 -24.3<br />

-3.8.<br />

3.6<br />

-3.7<br />

+ 0.7<br />

+ 0.3<br />

-4.5 - 8.2<br />

-4.4 8.3<br />

- 6.9<br />

- 1.9<br />

- 4.0<br />

-4.2<br />

-4.2<br />

+ 0.7<br />

+ 0.6<br />

-3.8<br />

-3.8<br />

+ 6.4<br />

+ 6.3<br />

-3.4<br />

-3.2 -<br />

1.4<br />

1.3<br />

- 3.8<br />

-3.1<br />

-3.0<br />

-14.0<br />

-14.0<br />

- 7.2<br />

-3.9<br />

-3.8<br />

+12.2<br />

+12.0<br />

- 0.3<br />

-3.6 +23.0<br />

-3.8 +22.0<br />

+ 2.9<br />

retained mainly by an ion-<strong>di</strong>pole type<br />

interaction. For sample P-8 (oxi<strong>di</strong>zed)<br />

these values are practically constant<br />

between 3 <strong>and</strong> 4 kcal/mol, in<strong>di</strong>cating<br />

an adsorption mechanism of the hydrogen<br />

bond type for CIPC adsorption,<br />

although an ion-<strong>di</strong>pole interaction<br />

can also take place for low coverages.<br />

Taking into account the q., values<br />

for samples P-9, P-11 <strong>and</strong> P-12 (oxi-'<br />

<strong>di</strong>zed <strong>and</strong> unoxi<strong>di</strong>zed), it seems that<br />

the hydrogen bond mechanism for<br />

CIPC adsorption is the predominant<br />

one. Soil P-10 (natural <strong>and</strong> oxi<strong>di</strong>zed)<br />

shows values close to those of sample<br />

P-8, suggesting that in this case the<br />

adsorption mechanism is of the ion<strong>di</strong>pole<br />

type for low coverages, <strong>and</strong> of<br />

the hydrogen bond type for high<br />

coverages.<br />

REFERENCES<br />

BAILEY G .W ., WHITE J.L., ROTH~ERG T ., 1968. Adsorption of Organic Herbicides by M ontmorillonite:<br />

Role of pH <strong>and</strong> Chemical Character of Adsorbate. Soil Sci. Soc. Amer. Proc. 32, 222-234.


154 G. Dios Cancela, J.A. Guillen A/faro, S. G,onztilez Garcia<br />

BrGGAR J.W., CHEUNG M.W., 1973. Adsorption ofPicloram (4-Amino-3,5,6-Trichloropicolinic Acid) on<br />

Panache, Ephrata, <strong>and</strong> Palouse Soils: A Thermodynamic Approach to the Adsorption Mechanism.<br />

Soil Sci. Soc. Amer. Proc. 37, 863-868. ·· ··· - ·····- - · ··· · ·· · --- ~···~···- -<br />

BRIGGS G.G., 1969. Molecular Structure of Herbicides <strong>and</strong> theirSortpion by Soils. Nature 223, 1288.<br />

BRINDLEY G.W., BENDER R., RAYS., 1963. Sorption of non-ionic aliphatic-molecules from aqueous<br />

solutions on clay minerals. Geochim. Cosmochim. Acta 27, 1129-1137.<br />

MoREALE A., VAN BLADEL R., 1981. Adsorption de 13 herbicides et insecticides par le sol. Relation<br />

solubilite-reactivite. Revue de !'Agriculture 34, n. 4, 939-952.<br />

SALTZMAN S., KLIGER L., YARON B., 1972. Adsorption-Desorption of Parathion as Affected by Soil<br />

Organic Matter. J. Agr. Food Chem. 20, 1224-1226.<br />

W AHID P.A., SETHUNATHAN N.J ., 1978. Sorption-Desorption of Parathion in soils. J. Agric. Food Chem.<br />

26, 101-105.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 155-162 (1985)<br />

Interaction of Chlor<strong>di</strong>meform with a<br />

Vermiculite-Decylammonium Complex<br />

in Aqueous <strong>and</strong> Butanol Solutions<br />

J.L. PEREZ RODRIGUEZ, E. MORILLO, M.C. I:IERMOSIN<br />

Centro de Edafologia y Biologia Aplicada del Cuarto, C.S.I.C., Apartado 1052, 41080 Sevilla, Espafia<br />

ABSTRACT- The interaction of a vermiculite-decylammonium complex with<br />

chlor<strong>di</strong>meform in aqueous or butanol solutions was stu<strong>di</strong>ed. When the complex<br />

is treated with an aqueous solution of chlor<strong>di</strong>meform, the degradation<br />

of chlor<strong>di</strong>meform occurs in the interface of the interlamellar space through a<br />

basic hydrolysis process, to yield a secondary amide which remains as a<br />

neutral molecule in the interlamell~r space, together with the decylammonium<br />

ions. If the complex is treated with butanol solutions of chlor<strong>di</strong>meform,<br />

this organic cation does not interact with the clay mineral <strong>and</strong> the decylammonium<br />

ions decompose to ammonium ions, because of the high aci<strong>di</strong>ty of<br />

the residual water.<br />

Introduction<br />

The process of inorganic cation exchange<br />

in clay minerals is, nowadays,<br />

perfectly known. Likewise, clay<br />

minerals can strongly adsorb organic<br />

cations in their interlamellar spaces<br />

through a cation exchange process<br />

(MORTLAND, 1970; THENG, 1974).<br />

Cationic pesticides are also adsorbed<br />

by an ion-exchange process in the interlamellar<br />

space of montmorillonite<br />

<strong>and</strong> vermiculite (WEBER et al., 1965;<br />

HAYES et al., 1978; PEREZ RODRI­<br />

GUEZ & HERMOSIN, 1979; HER­<br />

MOSIN & PEREZ RODRIGUEZ,<br />

1981; MORILLO et al., 1983).<br />

The intercalation of some organic<br />

species by alkylammonium clay complexes<br />

has been stu<strong>di</strong>ed (THENG,<br />

1974), but there is not much work devoted<br />

to the behaviour of such alkylammonium<br />

clay complexes versus<br />

other organic cations (specially pesticides)<br />

or to the effect of the solvent<br />

on such process.<br />

The present paper reports a study<br />

of the interaction of chlor<strong>di</strong>meform,<br />

an organic cationic pesticide, in<br />

aqueous or butanol solutions with<br />

decylammonium-vermiculite, in<br />

order to investigate the mechanism<br />

of such processes <strong>and</strong> the influence of<br />

the solvents used.


156 J.L. Perez Rodriguez, E. Mor£llo, M.C. Hermosin<br />

Experimental<br />

The vermiculite used in this study<br />

was obtained from the deposit (Huelva, SW Spain), <strong>and</strong><br />

it was in the Na+ form. The<br />

vermiculi te-decy !ammonium complex<br />

was prepared accor<strong>di</strong>ng to the<br />

method proposed by LA GAL Y &<br />

WEISS (1969).<br />

Technical grade chlor<strong>di</strong>merform<br />

(N'- ( 4 -chloro-2-methylphenyl)-N,N<strong>di</strong>methyl<br />

methanoimidamide hydrochloride)<br />

was used. This pesticide<br />

is soluble in water (SO% by weight)<br />

<strong>and</strong> ionizes completely giving the<br />

chlor<strong>di</strong>meform cation (CfH+) <strong>and</strong><br />

·· ~--------~-chluri:d.-e-~aniorr;-ehtor<strong>di</strong>meform ·is<br />

very stable in aqueous solution up to<br />

pH 6.5, above which, it begins to hydrolize<br />

accor<strong>di</strong>ng to the following<br />

steps ((a~(b)-?(c~(d)):<br />

CH 3<br />

(a) Cl-QN~CH-N~ · CIH<br />

· CH 3 CH 3<br />

Chlor<strong>di</strong>meform chlorhydrate<br />

pH> 5<br />

N -F ormyl-4-chloro-o-tolui<strong>di</strong>ne<br />

pH> 8 .<br />

(d) Cl-QNH,<br />

· CH3<br />

4-chloro-o-tolui<strong>di</strong>ne<br />

The vermiculi te-decylammonium<br />

complex was treated with 25 mmol/1<br />

of aqueous (pH = 4.8) or butanol<br />

solutions of chlor<strong>di</strong>meform, at 60 °C,<br />

shaking several times. The chlor<strong>di</strong>meform<br />

solutions were changed<br />

weekly.<br />

The interplanar spacings were determined<br />

by X-ray powder <strong>di</strong>ffraction<br />

using several orders of the (001)<br />

reflections. The samples were examined<br />

as oriented films supported<br />

on glass slides.<br />

The infrared absorption spectra<br />

were recorded from 4000 cm- 1 to 400<br />

cm- 1 using a Perkin Elmer double<br />

beam spectrophotometer. Samples<br />

were examined as KBr <strong>di</strong>scs.<br />

Results <strong>and</strong> <strong>di</strong>scussion<br />

Chlor<strong>di</strong>meform<br />

pH> 6.5<br />

The information about the interaction<br />

of the decylammonium-vermiculite<br />

complex with aqu~ous <strong>and</strong><br />

butanol solutions was obtained from<br />

the study of the changes observed by<br />

X-ray <strong>di</strong>ffraction <strong>and</strong> IR spectroscopy<br />

of the decylammonium-


Interaction of Chlor<strong>di</strong>meform with a Vermiculite~Decylammonium ... 157<br />

vermiculite complex after several<br />

treatments.<br />

0<br />


158 J.L. Perez Rodriguez, E. Morillo, M.C. Hermosin<br />

"' u<br />

.,_,<br />

""'<br />

.,.<br />

.+'<br />

V1<br />

" E<br />

1-<br />

3500 3000 2800 1800<br />

Wa venumber ( cm-1)<br />

1600 1400 1250<br />

Fig. 2 - IR spectra of the vermiculite-decylammonium complex treated with: a, water fot five<br />

weeks; b, aqueous solution of chlor<strong>di</strong>meform for one week; c, aqueous solution of chlor<strong>di</strong>meform<br />

for nine weeks.<br />

,'<br />

I<br />

l<br />

chlor<strong>di</strong>meform complex, because this<br />

latter should have a basal spacing of<br />

14.6 A (MORILLO et al., 1983). The<br />

higher values of this basal reflection<br />

suggest that decylammonium cations<br />

remain in the interlamellar space<br />

together with other organic species<br />

which produce a change of arrangement<br />

or <strong>di</strong>sposition. of the alkylammonium<br />

ions.<br />

The study by IR spectra of this<br />

vermiculite-decylammonium cornplex<br />

without treatment <strong>and</strong> treated<br />

with aqueous chlor<strong>di</strong>meform solutions<br />

permits more <strong>di</strong>rect information<br />

of the species in the interlamellar<br />

spaces of these complexes to be<br />

obtained. These spectra are shown in<br />

Fig. 2, for the regions 3500-2800 cm- 1<br />

<strong>and</strong> 1800-1250 cm- 1 , where the more~.<br />

interesting features appear.<br />

The spectrum of the decylammonium<br />

vermiculite complex (Fig. 2a)<br />

shows the characteristic b<strong>and</strong>s cor-


Interaction of Chlor<strong>di</strong>rneform with a V e~~ulite-Decylarnrnoniurn ... 159<br />

respon<strong>di</strong>ng to the -CH3 (2950, 1450<br />

cm- 1 ), -CHr(2920, 2850, 1460 cm- 1 )<br />

<strong>and</strong> -NH3+ (3100, 1625, 1570, 1500<br />

cm- 1 ) groups of the alkylammonium<br />

ions. The vibrations at 1625 cm- 1 <strong>and</strong><br />

1500 cm- 1 correspond to the asymmetrical<br />

<strong>and</strong> symmetrical NH deformation<br />

of the -NH3+ groups. At<br />

1570 cm- 1 a shoulder appears correspon<strong>di</strong>ng<br />

to the symmetrical -NH deformation<br />

of the -NH3+ groups<br />

bonded to the basal oxygens by a<br />

stronger H-bond (SERRATOSA et al.,<br />

1970). The 1625 cm- 1 b<strong>and</strong> also corresponds<br />

to the OH deformation of<br />

water, since at 3400. cm- 1 the OH<br />

stretching b<strong>and</strong> is observed, in<strong>di</strong>cating<br />

the presence of some interlamellar<br />

water.<br />

When the vermiculite-decylammonium<br />

complex is treated with an<br />

aqueous solution of chlor<strong>di</strong>meform<br />

for one to nine weeks, the infrared<br />

spectra show the vibrations of the<br />

decylammonium ions at slightly<br />

frequencies, together with others at<br />

1675, 1523 <strong>and</strong> 1300 cm- 1 • These new<br />

b<strong>and</strong>s, appearing clearly defined after<br />

nine weeks of treatment, do not<br />

correspond to chlor<strong>di</strong>meform cations<br />

<strong>and</strong> can be assigned to the amide I<br />

(C = 0 stretching), amide II (NH deformation)<br />

<strong>and</strong> amide Ill (combination<br />

of C-N· <strong>and</strong> N-H vibrations)<br />

b<strong>and</strong>s of a secondary amide, besides<br />

the 1600-1450 cm- 1 b<strong>and</strong>s of the<br />

aromatic rings. Since a secondary·<br />

amide is the product of the irreversible<br />

hydrolysis of chlor<strong>di</strong>meform<br />

when the pH is higher than 6.5, this<br />

process should occur when chlor<strong>di</strong>meform<br />

begins to · enter in the<br />

interlamellar space of the<br />

decylammonium-vermiculite complex<br />

from the aqueous solutions. The<br />

pH in the interlamellar space should<br />

be close to neutrality because of the<br />

presence of alkylammonium ions,<br />

whose hydrophobic character prevents<br />

the entry of the bulk solution.<br />

The 27.98 A final complex ·obtained<br />

should be similar to the partially collapsed<br />

complex described by JOHNS<br />

& SEN GUPTA (1967). The alkylammonium<br />

ions remain in the interlamellar<br />

space with the same or less<br />

inclination, in ad<strong>di</strong>tion to the neutral<br />

molecules of N-formyl-4-chloro-otolui<strong>di</strong>ne.<br />

The amide molecules can<br />

be associated to the alkylammonium<br />

ions by H-bonds between -NH3+ <strong>and</strong><br />

-C=O groups, as suggested by the<br />

observed shiftings in the frequency of<br />

the amide b<strong>and</strong> from 1700 to 1675<br />

cm- 1 (BELLAMY, 1975) <strong>and</strong> the 1620<br />

cm- 1 b<strong>and</strong> (N~H deformation of<br />

-NH3+) to 1630 cm- 1 (DONER &<br />

MORTLAND, 1969).<br />

Interaction of the butanol solution of<br />

chlor<strong>di</strong>meform with the vermiculitedecylammonium<br />

complex<br />

The X-ray powder <strong>di</strong>ffraction<br />

analysis of the vern;:ticulitedecylammonium<br />

complex treated<br />

with butanol <strong>and</strong> with butanol solutions<br />

of chlor<strong>di</strong>meform for one <strong>and</strong><br />

nine weeks, are shown in Fig. 3. The<br />

vermiculite-decylammonium treated<br />

with butanol shows a basal spacing<br />

of 21.19 A which, after one week of<br />

treatment with the chlor<strong>di</strong>meform


162 J.L. Perez Rodriguez, E. Morillo, M.C. Hennosin<br />

due to the solvent effect in which the<br />

chlor<strong>di</strong>meform should be deproton- .<br />

ated by the residual water of the clay,<br />

since the H 3 0+ is the real interacting<br />

species.<br />

Conclusions<br />

The interaction of chlor<strong>di</strong>meform<br />

in aqueous or butanol solutions with<br />

decylammonium-vermiculi te occurs<br />

by <strong>di</strong>fferent mechanisms as an effect<br />

of the"'sG>lNent:~~-- ~-~<br />

- in aqueous me<strong>di</strong>um, the chlor<strong>di</strong>meform<br />

is hydrolyzed yiel<strong>di</strong>ng a<br />

secondary amide which remains in<br />

the interlamellar space together with<br />

the alkylammonium ions;<br />

-in butanol me<strong>di</strong>um, the alkylan:imonium<br />

ions are decomposed to<br />

yield interlamellar ammonium ions,<br />

as well as the aliphatic products of<br />

such decomposition.<br />

REFERENCES<br />

-------BEbJoAMY-bJ~;-1975o-ThelnfraredSpectra of Complex Molecules. Vol. I, J. Wiley & Sons, New York.<br />

DoNER M.E., MORTLAND M.M., 1969. Intennolecular interaction in montmorillonite: NH-CO systems.<br />

Clays Clay Miner. 15, 259-271.<br />

DURAND D., PELET R., FRIPIAT J .L., 1972. Alkylammonium decomposition on montmorillonite surfaces<br />

i"n an inert atmosphere. Clays Clay Miner. 20, 21-35.<br />

HA YES M.H.B., PrcK M.E., ToMs B.A., 1978.The influence of organocation structure on the adsorption<br />

of mono <strong>and</strong> of bipyri<strong>di</strong>lium cations by expan<strong>di</strong>ng lattice clay minerals. I <strong>and</strong> II. J. Colloid &<br />

Interface Sci. 65, 254-275.<br />

HERMOSIN M.C., PEREZ RODRIGUEZ J .L., 1981. Interaction of chlor<strong>di</strong>mefonn. with clay minerals. Clays<br />

Clay Miner. 29, 143-152.<br />

JoHNS W.D., SEN GUPTA P.K., 1967. Venniculite-alkylammonium complexes. Am. Miner. 52, 1706-<br />

1724.<br />

LAGALY G., WErss A., 1969. Detennination of the layer charge in mica-type layer silicates. Pp. 234-277,<br />

in: Proc. Int. Clay Conf. 1969, Tokyo, Vol. I, Israel Universities Press, Jerusalem.<br />

MORILLO E., PEREZ RODRIGUEZ J.L., HERMOSIN M.C., 1983. Estu<strong>di</strong>o del complejo interlaminar<br />

venniculita-clor<strong>di</strong>mefonn. Bol. Soc. esp. Min. 7, 25-30.<br />

MORTLAND M.M., 1970. Clay organic complexes <strong>and</strong> interactions. Adv. Agron. 22,75-117.<br />

PEREZ RODRIGUEZ J.L., HERMOSIN M.C., 1979. Adsorption of chlor<strong>di</strong>mefonn by montmorillonite. Pp.<br />

227-234, in: Proc. Int. Clay Conf. 1978, Oxford (M.M. Mortl<strong>and</strong> <strong>and</strong> V.C. Farmer, e<strong>di</strong>tors),<br />

Developments in Se<strong>di</strong>mentology 27. ·<br />

SERRATOSA J.M., JOHNS W.D., SHIMOYAMA A., 1970. IR study of alkylammonium venniculire complexes.<br />

Clays Clay Miner. 18, 107-113.<br />

THENG B.K.G., 1974. Interactions with positively charged organic species. Pp. 211-238, in: The Chemistry<br />

of Clay-organic Reactions, Adam Hilger, London.<br />

WEBER J.B., PERRY P.W., UPCHURCH R.P., 1965. The influence of temperature <strong>and</strong> time on theadsorption<br />

of paraquat, <strong>di</strong>quat, 2,4-D, <strong>and</strong> prometone by clays, charcoal, <strong>and</strong> an anion-exchange resin.<br />

Soil Sci. Soc. Am'eJ:;. Proc. 29, 678-687.<br />

'<br />

I,


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 163-169 (1985)<br />

Anion-Exchanged Forms of Lithium Hydroxide Dialuminate<br />

G. MASCOLO<br />

Dipartimento <strong>di</strong> Ingegneria dei Materiali e della Produzione, Universita <strong>di</strong> Napoli, Piazzale Tecchio, 80125 Napoli,<br />

Italia<br />

ABSTRACT Synthetic lithium, aluminium hydroxyde hydrate<br />

[AhLi(OH)6j+oH-·2HzO, a hydrotalcite-like compound has been prepared<br />

by hydrothermal treatment of alumina gel with LiOH solutions.<br />

Through exchange react!oll_~J'_erforrned with various salts <strong>and</strong> acids, a <strong>di</strong>fferent<br />

behaviour has been evidentiated, accor<strong>di</strong>ng-to the selectivity of the<br />

exchangeable anion. In the presence ofhighly selective anions (So,i-, Cl-), a<br />

common exchange· reaction -takes place with the intedayer OH-, while with<br />

less selective anions (CH3COO-), an antacid, rather than a true exchange,<br />

reaction occurs.<br />

Introduction<br />

Mxed hydroxy structures ·have<br />

general composition of the type<br />

[Mt:!:,M~+(OH)zrx~~·yHzO where M 2 +<br />

= Mg, Fe, ... , M 3 + = AI, Cr, ... , x-n =<br />

C03, OH, ... , n = anionic charge. The<br />

structure of these materials consists<br />

of positively charged brucite-like<br />

layers with a x positive charge due to<br />

the substitution of M 3 + for M 2 +. These<br />

layers are balanced by an equivalent<br />

negative charge coming from inter'­<br />

layer anions. Water molecules are<br />

also present,<br />

Numerous stu<strong>di</strong>es on the composition<br />

<strong>and</strong> structure of minerals <strong>and</strong><br />

synthetic counterparts, especially for<br />

Mg, AI systems have been reported.<br />

The most sta:ble compounds show<br />

M 3 + contents in moles- (x) ranging<br />

between 0.25 <strong>and</strong> 0.33 (BRINDLEY<br />

& KIKKAWA, 1979; MASCOLO &<br />

MARINO, 1980; ALLMANN, 1970;<br />

TAYLOR, 1973). The x value equal to<br />

0.25, correspon<strong>di</strong>ng to the ratio Mg/<br />

AI = 3, is commonly found in hydrotalcite.<br />

When Mg/Al = 2 (x = 0.33),<br />

the compound presents the highest AI<br />

content compatible with Pauling's<br />

rules, establishing that adjacent<br />

octahedral sites may not be occupied<br />

by AI couples (BRINDLEY, 1980).<br />

Recently (SERNA et al., 1982) the<br />

general formula for hydrotalcite-like<br />

Financial support provided by M.P.I. (Ministry of Public Education of Italy).


164 . G. Mascolo<br />

! '<br />

compounds has been extended to Li,<br />

Al hydroxy-carbonate: [AbLi(OH) 6 h<br />

C03·nHzO, inclu<strong>di</strong>ng monovalent Li<br />

cations, where the ratio Al/Li equal to<br />

2 represents the highest one found in<br />

these compounds. Here the concomitant<br />

presence of Al <strong>and</strong> Li is not due<br />

to isomorphous replacement. In fact<br />

Li+ occupies the interstitial sites of<br />

Al(OH)3 layers, giving the positively<br />

charged layer: [AbLi(OH) 6 ]+. Accor<strong>di</strong>ng<br />

to the postulate of BRINDLEY<br />

(1980), this layer must be ordered in<br />

such way to avoid adjacent positive<br />

charges as found by SERNA et al.<br />

(1982).<br />

The ability of these layered structures<br />

to give rise to exch~nge reactions<br />

with <strong>di</strong>fferent anions has been<br />

demonstrated by BISH (1980), MARI­<br />

NO & MASCOLO (1982), DANILOVet<br />

al. (1977),MIYATA (1975) <strong>and</strong>BOEHM<br />

et al. (1977).<br />

In the present study, attention is<br />

paid to the synthesis of Al, Li double<br />

wholly hydroxyde also named<br />

lithium hydroxide <strong>di</strong>aluminate<br />

(LHDA) <strong>and</strong> to its interaction with<br />

homocationic solutions at <strong>di</strong>fferent<br />

pH values:<br />

Experimental<br />

Alumina gel (Merck) <strong>and</strong><br />

LiOH · HzO (C. Erba), both R.C. grade,<br />

were employed. Different suspensions<br />

of alumina in LiOH solutions<br />

(Li/(Li+Al) molar ratio ranging between<br />

0.1 <strong>and</strong> 0.65) where prepared<br />

employing boiled <strong>di</strong>stilled water. The<br />

· suspensions were kept in sealed Tef-<br />

Ion containers <strong>and</strong> rotated for a week<br />

at ~()l}.St!l!Jt Jem~E"!!!:l!"es.pf25, 60 or<br />

90 oc in air. At the end of the hydrothermal<br />

treatment, the products<br />

were washed to eliminate excess<br />

LiOH <strong>and</strong> dried over silica-gel. Exchange<br />

reactions were carried out by<br />

mixing 0.5 g of pure Li, Al double<br />

wholly hydroxide with 250 ml of 0.2<br />

or 2 N solutions at <strong>di</strong>fferent pH<br />

values <strong>and</strong> letting the mixtures shake<br />

for 8 hours at 25 oc or sometimes at<br />

70 °C.<br />

The anions taken into consideration<br />

were chloride, nitrate, acetate<br />

<strong>and</strong> sulphate. As counter-cations H+<br />

<strong>and</strong> NHt were choosen. The <strong>di</strong>fferent<br />

pH values of the solutions were<br />

obtained in any case by the specific<br />

salt or acid taken into consideration.<br />

LizO <strong>and</strong> Ab03 were determined by<br />

atomic absorption spectrophotometry<br />

(Perkin-Elmer 300 s), after <strong>di</strong>ssolution<br />

of the solid . into acids. The<br />

amount of Cl was determined following<br />

Mohr's method <strong>and</strong> S04 gravimetrically<br />

as BaS04. Nitrate <strong>and</strong><br />

acetate were not determined.<br />

The heat-induced weight loss of<br />

LHDA <strong>and</strong> the reacted treated materials<br />

was determined through simultaneous<br />

TG <strong>and</strong> DTA measurements<br />

on 20 mg sample at a heating rate of<br />

10 °C/min. The C0 2 content _was determined<br />

by a calcimeter. X-ray powder<br />

<strong>di</strong>ffraction (XRD) patterns were<br />

obtained using a Guinier de Wolff<br />

camera with CuKa ra<strong>di</strong>ation. Accurate<br />

d-spacings of selected reflections<br />

from specimens were obtained by<br />

measuring 28 values, with a scanning<br />

rate of 1/8° per minute (Philips <strong>di</strong>f-


Anion-Exchanged forms of Lithium Hydroxide Dialuminate 165<br />

fractometer). Pb(N03)z was used as<br />

the internal st<strong>and</strong>ard.<br />

Results <strong>and</strong> <strong>di</strong>scussion<br />

The crystalline phases formed after<br />

the hydrothermal treatment of alu-<br />

. mina gel in LiOH solutions are<br />

summarized in Fig. 1. The dotted line<br />

represents the boundary between the<br />

zone containing a single phase <strong>and</strong><br />

that containing two phases. LHDA<br />

corresponds to the composition<br />

[AlzLi(OH)6]+. OH· 2Hz0, in agreement<br />

with that reported by DANI­<br />

LOV (1977) <strong>and</strong> by HENSLEE et al.<br />

(1981). The concomitant presence of<br />

y-Al(OH)3 (gibbsite), denoted with G<br />

in Fig. 1, for XLi


166 G. Mascoio<br />

TABLE 1<br />

Results of the interaction between LHDA <strong>and</strong> homocationic solutions<br />

Concentration of Temperature<br />

the solution (N) oc<br />

Counter-cation<br />

Anion<br />

cl- N03 cH3coo- soi-<br />

(<br />

0.2 25 H+ J D D B+D D<br />

0.2 25. u+ NI NI NI NI<br />

2.0 25 u+ NI NI+C c NI<br />

2.0 25 NH.t E B+E B+C+E E<br />

2.0 70 NH.t E+B B+E+C B+C E<br />

D: <strong>di</strong>ssolved sample; B: ba:yerite; E: exchanged form; C: carbonated form; NI: no significant<br />

interaction<br />

cept in the case of the CH3COOH solution<br />

which promotes the formation of<br />

bayerite (a-Al(OH)3). With solutions<br />

containing Li+ as the counter-cation<br />

(neutral or slightly basic pH) no sig-<br />

--nificantl.ntera:ciion-takes place. Mor~<br />

interesting results were obtained<br />

with NH4 -containing solutions. By<br />

treating LHDA with NH4Cl O!f<br />

(NH4)zS04, chloride <strong>and</strong> sulphate exchanged<br />

forms of LHDA were easily<br />

obtained at 25 oc: The LbO:Alz03<br />

ratio in these two solids remains the<br />

.;ame as in LHDA, while a Cl:Alz03<br />

ratio slightly higher than 1 <strong>and</strong> a<br />

S04:Alz03 ratio equal to 0.5 were measured.<br />

This involves a complete ex-.<br />

change of the interlayer OH- anions<br />

with Cl- <strong>and</strong> 112 soJ-. The nitrateexchanged<br />

form of LHDA, obtained<br />

starting from NH4N03 solutions, contained<br />

some newly-formed bayerite,<br />

while the acetate-form of.LHDA contained<br />

bayerite <strong>and</strong> also some carbonated<br />

form of LHDA. The treatments<br />

carried out at higher tempera~<br />

ture (70 oC) favour the formation of<br />

bayerite <strong>and</strong> a carbonated form of<br />

LHDA.<br />

These results suggest two main<br />

types of interactions:<br />

a) [AlzLi(OH)6]+0H- · 2Hz0+ H+ +=±<br />

2a· Al(OH)3+3Hz0+Li+;<br />

b) [AlzLi(OH)6]+0H- · 2Hz0+ x- +=±<br />

[AlzLi(OH)6]+X- · 2HzO+OH-<br />

The reversible reaction a) exhibits<br />

a typical antacid behaviour. This involves<br />

a reaction between the H+ ions<br />

of the contact solutions <strong>and</strong> most<br />

likely the interlayer OH- groups of<br />

LHDA. The correspon<strong>di</strong>ng change in<br />

the electrical charge is compensated<br />

by the removal of L{ cations from the<br />

basic layer. Here the reaction rate increases<br />

with decreasing either pH<br />

values or Li+ content, in agreement<br />

with the results of Table 1. On the<br />

other h<strong>and</strong> at high pH values <strong>and</strong> in<br />

the presence of Li cations, a-Al(OH)3<br />

was easily transformed into the hydroxide<br />

form by the hydrothermal<br />

treatment at 60 oc of a-Al(OH)3 with<br />

LiOH-containing solutions.<br />

The reaction b) is a typical exchange<br />

reaction, also favoured by low<br />

pH values. Since reactions a) <strong>and</strong> b)<br />

take place simultaneously, the presence<br />

of a single phase as the interac-


Anion-Exchanged Forms of Lithium Hydroxide Dialuminate 167<br />

tion produ~t involves <strong>di</strong>fferent reaction<br />

rates. The antacid behaviour of<br />

LHDA prevails in the solutions containing<br />

low selectivity anions, for instance<br />

with acetate anions, giving<br />

rise to an easy formation of bayerite.<br />

The anion-exchange reaction on the<br />

contrary prevails with highly selective<br />

anions such as sulphate. The results<br />

in Table 1 suggest the following<br />

selectivity sequence: so]- > cl- ><br />

N03- > CH3coo-. This sequence is in<br />

agreement with the effects of ion size'<br />

<strong>and</strong> charge on the rate of an ion exchange<br />

reaction.<br />

The presence of the carbonate-form<br />

among the interaction products of nitrate<br />

<strong>and</strong> acetate-containing solutions<br />

suggests a simultaneous exchange<br />

of both anions, which are<br />

characterized by comparabfe selectivities.<br />

The composition of th~carbonated<br />

form of LHDA contains<br />

!Coj- per [LiAlz(OH) 6 ]+ in place of<br />

HCO_i as reported by BESSON et al.<br />

(1973). In fact, this form, prepared by<br />

hydrothermal treatment of alumina<br />

gel with LhCOrcontaining solutions,<br />

showed a C02:Ah03 ratio equal to 0.5<br />

as reported by SERNA et al. (1982).<br />

The possible existence of bicarbonate<br />

<strong>and</strong> carbonate ions between the<br />

brucite-like la:yers of the carbonateform<br />

(SERNA et al., 1977), suggests<br />

the following chemical equilibrium,<br />

through a proton transfer, among the<br />

various species of the interlayer:<br />

Coj- + HzO +2: HC03 + OH-<br />

Inclu<strong>di</strong>ng also eo;- <strong>and</strong>/or HC03,<br />

the selectivity sequence should become<br />

as follows: so]-> cl- > N03 =<br />

coj-(HC03) > C;H 3 Coo-. This order<br />

is <strong>di</strong>fferent from that found for takovite<br />

<strong>and</strong> hydrotalcite (BISH, 1980).<br />

, This may be related to a <strong>di</strong>fferent<br />

equivalent area per unit layer charge,<br />

associated with the various materials<br />

investigated.<br />

The knowledge of the factors affecting<br />

reactions a) <strong>and</strong> b) allows the<br />

acetate-exchanged form to be<br />

obtained in spite of the low selectivity<br />

of the anion. This form was<br />

obtained by treating LHDA with<br />

solutions containing CH3C00Li <strong>and</strong><br />

CH3COOH.<br />

The acetate-form of LHDA was<br />

easily re~exchanged in other anion<br />

forms.<br />

The anion-exchanged forms of<br />

LHDA show XRD patterns similar to<br />

that of the original compound. The<br />

value of the basal spacing c' of LHDA<br />

is slightly smaller than those of the<br />

carbonate <strong>and</strong> chloride-forms (Table<br />

2). The higher c' values presented by<br />

the nitrate <strong>and</strong> sulphate-forms suggest<br />

an ad<strong>di</strong>tional packing of oxygens<br />

in the interlayer. A large basal<br />

separation was found for the acetateform<br />

(c' = 13.0 A).<br />

Referring to the <strong>di</strong>ffraction patterns<br />

of LHDA <strong>and</strong> the various exchanged<br />

forms, it must be empha-<br />

TABLE 2<br />

Basal spacing c' for variously anion-exchanged forms of LHDA<br />

Anion t eo~- er- N03<br />

d CA) 7.50 7.60 7.65 8.80 8.70 13.0


168 G. Mascolo<br />

sized that the reflection correspon<strong>di</strong>ng<br />

to d = 1.47 A is independent of the<br />

layer stacking arrangement, in fact, ·<br />

this reflection shows no shift in the<br />

anion-exchanged form, compared to<br />

the original compound. It may be in- ·<br />

dexed as (hkO) with respect to hexagonal<br />

axes. The value of this spacing,<br />

affecting only the parameters of<br />

the basic layer, depends of course on<br />

the composition of the hydroxide<br />

layer. The constancy of this value<br />

means that the anion exchanged<br />

forms maintain the same basic layer<br />

composition [AbLi(OH)6]+ as in<br />

Conclusions<br />

.. The above-~esuits-Show the possibility<br />

of obtaining a synthetic compound:<br />

[AbLi(OH)6]+0H · 2Hz0 by<br />

hydrothermal treatment of alumina<br />

gel in LiOH solution. This compound<br />

shows the very interesting feature of<br />

giving rise to two <strong>di</strong>fferent reactions:<br />

exchange of interlayer OH- anions<br />

<strong>and</strong>, in adgition, noticeable antacid<br />

behaviour towards solutions containing<br />

low selectivity-anions, not exchangeable<br />

by the compound.<br />

LHDA. This result <strong>and</strong> the observation<br />

that bayerite is formed with a<br />

Acknowledgements<br />

.. -·----·---- __ type a) reaction (see above), suggest Thanks are due to Mrs. Palumbo<br />

that the basic layer of LHDA derives <strong>and</strong> Mr. Annetta for the assistance in<br />

from the introduction of Li cations . 1 carrying out some .of the experiinto<br />

the bayerite layer.<br />

ments.<br />

REFERENCES<br />

ALLMANN R., 1970. Doppelschichtstrukturen mit brucitti.hnlechen schichtionen<br />

[Me(IIJ 1 -xMe(IIIJx(OHh]X+. Chimia 24, 99-108.<br />

BESSON H., CAILLERE S., H:ENIN S., PROST R., 1973. Sur des hydrocarbonates voisins de l'hydrotalcite.<br />

C.R. Acad. Se. Paris. 277, Serie D, 1273-1274.<br />

BISH D.L., 1980. Anion exchange in takovite: Applications to other hydroxide minerals. Bull. Mineral.<br />

103, 170-175.<br />

BoEHM H.P., STEINLE J., VIEWEGER C., 1977. [Zn2Cr(OH) 6 ] X·2H20, New layer compounds capable of<br />

anion exchange <strong>and</strong> intracrystalline swelling. Angew. Chem. Int. Ed. Engl. 16, 265-266.<br />

BRINDLEY G .W., 1980. Lattice parameters <strong>and</strong> composition limits of mixed Mg-Al hydroxy structures.<br />

Mineral. Mag. 43, 1047.<br />

BRINDLEY G.W., KIKKAWA S., 1979. A crystal chemical study of Mg, AI <strong>and</strong> Ni, AI hydroxy-perchlorates<br />

<strong>and</strong> hydroxy-carbonates. Am. Miner. 64, 836-843.<br />

DANILOV V.P., LEPESHKOV I.N., KHARITONOV Yu.YA., ASHCHYAN O.T., GOEVA L.V., KOSTYLEVA O.F.,<br />

1977. Physicochemical investigation of mixed hydroxide borate <strong>and</strong> mixed hydroxide phosphates<br />

of aluminum <strong>and</strong> lithium. Russian J. Inorg. Chem. 22, 1137-1141.<br />

HENSLEE ET AL., 1981. Dow. Chemical Co. Freeport, Texas, USA, JCPDS Inorg. Comp. file 31-704.<br />

KoRITNIG S., SussE P., 1975. Meixnerite, [Mg~liOH)] 1 s·4H20, ein neues Magnesium-Aluminium­<br />

Hydroxid Mineral. Tschermaks miner petrogr. Mitt. 22, 79-87.<br />

MARINO 0., MASCOLO G., 1982. Thermal stability of Mg, AI double hydroxides mo<strong>di</strong>fied by anionic<br />

exchange. Thermochimica Acta 55, 337-383.<br />

MASCOLO G., MARINO 0., 1980. Discrimination between synthetic Mg-Al double hydroxides <strong>and</strong> related<br />

carbonate phases. Thermochimica Acta 35, 93-98. .<br />

MASCOLO G., MARINO 0 ., 1980. A new synthesis <strong>and</strong> characterization of magnesium-aluminum hydroxides.<br />

Mineral. Mag. 43, 619-621.


Anion-Exchanged Forms of Lithium Hydroxide Dialuminate 169<br />

MrYATA S., 1975. The synthesis ofhydrocalcite-like compounds <strong>and</strong> their structures <strong>and</strong> properties.<br />

Clays Clay Miner. 23, 369-375.<br />

SERNA C.J ., RENDON J .1., IGLESIAS J .E., 1982. Crystal chemical study of layered [Al2Li(OH)6j+ X· nH20.<br />

Clay Minerals 30, 180-184. · .<br />

SERNA C.J., WHITE J.L., HEM S.L., 1977. Hydrolysis of aluminium-tri (sec-butoxide) in ionic <strong>and</strong><br />

monionic me<strong>di</strong>a. Clays Clay Miner. 25, 384-391.<br />

TAYLOR H.F.W., 1973. Crystal structures of some hydroxide minerals. Mineral. Mag. 39, 377-389.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 171-177 (1985)<br />

Interaction of Chlorthiamid withAl<strong>and</strong><br />

Ca-Montmorillonite<br />

P. FUSP, M. FRANCF, G.G. RISTORF<br />

I Istituto <strong>di</strong> Chimica Agraria e Forestale dell'Universita <strong>di</strong> Firenze, Piazzale delle Cascine 28, 50144 Firenze, Italia<br />

2 Centro <strong>di</strong> Stu<strong>di</strong>o per i Colloi<strong>di</strong> del Suolo del C.N.R., Piazzale delle Cascine 28, 50144 Firenze, Italia<br />

ABSTRACT- Adsorption <strong>and</strong> decomposition of Chlorthiamid herbicide (2,6-<br />

<strong>di</strong>chlorothiobenzamide) on Upton, Wyoming, bentonite saturated with<br />

Al 3 + <strong>and</strong> Ca 2 + was stu<strong>di</strong>ed using X-ray <strong>di</strong>ffraction, infrared spectroscopy, <strong>and</strong><br />

thin layer chromatography. Chlorthiamid is adsorbed at room temperature<br />

on Al-montmorillonite by protonation of the C=S group; while on Camontmorillonite<br />

it is adsorbed by a coor<strong>di</strong>nation of the C=S group to the<br />

exchangeable cation. This <strong>di</strong>fferent behaviour can be ascribed to the lower<br />

polarizing power of Ca 2 + in comparison with Al 3 +. When Ca- <strong>and</strong> Almontmorillonite-Chlorthiamid<br />

complexes are stored at room temperature in<br />

a desiccator or heated to 80 oc for 48 hours, Chlorthiamid partially decomposes<br />

to 2,6-<strong>di</strong>chlorobenzonitrile (Dichlobenil, having herbicidal properties<br />

like Chlorthiamid). This kind of non-biological degradation is typical of<br />

montmorillonite surfaces as thiobenzamide gives benzoic acid, HzS a.nd NH3<br />

on aci<strong>di</strong>c hydrolysis <strong>and</strong> benzonitrile in alkaline me<strong>di</strong>um. It should be<br />

pointed out that Chlorthiamid is stable on heating for 48 hours in the absence<br />

of clay. D'ichlobenil is adsorbed on Ca- <strong>and</strong> Al-montmorillonite by a<br />

coor<strong>di</strong>nation of the hitrile group to the clay exchange cation through a water<br />

bridge <strong>and</strong> the complexes are stable on heating at 80 oc for 48 hours.<br />

Introduction<br />

non biological decomposition to<br />

Dichlobenil; the further degradation<br />

of Dichlobenilleads to the formation<br />

chlorthiamid (2,6-<strong>di</strong>chlorothiobenzamide)<br />

of 2,6-<strong>di</strong>chlorobenzamide as a con­<br />

is an herbicide used for weed sequence of a microbial activity<br />

control in apples, blackcurrant, vines<strong>and</strong><br />

(VERLOOP, 1972; BEYNON &<br />

in certain ornamentals. The ma­<br />

WRIGHT, 1972). Accor<strong>di</strong>ng to FUR­<br />

jor degradation products of Chlor-\ MIDGE & OSGERBY (1967), organthiamid<br />

in soil are 2 ,6-<strong>di</strong>chlorobenzo..:­ ' ic matter seems to play the major<br />

nitrile (Dichlobenil, having an herbicidal<br />

· role in the adsorption of Chlor­<br />

activity like Chlorthiamid) <strong>and</strong> thiamid by soil, but the reaction<br />

2,6-<strong>di</strong>chlorobenzamide.<br />

mechanism in this case <strong>and</strong> in clay<br />

The initial step in Chlorthiaml.d degradation<br />

minerals is not proposed.<br />

seems to involve a rapid The aim of this preliminary work<br />

is


172 P. Fusi, M. Franci, G.G. Ristori<br />

to investigate the mechanism of<br />

Chlorthiamid adsortpion <strong>and</strong> degradation<br />

on montmorillonite saturated<br />

with cations (AP+ <strong>and</strong> Ca2+)<br />

having a <strong>di</strong>fferent polarizing power.<br />

It is known that this property determines<br />

the degreee of aci<strong>di</strong>ty of the<br />

water coor<strong>di</strong>nated to the cation <strong>and</strong><br />

therefore its tendency to protonate<br />

organic moleculesor to bind them by<br />

hydrogen bonds (MORTLAND, 1970;<br />

MORTLAND & RAMAN, 1968).<br />

Materials <strong>and</strong> methods<br />

1<br />

Homoionic montmorillonites were<br />

prepare~_ fr~l!?:!E~ .:::: ? J.l_ill fr-::tction of<br />

----~---~--a~Wyoming Upton bentonite by<br />

washing the clay three times with 1M<br />

AlCl:i <strong>and</strong> CaCb solutions <strong>and</strong> then removing<br />

excess salt by <strong>di</strong>alysis until a<br />

test for cl- was negative.<br />

Chlo~thiamid (M.P. = 151-152 °C;<br />

purity 99.7%) <strong>and</strong> Dichlobenil (M.P.<br />

= 142-144 °C; purity 98.4%) were supplied<br />

by Shellitalia (Italy) <strong>and</strong> by<br />

Fluka ($witzerl<strong>and</strong>) respectively.<br />

Self supporting clay films were immersed<br />

in a saturated CC14 solption of<br />

organic compound for 3 days, the excess<br />

of the adsorbate was washed off<br />

bycimmersion in the pure solvent <strong>and</strong><br />

the films air dried.<br />

Absolute IR spectra of organic-clay<br />

complexes were recorded with the<br />

aid of a Perkin-Elmer model 283B<br />

spectrophotometer in the 4000-2000<br />

cm- 1 region while <strong>di</strong>fferential IR<br />

spectra, obtained with the untreated<br />

clay film on the reference beam, were<br />

recorded in the 2000-1200 cm- 1 <strong>and</strong><br />

800-600 cm- 1 regions in order to enha:nc:e_tb_o_sLh<strong>and</strong>LthaL.in<br />

the absolute<br />

spectra would be obscured by<br />

clay . water or lattice vibrations.<br />

Three <strong>di</strong>fferent sets of IR spectra of<br />

the clay complex were recorded at<br />

room temperature: i) original sam-_<br />

ple, ii) after 3 months storage in a desiccator<br />

at room temperature, <strong>and</strong> iii)<br />

after heating to 80 oc for 48 hours,<br />

then cooling in air.<br />

The X-r;;ty <strong>di</strong>agrams of pure<br />

homoionic clays <strong>and</strong> _ Chlorthiamid<br />

clay-complexes were obtained using<br />

a G.E.C. XRD-5 <strong>di</strong>ffractometer with<br />

Cu Ka ra<strong>di</strong>ation. The analyses, in the<br />

range 3-15° 28, were carried out at<br />

room temperature <strong>and</strong> on samples<br />

heated at 110 oc for 3 hours <strong>and</strong> kept<br />

in a dry atmosphere during the<br />

analyses.<br />

The original <strong>and</strong> treated organicclay<br />

complexes were extracted with<br />

acetone. The solution was then transferred<br />

to 0.2 mm silicagel60 F254 plastic<br />

sheets (Merck) <strong>and</strong> eluted with a<br />

90:10 Chloroform-n-Exane mixture.<br />

The spots of the components were revealed<br />

by UV light. The Rt values of<br />

pure Chlorthiamid <strong>and</strong> Dichlobenil<br />

were 0.25 <strong>and</strong> 0.78 respectively.<br />

Results <strong>and</strong> <strong>di</strong>scussion<br />

Results of X-ray <strong>di</strong>ffraction analyses<br />

of Chlorthiamid-Ca- <strong>and</strong> Almontmorillonite<br />

complexes showed<br />

that the organic molecule seems to<br />

penetrate the interlayer spaces of the<br />

clay. In fact, the basal d 001 spacings<br />

(of about 15.22 A in both unheated.<br />

pure homoionic clays <strong>and</strong> in Ca- <strong>and</strong>


Interaction ofChlorthiamid withAl- aiid Ca-Montmorillonite 173<br />

Al-clay complexes) collapsed, after<br />

heating, to about 12.6-12.8 A in<br />

Chlorthiamid-clay complexes <strong>and</strong> to<br />

10 A in pure clays.<br />

The assignments of the main b<strong>and</strong>s<br />

in the IR spectrum of Chlorthiamid<br />

are reported in Table 1 (JENSEN<br />

& NIELSEN, 1966; RAY &<br />

SATHYANARAYANA, 1974; BEL­<br />

LAMY, 1980). In the solid state the<br />

shifts towards lower frequencies of<br />

NH stretching vibrations <strong>and</strong> towards.<br />

higher frequencies of NH<br />

,)en<strong>di</strong>ng . are due to strong intermolecular<br />

associations.<br />

The IR spectrum ·of the Al-mont-<br />

TABLE 1<br />

Assignment of the principal b<strong>and</strong>s in the IR spectrum of Chlorthiamid<br />

KBr<br />

pellet<br />

B<strong>and</strong> position (cm- 1 )<br />

tetrachloroethylene<br />

solution<br />

Bimd assignment<br />

3284<br />

3138<br />

1629<br />

1577<br />

1565 .<br />

1458<br />

1432<br />

1410<br />

1290<br />

708<br />

3498<br />

3378<br />

1595<br />

1392<br />

1316<br />

711<br />

" ---------,<br />

~~~~~~------ \<br />

v asym. N-H<br />

v sym. N-H<br />

8 PN-H (primaryly)<br />

) Ring Vibcotioru<br />

v C-N (primarily)<br />

Skeletal vibration<br />

v C=S (primarily)<br />

/<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

/<br />

Wavenumber ( cm-1)<br />

L---~--r-------.--------.-------.--~--,-----,------.----~'r--.--~~<br />

3500 3000 2500 2000<br />

1600 1200 800 700<br />

Fig. 1- IR spectra of Chlortliiamid-Al-montmorillonite complex: a) at room temperature, b) after 3<br />

months storage in a desiccator at room temperature, c) after heating to 80 •c for 48 hours, then<br />

cooling in air, d) IR spectrum of Chlorthiamid (KBr pellet). ·<br />

I<br />

I<br />

I<br />

I<br />

l


174 P. Fusi, M. Franci, G.G. Ristori<br />

morillonite-Chlorthiamid complex at<br />

room temperature is reported in Fig.<br />

1 (spectrum «a»). The appearance of<br />

a b<strong>and</strong> at 2545 cm- 1 assigned to S-H<br />

stretching vibration (KUTZELNIGG<br />

& MECKE, 1961; BELLAMY, 1980)<br />

<strong>and</strong> the strong decrease of the C=S<br />

stretching b<strong>and</strong>, with a.shift to lower<br />

i frequencies~ (a~~s~;n;.u-b~~~d b~~d remains<br />

at 690 cm- 1 ), suggest that<br />

Chlorthiamid is adsorbed on Aklay<br />

by protonation of the C=S group:<br />

r' [ r' [ Al(H,O). montmorillonite +<br />

S<br />

'I<br />

c<br />

.NH2<br />

Cl~o Cl<br />

V ---;.<br />

NH 2<br />

!.'<br />

c·--sH--OH 2<br />

CIOCI<br />

+<br />

3<br />

[ montmorillonite] -<br />

The formation of a thionium struc-,<br />

ture rather than the ammonium form<br />

(R-C-NHt) was also observed on protonation<br />

of thioamides <strong>and</strong> thiourea<br />

(KUTZELNIGG & MECKE, 1961;<br />

JANSSEN, 1961).<br />

Other features of this IR spectrum<br />

seem to confirm the protonation of<br />

the organic molecule <strong>and</strong> the formation<br />

of the thionium structure:<br />

(i) The strong b<strong>and</strong> of the pure<br />

compound at 1595 cm- 1 (solution)<br />

<strong>and</strong> 1629 cm- 1 (solid state) assigned<br />

to oNH2 coupled with vC-N, is<br />

markedly reduced <strong>and</strong> this vibration<br />

shifts to 1660 cm- 1 • A shift to higher<br />

, frequencies of oNHz was observed on<br />

S-alkylation <strong>and</strong> on S-protonation .<br />

(JENSEN & NIELSEN, 1966; JANS­<br />

SEN, 1961; KUTZELNIGG &<br />

MECKE, 1961).<br />

(ii) The b<strong>and</strong> at 1392 cm- 1<br />

(assigned to vC-N primarily) <strong>di</strong>sappears<br />

or shifts to higher frequen~<br />

cies in this case being obscured by<br />

ring vibrations. It has to be pointed<br />

out that the shifted NHz ben<strong>di</strong>ng lies<br />

in the region of C=N stretching <strong>and</strong><br />

\ ±I<br />

that the C=N stretching vibration<br />

I \ .<br />

is quoted at about 1680 cm- 1 (SO­<br />

CRATES, 1980).<br />

Protonation of amides on the oxygen<br />

a tom rather than on the NHz


Interaction of Chlorthiamid with Al- <strong>and</strong> Ca-Montmorillonite 175<br />

group was also found in acid montmorillonite<br />

systems (TAHOUN &<br />

MORTLAND 1966a).<br />

Another significant feature is given<br />

by the N-H stretching b<strong>and</strong>s. In the<br />

complex they are shifted to 3440 <strong>and</strong><br />

3340 cm- 1 from 3498 <strong>and</strong> 3378 cm- 1<br />

(tetrachloroethylene solution). The<br />

shift suggests an interactfon between<br />

the NHz group of Chlorthiamid <strong>and</strong><br />

the oxygen of the silicate structure.<br />

.The higher frequencies of NH2<br />

stretching vibrations observed in the<br />

clay-organic complex in comparison<br />

with those in the solid state (where<br />

asymmetric <strong>and</strong> symmetric NHz<br />

stretching b<strong>and</strong>s are at 3284 <strong>and</strong><br />

3138 cm- 1 ) could in<strong>di</strong>cate that the<br />

NH 2 group is involved in a lower degree<br />

of environmental interactions.<br />

The thin layer chromatography of<br />

the extract of the Chlorthiamid-Al­<br />

'-<br />

montmorillonite complex revealed<br />

the presence of Chlortiamid only.<br />

On Ca-montmorillonite complex<br />

the protonation ·of the C=S group<br />

was not observed by IR analysis. The<br />

most significant features of the IR<br />

spectrum are (Fig. 2, spectrum «a»):<br />

- the C=S stretching b<strong>and</strong> shifts<br />

from 711 cm- 1 to 7.02 cm- 1 • The shift<br />

of vC=S to lower frequencies was<br />

observed on S-methylation <strong>and</strong> on<br />

formation of metal complexes of<br />

thioamides (JENSEN & NIELSEN,<br />

1966; FLINT & GOODGAME, 1968)<br />

as a result of a reduction of the double<br />

bond character of the C=S bond;<br />

- the b<strong>and</strong> at 1392 cm- 1 (C-N<br />

stretching primarily) shifts to 1410<br />

cm- 1 ;<br />

- asymmetric <strong>and</strong> symmetric NHz<br />

stretching b<strong>and</strong>s are at 3440 <strong>and</strong><br />

3340 cm- 1 respectively as in the Al-<br />

V<br />

3500 3000 2500 2000<br />

:Wavenumber (cm-1)<br />

1600 1200 800 700<br />

Fig. 2- IR spectra of Chlorthiamid-Ca-montmorillonite complexes: a) at r'oqm temperatilre, b) after<br />

3 months storage in a desiccator at room temper.a,ture, c) after heating to 80 oc for 48 hours, then<br />

cooling in air.


176 P. Fusi, M. Franci, G.G. Ristori<br />

montmorillonite complex. The NH2<br />

ben<strong>di</strong>ng shifts to I626 cm- 1 from<br />

I595 cm- 1 •<br />

Therefore the Chlorthiamid seems<br />

to be adsorbed on Ca-montmorillonite<br />

by a coor<strong>di</strong>nation bond between<br />

the C=S group <strong>and</strong> the exchangeable<br />

cation.<br />

The NH2 group of the organic molecule<br />

seems to interact with the oxygen<br />

of the silicate structure. The<br />

absenc~ of protonation on Ca-clay<br />

can be ascribed to the lower polarizing<br />

power of Ca 2 + in comparison with<br />

AP+. In metal ion-saturated montmorillonite<br />

an ion-<strong>di</strong>pole interaction,<br />

between the C=O group of amides ·<br />

<strong>and</strong> exchangeable cation, was also<br />

------- ObSe:fVeCf"(tAH6Ui~{ & M0RTLAN.D,<br />

I966b).<br />

Preliminary investigations on the<br />

stability of all the Chlorthiamidmontmorillonite<br />

complexes showed<br />

that storage for 3 months at room<br />

temperature in a desiccator affects<br />

their IR spectra (Figs I <strong>and</strong> 2, spectrum<br />

«b>>). A small but well evidenced<br />

b<strong>and</strong>, assigned· to a -C=N<br />

stretching vibration of 2,6-<br />

<strong>di</strong>chlorobenzonitrile, appears at<br />

about 2250 cm- 1 • By contrast, no<br />

change in the IR spectrum was<br />

observed when the complexes were<br />

stored for 3 months at room temperature<br />

in an atmosphere with lOO%<br />

R.H. These results show that Chlorthiamid<br />

is partially <strong>and</strong> slowly decomposed<br />

to 2,6-<strong>di</strong>chlorobenzonitrile<br />

(Dichlobenil) in dry con<strong>di</strong>tions <strong>and</strong><br />

seems to contrast with the fin<strong>di</strong>ngs of<br />

BEYNON & WRIGHT (1972) suggesting<br />

a rapid non biological decomposition<br />

to Dichlobenil in soil.<br />

The sample~stu<strong>di</strong>ecl.were-thenlieat~<br />

ed in air to 80 oc for 48 hours. The<br />

IR spectra of theCa- <strong>and</strong> Al-systems<br />

are reported in Figs .I <strong>and</strong> 2 (spectra<br />

«C>>): the C=N stretching b<strong>and</strong>s are<br />

well evidenced at 2250 cm- 1 for the<br />

Al-complex <strong>and</strong> at 2258 cm- 1 for the<br />

Ca-complex. The presence of the 2,6-<br />

<strong>di</strong>chlorobenzonitrile (Dichlobenil)<br />

<strong>and</strong> Chlorthiamid was confirmed by<br />

thin layer chromatography of the<br />

acetonic extract of the heated<br />

organic-clay complexes as well as of<br />

those dried <strong>and</strong> ~tored at room<br />

temperature for 3 months (R£=0.25<br />

for Chlorthiamid <strong>and</strong> R£=0.78 for<br />

. Dichlobenil).<br />

It should to be pointed out that the<br />

pure Chlorthiamid is stable in the<br />

absence of clay on heating to 80 oc for<br />

48 hours <strong>and</strong> that an aci<strong>di</strong>c hydrolysis<br />

of thiobenzamide (hot HCl IN)<br />

gives benzoic acid, H2S <strong>and</strong> NH 3<br />

while an alkaline me<strong>di</strong>um (hot KOH<br />

IN) gives benzonitrile (HURD & DE<br />

LA MATER, I961).<br />

Therefore, in the aci<strong>di</strong>c environment<br />

typical of the montmorillonite<br />

surface in our experiments, the decomposition<br />

of Chlorthiamid to Dichlobenil<br />

rather than to benzoic acid<br />

was not expected.<br />

IR spectra were also recorded to in2<br />

vestigate the adsorption mechanism<br />

of Dichlobenil on Ca- . <strong>and</strong> Almontmorillonite.<br />

The C=N stretching<br />

vibration of Dichlobenil (in the<br />

solid state <strong>and</strong> in a tetrachloroethylene<br />

solution at 2240 cm- 1 )<br />

shifts to 2249 cm- 1 <strong>and</strong> 2250 cm-1


Interaction of Chlorthiamidwith Al- <strong>and</strong> Ca~Montmorillonite 177<br />

when the organic molecule is<br />

adsorbed on Al <strong>and</strong> Ca-clay respectively.<br />

This shift in<strong>di</strong>cates a coor<strong>di</strong>nation<br />

of the nitrile group with.the clay<br />

exchange cation through a water<br />

bridge, Similar results were obtained<br />

with benzonitrile (SERRATOSA,<br />

1968).<br />

On heating at 80 oc for 48 hours the<br />

nitrile stretching b<strong>and</strong> remains at<br />

2250 cm- 1 in theIR spectrum of the<br />

Al-system while shifts to 2258 cm- 1 in<br />

the ea-system, probably in<strong>di</strong>cating a<br />

sttonger coor<strong>di</strong>nation of nitrile to the<br />

cation. No degradation of Dichlobenil<br />

was observed on heating the<br />

respective AI- <strong>and</strong> Ca-clay complexes<br />

at 80 oc for 48 hours.<br />

REFERENCES<br />

BELLAMY L.J ., 1980. The Infrared Spectra of Complex Molecules. Vol. II: «Advances in Infrared Group<br />

Frequencies». Pp. 1-292, Chapman & Hall, London.<br />

BEYNON K.l., WRIGHT A.N ., 1972. The fate of the herbicides chlorthiamid <strong>and</strong> <strong>di</strong>chlobenil in relation to<br />

residues in crops, soils <strong>and</strong> animals. Residue Rev. 43, 23-53.<br />

FLINT C.D ., GOODGAME M., 1968. Spectral stu<strong>di</strong>es of some transition-metal-thioacetamide complexes. J.<br />

Chem. Soc. A, 750-752.<br />

FuRMIDGE C.G.L., OSGERBY J.M,, 1967. Persistence of herbicides in soil. J. Sci. Food Agr. 18,269-273.<br />

HuRD R.N., DE LA MATER G., 1961. The preparation <strong>and</strong> chemical properties of thioamides. Chem.<br />

Rev. 61, 45-86. ·<br />

JANSSEN M.J., 1961. The structure of protonated amides <strong>and</strong> ureas <strong>and</strong> their thi0 analogues. Spectrochim.<br />

Acta 17, 475-485. ·"-<br />

JENSENK., NIELSEN P.H., 1966. Infrared spectra ofthioamides <strong>and</strong> selenoamides. Acta Chem. Sc<strong>and</strong>.<br />

20, 597-629. .<br />

KuTZELNIGG W., MECKE R., 1961. Spektroskopische Untersuchungen an organishen Ionen-Ill. Spectrochim.<br />

Acta 17, 530-544.<br />

MoRTLAND M.M., 1970. Clay-organic complex <strong>and</strong> interactions. Adv. Agron. 22, 75-119.<br />

MoRTLAND M.M., RAMAN K.V ., 1968. Surface aci<strong>di</strong>ty of smectites in relation to hydration, exchangeable<br />

cation <strong>and</strong> structure: Clays Clay MineJ;". 16, 393-398.<br />

RAY A., SATHYANARAYANA D.N., 1974. A reinvestigation of the normal vibration of thioacetamide. Bull.<br />

Chem. Soc. Japan 47, 729-731.<br />

SERRATOSA J .M., 1968. Infrared study of benzonitrile-montmorillonite complexes. Am. Miner. 53, 1244-<br />

1251-. . .<br />

SocRATES G., 1980. Infrared Characteristic Group Frequencies. Pp. 55-56, J. Wiley & Sons, Chichester.<br />

·<br />

TAHOUN S.A., MoRTLAND M.M., 1966a. Complexes of montmorillonite with primary, secondary <strong>and</strong><br />

tertiary amides: I protonation of amides on the surface of montmorillonite. Soil Sci. i02, 248-254.<br />

TAHOUN S.A., MoRTLAND M.M., 1966b. Complexes of rnontmorillonite with primary, secondary <strong>and</strong><br />

tertiary amides: II coor<strong>di</strong>nation of am ides the surface of montmorillonite. Soil Sci.·l02, 314-321.<br />

VERLOOP A., 1972. Fate ·of the herbicides <strong>di</strong>chlobenil in plants <strong>and</strong> soils relation to its biological<br />

activity. Residue Rev. 43, 55-103.


Abstracts<br />

179<br />

Interlayer Complexes of Lanthanide Vermiculite<br />

with Organic Substances<br />

P. OLIVERA, A. RODRIGUEZ<br />

Departamento de Quimica Inorgfmica, Facultad de Ciencias, Universidad de Malaga, Apdo. 59, 29080 Malaga,<br />

Espafta<br />

The clay mineral used'in this work is vermiculite from Benahavis (Malaga) 1 •<br />

The natural sample was pre-treated with 30% hydrogen peroxide'.<br />

Lanthanide samples were obtained by a triple ionic exchange 3 monitored by<br />

X-ray <strong>di</strong>ffraction:<br />

V-Mg--? V-Na--? V-nButNH 3 --? V-Ln<br />

Exchange capacity values, <strong>and</strong> total amounts of lanthanides of the lanthanide<br />

vermiculites, in<strong>di</strong>cate that all lanthanide cations are localised in the<br />

interlayer space as positive exchangeable cations:<br />

Exchange capacity:<br />

Total amounts o{lanthanides:<br />

149 m.e. Ln<br />

100 g V (900)<br />

149 m.e. Ln<br />

100 g V (900)<br />

To determine the exchange capacity, lanthanides were extracted using<br />

EDTA solutions•.<br />

The complexes were obtained by placing the lanthanide vermiculites in<br />

contact with organic substances in the vapour or liquid phase.<br />

The organic substances were sorbed from the vapour phase, in appropriate<br />

vacuum equipment 5 • The samples were previously dehydrated at 150°C for<br />

5 hours. The complexes were obtained by sorption at 250°C with alkylamines,<br />

aromatic amines, <strong>di</strong>amines, <strong>di</strong>methylsulfoxide <strong>and</strong> other substances.<br />

Sorption-desorption isotherms were made with n-alkylamines.<br />

The composition of all the complexes was determined by the Kjeldahl<br />

method, <strong>and</strong> elemental analysis of C,H.<br />

The complexes were characterized using infrared <strong>and</strong> <strong>di</strong>ffuse reflectance,<br />

spectroscopy <strong>and</strong> X-ray <strong>di</strong>ffraction.<br />

Thermal stability was stu<strong>di</strong>ed by <strong>di</strong>fferential thermal <strong>and</strong> thermogravimetric<br />

analysis.<br />

1<br />

L6pez Gonzalez J. De D., Barrales-Rienda J.M., 1972. Caracterizaci6n y propriedades de una<br />

vermiculita de Benahavis (Malaga). Ano Quim. 68, 247-262.<br />

2<br />

Gruner J.W., 1939. Ammonium mica sinthesized from vermiculites. Am. Miner. 24, 428-432.<br />

3<br />

Fripiat J.J. Personal communication.<br />

4<br />

Spirn P., Thesis D., 1965. MIT.<br />

5<br />

Gutierrez Rios E., Rodriguez Garcia A., 1961. Complejos interlaminares de montmorillonita con<br />

acetona. An. R. Soc. esp. Fis. Quim. 57 (B), n. 2, 117-130.


180 Abstracts<br />

Vermiculite-Organophosphorus Pesticides Interaction<br />

M. SANCHEZ-CAMAZANO, M.J. SANCHEZ-MARTIN<br />

Centre de Edafologia y Biologia Aplicada, C.Sl.C., Cordel de Merinas 40-52, Apdo. 257, 37008 Salamanca, Espaii.a<br />

Previously, the interaction between organophosphorus pesticides (phosphates,<br />

thiophosphates <strong>and</strong> <strong>di</strong>thiophosphates) <strong>and</strong> smectites in organic me<strong>di</strong>um<br />

was stu<strong>di</strong>ed by X-ray <strong>di</strong>ffraction <strong>and</strong> IR spectroscopy. A synthesis <strong>and</strong><br />

comparative study of the results obtained has recently been published 1 •<br />

Kinetic <strong>and</strong> thermodynamic stu<strong>di</strong>es of the adsorption in aqueous me<strong>di</strong>um<br />

have been carried out 2 as well as on the catalytic hydrolysis process of some<br />

pesticides by smecti tes 3 .<br />

No references in the literature have been found concerning the interaction of<br />

organophosphorus pesticides with vermiculite, a clay mineral also frequent<br />

in soils. The present work stu<strong>di</strong>es the interaction between the organophosphorus<br />

pesticides <strong>di</strong>chlorvos (0,0 <strong>di</strong>methyl, 0-2, 2-<strong>di</strong>chlorovinyl phosphate)<br />

<strong>and</strong> phosdrin (0,0 <strong>di</strong>methyl, 0-(1-methyl-2-carbomethoxyvinyl) phosphate<br />

<strong>and</strong> vermiculite. Stu<strong>di</strong>es were carried out in a) clay-liquid pesticide systems,<br />

in order to <strong>di</strong>scover the intercalation <strong>and</strong> interaction mechanisms (by X-ray<br />

<strong>di</strong>ffraction <strong>and</strong> IR spectroscopy), <strong>and</strong> b) clay-pesticide-water systems in<br />

order to <strong>di</strong>scover the effect of the clay on the evolution of the pesticides in<br />

soil.<br />

·-~~~------~~----------Ihe.Jollowing. Table includes the d(ooz) basal spacings of Beni-Buxera ho-<br />

. moionic vermiculites treated with pesticides for periods of 15 days.<br />

Samples<br />

Dichlorvos<br />

Phosdrin<br />

d(Oo2)A I1A d(Ooi~ ~lA<br />

Na 16.05 6.45 14.02 4.42<br />

14.02* 4.42<br />

K 10.77 1.17 10.77 1.17<br />

Mg 16.05 6.45 16.05 6.45<br />

Ca 16.05 6.45 16.05 6.45<br />

Sr 16.05 6.45 16.05 6.45<br />

Ba 13.08 3.48 13.08 3.48<br />

13.08* 3.48 . 16.05'' 6.45<br />

* After 2 months of treatment<br />

The results shown in the Table in<strong>di</strong>cate that the pesticide moiecules penetrate<br />

into the interlayer space of vermiculite. The formation of complexes with a<br />

defined d(ooz) spacing depends on the nature of the interlayer cation of the<br />

silicate.<br />

Stu<strong>di</strong>es on the adsorption of pesticides by homoionic vermiculites in<br />

aqueous me<strong>di</strong>um were begun with kinetic stu<strong>di</strong>es on their adsorption by Cavermiculite.<br />

Equilibrium was reached at 72 hours. The data may be fitted to<br />

a first-order kinetic process meaning that adsorption is a function of the<br />

concentration of the solution.<br />

Isotherms of the adsorption of the pesticides by homoionic samples were<br />

obtained at 30°C <strong>and</strong> 45°C. All followed the empirical equation of Freundlich.<br />

The values of the constants K <strong>and</strong> n, together with the <strong>di</strong>stribution<br />

constant Kd were determined. The values of the constant K <strong>and</strong> Kd were seen<br />

to vary considerably as a function of the saturating cation of the adsorbent<br />

<strong>and</strong> furthermore increased with the temperature of the system, while the<br />

constant n only exhibited small variations.<br />

From the adsorption isotherms obtained at both temperatures, the adsorp-


_ Abstracts 181<br />

tion isosteric heats, ~Hiso. were obtained by applying the integrated equation<br />

of Van't Hoff. The positive values obtained for ~Hiso in the adsorption of<br />

both pesticides by the homoionic samples showed that in all cases the<br />

process is endothermic.<br />

1 Sanchez-Camazano M., Sanchez-Martin M.J., 1983. Factors influencing interactions organophosphorus<br />

pesticides with montmorillonite. Geoderma 29, 107-118.<br />

2 Sanchez-Martin M.J ., Sanchez-Camazano M., 1984. Aspects of the adsorption of azinphosmethyl<br />

by smectites.J. Agric. Food Chem. 32, 720-725~ . . .<br />

3 Sanchez-Camazano M., Sanchez-Martin M.J., 1983. Montmonllomte-catalyzed hydrolysis of<br />

phosmet. Soil Sci. 136, 89-93.<br />

Surface Aci<strong>di</strong>ty <strong>and</strong> Catalytic Activity<br />

of a Mo<strong>di</strong>fied Sepiolite<br />

A. CORMA 1 , V. FORNES 2 , A. MIFSUD 2 , J. PEREZ PARIENTE 1<br />

1<br />

Instituto de Catft!isis y Petroleoquimica, C.S.I.C., Serrano 119,28006 Madrid, Espafla<br />

2<br />

Instituto de Fisico-Quimica Mineral, C.S.I.C., Serrano- 115 dpdo., 28006 Madrid, Espafla<br />

"<br />

Since the introduction of zeolites as catalysts, <strong>and</strong> based on the success <strong>and</strong><br />

unique properties related with their crystalline structure, several catalytic<br />

groups have considered the possibilities of using clay minerals as catalysts.<br />

Among the natural minerals there is an abundant crystalline magnesium<br />

silicate (sepiolite) whose structure consists of flat laths (2: 1) joined together<br />

at their edges. Channels of 11.5 X 5.3 A run the whole length of the fibre. In<br />

some ways its channel structure is similar to that of mordenite, but natural<br />

sepiolite has the big <strong>di</strong>sadvantage with respect to zeolites that it is not able<br />

to catalyze carbonium ion reactions due to the fact that its surface aci<strong>di</strong>ty is<br />

negligible.<br />

Here we present a mo<strong>di</strong>fied sepiolite that has protonic acid sites which can<br />

catalyze the isomer.ization <strong>and</strong> cracking of methylcyclohexene.<br />

A natural sepiolite from Vallecas 1 , was used as the starting material. Procedures<br />

for exchanging part of the cations located in the octahedral layer have<br />

·.been reported 2·3 <strong>and</strong> in our case we have introduced Al 3 + cations (1.62 wt%<br />

in Al 3 +) in part of the border octahe,dra.<br />

To measure the aci<strong>di</strong>ty of the sample, wafers of 10mg/cm 2 were degassed for<br />

2 hours at 200°C <strong>and</strong> a vacuum of 10- 4 torr in a grease-less conventional<br />

pyrex IR cell. Subsequently;· 5 torr of pyri<strong>di</strong>ne were introduced in the cell at<br />

room temperature, <strong>and</strong> five .minutes later the samples were degassed at<br />

150°C under a vacuum of 10- 4 torr for 1 hour, <strong>and</strong> the spectra registered at<br />

room temperature.<br />

The natural sepiolite shows theIR b<strong>and</strong>s of pyri<strong>di</strong>ne coor<strong>di</strong>nated with Lewis<br />

acid sites (1612, 1578, 1492 <strong>and</strong> 1450 cm- 1 )4, but no b<strong>and</strong>s correspon<strong>di</strong>ng to<br />

pyri<strong>di</strong>nium ions. However, in the case of the aluminium exchanged sample,<br />

besides an increase in the intensity of the b<strong>and</strong>s associated with the presence<br />

of Lewis acid sites, a b<strong>and</strong> at 1550 cm- 1 characteristic of the pyri<strong>di</strong>nium<br />

ion-is observed. The stability <strong>and</strong> strength of the Br0nsted acid sites


182 Abstracts<br />

generated is quite high since desorption temperatures up to 450°C at 10- 4<br />

torr were required in order to completely desorb the pyri<strong>di</strong>ne.<br />

The aluminium exchanged sample was-used-as-an-acidcatalystfoJ?-isomeriza-c<br />

tion <strong>and</strong> cracking of methylcyclohexene (total conversion = 42.36%; crack<br />

ing = 3.10). The acid sites generated in the sepiolite by exchanging Al 3 + for<br />

the original Mg 2 + situated at the edges, are accessible to methylcyclohexene<br />

molecules <strong>and</strong> strong enough to produce skeletal isomerization <strong>and</strong> cracking<br />

at moderate temperatures. These results open a new possibility for the use of<br />

such mo<strong>di</strong>fied sepiolites <strong>di</strong>rectly as acid catalysts or as very convenient acid<br />

supports for preparing bifunctional catalysts.<br />

1<br />

Fern<strong>and</strong>ez T., 1972. Activaci6n de la sepiolita con acido clorhidrico. Bol. Soc. esp. Ceram. Vidr. 11,<br />

365-375.<br />

' Ioka M., Okkuchi Y., 1978. Supporting a metal on sepiolite in catalyst manufacture. Japan Kokai<br />

53, 7592-7594.<br />

3<br />

Corma A., Fornes V., Mifsud A., Perez Pariente J., 1983. Proce<strong>di</strong>miento para la obtenci6n de un<br />

silicato derivado de silicatos magnesicos cristalinos del tipo de la sepiolita. Sp. Pat. (in press).<br />

4<br />

Hughes T.R., Withe H.M., 1967. A study of the Surface Structure of Decationized Y zeolite by<br />

Quantitative Infrared Spectroscopy. J. Phys. Chem. 71, 2192-2201.<br />

Textural Mo<strong>di</strong>fications of Crystalline Magnesium<br />

Silicates by Acid Treatment <strong>and</strong><br />

its Utilization in Catalysis<br />

A. CORMA 1 , A. MIFSUD 2 , J. PEREZ', E. SANZ 1<br />

1<br />

Instituto de Catalisis y Petroleoquimica, C.S.I.C., Serrano 119, 28006 Madrid, Espaii.a<br />

2 Instituto de Fisico-Quimica Mineral, C.S.I.C., Serrano- 115 dpdo., 28006 Madrid, Espaii.a<br />

Some acid treated natural silicates have been used <strong>di</strong>rectly as catalysts in<br />

the early stages of catalytic cracking. At present, the most common commercial<br />

cracking catalysts are composed of 5-30% zeolite in a matrix of amorphous<br />

silica-alumina or clay minerals. Recently, the processes treating high<br />

boiling point hydrocarbons for which the catalyst life is very short, hav~<br />

reopened interest for the development of low cost catalysts with special<br />

textural characteristics.<br />

In this work, we prepared a series of catalysts based on natural silicates<br />

abundant in Spain.<br />

A sepiolite (Vallecas) <strong>and</strong> two palygorskites of <strong>di</strong>fferent composition <strong>and</strong><br />

origin (Serra<strong>di</strong>lla <strong>and</strong> Torrej6n) were used. The samples were treated with<br />

HCl at <strong>di</strong>fferent con<strong>di</strong>tions of pH, temperature <strong>and</strong> reaction time. Nickel<br />

supported catalysts were prepared by impregnation with Ni(N0 3 ) 2 or<br />

Ni(HC00) 2, calcined at 450°C for 3 hours <strong>and</strong> reduced in an H 2 atmosphere<br />

at the same temperature for 16 hours; the average size of the Ni metal<br />

particles was determined.<br />

After the acid attack, t!J.e surface area increased up to 450 m 2 /g for the


Abstracts 183<br />

- sepiolite <strong>and</strong> 100-200 mLfg for palygorskite. The latter is more stable under<br />

acid attack. The rate equation for extraction of octahedral cations is: v =<br />

k(H+)a; the activation energies are 16 kcal/mol for sepiolite <strong>and</strong> 4 kcal!mol<br />

for palygorski te. The increase in metal <strong>di</strong>spersion <strong>and</strong> degree of reduction of<br />

NiO with the amount of Mg extracted is related to the surface area of the<br />

carrier silicate.<br />

Interaction of Macrocyclic Compounds, Crown Ethers<br />

<strong>and</strong> Crypt<strong>and</strong>s, with Layer Silicates:<br />

Adsorption Isotherms <strong>and</strong> Kinetics<br />

B. CASAL, E. RUIZ-HITZKY<br />

Instituto de Fisico-Quimica Mineral, C.S.I.C., Serrano 115 - dpdo., 28006 Madrid, Espafla<br />

In a previous study 1 , it 'was shown that macrocyclic compounds, crown<br />

ethers <strong>and</strong> crypt<strong>and</strong>s, can be intercalated between the layers of smectites<br />

<strong>and</strong> vermiculites saturated with <strong>di</strong>fferent metal ions, inclu<strong>di</strong>ng the alkaline<br />

cations. The macrocyclic compounds replace water molecules <strong>and</strong> coor<strong>di</strong>nate<br />

<strong>di</strong>rectly with the interlayer metal cations. X-ray <strong>di</strong>ffraction <strong>and</strong> infrared<br />

stu<strong>di</strong>es 2 in<strong>di</strong>cate that, in most cases, the intercalated lig<strong>and</strong>s lie flat on<br />

the silicate surface either in one- (


184<br />

Abstracts<br />

Na +-montmorillonite<br />

Na + -montmorillonite<br />

Na + -montmorillonite<br />

Macrocyclic<br />

compound<br />

15-crown-5<br />

18-crown-6<br />

C(222)<br />

Monolayer capacity Xm (mmol/100g)<br />

____ J


Section 11<br />

Geology <strong>and</strong> Genesis<br />

. I<br />

• I


---------<br />

r


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 187-196 (1985)<br />

Hydrothermal Solutions Related to Bentonite Genesis,<br />

Cabo de Gata Region, Almeria, SE Spain<br />

E. CABALLERO, E. REYES, J. LINARES, F. HUERTAS<br />

Estaci6n Experimental del Zai<strong>di</strong>n, C.S.I.C., Profesor Albareda I, 18008 Granada, Espaiia<br />

ABSTRACT - In the Neogene volcanic region of Cabo de Gata (Almeria, SE<br />

Spain) hydrothermal alterations are present, affecting tuffaceous materials,<br />

ignimbrites <strong>and</strong> agglomerates, <strong>and</strong> giving rise to thick bentonite deposits.<br />

Samples (219) were taken from 39 bentonite deposits spread along the Sierra<br />

de Gata (north <strong>and</strong> south) <strong>and</strong> Serrata de Nijar. Extractable Na +, K+, Ca 2 +,<br />

Mg 2 +, CC so~-, CO~- <strong>and</strong> HCO:l were analyzed in order to study whether<br />

or not these species could reflect those of the original mineralizing solution.<br />

From the statistical analysis of the data (Factor analysis - R-mode, <strong>and</strong><br />

multiple regression) the existence of the following associations were found:<br />

Cl-- Na+, Soi-- Na+, HCO:l -Ca 2 +. Generally, the Cl- -Mg 2 + correlation<br />

is negative.<br />

These facts seem to exclude a marine origin for the alteration solution <strong>and</strong><br />

favour the idea that these solutions result from a system of meteoric waters<br />

heated by a geothermal cycle, this being in accordance with stable isotope<br />

geocherriistry of bentonites.<br />

Solutes must derive from wall-rock hydrolytic reactions :previous to the entrance<br />

of these solutions into the cinerite layers. Mg2+ <strong>and</strong> K+ must originate<br />

from the metamorphic basement of volcanic materials <strong>and</strong> from normal<br />

hydrolisis during infilt'ration of the solution through the Sierra Alhamilla<br />

<strong>and</strong> Sierra Cabrera, collecting body of the local aquifers. Na +, Cl- <strong>and</strong> SO~must<br />

derive, from the interaction between solutions <strong>and</strong> volcanic materials,<br />

while Ca 2 + <strong>and</strong> HC03- must be related, partially, to volcanic <strong>and</strong> metamorphic<br />

complexes.<br />

'<br />

The concentration ratios


188 E. Caballero, E. Reyes, J. Linares, F. Huertas<br />

sive alteration to smectite, forming<br />

thick bentonite deposits. In the first<br />

case, the altering solution must have .<br />

been slightly more acid than in the<br />

second one (REYES, 1977).<br />

Most authors relate the origin of<br />

these bentonites to the action of a<br />

hydrothermal solution, but few<br />

attempts have been made to specify<br />

the origin of the solutions. Recently,<br />

LEON;£_ tq _aJJ12,~~),_EY._~t!,!gyi_I1g_the<br />

fractionation of stable hydrogen <strong>and</strong><br />

oxygen isotopes in these bentonites,<br />

concluded that the hydrothermal<br />

solutions were of meteoric origin,<br />

acting at temperatures of about 70 oc<br />

in the Sierra de Gata <strong>and</strong> of 40 oc in<br />

the Serrata <strong>di</strong> Nijar.<br />

L~<br />

CG<br />

MM<br />

•<br />

e LHe<br />

CL<br />

•cAm<br />

u•<br />

E e<br />

•<br />

e LPN<br />

LPe<br />

c<br />

Volcanic rocks<br />

Miocenic limestones<br />

Quatern~ry<br />

Triassic<br />

0<br />

10 km<br />

Fig. 1- Sampling location. LT: Los Trances; RC: Rinc6n de !as Caleras; PU: Pozo Usero; ML: Mata<br />

Lobera; MA/B: La Valentina; V: Majada de !as Vacas; RM: Rambla Mendez; VR: Vieja Rambla;<br />

PM: Palma del Muerto; PCl/2: Pecho de Ios Cristos; R: Rodalquilar; LA: Los Albacetes; CT: Cerro<br />

Tostana; CA: Collado del Aire; CC: Cerro Colorado; CE: Cerro de Estrada; CL: Cortijo de la Loma;<br />

CAm: Cerro Amatista; BF: Boca de Ios Frailes; MM: Morr6n de Mateo; LI: La Isleta del Moro;<br />

LB: La Barranquilla; LC: La Capitana, E: Escullos; LH: Las Hermanicas; CG: Cortijo del Gitano;<br />

T: Toril; LM: La Marranera; LPN: Loma Pelada Norte; LP: Loma Pelada; C: Caliguera; CM: Cerro<br />

del Marchal; VB: Vela Blanca; EC: El Corralete.


Hydrothermal Solutions Related to Bentonite-Genesis ... 189<br />

The purpose of this study was to<br />

infer the composition of the hydrothermal<br />

solution from the analysis of<br />

ions extracted from bentonites,<br />

assuming that the salts are the vestiges<br />

left by solutions filling the interstitial<br />

spaces of the pyroclastic<br />

mass during the alteration processes.<br />

Numerical analysis of the data was<br />

performed with an HP 9816 Microcomputer.<br />

Programs were prepared<br />

by 'E. BARAHONA (pers. comm.) following<br />

criteria <strong>and</strong> algorithms of<br />

DRAPER & SMITH (1966), COOLEY<br />

& LOHNES (1971), DAVIS (1973),<br />

<strong>and</strong> JORESKOG et al. (1976).<br />

Materials <strong>and</strong> experimental methods<br />

Experimental results <strong>and</strong> <strong>di</strong>scussion<br />

Bentonite samples (219) were<br />

selected from 34 localities (Fig. 1).<br />

The samples located to the north of<br />

Cabo de Gata, have been previously<br />

stu<strong>di</strong>ed by RE YES (1977); the rest<br />

were purposely taken for this study.<br />

The sampling sites do not always correspond<br />

to important deposits, since<br />

many times samples were collecte'd<br />

from small outcrops of altered volcanic<br />

material. The sampling sites were<br />

chosen with a view to obtain a more<br />

general insight into the nature of the<br />

hydrothermal solutions.<br />

Cations were extracted by percolation<br />

with 1N ammonium acetate at<br />

pH 7; before extraction, the ground<br />

samples were mixed with , to<br />

accelerate the leaching process. Na+<br />

<strong>and</strong> K+ were determined by flame<br />

photometry, <strong>and</strong> Ca:z+ arid Mg 2 + by<br />

atomic absorption~ CEC was calculated<br />

from the absorbed NH4, determined<br />

by the Kjeldahl method.<br />

Anions were extracted with <strong>di</strong>stilled<br />

water from another sample aliquot.<br />

Cl- was determined by Mohr' s method,<br />

so~- by turbi<strong>di</strong>metry <strong>and</strong> eo~- <strong>and</strong><br />

HC03 by aci<strong>di</strong>metry.<br />

Listed in Table 1 are the mean<br />

values of the variables analyzed for<br />

28 sampling localities, totalizing 210<br />

samples. The localities having a single<br />

sample were excluded. Nevertheless,<br />

these were included in the general<br />

statistical analysis.<br />

The data obtained were stu<strong>di</strong>ed,<br />

starting from the correlation matrix,<br />

"-by R-rriode Factor Analysis with Varimax<br />

rotation. Five factors, accounting<br />

for 85.8% of the total variance,<br />

were judged to be significant. A simplified<br />

varimax loa<strong>di</strong>ng matrix is<br />

listed in Table 2.<br />

The first facto:r has high loa<strong>di</strong>ng on<br />

eo~-, HC03 <strong>and</strong> Ca 2 +. This association<br />

seems to be somewhat forced by the<br />

particular chemism of the bentonites<br />

from Cabo de Gata, which are a very<br />

numerous subset of the total sample<br />

set. The source of these anions should<br />

be related to the metamorphic rocks<br />

of the volcanic basement <strong>and</strong> to those<br />

from, the Sierra Alhamilla <strong>and</strong> Sierra<br />

Cabrera, to the north of the bentonite<br />

deposits, these being the main<br />

sources of aquifers forming the<br />

hydrothermal solutions. HEM (1970)<br />

points to these ions as major compo-


~- -~<br />

··-<br />

19Q<br />

E. Caballero, E. Reyes, J. Linares, F. Huertas<br />

TABLE 1<br />

Mean values of the variables analyzed<br />

Ca 2 + Mgz+ Na+ k""<br />

so-:r=~~ ~ 'coj-<br />

'~- -·.<br />

C03H- cl- CEC<br />

MA 36.13 47.20 36.13 2.73<br />

MB 29.48 49.73 46.59 .3.54<br />

V 35.32 35.68 44.68 3.08<br />

PU 28.70 53.10 36.20 1.90<br />

RC 17.58 40.42 31.50 1.75<br />

LT 31.86 55.09 13.33 0.57<br />

E 34.80 28.40 33.00 1.80<br />

MM-1 32.80 14.60 40.60 2.60<br />

MM-2. 32.87 20.87 42.75 1.62<br />

LP 39.00 35.00 24.50 2.50<br />

LH 35.50 27.50 31.50 1.00<br />

CG 24.00 26.00 50.67 1.00<br />

CM 45.75 29.25 46.25 1.00<br />

c 24.50 22.75 58.75 1.50<br />

EC 23.20 8.40 30.00 1.00<br />

LC 23.00 16.50 29.50 1.50<br />

VB 27.50 16.00 86.50 5.00<br />

CAm 22.50 16.00 36.50 1.50<br />

CL 61.50 13.50 36.50 2.50<br />

T 22.00 18.00 21.00 1.00<br />

R 25.50 13.50 26.00 0.50<br />

LM 24.00 12.50 19.50 1.50<br />

·- ~-~--~VR- -----~-E0"75 --19:50 . 19.75 1.50<br />

RM 31.67 34.67 44.67 5.00<br />

cc 13.20 27.40 53.80 4.00<br />

CA 29.25 . 28.25 26.62 2.50<br />

l CT 24.33 34.66 52.00 1.00<br />

PC-1 19.00 16.60 32.40 2.20<br />

PC-2 24.00 29.20 49.80 2.60<br />

PM 16.60 19.60 48.60 3.60<br />

0.76 0.00 8.58 0.54 110.07<br />

0.46 0.00 15.36 0.59 110.02<br />

2.66 0.88 19.81 1.12 90.80<br />

1.71 1.24 21.62 0.76 101.60<br />

1.10 0.09 1.84 1.27 84.00<br />

0.52 0.14 10.30 0.17 93.14<br />

0.36 0.04 1.14 3.80 94.20<br />

0.30 0.26 4.02 0.88 . 83.00 .<br />

0.84 0.06 1.54 7.62 86.87<br />

0.05 0.00 0.70 4.00 99.50<br />

0.60 0.00 0,25 16.30 81.00<br />

1.40 0.00 0.97 13.13 88.67<br />

0.85 0.20 2.30 6.80 112.25<br />

1.10 0.05 1.17 24.07 79.25<br />

1.16 0.00 0.64 31.88 24.80<br />

1.20 0.00 0.35 17.80 57.00<br />

1.70 0.00 0.45 12.90 125.50<br />

0.65 0.15 2.35 1.05 75.00<br />

0.00 0.15 2.05 0.00 112.00<br />

0.75 0.10 0.25 8.60 58.00<br />

1.80 0.00 0.20 10.00 58.50<br />

2.30 0.00 0.60 8.85 45.00<br />

1.15 0.00 0.60 7.00 48.50<br />

1.13 0.00 1.53 26.97 85.00<br />

1.04 0.08 1.48 6.22 95.80<br />

0.77 0.12 1.16 5.06 76.37<br />

2.03 0.00 0.57 34.47 76.00<br />

1.32 0.00 0.42 13.66 58.60<br />

1.08 0.00 0.78 6.24 99.00<br />

1.34 0.00 0.86 8.28 82.80<br />

nents in natural waters infiltrated<br />

through mica schists.<br />

The second factor is concerned<br />

with Mg 2 + <strong>and</strong> cation exchange<br />

capacity. This grouping is also influenced<br />

by the samples from Cabo de<br />

Gata, in which Mg 2 + is the chief ex-·<br />

changeable cation, though the rest of<br />

the samples also contain sizeable<br />

quantities. A point to be stressed is<br />

that in this factor, Mg 2 + <strong>and</strong> Cla'ppear<br />

with opposite signs, probably<br />

implying that they originated from<br />

<strong>di</strong>fferent sources. Mg 2 + likely derives<br />

TABLE 2<br />

Simplified varimax loa<strong>di</strong>ng matrix<br />

F1 Fz F3 F4<br />

coj- 0.832 Mgz+ 0.872 K+ 0.916 Cl- 0.851<br />

Ca 2 + 0.794 CEC 0.838 Na+ 0.798 Na+ 0.391<br />

HC03- 0.712 cl- ~0.304 Hco3- ~0.373<br />

Mgz+ -0.300<br />

F1 = 20.58%, F 2 = 20.01%, F3 = 19.23%, F4 = 13.69%, F 5 = 12.28%;<br />

Total Explained Variance = 85.78%<br />

Fs<br />

so~- 0.920<br />

Hco3- 0.266<br />

Na+ 0.242<br />

Ca 2 + -0.273


Hydrothermal Solutions Related to Bentonite Genesis ... 191<br />

from chlorites <strong>and</strong><br />

micas, present in metamorphic rocks<br />

from the basement <strong>and</strong> from the Sierra<br />

Alhamilla <strong>and</strong> Sierra Cabrera,<br />

whereas cl- might come either from<br />

salts ·impregnating the surfaces of<br />

volcanic <strong>and</strong> metamorphic rocks, or<br />

from glassy phases present in the<br />

pyroclastic materials (ELLIS &<br />

MAHON, 1964; HEM, 1970).<br />

The third factor has strong loa<strong>di</strong>ngs<br />

in Na+ <strong>and</strong> K+. This is a typical<br />

assemblage of hydrothermal systems,<br />

especially in the case of rock wall alteration.<br />

The fourth factor is loaded with respect<br />

to Cl- an,d Na+. This is also a<br />

typical association of hydrothermal<br />

solutions. Cl- could come either from<br />

metamorphic schists, outcropping to<br />

the north, or from pyroclastic materials,<br />

as mentioned above.<br />

The last factor includes SOi- <strong>and</strong><br />

also, with lesser loa<strong>di</strong>ngs, HC03 <strong>and</strong><br />

Na+.<br />

Even though the results of factor<br />

analysis are strongly influenced by<br />

the samples of the Sierra de Gata,<br />

some information about possible constituents<br />

of hydrothermal solutions<br />

Sierra Cabrera<br />

Sierra Alhamilla<br />

Las Negras .,<br />

":J'lJ<br />

10 15 km<br />

Fig. 2- zo;es showing <strong>di</strong>fferences in ionic compositions.


192 E. Caballero, E. Reyes, J. Linares, F. Huertas<br />

was obtained. Thus,· two types of<br />

solutions must have. been acting, one<br />

dominated by HC03 <strong>and</strong> the other by·<br />

cl-. so~- seemingly appears to be<br />

an accessory component.<br />

In order to verify these <strong>di</strong>fferences<br />

in the chemistry of the solutions, the<br />

samples from the 30 most important<br />

deposits were grouped into zones.<br />

Three groups were made: Sierra de<br />

Gata, Serrata de Nijar <strong>and</strong> the South<br />

Zone, cited in order of increasing <strong>di</strong>stance<br />

from the Sierra Alhamilla <strong>and</strong><br />

Sierra Cabrera, probable recharge<br />

. sites of the meteoric waters that<br />

turned into hydrothermal solutions<br />

(Fig. 2).<br />

______ Jj~t{!d in_ Table _3 _are the mean<br />

values of the variables determined<br />

for .the three groups. Values for the<br />

anions are to be ascribed to soluble<br />

salts, but those for the cations correspond<br />

to both, the soluble <strong>and</strong> the exchangeable<br />

ones. A separate determination<br />

of soluble cations was not<br />

attempted so as not to <strong>di</strong>sturb the exchange<br />

complex. Nevertheless, the<br />

statistical analysis of data allowed<br />

both contributions to be separated. It<br />

can be-also-observed· in-l'able·-·3 that<br />

the sum of the cations is systematically<br />

two or three units lower than that<br />

of the anions plus the CEC. These <strong>di</strong>fferences<br />

may be due to a small anion<br />

exchange capacity.<br />

The correlation matrices for<br />

the three groups are. given in Table 4.<br />

In the case of Sierra <strong>di</strong> Gata, the<br />

following positive <strong>and</strong> highly significant<br />

correlations are to be noted:<br />

Ca 2 +-HC03,Na+-Cl-,Na+-SO~-,<br />

K+- Cl- <strong>and</strong> Na+- K+. Based on<br />

these correlations, soluble salts were<br />

quantified by <strong>di</strong>scounting as much<br />

Na+ as Cl- plus SO~- were present,<br />

<strong>and</strong> as much Ca 2 + as the existing<br />

HC03. The contribution of K+,<br />

although existing, was <strong>di</strong>sregarded as<br />

a minor one. The results so obtained<br />

are listed in Table 5, where the ions<br />

are <strong>di</strong>vided into soluble <strong>and</strong> exchangeable<br />

ones.<br />

In the case of Serrata de Nijar,<br />

strong correlations exist between<br />

Ca 2 +- Mg 2 +, Mg 2 +- HC03, Na+ ~<br />

K+, Na+- so~-, Na+- cl-, sm--<br />

TABLE 3<br />

Mean values of the variables determined for the Sierra de Gata, Serrata de Nijar <strong>and</strong> South<br />

Zone groups<br />

Sierra de Gata Serrata de Nijar South Zone<br />

Ca 2 + 29.83 22.58 30.07<br />

Mgz+ 46.87 27.20 19.90<br />

Na+ 34.74 43.99 37.25<br />

K+ 2.26 2.98 1.71<br />

soJ- 1.20 1.24 1.01<br />

eo~- 0.39 0.03 0.05<br />

HC03 12.92 0.97 1.15<br />

er- 0.74 14.41 10.27<br />

CEC 98.27 81.93 78.18<br />

L Cations 113.70 96.75 88.93<br />

L Anions+ CEC 113.52 98.58 90.66


Hydrothennal Solutions Related to Bentonite Genesis ... 193<br />

TABLE 4<br />

Correlation matrices for the Sierra de Gata, Serrata de Nijar <strong>and</strong> South Zone groups<br />

VI<br />

V2<br />

V3<br />

V4<br />

Sierra de Gata<br />

vs<br />

V6<br />

V7<br />

vs<br />

V9<br />

V1<br />

V2<br />

V3<br />

V4<br />

vs<br />

V6<br />

V7<br />

vs<br />

V9<br />

1.000<br />

-.223<br />

-.094<br />

-.113<br />

-.007<br />

.569<br />

.644<br />

-.132<br />

-.OS2<br />

-.223<br />

1.000<br />

-.11S<br />

-.176<br />

-.270<br />

-.31S<br />

-.26S<br />

.6S1<br />

-.2S3<br />

-.094<br />

-.11S<br />

1.000<br />

.7S7<br />

.314<br />

-.12S<br />

.141<br />

.442<br />

.409<br />

-.113<br />

-.176<br />

.7S7<br />

1.000<br />

.1S4<br />

-.OS2<br />

.OS1<br />

.343<br />

.206<br />

-.007<br />

-.270<br />

.314<br />

.1S4<br />

1.000<br />

.026<br />

.09S<br />

-.069<br />

.439<br />

.569<br />

-.31S<br />

-.12S<br />

-.OS2<br />

.026<br />

1.000<br />

.S73<br />

-.37S<br />

.041<br />

.644<br />

-.26S<br />

.141<br />

.OS1<br />

.09S<br />

.573<br />

1.000<br />

-.190<br />

.039<br />

-.132<br />

.6S1<br />

.442<br />

.343<br />

-.069<br />

-.37S<br />

-.190<br />

1.000<br />

.-.073<br />

-.OS2<br />

-.2S3<br />

.409<br />

.206<br />

.439<br />

.041<br />

.039<br />

-.073<br />

1.000<br />

V1<br />

V2<br />

V3<br />

V4<br />

Serrata de Nijar<br />

vs<br />

V6<br />

V7<br />

vs<br />

V9<br />

V1<br />

V2<br />

V3<br />

V4<br />

vs<br />

V6<br />

V7<br />

vs<br />

V9<br />

1.000 .S23<br />

.S23 1.000<br />

-.390 -.021<br />

-.334 . -.34S<br />

-.297 -.19S<br />

.277 .196<br />

-.OOS .407<br />

.16S. .:S16<br />

.020 .096<br />

V1<br />

V2<br />

-.390<br />

-.021<br />

1.000<br />

.61S<br />

.421<br />

-.OSS<br />

-.034<br />

.634<br />

.347<br />

V3<br />

-.334<br />

-.34S<br />

.61S<br />

1.000<br />

.11S<br />

-.141<br />

.039<br />

.449<br />

-.147,<br />

V4<br />

-.297<br />

-.19S<br />

.421<br />

.11S<br />

1.000<br />

-.163<br />

-.360<br />

-.1SO<br />

.6SS<br />

"<br />

South Zone<br />

vs<br />

.277<br />

.196<br />

-.OSS<br />

-.141<br />

-.163<br />

1.000<br />

.2S8<br />

.106<br />

-.140<br />

V6<br />

-.OOS<br />

.407<br />

-.034<br />

.039<br />

-.360<br />

.2SS<br />

1.000<br />

.299<br />

-.40S<br />

V7<br />

.16S<br />

.S16<br />

.634<br />

.449<br />

-.1SO<br />

.106<br />

.299<br />

1.000<br />

-.13S<br />

vs<br />

.020<br />

.096<br />

.347<br />

-.147<br />

.6S8<br />

-.140<br />

-.408<br />

-.13S<br />

1.000<br />

V9<br />

V1<br />

V2<br />

V3<br />

V4<br />

vs<br />

V6<br />

V7<br />

vs<br />

V9<br />

1.000<br />

.207<br />

.111<br />

.243<br />

-,.242<br />

.1S1<br />

.193<br />

.639<br />

-.21S<br />

.207<br />

1.000<br />

.113<br />

-.174<br />

-.092<br />

.011<br />

-.031<br />

.460<br />

.OS9<br />

.111<br />

.113<br />

1.000<br />

.303<br />

.2S9<br />

.032<br />

.oso<br />

.609<br />

.301<br />

·.z43<br />

-.174<br />

.303<br />

1.000<br />

-.1S2<br />

-.040<br />

.191<br />

.3S3<br />

-.193<br />

-.242<br />

-.092<br />

.2S9<br />

-.1S2<br />

1.000<br />

-.3S7<br />

-.47S<br />

-.17S<br />

.SS3<br />

.1S1<br />

.011<br />

.032<br />

-.040<br />

-.3S7<br />

1.000<br />

.SOS<br />

.172<br />

-.3SS<br />

.193<br />

-.031<br />

.oso<br />

.191<br />

-.47S<br />

.SOS<br />

1.000<br />

.. 218<br />

-.441<br />

.639<br />

.460<br />

.609<br />

.3S3<br />

-.17S<br />

.172<br />

.21S<br />

1.000<br />

-.313<br />

-.21S<br />

.OS9<br />

.301<br />

-.193<br />

.SS3<br />

-.3SS<br />

-.441<br />

-.313<br />

1.000<br />

Cl-. Moreover, all cations are significantly<br />

related to CEC.<br />

In the South Zone the following<br />

correlations were obtained: Na+ -<br />

K+, cm-- HC03, Na+- SOi-, Na+<br />

- Cl- <strong>and</strong> Cl- -,- so~-. There is also a<br />

significant correlation between cations<br />

<strong>and</strong> CEC. On the basis of these<br />

correlations both soluble <strong>and</strong> exchangeable<br />

cations were calc~lated<br />

using the same method as that used<br />

in the case of the Sierra 'de Gata<br />

group (Table 5). From the data in this<br />

table it can be seen that two types of<br />

cheml.sm actually occur. The first one<br />

dominated by HC03 <strong>and</strong> Ca 2 + in the<br />

Sierra de Gata, <strong>and</strong> the second one<br />

ruled by Cl- <strong>and</strong> Na+, in the two remaining<br />

zones.<br />

As stated above, the soluble salts


194 E. Caballero, E. Reyes, J. Linares, F. Huertas<br />

TABLE 5<br />

Exchangeable cations an'!so!l!ble }~ll!_~al:?e~<br />

Exchangeable C:ations (meq/100 g)<br />

Sierra de Gata Serrata de Nijar South Zone<br />

16.52 22.55<br />

29.47<br />

46.87 26.23<br />

19.30<br />

32.80 28.34<br />

25.97<br />

2.26 2.98 1.71<br />

Soluble Ions (meq/100 g)<br />

Ca 2 +<br />

Mgz+<br />

Na+<br />

K+<br />

cl­<br />

so~­<br />

HCO:l<br />

cot-<br />

Sierra de Gata Serrata de Nijar South Zone<br />

0.60<br />

0.60<br />

11.28<br />

13.37<br />

t<br />

1.94<br />

t<br />

0.74<br />

1.20<br />

12.92<br />

0.39<br />

0.03<br />

0.97<br />

15.65<br />

t<br />

14.41<br />

1.24<br />

0.97<br />

0.03<br />

t<br />

10.27<br />

1.01<br />

1.15<br />

0.05<br />

Soluble Ions (g/1)<br />

Sierra de Gata Serrata de Nijar South Zone<br />

81.92<br />

3.68<br />

0.55<br />

19.96<br />

3.43<br />

t<br />

2.02<br />

4.42<br />

60.63<br />

0.90<br />

153.32<br />

0.16<br />

0.90<br />

27.69<br />

t<br />

39.22<br />

4.56<br />

4.58<br />

0.06<br />

77.17<br />

t<br />

27.97<br />

3.54<br />

5.37<br />

0.12<br />

61.19<br />

-Ca2 +<br />

Mg2+<br />

Na+<br />

K+<br />

Cl­<br />

so~­<br />

HCO:l<br />

cott:<br />

traces<br />

are assumed to be the dried. vestiges<br />

of solutions that filled the interstitial<br />

pore space during alteration. If so, it<br />

would be desirable to express the results<br />

obtained as either mg or g per<br />

liter ofsolution, rather than as meq<br />

per 100 grams of sample weight. To<br />

do so, the true particle density <strong>and</strong><br />

the bulk density of the un<strong>di</strong>sturbed<br />

bentonite samples were determined.<br />

The average true particle density<br />

found was 2.7 <strong>and</strong> the bulk density,<br />

2.0. Accor<strong>di</strong>ng to these values, the<br />

average porosity was 26%, in<strong>di</strong>cating<br />

that 100 g of sample will contain a-<br />

bout 13 cm 3 of pore space. Therefore,<br />

the values in meq/100 g can be converted<br />

to meq per !iter by multiplying<br />

them by the conversion factor of<br />

76.92; meq/1 are then easily transformed<br />

to grams per li ter. The results<br />

of these calculations are also shown<br />

in Table 5. These results clearly are<br />

not compatible with a real situation,<br />

since a .<strong>di</strong>rect precipitation of calcite<br />

would have to occur in nearly every<br />

case. Taking into account the solubility<br />

of calcite at 60 oc (CLARK, 1966),<br />

a <strong>di</strong>lution factor of 700 should be applied<br />

to the values found for the Sier-


Hydrothermal Solutions Related to Be;;toniteGenesis ... 195<br />

ra de Gata, so as to avoid the precipitation<br />

of this mineral. For the<br />

Serrata de Nijar <strong>and</strong> the South Zone,<br />

the <strong>di</strong>lution factors would be 2 <strong>and</strong><br />

30, respectively.<br />

After introducing the <strong>di</strong>lution factor,<br />

the solution of the Sierra de Gata<br />

happens to be the less concentrated,<br />

<strong>and</strong> tends to resemble a natural water<br />

having infiltrated through mica<br />

schists (HEM, 1970). This solution<br />

would be enriched in Cl- <strong>and</strong> Na+ by<br />

reacting with volcanic materials in<br />

the course of its <strong>di</strong>splacement towards<br />

the Serrata de Nijar. In the<br />

South Zone, mixing with water of a<br />

lesser ionic strength must have taken<br />

place.<br />

Assuming that exchangeable cations<br />

were in equilibrium with this<br />

solution, some interesting ,· conclusions<br />

can be drawn. For instance, it<br />

may be noted in Table 5 that Ca 2 + increases<br />

from the Sierra de Gata towards<br />

the South Zone, while the<br />

opposite is true for Mg 2 + <strong>and</strong> Na+.<br />

The increment in CaH may be due to<br />

the hydrolysis of volcanic materials<br />

as the solutions moved southwards.<br />

Plagioclases in this region are mainly<br />

calcic, <strong>and</strong> could provide enough<br />

Ca 2 + to account for this increase. The<br />

decrease in Mg2+ content is fairly significant<br />

<strong>and</strong> seemingly in<strong>di</strong>cates that<br />

its source is to the north. The solution<br />

is more impoverished in Mg 2 + as'<br />

smectite is formed as a product of<br />

hydrolysis. This decrease is even evidenced<br />

by the total amount of Mg<br />

present in the bentonites. Thus, their<br />

MgO content is 5.44% in the Sierra de<br />

Gata (REYES, 1977), 3.33% in Serrata<br />

de Nijar (CABALLERO, 1982) <strong>and</strong><br />

1.77% in the South Zone (CABAL­<br />

LERO, 1985).<br />

Coming back to Table 5, it can be<br />

noted that the composition of the<br />

solutions for the Serrata de Nijar <strong>and</strong><br />

South Zone are mainly rich in Cl<strong>and</strong><br />

Na+. However, Na+ tends to decrease<br />

in the exchange complex towards<br />

the south. This may be due to<br />

the selectivity of Ca 2 + against Na+<br />

(BOLT & BRUGGENWERT, 1978).<br />

Thus, even though the solution is rich<br />

in Na + <strong>and</strong> poor in Ca2+, the exchange<br />

complex is progressively enriched in<br />

the latter. In the Sierra de Gata, Mg 2 +<br />

is absorbed in a specific way because<br />

of its smaller ionic ra<strong>di</strong>us.<br />

In order to verify if the composition<br />

of these solutions is in accordance·'<br />

with the average alteration temperatures<br />

for each zone, we attempted to<br />

use the Na-K-Ca geothermometer,<br />

proposed by FOURNIER & . TRUES­<br />

DELL (1973). The <strong>di</strong>fficulty encountered<br />

in our case was the lack of reliable<br />

data for the very small K+ contents<br />

found in our samples.<br />

The selected option was to operate<br />

in the opposite sense, calculating<br />

how much K+ should be introduced in<br />

the geothermometric expression so<br />

that Ca 2 + <strong>and</strong> Na+ would be in equilibrium<br />

with an average temperature of<br />

70 oc for the Sierra de Gata <strong>and</strong> 40 oc<br />

for Serrata de Nijar <strong>and</strong> the South<br />

' Zone. The results of these calculations<br />

show that the K+ contents would<br />

be around 0.05, 0.08 <strong>and</strong> 0.05 meq K+f<br />

100 g for the Sierra de Gata, Serrata<br />

de Nijar <strong>and</strong> South Zone respectively.<br />

The concentrations found are so


196 E. Caballero, E. Reyes, J. Linares, F. Huertas<br />

small that they support the convenience<br />

of their suppression <strong>and</strong> show,<br />

on the other h<strong>and</strong>, that, as a matter of<br />

fact, the inferred solutions should be<br />

in equilibrium with the temperatures<br />

previously inferred from . isotopic<br />

fr::tctionation;<br />

A final subject to be considered is<br />

the overall dynamics of the solutions,<br />

although it has already been treated<br />

in part. It may be assumed that the<br />

solutions came from meteoric waters<br />

recharged at the metamorphic masses<br />

of the Sierra Alhamilla <strong>and</strong> Sierra<br />

Cabrera lying north of the bentonite<br />

deposits. In ad<strong>di</strong>tion to the previously<br />

cited isotopic data reported by<br />

_______ L~Q_NE__~L a_[ •.( 19_8~), _!l_lis ~!uciy provides<br />

further evidence, such as the<br />

negative correlation between Mg 2 +<br />

<strong>and</strong> Cl-, sm- <strong>and</strong> HC03, that excludes<br />

a mar1n~or:iginJ:or~these solutions,<br />

since, if this were the case, the<br />

correlations would be positive.<br />

Finally, if we assume a pH value for<br />

the solutions close to neutrality, then<br />

the log Na/H would be close to 6.<br />

When plotting these values in HEM­<br />

LEY et al.'s <strong>di</strong>agram ( 1971), for<br />

temperatures near to 60 °C, we find<br />

that they fall into the stability field of<br />

montmorilloni te.<br />

It may be concluded that the<br />

hydrothermal solutions operating in<br />

the region of Cabo de Gata had compositions<br />

in agreement with a<br />

meteoric origin <strong>and</strong> with the alteration<br />

temperature, <strong>and</strong> which were in<br />

equtlibri~m with· montmorillonite.<br />

REFERENCES<br />

BOLT G.H., BRUGGENWERT M.G.M., 1978. Soil Chemistry. A. Basic Element. Elsevier, Amsterdam.<br />

·CABALLERO E., 1982. Composici6n Quimica y Mineral6gica de les Bentonitdsde la Serrata de Nijar<br />

(Almeria). Thesis, University of Granada, Spain.<br />

CABALLERO E., 1985. Quimismo del Proceso de Bentonitizaci6n. Ph.D. Thesis University of Granada,<br />

· Spain.<br />

CLARK S.P., 1966. H<strong>and</strong>book of Physical Constants. Geol. Soc. Amer. Inc. Mem. 97, 1-587.<br />

CooLEY W.W., LOHNES P.R., 1971. Multivariate Data Analysis. J. Wiley & Sons, New York.<br />

DAVIS J.C., 1973, Statistics <strong>and</strong> Data Analysis in Geology. J. Wiley & Sons, New York.<br />

DRAPER N.R., SMITH H., 1966. Applied Regression Analysis. J. Wiley & Sons, New York. .<br />

ELLIS A.J., MAHON W.A.J., 1964. Natural Hydrothermal Systems <strong>and</strong> Experimental Hot-Water/Rock<br />

Interactions. Geochim. Cosmochim. Acta 28, 1323-1357.<br />

FoURNIER R.O., TRUESDELL A.H., 1973. An EmpiricalNa-K-Ca Geothermometer for Natural Waters.<br />

IGeochim. Cosmochim. Acta 37, 1255-1275.<br />

HEM J.D., 1970. Study <strong>and</strong> Interpretation of the Chemical Characteristics of Natural Water. Geol.<br />

Surv. Water-Supply Paper 1473.<br />

HEMLEY J.J., MoNTOYA J.W., NIGRINI A., VINCENT H.A., 1971. Some alteration reactions in thesystem<br />

CaO-Al 2 0TSiOrHzO. Soc. Min. Geol. Japan, Special Issue n. 2, 58-63.<br />

J6RESKOG K.J., KLOGAN J.E., REYMENT R.A., 1976. Geological Factor Analysis (Methods in<br />

Geomathematics-I). Elsevier, Amsterdam.·<br />

LEONE G., REYES E., CORTECCI G., POCHINI A., LINAREO. J., 1983. Genesis of Bentonites from Cabo de<br />

Gata, Almeria, Spain: A Stable Isotope Study. Clay Minerals 18, 227-238.<br />

REYES E., 1977. Mineralogia y Geoquimica de las Bentonitas de la Zona Norte de Sierra de Gata<br />

(Almeria). Ph.D. Thesis, University of Granada, Spain.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 197-203 (1985)<br />

The Origin of Palygorskite in Villamayor<br />

S<strong>and</strong>stone, Salamanca, Spain<br />

MA VICENTE 1 , J. VICENTE-HERNANDEZ 2<br />

1<br />

U .E.I. Mineralogia de Arcillas, Centro de Edafologia y Biologia Aplicada, C.S.I.C., Cordel de Merinas 40-52,<br />

Apartado 257, 37008 Salamanca, Espana<br />

2 Departamento de Quimica Analitica, Facultad de Ciencias, Universidad Aut6noma de Madrid, Canto Blanco,<br />

28049 Madrid, Espail.a<br />

ABSTRACT- The origin of palygorskite in Villamayor S<strong>and</strong>stone (Salamanca,<br />

Spain) was stu<strong>di</strong>ed. Scanning electron microscopic observations on the morphology<br />

<strong>and</strong> location of palygorskite fibres in the s<strong>and</strong>stone <strong>and</strong> the chemical<br />

analysis of the water that flows through the quarry, in<strong>di</strong>cate that the formation<br />

of palygorskite occurs in situ, <strong>and</strong> after the deposition of coarse grained<br />

components of the s<strong>and</strong>stone skeleton. The palygorskite was located mainly<br />

in three sites: in intergranular pores, in joints <strong>and</strong> on the surface of coarse<br />

grains,always with a preferred orientation in<strong>di</strong>cating the manner in which it<br />

was formed. Water that moistens the quarry is a me<strong>di</strong>um in which palygorskite<br />

is stable as in<strong>di</strong>cated by its pH <strong>and</strong> chemical composition.<br />

Introduction<br />

Neoformation, <strong>and</strong> transformation<br />

from other silicates are the two widely<br />

accepted processes for the genesis<br />

of palygorskite. MILLOT · (1964) reported<br />

that palygorskite, abundant in<br />

the French Tertiary, is a result of<br />

neoformation from solutions derived<br />

from continental weathering. This interpretation<br />

agrees with that offered.\<br />

by ROGERS et al. (1954) for certain<br />

Australian palygorskites. MILLOT et<br />

al. (1969), studying neoformed palygorskite<br />

of eastern Morocco, in<strong>di</strong>cated<br />

the analogy between pedogenic<br />

con<strong>di</strong>tions <strong>and</strong> basic chemical se<strong>di</strong>mentation.<br />

ISPHORDING (1973)<br />

offers three possible origins for palygorskite<br />

in lacustrine <strong>and</strong> marine<br />

se<strong>di</strong>ments, <strong>and</strong> suggests that. the<br />

majority have been formed as a result<br />

of neoformation. PEI-LIN-TIEN<br />

(1973), SINGER & NORRISH (1974),<br />

WATTS (1976), YAALON & WIEDER<br />

(1976), HASSUOBA & SHAW (1980),<br />

<strong>and</strong> SINGER (1981) also support<br />

neoformation of palygorskite.<br />

Acc~r<strong>di</strong>ng to TRAUTH (1977) the<br />

'ratio of <strong>di</strong>ssolved Si to available Mg<br />

controls the precipitation of palygorskite<br />

fibres. Palygorskite is found<br />

in chemical se<strong>di</strong>mentation zones<br />

where the detrital influence is considerable,<br />

or in detrital zones where


198 M.A. Vicente, J. Vicente-Hern<strong>and</strong>ez<br />

the process of chemical se<strong>di</strong>mentation<br />

exists.<br />

GALAN & FERRERO (1982) attrib~<br />

uted neoformation, <strong>and</strong> transformation<br />

from detrital illites as a two fold<br />

origin of the Lebrija Palygorskite,<br />

while MARTIN POZAS et al. (1981,<br />

1983) suggest that initial palygorskite<br />

formation could be due to the<br />

transformation of smectite in a<br />

magnesium-rich me<strong>di</strong>um, <strong>and</strong> the<br />

subsequent growth of crystals by<br />

neoformation. A detailed study carried<br />

out by SANCHEZ-CAMAZANO<br />

& GARCIA RODRIGUEZ (1971) on<br />

soils of the same area reported in the<br />

present paper, showed the presence<br />

-----~------,cof detrit~l_:p~!ygo!"skite in soils de­<br />

. veloped both from limestones <strong>and</strong><br />

s<strong>and</strong>stones. In ad<strong>di</strong>tion, the analysis<br />

of the < 2 f.Lm fractions of certain<br />

s<strong>and</strong>stone <strong>and</strong> limestone materials of<br />

the zone, als9 incl._if.


-<br />

The Origin of Palygorskite in Villarnayor S<strong>and</strong>stone ... 199<br />

current activity (ARRESE et al.,<br />

1965). They contain an abundance of<br />

unstable minerals (feldspars, biotite<br />

etc.) but the chemical weathering<br />

which they have undergone is low, in<strong>di</strong>cating<br />

that the minerals have.<br />

undergone relativtlly very little transport<br />

<strong>and</strong> have been compacted under<br />

con<strong>di</strong>tions of low destabilization.<br />

The s<strong>and</strong>stone is highly porous<br />

with a predominance of the coarsegrained<br />

fraction over the matrix<br />

mineral, the latter never is greater<br />

than 20%. Quartz (40-70%) <strong>and</strong> feldspars<br />

(10-30%) are the major components,<br />

while micas, tourmaline,<br />

kyanite, <strong>and</strong> garnet occur in smaller<br />

amounts. The cementing material is<br />

mainly palygorskite with minor<br />

amounts of smectite. Finely <strong>di</strong>vided<br />

micas <strong>and</strong> kaolini te occur in small<br />

quantities, together with traces of<br />

chlorites <strong>and</strong> Fe-hydroxides<br />

(VICENTE, 1983). Analytical techniques<br />

employed in the present study<br />

were X-ray <strong>di</strong>ffraction (using a Philips<br />

<strong>di</strong>ffractometer <strong>and</strong> Ni-filtered Cu<br />

Ka ra<strong>di</strong>ation), scanning electron microscopy<br />

(using a JEOL, model JSM<br />

35) <strong>and</strong> chemical analysis by atomic<br />

absorption. S<strong>and</strong>stone samples were<br />

gently ground <strong>and</strong> fractionated into<br />

< 20 f.Lm <strong>and</strong> < 2 flm particle sizes.<br />

Mineralogical identification by XRD<br />

analysis was conducted following the<br />

method reported by ROBERT (1975).<br />

The interior of the quarries is<br />

almost always humid, but the flow of<br />

water through them is so slow that<br />

water collection in situ is literally impossible.<br />

This was done, t~erefore, by<br />

collecting large quantitie-s of wet<br />

samples <strong>and</strong> extracting the water by<br />

suction, using a vacuum pump (0.2<br />

mm vacuum). Si, AI, Mg, Ca, Na, Fe<br />

<strong>and</strong> Mn contents of the· water samples<br />

were determined as well as the<br />

pH.<br />

Results <strong>and</strong> <strong>di</strong>scussion<br />

X-ray <strong>di</strong>ffraction patterns of the <<br />

20 f.Lm <strong>and</strong> < 2 flm fractions showed a<br />

<strong>di</strong>ffraction effect at 10.4 A, as well as<br />

weaker <strong>di</strong>ffraction at 6.35, 5.40, 4.47<br />

<strong>and</strong> 4.24 A which corresponded to<br />

palygorskite. In ad<strong>di</strong>tion to palygorskite,<br />

the mineralogical composition<br />

also revealed the presence of smectite<br />

<strong>and</strong>, in lesser quantities, finely<strong>di</strong>vided<br />

micas, kaolinite <strong>and</strong> other<br />

minerals as observed in previous stu<strong>di</strong>es<br />

(VICENTE, 1983). Scanning electron<br />

microscopy of the s<strong>and</strong>stone revealed<br />

the presence of abundant<br />

fibres of palygorskite in three sites: in<br />

joints, in pores <strong>and</strong> on the surface of<br />

coarse grains, as can be observed in<br />

Fig. 2. Microphotograph A represents<br />

a zone covered by fibres. In spite of<br />

forming' an irregular network, as a<br />

whole they do have a preferred<br />

orientation, from the top-right to the<br />

bottom-left, following the fissure<br />

which could serve for water circula-<br />

·. tion. In the middle, a big pore can be<br />

'seen, partly covered by bundles of<br />

fibres. In microphotograph B a big<br />

-pore can be seen, covered by a network<br />

of fibres. The precipitation <strong>and</strong><br />

growth of these fibres may perhaps<br />

be related to the water level changes<br />

within the pore. With evaporation,


200 M.A. Vicente, J. Vicente-Hemtmdez<br />

8<br />

D<br />

F<br />

Fig. 2- SEM micrographs of s<strong>and</strong>stone samples. A single line in<strong>di</strong>cates 10 J.lm, while a double line<br />

(micrograph E) in<strong>di</strong>cates 100 J.lm.


The Origin of Palygorskite in Villamayor S<strong>and</strong>stone ... 201<br />

the solution concentration within the<br />

pore increases, thereby giving rise to<br />

the formation of fibres on the inner<br />

wall of the pore in a circular fashion.<br />

In a weathered s<strong>and</strong>stone, only the<br />

remains of these fibres can be seen, as<br />

presented in microphotographs E<br />

<strong>and</strong> F. In microphotograph C, a<br />

weathered feldspar grain with palygorskite<br />

fibres in its fissures, is presented.<br />

In microphotograph D, a<br />

quartz grain covered with fibres is<br />

shown. These fibres are probably<br />

oriented in the <strong>di</strong>rection of solution<br />

movement. Quartz <strong>and</strong> feldspar<br />

grains were identified using a microprobe.<br />

The point of attachment of palygorskite<br />

to the s<strong>and</strong>stone skeleton<br />

can be seen very clearly in microphotographs<br />

E <strong>and</strong> F. They,.pertain<br />

to a sampl~ collected from the upper<br />

part of a buil<strong>di</strong>ng of the XVII century.<br />

A study on the weathering process<br />

of thes s<strong>and</strong>stone in buil<strong>di</strong>ngs of<br />

Salamanca City (VICENTE et al., unpublished)<br />

revealed that one of the<br />

characteristics of the weathered<br />

s<strong>and</strong>stone is the presence of large<br />

empty pores. The network of palygorskite<br />

fibres covering these pores<br />

prior to weathering, is destroyed as a<br />

result of weathering processes wherein<br />

the internal tensions developed as<br />

a result .of the expansion-contraction<br />

processes of the smectite, during the.<br />

alternating wet <strong>and</strong> dry seasons,<br />

constitute an important factor<br />

(VICENTE, 1983). This could be<br />

appreciated in microphotograph E,<br />

where only three coarse fibres are<br />

present in the fissure of a feldspar<br />

grain. In the bottom-right of the same<br />

photograph, the point of origin of<br />

small fibres is ~hown. In microphotograph<br />

F, the remains ofa fibrous net-<br />

, work within a large pore (approximately<br />

30 x14 Jlm) can be seen. This<br />

fibrous networkprobably covered the<br />

pore space prior to weathering.<br />

Data on the analysis of the water<br />

that moistens the quarries during a<br />

large part of the year, are presented<br />

in Table 1. SINGER & NORRISH<br />

(1974) express the st?_tbility range of<br />

palygorskite in terms of H+ <strong>and</strong> Mg 2 + ·<br />

activity at <strong>di</strong>fferent activity levels of<br />

Si, based on the solubility data<br />

obtained using palygorskite of Mt.<br />

Flinders. Accor<strong>di</strong>ng to the results of<br />

these authors, the water ot" Villamayor<br />

quarries is a me<strong>di</strong>um in which<br />

·palygorskite is stable. With a pH of<br />

7.4 <strong>and</strong> log [Mg 2 +] of -2.55, palygorskite<br />

would be stable down to as low a<br />

concentration of Si as log [Si(OH)4]<br />

equal to -3.4. The concentration of·<br />

Si in the water samples of the quarry<br />

is higher (log [Si(OH)4] = -2.98). In<br />

other words, with the concentrations<br />

of silicon <strong>and</strong> magnesium that exist<br />

in the water samples, palygorskite<br />

TABLE 1<br />

pH <strong>and</strong> chemical analysis of water that moistens the quarry<br />

pH log [Si(OH) 4 ] log [Mg 2 +] log [Al(OH)i] log [Ca 2 +] log [Na+]<br />

7.4 -2.89 -2.5~ -5.00 -2.69 -3.08 -3.01


202 M .A. Vicente, J. Vicente-Herntmdez<br />

would be stable down to a pH as low<br />

as 6.8, or with the actual pH <strong>and</strong> silicon<br />

concentration, the stability limit<br />

would be fixed at a magnesium concentration<br />

oflog [Mg 2 +] = -3.4.<br />

From the morphology <strong>and</strong> <strong>di</strong>sposition<br />

of palygorskite fibres in the Villamayor<br />

s<strong>and</strong>stone, it is clear that the<br />

formation of palygorksite occurs in<br />

situ, <strong>and</strong> later than the deposition of<br />

coarser components of the s<strong>and</strong>stone.<br />

Water that flows through the<br />

initially-deposited materials, is enriched<br />

with calcium <strong>and</strong> magnesium<br />

owing to its filtration through car-<br />

the Cuenca del Duero, probably during<br />

the Upper Tertiary (NeQg~D?L<br />

(JIMENEZ FUENTES, personal communication).<br />

In the later humid<br />

periods the development would have<br />

been less, but the abundance of calcareous<br />

materials in the zone has<br />

contributed to the fact that this water<br />

has a calcium <strong>and</strong> magnesium concentration<br />

<strong>and</strong> pH that fall within the<br />

stability range of palygorskite.<br />

Acknowledgements<br />

The authors thank Miss J. Berrier<br />

bonates. Although the quarry water for the SEM observation~, Prof. Dr.<br />

analysis, (Table 1), in<strong>di</strong>cates that M. Sanchez-Camazano <strong>and</strong> Dr. J.<br />

· palygorskite is highly stable in this Saavedra for critically reviewing the<br />

~~---- ~ater~ its development occurred in a- manuscript <strong>and</strong> Dr. P. Subramanian<br />

period drier than that present now in for the English translation.<br />

REFERENCES<br />

ARRESE F., LOZANO A., MARTIN-PATINO M.T., RODRIGUEZ J., 1965. Estu<strong>di</strong>o de /as areniscas de Villamayor<br />

(Salamanca). Acta Salmanticensia, VI, n. 5, 1-57.<br />

GALAN E., FERRERO A., 1982. Palygorskite-Sepiolite Clays ofLebrija, Southern Spain. Clays Clay Miner.<br />

3, 191-200.<br />

HASSUOBA H., SHAW H.F., 1980. The occurrence ofpalygorskite in quaternary se<strong>di</strong>ments of the coastal<br />

plain of north-west Egypt. Clay Minerals. 15, 77-83.<br />

lsPHORDING W.C., 1973. Discussion of the occurrence <strong>and</strong> origin of se<strong>di</strong>mentary palygorskite-sepiolite<br />

deposits. Clays Clay Miner. 21, 391-401.<br />

MARTIN PozAs J .M., SANCHEZ-CAMAZANO M., MARTIN-VrvALDI J .M., 1981. La palygorskita de Tabla<strong>di</strong>llo<br />

(Guadalajara). Bol. Inst. Geol. Min. 92, 395-402.<br />

MARTIN POZAS J.M., MARTIN VIVALDI J.M., SANCHEZ-CAMAZANO M., 1983. El yacimiento de sepio/itapa/ygorskita<br />

de Sacramenia, Segovia. Bol. Inst. Geol. Min. 94, 113-120.<br />

MILLOT G., 1964. Geologie des Argiles. Masson et Cie, Paris.<br />

MrLLOT G., PAQUET H., RUELLAN A., 1969. Neoformation de l'attapulgite dans les sols a carapaces<br />

calcaires de la Baisse Moulouya (Maroc Oriental). C.R. Acad. Se. Paris, 268-D, 2771-2774.<br />

PEr-LrN-TIEN, 1973. Palygorskite from Warrem Quarry, Enderby, Leicestershire, Engl<strong>and</strong>. Clay Mineral<br />

10, 27-34.<br />

RoBERT M., 1975. Principes de determination qualitative des mineraux argileu:x: a 1' aide. des rayons-X.<br />

Ann. Agron. 26, 363-399.<br />

RoGERS L.E., MARTIN A.E., NoRRISH K., 1954. The occurrence of palygorskite near Ipswich, Queensl<strong>and</strong><br />

(Australia). Mineral. Mag. 30, 534-540.<br />

SANCHEZ-CAMAZANO M., GARCIA RqDRIGUEZ A., 1971. Atapulgita y sepiolita en sue/os sabre se<strong>di</strong>mentos<br />

calizos de Salamanca, Espaiia. An. Edaf. Agrobiol. 30, 357-373.<br />

SINGER A., NORRISH K., 1974. Pedogenic palygorskite occurrences in Australia. Am. Miner. 59, 508-<br />

517 .<br />


The Origin of Palygorskite in Villamayor S<strong>and</strong>stone ... 203<br />

SINGER A., 1981. The texture of palygorskite from the Rift Valley, Southern Israel. Clay Mineral's 16,<br />

415-419.<br />

TRAUTH N., 1977. Argiles evaporitiques dans la se<strong>di</strong>mentation carbonatee continentale et epicontinentale<br />

tertiaire. These Docteur en Sciences, Universite Louis Pasteur, Strasbourg, France.<br />

VICENTE M.A., 1983. Clay mineralogy as the key factor in;weathering of Arenisca Dorada (Golden<br />

S<strong>and</strong>stone) of Salamanca·, Spain~ Clay Minerals 18,215-217.<br />

WATTS N.L., 1976. Paleopedogenic palygorskite from the basal Permotriassic of Northwest Scotl<strong>and</strong>.<br />

Am. Miner: 61, 299-302.<br />

Y AALON D .H., WIEDER M., 197 6. Pedogenic palygorskite in some arid brown ( calciorthid) soils of Israel.<br />

Clay Minerals 17, 73-81.


Miner. Petrogr. Acta<br />

Vql. 29-A, pp. 205-216 (1985)<br />

Weathering Products of Vulture Volcanites,<br />

Lucania, Southern Italy<br />

M. DI PIERRO, M. MORES!, F. VURRO<br />

Dipartimento Geomineralogico dell'Universita <strong>di</strong> Bar), Campus, Via G. Salvemini, 70124 Bari, Italia<br />

ABSTRACT - The weathering types of the Vulture volcanites, <strong>and</strong> the<br />

chemical-mineralogical composition of weathering products were examined<br />

on la vas <strong>and</strong> pyroclastics of trachytic-phonolitic <strong>and</strong> tephritic-foi<strong>di</strong>tic composition.<br />

Research shows that the effects of weathering are more evident on<br />

the pyroc,lastics than on the lavas; chemical weathering prevails in the former,<br />

physical <strong>di</strong>sgregation in the latter.<br />

The weathering products mainly consist of crystalline <strong>and</strong> paracrystalline·<br />

minerals, of components in the colloidal state, <strong>and</strong> of a water-seluble fraction.<br />

The crystalline <strong>and</strong> paracrystalline minerals are essentially represented<br />

by Al-silicates such as lOA halloysite, 7A halloysite, a)lophane, imogolite,<br />

<strong>and</strong> by Fe-hydroxides such as lepidocrocite, ferrihydrite, goethite. The Alsilicates<br />

are always more abundant than the Fe-hydroxides. The components<br />

in the colloidal state are amorphous silica <strong>and</strong> amorphous alumina. The<br />

water-soluble fraction has a composition such as<br />

(Na+ > Ca 2 + > K+ > Mg 2 +) =(Cl-> sd;n.<br />

In conclusion, the res~lts show that the weathering of the Vulture volcanites<br />

has a predominantly monosiallitic character with a low level of ferrallitization.<br />

This, however, totally· contra<strong>di</strong>cts the character of weathering which is<br />

expected from stu<strong>di</strong>es of the chemical composition of the Vulture underground<br />

waters, which, in fact, in<strong>di</strong>cate a very clear bisiallitization. To explain<br />

this <strong>di</strong>vergence one can hypothesize that the analyzed weathering products<br />

originate from the interaction of the volcanites with more <strong>di</strong>lute waters<br />

than those circulating deeper underground.<br />

Introduction '<br />

The main type of weathering is rel~ted<br />

to physical, chemical <strong>and</strong> biological<br />

processes. Whether one process<br />

prevails over another depends on the<br />

comparative importance of factors<br />

such as the type of parent rocks, climate,<br />

morphology, <strong>and</strong> biological<br />

activity. Major advances in understan<strong>di</strong>ng<br />

the mechanism involved in<br />

chemical weathering have been made<br />

in stu<strong>di</strong>es on water-rock interactions<br />

at the surface of the lithosphere.<br />

More modern research carried out in<br />

this field generally tries to characterize<br />

the main trends of weathering in<br />

terms of its geochemical <strong>and</strong> mineralogical<br />

evolution from parent rocks<br />

This work was carried out with the financial support of the <strong>Italian</strong> National Research Council<br />

(C.N.R.): contract n. 82.02612/05.115:05357. · ··


206 M. Di Pierro, M. Moresi, F. Vurro<br />

towards residual systems (e.g. CHES­<br />

WORTH, 1973). It also aims at pointing<br />

out the relationship between the<br />

waters' geochemical nature <strong>and</strong> the<br />

neogenesis of minerals defined as<br />

bisiallitization, hemisiallitization,<br />

allitization <strong>and</strong>/or ferralitization<br />

(e.g. PEDRO, 1966; TARDY, 1971).<br />

Laboratory experiments have made<br />

·remarkable contributions to this research<br />

(e.g. PEDRO, 1964), as have<br />

developments in thermodyna~ics<br />

(e.g. GARRELS & CHRIST, 1965;<br />

HELGESON, 1970) <strong>and</strong> recent data<br />

on mineralogical soil composition<br />

(e.g. WADA & HARWARD, 1974).<br />

ering types that develop on the volcanic<br />

rocks of Vulture.---~----------------------<br />

2) Characterization of the mineralogical<br />

<strong>and</strong> chemical composition of<br />

weathering products, also seen in relationship<br />

to the water-rock equilibrium.<br />

Morphology, geology, <strong>and</strong> petrography<br />

of the Vulture volcanic complex<br />

The Vulture volcanic complex (Fig.<br />

1) is located between the eastern<br />

slope of the Lucania Apennines <strong>and</strong><br />

the western margin of the (F"" 187 of the Carta<br />

-----a-'s_£'-'-o-'11'-'-ows: _________(Je_Ql_ogi~a___ d'I_talia). It develops in<br />

1) Investigation of the main weath- altitude from 500-600 m to 1326 m.<br />

4D<br />

I? I<br />

4 r<br />

I C<br />

I 0 NI AN<br />

50 100<br />

Fig. 1 -Location of Vulture volcanic complex in southern Italy.


Weathering Products of Vulture Volcaiiites ... 207<br />

The se<strong>di</strong>mentary basement of the<br />

volcanic units consists of pre­<br />

Pliocenic formations <strong>and</strong> Pliocenic<br />

se<strong>di</strong>ments;· the former are represented<br />

by the «Flysch Rosso» (marls<br />

with' interbedded calcarenites, calciru<strong>di</strong>tes<br />

<strong>and</strong> calcilutites), by the<br />

«Flysch Numi<strong>di</strong>co>> (quartz-arenites<br />

with interstratified marls <strong>and</strong> siltstones)<br />

<strong>and</strong> by the «Formazione <strong>di</strong><br />

Gorgoglione>> (intercalations ofs<strong>and</strong>stones<br />

<strong>and</strong> silty clays); the latter are<br />

represented, from the bottom upwards,<br />

by marly clays, s<strong>and</strong>s <strong>and</strong><br />

conglomerates.<br />

The volcanic outcropping units,<br />

from the earliest to the most recent,<br />

can be referred to the products of the<br />

trachytic-phonolitic cycle <strong>and</strong> the<br />

tephritic-foi<strong>di</strong>tic cycle (HIEKE MER­<br />

LIN, 1967; LA VOLPE & PICCARRE­<br />

TA, 1971; 1972; LA VOLPE & RAPI­<br />

SARDI, 1977; DE FINO et al., 1982).<br />

The pyroclastics are more abundant<br />

than lavas; the most <strong>di</strong>ffuse deposits<br />

are represented by the pyroclastics of<br />

the tephritic-foi<strong>di</strong>tic cycle. The. main<br />

minerals are feldspars (mostly plagioclases;<br />

sani<strong>di</strong>ne <strong>and</strong> anorthoclase<br />

ar:e present only in trachyticphonolitic<br />

products), feldspathoids of<br />

the sodalite group, <strong>and</strong> pyroxenes.<br />

. Some leucite, amphiboles, olivine<br />

<strong>and</strong> garnet are present.<br />

. K-Ar dating in<strong>di</strong>ca~s that the age<br />

of the volcanic products is between<br />

0.83-0.50 m.y. (CORTIN!, 1975).<br />

The climate<br />

The values from the meteorological station (652 m<br />

in altitude) in<strong>di</strong>cate that the mean<br />

annual air temperature is 14.1 oc in<br />

the Vulture area, <strong>and</strong> that the mean<br />

annual rainfall is 792 mm (references<br />

from the


The types of weathering that develop<br />

on the volcanites, <strong>and</strong> the<br />

chemical-mineralogical composition<br />

of weathering products were examined<br />

on 28 rock samples inclu<strong>di</strong>ng<br />

10 volcanites of trachytic-phonolitc<br />

composition (4 lavas <strong>and</strong> 6 pyroclastics)<br />

<strong>and</strong> 18 volcanites of tephriticfoi<strong>di</strong>tic<br />

composition (10 lavas <strong>and</strong> 8<br />

pyroclastics). The samples, collected<br />

as much as possible in uniform con<strong>di</strong>tions<br />

of climate, topography, vegetatlvecovering,<br />

<strong>and</strong>-astronomic exposure,<br />

were macroscopically sorted<br />

into unalterated rocks, alterated<br />

rocks, <strong>and</strong> very alterated rocks.<br />

A weighed amount of every sample<br />

was subjected to an ultrasonic treatment<br />

in <strong>di</strong>stilled water; then the<br />

whole size fractions Cl->SO~-).<br />

The waters which sometimes circulate<br />

in contact with the se<strong>di</strong>mentary<br />

substratum <strong>and</strong> which spring up to<br />

the base of Vulture belong to the<br />

second group. They have an aci<strong>di</strong>c<br />

pH, ~ mean saline concentration<br />

higher than 1 g/1, <strong>and</strong> high contents of<br />

free C0 2 • Their mean chemical composition<br />

can be in<strong>di</strong>cated by:<br />

(Ca 2 +>Na+>Mg 2 +>K+) =<br />

(HC03>SO~->Cl-).<br />

All the waters analyzed have a<br />

temperature which varies from 9.8 to<br />

17.4 °C.<br />

Vulture is characterized, at higher<br />

altitudes, by the presence of typical<br />

<strong>and</strong>o-soils that become gradually<br />

less frequent as the altitude decreases.<br />

In the more anthropic zone<br />

Brown-soils also are present<br />

(VIOLANTE & VIOLANTE, 1973;<br />

LULLI & BIDINI, 1975).<br />

The s<strong>and</strong>y fraction of these soils<br />

consists of femic minerals prevailing<br />

over felsic minerals; the former are<br />

represented by pyroxenes, olivine<br />

<strong>and</strong> amphiboles in order of decreasing<br />

abundance; the latter by anorthoclase<br />

<strong>and</strong> occasional sani<strong>di</strong>ne.<br />

Also well crystallized magnetite <strong>and</strong><br />

Fe-oxides-hydroxides are present.<br />

The clay fractions consist of lOA halloysite,<br />

7 A halloysite, allophane <strong>and</strong><br />

imogolite with considerable amounts<br />

of some amorphous components<br />

(VIOLANTE & VIOLANTE, 1973;<br />

Field <strong>and</strong> laboratory methods


nents were analyzed by AA Spectrophotometry<br />

(Na; Ca, K, Mg) <strong>and</strong><br />

by volumetric-gravimetric methods<br />

(Cl, S0 4); amorphous components, removed<br />

from some samples by NaOH<br />

treatment, were analyzed by XRF<br />

techniques,<br />

In order to investigate the relationships<br />

between the geochemical<br />

characteristics of the underground<br />

waters of Vulture <strong>and</strong> the neogenesis<br />

of the weathering minerals, the<br />

water-rock equilibria were stu<strong>di</strong>ed<br />

using two methods. The first utilizes<br />

the equilibrium <strong>di</strong>agrams containing<br />

the stability fields of secondary<br />

minerals· such as gibbsite, kaolinite,<br />

montmorillonite (references in TAR­<br />

DY, 1971). The second utilizes the<br />

geochemical balance based on the<br />

comparison (PEDRO, 1964; 1966) ?f<br />

8<br />

-g4<br />

><br />

0<br />

E<br />

s..<br />

"'<br />

E<br />

:>..<br />

"'<br />


210 M. Di Pierro, M. Moresi, F. Vurro<br />

rocks safely derives from the weathering<br />

processes. On the other h<strong>and</strong>,<br />

the mean values given in Table 1 in<strong>di</strong>cate<br />

that the whole size fraction <<br />

63 J.Lm removed from pyroclastics is,<br />

on the average, four times greater<br />

than the same-size fraction removed<br />

from lavas.<br />

Concerning the main · type of<br />

weathering, relevant data can be<br />

obtained from checking the relative<br />

amount of separated size fractions; in<br />

fact it may be considered that physical<br />

weathering produc,es relatively<br />

sensitive to weathering effects than<br />

lavas; chemical alteration prevails in<br />

the former, physical 'ciisgregatiori·Tn:··--··-<br />

the latter. This is definitely related to<br />

the texture of the analyzed rocks; in<br />

fact, the greater porosity of pyroclastics,<br />

compared to that of lavas, increases<br />

the surface exposed to weathering<br />

factors.<br />

Mineralogical composition<br />

XRD analyses, performed on the<br />

coarse-size fragments, whereas three size fractions removed from<br />

chemical weathering essentially each sample, showed the presence of<br />

leads to neogenesis of secondary neoformed minerals <strong>and</strong> of primary<br />

minerals that concentrate in the fine minerals belonging to the parent<br />

-------s-;i-z-e'fractions. The mean values given ---roc:KS:Tlieiornier are riiore abundant<br />

in Table 1 show that the <strong>di</strong>stribution in the finer size fractions, the latter in<br />

of the size fractions removed from the coarser size fractions. The main<br />

la vas may be in<strong>di</strong>cated by: coarse silt primary minerals are represented by<br />

>clay; <strong>and</strong> that removed from pyro- feldspars, feldspathoids, pyroxenes,<br />

clastics by: clay> coarse silt. m


cially in the 4-16 J.Lm size fraction, a<br />

considerable amount of micas, always<br />

associated with quartz(!). The<br />

feldspars are mainly represented by<br />

plagioclases; K-feldspars also are<br />

present in the samples of trachytic-:<br />

phonolitic composition. The most<br />

abundant feldspathoid is analcite<br />

which m~st be included among the .<br />

primary minerals because it derives<br />

from the transformation of leucite by<br />

autometamorphic processes which<br />

occurred during volcanic activity<br />

(HIEKE MERLIN, 1967). The feldspathoids<br />

of the sodalite group are<br />

rate: very alterated crystals of<br />

hauyna are microscopically identified.<br />

The pyroxenes have generally an<br />

augitic-aegirinic composition. The<br />

micas are represented by biotite <strong>and</strong>/<br />

or phlogopite. With regard to ·the<br />

ratios of abundance among the main<br />

primary minerals, one can remark<br />

that, accor<strong>di</strong>ng to the composition of<br />

the parent rocks, feldspars <strong>di</strong>stinctly<br />

prevail over analcite, pyroxenes <strong>and</strong><br />

Fe-oxides, in samples of. trachyticphonolitic<br />

composition. However,<br />

analcite, pyroxenes <strong>and</strong> Fe-oxides increase,<br />

whereas plagioclasesdecrease<br />

in samples of tephritic-foi<strong>di</strong>tic composition.<br />

There are no substantial <strong>di</strong>fferences<br />

between b:tvas <strong>and</strong> pyroclastics.<br />

The secondary minerals mainly<br />

consist of Al-silicates <strong>and</strong> Fehydroxides.<br />

Among the Al-silicates<br />

the well crystallized minerals such as<br />

lOA halloysite <strong>and</strong>/or 7 A halloysite<br />

Weathering Products of Vulture Volcanites ... 211<br />

<strong>di</strong>stinctly prevail over poorly crystallized<br />

mineral such as allophane <strong>and</strong><br />

imogolite. Among the Fe-hydroxides<br />

such minerals as lepidocrocite,<br />

goethite <strong>and</strong> ferrihydrite were recognized.<br />

Low amounts of Al-hydroxides<br />

such as gibbsite <strong>and</strong> boehmite are<br />

sometimes present. Moreover, hydrobiotite,<br />

mixed-layer hydrobiotitevermiculite,<br />

<strong>and</strong> vermiculite are present<br />

when the samples contain primary<br />

micas. Concerning the quantitative<br />

ratio between Al-silicates <strong>and</strong><br />

Fe~hydroxides, one can note that even<br />

though it remains higher than 1, it<br />

tends to decrease in passing from the<br />

samples of trachytic-phonolitic composition<br />

to those of tephritic-foi<strong>di</strong>tic<br />

composition.<br />

Finally, one must remark that, in<br />

the< 4 J.Lm size fractions, amorphous<br />

components are present in sometimes<br />

considerable amounts. XRF<br />

analyses performed on such colloids<br />

(removed from some samples by<br />

NaOH treatment) showed that the<br />

main components are silicon <strong>and</strong> aluminium<br />

with a ratio of abundance<br />

close to one.<br />

Therefore the mineralogical study<br />

shows that the chemical weathering<br />

of the samples analyzed is mainly<br />

monosiallitic, with a tendency to be<br />

ferrallitic, depen<strong>di</strong>ng on the composition<br />

of the parent rocks. The<br />

neogenesis ofbisiallitic minerals (e.g.<br />

vermiculite) is strictly limited to the<br />

presence of primary micas.<br />

(I) Quartz <strong>and</strong> micas belong to the rocks of the se<strong>di</strong>mentary substratum <strong>and</strong> were included i.n the<br />

volcanic products at the time of magmatic effusion (LA VOLPE & PICCARRETA, 1972).


212 M. Di Pierro, M. Moresi, F. Vurro<br />

Chemical composition of the watersoluble<br />

components<br />

The mean values given in Table 2<br />

show that the water-soluble components<br />

have a main <strong>di</strong>stribution such<br />

as: (Na+ > Ca 2 + > K+ > Mg 2 +) = (Cl­<br />

> so~-); slight <strong>di</strong>fferences occur in<br />

the samples of trachytic-phonolitc<br />

composition. The lavas in fact show<br />

K+>Ca 2 +<strong>and</strong> SO~->Cl-, whereas the<br />

pyroclastic materials show Na+ =<br />

Ca 2 +. Considerable amounts of Cl <strong>and</strong><br />

S suggest that the released ions largec<br />

ly derive from the leaching of weathering<br />

products of feldspathoids beleaching<br />

of K also may derive from<br />

the alteration oH~-feldspars·-that--are~present<br />

in these rocks.·<br />

Finally, the very low amount of Mg<br />

among those water-soluble components,<br />

in<strong>di</strong>cates that most of this element<br />

(which definitely derives from<br />

the alteration ofFe-Mg-minerals such<br />

as pyroxenes, biotite, olivine, amphiboles)<br />

has already been removed<br />

from the rocks by leaching solutions,<br />

whereas iron tends to be concentrated<br />

in Fe-hydroxides, accor<strong>di</strong>ng to<br />

the mineralogical composition of the<br />

weathering products.<br />

longing to the sodalite group(2). The<br />

in_tense_l~aching_of_K,~Ca_a,nd_S from_Water:~mck equilibrium<br />

the weathering products ofvolcanites<br />

of trachytic-phonolitic composition<br />

agrees both with the hauynic character<br />

of the feldspathoids belonging to<br />

these rocks (HIEKE MERLIN, 1967),<br />

<strong>and</strong> with the abundance of Ca, K <strong>and</strong><br />

so3 in the chemical composition of<br />

the Vulture hau}rna (RITTMANN,<br />

1931). On the other h<strong>and</strong>, the intense<br />

At this point we can verify whether<br />

or not the chemical composition of<br />

Vulture underground waters agrees<br />

with the monosiallitic <strong>and</strong>/or ferrallitic<br />

weathering characteristics, as<br />

found by mineralogical investigations.<br />

Contrary to expectations, using<br />

the stability relationships among<br />

TABLE 2<br />

Chemical composition of water-soluble components (values in equivalent weight %)<br />

Ca 2 + M!f+ Na+ K+ cl- so~-<br />

Trachytic- La vas x 0.236 0.025 0.790 0.404 0.661 0.783<br />

phonolitic cr 0.083 0.016 0.347 0.208 0.521 0.400<br />

products<br />

Pyroclastics x 0.659 0.114 0.668 0.191 1.281 0.351<br />

cr 0.438. 0.117 0.354 0.127 0.258 0.173<br />

Tephritic- La vas x 0.459 0.075 0.841 0.198 1.004 0.567<br />

foi<strong>di</strong>tic cr 0.363 0.088 0.344 0.119 0.413 0.343<br />

products<br />

Pyroclastics x 0.371 0.066 0.883 0.202 0.780 0.742<br />

cr 0.395 0.065 0.407 0.120 0.377 0.291<br />

(2) This also agrees with the fact that the Si02/Al203 ratio i~ close to 1 bot~ in the feldspathoids of<br />

the sodalite group <strong>and</strong> in the neoformed Al-silicates (lOA halloysite, 7A halloysite, allophane,<br />

imogolite, amorphous components).


Weathering Products of Vulture Volcanites: .. 213<br />

gibbsite, kaolii).ite <strong>and</strong> montmorillonite<br />

(Figs 3 <strong>and</strong> 4), it results that<br />

most of the water samples fall into<br />

the Na-Ca-montmorillonite stability<br />

field. The same conclusion can be<br />

drawn from considering the geochemical<br />

balance: water vs. weathered<br />

rocks. In fact, as shown in Fig. 5, the<br />

L water ratio is lower than the Rk<br />

rock ratio; this means that an important<br />

amount of released silica remains<br />

in situ ai).d weathering has a<br />

bisiallitic character.<br />

To explain this <strong>di</strong>vergence, one<br />

may presume that the secondary<br />

minerals of the weathering products<br />

analyzed are in equilibrium with surface<br />

waters which are more <strong>di</strong>lute<br />

than the underground waters. In the<br />

latter, the higher concentrations of<br />

components in solutions, especially<br />

Si0 2 , Na <strong>and</strong> Ca, may move the con<strong>di</strong>tions<br />

of equilibrium towards the<br />

. stability of bisiallitic minerals.<br />

Conclusion<br />

This study has perm~tt~d a definition<br />

of some weathering characteristics<br />

of the Vulture volcanites. One<br />

aspect concerns the influence of the<br />

[Na+]<br />

15 1 og~<br />

10<br />

Albite<br />

5<br />

Gibbsite<br />

0.5<br />

5<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

NI<br />

~l<br />

5-1<br />

I<br />

I<br />

I<br />

Kaol inite<br />

I<br />

I<br />

10<br />

IVl<br />

1o '"'<br />

1.


214<br />

M. Di Pierro, M. Moresi, F. Vurro<br />

20 log<br />

Anorthite<br />

15<br />

10<br />

Gi bbs i te<br />

0.5<br />

10<br />

,:;::<br />

I"'<br />

I"' '"'<br />

,_g<br />

,c.<br />

IB<br />

,e<br />

.. ..,cc<br />

:<br />

••<br />

...,<br />

~<br />

:<br />

•<br />

•••• •••<br />

• •<br />

••<br />

• I<br />

I<br />

50<br />

I<br />

I<br />

~I I' \<br />

I<br />

100<br />

'<br />

ppm s;o 2<br />

-5<br />

-4<br />

Fig. 4- Stability relations among anorthite, gibbsite, kaolinite, Ca-montmorillonite, at 25°C <strong>and</strong> 1<br />

atmosphere as a function of [Ca 2 +], pH <strong>and</strong> [H4Si04]. Symbols as in Fig. 3.<br />

-3<br />

2.5<br />

··@ x=2.04; a=O.B3<br />

ALLITIZATION OR<br />

FERRALLITIZAT!ON<br />

HEMISIALLITIZA T!ON<br />

Si 0 2<br />

combined<br />

Na 2 0+KzO+CaO+MgO<br />

in rock<br />

1.5<br />

-@x=1.10;a=0.46<br />

M0NOSIALL ITIZATION<br />

B ISIALLITIZA T!ON<br />

Si0 2<br />

combined - 2Al 2 o<br />

Rk-<br />

3<br />

NazO+KzO+CaO+MgO<br />

in rock<br />

0.5<br />

--@ x = 0.30; a= 0.27<br />

SiOz<br />

NazO+KzO+CaO+MgO<br />

in water<br />

Fig. 5 - L, R<strong>and</strong> Rk ratios. L values were calculated from 28 analyses of water reported in FIDELI­<br />

BUS et al. (1981); R a,nd Rk values from 54 analyses of volcanites reported in HIEKE MERLIN<br />

(1967) <strong>and</strong> DE FINO et al. (1982).


Weathering Products of Vulture Votcanites ... 215<br />

parent rocks on the degree <strong>and</strong> type<br />

of weathering. The results obtained<br />

show that the effects of weathering<br />

are more evident on the pyroclastics<br />

than on the lavas; in the former,<br />

chemical weathering prevails, whereas<br />

in the latter, one finds physical <strong>di</strong>sintegration.<br />

Another aspect, related to waterrock<br />

interaction, concerns the contrast<br />

between the mineralogical composltlon<br />

of weathering products<br />

neoformed from surface rocks <strong>and</strong><br />

the chemical composition of the<br />

underground waters. To explain this<br />

<strong>di</strong>vergence one may hypothesize the<br />

presence of two.weathering zones in<br />

the volcanic complex. The first takes<br />

place on the surface: the rocks are in<br />

contact with very <strong>di</strong>lute waters <strong>and</strong><br />

the neoformed minerals are monosiallitic<br />

<strong>and</strong>/or ferrallitic. The s~cop.d<br />

is deeper: the rocks are in contact<br />

with more concentrated waters<br />

whose chemical composition in<strong>di</strong>cates<br />

a foreseable neogenesis of<br />

bisiallitic minerals.<br />

It would be interesting to verify experimentally<br />

whether or not deeper<br />

rock. weathering reaLly leads to<br />

neogenesis of bisiallitic minerals, examining<br />

also the chemical evolution<br />

of the waters with re~pect to depth<br />

<strong>and</strong> underground permanence time.<br />

At present, using available data, it<br />

is possible to compare the chemical<br />

composition of waters obtained from<br />

laboratory-treated samples (all collected<br />

at the surface of the volcanic<br />

complex) with the chemical composition<br />

of underground waters. The former,<br />

which may be considered surface<br />

waters, have a cationic composition<br />

such as Na+ > Ca 2 + > K+ ><br />

Mg 2 +; the latter, Ca 2 + > Na+ > Mg 2 +<br />

> K+. This assumption aside, it<br />

seems that, from the movement of<br />

surface waters underground, the<br />

mobility of Ca <strong>and</strong> Mg increases with<br />

respect to that of Na <strong>and</strong> K. It is<br />

possible to relate this chemical evolution<br />

to changes in primary minerals<br />

subjected to weathering. At the surface<br />

of the volcanic complex, weathering<br />

leads mainly to the alteration of<br />

haiiyna; whereas in depth, it may<br />

lead also to the alteration of plagioclases<br />

<strong>and</strong> pyroxenes. These may be<br />

responsible for both the enrichment<br />

of Ca <strong>and</strong> Mg in circulating solutions,<br />

<strong>and</strong> for the release of silica <strong>and</strong> alumina<br />

with a ratio similar to that required<br />

for the neogenesis ofbisiallitic<br />

minerals. It is also possible to relate<br />

the reduced K mobility, in the deeper<br />

zones, to an increased absorption of<br />

this element by the more abundant<br />

clay minerals, hypothesized as bisiallites.<br />

It would however be necessary to<br />

check the above hypothesis experimentally<br />

before drawing any defi­<br />

.nite conclusions on these aspects of<br />

~ea the ring.


216 M. Di Pierro, M. Moresi, F. Vurro<br />

REFERENCES<br />

CHESWORTH W., 1973. The residual system of chemical weathering: a model for the chemical breakdown<br />

of silicate rocks at the surface of the earth. J. Soil Sci. 24, 69-81.<br />

CrET P., TAzrou G.S.,, 1981. Dati sul regime idrogeologico e termico delle sorgenti del M. Vulture<br />

· (Basilicata). Atti II Seminario Informativo, Progetto Finalizzato Energetica, CNR-PEG Ed.,<br />

142-152.<br />

CORTIN! M., 1975. Eta K-Ar del Monte Vulture (Lucania). Riv. Ita!. Geof. 2, 45-46.<br />

DE FINO M., LA VoLPE L., PICCARRETA G., 1982. Magma evolution at Mount Vulture (Southern Italy).<br />

Bull. Vulcanol. 45, 115-126.<br />

FARMER V.C., FRASER A.R., TAIT J.M., PALMIERI F., VIOLANTE P., NAKAI M., YOSHINAGA N., 1978.<br />

Imogolite <strong>and</strong> proto-imogolite in an <strong>Italian</strong> soil developed on volcanic ash. Clay Minerals 13,<br />

271-274.<br />

FIDELIBUS D., TAZIOLI G.S., TITTOZZI P., VURRO F., 1981. Chimismo delle acque sotterranee del M.<br />

Vulture (Basilicata). Atti II Seminario Informativo, Progetto Finalizzato Energetica, CNR-PEG<br />

Ed., 131-141.<br />

GARRELS R.M., CHRIST C.L., 1965. Solutions, Minerals <strong>and</strong> Equilibria. Harper & Row, New York.<br />

HELGESON H.G., 1970. Description <strong>and</strong> interpretation of phase relations in geochemical processes<br />

involving aqueous solutions. Amer. J. Sci. 268, 415-438.<br />

HIEKE MERLIN 0., 1967. I prodotti vulcanici del Monte Vulture (Lucania). Mem. Ist. Geol. Min. Univ.<br />

Padova XXVI, 3-67.<br />

LA VoLPE L., PrcCARRETA G., 1971. Le piroclastiti del Monte Vulture (Lucania). Nota I. Le «Pozzolane»<br />

<strong>di</strong> Rionero e Barile. Rend. Soc. It. Min. Petr. 17, 167-186.<br />

LA VoLPE L., PICCARRETA G., 1972. Le ignimbriti del Monte Vulture (Lucania). Rend. Soc. It. Min. Petr.<br />

28, 191-214. '<br />

LA VOLPE L., RAPISARDI L.; 197'7:05servazwnigeofogic/1.e su(versante meri<strong>di</strong>oni:lle (iel M. Vulture;<br />

genesi ed evoluzione del bacino lacustre <strong>di</strong> Atella·. Boil. Soc. Geol. It. 96, 181-197.<br />

LULL! L., BIDINI D., 1975. Tendenze evolutive <strong>di</strong> alcuni suoli dell'e<strong>di</strong>fico vulcanico del Vulture (Lucania).<br />

Annali Ist. Sper. Stu<strong>di</strong>o e Difesa del Suolo- Firenze, VI, 87-105.<br />

PEDRO G., 1964. Contribution a l'etude experimentale de /'alteration geochimique des roches cristallines.<br />

Ph. D. Thesis, University of Paris, France.<br />

PEDRO G., 1966. Essai sur la caracterisation geochimique des <strong>di</strong>fferents processus zonaux resultant de<br />

!'alteration des roches superficielles (cycle alumino-silicique). C. R. Acad. Sci., Paris, 262-D,<br />

1828-1831.<br />

RITTMANN A., 1931. Gesteine und Mi_neralien von Monte Vulture in der Basilicata. Schweiz. miner.<br />

petrogr. Mitt. 11, 240-252.<br />

TARDY Y,., 1971. Characterization of the principal weathering types by the geochemistry of waters from<br />

some European <strong>and</strong> African crystalline massifs. Chem. Geol. 7, 253-271.<br />

VIOLANTE P., VIOLANTE A., 1973. Gli <strong>and</strong>osuoli del Vulture. Ann. Fac. Sci. Agr. Universita <strong>di</strong> Napoli<br />

VII, 219-238.<br />

VIOLANTE P., VIOLANTE A., 1977. L'halloysite sferoidale nei suoli del Vulture. Agrochimica 6, 513-522.<br />

VIOLANTE P., PALMIERI F., VIOLANTE A., 1977. L'imogolite in alcuni suoli vulcanici italiani. Atti 2"<br />

Congr. Naz. sulle Argille 1976, Bari, Geol. Appl. Idrogeol. 12, parte II, 325-336.<br />

WADA K., HARWARD M.E., 1974. Amorphous clay constituents of soils. Adv. Agron. 26, 211-260.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 217-230 (1985)<br />

Compositional Characteristics of «Argille Varicolori»<br />

from Outcrops of Bisaccia <strong>and</strong> Calitri,<br />

Avellino Province, Southern Italy<br />

M. DI PIERRO, M. MORESI<br />

Dipartimento Geomineralogico dell'UniversWt <strong>di</strong> Bari, Campus, Via G. Salvemini, 70124 Bari, Italia<br />

ABSTRACT- The clays e~amined, coming from the «argi!le varicolori>> of the<br />

«Complesso Sicilide» (OGNIBEN, 1969), outcrop near Bisaccia <strong>and</strong> Calitri<br />

(Avellino Province, southern Italy). They have a variable colour (from darkgrey<br />

to greenish-grey <strong>and</strong> red<strong>di</strong>sh-brown) with whitish <strong>and</strong> yellowish concentrations<br />

of <strong>di</strong>ckite <strong>and</strong> of natrojarosite, respectively. Texturally they are<br />

silty clays, clayey silts <strong>and</strong> clays proper. The silty clays <strong>and</strong> the clayey silts<br />

show several maxima in the size-frequency <strong>di</strong>stribution which in<strong>di</strong>cate<br />

shallow-sea se<strong>di</strong>ments deposited after a slow transport of mass; while the<br />

clays proper have only one dominant size grade which in<strong>di</strong>cate a deep basin<br />

<strong>and</strong> a deposition after a long transport in suspension.<br />

The clays examined contain clay minerals, quartz, feldspars, carbonates <strong>and</strong><br />

traces of muscovite, biotite, chlorite <strong>and</strong> Fe-hydroxides. The clay minerals<br />

consist of smectite (beidellite-montmorillonite series), Al-illite 2M, kaolinite<br />

<strong>and</strong>/or <strong>di</strong>ckite, Fe-chlorite, <strong>and</strong> mixed-layer illite-smectite. Quartz is present<br />

as rounded grains with a glossy surface; the feldspars ai:e covered by weathering<br />

products which prevented their accurate mineralogical identification.<br />

The carbonates are composed of both inorganic <strong>and</strong> organic grains; the former<br />

consist of both limestone fragments <strong>and</strong> calcite rombohedrals from<br />

chemical precipitation, <strong>and</strong> the latter of shells <strong>and</strong> Foraminifera fragments.<br />

The samples can be classified as shales <strong>and</strong> clay marls.<br />

The chemical composition is in agreement with the mineralogical one.<br />

On the basis of the data obtained we think that most of the components<br />

present in the days derive from laterite soil. The mineralogical association,<br />

the crystallochemistry of the main components, the presence of poorly crystallized<br />

Fe-hydroxides <strong>and</strong> the relatively high amount of Ti, a component<br />

which usually concentrates in lateritic products, are in agreement with this<br />

hypothesis.<br />

Introduction<br />

The outcrop in<br />

southern Italy, along the Apennines<br />

(OGNIBEN, 1969; BELVISO et al.,<br />

1977). These se<strong>di</strong>ments, which generally<br />

seem to be allochtho;nous, have<br />

not been uniformly defined as to their<br />

li thostra tigraphic characteristics,<br />

<strong>and</strong> paleogeographic <strong>and</strong> tectonic<br />

positions, nor as to their origin (COC-<br />

This work was carried out with the financial support of the Ministry of Public Education of Italy<br />

(M.P.I. 40%: grant n. 83/4914). ·


Samples were collected from existing<br />

cutaways exclu<strong>di</strong>ng the fragments<br />

of interbedded s<strong>and</strong>y-gravel<br />

<strong>and</strong> materials showing signs of mixr<br />

218 M. Di Pierro, M. Moresi<br />

CO, 1972; D'ARGENIO et al., 1973;<br />

COCCO & PESCATORE, 1968; AMI­<br />

CARELLI et al., 1977; ABBA TICCHIO .<br />

et al., 1981; FERLA & ALAIMO, 1975).<br />

The present work stu<strong>di</strong>es the textural<br />

<strong>and</strong> compositional characteristics<br />

of the «argille varicolori» from the<br />

olistostromes near Calitri arid the<br />

l<strong>and</strong>slips near Bisaccia (A vellino<br />

Province, southern Italy). The olistostromes<br />

are in the lower-middle<br />

Pliocenic pelites <strong>and</strong> have been pro-·<br />

tected from weathering. The l<strong>and</strong>slip<br />

clays, which form a small anticline.<br />

lying NS, are upset; this is also evident<br />

from the fragmentation of the<br />

interbedded s<strong>and</strong>y-gravel layers, but<br />

they have been altered by_~!!!!_


Cornpositional Characteristics of «Argille-varicolori» ... 219<br />

ing due to l<strong>and</strong>slips. Samples containing<br />

<strong>di</strong>ckite <strong>and</strong>/or natrojarosite<br />

were also excluded.<br />

Forty five samples coming from<br />

<strong>di</strong>fferent places of the area under<br />

study (Table 1) were examined; the<br />

samples from 1 to 17C belong to the<br />

olistostromic deposits near Calitri,<br />

samples 18A to 23 belong to the l<strong>and</strong>slip<br />

area near Bisaccia. The samples<br />

marked by the same number followed<br />

by letters in alphabetical order<br />

derive from a vertical series sampled<br />

from bottom to top. The letters R, V,<br />

TABLE 1<br />

Colour <strong>and</strong> geographic coor<strong>di</strong>nates of the analyzed samples<br />

1 greenish 2°59'17" 40°54'07"<br />

2 red<strong>di</strong>sh 2°59' 17" 40°54'07"<br />

3 red<strong>di</strong>sh-green 2°59' 17" 40°54'07"<br />

4 greenish-red 2°59' 17" 40°54'07"<br />

5 greenish · 2°59' 17" 40°54'07"<br />

6 greenish 2°59' 17" 40°54'07"<br />

7a red<strong>di</strong>sh 2°55'13" 40°55'33"<br />

7b red<strong>di</strong>sh-green 2°55'13" 40°55'33"<br />

Sa greenish-red 2°54'24" 40°55'43"<br />

8b red<strong>di</strong>sh 2°54'24" 40°55'43"<br />

9 red<strong>di</strong>sh 2°58'34"' 40°56'30"<br />

10 greenish-red 2°58'34" 40°56'30"<br />

lla red<strong>di</strong>sh 2°58'34" 40°56'30"<br />

llb greenish-red 2°58'34" 40°56'30"<br />

12 greenish 2°58'34" 40°56'30"<br />

13 greenish-red 2°58'34" 40°56'30"<br />

14 red<strong>di</strong>sh ' 2°57'13" 40°56'57"<br />

15 greenish-red<br />

2°56'58" 40°56' 17"<br />

16 greenish 2°55'00" 40°57'24"<br />

"<br />

17a greenish 2°53' 51" 40°59'12"<br />

17b greenish 2°53' 51" 40°59'12"<br />

17c red<strong>di</strong>sh 2°53'51" 40°59'12"<br />

18a red<strong>di</strong>sh 2°54'08" 41°00'36"<br />

18b greenish 2°54'08" 41 °00'36"<br />

18c greenish 2°54'08" 41 °00'36"<br />

18d red<strong>di</strong>sh 2°54'08" 41 °00'36"<br />

18e red<strong>di</strong>sh 2°54'08" 41 °00'36"<br />

18f red<strong>di</strong>sh-green 2°54'08" 41 °00'36"<br />

18g red<strong>di</strong>sh 2°54;08" 41 °00'36"<br />

18h greenish-red 2°54'08" 41°00'36"<br />

18i greenish 2°54'08" 41°00'36"<br />

181 red<strong>di</strong>sh 2°54'08" 41 °00'36"<br />

18m greenish 2°54'08" 41 °00'36"<br />

18n red<strong>di</strong>sh 2°54'08" 41 °00'36"<br />

18o red<strong>di</strong>sh,green 2°54'08" 41 °00'36"<br />

19a red<strong>di</strong>sh 2°54'32" 4eo2'0S"<br />

19b greenish 2°54'32" 41 °02'08"<br />

19c greenish 2°54'32" 41°02'08"<br />

19d , greenish 2°54'32" 41°02'08"<br />

19e greenish-red 2°54'32" 41°02'08"<br />

20 red<strong>di</strong>sh-green 2°54'27" 41 °02'34"<br />

21 red<strong>di</strong>sh 2°54'32" 41 °03'59"<br />

22a greenish 2°53'04" 41°04'23"<br />

22b greenish 2°53'04" 41°04'23"<br />

22c red<strong>di</strong>sh -green 2°53'04" 41°04'23"<br />

The coor<strong>di</strong>nates are referred to·Mt. Mario- Rome


220 M. Di Pierro, M. Moresi<br />

R-V, V-R, in<strong>di</strong>cate the dominant colour<br />

of the samples (R = red<strong>di</strong>sh; V =<br />

greenish).<br />

All the samples, exclu<strong>di</strong>ng the colour<br />

<strong>di</strong>fferences, were found in plastic<br />

masses, which, when dried, assumed<br />

a certain consistency, but which<br />

rea<strong>di</strong>ly became mushy in water. Dilute<br />

HCl treatment showed a large<br />

amount of carbonates only in samples<br />

collected close to relics of marlylimestones.<br />

Textural, mineralogical <strong>and</strong> chemical<br />

analyses were performed on each<br />

sample.<br />

Grain-size analysis was carried out~<br />

by wet sieving for the greater than 32<br />

J..Lm size grades <strong>and</strong> by se<strong>di</strong>mentation<br />

for Tl:le-01her-size-gra-des .. (Mti.tt:ER,'<br />

1962).<br />

""- The mineralogical stu<strong>di</strong>es were<br />

carried out using a Philips powder X­<br />

ray <strong>di</strong>ffractometer with Ni-filtered<br />

CuKa ra<strong>di</strong>ation. Some crystallochemical<br />

characteristics were<br />

obtained for smectite accor<strong>di</strong>ng to<br />

GREENE-KELLY (1953), BISCAYE<br />

(1965), BAILEY (1980) <strong>and</strong> DE­<br />

SPRAIRIES (1983); for illite accor<strong>di</strong>ng<br />

to WEBER et al. (1976), BROWN<br />

& BRINDLEY (1980) <strong>and</strong> DI PIERRO<br />

(1981); for chlorite accor<strong>di</strong>ng to<br />

JOHNS et al. (1954) <strong>and</strong> BROWN &<br />

BRINDLEY (1980); <strong>and</strong> for kaolinite<br />

accor<strong>di</strong>ng to HINCKLEY (1963). The<br />

illite-smectite mixed-layer minerals<br />

were identified accor<strong>di</strong>ng to BOWER<br />

(1981) <strong>and</strong> SRODON (1981). The relative<br />

abundance of non-clay minerals<br />

was determined accor<strong>di</strong>ng to RAISH<br />

(1964) <strong>and</strong> SCHULTZ (1964) using<br />

MgC0 3 as a st<strong>and</strong>ard. The relative<br />

abundance of clay minerals was determined~<br />

.-


Compositional Characteristics of «Argilte-Varicolori» ... 221<br />

TABLE 2<br />

Grain-size composition<br />


222 M. Di Pierro, M. Moresi<br />

Clay<br />

.<br />

• 50<br />

S<strong>and</strong>L:.._ ___ 4 25<br />

,-------. 5<br />

1o 0<br />

-----,: 75<br />

;--------'Silt<br />

__Eig._L~Grain"size. <strong>di</strong>stribution. of-the samples in SHEPARD's <strong>di</strong>agram (1954).<br />

fields of silt, s<strong>and</strong>y-silt <strong>and</strong> sansicl.<br />

Assuming that <strong>di</strong>agenetic processes<br />

have not changed the main grain-size<br />

characteristics of the se<strong>di</strong>ments<br />

analyzed, some information on the.<br />

se<strong>di</strong>mentary environment can be<br />

obtained from a study of frequency<br />

<strong>di</strong>agrams <strong>and</strong> of cumulative curves.<br />

Accor<strong>di</strong>ng to the advanced assumption,<br />

the silty-clay samples <strong>and</strong> the<br />

three samples classified as silt,<br />

s<strong>and</strong>y-silt <strong>and</strong> sansicl were not consiqered<br />

because optical <strong>and</strong>. X-ray<br />

observations revealed the presence of<br />

clay lithified <strong>and</strong>/or cemented by<br />

secondary calcite.<br />

Frequency <strong>di</strong>agrams (Fig. 2) denote<br />

that several maxima are present in<br />

the grain size <strong>di</strong>stribution of clayey<br />

silts, whereas in that of clays proper<br />

only one maximum class is present.<br />

The average cumulative curves show<br />

(RIVIERE, 1977) that the clays originated<br />

from a single grain-size<br />

population made up of fine detrital<br />

material deposited in calm water by<br />

decantation in a deep basin after a<br />

long transport in suspension. The<br />

clayey-silts instead originated from<br />

mixing of <strong>di</strong>stinct grain-size populations<br />

which underwent <strong>di</strong>fferent<br />

transport processes, since they wer-e<br />

deposited by slow turbi<strong>di</strong>ty currents<br />

in shallow basins.<br />

Therefore, one can suppose, since<br />

the parent rocks are invariant, that<br />

during the deposition phase, the<br />

basin underwent depth changes <strong>and</strong><br />

that the modality of material tran~port<br />

possibly varied as well.


Compositional Characteristics of «Argille Varicolori» ... 223<br />

Fig. 2- Frequency <strong>di</strong>agrams <strong>and</strong> cumulative curves of clays (a) <strong>and</strong> clayey-silts (b). Ranges x ± cr<br />

are shown.<br />

Mineralogical characteristics<br />

The samples contain clay minerals<br />

associated with moderate amounts of<br />

quartz, feldspars <strong>and</strong> carbonates<br />

(Table 3).<br />

The clay minerals are represented<br />

by smectite (S), mixed layer illitesmectite<br />

(liS), illite (I), kaolinite <strong>and</strong>/<br />

or <strong>di</strong>ckite (K) <strong>and</strong> chlorite (Ch). The<br />

<strong>di</strong>octahedral smectite, which has Ca<br />

<strong>and</strong> Mg as interlaye~ cations, belongs<br />

to the beidellite-montmorillonite<br />

series because of a moderate amount<br />

of Fe + Mg in octahedral positions<br />

(from 0.30 to 0.50; x = 0.44; there are<br />

no <strong>di</strong>fferences between the two<br />

groups of samples); the crystallinity<br />

is lower in the Calitri samples (v/p<br />

from 0.2 to 0.6; x = 0.4) than in the<br />

Bisaccia ones (v/p from 0.7 to ·1.0; x =<br />

0.8). The mixed-layer illite-smectite'<br />

clay minerals are r<strong>and</strong>om <strong>and</strong> have<br />

30-40% smectite layers. The <strong>di</strong>octahedral<br />

Al-illite, polytype 2M, has a<br />

low paragonite grade <strong>and</strong> poor crystallinity<br />

(10 A peak width at halfheight<br />

from 0.45 to 0.90 29, x = 0.70<br />

29; E from 95 to 160; x = 110.) There<br />

are no <strong>di</strong>fferences between the two<br />

groups of samples. The Fe-chlorite<br />

has a low crystallinity; the kaolinite<br />

is generally <strong>di</strong>sordered <strong>and</strong> is sometimes<br />

replaced by well-ordered <strong>di</strong>ckite.<br />

Optical observations showed that<br />

the· carbonates consist of inorganic<br />

grains prevailing over the organic<br />

ones. The former, which are found as<br />

grains of carbonatic rocks, are composed<br />

of calcite <strong>and</strong>/or occasional<br />

dolomite, while the latter grains are


224 M. Di Pierro, M. Moresi<br />

TABLE 3<br />

Mineralogical composition<br />

Samples IIS s I K Ch Q F c D<br />

1 V 14 53 10 6 6 8 2 tr<br />

2 R 14 so 7 7 5 10 tr 7 1<br />

3 V-R 10 23 4 4 5 12 1 39 1<br />

4 R-V 14 35 5 17 6 8 2 14 1<br />

5 V 11 40 7 12 5 13 1 10 1<br />

6 V 18 44 10 8 5 9 1 3 2<br />

7a R 14 30 8 12 2 4 tr 32 tr<br />

7b V-R 15 47 7 16 5 3 tr 6 1<br />

Sa R-V 14 27 5 10 3 3 4 32 1<br />

8b R 17 49 7 12 5 6 tr 3 1<br />

9 R 15 70 10 5 4 5 1 tr tr<br />

10 R-V 15 so 9 9 6 10 1 3 tr<br />

11a R 14 so 8 11 3 4 tr 10 tr<br />

11b R-V 17 60 6 6 5 5 1 tr tr<br />

12 V 21 40 9 14 5 5 tr 6 tr<br />

13 R-V 15 60 5 5 5 7 1 2 tr<br />

14 R 15 45 6 19 6 7 1 tr 1<br />

15 R-V 32 35 11 7 6 6 2 tr 1<br />

16 V 24 36 10 8 6 10 5 1 tr<br />

17a V 16 15 8 7 4 4 tr 46 tr<br />

17b V 20 30 9 12 4 5 1 19 tr<br />

17c R 12 40 10 18 4 4 tr 12 tr<br />

18a R 6 62 12 7 5 6 1. tr<br />

18b V 7 69 5 7 5 5 1 tr 1<br />

18c V 7 65 1 6 7 12 1 tr 1<br />

18d R 4 67 1 7 4 10 2 3 2<br />

18e R 2 84 1 5 2 4 1 1 tr<br />

18f V-R 4 77 2 4 5 6 1 1 tr<br />

18g R 5 70 2 9 5 8 1 tr tr<br />

18h R-V 4 68 2 4 5 9 1 6 1<br />

18i V 3 58 6 4 6 8 1 13 1<br />

181 V 3 so 3 1 3 4 tr 36 tr<br />

18m V 4 67 4 1 4 7 1 11 tr<br />

18n R 3 38 2 3 4 5 1 44 tr<br />

18o V-R 8 68 1 3 5 7 2 5 1<br />

19a R 7 64 5 6 6' 7 2 2 ·1<br />

19b V 6 66 5 11 7 10 1 1 2<br />

19c V 5 48 4 6 7 20 7 1 2<br />

19d' V 6 51 4 5 7 12 5 8 2<br />

19e R-V 6 55 . 7 12 6 7 3 2 2<br />

20 V-R 3 58 2 8 5 10 8 6 2<br />

21 R 3 38 9 3 8 12 4 22 1<br />

22a V 5 53 4 18 7 7 1 5 tr<br />

22b V 4 37 2 22 12 10 1 10 2<br />

22c V-R 6 49 5 13 6 10 1 8 2<br />

All samples<br />

x 10 so 6 9 5 8 2 10<br />

cr 7 15 6 5 2 3 2 13<br />

Samples from 1 to 17c<br />

x 16 42 8 10 5 7 11<br />

cr 5 13 2 4 1 3 14<br />

Samples from 18a to 22c<br />

x 5 59 4 7 6 9 2 8<br />

cr 2 12 3 5 2 4 2 11<br />

IIS: mixed-layer illite-smectite; S: smectite; 1: illite; K: kaolinite <strong>and</strong>/or <strong>di</strong>ckite; Ch: chlorite;<br />

Q: quartz; F: feldspars; C: calcite; D: dolomite .


Compositional Characteristics of «Argille Varicolori» ... 225<br />

of unidentifiable Foraminifera composed<br />

of calcite <strong>and</strong> Mg-calcite.<br />

Sometimes calcite is of secondary<br />

precipitation. Feldspars are represented<br />

by K-feldspars associated<br />

with Na-plagioclases;, often the<br />

grains are covered by clay weathering<br />

products which prevented their<br />

accurate mineralogical identification.<br />

Quartz is present as rounded<br />

grains with a glossy surface.<br />

The X-ray <strong>di</strong>ffraction patterns of<br />

the samples showed the presence of<br />

Fe"hydroxides, of low crystallinity,<br />

which appear more abundant in the<br />

red<strong>di</strong>sh samples.<br />

Optical observation showed the<br />

presence of some muscovite, biotite,<br />

gypsum, pyrite, rutile, grains of s<strong>and</strong>-<br />

stone, <strong>and</strong> unidentifiable ochre coloured<br />

aggregates.<br />

In regard to the relative amounts of<br />

the main mineralogical components,<br />

the results show that clay minerals<br />

are the most abundant (X.= 80%), <strong>and</strong><br />

that quartz plus feldspars together<br />

equal the carbonates. Among clay<br />

minerals, smectite (X. = SO%) is more<br />

abundant than mixed layer illitesmectite<br />

<strong>and</strong> kaolinite, both represented<br />

in comparable amounts (X. =<br />

10% <strong>and</strong> X. = 9%, respectively). Illite<br />

<strong>and</strong> chlorite are the least abundant (X.<br />

= 6% <strong>and</strong> X. = 5%, respectively).<br />

Among the non-clay minerals, quartz<br />

prevails over feldspars (Q/Q + F =<br />

0.80), <strong>and</strong> calcite over dolomite (often<br />

present in traces). Mineralogical clas-<br />

c<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

-- 2 ---------:-- 4<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

15 17<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

: ..<br />

I<br />

• 0<br />

Fig. 3- Distribution of the samples in MALESANI & MANETTI's <strong>di</strong>agram (1970). C: carbonates; S:<br />

sheet silicates; Q + F: quartz+ feldspars. 1: calcarenites; 2: carbonatic s<strong>and</strong>stones; 3: s<strong>and</strong>stones;<br />

4: carbonatic siltstones; 5: siltstones; 6: marls; 7: shales. Open squares: clays; open circles: siltycfays;<br />

full circles: silts <strong>and</strong> clayey-silts. ·


·----~---~---~~-------------. ------------<br />

~~'<br />

226 M. Di Pierro, M. Moresi<br />

TABLE 4<br />

Chemical composition<br />

Samples .SiOz TiOz Alz03 Fez03 MnO M gO CaO NazO KzO PzOs H 2 0+ CaC03MgC03<br />

1 V 53.51 1.24 17.92 6.63 0.13 3.40 0.32 0.54 2.57 0.17 10.53 2.20 0.36<br />

2 R 54.40 1.28 17.34 7.37 0.09 3.38 0.32 0.49 1.67 0.17 5.08 7.65 0.58<br />

3 V-R 36.22 1.03 12.00 4.50 0.08 1.62 0.46 0.34 0.96 0.10 3.37 38.98 0.58<br />

4 R-V 48.59 1.46 19.24 6.80 0.09 1.87 0.39 0.56 2.35 0.16 3.70 13.98 0.87<br />

5 V 50.29 1.38 20.50 6.38 0.08 2.12 0.25 0.60 2.17 0.17 5.38 9.99 0.89<br />

6 V 56.16 1.34 16.47 6.63 0.07 3.34 0.49 0.53 1.48 0.19 8.17 3.49 1.09<br />

7a R 38.90 1.06 14.37 6.75 0.11 1.37 0.75 0.47 1.80 0.13 2.97 31.48 0.29<br />

7b V-R 49.72 1.47 23.30 6.74 0.07 2.17 1.07 0.48 2.56 0.17 6.10 5.48 0.79<br />

Sa R-V 38.03 1.10 14.26 5.38 0.09 1.86 0.71 0.42 1.61 0.12 3.79 31.96 0.52<br />

Sb R 53.07 1.58 21.38 8.76 0.13 1.77 0.44 0.56 2.33 0.16 6.68 2.82 0.44<br />

9 R 53.98 1.44 20.94 8.94 0.06 2.29 0.31 0.56 1.54 0.17 9.76 0.14 0.37<br />

10 R-V 52.76 1.46 22.86 7.06 0.08 1.51 0.35 0.57 1.32 0.16 9.11 3.00 0.44<br />

11a R 49.80 1.28 18.81 7.32 0.12 1.80 0.23 0.57 1.71 0.13 6.39 11.34 0.35<br />

11b R-V 53.31 1.58 25.37 7.60 0.10 1.69 0.22 0.56 2.20 0.19 7.08 0.15 0.40<br />

12 V 51.89 1.42 19.88 6.57 0.05 2.05 0.46 0.56 1.92 0.20 8.52 5.74 0.69<br />

13 R-V 54.95 1.49 19.98 7.53 0.06 2.23 0.85 0.61 2.26 0.20 7.77 1.10 0.72<br />

14 R 54.71 1.74 24.35 8.62 0.11 1.69 0.25 0.56 2.01 0.19 5.27 0.18 0.69<br />

15 R-V 56.94 1.38 21.74 7.80 0.13 3.14 0.28 0.83 2.34 0.18 5.06 0.22 0.53<br />

16 V 57.20 1.22 19.81 8.87 0.07 1.41 1.27 0.72 2.63 0.21 6.38 0.43 0.29<br />

17a V 29.66 0.74 11.14 5.75 0.07 0.94 0.27 0.29 0.99 0.09 4.21 45.95 0.34<br />

17b V 43.36 1.24 15.26 6.70 0.11 1.74 0.92 .0.52 2.35 0.15 8.22 18.49 0.31<br />

17c R 48.64 1.51 20.93 7.14 0.09 2.09 0.36 0.54 1.62 0.14 5.66 11.98 0.18<br />

----- ---- . --<br />

18a R 53.76 1.6.0 19.01 10.94 0.14 2.12 0.39 0.53 2.07 0.16 8.36 0.30 0.38<br />

18b V 57.39 0.91 16.97 6.55 0.04 3.01 1.04 1.19 3.22 0.23 8.64 0.75 0.42<br />

18c V 58.42 1.38 19.43 6.75 0.05 2.15 0.32 0.54 1.83 0.16 8.06 0.47 0.42<br />

18d R 55.69 0.99 18.38 7.82 0.06 2.66 0.31 0.84 2.88 0.14 4.52 4.00 1.12<br />

18e R 54.31 1.59 19.92 9.88 0.16 2.24 0.38 0.54 2.50 0.16 7.64 0.60 0.31<br />

18£ V-R 54.66 1.66 21.13 7.04 0.09 2.26 0.44 0.59 2.17 0.16 9.24 0.64 0.48<br />

18g R 54.30 L~6 20.10 9.60 0.15 2.10 0.57 0.64 2.34 0.17 7.89 0.10 0.44<br />

18h R-V 52.83 1.14 16.45 7.00 0.07 2:86 1.05 0.70 2.48 0.16 7.68 6.99 0.73<br />

18i V 49.94 1.01 15.29 6.22 0.06 2.80 0.78 0.70 2.50 0.14 6.22 13.98 0.87<br />

181 V 37.80 0.71 12.04 4.46 0.03 1.95 0.65 0.43 1.67 0.10 ~ 3.76 35.96 0.29<br />

18m V 51.44 1.04 16.07 6.51 0.06 2.85 0.75 0.68 2.56 0.16 5,74 11.48 0.74<br />

18n R 34.66 0.56 9.43 4.70 0.11 1.73 0.53 0.30 0.96 0.08 2.65 43.66 0.24<br />

18o V-R 58.04 1.31 16.73 7.78 0.10 2.63 0.52 0.67 2.26 0.15 4.10 4 .. 99 0.64<br />

19a R 54.64 1.62 24.30 6.92 0.08 1.70 0.21 0.51 2.19 0.16 4.96 2.57 0.58<br />

19b V 54.78 1.36 22.79 6.77 0.06 2.66 0.23 0.68 2.61 0.16 5.45 2.06 0.89<br />

19c V 57.86 1.15 19.89 6.55 . 0.04 2.75 0.26 1.05 2.93 0.14 4.33 2.95 0.83<br />

19d V 49.75 1.04 18.35 5.97 0.05 2.36 0.67 0.63 2.47 0.16 7.48 10.48 0.63<br />

19e R-V 52.78 1.35 20.78 9.08 0.11 2.60 0.31 0.58 2.67 0.19 6.82 1.67 1.07<br />

20 V-R 56.60 1.29 17.54 6.60 0.06 2.21 0.30 0.56 1.66 0.16 7.68 4.59 0.95<br />

21 R 43.96 1.42 17.54 7.31 0.13 1.81 0.25 0.44 1.75 0.13 2.61 22.98 0.55<br />

22a V 51.92 1.56 24.16 6.17 0.06 1.44 0.26 0.61 1.48 0.16 6.92 4.95 0.56<br />

22b V 49.72 1.26 20.41 5.66 0.08 1.94 0.21 0.52 2.10 0.15 6.72 10.98 0.71<br />

22c V-R 49.32 1.27 20.67 6.18 0.09 2.21 0.46 0.53 2.55 0.15 7.78 8.04 0.89<br />

All samples<br />

x 50.68 1.30 18.78 7.07 0.09 2.19 0.49 0.59 2.09 0.16 6.32 9.82 0.59<br />

(J 6.82 0.27 3.61 1.35 0.03 0.57 0.27 0.16 0.53 0.03 2.01 12.49 0.25<br />

Samples from 1 to 17 c<br />

x 49.37 1.34 18.99 7.08 0.09 2.07 0.50 0.54 1.93 0.16 6.33 11.22 0.53<br />

(J 4.47 0.22 3.84 1.11 0.02 0.68 0.30 0.11 0.49 0.03 2.13 13.70 0.24<br />

Samples from 18a to 22c<br />

x 51.94 1.26 18.58 7.06 0.08 2.31 0.47 0.63 2.25 0.15 6.32 8.48 0.64<br />

(J 6.04 0.30 3.46 1.56 0.04 0.43 0.25 0.19 0.52 0.03 1.93 11.36 0.25<br />

•"c--


Compositional Characteristics of i,Argille Vai-icolori» ... 227<br />

TABLE 5<br />

Comparison between chemical <strong>and</strong> mineralogical composition<br />

Average mineralogical<br />

Chemical composition<br />

composition I s !IS K Ch F<br />

(1) (2) (3) (4) (5) (6) (a) (b). (c)<br />

Mixed-layer = 11% SiOz 50.7 59.6 54.6 45.5 25.7 63.4 58 .. 6 57.5 59.6<br />

Smectite =55% Alz03 26.7 22.0 25.4 38.7 20.0 21.7 22.3 21.3 22.0<br />

Illite = 7% Fez03 5.0 4.0 3.6 1.6 20.7 4.4 8.0 4.4<br />

Kaolinite = 10% M gO 2.8 3.5 2.9 0.3 21.8 3.9 2.5 2.6<br />

Chlorite 6% CaO 0.3 1.2 0.4 0.5 3.1 0.8 0.7 0.7<br />

Quartz 9% ·K 2 0 7.1 0.8 5.9 4.9 1.7 2.4 2.5<br />

Feldspars 2% NazO 0.2 0.3 0.2 6.9 0.3 0.6 0.6<br />

Hzo+ 7.2 8.4 7.0 13.9 11.3 7.9 7.1 7.4<br />

(1), (2), (3), (4) from WEAVER & POLLARD (1973); (5) from GRIM (1953); (6) from DEER et<br />

al. (1963), using a 2:1 ratio between oligoclasic plagioclases <strong>and</strong> K-feldspars. (a): chemical<br />

composition calculated from the mean values of the mineralogical data; (b): mean values of<br />

the chemical analyses; (c): meari values of the chemical analyses corrected after elimination<br />

of excess Fe 2 0 3. Symbols as in Table 3<br />

sification (Fig. 3) in<strong>di</strong>cates that 84%<br />

of the samples are shales; the others<br />

are marls.<br />

The samples from Calitri, compared<br />

to the Bisaccia ones, are richer<br />

both in mixed layer illite-smectite (~<br />

= 16% compared to x = 5%) <strong>and</strong> in<br />

kaolinite (x = 10% compared to x =<br />

7%), whereas they are poorer in<br />

smectite (x = 42% compared to x =<br />

59%).<br />

Chemical characteristics<br />

The samples analyzed (Table 4)<br />

as well as the carbonate components<br />

(CaC03 <strong>and</strong> MgC03), consist mainly<br />

of SiOz, Ab03, FezO;, HzO, MgO, K 2 0,<br />

<strong>and</strong> TiOz. The amounts of other components<br />

are less than 1%.<br />

The average chemical composition<br />

agrees well with' that calculated by<br />

the average mineralogical one (Table<br />

5), exclu<strong>di</strong>ng the excess of Fez03<br />

which derives from the Fehydroxides<br />

not detected by XRDCO.<br />

Distributing this excess, estimated as<br />

3.6%, among the other oxides, small<br />

<strong>di</strong>scordances are found only in MgO<br />

<strong>and</strong> KzO. To explain these <strong>di</strong>scordances<br />

one can suggest that smectite is<br />

overestimated with respect to illite<br />

<strong>and</strong> mixed layer illite-smectite, or·<br />

that K-rich smectite is present.<br />

Accor<strong>di</strong>ng to mineralogical data,<br />

the red<strong>di</strong>sh samples are richer in<br />

Fez03 than the greenish ones; on the<br />

contrary no <strong>di</strong>fferences occur between<br />

samples from Calitri <strong>and</strong> those<br />

from Bisaccia. Evidently, the mine-<br />

(I) TiOz, MnO <strong>and</strong> PzOs are not considered in the comparison between chemical <strong>and</strong> mineralogical<br />

analyses because of their low contents in clay minerals. In any case it is evident that the amount of<br />

Ti0 2 in the clays examined is higher than that which one can expect from mineralogical composition;<br />

thus the presence of Ti-oxides <strong>and</strong>! or Ti-hydroxides can be hypothesized.·


228 M. Di Pierro, M. Moresi<br />

ralogical <strong>di</strong>fferences are not able to influence<br />

the chemical homogeneity.<br />

Conclu<strong>di</strong>ng remarks<br />

The «argille varicolori>> outcropping<br />

near Calitri <strong>and</strong> Bisaccia consist<br />

of pelites, with a quite fine grain-size,<br />

that are classifiable texturally as clay<br />

<strong>and</strong> clayey-silts, <strong>and</strong> mineralogically<br />

as shales <strong>and</strong> clay marls; thus they<br />

are similar to other «argille varicolori>><br />

from southern Italy (BELVISO<br />

et al., 1977; AMICARELLI et al.,<br />

1977; ABBATICCHIO et al., 1981).<br />

The grain size <strong>di</strong>stribution of the<br />

clays in<strong>di</strong>cates se<strong>di</strong>mentation in a<br />

quite deep basin <strong>and</strong> gravitational<br />

d-ep-osition- oCgraiD.s- a1ier -a long<br />

transport in suspension. However, in<br />

both olistostromic <strong>and</strong> l<strong>and</strong>slip deposits<br />

that represent two <strong>di</strong>fferent<br />

geological states, some poorly sorted<br />

se<strong>di</strong>ments are present that show a<br />

grain size <strong>di</strong>stribution with maxima<br />

also in the silt <strong>and</strong> s<strong>and</strong> fields; thus<br />

one can suppose that the basin underwent<br />

depth changes <strong>and</strong> locally the<br />

se<strong>di</strong>mentation occurred from a slow<br />

turbi<strong>di</strong>ty current.<br />

The mineralogical assooatwn<br />

(smectite, kaolinite, mixed layer I/S,<br />

Fe-hydroxides), the low crystallinity<br />

of clay minerals, the relatively high<br />

amount of Ti, <strong>and</strong> the almost complete<br />

absence of secondary minerals,<br />

all suggest, accor<strong>di</strong>ng also to ABBA-<br />

TICCHIO et al. (1981), that grains de-<br />

··· rive from the' ;>


Compositional Characteristics of


230 M. Di Pierro, M. Moresi<br />

MALESANI P., MANETTI P., 1970. Proposta <strong>di</strong> classificazione dei se<strong>di</strong>menti clastici. Mem. Soc. Geol. It.<br />

9, 55-63.<br />

MrLNER H.B., 1962. Se<strong>di</strong>mentary Petrography. J. Alien & Unwjn, L-o!!clQl!~ ~-~.-- _______ _ __<br />

OGNIBEN L., 1969. Schema introduttivo alia geo/ogia del confine Calabro-Lucano. Mem. Soc. Geol. It.<br />

8, fasc. 4, 453-763.<br />

PESCATORE T., SGROSSO I., ToRRE M., 1970. Lineamenti <strong>di</strong> se<strong>di</strong>mentazione e tettonica ne/ Miocene<br />

dell'Appennino Campano-Lucano. Mem. Soc. Nat. in Napoli, suppl. al Boll. 78, 1969, 337-406.<br />

RArsH H.D., 1964. Quantitative mineralogical analysis of carbonate rocks. Texas J. Science 16, 172-<br />

180.<br />

RIVIERE A., 1977. Methodes granulometriques. Techniques et interpretation. Masson et Cie~ Paris.<br />

ScHULTZ L.G., 1964. Quantitative interpretation of mineralogical composition from X-ray <strong>and</strong> chemical<br />

data for the Pierre Shale. Prof. Pap. U.S. geol. Surv. 391-C, i-31. ·<br />

SHEPARD F.P., 1954. Nomenclature based on s<strong>and</strong>-silt-clay ratios. J. Se<strong>di</strong>ment. Petrol. 24, 151-158.<br />

SRODON J ., 1981. X-ray identification of r<strong>and</strong>omly interstratified illite-smectite in mixtures with <strong>di</strong>screte<br />

illite. Clay Minerals 16, 297-304.<br />

TREADWELL F.P., 1954. Trattato <strong>di</strong> chimica analitica. Vallar<strong>di</strong>, Milano, 2, 543-544.<br />

WEAVER C.E., PoLLARD D., 1973. The Chemistry of Clay Minerals. Elsevier.<br />

WEBER F., 0UNOYER DE SEGONZAC C., ECONOMOU C., 1976. Une nouvel/e expression de /a «crista//initb<br />

de /'illite et des micas. Notion d'epaisseur apparentes des cristallites. C.R. Somm. Soc. Geol. Fr. 5,<br />

225-227.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 231-243 (1985)<br />

Mineral Composition of the Jurassic Se<strong>di</strong>ments in the<br />

Subbetic Zone, Betic Cor<strong>di</strong>llera, SE Spain<br />

M. ORTEGA HUERTAS, I. PALOMO DELGADO, P. FENOLL HACH-ALI<br />

Departamento de Cristalografia y Mineralogia de la Facultad de Ciencias <strong>and</strong> Departamento de Investigaciones<br />

Geol6gicas del C.S.I.C., Universidad de Granada, 18002 Granada, Espaiia<br />

ABSTRACT- In this paper we present the mineralogical results of our study of<br />

the External Subbetic sequences (Betic Cor<strong>di</strong>llera, Spain) <strong>and</strong> establish an<br />

initial comparative analysis with regard to the geological environment of<br />

these deposits <strong>and</strong> the paleogeography of the Jurassic basin in both the<br />

Me<strong>di</strong>an <strong>and</strong> External Subbetic realms.<br />

The mineralogy consists of calcite, dolomite, quartz, K-feldspar, illite, chlorite,<br />

kaolinite, smectite <strong>and</strong> mixed-layer illite-smectite.<br />

In both realms the stratigraphic sequences are transgressive moving towards<br />

the top <strong>and</strong> the most internal zones. From our study of all of the sequences<br />

we have been able to conclude that no relationship exists between any particular<br />

lithological facies <strong>and</strong> any one mineral association.<br />

Introduction<br />

The Betic Cor<strong>di</strong>llera forms the<br />

westernmost part of the Alpine<br />

Me<strong>di</strong>terranean chains. Two main<br />

geological realms can be <strong>di</strong>stinguished<br />

(Fig. 1): (i) the Internal<br />

Zones, which consist mainly of overthrust<br />

units of Triassic <strong>and</strong><br />

Palaeozoic materials, although in<br />

some units, Mesozoic, Tertiary <strong>and</strong><br />

probably Precambrian ·terrains can<br />

also be found, <strong>and</strong> (ii) External Zones<br />

called Prebetic <strong>and</strong> Subbetic Zones<br />

(BLUMENTHAL, 1927; FALLOT,<br />

1948). In the Subbetic Zones it is<br />

possible to identify thre~ se<strong>di</strong>mentary<br />

realms through the facies<br />

<strong>and</strong> the thickness of the Jurassic<br />

materials: External Subbetic, Me<strong>di</strong>an<br />

Subbetic <strong>and</strong> Internal Subbetic<br />

(GARCIA DUENAS, 1967; FONT­<br />

BOTE, 1970). In the External Zones,<br />

Palaeozoic materials are not exposed.<br />

The cover consists mainly of Mesozoic<br />

<strong>and</strong> Lower Miocene materials.<br />

Since 1980 the Authors have been<br />

carrying out mineralogical research<br />

within the grey marls <strong>and</strong> marly<br />

limestone facies which make up part<br />

of the Jurassic sequences of the Me<strong>di</strong>an<br />

Subbetic Zone (PALOMO DEL­<br />

GADO et al., 1981, 1985). The geological<br />

<strong>and</strong> mineralogical importance<br />

of this facies has been pointed out in<br />

the above mentioned works.<br />

In this paper we present the results


232 M. Ortega Huertas, I. Palomo Delgado, P. Fenoll Hach-Ali<br />

of our mineralogical study of the External<br />

Subbetic sequences <strong>and</strong> establish<br />

an initial comparative analysis<br />

between the geological environment<br />

of this deposit <strong>and</strong> the palaeogeography<br />

of th5!~-lP:r::


Mineral Composition of the JurassicSe<strong>di</strong>ments ... 233<br />

Geological setting, lithological fades<br />

<strong>and</strong> age of the materials stu<strong>di</strong>ed<br />

A scheme of the geological aspects<br />

of greatest interest, such as the location<br />

of the stratigraphic these sequences,<br />

together with those of the<br />

Me<strong>di</strong>an Subbetic, can be seen in<br />

Fig. 1.<br />

The spatial <strong>and</strong> temporal <strong>di</strong>stribution<br />

of the types of lithological facies<br />

stu<strong>di</strong>ed <strong>and</strong> their geological context<br />

appear in Fig. 2. As can be deduced<br />

from this figure we have not always<br />

been able to collect specimens of<br />

marly limestone <strong>and</strong> marls in the<br />

field. The greater part of older materia]s,<br />

below those which we have stu<strong>di</strong>ed,<br />

are non-detrital facies <strong>and</strong> ca~bonate<br />

platform facies (bioclastic<br />

wackestone, crinoidal grainstone,<br />

mudstone with chert). In places,<br />

SW NE SW-L~<br />

~1e<strong>di</strong>an Subbetic External Subbetic<br />

SE CO z CM LC HU GU MAJ FV<br />

B 4 4 4 5<br />

MD 3 6 5<br />

LD 3 6 5<br />

uc 2 3 6 5<br />

Fig. 2 - Spatial <strong>and</strong> temporal <strong>di</strong>stribution of the types of lithological facies stu<strong>di</strong>ed. B: Bajocian;<br />

A: Aalenian; UT: Upper Toarcian; MT: Middle Toarcian; LT: Lower Toarcian; UD: Upper<br />

Domerian; MD: Middle Domerian; LD: Lower Domerian; UC: Upper Carixian; 1: Bioclastic<br />

wackestone; 2: Crinoidal grainstone; 3: Hiatus; 4: Ra<strong>di</strong>olarites; 5: No outcrops; 6: Mudstone with<br />

· chert. '


234 M. Ortega Huertas, I. Palomo Delgado, P. Fenoll Hach-Ali<br />

either a hiatus exists or the materials<br />

of these ages do not outcrop. The upper<br />

limit of our sampling is determined<br />

by the <strong>di</strong>sappearance of the<br />

detrital facies (presence of ra<strong>di</strong>olarites,<br />

bioclastic wackestone, «ammonitico<br />

rosso», etc.) or by the lack of<br />

the more modern material outcrops.<br />

Nevertheless, we have been able to<br />

collect sufficient mineralogical, stratigraphic<br />

<strong>and</strong> paleontological data<br />

from a sufficiently representative<br />

area of the detrital facies in the<br />

Subbetic Zone to present an<br />

initial hypothesis concerning the<br />

palaeogeography of this Jurassic<br />

basin.<br />

Methods <strong>and</strong> results<br />

We analyzed the samples by X-ray<br />

<strong>di</strong>ffraction using a Philips<br />

<strong>di</strong>ffractometer, PW -1710, under the<br />

following experimental con<strong>di</strong>tions:<br />

CuKa ra<strong>di</strong>ation, Ni filter <strong>and</strong> a speed<br />

of zo 26 per minute. We prepared<br />

several classes of samples: a) untreated<br />

dry powder specimens, b)<br />

oriented specim~ns, c) ethyleneglycol<br />

<strong>and</strong> <strong>di</strong>methyl-sulphoxide saturated<br />

oriented specimens, <strong>and</strong> d)<br />

heated to 550 oc oriented specimens.<br />

For the oriented samples we chose<br />

to. use clay J'S~J-LP1Cl.E.> 7 60 33<br />

«Guarrumbre>> 7 59 34<br />

«Majarazan>> 10 50 40<br />

«Fuente Vidriera>> 11 50 39


Mineral CompositiQn of the Jurassic S~<strong>di</strong>ments ... 235<br />

/<br />

C+D<br />

C+D<br />

Q+FdK •••<br />

. ·.·· ...<br />

- ... : .. :·· ·:·<br />

CM<br />

~<br />

C+D<br />

=<br />

CM<br />

Q+FdK<br />

o HU<br />

o GU<br />

• LC<br />

D FV<br />

" MAJ<br />

\<br />

Q+FdK<br />

... ..:: . . ·.<br />

Q+FdK<br />

"FV"<br />

C+·f;D-----------~CI~<br />

CM<br />

C+D<br />

CM<br />

C+D<br />

Fig. 3 - Triangular <strong>di</strong>agrams showing the mineral composition. The average composition of the<br />

stratigraphical sequences is plotted in the central triangle. C: Calcite; D: Dolomite; Q: Quartz;<br />

FdK: Potassium feldspar; CM: Clay minerals.<br />

CM<br />

LT<br />

UD<br />

-<br />

~:::;::::::::::VZ/// //M<br />

~:n:F/2//~<br />

MD~~<br />

LD<br />

-<br />

1 2 3 4 6 7 9<br />

~~D~-<br />

Fig. 4- Mineralogical composition of the sequence. 1: Calcite; 2: Quartz; 3: Clay<br />

minerals; 4: Dolomite; 5: Potassium feldspar; 6: Illite; 7: Chlorite; 8: Kaolinite; 9: Smectite;<br />

10: Mixed-layer illite-smectite; B: Bajocian; A: Aalenian; UT: Upper Toarcian; MT: Middle<br />

Toarcian; LT: Lower Toarcian;. UD: Upper Domerian; MD: Middle D9merian; LD: Lower<br />

Dometian; UC: Upper Carixian.


236 M. Ortega Huertas, I. Palomo Delgado, P. Fenoll Hach-Ali<br />

opposed to «HU» <strong>and</strong> «GU».It is thus<br />

possible to deduce that the external<br />

sequences probably received mineral<br />

contributions from several sources.<br />

Clay minerals (


Mineral Composition of the Jurassic -S~irnents ... 237<br />

Total<br />

< 21'-<br />

0 % 100 0 % 100<br />

~mY?ZZZZZI ~~--------------~•<br />

~~~~~~<br />

------<br />

------<br />

~ -=-=-=~-=-<br />

. ~M!Iili::f///7/J<br />

t!Z?%?????£???i0MM!iJP7/Z/d<br />

~i.~!tfT//2//'lJ<br />

-<br />

LT - - -<br />

~JIMI7/Z~<br />

- - -<br />

T ~/i\UfZ/ZZ/1<br />

-1<br />

~~q=l15m<br />

~~581 ~~~~~~~<br />

Fig. 6- Mineralogical composition of the «Guarrumbre» seque~ce. Legend as in Fig. 4.<br />

associations of clay minerals accor<strong>di</strong>ng<br />

to whether or not they occur <strong>and</strong>,<br />

if so, their relative abundance. Thus,<br />

the following associations can be<br />

<strong>di</strong>stinguished:<br />

Association A: I, Chl, K<br />

Association B:'I, Chl, (Sm)<br />

Association C: I, Chl, Sm<br />

Association D: I, Chl, I-Sm (only<br />

present in the Me<strong>di</strong>an Subbetic)<br />

Association E: J, Chl<br />

The italics in<strong>di</strong>cate the presence of<br />

certai'D. minerals considered to be in<strong>di</strong>cative<br />

<strong>and</strong> the brackets in<strong>di</strong>cate<br />

that, although the presence of a<br />

mineral is constant through the sequence,<br />

it is only present in small<br />

proportions.<br />

Spatial <strong>and</strong> temporal <strong>di</strong>stributions<br />

of these associations <strong>and</strong> their relationship<br />

with the lithology of the various<br />

sequences are shown in Fig. 9.<br />

Comparative study of the se<strong>di</strong>mentation<br />

in the Me<strong>di</strong>an <strong>and</strong> Extemal Subbetic<br />

The bulk mineral composition at<br />

both palaeogeographical realms is


238 M. Ortega Huertas, I. Palomo Delgado, P. Fenoll Hach-Ali<br />

Total<br />

< 2~J-<br />

O % 100 0 %<br />

t%'0'02{;:lWit\l!fT///J/~A ·I···--·.-----·-------~---<br />

100<br />

00<br />

LT<br />

UD<br />

T<br />

3m<br />

1""~<br />

77777777777777770·m.m:m""'111f,...2'"2'"/,__2,...,/,....,/1<br />

1 2 3 6 7 . 10<br />

-------- -~- D - -<br />

Fig. 7 - Mineralogical composition of the «Majarazan» sequence. Legend as in Fig. 4.<br />

very similar: calcite, quartz, dolomite,<br />

K-feldspar <strong>and</strong> clay minerals<br />

(illite, chlorite, kaolinite, smectite<br />

<strong>and</strong> mixed-layer illite-smectite).<br />

Nevertheless, the quantitative study<br />

of the bulk mineralogy reveals significant<br />

<strong>di</strong>fferences, which are expressed<br />

graphically in Fig. 10. Figure lOa<br />

shows clearly that the st<strong>and</strong>ard deviation<br />

of percentage for any of the<br />

minerals under <strong>di</strong>scussion is greater<br />

in the Me<strong>di</strong>an Subbetic sequences. In<br />

fact, the coefficients of variation (V)<br />

for quartz+ K-feldspar reach values<br />

of between 30 <strong>and</strong> 43 in the Me<strong>di</strong>an<br />

Subbetic, while in the External Subbetic<br />

they range between 10 <strong>and</strong> 21.<br />

Similarly the values of V for the carbonates<br />

(calcite+dolomite) range<br />

from 4 to 32 <strong>and</strong> 7 to 17, <strong>and</strong> for the<br />

clay minerals from 7 to 34 <strong>and</strong> from<br />

11 to 19 in the Me<strong>di</strong>an <strong>and</strong> External<br />

Subbetic sequences, respectively.<br />

Accor<strong>di</strong>ng to our data, the stratigraphic<br />

sequence which registers the<br />

largest quantitative variations in<br />

the three mineral groups is «Zegri»,<br />

in the Me<strong>di</strong>an Subbetic, with V=<br />

43 (quartz+ K-feldspar), V=32<br />

(calcite+dolomite) <strong>and</strong> V=34 (clay<br />

minerals). In the External Subbetic<br />

the maximum values are to be found<br />

in the


Mineral Composition of the Jurassic Se<strong>di</strong>fhents ... 239<br />

-----::<br />

------<br />

------<br />

rt~~~~~<br />

Ill I<br />

------<br />

------<br />

------<br />

M T ~===~====<br />

------<br />

------<br />

------<br />

------<br />

------<br />

------<br />

------<br />

------<br />

~--------­<br />

.-------<br />

Wm~J;AJWfZ/7d~ 0 ~i\111117/Z//111<br />

0 ~~~~~~


240 M. Ortega Huertas, I. Palomo Delgado, P. Fe"'!oll Hach-Ali<br />

Hues car<br />

La Cerradura<br />

UD :: ;,<br />

-·. ~,;<br />

LTII'<br />

MD :: ii<br />

"" " ;<br />

• uc ~:<br />

GRANADA<br />

. l<br />

0 -=-- 10 20 km<br />

Fig. 9- Spatial <strong>and</strong> tempera! <strong>di</strong>stribution of mineralogical associations <strong>and</strong> their relationship with<br />

the lithology of the various sequences. A: I, Chi, K; B: I, Chi, (Sm); C: I, Chi, Sm; E: /,Chi. Ages as in<br />

Fig. 2.<br />

other h<strong>and</strong>, the deepening of the<br />

basin <strong>and</strong>/or a <strong>di</strong>stancing of the internal<br />

zones from~the-continen.t, With a<br />

correspon<strong>di</strong>ng variability in se<strong>di</strong>mentation,<br />

<strong>and</strong> furthermore, the·<br />

possible existence of emerging areas<br />

(«Dorsal Me<strong>di</strong>o-Subbetica», BUS­<br />

NARDO, 1979) all go towards explaining<br />

the high values for the<br />

coefficients of variation which we<br />

have encountered. An especially revealing<br />

example of this occurs as we<br />

have mentioned above, in the «Zegri».<br />

sequence. We shall return to this<br />

· palaeogeographical swell site later<br />

on.<br />

When we relate the <strong>di</strong>fferent ages<br />

of the materials stu<strong>di</strong>ed to the coefficients<br />

of variation (Fig. lOb) it is clear<br />

that much greater variability is to be<br />

found in the Me<strong>di</strong>an Subbetic sequences<br />

than in the External ones.<br />

In the latter sequences the highest<br />

values of V (quartz+ K-feldspai- .<br />

"SE<br />

"CO<br />

"Z"'<br />

"CM<br />

"LC<br />

11<br />

HU<br />

"GU<br />

"MAJ<br />

Q+Fd<br />

C+D<br />

CM<br />

5 10 16 20 40 50 60 25 45 55<br />

+ +<br />

I....,_ r-<br />

--<br />

+ """<br />

I<br />

_,.....<br />

I<br />

'!'<br />

~<br />

"oF<br />

q,<br />

...,...<br />

......<br />

c:p<br />

~<br />

of<br />

UT<br />

MT<br />

c::P =F LT<br />

9= t:P<br />

q, q,<br />

UD<br />

MD<br />

=P c:::p<br />

9= c:::p<br />

(a)<br />

- me<strong>di</strong>an subbetic c::::J external subbetic<br />

5<br />

Q+Fd C+D CM<br />

9 14 19 28 32 40 50 60 68 22 30 40 50 58<br />

+ -;- .,.<br />

+ --1- -1-<br />

.,. I<br />

q,+<br />

I<br />

q, cp<br />

of:,<br />

......<br />

-I<br />

....,_=!=<br />

....,...<br />

I<br />

--,- q,<br />

c:::p+<br />

~<br />

cP<br />

~ cP<br />

cb<br />

Fig. 10 - Mineralogical composition. (a): in relation with the sequences stu<strong>di</strong>ed; (b): in relation<br />

with the age of the materials. The st<strong>and</strong>ard deviation is in<strong>di</strong>cated by the bar <strong>and</strong> the arithmetic<br />

average by the cross-bar. Legend as in Fig. 4.<br />

(b)<br />

c6<br />

_.2<br />

I<br />

'fi<br />

cp


Mineral Composition of the Jurassic Se<strong>di</strong>ments ... 241<br />

=26, calcite+dolomite=20, clay<br />

minerals= 17) correspond to the Lower<br />

Toarcian, while in the Me<strong>di</strong>an<br />

Subbetic we have been unable to unequivocally<br />

assign the materials to a<br />

period with any precision. In any<br />

case the Domerian-Toarcian limit is a<br />

moment in geological history characterized<br />

by a crisis in the development<br />

of the fauna, with a <strong>di</strong>sappearance<br />

of benthonic organisms, evidence<br />

of predominantly juvenile<br />

forms <strong>and</strong> the existence of euxinic<br />

con<strong>di</strong>tions (BRAGA et al., 1982). All<br />

these facts could be related to the<br />

mineral characteristics described<br />

above, such a variation in the mineral<br />

content <strong>and</strong> a decrease in the proportion<br />

of carbonate materials present.<br />

The study of clay minerals <strong>and</strong> the<br />

establishment of various mineraf<br />

associations (PALOMO DELGADO et<br />

al., 1985) has enabled us to carry out<br />

a comparative study of the geological<br />

environment of the deposits in the<br />

Me<strong>di</strong>an <strong>and</strong> External Subbetic (Fig.<br />

11). Our conclusions concerning its<br />

temporal <strong>and</strong> spatial evolution<br />

appear below.<br />

We have found similar mineral<br />

associations in the External Subbetic<br />

<strong>and</strong> in the Me<strong>di</strong>an Subbetic. In the<br />

External Subbetic, however, we have<br />

SW NE SW-~~ NE-E<br />

SE CM LC FV<br />

B<br />

MD<br />

LD<br />

uc<br />

Fig. 11 - Relationship between the lithology of the sequences <strong>and</strong> the mineral associations.<br />

Lithology: 1, Grey marls <strong>and</strong> marly limestone; 2, «Ammonitico Rosso» facies; 3, Red <strong>and</strong> pinky<br />

limestones, s<strong>and</strong>y marls <strong>and</strong> grey marls; 4, Limestones <strong>and</strong> marls with chert nodules; 5, Nodular<br />

limestones; 6, Brown marls. Clay mineral associations: A: I, Chi, K; B: I, Chl, (Sm); C: I, Chi, Sm;<br />

D: I, Chi, I-Sm; E: I, Chl. Ages as in Fig. 2. .


242 M. Ortega Huertas, I. Palomo Delgado, P. Fenoll Hach-Ali<br />

identified a new association E, made<br />

up of illite+chlorite.<br />

In both realms the stratigraphic<br />

sequences are transgresive moving<br />

towards the top. This might correspond<br />

to the t;ransgression which began,<br />

accor<strong>di</strong>ng to HALLAM (1978),<br />

at the Carixian-Domerian limit of<br />

the global curve of transgressionregression<br />

during the Jurassic.<br />

It is clear that, in any specific age,<br />

the sequences are also transgressive<br />

towards the most internal zones, that<br />

is to say, toward~ the SW. Thus the<br />


Mineral Composition of the Jurassic Se<strong>di</strong>ments ... 243<br />

were eroded, <strong>and</strong> which probably<br />

also descended from the Variscan<br />

Massif of the Meseta~.<br />

As a final comment, the presence of<br />

kaolinite in the sequence lying a long<br />

way from the probable source rocks<br />

(«Z» <strong>and</strong> «CM>> of the Me<strong>di</strong>an Sub betic<br />

<strong>and</strong> only in the Lower Toarcian of<br />

the sequence «HU >> of the External<br />

Subbetic) suggests the possibility of<br />

the existence of BUSNARDO's «Dorsal<br />

Me<strong>di</strong>o Subbetica>> (1979) situated<br />

between the Me<strong>di</strong>an Subbetic <strong>and</strong><br />

the External Subbetic, which may<br />

have been above water at some<br />

period.<br />

REFERENCES<br />

BARAHONA FERNANDEZ E., 1974. Arcillas de ladrilleria de la provincia de Granada: Evaluaci6n de<br />

algunos ensayos de materias primas. Ph. D. Thesis, University of Gr:;mada, Spain.<br />

BLUMENTHAL M.M., 1927. Versuch einter tektonischen Clerederung der Betischen Cor<strong>di</strong>lleren von Central<br />

und Sii.dwest (Andalusien). Eclog. Geol. Helv. 20, 487-532.<br />

BRAGA J .C., GARCIA GOMEZ R., JIMENEZ A.P., RrvAs. P., 1982. Correlaciones en el Lias de las Cor<strong>di</strong>lleras<br />

Beticas. P.I.C.G. Real Acad. Ciencias Exactas, Fisicas y Naturales, Madrid, 161-181.<br />

BUSNARDO R., 1979. Prebetique et Subbetique del aen a Lucena (Andalusie). Introduction et Trias. Doe.<br />

Lab. Geol. Fac. Sci. Lyon.<br />

CABALLERO M.A., LOPEZ AGUAYO F., 1973. Estu<strong>di</strong>o comparativo de la mineralogia de arcillas de<br />

se<strong>di</strong>mentos triasicos Wealdenses espaiioles. Estu<strong>di</strong>os geol. XXIX, 563-568.<br />

FALLOT P., 1948. Les Cor<strong>di</strong>lleres Betiques. Estudfos geol. VIII, 83-172.<br />

FoNTBOTE J.M., 1970. Sobre la historia preorogenicq. de las Cor<strong>di</strong>lleras Beticas. Cuad. Geol. Univ.<br />

Granada I, 71-78.<br />

GARCIA DuENAS V., 1967. Unidades paleogeograficas en le sector central de la Zona Subbetica. Corn.<br />

Inst. Geol. Min. Espaii.a CI-CII, 73-100.<br />

GARCIA HERNANDEZ M., LOPEZ GARRIDO A.C., RIVAS P., SANZ DE GALDEANO C., VERA J., 1980. Mesozoic<br />

paiaeogeographic evolution of the External Zones of the Betic Cor<strong>di</strong>llera. Geol. en Mijnbouw 59,<br />

155-163.<br />

HALLAM A., 1978. Eustatic cycles in the Jurassic. Palaeogeogr. Palaeoclimat. Palaeoecol. 23, 1-32.<br />

LOPEZ GARRIDO A.C., VERA J., 1979. Mapa de <strong>di</strong>stribuci6n de Unidades en la Zonas Externas de /as<br />

Cor<strong>di</strong>lleras Beticas. In: «La microfacies de Jurasico y Cretacico de !as zonas externas de !as<br />

Cor<strong>di</strong>lleras Beticas». University of Granada, L.S.B.N. 843380133.3.<br />

PALOMO DELGADO I., 0RTEGA HUERTAS M., FENOLL HACH-ALI P., 1981. Los carbonatos de la facies<br />

margosas /urasicas en las Zonas Externas de las Cor<strong>di</strong>lleras Beticas (Provincias de Granada y<br />

Jaen). Bol. Soc. esp. Min. 4, 15-28.<br />

PALOMO DELGADO I., 0RTEGA HUERTAS M., FENOLL HACH-ALI P., 1985. The significance of clay minerals<br />

in stu<strong>di</strong>es of the evolution of thelurassic deposits of the Betic Cor<strong>di</strong>llera. SE Spain. Clay Minerals<br />

20, 1-14.<br />

SCHULTZ L.G ., 1964. Quantitative interpretation of mineralogical composition from X-ray <strong>and</strong> chemical<br />

data for the Piere Shii.le. Prof. Pap. U.S. geol. Surv. 391-C.


Miner. Petrogr. Acta<br />

Vol. 29·A, pp. 245-257 (1985)<br />

Pelagic Cretaceous Black-Greenish Mudstones<br />

in the Southern Iberian Paleomargin,<br />

Subbetic Zone, Betic Cor<strong>di</strong>llera<br />

A. LOPEZ GALIND0 1 • 3 , M.C. COMAS MINOND0 2 • 3 , P. FENOLL HACH~ALI 1 • 3 ,<br />

M. ORTEGA HUERTAS 1 • 3<br />

I Departamento de Cristalografia y Mineralogia, Facultad de Ciencias, Universidad de Granada, 18002 Granada,<br />

Espai\a "<br />

2 Departamento de Geologia, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Espai\a<br />

3 Departamento de Investigaciones Geol6gicas del C.S.I.C., Universidad de Granada, 18002 Granada, Espai\a<br />

ABSTRACT- In the Betic Cor<strong>di</strong>llera, the Prebetic <strong>and</strong> Subbetic Zones were a<br />

part of the southern margin of the Iberian plate. In the light of recent<br />

oceanographic <strong>and</strong> geological research, several authors have maintained<br />

that the palaeogeographic evolution of this margin occurred during the<br />

Jurassic in a transformant geodynamic setting, the maximum extension tak­<br />

·ing place ·during the Cretaceous. ·<br />

The pelagic Cretaceous mudstones here stu<strong>di</strong>ed, argil!aceous, highly<br />

siliceous <strong>and</strong> carbonate poor, belong to some of the trough realms originated<br />

in the continental margin, from the Aptian to the Lower Senonian, in the<br />

expansive regime outlined above. The Aptian-Cenomanian black <strong>and</strong> greenish<br />

mudstones are interbedded with turbi<strong>di</strong>tic limestones <strong>and</strong> chaotic conglomerate<br />

facies, contaihing clastic materials from the adjacent pelagic<br />

swell. The turbi<strong>di</strong>tic <strong>and</strong> the pelagic pelites of these facies have been typified<br />

<strong>and</strong> <strong>di</strong>fferentiated by their mineralogical characteristics. The clay minerals<br />

in the pelagic mudstones are smectites (60-80%), illite (15-25%), <strong>and</strong> palygorskite<br />

(10-20%) from the Southern Middle Subbetic (Fardes Formation),<br />

<strong>and</strong> illite (70-85%), chlorite (15%), kaolinite (10-15%) <strong>and</strong> mixed-layer illitesmectite<br />

(5-15%) from the Northern Middle Subbetic.<br />

Introduction<br />

It has tra<strong>di</strong>tionally been agreed that<br />

the External Betit Zones made up ~f<br />

Mesozoic <strong>and</strong> Cenozoic cover materials,<br />

are sub<strong>di</strong>vided into two main<br />

palaeogeographical realms, to the<br />

north the Prebetic Zone <strong>and</strong>, to the<br />

south, the Subbetic Zone. These form<br />

part of the southern margin of the<br />

Iberian Plate, the geodynamic evolution<br />

which has been interpreted in<br />

many <strong>di</strong>fferent ways (BOURGOIS,<br />

1980; VERA, 1981; MALOD, 1982;<br />

WILDI, 1983, among others). It has<br />

been suggested recently that the<br />

Mesozoic palaeogeographical evolution<br />

of this margin took place in a<br />

transtensive regime, which reached<br />

its maximum extension during the<br />

Cretaceous (GARCIA-DUENAS &


246 A. L6pez Galindo, M.C. Comas Minondo, P. Fenoll Hach-Ali, M. Ortega Huertas<br />

COMAS, 1983; COMAS & GARCIA­<br />

DUENAS, 1984). The pelagic, Cretaceous,<br />

black-greenish facies investigated<br />

in this paper would correspond,<br />

accor<strong>di</strong>ng to this latter geodynamic<br />

interpretation, to deposits laid<br />

down in an age when the South Ibe­<br />

-rian margin was at its maximum extension<br />

(Aptian to Lower Senonian).<br />

Palaeogeographically, these facies<br />

belong to the Middle Subbetic subdominion,<br />

of the Subbetic realm<br />

(GARCIA-DUENAS, 1967; GARCIA­<br />

HERNANDEZ et al., 1980), which, in<br />

the Lower 'Cretaceous, was characterized<br />

by the widespread creation of<br />

thick, uniform sequences of marls<br />

<strong>and</strong> greyish-white, pelagic, nanno-<br />

------ -- -plankton::rich. 1iffiestones, ·- incl~<strong>di</strong>ng<br />

intercalated slump-beds.<br />

· After the Aptian the facies show a<br />

greater <strong>di</strong>versity of deposits, which<br />

in<strong>di</strong>cates that the physiography of<br />

the basin was substantially mo<strong>di</strong>fied,<br />

almost certainly due to the<br />

palaeogeographic reorganisation<br />

which the South Iberian margin<br />

underwent at that time (COMAS &<br />

GARCIA-DUENAS, 1984). In this<br />

new physiography several basinal environments<br />

flanked by pelagic swells<br />

were formed. Within these environments<br />

singular types of pelagic facies<br />

(clayey <strong>and</strong> cherty mudstones) <strong>and</strong><br />

redeposited facies (carbonate turbi<strong>di</strong>tes<br />

<strong>and</strong> olistostromes) accumulated<br />

in turn.<br />

In this paper we intend to examine<br />

the mineralogical characteristics of<br />

the Aptian-Cenomanian black-shaletype<br />

deposits of the basinal environments<br />

within the Middle Subbetic.<br />

We also classify <strong>and</strong> <strong>di</strong>fferentiate the .<br />

minera.logicaLcompositionofthe turbi<strong>di</strong>tic<br />

pelites <strong>and</strong> hemipelagites<br />

which have accumulated in this type<br />

of se<strong>di</strong>mentation environment.<br />

In order to carry out this investigation<br />

we stu<strong>di</strong>ed the facies found in<br />

two of the basinal environments: the<br />

first is located in the Northern Middle<br />

Subbetic (NMS), <strong>and</strong> consequently<br />

closer to the forel<strong>and</strong>, <strong>and</strong> the<br />

second is located in the Southern<br />

Middle Subbetic (SMS) (GARCIA­<br />

DUENAS, 1967). The Cretaceous<br />

sequences in which both types of pelites<br />

are contained outcrop in the central<br />

third of the Subbetic Zone, to the<br />

N-NE of Granada, as shown in Fig. 1.<br />

Se<strong>di</strong>mentological setting<br />

In order to study the mineralogical<br />

characteristics of the black-shaletype<br />

facies in the Southern Middle<br />

Subbetic we chose the sequences belonging<br />

to the Fardes Formation<br />

(COMAS et al., 1982). In this formation<br />

various associations of pelagic<br />

facies <strong>and</strong> deep-carbonate clastic<br />

facies coexist. The pelagites are<br />

clayey <strong>and</strong>/or cherty <strong>and</strong> are dark<br />

green or red in colour. The clastic<br />

carbonate lithologies (conglomerates,<br />

calcarenites, calcilutites) are to<br />

be found below <strong>di</strong>fferent types of turbi<strong>di</strong>tic<br />

facies <strong>and</strong> in various associations.<br />

Accor<strong>di</strong>ng to COMAS MINON­<br />

DO (1978) the nature of the associations<br />

of the facies <strong>and</strong> the existence of<br />

certain sequential units iri the Fardes<br />

Formation in<strong>di</strong>cate that deep-sea·


Pelagic Cretaceous Black-Greenish Mudsto-iies ... 247<br />

0 100 200 300 km<br />

'------'-----"----------' ..


248 A. L6pez Galindo, M.C. Comas Minondo, P. Fenoll Hach-Ali, M. Ortega Huertas<br />

bined with gravity was instrumental<br />

in the appearance of the clasts. Furthermore,<br />

the pelagic se<strong>di</strong>ments ~ere<br />

also carried down from the swells to<br />

form the turbi<strong>di</strong>tic pelites. In this<br />

formation, pelagic facies, poor or free<br />

of carbonates, are variously associated<br />

with turbi<strong>di</strong>tic carbonates, depen<strong>di</strong>ng<br />

on the. <strong>di</strong>fferent subenvironments<br />

within this basin. COMAS<br />

MINONDO (1978) has attributed the<br />

·. ~'~aterials which make up the Fardes<br />

Formation to the Albian-Lower Senonian.<br />

In order to determine the character<br />

of the NMS pelites, we stu<strong>di</strong>ed materials<br />

belonging to the Morales­<br />

Carboneros sequence, located to the<br />

SE ofValdepeiias de.Ja~n.-It is·~-ade<br />

up of materials from the late Lower<br />

Cretaceous <strong>and</strong> early Upper Cretaceous<br />

(Vraconian). This Cretaceous<br />

sequence belongs to the Ventisquero­<br />

Sierra del Trigo Unit (SANZ DE GAL­<br />

DEANO, 1973).<br />

The Morales-Carboneros sequence<br />

is composed alternatively of grey<br />

marls <strong>and</strong> black clays, various types<br />

of calciru<strong>di</strong>tes <strong>and</strong> calcarenites, cherty<br />

marls <strong>and</strong> ra<strong>di</strong>olarites. The carbonate<br />

clastic layers show turbi<strong>di</strong>tic<br />

facies, <strong>and</strong> several slump episodes<br />

can be identified, thus some ra<strong>di</strong>olaritic<br />

facies represent rese<strong>di</strong>mentation<br />

episodes. The nature of the turbi<strong>di</strong>tic<br />

beds <strong>and</strong> the type of facies<br />

which they show, together with their<br />

organization all lead to the conclusion<br />

that we are dealing with basinplain<br />

deposits. The pelagic facies of<br />

the NMS sequence show a greater<br />

lithological variety than those of the<br />

Fardes Formation since they normally<br />

C()nt~ig li~ h_igl?:~r:J2L02Q!"_tj,9n_of carbonates.<br />

One further point of importance<br />

is that levels containing a large<br />

quantity of bituminous material are<br />

also present.<br />

Mudstone mineralogy<br />

We selected layers of special intere~t<br />

within the sequences described<br />

above, where there was a clear <strong>di</strong>stinction<br />

between the hemipelagites<br />

<strong>and</strong> the turbi<strong>di</strong>tic pelites, <strong>and</strong> took<br />

samples of the se<strong>di</strong>ments. We analyzed<br />

a total of 60 samples by X-ray<br />

<strong>di</strong>ffraction using a Philips <strong>di</strong>ffrac-<br />

L tometer, PW-1710, under the following<br />

experimental con<strong>di</strong>tions: CuKa<br />

ra<strong>di</strong>ation, Ni filter <strong>and</strong> a speed of 2°<br />

26/min. We prepared several classes<br />

of samples: a) untreated dry powder<br />

specimens, b) oriented specimens,<br />

c) ethylene-glycol <strong>and</strong> <strong>di</strong>methylsulphoxide<br />

saturated, oriented specimens,<br />

<strong>and</strong> d) heated to 550 oc<br />

oriented specimens. For the oriented<br />

samples we chose to use clay fractions<br />

(less than 2).l.m) <strong>and</strong> silt (between<br />

2).l.m <strong>and</strong> 20).l.m). The semiquantitative<br />

analysis was carried out<br />

with reference to the reflecting powers<br />

described by BRADLEY & GRIM<br />

(1961), SCHULTZ (1964), BISCAYK<br />

(1965) <strong>and</strong> BARAHONA (1974).<br />

In order to simplify the picture, we<br />

have grouped the relat~ve abundance<br />

of the <strong>di</strong>fferent minerals into five<br />

categories: principal constituent<br />

(>50%), abundant (20%),<br />

common (10%), scarce<br />

(5%) <strong>and</strong> traces (


Pe{agic Cretaceous Black-Greenish Mudstones~:. 249<br />

Mineralogy of the total sample<br />

The minerals that are present in<br />

the pelites of these sequences are:<br />

phyllosilicates, quartz, calcite, feldspar<br />

<strong>and</strong> pyrite. The proportions of<br />

these minerals vary in each of the two<br />

palaeogeogn:tphic realms. The presence<br />

of dolomite <strong>and</strong> barite has also<br />

been detected, although only in the<br />

SMS dominion (COMAS et al., 1982;<br />

LOPEZ GALINDO, 1984).<br />

Figure 2 shows the quantitative<br />

variation of the various minerals<br />

throughout the SMS sequence<br />

(Fardes Formation) together with a<br />

triangular <strong>di</strong>agram representing the<br />

composition of the hemipelagites <strong>and</strong><br />

the turbi<strong>di</strong>tic pelites.<br />

. The following facts are noteworthy:<br />

1) the almost total absence of,<br />

carbonates <strong>and</strong> the predominance of<br />

phyllosilicates in the hemipel.agic pelites;<br />

2) the quartz <strong>and</strong> the feldspars<br />

are more abundant within the<br />

hemipelagites compared to within<br />

tht: turbi<strong>di</strong>tic pelites (up to a ratio of<br />

4:1); 3) the hemipelagites are mineralogically<br />

more heterogeneous.<br />

For these reasons each group occupies<br />

a <strong>di</strong>fferent position in the compositional<br />

triangle.<br />

In the NMS realm, however, the<br />

mineralogical <strong>di</strong>fferences, both qualitative<br />

<strong>and</strong> quantitative, are much<br />

less clearly defined (Fig. 3). The only<br />

variations of note are that the turbi<strong>di</strong>tic<br />

pelites of the lower half of the<br />

sequence contain a greater quantity<br />

of calcite than the hemipelagites, <strong>and</strong><br />

these contain slightly more quartz.<br />

It can be seen in both sequences<br />

~ .<br />

1<br />

D<br />

m D -<br />

2 3<br />

[23 ~<br />

C+D<br />

[ili].<br />

4<br />

-Fd<br />

~<br />

Q+Fd ,<br />

I<br />

I<br />

Q+Fct.<br />

\<br />

: .<br />

• Hemi pelagites<br />

x Turbi<strong>di</strong>tic pelites<br />

Fig. 2- Qualitative <strong>and</strong> quantitative variation of the minerals in the Southern Middle Subbetic <strong>and</strong><br />

triangular representation of their <strong>di</strong>fferent compositions. 1: Carbonates conglomerates; 2: S<strong>and</strong>stones;<br />

3: Marls <strong>and</strong> clays; 4: Olistostromes; 5: Limestones <strong>and</strong> marly limestones. Q: Quartz; Fd:<br />

feldspar; C: Calcite; D: Dolomite; P: Phyllosilicates.


250 A. L6pez Galindo, M.C. Comas Minondo, P. Fenoll Hach-AU, M. Ortega Huertas<br />

•• 1<br />

D<br />

p<br />

Q+Fd<br />

Q+Fd<br />

' \<br />

'<br />

• Hemipelagites<br />

x Turbi<strong>di</strong>tic pel ites<br />

Fig. 3- Variation of the <strong>di</strong>fferent minerals in a typical Northern Middle Subbetic sequence, together<br />

with a triangular representation of the composition of the pelites. 1: Ra<strong>di</strong>olarites <strong>and</strong> siliceous<br />

clays; 2: S<strong>and</strong>stones; 3: Clays <strong>and</strong> roads; 4: Carbonate s<strong>and</strong>stones. Q: Quartz; Fd: Feldspar; C:<br />

Calcite; P: Phyllosilicates.<br />

that phyllosilicates, carbonates <strong>and</strong><br />

quartz are the principal constituents<br />

of the pelites. In the carbonate samples<br />

the greatest component is calcareous<br />

plankton <strong>and</strong> the quantity of<br />

carbonates decreases towards the<br />

bottom of the sequences.<br />

Detritic quartz tends to be concentrated,<br />

although in variable quantities,<br />

in layers formed by the intermittent<br />

arrival of deposited materials in<br />

the basin. Biogenic quartz, principally<br />

derived from ra<strong>di</strong>olaria, is also<br />

present: It tends to be found more in<br />

the hemipelagic layers, due in part to<br />

the <strong>di</strong>ssolution of carbonate components.<br />

Detritic feldspars exist in proportions<br />

lower than 5% <strong>and</strong> are normally<br />

associated with detritic quartz.<br />

Clay minerals<br />

The proportions <strong>and</strong> associations<br />

of the clay minerals in the sequences<br />

which we investigated are clearly <strong>di</strong>stinct.<br />

The mineral associations which<br />

we encountered are: smectite-illitepalygorski<br />

te-( chlori te-kaolini te) in the


Pelagic Cretaceous Black-Greenish Mudstbnes ... 251<br />

Fardes Formation <strong>and</strong> illite-chlorite<br />

-kaolini te-(interstratified illi te-smectite)<br />

in the Morales-Carboneros sequence<br />

(Table 1).<br />

The mineralogical <strong>di</strong>fferences between<br />

the hemipelagites <strong>and</strong> the turbi<strong>di</strong>tic<br />

pelites are shown graphically<br />

in Figs 4 <strong>and</strong> 5. In Fig. 4 appears the<br />

quantitative <strong>and</strong> qualitative evolution<br />

of the clay minerals in the SMS<br />

sequence, together with a triangular<br />

<strong>di</strong>agram showing the composition of<br />

both types of pelites.<br />

Worthy of note are the high quantity<br />

of illite (I) in the turbi<strong>di</strong>tic pelites,<br />

the dominance of palygorskite (Pa)<br />

<strong>and</strong> smectites (Sm) in the hemipelagites<br />

<strong>and</strong> the scarcity of chlorite (Ch)<br />

<strong>and</strong> kaolinite (K) in both types of pelites.<br />

On the other h<strong>and</strong>, in the NMS<br />

realm (Fig. 5) all the samples are of a<br />

similar composition with a predominance<br />

of illite (70%), between 10-15%<br />

kaolinite, around 5% chlorite, <strong>and</strong>, in<br />

the clay fraction, 10-15% of interstratified<br />

illite-smectite (I-Sm).<br />

Other associated minerals<br />

The existence of pyrite <strong>and</strong> of organic<br />

material in both sequences is important<br />

as regards the nature <strong>and</strong><br />

chemical con<strong>di</strong>tions of the environment<br />

during the period of deposition.<br />

The colour of the black-shale facies<br />

with which we are dealing here is frequently<br />

due to the presence of pyrite<br />

<strong>and</strong> siderite. These minerals are<br />

formed after deposition <strong>and</strong> reflect<br />

the degree of the anoxic con<strong>di</strong>tions in<br />

z<br />

......<br />

0<br />

z<br />

......<br />

::2:<br />

0<br />

Cl<br />

r:IJ<br />

~·<br />

r:IJ<br />

r:IJ<br />

~<br />

z<br />

TABLE 1<br />

Mineralogical composition of the hemipelagites <strong>and</strong><br />

turbi<strong>di</strong>tic pelites in Northern <strong>and</strong> Southern Middle Subbetic<br />

.~<br />

+->


252 A. L6pez Galindo, M.C. Comas Minondo, P. Fenoll Hach-Ali, M. Ortega Huertas<br />

Hemi pe 1 ag i tes<br />

I+ Ch<br />

K<br />

Sm + Pa<br />

T<br />

10m<br />

l<br />

-<br />

~ §<br />

Sm Pa K+Ch<br />

I<br />

I<br />

/r +Ch<br />

• Hemipelagites<br />

x Turbi<strong>di</strong>tic pel ites<br />

Fig. 4 - Evolution of the clay minerals <strong>and</strong> triangular representation of the composition of the<br />

pelites in the Southern Middle Subbetic realm. Sm: Smectite; Pa: Palygorskite; I: Illite; Ch: Chlorite;<br />

K: Kaolinite.<br />

' \<br />

\<br />

K<br />

the interstitial <strong>and</strong> the deepest waters.<br />

We have found pyrite in the<br />

form of ovoid nodules, which must<br />

have originated from <strong>di</strong>sperse pyrite<br />

during the early se<strong>di</strong>mentation<strong>di</strong>agenesis<br />

stage. Microscopic analysis<br />

reveals that these nodules are<br />

made up of pyrite, gypsum, goethite<br />

<strong>and</strong> calcite, with traces of natrojarosite<br />

(LOPEZ GALINDO et al., 1983).<br />

With regard to the organic matter,<br />

our analysis of SMS samples resulted<br />

in values of less than 2%, although<br />

they were somewhat greater in the<br />

Morales-Carboneros sequence.<br />

Although not to be found extensively,<br />

it is also worth mentioning the<br />

presence of barite in the hemi-,<br />

pelagites of the Fardes Formation.<br />

It appears in more-or-less rounded<br />

nodules with a ra<strong>di</strong>ate-fibrous texture<br />

<strong>and</strong> a maximum of 20 cm <strong>di</strong>ameter.<br />

These nodules bear no concordant<br />

relationship with the stratification<br />

of the hemipelagites <strong>and</strong> their<br />

«cone in cone» texture leads us to


Pelagic Cretaceous Black-Greenish Mudstones:.: 253<br />

Hemi pe 1 ag i tes<br />

I+ Ch<br />

I-Sm<br />

K<br />

I+ Ch<br />

X 0 X<br />

• X X•<br />

X<br />

X•<br />

I<br />

I<br />

/I-Sm<br />

\<br />

\<br />

\<br />

K \<br />

D ..<br />

T<br />

10m<br />

1<br />

~<br />

I-Sm Ch K<br />

• Hemipelagites<br />

x Turbi<strong>di</strong>tic pel ites<br />

Fig. 5 - Evolution of the clay minerals <strong>and</strong> triangular representation of the composition of the<br />

pelites in the- Northern Middle Subbetic realm. I: Illite; Ch: Chlorite; I-Sm: Mixed-layers illitesmectite;.K:<br />

Kaolinite.<br />

believe that they probably evolved<br />

during the early se<strong>di</strong>mentation<strong>di</strong>agenesis<br />

stage, originated by the<br />

oxidation of previous pyrite (LOPEZ<br />

GALINDO et al., 1983).<br />

On the basis of all our experimental<br />

results <strong>di</strong>scussed above<br />

we have been able to typify <strong>and</strong> <strong>di</strong>fferentiate<br />

the turbi<strong>di</strong>tic <strong>and</strong> pelagic pelites<br />

of these facies, as shown in Table<br />

2.<br />

Discussion<br />

The results of our mineralogical<br />

study throw light on several aspects<br />

of the nature of the environment in


254 A. L6pez Galindo, M.C. Comas Minondo, P. Fenoll Hach-Ali, M. Ortega Huertas<br />

TABLE 2<br />

Characteristics of the pelites in the cretaceous materials stu<strong>di</strong>ed<br />

Characteristics<br />

Hemipelagites<br />

Colour<br />

Thickness bed<br />

Bioturbation<br />

Calcite<br />

Quartz<br />

Feldspar<br />

Ca/Q+Fd<br />

Pyrite<br />

Organic matter<br />

grey/dark/green<br />

< 20 cm.<br />

widespread<br />

4% (SMS); 7% (NMS)<br />

23% average<br />

occasionally (5%)<br />

0.2<br />

nodules/<strong>di</strong>sseminated<br />

trace <strong>and</strong> abundant in<br />

some beds<br />

grey<br />

3-70 cm.<br />

at the top<br />

70% (SMS); 17% (NMS)<br />

8% average<br />

Clay minerals 76% average 24% average<br />

(SMS): Southern Middle Subbetic; (NMS): Northern Middle Subbetic; Ca: Calcite;<br />

Q: Quartz; Fd: Feldspar<br />

10<br />

which the se<strong>di</strong>mentation of the Cretaceous<br />

pelites took place. Furthermore,<br />

as we have investigated exam-<br />

-~-----plesohwo <strong>di</strong>ffefentSu55etic suberivironments,<br />

we have been able to<br />

analyse the <strong>di</strong>fferences in environmen,tal<br />

con<strong>di</strong>tions which existed in<br />

the basin throughout the Cretaceous<br />

palaeomargin. It must be remembered<br />

here, that, almost certainly,<br />

these subenvironments took the<br />

shape of a configuration of independent<br />

troughs flanked by swells.<br />

- The mineralogy of the facies pro-<br />

. vides a true picture of the nature of<br />

these subenvironments. Thus, the authigenic<br />

minerals such as palygorskite<br />

<strong>and</strong> smectites, give clues to the<br />

chemical composition, the minerals<br />

affected by depths, such as carbonates,<br />

clues to the bathymetry, <strong>and</strong> the<br />

inherited materials, such as illi te,<br />

kaolinite, chlorite <strong>and</strong> feldspars,<br />

clues to the nature of the source areas<br />

of the hemipelagic materials. The<br />

presence in these hemipelagites of<br />

other minerals in<strong>di</strong>cative of the chemical<br />

composition of the environment,<br />

such as pyrite <strong>and</strong> organic matter,<br />

can be interpreted as the result of lo-<br />

. cal, isolated currents which existed at<br />

a given moment, when essentially reducing<br />

con<strong>di</strong>tions prevailed, with no<br />

regard to depth.<br />

Precise calculations about depth<br />

can be arrived at by taking into<br />

account the presence or absence of<br />

carbonate deposits. The absence of<br />

these deposits in the hemipelagic -<br />

facies of the SMS realm <strong>and</strong> part of<br />

the NMS realm may be explained by<br />

the fact that the depth of the water<br />

exceeded the calcite compensation<br />

depth (CCD), remembering that in<br />

this epoch of the Cretaceous (Albian­<br />

Cenomanian) nannoplankton flour:­<br />

ished abundantly <strong>and</strong> provided a continuous<br />

source for carbonate deposits.<br />

In fact, within the Subbetic realm,<br />

lateral correlations have been made<br />

between black-shale-type facies <strong>and</strong><br />

carbonate facies.<br />

On top of this, it is necessary to<br />

take into account the presence of


organic materials in these facies,<br />

which might be included in the<br />

«Oceanic Anoxic Events» reported by<br />

SCHLANGER & JENKYNS (1976)<br />

<strong>and</strong> by JENKYNS (1980). In the opinion<br />

of COOL (1982) the variations in<br />

the carbonate <strong>and</strong> organic material<br />

content coincided with the evolution<br />

of intermittent anoxic con<strong>di</strong>tions in<br />

deep basins during the Middle Cretaceous.<br />

The <strong>di</strong>fferent associations of the<br />

clay minerals, both separately <strong>and</strong>,<br />

taken as a whole (Sm-I-Pa-K-Ch in<br />

the SMS <strong>and</strong> I-K-Ch together with<br />

I-Sm in the NMS), are an important<br />

in<strong>di</strong>cator of the <strong>di</strong>fference in the<br />

palaeogeography <strong>and</strong> the <strong>di</strong>fferent<br />

types of source materials which these<br />

basins received.<br />

It is clear that some of these miner<br />

rals were inherited from older forel<strong>and</strong><br />

rocks, from soils formed on top<br />

of these <strong>and</strong> even from the contemporary<br />

swells which delimited the<br />

basins themselves. This must be the<br />

case with the illite, the chlorite <strong>and</strong><br />

the kaolinite. The small quantity of<br />

the last jwo minerals in the SMS<br />

compared to the NMS can be explained<br />

by the fact that the former<br />

subrealm lays further from the continental<br />

forel<strong>and</strong>, <strong>and</strong> by the transformation<br />

ofkaolinite'into micaceous<br />

terms as a consequence of the high<br />

chemical activity in the area of the<br />

basin. The presence of high percentages<br />

of palygorskite <strong>and</strong> smectites<br />

supports this idea of chemical activity<br />

in the basin area <strong>and</strong> points to the<br />

conclusion that it was at its highest<br />

in the more confined zone of the<br />

Pelagic Cretaceous Black-Greenish Mudstones: .. 255<br />

Fardes Formation. Processes of<br />

neoformation <strong>and</strong>/or alteration of<br />

volcanic rocks located close to <strong>and</strong> to<br />

the south of the Fardes Formation<br />

could be the explanation for the presence<br />

of high proportions of these last<br />

two minerals, although we have been<br />

able to find no evidence of volcanic<br />

activity in the Subbetic contemporary<br />

to the formation of the sequences<br />

stu<strong>di</strong>ed.<br />

Although the smectites could have<br />

"evolved in a <strong>di</strong>fferent environment<br />

·<strong>and</strong> been carried to the deposit site in<br />

suspension at a later date, together<br />

· with quartz, illite, kaolinite, etc., the<br />

very high quantity present (up to 85%<br />

of the total) leads us to believe that<br />

their origin, at least in part, may<br />

have been from solid, principally volcanic<br />

materials, rich in Si <strong>and</strong> AI,<br />

with the Mg brought to the site in<br />

'solution. Accor<strong>di</strong>ng to LOPEZ­<br />

AGUAYO et al. (1985) they may originate<br />

from the alteration of continental<br />

basalts.<br />

Palygorskite is a typical product of<br />

chemical precipitation in alkaline<br />

basins, with a high ionic concentration<br />

associated with carbonate precipitation<br />

(WEAVER & BECK, 1977).<br />

This type of basin normally has a<br />

very limited communication with the<br />

open sea or is completely isolated, resulting<br />

in a stratification accor<strong>di</strong>ng<br />

to the density of the water column. It<br />

is worth noting that organic matter<br />

occurs with considerable frequency<br />

in this type of basin. With regard to<br />

the manner in which this mineral<br />

precipitates, WOLLAST et al. (1968)<br />

maintain that when the pH is above


256 A. L6pez Galindo, M.C. Comas Minondo, P. Fenoll Hach-Ali, M. Ortega Huertas<br />

7, it can occur <strong>di</strong>rectly in the presence<br />

of appreciable quantities of Si<br />

<strong>and</strong> Mg. On the other h<strong>and</strong>, VON<br />

RAD & BERGER (1972) suggest that<br />

it arises from a transfomation qf<br />

smectite in Mg rich solutions if the<br />

materials contain a sufficient quantity<br />

of silicon hydrogels in their pores.<br />

These would derive from the devitrification<br />

of volcanic glass at high pH,<br />

or the <strong>di</strong>ssolution of the shells of<br />

siliceous organisms.<br />

All of the above leads to the conclusion<br />

that the precipitation of palygorskite<br />

is brought about by local<br />

concentrations of Si02 <strong>and</strong> Ab03 in a<br />

saline environment, with pH between<br />

8 <strong>and</strong> 9.<br />

-- ---~~--- -- --rn:conclusiOn~we woul"d-like to provide<br />

a tentative picture of the physiography<br />

of the se<strong>di</strong>mentary environment<br />

in which the materials<br />

under <strong>di</strong>scussion in this paper were<br />

dep~~i!~~:_~ -~13-£IA_:p(J~NAS &<br />

COMAS (1983) maintain that the<br />

<strong>di</strong>fferent formations of the Subbetic<br />

Zone, dating from between the<br />

Aptian to the Lower Senonian<br />

accumulated in a suspended basin,<br />

situated on an extensive continental<br />

margin.<br />

Within this general physiographical<br />

scheme we think that the South<br />

Middle Subbetic may correspond to<br />

a more southerly, deeper realm of<br />

black-shales <strong>and</strong> the North Middle<br />

Subbetic to a shallower realm of<br />

clayey pelagic limestone with bituminous<br />

levels. Both troughs were to a<br />

certain extent restricted, with anoxic<br />

con<strong>di</strong>tions, which might vary from<br />

,_age to age, <strong>and</strong> were affected by turbi<strong>di</strong>tic<br />

materials brought down from<br />

adjacent higher levels.<br />

REFERENCES<br />

BARAHONA FERNANDEZ E., 1974. Arcillas de ladrilleria de la provincia de Granada: Evaluaci6n de<br />

algunos ensayos de rnaterias prirnas. Ph. D. Thesis. University of Granada, Spain.<br />

BrscAYE P.E., 1965. Mineralogy <strong>and</strong> se<strong>di</strong>mentation of recent deep-sea clay in the Atlantic Ocean <strong>and</strong><br />

adjacent seas <strong>and</strong> oceans. Geol. Soc. Am. Bull.76, 803-832.<br />

BoURGOIS J., 1980. Pre-triassic fit <strong>and</strong> alpine tectonics of continental blocks in the western Me<strong>di</strong>terranean:<br />

Discussion. Geol. Soc. Am. Bull. 99, 332-334.<br />

BRADLEY W.F., GRIM R.E., 1961. Mica Clay Minerals. Pp. 208-241, in: The X-ray Identification <strong>and</strong><br />

Crystal Structures of Clay Minerals (G. Brown, e<strong>di</strong>tor), Mineralogical Society, London. .<br />

COMAS MINONDO M.C., 1978. Sabre la geologia de los Mantes Orientales. Se<strong>di</strong>mentaci6n y evoluci6n<br />

paleogeografica desde el Jurasico al Mioceno inferior (Zona Subbetica, Andalucia). Ph. D. Thesis,<br />

University of Bilbao.<br />

CoMAS M.C., Rurz 0RTIZ P.A., VERA JA, 1982. El Cretacico de las Unidades Interme<strong>di</strong>as y de la Zona<br />

Subbetica. Pp. 570-603, in:


Pelagic Cretaceous Black-Greenish M.udstones ... 257<br />

GARCIA-DUENAS V., 1967. Geologia de la Zona Subbetica al N de Granada. Ph. D. Thesis, University of<br />

Granada, Spain.<br />

GARCIA-DUENAS V., CoMAS M.C., 1983. Paleogeografia Mesozoica de las Zonas Extemas Beticas coma<br />

horde de la Placa Iberica entre el Atlantico y la Mesogea. Pp. 526-527. in: Acta X Cong. Nac.<br />

Se<strong>di</strong>m., Menorca.<br />

GARCIA-HERNANDEZ M., LOPEZ GARRIDO A., RIVAS P., SANZ DE GALDEANO C., VERA J.A., 1980. Mesozoic<br />

paleogeographic evolution of the External Zones of the Betic Cor<strong>di</strong>llera. Geol. en Mijnbouw 59,<br />

155-168.<br />

JENKYNS H.C., 1980. Cretaceous anoxic events: from continents to oceans. J. Geol. Soc. London 137,<br />

171-188. . •<br />

LOPEZ-AGUAYO F,, SEBASTIAN PARDO E., HUERTAS F., LINARES J.;·1985. Mineralogy <strong>and</strong> Genesis of the<br />

«Fardes Formation» Bentonite, Middle Subbetic, Granada Province, Spain. These Procee<strong>di</strong>ngs.<br />

LOPEZ GALINDO A., SEBASTIAN PARDO E., SANCHEZ VINAS M., 0RTEGA HUERTAS M., 1983. Natrojarosita<br />

en las hemipelagitas de la Formaci6n Fardes (Cretaceo, Cor<strong>di</strong>lleras Beticas). Bol. Soc. esp. Min. 7,<br />

69-79. ~<br />

LOPEZ GALINDO A., 1984. Intercalaciones arcillosas en turbi<strong>di</strong>tas: hemipelagitas y pelitas turbi<strong>di</strong>ticas.<br />

Interpretaci6n en base a su mineralogia (Cretacico me<strong>di</strong>a-superior, Cor<strong>di</strong>lleras Beticas, Andalucia).<br />

Tesis Licenciatura, University of Granada, Spain.<br />

MALOD J.A., 1982. Comparaison de /'evolution des marges continentales au nord et au sud de la<br />

Peninsule Iberique. These d'Etat, Mem. Se. Terre, Univ. Curie, Paris.<br />

SANZ DE GALDEANO C., 1973. Geologia de la transversal Jaen-Frailes (Prov. de Jaen). Ph. D. Thesis<br />

University Granada, Spain.<br />

SCHLANGER S.O., JENKYNS H.C., 1976. Cretaceous oceanic anoxic events: causes <strong>and</strong> consequences.<br />

Geol. en Mijnbouw 55, 179-184.<br />

ScHULTZ L.G., 1964. Quantitative in,terpretation of mineralogical composition from X-ray <strong>and</strong> chemical<br />

data for the Pierre Shale. Prof. Pap. U.S. geol. Surv. 391-C.<br />

VERA J.A., 1981. Correlaci6n entre las Cor<strong>di</strong>lleras Beticas y otras cor<strong>di</strong>lleras alpinas durante el Mesozoico.<br />

Pp. 125-160, in: «Programa Internacional de Correlaci6n Geol6gica PICG>>. Real Acad.<br />

Ciencias Exactas, Fisicas y Naturales.<br />

VoN RAD U., BERGER W.H., 1972. Cretaceous <strong>and</strong> cenozoic se<strong>di</strong>ments from the Atlantic Ocean. Pp.<br />

787-954, in: «Initial Reports of the Deep Sea Drilling Project, XIV>> (Ha yes D.E. et al., e<strong>di</strong>tors),<br />

Washington (U.S. Gov. Printing Office).<br />

WEAVER C.E., BECK K.C., 1977. Miocene of the, SE USA: A model for chemical se<strong>di</strong>mentation in a<br />

perimarine environment. Se<strong>di</strong>mentary Geology 17, 1-234.<br />

WILD! W., 1983. La chafne tello-rifaine (Algerie, Maroc, Tunisie): structure, stratigraphie et evolution<br />

du Trias au Miocene. Rev. Geol. Dyn. Geogr. Phys. 24, 201-297.<br />

WoLLAST R., MACKENZIE F.T., BRICKER O.P., 1968. Experimental precipitation <strong>and</strong> genesis of sepiolite<br />

at earth-surface con<strong>di</strong>tions. Am. Miner. 53, 1645-1661.


t<br />

I


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 259-266 (1985)<br />

Clay Minerals of Miocene-Pliocene Materials<br />

at the Vera Basin, Almeria, Spain.<br />

Geological Interpretation<br />

E. GALAN 1 , M. GONZALEZ LOPEZ 2 , C. FERNANDEZ NIETO 2 , I. GONZALEZ<br />

DIEZ 3<br />

I Departamento de Geologia, Facultad de Quimica, Universidad de Sevilla, Apartado 553, 41071 Sevilla, Espafla<br />

' Departamento de Cristalografia y Mineralogia, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza,<br />

Espafla<br />

3 Secci6n de Geologia de la Rabida, Universidad de Sevi!la, Huelva, Espafla<br />

ABSTRACT - Clay mineralogy of marly materials of two sections from the<br />

Vera Basin (western Me<strong>di</strong>terranean) have allowed to <strong>di</strong>fferenciate two types<br />

of se<strong>di</strong>mentary environmental con<strong>di</strong>tions during the Miocene-Pliocene transition.<br />

At the end of the Messinian times, se<strong>di</strong>mentation occurred in a brack:<br />

ish environment, lacustrine or perimarine, characterized by the following<br />

clay mineral s.uite: illite + smectite ± palygorskite ± sepiolite ± chlorite/<br />

kaolinite ± paragonite. Later these con<strong>di</strong>tions were slowly changed <strong>and</strong><br />

finally during the Pliocene times se<strong>di</strong>mentation took place in an open marine<br />

environment. These last materials are characterized by an assemblage of<br />

illite + smectite + chlorite/kaolinite ± paragonite.<br />

In the first environment illite was degraded to smectites, <strong>and</strong> palygorskite<br />

(<strong>and</strong> sepiolite) was probably formed by neoformation, or by transformation<br />

from illite or smectite. In the open marine environment detrital illite, coming<br />

from a source area which supposedly underwent an anchimetamorphic<br />

process, practically preserved its high crystallinity, <strong>and</strong> increased its percentage,<br />

whereas transformed or neoformed clay minerals decreased.<br />

Introduction.<br />

The_ Miocene-Pliocene boundary at<br />

the Vera Basin, western Me<strong>di</strong>terranean<br />

(Almeria, Spain), has been interpreted<br />

<strong>di</strong>fferently by various authors<br />

on the basis of stratigraphical<br />

<strong>and</strong> paleontological investigations<br />

(BIZON et al., 1974; MONTENANT et<br />

al., 1976; GONZALEZ DONOSO &<br />

SERRANO, 1977; CITA et al., 1978-<br />

1980; CARRASCO et al., 1979; ·etc.).<br />

CITA et al. (1978-1980) have recognized<br />

in this basin characteristics of a<br />

brackish, shallow-water environment<br />

for se<strong>di</strong>ments that underlie Early<br />

Pliocene open-marine marls, <strong>and</strong><br />

overlie Late Tortonian to Messinian<br />

marine turbi<strong>di</strong>tes, while BIZON et al.<br />

(1974) <strong>and</strong> CARRASCO et al. (1979)<br />

found no evidence of marine se<strong>di</strong>mentation<br />

<strong>di</strong>scontinuity during the<br />

Miocene-Pliocene transition.<br />

The present paper is a contribution<br />

to the determination of paleoenviron-


T<br />

260 E. Galtin, M. Gonztilez, L6pez, C. Ferntindez Nieto, I. Gonztilez Dlez<br />

mental con<strong>di</strong>tions of the Miocene-<br />

Pliocene boundary in the western c<br />

Me<strong>di</strong>terranean basin, by means of the<br />

interpretation of the clay mineral<br />

assemblages found in Neogene materials<br />

of the Vera Basin.<br />

Materials <strong>and</strong> methods<br />

The sections stu<strong>di</strong>ed are situated at<br />

«Los Palacios» <strong>and</strong>


Clay Minerals,of Miocene-Pliocene Materials-at the Vera ... 261<br />

to methods <strong>and</strong> data of SCHULTZ<br />

(1964), BISCAYE (1965), MARTIN<br />

The clay minerals identified in the<br />


a) Section<br />

Samples Q c D F H y A<br />

108 10 34 8 9 39<br />

107 8 39 7 tr 43<br />

106 8 36 6 tr 49<br />

105 5 47 6 42<br />

104 7 39 6 9 tr 38<br />

121 7 42 6 tr 42<br />

120 9 40 6 5 tr 39<br />

119 5 44 6 45<br />

118 11 46 6 tr 35<br />

117 11 52 5 32<br />

116 5 44 6 5 40<br />

115 9 so 8 tr 32<br />

113 9 38 6 tr tr 42<br />

112 8 36 tr tr tr 46<br />

111 7 46 tr tr 44<br />

97 11 44 8 tr . 34<br />

96 8 42 7 tr tr 38<br />

95 8 44 tr tr 44<br />

94 8 48 tr tr 40<br />

93 7 46 5 tr 41<br />

92 9 so tr tr 36<br />

91 11 54 6 tr 28<br />

90 8 53 4 tr 34<br />

Q = Quartz; C = Calcite; D = Dolomite; F =; Felspars; H = Halite; Y = Gypsum· A =<br />

Phyllosilicates · :


a) «Canada de Vera» Section<br />

TABLE 2<br />

Mineralogical composition of < 2 11m fractions<br />

Sample I Pr Sm Ch+K Pa Sp<br />

80 68 17 15<br />

79 63 tr 21 16<br />

78 38 53 8<br />

77b 34 42 7 17<br />

77 49 40 tr 7<br />

76c 40 tr 55 5<br />

76b 40 tr 39 tr 16<br />

76 37 6 51 6<br />

75c 47 43 10<br />

7Sb 36 59 6<br />

75 45 tr 47 8<br />

74c 48 46 6<br />

74b 29 so tr 20<br />

74 34 tr 36 tr 25 tr<br />

73c 26 52 tr 20<br />

73b 31 tr 52 tr 13<br />

73 27 tr 49 tr 20 tr<br />

72c 27 59 tr 11<br />

72b 26 tr 52 tr 20<br />

72 25 tr 51 tr 15 tr<br />

71 61 8 17 14<br />

70 21 59 tr 19<br />

69 29 49 tr 16 tr<br />

68 41 tr 16 9 34<br />

67 40 tr 22 36<br />

66 41 54 5<br />

65 45 46 9<br />

64c 23 tr 63 tr 10<br />

64b 41 52 tr 5<br />

64 23 tr 57 tr 13 tr<br />

b) «Los Palacios» Section<br />

"<br />

Sample Pr Sm Ch+K Pa Sp<br />

108 65 11 13 10<br />

107 69 6 13 12<br />

106 52 5 41 7<br />

105 62 5 28 10<br />

104 51 5 40 9<br />

121 48 6 40 6<br />

120 62 tr 30 5<br />

119 38 tr 57 5<br />

118 43 tr 52 tr<br />

117 60 tr 34 7<br />

116 58 tr 35 7-·<br />

115 so tr 41 5<br />

113 -29 tr 56 tr 9<br />

112 45 5 30 7 14<br />

111 30 5 52 tr 13<br />

97 34 45 tr 18<br />

96 23 tr Si tr 20 tr<br />

95 30 39 7 24<br />

94 43 57<br />

93 36 62 tr<br />

92 28 tr 54 13 5<br />

91 ' 39 42 19<br />

90 22 78 tr<br />

I= Illite; Pr = Paragonite; Sm = Smectites; Ch = Chlorite; K = Kaolinite; Pa= Palygorskite;<br />

Sp = Sepiolite · '


264 E. Galan, M. Gonzalez, L6pez, C. Fem<strong>and</strong>ez Nieto, I. Gonzalez D!ez<br />

sal<br />

"' 79~<br />

ffi 78<br />

~ 77 b<br />

.: 76c 77 ±::=..<br />

76b76 ..____<br />

?Se<br />

E._<br />

" "'~E_<br />

~ .. ~<br />

i: 67r--<br />

66r---<br />

65;--<br />

64c L--<br />

64b<br />

64i----<br />

~~-~---,<br />

E= ER §;__<br />

~ r:- ~ ~<br />

~ ~ ~ ~<br />

w~<br />

t= =<br />

==- F t ~<br />

4 mm 7 9 11 13 a.1 a.2 a.3 a.4 a.s 125 175 22s 2is 325 A a.s a.s a.? a.8<br />

( 1) (2) (3) (4) (5)<br />

------~· -~--~Fig7~---Gaiiada-de-Vera. {1-) K:ublerlndex; (2) Height/half-height width of the peak at 10 A; (3) I 002 I<br />

I 001 ratio for illite; (4) Crystal size of illite (on 001); (5) Biscaye Index.<br />

r<br />

!<br />

' I<br />

I<br />

1a8<br />

1a7<br />

1a6<br />

1a5<br />

1a4<br />

"' a;<br />

g 121<br />

12a<br />

;;! 119<br />

118<br />

117<br />

116<br />

'<br />

Approximate 115<br />

113<br />

boundary 112<br />

111<br />

~ r==. L----<br />

I<br />

I<br />

'<br />

~<br />

E<br />

E<br />

~<br />

~pproximate ~~ ~ 75 ~<br />

bo~~;;y- ;j ~74 ~~~~<br />

73 b 73 t::::------<br />

72 c t::=:::-<br />

"t=-<br />

96<br />

95 .<br />

~<br />

"'<br />

"l<br />

~<br />

L<br />

" 93<br />

~I L_<br />

92<br />

L<br />

m<br />

j__<br />

91 .<br />

9a l=,<br />

a 2 4 mm 7 9 11 13 a.1 a.2 a.3 a.'4 a:s 1 5 175 225 275 32s !\ at a.'s a.'7 a.8 '<br />

(1) (2) (3) (4) (5)<br />

J<br />

Fig. 3 - Los Palacios.


Clay Minerals of Miocene-Pliocene Materials at the Vera ... 265<br />

anchimetamorphic con<strong>di</strong>tions (WE­<br />

BER et al., 1976).<br />

The intensity ratio of the 001 <strong>and</strong><br />

002 reflections is usually rather low<br />

(


T !<br />

266 E. Galtin, M. Gonzalez, L6pez, C. Fern<strong>and</strong>ez Nieto, I. Gonzalez Diez<br />

minerals found in these sections (clay<br />

mineral suites, <strong>and</strong> crystal chemicaL<br />

data of the principal clay minerals)<br />

suggests a change of se<strong>di</strong>mentary environmental<br />

con<strong>di</strong>tions which occurred<br />

during the Miocene-Pliocene<<br />

bound;:try at the Vera Basin. At the<br />

beginning se<strong>di</strong>mentation occurred in<br />

.. _a_bracldslLemdronment,lacustrine.or<br />

perimarine, <strong>and</strong> later these con<strong>di</strong>~<br />

tions were slowly changed to open<br />

marine ones. This change pra:ctically<br />

coincides with the Miocene-Pliocene<br />

transition at the Vera Basin.<br />

REFERENCES<br />

' BARAHONA FERNANDEZ E., 1974. Arcillas de ladrilleria de la provincia de Granada: Evaluaci6n de<br />

algunos ensayos de materias primas. Ph. D. Thesis n. 49, University of Granada, 398 pp.<br />

·BISCAYE P.E., 1965. Mineralogy <strong>and</strong> se<strong>di</strong>mentation of recent deep-sea clays in the Atlantic Ocean <strong>and</strong><br />

adjacent seas <strong>and</strong> oceans. Geol. Soc. Am. Bull. 76, 803-832.<br />

BIZON G., BIZON J.J., MONTENANT C., RENEVILLE P., 1974. Exemple de continuite marine Mio-Pliocene<br />

en Me<strong>di</strong>terranee occidentale: le bassin de Vera (Cor<strong>di</strong>lleres Betiques. Espagne meri<strong>di</strong>onale). Compt.<br />

Rend. Congr. C: I.E.S.M. Monaco, 5 pp. · V<br />

--------·-·--··--GARRASGQ f., GONZALEZ-DONOSO _J .M.,-LINARES D., RODRIGUEZ !'., SERRANO F., 1979. C ontribuci6n al<br />

conocimiento dellimite Mioceno-Plioceno en el dominio del Me<strong>di</strong>terraneo accidental: las secciones<br />

de Los Palacios y Canada de Vera. (Almeria, Espafia). Estu<strong>di</strong>os geol. 35, 559-567.<br />

CITA M.B., VISMARA ScHILLING A., BossiO A., 1978-1980. Stratigraphy <strong>and</strong> paleoenvironmental of the<br />

Cuevas de Almanzora section (Vera Basin, Spain). A re-interpretation. Abstracts Messinian Seminar<br />

4 (Roma) <strong>and</strong> Riv. Ita!. Paleont. 86, n. 1, 215-240.<br />

CULLITY B.D., 1964. Elements ofX-ray <strong>di</strong>ffraction. Ad<strong>di</strong>son-Wesley Pub. Co., London, 514 pp.<br />

GALAN E., CASTILLO A., 1984. Sepio[ite-Pa[ygorskite in <strong>Spanish</strong> Tertiary basins: genetical patterns in<br />

continental environments. Pp. 87-124, in: Palygorskite-Sepiolite. Occurrences, Genesis <strong>and</strong><br />

Uses, (A. Singer <strong>and</strong> E. Galan, e<strong>di</strong>tors), Developments in Se<strong>di</strong>mento\ogy 37, Elsevier.<br />

GONZALEZ DoNoso J.M., SERRANO F., 1977. Precisiones sabre la bioestratigrafia del carte de Cuevas de<br />

Almanzora. Cuad. Geol. Univ. Granada 8, 241-251.<br />

GREENE-KELLY R., 1953. Identification ofmontmorillonoids. J. Soil Sci. 4, 233-237.<br />

HUERTAS F., 1969. Minerales fibrosos de la arcilla. Su genetica en cuencas se<strong>di</strong>mentarias espafiolas y<br />

sus aplicaciones tecnol6gicas. Ph. D. Thesis, University of Madrid, 284 pp.<br />

KUBLER B., 1968. Evaluation quantitativedu metamorphisme par la cristallinite de l'illite. Bull. Cent.<br />

Rech. Pau., S.N.P.A. 2/2, 258-307:<br />

MARTIN PoZAs J.M., 1968. El antilisis mineral6gico cuantitativo de Ios filosilicatos de la arcilla por<br />

<strong>di</strong>fracci6n de rayos-X. Ph. D. Thesis, University of Granada, 244 p. ·<br />

MONTENANT D., BIZON G., BIZON J.J., 1976. Continuite ou <strong>di</strong>scontinuite de se<strong>di</strong>mentation marine<br />

Mio-Pliocene en Me<strong>di</strong>terranee occidentale. L'exemple du Bassin de Vera (Espagne Meri<strong>di</strong>onale).<br />

Rev. Inst. Fran. Petrole 31, (4), 613-663.<br />

SCHULTZ L.G., 1964. Quantitative interpretation of mineralogical composition from X-ray <strong>and</strong> chemical<br />

data for the Pierre Shale. Geol. Surv. Prof. Paper 391c, 31 pp. ·<br />

SEBASTIAN PARDO E., RODRIGUEZ GALLEGO M., LOPEZ AGUAYO F., 1980. Mineralogia de Ios inateria/es<br />

plioceno-pleistocenos de la Depresi6n de Gua<strong>di</strong>x-Baza. Ill. Formaciones de Baza y Ser6n-Caniles.<br />

,Consideraciones generales y conclusiones. Estu<strong>di</strong>os geol. 36, 289-299.<br />

WEAVER C.E., BECK K.C., 1977. Miocene of the S.E. United States. A model for chemical se<strong>di</strong>mentation<br />

inperi-marine environment. Se<strong>di</strong>mentary Geology 17, 1-234. ·<br />

WEBER F., DUNOYER DE SENGOZAC G., EcoNOMOU C., 1976. Une nouvelle expression de la cristallinite de<br />

l'illite et des micas. Notion d'epaisseur apparente des cristallites. C.R. somm. Soc. Geol. Fr. 5,<br />

225-227.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 267-276 (1985)<br />

Clay Mineral Distribution in the Evaporitic<br />

Miocene Se<strong>di</strong>ments of the Tajo Basin, Spain<br />

J.M. BRELL 1 , M. DOVAU, M. CARAMES 2<br />

I Departamento de Estratigrafia y Geologia Hist6rica, Facultad de Geologia, Universidad Complutense, 28040<br />

Madrid, Espafta ·<br />

2 Departamento de Cristalografia y Mineralogia, Facultad de Geologi,;:', Universidad Complutense, 28040 Madrid,<br />

Espafta<br />

ABSTRACT- The ba~in of the Tajo river is a Tertiary tectonic depression filled<br />

by detrital material in its borders, evaporitic formations in the central part<br />

<strong>and</strong> se<strong>di</strong>ments of interme<strong>di</strong>ate nature in between. Lateral changes of facies<br />

are frequent <strong>and</strong> sudden which introduce many problems when stratigniphic<br />

correlations are sought.<br />

This paper establishes for the northermost zone of the basin, five stratigraphic<br />

units with important mineraldgical <strong>di</strong>fferences. The_ clay mineral<br />

assemblages correspon<strong>di</strong>ng to each one of these units are the following:<br />

- Massive gypsum unit: trioctahedral illite <strong>and</strong> smectite with minor<br />

amounts of kaolinite <strong>and</strong> seldom chlorite;<br />

- Tabular gypsum <strong>and</strong> clays unit: illite mainly <strong>di</strong>octahedral, smectite <strong>and</strong><br />

as minor constituents kaolinite <strong>and</strong> mixed-layer minerals;<br />

- Greenish clays unit: trioctahedral smectite as the major constituent with<br />

illite <strong>and</strong> small amount~ of kaolinite <strong>and</strong> mixed-layer minerals;<br />

- Limestone, marls <strong>and</strong> clays unit: the same composition as the above unit;<br />

- Arkoses unit: <strong>di</strong>octahedral illite <strong>and</strong> smectite, <strong>and</strong> kaolinite.<br />

The general mineralogical sequence is formed by illite <strong>and</strong> minor amounts of<br />

Mg-smectite in the lower part. The clays in the middle part are mainly<br />

Mg-smectite while in the upper part they are Al-smectite <strong>and</strong> illite.<br />

The mineralogical characterization of these units allows correlations in<br />

several areas of the basin to be formulated, as well as provi<strong>di</strong>ng in<strong>di</strong>cations<br />

of the se<strong>di</strong>mentary environments during the deposition of all these materials.<br />

Introduction<br />

The Tajo basin is a Tertiary depression<br />

located in the central part of<br />

the. Iberian Peninsula, bordered by<br />

three mountain ranges (Fig. 1). The<br />

northern <strong>and</strong> southern borders are<br />

formed by igneous <strong>and</strong> metamorphic<br />

rocks, <strong>and</strong> the boundaries are defined<br />

by several tectonic events of late<br />

Hercynian age, reactivated during<br />

the Tertiary. Reactivation happened<br />

during a compressive stage <strong>and</strong> gave<br />

dse to normal <strong>and</strong>· reverse faults<br />

which locally overthrust the igneous<br />

basement over Tertiary se<strong>di</strong>ments.<br />

The eastern border is constituted by<br />

the Iberian Range which is made up<br />

of se<strong>di</strong>mentary rocks of Mesozoic <strong>and</strong><br />

Paleozoic ages. Se<strong>di</strong>l;nentation in the<br />

basin occurred mainly during the


T<br />

268 J.M. Brell, M. Doval, M. Carames<br />

Fig. 1 - Location map. 1: Tertiary; 2: Mesozoic; 3: metamorphic rocks; 4: igneous rocks.<br />

Miocene with materials derived from the basin evolution. For these<br />

erosion of the surroun<strong>di</strong>ng mountains.<br />

However, in depth, Cretacic<br />

<strong>and</strong> Paleogene se<strong>di</strong>ments are found<br />

outcropping locally with small thicknesses<br />

at the northern part of. the<br />

basin.<br />

The. Miocene · se<strong>di</strong>ments, show a<br />

more or less concentric setting, forming<br />

zones roughly symmetrical with<br />

regard to the central part. Laterally,<br />

a transition between detrital <strong>and</strong> e­<br />

vaporitic facies can be observed, from<br />

the borders to the center of the basin<br />

<strong>and</strong> materials of interme<strong>di</strong>ate features<br />

occur between both facies<br />

(RIBA, 1957; BENAYAS et al., 1960).<br />

In the vertical <strong>di</strong>rection this arrangement<br />

becomes complicated due to<br />

the large variations of weathering<br />

energy <strong>and</strong> support <strong>di</strong>rections during<br />

reasons, some of the facies become<br />

extensive over the others giving rise<br />

to complex suites. Generally speaking,<br />

three Miocene megasequences<br />

can be established for the whole of<br />

the basin (TORRES et al., 1984) separated<br />

by barely visible unconformities,<br />

whose temporal significance is<br />

doubtfoul. General mineralogical features<br />

of clays from this basin have<br />

been described by ALONSO et al.<br />

(1961), HUERTAS et al. (1970; 1971),<br />

<strong>and</strong> compiled by GALAN et al. (1984).<br />

The area stu<strong>di</strong>ed is located in the<br />

northern part of the basin at the west<br />

of the Madrid meri<strong>di</strong>an. Five lithostratigraphic<br />

units were established<br />

after the present study. These units<br />

follow each other in the vertical as<br />

well as in the horizontal sense. The


Clay Mineral Distribution in the Evdpori.tic Miocene ... 269<br />

passing from one to another unit is<br />

realized through facies changes; all<br />

the units are easily recognizable in<br />

the field <strong>and</strong> can be used as cartographicones.<br />

Their correlation with<br />

similar more easternly located<br />

formations, lets one attribute them to<br />

a Middle Miocene (Aragoniense) age<br />

(ALBERDI et al., 1983). In Fig. 2 the<br />

geographical location of each unit is<br />

shown.<br />

Mineralogy<br />

Massive gypsum unit<br />

It is the lower unit found in the<br />

northern part of the Tajo basin. It is<br />

formed of thick layers of macrocrystalline<br />

gypsum con tammg thin<br />

clayey levels. Its bottom canr'iot be<br />

observed <strong>and</strong> the thickness reaches<br />

40 m. Gypsum layers show varying<br />

colours due to the presence of notahle ·<br />

impurities, mainly of clay minerals,<br />

quartz, <strong>and</strong> micritic magnesite. The<br />

assemblage has been affected by<br />

strong recrystallization processes<br />

masking its original texture. Towards<br />

the basin center, layers ofanhydrite,<br />

halite, <strong>and</strong> in some cases glauberite,<br />

epsomite or thenar<strong>di</strong>te are interbedded<br />

between gypsum. Locally, these<br />

salts are exploited (GARCIA DEL<br />

CURA, 1979).<br />

The clayey interbed<strong>di</strong>ngs are constituted<br />

by phyllosilicates (80%),<br />

quartz (10%) <strong>and</strong> feldspar minerals.<br />

The main phyllosilicates ·are illite<br />

mainly trioctahedral (70-100%),<br />

trioctahedral smectites (20%) <strong>and</strong><br />

kaolinite (5%). Occasionally, minor<br />

quantities of chlorite appear. Except<br />

for illite, the phyllosilicates show a<br />

very low crystallinity. Variations of<br />

mineralogy along this sequence are<br />

rare. Nevertheless, the illite ratio increases<br />

towards the top at the expense<br />

of the smectite content.<br />

Fig. 2- Stratigraphic relationships of the Miocene units. 1: Massive gypsum; 2: Tabular gypsum<br />

<strong>and</strong> clays; 3: Greenish clays; 4: Limestone, marls <strong>and</strong> clays; 5: Arkoses.


270 J.M. Brell, M. Doval, M. Carames<br />

Tabular gypsum <strong>and</strong> clays unit<br />

There is a continuous transition upwards<br />

from the previous unit to a new<br />

one constituted by an alternation<br />

of tabular gypsum <strong>and</strong> clays whose<br />

thiCkness reaches 40 m. In some<br />

places of the basin an apparent unconformity<br />

can be observed between<br />

both units, although it cannot be<br />

established for the whole area. Gypsum<br />

appears as levels of varying<br />

thickness ranging from a few centimeters<br />

to about 2 m '<strong>and</strong> shows nodular,<br />

fibrous, tabular, selenitic, ... textures.<br />

Alte-rnating with gypsum, there<br />

are grayish clay layers with parallel<br />

lamination <strong>and</strong> bearing vegetable deb-<br />

- ··----- -----rrs.-There-are a1so several intercalations<br />

of dolomicrite <strong>and</strong> magnesite.<br />

The clay interbed<strong>di</strong>ngs are mainly<br />

composed of phyllosilicates <strong>and</strong><br />

minor amounts of quartz <strong>and</strong> feldspar.<br />

The ratios of <strong>di</strong>fferent phyllosilicates<br />

are rather varying. However,<br />

it can be said that illite is the major .<br />

constituent in the lower part (50-<br />

70%) while in the uppermost part<br />

smectite becomes more abundant<br />

than illite. Minor constituents are<br />

kaolinite <strong>and</strong> mixed-layer minerals,<br />

chiefly illite-smectite <strong>and</strong> chloritesmectite.<br />

Illite is mainly <strong>di</strong>octahedral '<br />

<strong>and</strong> shows low cristallinity <strong>and</strong> smectite,<br />

also poorly crystallized is of the<br />

trioctahedral type.<br />

Greenish clays unit<br />

This unit is made up of nearly 40 m<br />

of green clays with some intercalations<br />

of micaceous s<strong>and</strong>s in its lower<br />

... middle __ part,~ <strong>and</strong>~c:arbonates in the<br />

upper one. In some cases they appear<br />

as massive clays very rich in organic<br />

matter, sometimes containing<br />

nodules of barite <strong>and</strong> showing abundant<br />

bioturbation marks. In other<br />

cases they show a well developed paF<br />

allel lamination. S<strong>and</strong>y levels, composed<br />

of biotite <strong>and</strong> chlorite, show<br />

crossed or parallel laminations forming<br />

fining-upward sequences with<br />

bioturbation at the top. Carbonatic<br />

rocks are mainly white marls or<br />

dolostones <strong>and</strong> form fairly continuous<br />

levels.<br />

The clay mineralogy involves a<br />

considerable abundance of phyllosilicates<br />

with minor amounts of quartz<br />

<strong>and</strong> feldspars. Dioctahedral <strong>and</strong><br />

trioctahedral illite together with<br />

trioctahedral smectite are the main<br />

clay minerals. The smectite content<br />

reaches 90% in some samples, <strong>and</strong><br />

never is lower than 50% of the whole·<br />

sample. Small amounts of kaolin:ite<br />

<strong>and</strong> mixed-layer minerals are present.<br />

A very significant feature of this<br />

unit is the presence of some pinkish<br />

clay levels which are very porous <strong>and</strong><br />

composed only of chlorite-smectite<br />

mixed-layers (DOVAL et al., 1985).<br />

In the northern part greenish clays<br />

are covered by the arkosic leveJs of<br />

the upper unit in a contact which is<br />

frequently erosive. In the central part<br />

(Cerro de los Angeles) its top is constituted<br />

by siliceous rocks. Towards the<br />

south <strong>and</strong> east, there is a gradual<br />

transition from clays to carbonatic<br />

materials. Carbonates are more developed<br />

in the south. There they


Clay Mineral Distribution in the Evaporitic Miocene ... 271<br />

spread towards the basin center,<br />

where they lie <strong>di</strong>rectly over the gypsum<br />

units.<br />

Limestones, marls <strong>and</strong> clays unit<br />

It is made ~p of nearly 35 m of<br />

white carbonatic rocks with interlayers<br />

of grey <strong>and</strong> green clays <strong>and</strong><br />

partly constitutes a facies change<br />

from the clayey levels of the prece<strong>di</strong>ng<br />

unit.<br />

The carbonates show a . fineme<strong>di</strong>um<br />

bed<strong>di</strong>ng in the lower part of<br />

the unit, In the upper part, they are<br />

coarse-bedded <strong>and</strong> show a rather<br />

massive aspect. At the top they occur<br />

partly silicified <strong>and</strong> often contain<br />

lens-shaped chert levels whose thickness<br />

<strong>and</strong> continuity increase upwards<br />

becoming a continuous bed. The carbonates<br />

are constituted by mi~ritic<br />

dolostones, or limestones. . In some " of<br />

the beds, lens-shaped calcite pseudomorphs<br />

can be observed as well as<br />

bioturbation marks.<br />

The clay interbed<strong>di</strong>ng is mainly<br />

composed of trioctahedral smectite<br />

(50-90%) with <strong>di</strong>octahedral <strong>and</strong> trioctahedral<br />

illite (up to 30%) <strong>and</strong> minor<br />

amounts of kaolinite. Towards the<br />

top of the unit there are some sepiolitic<br />

<strong>and</strong> palygorskitic levels, fairly<br />

related to the siliceous rocks: Their<br />

thickness is quite variable <strong>and</strong> they<br />

are exploited in some places as in<br />

Cerro Batallones.<br />

Arkoses· unit<br />

This unit constitutes the detrital<br />

. bordering facies of the Central System<br />

characterized by its arkosic composition.<br />

It is the same as the so<br />

called


1<br />

272 J.M. Brell, M. Doval, M. Carames<br />

be found in these <strong>di</strong>stal zones, representing<br />

the transition to the Greenish<br />

clays unit.<br />

Sepiolitic layers are found at the<br />

top of many sequences, often associ-.<br />

ated with siliceous or carbonatic<br />

rocks. Their extent <strong>and</strong> thickness<br />

vary <strong>and</strong> in some cases are partly<br />

eroded. The main features of these<br />

sepiolite deposits have been pointed<br />

out by GALAN (1979; 1984). In these<br />

suites, although stratigraphically<br />

lower, there are zeolitic levels,<br />

formed manily of calcium zeolites<br />

(mordenite, heulan<strong>di</strong>te). Is is evident<br />

that the mineralogy of these zones of<br />

the basin is very complex <strong>and</strong> the reiationships--b-etween<br />

the <strong>di</strong>fferent authigenic<br />

minerals have not yet been<br />

established. In Fig. 3, the most representative<br />

X-ray traces of the <strong>di</strong>fferent<br />

mineralogical assemblage are shown.<br />

Discussion<br />

The Tajo basin has been always rec<br />

garded as an endorheic basin filled by<br />

an active se<strong>di</strong>mentation process<br />

occurring under semiarid climatic<br />

62 60 29 25 21<br />

17 13 2El<br />

1.49 1.51 1.54 3.34 4.45 4.97<br />

7.13 10.04 14.7<br />

Fig. 3 A - X-ray <strong>di</strong>ffraction patterns of unoriented representative clay fractions ( < 2 ~m) from the<br />

<strong>di</strong>fferent units. 1,2,3,4,5 as in Fig. 2.<br />

0<br />

A


20<br />

Clay Mineral Distribution in the Evaporitic Miocene ... 273<br />

16 12 8 4 28<br />

4.97 7.13 1o.o4 14.7 17.6 $.<br />

con<strong>di</strong>tions. This view is supported by<br />

the considerable development of e-<br />

58 vaporitic materials as well as the immaturity<br />

features of the bordering<br />

arkosic facies.<br />

The general log for the area stu<strong>di</strong>ed<br />

(Fig. 4) in<strong>di</strong>cates that with the pas-<br />

48 sage of time, a transition to a damper<br />

climate occurred even though the<br />

general classification as semiarid<br />

con<strong>di</strong>tions still is valid. The decrease<br />

of evaporites in going up the se­<br />

. quence, together with a simultaneous<br />

increase of detritic materials, as well<br />

as the presence of levels with abundant<br />

organic matter <strong>and</strong> bioturbation<br />

marks along with the sprea<strong>di</strong>ng<br />

38<br />

out of arkoses towards the center of<br />

the basin confirm this transition.<br />

The arkose levels show a mineralogical<br />

composition fairly similar to<br />

that of the surroun<strong>di</strong>ng granitic rocks<br />

of the Central System. It can be supposed<br />

that <strong>di</strong>octahedral smectites<br />

proceed from muscovite or feldspar<br />

minerals. The increase of smectite in<br />

the more <strong>di</strong>stal zones can be interpreted<br />

as due to its smaller particle<br />

size. A clear influence of igneous<br />

rocks on the se<strong>di</strong>mentation is maintained<br />

by the <strong>di</strong>stal arkosic materials.<br />

In these levels, there are often<br />

interbed<strong>di</strong>ngs ~f high magnesium<br />

minerals such as sepiolite, together<br />

with· chert <strong>and</strong> carbonates, whose<br />

chemical compositions seem very<br />

.<strong>di</strong>fferent from those of arkoses or<br />

Fig. 3 B - X-ray <strong>di</strong>ffraction patterns of oriented<br />

representative clay fractions(< 2 IJ.ID) from the<br />

<strong>di</strong>fferent units. A: air dried; B: treated with eth-<br />

ylene glycol. 1,2,3,4,5 as in Fig. 2.<br />

granitic rocks, as shown by APAR­<br />

ICIO et al. (1975) <strong>and</strong> LOPEZ RUIZ et<br />

al. (1975). From this place <strong>and</strong> basinwards<br />

all the units present a high<br />

percentage in Mg-rich phyllosilicates


274<br />

J.M. Brell, M. Doval, M. Carames<br />

0 50 100<br />

LITHOLOGY<br />

ll<br />

--'<br />

I·.·.·.· .j<br />

Biotitic s<strong>and</strong>s<br />

ll<br />

-Clays<br />

I<br />

!I====~#H~~ttti~<br />

~---<br />

E~~~};~<br />

Limestones/Marls<br />

Tabular gypsum<br />

e·lll•<br />

..........<br />

;<br />

I<br />

I<br />

I<br />

I·<br />

I<br />

lliilll.<br />

~~


Clay Mineral Distribution in the Ew:iporitic Miocene ... 275<br />

TABLE 1<br />

Chemical analyses of smectite-rich clay fractions<br />

2 3 4 5 6 7 8 9 10<br />

SiOz 54.20 55.30 54.20 50.30 53.10 51.90 52.80 49.80 50.00 50.30<br />

Alz03 3.80 2.70 2.50 5.50 3.80 2.40 21.70 26.60 18.90 5.80<br />

Fez03 0.45 0.52 0.90 2.10 1.40 1.80 6.65 4.90 5.10 2.35<br />

FeO 0.40 0.38 0.15 0.74 0.65 0.20 0.74 0.65 0.25 0.70<br />

CaO 0.19 0.21 0.69 0.27 0.87 1.20 2.20 1.85 1.70 0.90<br />

M gO 25.70 27.30 27.60 26.40 27.30 26.80 2.90 3.10 3.70 25.25<br />

Na 2 0 0.21 0.24 0.16 0.17 0.32 0.61 0.85 0.70 0.64 0.47<br />

K20 0.49 0.53 0.24 1.10 0.63 0.27 1.90 1.24 1.35 0.22<br />

HzO ± 14.70 12.83 13.90 13.32 11.65 14.70 9.90 11.15 19.15 14.00<br />

1,2: Tabular gypsum <strong>and</strong> clays unit; 3,4,5: Greenish clays unit; 6: Limestone, marls <strong>and</strong> clays<br />

unit; 7,8,9,10: Arkoses unit<br />

(Table 1). These assemblages must<br />

represent a very <strong>di</strong>fferent geochemical<br />

environment, probably due to a<br />

very <strong>di</strong>ff~rent source area. High-Mg<br />

minerals seem in many cases to have<br />

a neoformation oiigin as observed in<br />

the Cerro Batallones where fi,brous<br />

clay minerals are found associat~d<br />

with thick siliceous levels.<br />

Trioctahedral smectites show a<br />

more doubtful genesis, as sometimes<br />

they are associated to detrital facies<br />

but in other cases, they form more or<br />

less continuous pure levels: In any<br />

case, chemical analyses in<strong>di</strong>cate a<br />

very <strong>di</strong>fferent composition of these<br />

minerals from that of arkosic facies<br />

(Table 1). The provenance of these<br />

minerals must be searched for at the<br />

westernmost zones of the basin. In<br />

the area stu<strong>di</strong>ed, it can be seen that<br />

the green clays became progressively<br />

s<strong>and</strong>y westwards (VEGAS, 1975)<br />

changing around Pinto <strong>and</strong> Valdemoro<br />

to biotite-chlorite s<strong>and</strong>s, which<br />

<strong>di</strong>sappear under the arkosic facies<br />

near the locality of Parla.<br />

The occurrence in the green clays<br />

of interbed<strong>di</strong>ng of pinkish levels basically<br />

formed by a chlorite-smectite<br />

mixed-layer mineral might in<strong>di</strong>cate<br />

that at least in part, smectite is a result<br />

of chlorite transformation.<br />

The question of the genesis of the<br />

siliceous levels also arises. Se<strong>di</strong>ments<br />

from all the units in<strong>di</strong>cate a very low<br />

alteration of the source area, since<br />

they contain considerable amounts of<br />

feldspars, biotite <strong>and</strong> chlorite.<br />

Edaphic alterations can only be<br />

found in some of the arkosic levels,<br />

<strong>and</strong> they always are limited in extent.<br />

In the Central System traces of<br />

noticeable alteration processes are<br />

not seen. It is <strong>di</strong>fficult under these<br />

circumstances to think that the silica<br />

originates from the alteration of<br />

igneous minerals.<br />

All these features allow the Tajo to<br />

be considered as an evaporitic basin<br />

with a very complex evqlution, showing<br />

some peculiar characteristics<br />

which make it very <strong>di</strong>fferent from<br />

others described in geological papers<br />

all over the world. ·


276 J.M. Brell, M. Doval, M. Carames<br />

r' I<br />

~<br />

I<br />

!,<br />

REFERENCES<br />

ALBERDI M.T., HOYOS M., JuNCO F., LOPEZ MARTINEZ N., MORALES J.,- SESE C., SORIA M.D., 1983.<br />

Biostratigraphie et evolution se:<strong>di</strong>mentaire du Neogene continental de l'aire de Madrid. Pp. 1.5-18,<br />

in: «Me<strong>di</strong>terranean Neogene continental paleoenvironments <strong>and</strong> paleoclimatic evolution».<br />

Interim-Colloquium, RCMNS, Montpellier. .<br />

ALONSO J., GARCIA VICENTE J., RIBA 0., 1961. Se<strong>di</strong>mentosfinos del centra de la cubeta terciaria del Tajo.<br />

Pp. 21-55, in: Proc. 2nd Reuni6n Gr. Espaiiol Se<strong>di</strong>mentologia, C.S.I.C., Madrid.<br />

APARICIO A., BARRERA J., CARBALLO J.M., PEINADO M., T!NAO J.M., 1975. Los materiales graniticos<br />

hercinicos del Sistema Central Espafzol. Mem. Inst. Geol. Min. de Espaii.a 86, 145 p.<br />

BENAYAS J., PEREZ MATEOS J., RIBA 0., 1960. Asociaci6n de minerales detriticos en la Cuenca del Tajo.<br />

Anal. Edaf. Agrobiol. 19, 635-670.<br />

DoVAL M., RODAS M., RUIZ AMIL A., ARAGON F., 1985. !nterstratified Minerals in <strong>Spanish</strong> Se<strong>di</strong>mentary<br />

F acies: Lower Part of the Keuper in the Siguenza Area <strong>and</strong> the Tajo Basin, Central Spain. Abstract,<br />

These Procee<strong>di</strong>ngs. · .<br />

GALAN E., 1979. The fibrous clay minerals in Spain. Pp. 239-249, in: Proc. 8'h Conf. Clay Min. <strong>and</strong><br />

Petrol., Teplice.<br />

GALAN E., CASTILLO A., 1984. Sepiolite-Palygorskite in <strong>Spanish</strong> Tertiary basins: Genetical patterns in.<br />

continental environments. Pp. 87-124, in: Palygorskite-Sepiolite. Occurrences, Genesis <strong>and</strong> Uses<br />

(A. Singer <strong>and</strong> E. Gal


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 277-286 (1985)<br />

Fluvial Pelitic Supplies from the Apennines to the<br />

Adriatic Sea. I- The Rivers of the Abruzzo Region<br />

L. TOMADIN 1 , P. GALLIGNANF, V. LANDUZZF, F. OLIVERP<br />

' Istituto <strong>di</strong> Mineralogia e Petrografia, Facolta <strong>di</strong> Scienze, Universita <strong>di</strong> Urbino, Via M. Od<strong>di</strong> 14, 61029 Urbino,<br />

Italia<br />

2 Istituto <strong>di</strong> Geologia Marina, CNR, Via Zamboni 65, 40127 Bologna, Italia<br />

ABSTRACT- The tributary rivers of the coastal belt between S. Benedetto del<br />

Tronto <strong>and</strong> Punta Penna (Abruzzo Region, central Italy) were investigated in<br />

order to characterize the composition <strong>and</strong> the se<strong>di</strong>mentological behaviour of<br />

the suspended load. Three fluvial mineralogical facies emphasize a regional<br />

<strong>di</strong>fferentiation of the se<strong>di</strong>ments from north to south, <strong>and</strong> a <strong>di</strong>fferent provenance<br />

of illite <strong>and</strong> smectite, the most abundant day minerals. High amounts<br />

of illite are carried by the Tronto River, whereas a high smectite content is<br />

present in the suspended load of the Sangto River. The final composition of<br />

the fluvial supplies entering the sea shows an which depends<br />

on the .clay minerals inherited from the drained formations, or on their<br />

enrichment due to the river hydrodynamics.<br />

Introduction<br />

A large part of the modern se<strong>di</strong>ments<br />

of the Adriatic Basin is made<br />

of detrital pelitic materials, <strong>di</strong>strib.­<br />

uted in belts parallel to the axis of<br />

the basin (BRAMBATI et al., 1983).<br />

The extensive literature on the pelitic<br />

se<strong>di</strong>ments emphasizes the main<br />

supply from the Po River (NELSON,<br />

1972; PIGORINI, 1968; TOMADIN,<br />

1981; VENIALE et al., 1973; 1977).<br />

Little is known instead on the minor<br />

supplies debouching into the Adriatic<br />

(BRONDI et al., 1982; QUAKER-<br />

NAAT, 1968; TOMADIN, 1969).<br />

Among these, particular attention<br />

must be given to the Apenninic supplies,<br />

which, even if of reduced<br />

volume in comparison with those of<br />

the Po River, play an important role<br />

in shallow-water se<strong>di</strong>mentation close<br />

to the <strong>Italian</strong> coast. In fact, the present<br />

investigation on the pelitic supplies<br />

of the ·rivers debouching between<br />

S. Benedetto del Tronto <strong>and</strong><br />

Punta Penna (Abruzzo Region, centr-al<br />

Italy) (Fig. 1) was begun in connection<br />

with a research program on<br />

the continental shelf near the Middle<br />

Adriatic Depression.<br />

Contribution n. 557 of the Istituto per la Geologia Marina - CNR, Bologna (Italy).


278 L. Toma<strong>di</strong>n, P. Gallignani, V. L<strong>and</strong>uzzi, F. Oliveri<br />

S.Benedetto<br />

5<br />

[J<br />

L' Aquifa<br />

14<br />

.._.<br />

C Chieti<br />

18<br />

17<br />

Avezzano<br />

[J<br />

Sulmona<br />

[J<br />

19<br />

21<br />

0 10 30 50 km<br />

ci'Abruzzo • Samples of fluvial muds<br />

Fig. 1 - Sample location along the rivers of the Abruzzo Region.<br />

Field <strong>and</strong> laboratory methods<br />

The research was performed on the<br />

fine-grained deposits left in the river<br />

channel after the streamflow of a<br />

flood episode had receded. Samples<br />

were collected 24-48 hours after a<br />

seasonal flood in July 1982. The se<strong>di</strong>ments,<br />

a few millimeters thick, consist<br />

of mud <strong>and</strong> correspond, accor<strong>di</strong>ng<br />

to MONACO (1971) <strong>and</strong> POTTER<br />

et al. (197 5), to the finest particles


Fluvial Pelitic Supplies from thelfp(mnines ... 279<br />

transported by the rivers as suspension<br />

loads. Two situations were frequently<br />

recognized during sampling:<br />

a fine mud layer deposited on s<strong>and</strong><br />

beds (A) or <strong>di</strong>rectly on gravel b~1.rs (B)<br />

(Fig. 2).<br />

For a correct recognition of the<br />

drained materials, the sampling was<br />

referred to the whole watercourse.<br />

The number of sampling sites along<br />

the rivers (Fig. 1) depended on the<br />

geology <strong>and</strong> the ero<strong>di</strong>bility of the<br />

drainage basins. In fact, the grainsize<br />

<strong>di</strong>stribution of the alluvium<br />

changes unstea<strong>di</strong>ly l<strong>and</strong>ward depen<strong>di</strong>ng<br />

on the occurrence of argillaceous<br />

to marly to calcareous formations<br />

(Fig. 3). Consequently, we found<br />

that headward of definite points, all<br />

the alluvium is formed of calcareous<br />

gravels without the former mud cover.<br />

The analytical procedures follow<br />

the routine already described previously<br />

(TOMADIN, 1969). The mud<br />

samples were analyzed by X-ray <strong>di</strong>ffraction:<br />

a) on oriented slides to determine<br />

the clay minerals of the


280 L. Toma<strong>di</strong>n, P. Gallignani, V. L<strong>and</strong>uzzi, F. Oliveri<br />

~1<br />

ill2<br />

I


Across the upper «Laga Formation>><br />

(sample 3) the clays are completely<br />

composed of illite (>90%) <strong>and</strong> chlorite.<br />

When the river flows through the<br />

Plio-Pleistocenic terrains before debauching<br />

to the sea, the composition<br />

of the se<strong>di</strong>ments becomes indeed<br />

illite-chlorite, with lower quantities<br />

of smectite <strong>and</strong> kaolinite.<br />

The most important characteristic<br />

of the Tronto River clays is thus a remarkable<br />

abundance of illite (60-<br />

90%). Among the non-clay minerals,<br />

carbonates are scattered along the<br />

whole watercourse. Feldspars instead<br />

decrease from the Miocenic to the<br />

Pliocenic terrains (from sample 3 to<br />

sample 2).<br />

The Vomano River flows from the<br />

Gran Sasso Massif <strong>and</strong> collects waters<br />

from its northern slope (Fig. I} It<br />

crosses the same geologic formation~<br />

of the Tronto River in a ,narrow belt<br />

(Fig. 3). The typical clay mineral<br />

assemblage of these fluvial se<strong>di</strong>ments<br />

is illi te-smecti te with minor amounts<br />

of chlorite <strong>and</strong> kaolinite. In the<br />

Vomano drainage basin the transition<br />

.from the «Laga Formation» to<br />

the clays of the Pliocene is also detectable<br />

by clay mineralogy. Carbonates<br />

<strong>and</strong> quartz are regularly <strong>di</strong>stributed<br />

along the watercourse. A considerable<br />

increase of dolomite below<br />

the confluence of the Tavone stream<br />

(samples 10 <strong>and</strong> 9) (Fig. 1) is due to<br />

supplies from the Gran Sasso Massif.<br />

The Sangro River drains very <strong>di</strong>fferent<br />

terrains (Fig. 3). From the river<br />

head to s~mple 23, it crosses Miocenic<br />

marly s<strong>and</strong>stones <strong>and</strong> clayey<br />

marls interstratified with Jurassic<br />

Fluvial Pelitic Supplies from the Apem1Xn~s ... 281<br />

dolomitic limestones of the Montagna<br />

Gr<strong>and</strong>e <strong>and</strong> of the Monti della Meta.<br />

The clay se<strong>di</strong>ments of the upper Sangro<br />

course are characterized by the<br />

illite-smectite assemblage, with<br />

minor amounts of kaolinite <strong>and</strong> chlorite<br />

in decreasing order. The same<br />

composition of the se<strong>di</strong>ments is also<br />

found through the Flysch terrains of<br />

the Oligo-Miocene (Samples 22, 21,<br />

20). A sharp compositional change<br />

occurs when the Sangro River meets<br />

the «argille scagliose» <strong>and</strong>/or «argille<br />

varicolori>> (samples 19, 18), when<br />

the typical assemblage is given by<br />

predominant smectite-kaolinite <strong>and</strong><br />

lower illite <strong>and</strong> chlorite percentages.<br />

In the lower Sangro course, across<br />

the clays of the Lower-Middle<br />

Pliocene (sample 17) <strong>and</strong> s<strong>and</strong>s <strong>and</strong><br />

clays of the Pleistocene (samples 16,<br />

15), the composition of the fluvial<br />

clays becomes: smectite-illitekaolinite<br />

with minor amounts of<br />

chlorite. The <strong>di</strong>fferentiation of the<br />

se<strong>di</strong>m~nts observed along the whole<br />

Sangro course is marked by the nonclay<br />

minerals of the coarser fractions.<br />

While calcite is always present in<br />

high amounts, dolomite is abundant<br />

only in the Miocenic formations<br />

(samples 23, 22, 21, 20). Dolomite is<br />

completely absent downstream in the<br />

river segment through the Aventino­<br />

. Sangro «argille varicolori» (samples<br />

19, 18), <strong>and</strong> then reappears in small<br />

amounts in the terminal se<strong>di</strong>ments of<br />

the Sangro River. Quartz is generally<br />

present in high percentages <strong>and</strong><br />

shows the highest amounts in samples<br />

21, 20, 19, 18. This probably originated<br />

from flint particles in nodu-


T<br />

282 L. Toma<strong>di</strong>n, P. Gallign(mi, V. L<strong>and</strong>uzzi, F. Oliveri<br />

lar cherts of the limestones of the<br />

Molise <strong>and</strong> Umbria facies.<br />

The se<strong>di</strong>ments of Tor<strong>di</strong>no, Tavo­<br />

Saline <strong>and</strong> Pescara Rivers (Fig. 1)<br />

show a mineral composition similar<br />

to that of the Vomano River se<strong>di</strong>ments.<br />

On the contrary, the se<strong>di</strong>ments<br />

of the Sinello River are comparable<br />

to the materials recognized in<br />

the lower course of the Sangro River.<br />

Discussion<br />

The analysis of the flood-deposited<br />

pelitic se<strong>di</strong>ments evidences a succession<br />

of <strong>di</strong>fferent mineralogical<br />

assemblages <strong>di</strong>stributed~ along the<br />

watercourse, <strong>di</strong>rectly linked to the<br />

lithofacies of the geological formations<br />

drained by the rivers. Such<br />


-<br />

Fluvial Pelitic Supplies from the Apennines~. 283<br />

characterized by increasing smectite<br />

. <strong>and</strong> decreasing illite contents. Comparable<br />

amounts of chlorite <strong>and</strong><br />

kaolinite are a peculiar aspect.<br />

c - The Sangro River facies ex~<br />

hibits the highest smectite <strong>and</strong> the<br />

lowest illite percentages. The<br />

kaolinite/chlorite ratio is on the average<br />

>1.<br />

The variation of the clay mineral<br />

percentages in the three facies is<br />

given in Fig. 4.<br />

The identification of horizontal<br />

zoning along the watercourses, <strong>and</strong><br />

the recognition of mineralogical<br />

facies which <strong>di</strong>ffer from north to<br />

south, allow some regional remarks,<br />

significant from the se<strong>di</strong>mentological<br />

point of view. Thus the provenance of<br />

the clay minerals supplied to the<br />

Adriatic Sea: can be related to the<br />

geology. In fact, considerable<br />

amounts of illite from the «Laga<br />

Format!on» are transported to. the<br />

sea by the Tronto <strong>and</strong> Vomano Rivers.<br />

Smectite-rich supplies from the<br />

flysch deposits <strong>and</strong> from the


0<br />

284 L. Torna<strong>di</strong>n, P. Gallignani, V. L<strong>and</strong>uzzi, F. Oliveri<br />

affect the pelitic se<strong>di</strong>ments, we can<br />

consider the trend of smectite concentrations<br />

downstream versus sampling<br />

<strong>di</strong>stance from the river mouths<br />

(Fig. SA). It is easy to nC>tice that<br />

smectite increases seawards.<br />

Similar results have been already<br />

observed both on minor watercourses<br />

(MONACO, 1971) <strong>and</strong> throughout the<br />

whole Mississippi basin (POTTER et<br />

al., 1975). They depend on the higher<br />

amount of transport by suspension of<br />

smectite particles, characterized<br />

(GRIM, 1968) by very small grainsize<br />

if compared with other clay<br />

minerals. The suspended load increases<br />

seaward with the water<br />

volume of the river, <strong>and</strong> the amount<br />

---~--~ofsmectite-inthe load increases likewise.<br />

Such an increase is. evident<br />

along the Sangro River <strong>and</strong> the<br />

Vomano River, whereas there .is an<br />

opposite trend along the Tronto River.<br />

For the comprehension of the phenomenon<br />

it is necessary to remember<br />

that the former rivers carry a<br />

smectite-rich load <strong>and</strong> the latter<br />

shows on the contrary a very high<br />

ilfli:e content~" Moreover, since the<br />

two most abundant clay minerals<br />

(illite <strong>and</strong> smectite) amount to about<br />

80% of the total, the «closing balance»<br />

of the percent data comes into ·<br />

effect. Therefore the illite concentrations<br />

show an opposite trend in respect<br />

to the smectite conc.entrations<br />

along the watercourses (Fig. 6A).<br />

In order to analyze the behaviour<br />

of the crystallinity of smectites (v/p<br />

ratio) <strong>and</strong> of illites (na. value) along<br />

the rivercourses, other <strong>di</strong>agrams<br />

have been considered. The general<br />

trend of the v/p ratio shows smectites<br />

characterized by me<strong>di</strong>um to good<br />

crystallinity, <strong>and</strong> referable to the<br />

three mineralogical facies (Fig. SB).<br />

The na. values show large fluctuations<br />

in the fluvial se<strong>di</strong>ments between<br />

moderate to poorly organized illites<br />

(Fig. 6B). The trends observed are<br />

controlled by the chemistry of waters<br />

an~ solutes (as natural ions, pollut-<br />

80 A<br />

Sm<br />

0.2<br />

~L<strong>and</strong>ward<br />

Seawar_d _<br />

o+-~---.--,---r--.--.---~Km~f~r~om~s~ea<br />

90 60<br />

Fig. 5 -Trends of smectite amounts (A) <strong>and</strong> of smectite crystallinity (v/p ratio) (B) downstream of<br />

the three main regional rivers.


Fluvial Pelitic Supplies from the Apenriines ...<br />

285<br />

9.6<br />

30<br />

10<br />

- L<strong>and</strong>ward<br />

·-·"<br />

17 16<br />

I .<br />

19 ___.18 15<br />

Seaward- 1.0 - L<strong>and</strong>ward Seaward ...:._<br />

o+---.--,---.--~--~--.--.~Km~·~frrom~, ~se~a<br />

90 60 30<br />

Fig. 6- Trends of illite amounts (A) <strong>and</strong> of illite crystallinity (na value) (B) downstream of the three<br />

main regional rivers.<br />

ants, etc.), but at present they are<br />

not comparable because of the, absence<br />

of similar data in the literature.<br />

. "<br />

More extensive investigations should<br />

permit better knowledge of the behaviour<br />

of clay minerals transported<br />

by river streams to be obtained.<br />

In the end section of a rivercourse,<br />

the suspended load acquires a fina1<br />

composition, which remains, accor<strong>di</strong>ng<br />

to the Authors, constant at least<br />

for a single season. In the rivers of the<br />

Abruzzo Region, the final composition<br />

of the suspended load exhibits a<br />

peculiar «imprinting» that may be<br />

inherited from the clay minerals of<br />

the drained formation (as for example,<br />

the illite content of the Tronto<br />

River se<strong>di</strong>ments), or may depend on a<br />

progressive clay mineral enrichment<br />

toward the mouth of the rivers (as for<br />

example, the smectite along the Sangro<br />

River course).<br />

Conclusions<br />

The clay mineralogy of finegrained<br />

se<strong>di</strong>ments collected along<br />

the main rivers of the Abruzzo Region,<br />

characterizes the fluvial supplies<br />

to the Adriatic Sea. Based on the<br />

analytical data <strong>and</strong> se<strong>di</strong>mentological<br />

remarks the following conclusions<br />

can ne drawn:<br />

1-- The se<strong>di</strong>ments deposited from<br />

suspension loads after the streamflow<br />

of a flood receeds, show a succession<br />

of <strong>di</strong>fferent mineralogical<br />

assemblages along the watercourse.<br />

\ 2 -- This horizon tal zoning depends<br />

on the li thofacies of the<br />

drained formations <strong>and</strong> from the extension<br />

of the correspon<strong>di</strong>ng belts<br />

eroded by the rivers.<br />

3 -- As a matter of fact, three<br />

mineralogical facies recognizable in


286 L. Toma<strong>di</strong>n, P. Gallignani, V. L<strong>and</strong>uzzi, F. Oliveri<br />

the fluvial se<strong>di</strong>ments of the Region,<br />

emphasize a gradual <strong>di</strong>fferentiation<br />

of the composition of the se<strong>di</strong>inents ··<br />

from north to south, <strong>and</strong> a variable<br />

provenance of the most abundant<br />

clay minerals (illite <strong>and</strong> smectite)<br />

carried by the rivers to the Adriatic.<br />

4 - The final composition of the<br />

suspended load before entering the<br />

sea~ ~shows an.-· «imprinting» due to<br />

the clay minerals inherited along the<br />

rivercourse, or to their enrichment.<br />

seaward depen<strong>di</strong>ng on the hydrodynamics.<br />

REFERENCES<br />

BELVISO R., CHERUBINI C., COTECCHIA V., DEL PRETE M., FEDERICO A., 1977. Dati <strong>di</strong> compos'izione<br />

mineralogica delle argille varicolori affioranti nell'Italia meri<strong>di</strong>onale tra i fiumi Sangro e Sinni.<br />

Atti 2° Congr. Naz. sulle Argille 1976, Bari, Geol. Appl. Idrogeol. 12, parte II, 123-142.<br />

BISCAYE P .E., 1964. Distinction between chlorite <strong>and</strong> kaolinite in recent se<strong>di</strong>ments by X-ray <strong>di</strong>ffraction.<br />

Am. Miner. 49, 1281-1289.<br />

BISCAYE P.E., 1965. Mineralogy <strong>and</strong> se<strong>di</strong>mentation of recent deep-sea clay in the Atlantic Ocean <strong>and</strong><br />

adjacent seas <strong>and</strong> oceans. Geol. Soc. Am. Bull. 76, 803-832.<br />

BRAMBATI A., CIABATTI M., FANZUTTI G.P., MARABINI F., MAROCCO R., 1983. A new se<strong>di</strong>mentological<br />

- ·-textural-map·oftheNorthern··<strong>and</strong>--CentralAdriatic Sea. Boil: Oceanol. Teorica e Applicata 14,<br />

267-271.<br />

BRONDI A., ANSELMI B., FERRETTI 0., 1982. Stu<strong>di</strong> sui parametri geologici rilevanti al fine della determinazione<br />

della contaminazione ambientale del territorio nazionale. Rapporti fra litologia delle terre<br />

emerse e composizione mineralogica della frazione argillosa dei se<strong>di</strong>menti fluviali dei piu importanti<br />

fiumi italiani (II Parte). Rend. Soc. It. Min. Petr. 38 (3), 1299-1313.<br />

GRIM R.E., 1968. Clay Mineralogy. McGraw-Hill, New York.<br />

MONACO A., 1971. Etude mineralogique des argiles fluviatiles du Roussillon. Bull. B.R.G .M. IV I, 33-45.<br />

NELSON B.W., 1972. Mineralogical <strong>di</strong>fferentiation of se<strong>di</strong>ments <strong>di</strong>spersed from the Po Delta. Pp. 441-<br />

453, in: The Me<strong>di</strong>terranean Sea, a natural se<strong>di</strong>mentation laboratory (D.J. Stanley, e<strong>di</strong>tor),<br />

Dowden, Hutchinson & Ross, Stroudsbourg.<br />

PIGORiiu B., 1968. Sources <strong>and</strong> <strong>di</strong>spersion of recent se<strong>di</strong>ments of the Adriatic Sea. Marine Geology 6,<br />

187-229.<br />

POTTER P.E., HELING D., SHIMP N.F., VAN WIE W., 1975. Clay mineralogy of modern alluvial muds of<br />

the Mississippi River Basin. Bull. Centre Rech. Pau- SNPA, 9 2, 353-389.<br />

Pozzuou A., MATTIAS P., GALAN-HUERTOS E., 1973. Mineralogia <strong>di</strong> se<strong>di</strong>menti abruzzesi. I. -Relazione<br />

fra depositi argillosi miocenici e quaternari. Per. Min. 41, 3, 611-655.<br />

QuAKERNAATiJ., 1968. X-ray analyses of clay minerals in some recent fluviatile se<strong>di</strong>ments along the<br />

coasts of central Italy. Ph. D. Thesis, University of Amsterdam.<br />

ToMADIN L., 1969. Ricerche sui se<strong>di</strong>menti argillosi fluviali dal Brenta al Reno. Giorn. Geol. 36, 159-<br />

184.<br />

TOMADIN L., 1981. Provenance <strong>and</strong> <strong>di</strong>spersal of clay minerals in recent se<strong>di</strong>ments of the Central<br />

Me<strong>di</strong>terranean Sea. Pp. 311-324, in: Se<strong>di</strong>mentary basins of Me<strong>di</strong>terranean margins (P.C. Wezel,<br />

e<strong>di</strong>tor), CNR, <strong>Italian</strong> Project of Oceanography, Tecnoprint, Bologna.<br />

VENIALE F., SOGGETTI F., PIGORINI B., DAL NEGRO A., ADAMI A., 1973. Clay mineralogy of bottom<br />

se<strong>di</strong>ments in the Adriatic Sea. Pp. 249-258, in: Proc. Int. Clay Con£. 1972, Madrid (J.M. Serratasa,<br />

e<strong>di</strong>tor), C.S.I.C.<br />

VENIALE F., SOGGETTI F., SANTAGOSTINO C., 1977. La <strong>di</strong>stribuzione dei minerali argillosi nei se<strong>di</strong>menti <strong>di</strong><br />

fondo del Mare Adriatico. II- «Mesofossa» e «Fossa» centro-meri<strong>di</strong>onali. Atti 2o Congr. Naz.<br />

sulle Argille 1976, Bari, Geol. Appl. Idrogeol. 12, parte II, 287-298.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 287-301 (1985)<br />

Polygenesis of Sepiolite <strong>and</strong> Palygorskite in a<br />

Fluvio-Lacustrine Environment in the<br />

Neogene Basin of Madrid<br />

S. LEGUEY, M. POZO, J.A. MEDINA<br />

Departamento de Geologfa y Geoqufmica, Facultad de Ciencias, Universidad Aut6noma de Madrid, 28049 Madrid,<br />

Espaiia<br />

ABSTRACT- The genesis of sepiolite <strong>and</strong> palygorskite bearing beds located in<br />

the south of Madrid (Spain) were stu<strong>di</strong>ed. Three stages of formation are<br />

<strong>di</strong>fferentiated as a function of the climatic <strong>and</strong> tectose<strong>di</strong>mentary evolution:<br />

Genesis in paleosoils<br />

- Sepiolite genesis in vertisols from Mg-smectite that releases silica;<br />

- Palygorskite genesis in calcretes. ·<br />

Diagenetic genesis of sepiolite <strong>and</strong>/or palygorskite at the bottom <strong>and</strong> the top<br />

of silcrete beds. ·<br />

Lacustrine genesis of sepiolite or palygorskite.<br />

The sizes of sepiolite <strong>and</strong> palygorskite aggregates are less than 1 ~m in<br />

lacustrine environment whereas their sizes are 1-5 ~m in paleosoils. In <strong>di</strong>agenesis,<br />

sizes of 2-6 ~m are found for palygorskite <strong>and</strong> sepiolite aggregates<br />

reach 10-50 j.lm. '<br />

Introduction<br />

The Neogene basin of Madrid contains<br />

sepiolite <strong>and</strong> palygorskite deposits.<br />

Various quarries are present<br />

where deposits are particularly abundant<br />

(GALAN, 1979). Numerous authors<br />

have stu<strong>di</strong>ed the regional geology<br />

of the Madrid 'Basin. Among the<br />

latest stu<strong>di</strong>es mention should be<br />

made of the works by ALIA & CA­<br />

POTE (1971), LOPEZ VERA (1975),<br />

.MARTIN ESCORZA (1976),<br />

VAUDOUR (1977), MEGIAS (1980)<br />

<strong>and</strong> MEGIAS et al. (1983). All these<br />

authors agree that there exist three<br />

principal facies in the basin: one<br />

containing salts, a transitional<br />

carbonatic-clayey one <strong>and</strong> an arkosiC<br />

facies.<br />

Sepiolite <strong>and</strong> palygorskite deposits<br />

are found in the transitional facies,<br />

between a bed of greenish clay materials,<br />

rich in magnesium, <strong>and</strong> arkosic<br />

materials of varying grain size at the<br />

top. The mineralogical composition<br />

of these materials_ has been stu<strong>di</strong>ed<br />

by BENAYAS' et al. (1960), ALONSO<br />

et al. (1961), HUERTAS et al. (1971),<br />

PEREZ MATEOS & VAUDOUR<br />

(1972), BUSTILLO (1976; 1982),<br />

ORDONEZ & GARCIA DEL CURA<br />

(1983) <strong>and</strong> LEGUEY et al. (1984a).<br />

The genesis of the sepiolite <strong>and</strong><br />

palygorskite deposits has been inter-


288 S. Leguey, M. Pozo, J.A. Me<strong>di</strong>na<br />

preted in several <strong>di</strong>fferent ways, depen<strong>di</strong>ng<br />

on <strong>di</strong>screpancies in the<br />

strategic position of the arkosic materials.<br />

GALAN (1979) <strong>and</strong> GALAN &<br />

CASTILLO (1984), assuming a refilled<br />

model of the Neogene basin with<br />

lateral changes of facies, <strong>di</strong>stinguish<br />

two types of deposits. The former of<br />

these, the Vallecas-Vicalvaro deposits,<br />

are found in <strong>di</strong>stal zones of alluvial<br />

fans with playa lake environments<br />

<strong>and</strong> the principal mineral is sepiolite.<br />

The second, the Esquivias-Cerro de los<br />

Angeles deposits, contain larger proportions<br />

of palygorskite <strong>and</strong> are located<br />

in lacustrine environments.<br />

MEGIAS et al. (1982), consider a compression<br />

model of the Neogene basin<br />

-~----- --~- Tri-whl.Ch the~ arkosic -n:iate~rii:lls ~ouid -<br />

be erosive with respect to other materials.<br />

The same authors, in the fi-<br />

brous mineral genesis, <strong>di</strong>stinguish between.<br />

_.s~pm~Jmgh~_J:!!lcl __ ciistal «on<br />

lap>> facies, precipitation in a lacustrine<br />

environment <strong>and</strong> pedogenic<br />

transformations.<br />

The present study includes an<br />

analysis of the influence of silicification<br />

<strong>and</strong> calcretization on the genesis<br />

of fibrous .clay minerals, in .fluvio-lacustrine<br />

environments related<br />

to seismic-tectonic activity <strong>and</strong> a<br />

subaerial exposure.<br />

Materials <strong>and</strong> methods<br />

The materials stu<strong>di</strong>ed are from a<br />

zone 20 km south of Madrid, between<br />

the villages of V aldemoro <strong>and</strong> Esquivias<br />

(Fig. 1). The l<strong>and</strong>forms consist<br />

of residual reliefs with chert <strong>and</strong><br />

30Km<br />

L----1<br />

fill<br />

L.!JJ~<br />

1 Km<br />

L-.J<br />

EXPLANATION<br />

C~rro Batollone'S<br />

11 Malcovadero<br />

~ Quarry<br />

-{ Slope line<br />

\ Lineot ions<br />

f7<br />

M<br />

I .<br />

1<br />

M: Madrid<br />

Fig. 1 -Location of investigated areas <strong>and</strong> quarries.


carbonate levels at the top (PEREZ<br />

MATEOS & VAUDOUR, 1972). These<br />

reliefs have several NW-SE <strong>and</strong> SW­<br />

NE alignments caused by movements<br />

of the Mio-Pliocene age (MARTIN<br />

ESCORZA, 1976; PORTERO & AZ­<br />

NAR, 1984). The visible part of these<br />

materials contains layers of gypsum<br />

<strong>and</strong> carbonate inserts in the upper<br />

portion upon which there are laminated<br />

green clays of 15 to 20 m.<br />

Sepiolite <strong>and</strong> palygorskite deposits<br />

are found on top of the green clays,<br />

alternating with siliceous <strong>and</strong> carbonate<br />

rocks of varying degrees of<br />

compactness.<br />

Two representative areas were<br />

chosen for a detailed study. One,<br />

close to Valdemoro, is known as Cerro<br />

Batallones <strong>and</strong> contains a predominance<br />

of sepiolite. The other ar~a,<br />

called Malcovadero, is near Esquivias .. ,<br />

<strong>and</strong> its main mineral is palygorskite.<br />

Fieldwork consisted in extracting<br />

li thologic columns <strong>and</strong> taking samples.<br />

The mineral <strong>and</strong> chemical composition,<br />

texture <strong>and</strong> fabric of each<br />

sample were stu<strong>di</strong>ed.<br />

The mineral composition was stu<strong>di</strong>ed<br />

by means ofX-ray powder <strong>di</strong>ffraction<br />

analysis of the whole sample,<br />

<strong>and</strong> of oriented aggregates of the less<br />

than 20 Jlm after the elimination of<br />

carbonates. Semiqu'antitative values<br />

were calculated using reflective powers<br />

(HUERTAS, 1969). The chemical<br />

composition of the principal elements,<br />

organic matter <strong>and</strong> the C/N<br />

ratio were determined.<br />

The texture was stu<strong>di</strong>ed in thinsection<br />

using a optical microscope.<br />

Thin-sections were prepared after<br />

Polygenesis of Sepiolite <strong>and</strong> Palygorskite ... 289<br />

strengthening the samples by drying<br />

them in liquid nitrogen <strong>and</strong> packing<br />

them into methacrylate resin in a<br />

vacuum chamber. The fabric was stu<strong>di</strong>ed<br />

by scanning electron microscopy<br />

(Philips SEM-500), <strong>and</strong> an incorporated<br />

EDAX analysis system.<br />

Results.<br />

CERRO BATALLONES ZONE<br />

Lithology<br />

Observations during fieldwork<br />

allowed the <strong>di</strong>fferentiation of three<br />

units from the base to the top, whose<br />

thicknesses varied from 8 to 12 m.<br />

Clayey Unit<br />

This unit consists of clays <strong>and</strong> an<br />

irregular <strong>di</strong>stribution of siliceous<br />

levels.· Throughout the profile, the<br />

clays undergo changes in colour <strong>and</strong><br />

compactness. In the bottom, the clays<br />

are laminated, compact <strong>and</strong> greenish<br />

in colour. These gradually change to<br />

brown <strong>and</strong> beige clays, depen<strong>di</strong>ng on<br />

the colouring effect of the Fe oxides.<br />

These brown clays are sponge-like,<br />

with a <strong>di</strong>ffuse lamination, <strong>di</strong>vided by<br />

cracks filled with carbonates, <strong>and</strong><br />

with a remainder of thin levels of<br />

green clay. The beige clays are mainly<br />

lumpy in texture with a slight silicification.<br />

In the top layer the clays are<br />

dark-coloured with a scattering of<br />

organic material, carbonate crusts<br />

<strong>and</strong> siliceous lenses. Remains of sil-


290 S. Leguey, M. Pozo, J.A. Me<strong>di</strong>na<br />

icified roots <strong>and</strong> a pronounced prismatic<br />

<strong>di</strong>sjunction are observed.<br />

The development <strong>and</strong> contact of<br />

, the lenticular siliceous bo<strong>di</strong>es are<br />

very irregular, with thicknesses<br />

varying between 0.3 <strong>and</strong> 1.5 m. They<br />

are brechoid in aspect, with concretions<br />

<strong>and</strong> pisolitic forms, containing<br />

beige clay remains <strong>and</strong> with frequent<br />

solution cavities.<br />

Detrital Carbonated Unit<br />

This unit contains detrital-carbonatic<br />

se<strong>di</strong>ments 3 to 6 m thick. The<br />

detrital levels are found in the base<br />

<strong>and</strong> the top of the unit <strong>and</strong> consist of<br />

--- ------~----- ------greeii.iSh sail-dy <strong>and</strong> muddy materials,<br />

( bl .,.


<strong>and</strong> silicification. Partially silicified<br />

lutites appear in levels of 5 to 10 cm.<br />

Mineral <strong>and</strong> Chemical Composition<br />

' Polygenesis ofSepiolite <strong>and</strong> Palygorskite ... 291<br />

chemical analyses made on the main<br />

elements. The data in<strong>di</strong>cate a similar<br />

behaviour of the Al, K, Ti <strong>and</strong> Fe<br />

whose incidence increases considerably<br />

in the zones of the transition of<br />

green clays to brown, <strong>and</strong> in the detrital<br />

levels with prismatic <strong>di</strong>sjunctions.<br />

This incidence undergoes a<br />

marked decrease in siliceous lenticular<br />

bo<strong>di</strong>es containing sepiolite imbed<strong>di</strong>ngs.<br />

Worthy of mention is the<br />

increase in the proportion of Na in<br />

the upper lacustrine limestone levels,<br />

<strong>and</strong> the relatively low incidence of<br />

organic matter, oscillating between<br />

1.7 to 2.2%, <strong>and</strong> a C/N ratio of 26:19.<br />

Mineral Fabric<br />

The results of the mineralogical<br />

analysis of the overall sample appear<br />

in Fig. 2(b). Clay minerals predominate<br />

throughout the profile, except in<br />

intercalated siliceous or carbonate<br />

levels, where they coexist with<br />

quartz, opal CT <strong>and</strong> calcite. Worthy<br />

of mention is the presence of silica<br />

(quartz <strong>and</strong> opal CT) <strong>and</strong> to a lesser<br />

extent of feldspars(potassic <strong>and</strong> calcso<strong>di</strong>c),<br />

in almost all samples.<br />

In the transitional areas of green to<br />

brown clay, calcite is found together<br />

with small quantities of zeolites. Barite<br />

is occasionally found in the green Thin sections of green clays,<br />

clay.<br />

observed under an optical micro-<br />

Results for the fraction less than scope, <strong>di</strong>splay a laminar texture with<br />

20 ).liD are given in Fig. 2(c). Mg- detrital imbed<strong>di</strong>ngs of muscovite,<br />

smectites (reflection (060) at 1.522 A) .J quartz <strong>and</strong> feldspar. Under the scanare<br />

the principal minerals found in ning electron microscope a general<br />

··the green clays; mica appears to a glomerular structure produced by<br />

lesser degree. The occurrence of these 1 mechanical deformations was<br />

minerals progressively decreases in observed. The glomerules contain a<br />

the transition to brown clays. Here, fabric that is partly laminar <strong>and</strong><br />

sepiolite predominantes <strong>and</strong> its partly turbulent, accor<strong>di</strong>ng to the<br />

occurrence becomes exclusive in the classification of SERGEYEV et al.<br />

upper zones of the beige clays. (1978), in which the smectite parti­<br />

Sepiolite together with smectite, des are preferentially aligned (Fig.<br />

mica <strong>and</strong> some palygorskite deposits 3a).<br />

are found in the interme<strong>di</strong>ate levels. The brown clays are irregular in<br />

Sepiolite also appears in the clay in- texture with, microfissures filled<br />

clusions of the siliceous lenticular with calcite, heterogeneous silicificaforms<br />

<strong>and</strong> also in the inserts of clay tion <strong>and</strong> ochre tories. There is a tranlevels<br />

in the upper unit of lacustrine sition in the fabric accor<strong>di</strong>ng to the<br />

limestone.<br />

smectite-sepiolite proportion. When<br />

Figure 2(d) gives the results of the the smectites predominate, the fabric


292 S. Leguey, M. Pozo, J.A. Me<strong>di</strong>na<br />

a<br />

b<br />

Fig. 3 - Scanning electron micrographs of <strong>di</strong>fferent fabric types of smectites <strong>and</strong> sepiolite aggregates:<br />

a- glomerules of laminated smectite with mica inclusions (M); b- fibrous aggregates of sepiolite<br />

in glomerules cracks; c- lumpy aggregates with roots <strong>and</strong> silica spheres (S); d- laminar<br />

aggregates with oriented fibres (L) <strong>and</strong> ra<strong>di</strong>al fibre aggregates (R).<br />

retains part of the characteristics of<br />

that of the green clays, with fine<br />

sepiolite crystals growing in the gaps<br />

(Fig. 3b). With a predominance of<br />

sepiolite, the fabric becomes globular<br />

<strong>and</strong> the sepiolite aggregates cover<br />

elongatedly semi-spherical surfaces.<br />

The size of the crystals <strong>and</strong> fibrous<br />

aggregates in both cases is close to<br />

1-2 llm.<br />

In the detrital levels with prismatic<br />

<strong>di</strong>sjunctions, a heterogeneous lumpy<br />

mass of particles, with remains of<br />

roots <strong>and</strong> with scattered silicification<br />

was observed. Fibrous sepiolite<br />

aggregates appear (Fig. 3c) which fill<br />

pores <strong>and</strong> cracks. The same type of<br />

aggregates, although more isolated,<br />

are observed in the carbonate zones<br />

where lumpy particles appear within<br />

a micritic cement matrix. The average<br />

size of these sepiolite aggregates<br />

varies between 1-5 11m.<br />

The sepiolite aggregates reach<br />

their maximum size in the siliceous<br />

lenticules. Two types of fibrous aggregate<br />

are <strong>di</strong>stinguished: one that is<br />

laminar, measuring close to 10 11m,


(b) •t.


294 S. Leguey, M. Pozo, J.A. Me<strong>di</strong>na<br />

Detritic-carbonated Unit<br />

This unit consists of detrital c ·­<br />

carbonated se<strong>di</strong>ments, of varying<br />

granulation, <strong>and</strong> its thickness ranges<br />

between 2-5 m. The materials in the<br />

bottom are s<strong>and</strong>y-silt with soft green<br />

clay imbed<strong>di</strong>ngs <strong>and</strong> limestone fragments,<br />

which are impregnated by<br />

yellowish carbonates <strong>and</strong> correspond<br />

to debris flow type deposits. At the<br />

upper part, the materials are finer<br />

<strong>and</strong> are comprised of carbonate muds<br />

<strong>and</strong> grey lutites that originate from<br />

clay. Remains of vertebrates can be<br />

seen in these deposits, which are of<br />

the mud flat type. Of interest in this<br />

unit is the presence of an inserted<br />

.. -----------laminated, dark-coloured siliceous<br />

level. This level shows evidence of<br />

slumping <strong>and</strong> contains small compression<br />

faults, which give fol<strong>di</strong>ng<br />

<strong>and</strong> fractures filled with white clays.<br />

Carbonated Unit<br />

It is 2-3 m thick. The bottom con"<br />

tains lacustrine, laminated carbonate<br />

levels, containing plant <strong>and</strong> ostracod<br />

remains, which alternate between<br />

dark striped siliceous levels, which in<br />

turn towards the top become carbonate<br />

muds with acicular morphologies.<br />

Fine layers (2-3 cm) of silicified<br />

clays are imbedded between the<br />

carbonatic <strong>and</strong> siliceous levels.<br />

Mineral <strong>and</strong> Chemical Composition<br />

Results of the mineralogical analysis<br />

are given in Fig. 4(b). From the<br />

overall composition of these materials,<br />

it is observed that the clay <strong>and</strong><br />

siliceous minerals (quartz <strong>and</strong> opal<br />

CT), which predominate in the lower<br />

<strong>and</strong> middle zones, <strong>di</strong>splay an antagonistic<br />

effect with respect to the calcite<br />

the main mineral in the upper<br />

zon~. Dolomite appears among the<br />

brown clays <strong>and</strong> lenticular carbonates<br />

of the lower unit.<br />

Results of the fraction of less than<br />

20 !-LID are given in Fig. 4(c). The green<br />

clay composition is similar to that<br />

described in the results from Cerro<br />

Batallones. Th~ smectite incidence<br />

gradually decreases in the transition<br />

towards the upper levels, where as<br />

the sepiolite <strong>and</strong> palygorskite content<br />

increases. Palygorskite is the main<br />

mineral in the middle zone, but its<br />

incidence progressively decreases towards<br />

the upper zone, coinci<strong>di</strong>ng<br />

with the zone of carbonate muds,<br />

where it is found in equal quantities<br />

with sepiolite, smectite, illite <strong>and</strong><br />

traces of kaolinite deposits. The very<br />

fine clay layers, interbedded between<br />

lacustrine siliceous <strong>and</strong> carbonate<br />

levels, <strong>di</strong>splay a high palygorskite<br />

content.<br />

Results of the chemical analysis<br />

made on the principal elements, are<br />

given in Fig. 4(d). The behaviour of<br />

Al, K, Ti <strong>and</strong> Fe is similar to that<br />

observed in Cerro Batallones, :Vith<br />

marked increases. coinci<strong>di</strong>ng with the<br />

areas of transition of green clay to<br />

brown <strong>and</strong> in the zones with. <strong>di</strong>sjunction<br />

<strong>and</strong> subaerial exposure.<br />

Mineral fabric<br />

Thin sections of clay ma'terials present<br />

a brechoid aspect with general-


-<br />

Polygenesis of Sepiolite <strong>and</strong> Palygorskiti.-.. 295<br />

ized silicification <strong>and</strong> numerous<br />

cracks <strong>and</strong> pores filled by carbonates.<br />

The fabric is either glomerular or<br />

globular, depen<strong>di</strong>ng on the smectite<br />

content. Fibrous aggregates, of 1-5<br />

J..Lm, appear among the glomerules<br />

<strong>and</strong> their number tends to decrease<br />

when the carbonate content increases<br />

(Fig. Sa).<br />

The carbonatic lenticules embedded<br />

in the clay are made up of amicrocrystalline<br />

part containing eroded<br />

quartz grains, pisolites <strong>and</strong> micritic<br />

carbonate grains which, in agreement<br />

with KLAPPA (1983), can be·<br />

considered as globular calcretes.<br />

In the detrital-carbonate levels,<br />

lumpy micritic textures are observed<br />

with development of gravelar morphologies.<br />

A fenestra! porosity, with<br />

sparitic cement filling <strong>and</strong> seldom of<br />

a gypsum pseudo-morphology, is<br />

observed.· Fibrous minerals, of no<br />

more than 10 J..Lm, are found filling in<br />

pores <strong>and</strong> cracks.<br />

The maximum development of<br />

sepiolite <strong>and</strong> palygorskite fibrous<br />

aggre.gates is observed in the grey<br />

Fig. 5- Scanning electron micrographs of <strong>di</strong>fferent fabric types of palygorskite <strong>and</strong> sepiolite aggregates:<br />

a- fibrous aggregates (Sp-P) <strong>and</strong> calcite grains (Ca); b- sepiolite fibres refilling voids; c­<br />

globular <strong>and</strong> acicular aggregates of palygorskite (G <strong>and</strong> A) with calcite granes (Ca); d- bacillar<br />

aggregates of palygorskite (B) between siliceous layers (S). ·


T<br />

296 S. Leguey, M. Pozo, J.A. Me<strong>di</strong>na<br />

<strong>and</strong> white clay zones, which are the organic matter brings about the<br />

found in the walls <strong>and</strong> at the top of ... _transformatiqn into_~b~ncied grey o­<br />

the siliceous levels. In the case of grey pals, with their predominance of opalclays,<br />

comprising predominant quan- CT. Accor<strong>di</strong>ng to BERNER (1980) the<br />

tities of sepiolite <strong>and</strong> some palygor- decomposition of organic matter proskite,<br />

the fabric consists of irregular duces aci<strong>di</strong>c con<strong>di</strong>tions, favouring<br />

particles with large holes where fine the <strong>di</strong>ssolution of biogenic silica,<br />

sepiolite crystals <strong>and</strong> aggregates de- which subsequently reorganizes into<br />

velop, of 30-50 ).liD in size (Fig. Sb). In cristobalite.<br />

the white clays, which are made up The composition of massive brown<br />

exclusively of palygorskite, the fabric chert is complex. Opal-CT <strong>and</strong> quartz<br />

is globular with acicula aggregates, appear in similar proportions <strong>and</strong><br />

which are shorter (4-6 ).lm) <strong>and</strong> thick- they generally contain considerable<br />

er than the sepiolite aggregates (Fig. quantitites of sepiolite <strong>and</strong>/or paly­<br />

Sc).<br />

gorskite <strong>and</strong> sometimes smectites<br />

The levels of laminated clays with <strong>and</strong> <strong>di</strong>atoms.<br />

palygorskite when embedded in the Their texture is brechoid with a<br />

.. -·--------- lacustrine unit, present a layered fah- · pseudo-globular fabric, made up of<br />

ric. This fabric is made up of silica irregular nodules <strong>and</strong> petaloid forms<br />

spheres whose surfaces have sepa- with traces of desiccation. The<br />

rated. The resulting gaps contain nodules contain <strong>di</strong>sordered silica <strong>and</strong><br />

bacillary fibrous forms, which are fibrous minerals, whereas the petalgenerally<br />

very short, of approximate- oid forms have a leaf-like structure<br />

ly 1 ).liD (Fig. Sd).<br />

of cristobalite laminae <strong>and</strong> aureolas<br />

of crypto-crystalline quartz.<br />

The porous nature of these brown<br />

Silcretes<br />

chert favours the reaction with Mg,<br />

which explains the noteworthy fibrous<br />

minerals development over<br />

<strong>and</strong> at the side of these materials.<br />

The silica levels appearing between<br />

the <strong>di</strong>fferent materials of the<br />

two zones under study, have been<br />

classified into three types: black o­<br />

pals, b<strong>and</strong>ed grey opals <strong>and</strong> massive<br />

brown chert. For the degree of order<br />

of the silica we have used the<br />

nomenclature of JONES & SEGNIT<br />

(1971).<br />

Black opals are a mixture of opal­<br />

A, opal-CT <strong>and</strong> organic matter.<br />

Biogenic in origin, black opals are<br />

formed from silicified plant stems<br />

<strong>and</strong> <strong>di</strong>atoms. The decomposition of<br />

Discussion of results<br />

The genesis of minerals in sepiolite<br />

<strong>and</strong> palygorskite type clays, has to be<br />

analyzed by means of a series of complex<br />

transformations beginning with<br />

the subaerial exposure of green clays<br />

rich in Mg. This is followed by deposits<br />

of new detrital <strong>and</strong> lacustrine<br />

materials that interact among them-


selves, during the climatic, tectonic<br />

<strong>and</strong> se<strong>di</strong>mentary evolution of the<br />

basin. Briefly, three stages can be<br />

<strong>di</strong>stinguished:<br />

Stage 1. Subaerial Exposure<br />

Subaerial exposure of green clays<br />

with expansive properties gives rise<br />

to soils with very similar characteristics<br />

to those described by AHMAND<br />

(1983) in his study of vertisols. Of<br />

particular interest is the presence of:<br />

a) Slickensides in the green clays, b)·<br />

lumpy forms with desiccation cracks<br />

filled with calcite <strong>and</strong> ochre tones in<br />

the brown clays, c) <strong>di</strong>spersed organic<br />

matter, average content of 2% <strong>and</strong> an<br />

elevated degree of evolution (C/N<br />

ratio 20-25), d) pronounced prisrr;tatic<br />

unit structures dark clays, an


298 S. Leguey, M. Pozo, J.A. Me<strong>di</strong>na<br />

green clay. There is evidence, in all of notable quantities of palygorskite<br />

these materials, of desiccation <strong>and</strong> _in zone_N is due to the lack of arkose<br />

·remains <strong>and</strong> the Al fixation by the organic<br />

levels.<br />

During the lacustrine se<strong>di</strong>mentation<br />

<strong>and</strong> coinci<strong>di</strong>ng with desiccation<br />

phases, thin films of sepiolite or palygorskite<br />

are interbedded between<br />

siliceous <strong>and</strong> carbonate levels. Sepialite<br />

appears with calcite, which possibly<br />

precipitates first at pH = 7.8<br />

(GARRELS & CHRIST, 1965) <strong>and</strong><br />

forms small crystals of approximately<br />

1 Jlm. The sepiolite next precipitates<br />

at pH 8.2 (WOLLAST et al., 1968) .<br />

in the interstices of the calcite crystals,<br />

in the form of very small aggregates<br />

of less than 0.5 JliD. The palygorskite<br />

coexists with detrital minerals<br />

<strong>and</strong> it preferentially forms between<br />

layers of silica spheres. The<br />

palygorskite aggregates lie normal to<br />

the lamination <strong>and</strong> are rarely more<br />

than 1 Jlm. Both the calcite <strong>and</strong> the<br />

silica spheres serve as a support in<br />

the growth of sepiolite <strong>and</strong> palygorskite.<br />

subaerial exposure, giving rise to the<br />

formation of calcretes <strong>and</strong> dark horizons<br />

containing organic matter <strong>and</strong><br />

with prismatic splitting. The latter<br />

are more common to zone N, whife<br />

the calcretes appear more frequently<br />

in zone S.<br />

·The composition of the detrital<br />

levels <strong>di</strong>ffers considerably. In zone N<br />

there is a predominance of sepiolite<br />

with smectites, micas <strong>and</strong> traces of<br />

palygorskite towards the top, all of 1<br />

which to a great extent reflect the inherited<br />

characteristic of these materials.<br />

__________ _The predominance of palygorskite<br />

in zone S is due to the activity of Al<br />

from the <strong>di</strong>stal arkoses. Gypsum<br />

pseudomorphs in<strong>di</strong>cate that the presence<br />

of salts favours the release of Al.<br />

The palygorskite w~s formed by<br />

precipitation in pores a.nd cracks during<br />

the stages of dryness, under similar<br />

con<strong>di</strong>tions to those described by<br />

MILLOT et al. (1969), for Morocco,<br />

<strong>and</strong> by SINGER & NORRISH (1974),<br />

for Australia. TRAUTH (1977) suggests<br />

that the <strong>di</strong>agenetic formation of<br />

palygorskite is brought about by the<br />

<strong>di</strong>agenetic alteration of smectites.<br />

VELDE (1985, p. 245) proposes a model<br />

with the simultaneous precipitation<br />

with aluminium clays.<br />

A high concentration of Ah0 3 ,<br />

Fe 2 0 2 , Ti0 2 is found in the dark horizons<br />

with organic matter. A similar<br />

phenomena has been observed by<br />

WEAVER (1984) in interbedded soils<br />

between palygorskite levels in the<br />

Camelia Mine of Florida. The absence<br />

Stage 3. Remobilization<br />

Seismo-tectonic activity produces<br />

slumping <strong>and</strong> compression faults.<br />

The former only affects the. clay<br />

materials <strong>and</strong> debris flow deposits in<br />

zone S, while faults with shifts of<br />

0.20-0.50 m are found on a regional<br />

scale. Slumping brings about important<br />

deformations in the hard silcrete<br />

levels. These faults increase the circulation<br />

of carbonated waters, which<br />

become enriched with Mg <strong>and</strong> Al in


Polygenesis of Sepiolite <strong>and</strong> Palygorskite ... 299<br />

the detrital levels <strong>and</strong> react with the<br />

silcretes, giving rise to <strong>di</strong>ssolution<br />

phenomena, cryptocrystalline quartz<br />

<strong>and</strong> sparitic carbonates, <strong>and</strong> <strong>di</strong>agenetic<br />

aureolae of palygorskite <strong>and</strong>/or<br />

sepiolite. These aureolae are white in<br />

colour, asymmetrical <strong>and</strong> reach a<br />

maximum growth in the palygorskite<br />

zone, their thickness increasing with<br />

the slope of the siliceous levels. There<br />

is a greater AI <strong>and</strong> Mg activity in the<br />

siliceous levels with a predominance<br />

of opal C-T. This fact is due to the<br />

greater porosity <strong>and</strong> specific crista-<br />

Cad<br />

I E<br />

~~~ M<br />

Pa<br />

X-RAY POWDER DIFRACTION<br />

PATTERNS. Cu KaRADIATION<br />

SM<br />

p<br />

SP<br />

Qp<br />

Q<br />

D<br />

PI<br />

F<br />

c ...<br />

I<br />

(•)<br />

ABBREVIATIONS<br />

IQ<br />

F I<br />

SMECTITE<br />

PAL YGORSK I TE<br />

SEPIOLITE<br />

OPAL c- r<br />

QuARTZ<br />

DoLoMITE<br />

PliCA<br />

fELDSPAR<br />

CALCITE<br />

INTERSTRATIFIED<br />

PIICA-SMECTITE<br />

ETHYLENE GLYCOL<br />

)<br />

(•)<br />

, G<br />

'v.;v:<br />

}~(JM<br />

30 20 10 30 20 ', 10 30 20 10<br />

DEGREES<br />

2 e<br />

Fig. 6- X-ray powder patterns of characteristics materials. Cerro Batallones Zone: A- transitional<br />

green to brown clays; B- beige clays; C- white clays; D- dark clays in detrital materials; E-laminated<br />

clays in lacustrine limestones. Malcovadero Zone: F <strong>and</strong> G- green clays; H- grey clays; 1- white<br />

clays; J <strong>and</strong> K- clays in calcrete; L- laminated clays in lacustrine limestones with silica layers.


300 S. Leguey, M. Pozo, J.A. Me<strong>di</strong>na<br />

halite spherules surface in compa- tation. The sepiolite <strong>and</strong> palygorskite<br />

rison to the biogenetic opals, where~ .. formeclj:n_each~~nvi:r:()J;Jme:nt are <strong>di</strong>sthe<br />

organic matter possibly acts as tinguished by the size of the aggrean<br />

inhibitor. The availability of silica gates which are of 1 J..lm, whereas<br />

with a large reaction surface is an im- their size is 1-5 J..lm in paleosoils. In<br />

portant factor in the neoformation of <strong>di</strong>agenesis, sizes of 2-6 11m are found<br />

palygorskite. This fact has been con- for palygorskite <strong>and</strong> sepiolite aggrefirmed<br />

in proximal arkoses cemented gates reach 10-50 J..lm. The <strong>di</strong>ffractowith<br />

palygorskite (LEGUEY et al., grams in Fig. 6 show the <strong>di</strong>fferent as-<br />

1984b).<br />

sociations of these materials. It is ob-<br />

Summarizing, three types of genet- served that there is a correlation beic<br />

environment can be considered for tween the size of the aggregates <strong>and</strong><br />

these materials: paleosoils, <strong>di</strong>agenetic the perfection of the structural order<br />

mobilization <strong>and</strong> lacustrine precipi- of the crystals.<br />

T<br />

I !<br />

REFERENCES<br />

AHMA~D J?·· 1983. Vertisol. Pp. 91-123, in: Pedogenesis <strong>and</strong> Soil Taxonomy. II. The Soils Orders (L.P.<br />

Wrldmg, N.E. Smeck <strong>and</strong> G.D. Holl, e<strong>di</strong>tors). Developments in Soils Science llB, Elsevier.<br />

ALIA M., CAPOTE R., 1971. Esquema geo/6gico de la depresi6n tect6nica del Tajo y su borde oriental. I<br />

Congreso Hispano-Luso-Americano. Geol. Econ. 1, 1-2.<br />

ALONSO J.J., GARCIA VICENTE J., RIBA 0., 1961. Se<strong>di</strong>mentos finos del centra de la Cubeta terciaria del<br />

Tajo. Pp. 21-55, in: Aetas 11 Reunion de Se<strong>di</strong>mentologia, C.S.I.C., Madrid.<br />

BENAYAS J., PEREZ MATEOS J., RIBA 0., 1960. Asociaci6n de minerales detriticos en la Cuenca del Tajo.<br />

An. Edaf. Agrobiol. 19, 635-670.<br />

BERNER R.A., 1980. Early <strong>di</strong>agene5is. Princeton Univ. Press.<br />

BusTILLO M .A., 1976. Estu<strong>di</strong>o petro/6gico de /as rocas siliceas miocenas .de la Cuenca del Tajo. Estu<strong>di</strong>os<br />

geol. 32, 451-498.<br />

BusTILLO M.A., 1982. Ageing features in inorganic continental opals. Estu<strong>di</strong>os geol. 38, 335-344.<br />

BusTILLO M.A., MARTIN EscORZA C., 1984. Estructuras primarias y de deformaci6n en rocas opalinas<br />

del Mioceno Me<strong>di</strong>a (Toledo). I Congreso Espaii.ol de Geologia, Segovia, Tomo I, 159-171.<br />

GALAN E., 1979. The fibrous clay minerals in Spain. Eigth Con£. on Clay Mineralogy <strong>and</strong> Petrology,<br />

Teplice 1979, 239-249.<br />

GALAN E., CASTILLO A., 1984. Sepiolite-Palygorskite in <strong>Spanish</strong> Tert_iary basins: genetical patterns in<br />

continental environments. Pp. 87-124, in: Palygorskite-Sepiolite. Occurrences, Genesis <strong>and</strong> Uses<br />

(A. Singer <strong>and</strong> E. Galim, e<strong>di</strong>tors), Developments in Se<strong>di</strong>mentology 37, Elsevier.<br />

GARRELS R.M., CHRIST L.L., 1965. Solutions, Minerals <strong>and</strong> Equilibria. Harper & Row, New York.<br />

GOVEN N., 1974. Lath-shaped units in fine grained micas <strong>and</strong> smectites. Clays Clay Miner. 22, 385-<br />

390.<br />

HUERTAS F., 1969. Minerales fibrosos de la arcilla. Su genetica en cuencas se<strong>di</strong>mentarias espanolas y<br />

sus aplicaciones tecno/6gicas. Ph.D. Thesis, University of Madrid (Complutense).<br />

HUERTAS F., LINARES J ., MARTIN VIVALDI J .L., 1971. Minerales fibrosos de la arcilla en cuencas se<strong>di</strong>mentarias<br />

espanolas. 1.-Cuenca del Tajo. Bol. Inst. Geol. Min. LXXXII, 534-542.<br />

JoNES J.B., SEGNIT E.T., 1971. The nature of opal. I. Nomenclature <strong>and</strong> constituent phases. J. Geol.<br />

Soc. Australia 18, 57-68.<br />

KLAPPA C.F., 1983. A process-response model for the formation ofpedogenic calcretes. Pp. 211-220, in:<br />

Residual Deposits (R.C:L. Wilson, e<strong>di</strong>tor). Geological Society; Special Publication n. 11.<br />

LEGUEY S., 0RDONEZ S. GARCIA DEL CuRA A., MEDINA J .A., 1984a. Estu<strong>di</strong>o geoquimic"o y minera/6gico de<br />

/as facies arc6sicas de la Cuenca de Madrid. I Congreso Espaii.ol de Geologia, Segovia, Tomo 11,<br />

355-371.


Polygenesis of Sep_iolite <strong>and</strong>· PalygorskiiL. 301<br />

LEGUEY S., CASAS J., VIDALES J.M., 1984b. Diagenetic palygorskite in marginalcontinental detrital<br />

deposits located in the south of the Tertiary Duero Basin. Pp. 149-158, in: Palygorskite-Sepiolite.<br />

Occurrences, Genesis <strong>and</strong> Uses (A. Singer <strong>and</strong> E. Galan, e<strong>di</strong>tors). Developments in Se<strong>di</strong>mentology<br />

37, Elsevier.<br />

LoPEZ VERA F.C., 1975. Hidrogeo/ogia regional de la cuenca del rio Jarama en Ios alrededores de<br />

Madrid. Memorias del I.G.M.E. 91, 227 pp.<br />

MARTIN EscoRzA C., 1976. Actividad tect6nica durante el Mioceno de la fractura del basamento de la<br />

Fosa del Tajo. Estu<strong>di</strong>os geol. 32, 509-522.<br />

MEGIAS A.G., 1980. Rupturas se<strong>di</strong>mentarias en cuencas continentales: ap/icaci6n a la cuenca de Madrid<br />

.. Aetas IX Congr. Nac. Se<strong>di</strong>mentologfa, Salamanca, Abstract.<br />

MEGIAS A. G., LEGUEY S., 0RDONEZ S., 1982. Interpretaci6n tectose<strong>di</strong>mentaria de fibrosos de la arcilla en<br />

series detriticas continentales. 5° Congr. Latinoamericano de Geologfa, Buenos Aires, Aetas 11,<br />

427-439.<br />

MEGIAS A.G., ORDON:Ez S., CALVO J.P., 1983. Nuevas aportaciones a/ conocimiento geo/6gico de la<br />

Cuenca de Madrid. Rev. Mat. Proc. G.eol. I, Univ. Complutense Madrid, 163-191. .<br />

MILLOT G., PAQUET H., RuELLEN A., 1969. Neoformation de l'attapulgite dans /es sols a carapaces<br />

calcaires de la basse Moulouya (Maroc Oriental). C.R. Acad. Sci. Paris 268, 2771-2774.<br />

0RDON:Ez S., GARCIA DEL CuRA A., 1983. Recent <strong>and</strong> Tertiary fluvial carbonates in Central Spain. Spec.<br />

Pub!. Int. Ass. Se<strong>di</strong>ment. 6, 485-497.<br />

PEREZ MATEOS J ., VAUDOUR J ., 1972. Estu<strong>di</strong>o minera/6gico y geomorfo/6gico de /as regiones arenosas a/<br />

sur de Madrid. Estu<strong>di</strong>os geol. 28, 201-208.<br />

PoRTERO J.M., AzNAR J.M., 1984. Evoluci6n mor{otect6nica y se<strong>di</strong>mentaci6n terciarias en el Sistema<br />

Central y cuencas limitrofas. (Duero y Tajo). I Congreso Espaiiol de Geologfa, Segovia, Tomo Ill,<br />

253-263.<br />

PosT J.L., JANKE C., 1984. Ballarat sepiolite, Inyo county, California. Pp. 159-168, in: Palygorskite­<br />

Sepiolite. Occurrences, Genesis <strong>and</strong> Uses (A. Singer <strong>and</strong> E. Galan, e<strong>di</strong>tors). Developments in<br />

Se<strong>di</strong>mentology 37, Elsevier.<br />

SERGEYEV Y.M., GRAVOWSKA B., 0SIPOV V .I., SOKOLOV V .N., 1978. Types of the microstructure of clayey<br />

soils. Pp. 319-327, in: Proc. 3rd Int. Congr. I.A.E.G., Sect. II, 1.<br />

SINGER A., NORRISH K., 1974. Pedogenic pa/ygorskite occurrences in Australia. Am. Miner. 59, 508-<br />

517.<br />

SuMMERFIELD M.A., 1983. Silcrete. Pp. 59-92, in: Chemical Se<strong>di</strong>ments <strong>and</strong> Geomorphology (A.S.<br />

Gou<strong>di</strong>e <strong>and</strong> Pyc. Kenneth, e<strong>di</strong>tors), Acade~ic Press.<br />

TRAUTH N., 1977. Argiles evaporitiques dans le se<strong>di</strong>mentation carbonatee continental et epicontinental<br />

tertiaire. Bassin de Paris, Mormoiron et Salinelles (France), !bel Ghassoul (Maroc). Sciences<br />

Geologiques, Mem. 49, 195 pp.<br />

VAUDOUR J., 1977. Contribution ii ['etude geomorphologique d'zme region me<strong>di</strong>terraneenne semi-aride:<br />

la region de Madrid. Alterations, sols et paleosols. These, University of Aix-Marseille.<br />

VELDE B., 1985. Clay Minerals. A Physico-Chemical Explanation of their Occurrence. Developments in<br />

Se<strong>di</strong>mentology, Elsevier.<br />

WEAVER C.E., 1984. Origin <strong>and</strong> geologic implications of the palygorskite of S.E. Unites States. Pp.<br />

39-58, in: Palygorskite-Sepiolite. Occurrences, Genesis <strong>and</strong> Uses (A. Singer <strong>and</strong> E. Galan,<br />

e<strong>di</strong>tors), Developments in Se<strong>di</strong>mentology 37, Elsevier.<br />

WoLLAST·R., MACKENZIE F.T ., BRICKER O.P ., 1968. Experimental precipitation <strong>and</strong> genesis of sepiolite<br />

at earthsurface con<strong>di</strong>tions. Am. Miner. 53, 1645-1662.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 303·311 ( 1985)<br />

Mineralogy <strong>and</strong> Genesis of the «Fardes Formation»<br />

Bentonites, Middle Subbetic,<br />

Granada Province, Spain<br />

F. LOPEZ-AGUAY0 1 , E. SEBASTIAN PARD0 2 , F. HUERTAS 3 , J. LINARES 3<br />

I Departamento de Cristalografia y Mineralogia, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza,<br />

Espafta<br />

2 Departamento de Cristalografia y Mineralogia, Facultad de Ciencias, Universidad de Granada, 18002. Granada,<br />

~~ .<br />

3 Estaci6n Experimental del Zai<strong>di</strong>n, C.S.LC., Profesor Albareda 1, 18008 Granada, Espafta<br />

ABSTRACT- The bentonites of the «Fardes Formation>> (Middle Subbetic,<br />

Province of Granada, Spain) occurring in the basal member (Member-!) were<br />

stu<strong>di</strong>ed by XRD, inclu<strong>di</strong>ng the determination of several crystallochemical<br />

parameters, chemical analysis <strong>and</strong> SEM.<br />

The main mineralogical association found is smectite, palygorskite, mica<br />

<strong>and</strong> quartz. In the more northern outcrops, palygorskite is absent. Calcite,<br />

dolomite <strong>and</strong> gypsum also appear as accessory minerals.<br />

The most probable genetic process lea<strong>di</strong>ng to bentonites is an alteration of<br />

volcanic materials, close to basalts. The variable presence of palygorskite<br />

may be related to pH oscillations resulting from the existence of compartments<br />

within the basin, where the materials were deposited.<br />

'·<br />

Introduction<br />

1 the Middle. Subbetic domain of<br />

the so-called


T<br />

304 F. L6pez-Aguayo, E. Sebastian Pardo, F. Huertas, 1. Linares<br />

•<br />

Pozo AI con<br />

_.....<br />

...........<br />

IC.// ~<br />

.... ?:><br />

Baza<br />

•<br />

~<br />

\<br />

10 20<br />

1 2 3 4 5 6 7 8 9 10<br />

------··-··-----~-~-------~-L__J-tlJ.l.U r:-:-::lmTil~~~===~[illJ~ftiiDilTTI~.,<br />

c:i:8 ~ t:::::::=l ~ ~ ~ l.!!!!J<br />

Fig. 1 ~Generalized geologic scheme of the Betic Cor<strong>di</strong>llera, Granada-Jaen transversal (simplified<br />

from LOPEZ GARRIDO & VERA, 1979). 1: Neogene-Quaternary; 2: Internal Zones; 3: Guadalquivir<br />

Units; 4: Paleogene; 5: Internal Prebetic; 6: Interme<strong>di</strong>ate Units; 7: External Subbetic; 8: Middle<br />

Subbetic-Parap<strong>and</strong>a Unit; 9: Betic Dorsal <strong>and</strong> Oltrainternal Sub.; 10: Tri.assic; ~·~: Jurassic volcanic<br />

rocks. The square in<strong>di</strong>cates the area stu<strong>di</strong>ed.<br />

11<br />

*<br />

Methods<br />

All samples were systematically<br />

stu<strong>di</strong>ed by XRD <strong>and</strong> chemical analysis,<br />

following the same methodology<br />

<strong>and</strong> techniques described in SEBAS­<br />

TIAN PARDO et al. (1984). Consequently,<br />

only the new data are collected<br />

in this paper. However, mean<br />

values of the previously stu<strong>di</strong>ed (BA)<br />

samples are also reminded in several<br />

Tables (Tables 1 to 5). These samples<br />

were also observed with SEM (Fig. 3).<br />

Mineralogical <strong>and</strong> chemical characterization<br />

The main mineralogical association<br />

found is smectite, palygorskite,<br />

mica <strong>and</strong> quartz, although palygorskite<br />

is absent in the most northern<br />

outcrops (Table 1).<br />

From the measurement of the<br />

smectite bo axis (mean value 9.028 A)<br />

it is concluded that this mineral<br />

belongs to the montmorillonitenontronite<br />

series. On the other h<strong>and</strong>,<br />

the mica is very uniform, as evidenc::ed<br />

by the bo axis measurements<br />

(mean value 8.999 A).<br />

In order to obtain the most likely<br />

chemical composition of the phyllosilicates,<br />

the chemical analyses were<br />

recalculated (Table 4), by subtracting<br />

the HzO+ <strong>and</strong> quartz contents,<br />

where the quartz content was determined<br />

by XRD. The results, includ-


-<br />

Mineralogy <strong>and</strong> Genesis of the > area, Middle Subbetic (mo<strong>di</strong>fied from COMAS,<br />

1978). Pm, Mr, Ga, La, De, Tc, AI, Vt <strong>and</strong> Ba in<strong>di</strong>cate the names of the villages in the area stu<strong>di</strong>ed.<br />

1: Quaternary; 2: Neogene; 3: Paleogene; 4: Orogenic materials of o.ther Formations; 5: «Fardes<br />

Formation>>; 6: Outcrops stu<strong>di</strong>ed.<br />

TABLE 1<br />

Mineralogical composition (XRD) for< 20 JliD fraction<br />

Global Mineralogy<br />

Clay Mineralogy<br />

sample Quartz Phyllos. Calcite Others Smec. Palyg. Mica<br />

BA 15 79 6 49 ~ 27 24<br />

MP-1 9 84 7 61 21 18<br />

MP-2 6 91 3 64 18 18<br />

MP-3 7 72 21 51 32 17<br />

MP-4 5 92 3 55 22 23<br />

MP-S 9 80 11 80 tr 20<br />

MP-S' 10 85 5 29 44 27<br />

MP-6 16 75 9 74 26<br />

MP-7 11 68 21 75 25<br />

MP-8 17 83 72 28<br />

MP-9 20 80 68 32<br />

MP-10 20 80 72 28<br />

MPB-1 5 54 25 Plag. 16 n.d. n.d.<br />

MPB-2 13 87 64 36<br />

MPB-3 5 43 30 Plag. 22 n.d. n.d.<br />

MPB-4 18 59 23 52 '48<br />

Smec.: Smectites; Palyg.: Palygorskite; Plag.: Plagioclases; Phyllos.: Phyllosicates; tr: traces;<br />

n.d.: not determined


306 F. L6pez-Aguayo, E. Sebastian Pardo, F. Huertas, J. Linares<br />

T<br />

I<br />

I ' 1<br />

I<br />

TABLE 2<br />

Crystallochemical parameters (XRD)<br />

Smectite<br />

Mica<br />

sample bo VIP ~001 004/002 ~0<br />

BA 9.028 0.86 14.6 Q.32 9.002<br />

MP-1 9.028 0.83 1S.2 0.38 8.998<br />

MP-2 9.01S 0.87 1S.2 0.40 8.990<br />

MP-3 9.044 0.84 1S.S 0.36 9.007<br />

MP-4 9.02S 0.89 14.8 0.37 8.994<br />

MP-S 9.033 0.78 1S.2 0.36 8.994<br />

MP-S' 9.033 0.74 1S.2 0.40 9.004<br />

MP-6 9.021 0.86 1S.2 0.49 8.992<br />

MP-7 9.048 0.84 1S.2 O.S7 9.002<br />

MP-8 9.020 0.80 1S.2 0.58 8.998<br />

MP-9 9.033 0.8S 1S.O 0.4S 9.007<br />

MP-10 9.020 0.84 15.2 O.S4 8.992<br />

mean 9.028 0.8S 14.8 0.37 8.999<br />

MPB-1 0.53 1S.S<br />

MPB-2 9.002 0.77 15.0 0.55 8.996<br />

MPB-3 0.50<br />

MPB-4 9.031 0.59 15.8 0.50 9.004<br />

--·· ·---··--~--·<br />

MPB samples correspond to an altered volcanic outcrop<br />

TABLE 3<br />

Chemical analysis < 20 Jlm fraction<br />

sample SizO Alz03 TiOz Fez03 CaO M gO Na 2 0 KzO Hzo+ Total<br />

BA 61.65 17.29 0.99 S.58 1.62 2.46 0.63 2.00 . 7.37 99.59<br />

MP-1 63.95 16.6S 1.36 S.38 0.62 4.09 0.57 1.31 6.05 99.98<br />

MP-2 61.09 18.36 1.44 5.71 0.71 4.34 0.52 1.57 5.95 99.69<br />

MP-3 60.59 20.03 1.08 6.12 0.67 4.10 0.49 1.32 5.74 100.14<br />

MP-S 60.45 18.35 1.02 6.84 2.17 3.00 0.53 1.42 6.71 100.49<br />

MP-6 62.93 17.83 0.80 6.71 0.99 3.31 0.73 1.51 5.81 100.62<br />

MP-7 57.33 17.32 0.66 14.06 1.31 1.17 1.13 1.36 636 100.70<br />

MP-8 63.73 17.61 1.11 S.73 1.03 2.9S 1.01 1.49 6.04 100.70<br />

MPB-1 51.76 21.65 2.63 4.94 4.6S 3.76 2.96 1.82 S.82 99.99<br />

MPB-3 S3.66 13.87 2.65 9.06 10.29 0.22 2.68 1.29 6.27 99.99<br />

MPB-5 56.48 15.88 3.04 5.70 4.40 1.35 4.46 2.94 5.74 99.99<br />

ing the percentage of octahedral<br />

occupation of phyllosilicates, are<br />

summarized in Table 6. A more detailed<br />

study of the chemical composition<br />

of these minerals was reported in<br />

the previous paper above mentioned.<br />

Genesis of the Bentonites<br />

The pelagic <strong>and</strong> hemipelagic levels<br />

of Member I of the Fardes Fm. are, at<br />

the present time, considered to be<br />

se<strong>di</strong>mentary, as stated by COMAS


Mineralogy <strong>and</strong> Genesis of the «Fardes Forrnation-,>Bentonites ... 307<br />

TABLE 4<br />

Recalculated chemical analysis, without H20+ <strong>and</strong> quartz<br />

sample SizO Alz03 TiOz Fez03 CaO MgO NazO K 2 0 I.S.<br />

BA 59.82 22.25 1.16 8.05 2.13 3.13 0.80 2.57 21<br />

MP-1 64.70 19.60 1.60 6.33 0.73 4.82 0.67 1.54 36<br />

MP-2 62.59 20.86 1.64 6A9 0.81 4.93 0.59 2.12 35<br />

MP-3 61.32 22.92 1.24 7.00 0.77 4.69 0.56 1.51 34<br />

MP-5. 60.69 21.64 1.20 8.07 2.56 3.54 0.63 1.67 25<br />

MP-6 59.55 22.62 1.02 8.51 1.26 4.20 0.93 1.92 27<br />

MP-7 55.59 20.78 0.79 16.87 1.57 1.40 1.36 1.63 7<br />

MP-8 60.17 22.68 1.43 7.38 1.33 1.80 1.30 1.92 26<br />

MP-9 52.56 27.75 1.27 9.14 0.90 4.82 1.21 2.34 27<br />

mean 59.73 22.30 1.27 8.38 1.69 3.58 0.86 2.20 28<br />

MPB-1 54.98 23.00 2.79 5.26 4.94 3.99 3.14 1.93 28<br />

MPB-3 57.26 14.80 2.83 9.67 10.98 0.23 2.86 1.38 2<br />

MPB-5 59.93 16.85 3.23 6.05 4.67 1.43 4.73 3.12 9<br />

TABLE 5<br />

Trace elements analysis (ppm)<br />

sample V Cr Mn Co Ni Cu Pb Sr<br />

BA 156 104 1573 "150 1071 74 79 128<br />

MP-1 182 138 288 138 1327 52 83 188<br />

MP-2 193 146 214 195 1407 55 88 100<br />

MP-3 182 138 360 184 1328 69 187 94<br />

MP-S 193 146 749 195 1409 73 133 100<br />

MP-6 176 67 279 178 1285 67 141 91<br />

MP-7 175 53 5059 177 1064 66 180 181<br />

MP-8 183 139 188 185 1336 52 189 189<br />

MP-9 170 128 188 171 1445 64 136 263<br />

mean 168 106 1493 163 1185 69 107 138<br />

MPB"1 169 256 295 171 1440 32 174 175<br />

MPB-3 140 386 243 214 1489 32 117 176<br />

MPB-5 172 65 395 217 1466 16 177 266<br />

Basalts(*) 266 235 1318 50 50 90 3<br />

(*)Mean values in WEDEPOHL (1969-1978)<br />

(1978). However, even assuming that ited in a passive continental margin,<br />

the final process had this character, during Cretaceous anoxic events.<br />

the genesis of their main constituents GARciA-DUENAS & COMAS (1983)<br />

must have been more complex. point out the existence of in this margin <strong>and</strong> think that<br />

sider that these se<strong>di</strong>men ts were-depos- the facies of the Fardes Fm. accumu-


308 F. L6pez-Aguayo, E. Sebastian Pardo, F. Huertas, J. Linares<br />

T<br />

I<br />

2<br />

3 4<br />

Fig. 3- Scanning electron micrographs of smectites (photos 1 <strong>and</strong> 3) <strong>and</strong> palygorskites (photo 2 <strong>and</strong><br />

4). The palygorskite crystals are partially deformed.<br />

lated in such a type of basin.<br />

With regard to the origin of<br />

se<strong>di</strong>mentary material, two hypotheses<br />

may be proposed. The first one,<br />

accor~ing to CHAMLEY & ROBERT<br />

(1982) is based on the inheritance of<br />

clay minerals -mica, smectite <strong>and</strong><br />

palygorskite- previously formed in<br />

soils <strong>and</strong> marginal basins. The<br />

second one, accor<strong>di</strong>ng to THIEDE et<br />

al. (1982), postulates that these<br />

minerals derived from the alteration<br />

of volcanic materials, without <strong>di</strong>scar<strong>di</strong>ng<br />

their terrestrial origin in·<br />

some places. SEBASTIAN PARDO et<br />

al. (1984) conclude, from mineral-<br />

TABLE 6<br />

Mean data(%) of octahedral occupation in clay minerals<br />

mineral<br />

mica<br />

palygorskite<br />

smectite<br />

78<br />

58<br />

61<br />

6<br />

3<br />

2<br />

10<br />

14<br />

21<br />

6<br />

25<br />

16.


Mineralogy <strong>and</strong> Genesis of the «Fardes FormatTon» Bentonites ... 309<br />

ogical <strong>and</strong> chemical data, that the latter<br />

explanation is the most plausible.<br />

The widening of this study to a<br />

larger number of outcrops, together<br />

with the possibility of determining,<br />

in some cases, less mobile elements<br />

such as Y, Nb <strong>and</strong> Zr, allow us to in<strong>di</strong>cate<br />

some facts, which can contribute<br />

to the assessment of the origin of<br />

these materials:<br />

(a) Chemical composition of bentonites<br />

is very homogeneous, for both<br />

major <strong>and</strong> trace elements.<br />

(b) The trace element content for<br />

elements such as Cr, Co, V <strong>and</strong> Ni, as<br />

well as Mn, is similar to that of basic<br />

volcanic rocks (Table 5).<br />

(c) Y, Nb <strong>and</strong> Zr contents in the<br />

analyzed samples, are comparable<br />

with the mean values of Subbetic<br />

ophites (PUGA, personal communication)<br />

<strong>and</strong> with those determined, by<br />

PEARCE & CANN (1973) for c;ntinental<br />

basalts (Table 7). The plotting<br />

of these data in the PEARCE &<br />

NORRY's ·<strong>di</strong>agram (1979) (Fig. 4),<br />

allow us to ascribe these materials to<br />

continental basalts, although on the<br />

triangular <strong>di</strong>agram of PEARCE &<br />

CANN (1973) they fall into the calcalkaline<br />

basalt field, probably due to<br />

a loss of Ti, present in silicates, during<br />

the alteration processes.<br />

(d) There is also a great uniformity<br />

in the mineralogical composition of<br />

samples, although in the more<br />

northern outcrops palygorskite is<br />

lacking. This absence does not produce<br />

apparent changes either in the<br />

smectite <strong>and</strong> mica parameters, or in<br />

the trace element content (Tables 2<br />

<strong>and</strong> 5).<br />

If the scheme of «suspended<br />

basins», consequently restricted,<br />

proposed by GARCIA-DUENAS &<br />

COMAS (1983), is accepted, the absence<br />

or presence of palygorskite may<br />

TABLE 7<br />

Less mobile elements analysis (ppm) (XRF)<br />

sample Zr y Nb Ti<br />

BA-2· 198 39 16 3438<br />

BA-5 192 44 12 7601<br />

BA-ll 191 44 12 5991<br />

BA-17 195 41 17 3890<br />

BA-21 200 34 13 8389<br />

BA-25 206 34 10 5152<br />

MP-2 195 38 11 8758<br />

MP-4 167 32 10 8747<br />

MP-8 231 47 11 6650<br />

mean 197 39 12 6513<br />

MPB-1 143 35 7 16129<br />

MPB-4 224 35 7 4986<br />

Subbetk ophites(*) 150 33 15 9723<br />

Continental basalts ( 0 ) 215 29 20 15150<br />

Calc-alkali basalts( 0 ) 52 19 1.5 5150<br />

('') PUGA, personal communication; ( 0 ) data from PEARCE & CANN (1973)


310 F. L6pez-Aguayo, E_. Sebasti6.r.z Pardo, F. lfuertas, J. Linares<br />

10<br />

8<br />

>-<br />

' s..<br />

N<br />

• CB<br />

... so<br />

6<br />

•<br />

• ••<br />

4 ••<br />

... • •<br />

2<br />

Zr (ppm)<br />

1+-------,-------,----r--~~------,-------.---~~<br />

10 60 100 600<br />

Fig. 4- PEARCE & NORRY's <strong>di</strong>agram (I 979), inclu<strong>di</strong>ng the bentonite data. A: Isl<strong>and</strong>-arc basalts; B:<br />

Mid-ocean basalts; C: within-plate basalts. BF: Bentonites «Fardes Fm.>>; SO: Subbetic Ophites;<br />

CB: continental basalts (PEARCE & CANN, 1973). .<br />

-3<br />

-2<br />

y<br />

::;;: "'<br />

"' 0<br />

...I<br />

--- pH8<br />

I<br />

I ---pH 7<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

Sol. I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

/Pal.<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I Log [H 4<br />

s;o 1 4<br />

-6<br />

-5 -4<br />

Fig. 5 - Stability fields of montmorillonite <strong>and</strong> palygorskite at pH=7 <strong>and</strong> pH=.8 (mo<strong>di</strong>field from<br />

WEAVER & BECK, 1977).<br />

"·'<br />

-3


Mineralogy <strong>and</strong> Genesis of the «Fardei Fo;;;_ation» Bentonites ... 311<br />

be simply explained by pH oscillations.<br />

Accor<strong>di</strong>ng to WEAVER &<br />

BECK's (1977) equilibrium <strong>di</strong>agram<br />

(Fig. 5) small changes of this parameter<br />

widely mo<strong>di</strong>fy the palygorskite<br />

<strong>and</strong> smectite fields.<br />

From the above considerations, it<br />

is possible to conclude that the bentonites<br />

of the Fardes Fm. derive from<br />

the alteration of volcanic rocks, probably<br />

basalts. However, accor<strong>di</strong>ng to<br />

THIEDE et al. (1982) the terrigenous<br />

origin of some minerals in these<br />

levels should not be <strong>di</strong>scarded.<br />

Accepting this hypothesis, the main<br />

unresolved problem is to determine<br />

the materials which undergo alteration.<br />

In this regard, within the turbi<strong>di</strong>tic<br />

levels of this formation there<br />

are relicts of basic volcanic rocks, derived<br />

either from ophites or from the<br />

Middle Subbetic Crest, whose mineralogy<br />

<strong>and</strong> chemical character is very<br />

similar to that of bentonites.<br />

REFERENCES<br />

CHAMLEY H., RoBERT C., 1982. Paleoenvironmental significance of clay deposits in Atlantic blacb<br />

shales. Pp. 101-112, in: Nature <strong>and</strong> Origin of Cretaceous Carbon-Rich Facies (S.O. Schlanger<br />

<strong>and</strong> M.B. Cita, e<strong>di</strong>tors), Academk Press, London.<br />

CoMAS M.C., 1978. Sabre la geologia de Ios, Mantes Orient ales: Se<strong>di</strong>mentaci6n y paleogeografia des de el<br />

Jurasico al Mioceno superior. Ph. D. Thesis, University of Pais Vasco.<br />

GARCIA-DUENAS V., CoMAS M.C., 1983. Paleogeografia mesozoica de las zonas externas beticas coma<br />

borde de placa Iberica entre el Atlantico y la Mesogea. Corn. X Cong. Nac. Se<strong>di</strong>m. Menorca.<br />

5.26-5.28.<br />

LOPEZ GALINDO A., CoMAS MINONDO M.C., FENOLL HACH-ALI P., 0RTEGA HUERTAS M., 1985. Pelagic<br />

Cretaceous Black-Greenish Mudstones in the Southern Iberian Paleomargin, Subbetic Zone, Betic<br />

Cor<strong>di</strong>llera. These Procee<strong>di</strong>ngs.<br />

LOPEZ GA_RRIDO A.C., VERA J., 1979. Mapa de Distribuci6n de Unidades en las Zonas Extemas de las<br />

Cordzlleras Beticas. In: «La microfacies de Jurasico y Cretacico de las zonas exterhas de las<br />

Cor<strong>di</strong>lleras Beticas>>. University of Granada, I.S.B.N. 843380133.3. ·<br />

PEARCE J .A., CANN. J .R., 1973. Tectonic setting of basic volcanic rocks determined using trace elements<br />

analyses. Earh Planet. Sci. Letters 19, 290-300.<br />

PEARCE J .A., NORRY M.J ., 1979. Petrogenetic implications of Ti, Zr, Nb <strong>and</strong> Y variations in volcanic<br />

rocks. Contrib. Mineral. Petrol. 69, 33-47.<br />

SEBASTIAN PAR~O E., LOPEZ-AGUAYO F., HUERTAS F., LINARES J., 1984. Las bentonitas se<strong>di</strong>mentarias de<br />

la Formacz6n Fardes, Granada, Espafza. Clay Minerals 19, 645-652.<br />

THIEDE J., DEAN yY.E., C~AYPOOL G.E., 1982. Oxygen-deficient depositional paleoenvironments in the<br />

Mzd-Cretaceous tropzcal <strong>and</strong> subtropical central Pacific ocean. Pp. 79-99, in: Nature <strong>and</strong> Origin<br />

of Cretaceous Carbon-Rich Facies (S.O. Schlanger <strong>and</strong> M.B. Cita, e<strong>di</strong>tors), Academic Press<br />

London.<br />

'<br />

WEA~ER C.E:, BEe~ K.C., 1977. Miocene of the S.E. United States: A model for chemical se<strong>di</strong>mentation<br />

zn a pen-marzne envzronment. Se<strong>di</strong>mentary .Geology 17, 1-234.<br />

WEDEPOHL K.H. (e<strong>di</strong>tor), 1969-1978. H<strong>and</strong>book ofGeochemistry. Vol. I., Springer-Verlag, Berlin.


T l<br />

I


-<br />

Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 313-338 (1985)<br />

Argillogenesis <strong>and</strong> the Hydrolysis Index<br />

J. THOREZ<br />

Laboratoire de Geologie des Argiles, Institut de Mineralogie, Universite de Liege, 9 Place du 20 Aout, Liege,<br />

Belgique<br />

ABSTRACT - Argillogenesis is a global process that occurs at the contact<br />

between the lithosphere <strong>and</strong> the hydrosphere. It proceeds through the progressive<br />

hydrolytic weathering of an outcroping silicate mineral or silicatebearing<br />

material. However, the transformation into clays <strong>and</strong> clay minerals<br />

sensu stricto yields considerable variability in composition, relative abundance<br />

<strong>and</strong> crystallini ties of the mineral species as well as in types of association.<br />

The large fan of mineral heterogeneities now identified severs or impedes<br />

any global appraisal for the multiple «weathering sequences» listed until<br />

now <strong>and</strong> reported in the literature. After reviewing the role <strong>and</strong> importance<br />

of the external <strong>and</strong> internal factors that govern <strong>and</strong> orientate the weathering<br />

sequences, a is proposed in order to quantify within a<br />

concise form the global <strong>and</strong> final weathering intensity that has affected the<br />

parent material. Data for this mathematical device are provided by XRD<br />

analysis of the less than 2 micron fraction ..<br />

Introduction<br />

The very process that leads to the<br />

formation of clay minerals sensu<br />

stricto at or near the surface of the<br />

lithosphere can be summarized as<br />

follows:<br />

Pare-nt silicate(s)<br />

(mineral,<br />

rock)<br />

+ Solution<br />

(ions)<br />

residual<br />

parent<br />

minerals<br />

+ secondary<br />

minerals<br />

plus clays<br />

+ solutions<br />

(enriched<br />

in ions)<br />

Such a concise' formulation describing<br />

a process generalized in<br />

Nature is supported by a complex<br />

background <strong>and</strong> by the interplay of<br />

several external <strong>and</strong> internal «Stimuli».<br />

In the scope of the present paper<br />

there appears no need to once again<br />

report all these «Stimuli» in detail;<br />

some quotations will suffice to emph"'-size<br />

the peculiarities of argillogenesis.<br />

VELDE (1985, p. 359): «Clay<br />

minerals are the major solid phases<br />

present during the immense chemical<br />

transfer process which occurs at<br />

or near the earth's surface. In clay environments,<br />

one finds the most ex-·<br />

treme chemical segregation known in


T<br />

314 J. Thorez<br />

geological cycles. If we wish to interpret<br />

the past (geology) we must ..<br />

underst<strong>and</strong> the reasons for the<br />

appearance of clays which remain>>.<br />

Figure 1 illustrates the participation<br />

of the clay minerals in the geological<br />

cycle.<br />

MILLOT (1967, p. 355, translated<br />

excerpt): «Within the main parts of<br />

its surface, the crust is composed by<br />

silicates assembled into rocks: granites,<br />

gneiss, slates, shales <strong>and</strong> lavas.<br />

When croping out at the surface <strong>and</strong><br />

able to escape a tob vigorous erosion,<br />

these silicate-bearing rocks are<br />

doomed to destruction. The normal<br />

state at the earth's surface is the clay<br />

state when thermodynamic equilib-<br />

----rium-:nas·oeei1 reached with time. If<br />

the lithosphere is essentially feldspathic,<br />

the surface is essentially devoted<br />

to clay. The clay minerals are<br />

pecgJia,r- Qc:'!g.u~.t; __ they_ are __ the interme<strong>di</strong>ates,<br />

at the level oftheir crystallochemical<br />

behaviour, between inert<br />

minerals (such as quartz) which<br />

remain stable throughout most the<br />

crust's history, <strong>and</strong> the soluble but<br />

highly mobile minerals (such as salts,<br />

carbonates, sulphates, ... ) which are<br />

rea<strong>di</strong>ly mo<strong>di</strong>fied. When croping out<br />

the lithosphere undergoes a severe<br />

evolution by becoming transformed<br />

into clay. But the transformation is<br />

not a simple operation completed at<br />

once. On the contrary, the evolution<br />

is gentle, variable, reluctant, progressive,<br />

easily submitted to deviations<br />

or reversals».<br />

BRHART (1956) (translated excerpt):<br />


Argillogenesis <strong>and</strong> the Hydrolysis liid~ 315<br />

history which cannot be explained in<br />

a simple way ... ».<br />

LUCAS (1962; 1968) has clearly<br />

(re)defined the very role of the<br />

geochemical process in the evolutionary<br />

behaviour of the interstratified<br />

clay minerals in the hydrosphere by<br />

recalling aspects concerning heri ~<br />

tage, rejuvenation, degradation,<br />

aggradation, neoformation (Fig. 1).<br />

He particularly emphasized the place<br />

of these r<strong>and</strong>om mixed-layers (his<br />

«e<strong>di</strong>fices») as a «printing mark>> in<br />

the transformations: these «Structures>><br />

are a kind of crystallochemical<br />

compromise in the form of an unstable<br />

equilibrium between the composition<br />

of the parent minerals <strong>and</strong><br />

the environmental con<strong>di</strong>tions that<br />

prevail during the transformation.<br />

SUDO et al. (1962, p. 378) considered<br />

indeed: «Normally the mixedlayer<br />

minerals are found where there<br />

has been successive attack under<br />

<strong>di</strong>fferent con<strong>di</strong>tions of chemical environment<br />

or in an area that is transitibnal<br />

between two <strong>di</strong>fferent chemical<br />

environnien ts ».<br />

TARDY (1969) demonstrated the<br />

importance of «ion-chromatography<br />

in the l<strong>and</strong>scapeS>> which ventilates<br />

laterally the elements removed<br />

(le~ched) from the parent silicate<br />

structures, <strong>and</strong> their transfer or successive<br />

«blocking>> within <strong>and</strong> by environments<br />

that bear either «confining<br />

to confined>> or «leaching to<br />

leached>> characteristics. Such a<br />

«chromatography>> involves the action<br />

of the climate (temperature,<br />

rainfall, <strong>and</strong> drainage).<br />

The reality of the <br />

at the surface is nowadays wellsupported<br />

by an explosive literature<br />

which demonstrates the multiplicity<br />

of pathways as well of clay products<br />

(nature, abundance, associations) in<br />

the vast chemical transfer cited by<br />

VELDE (op. cit.). Therefore a certain<br />

need ari:r:es for a globalization that<br />

seems <strong>di</strong>fficult to undertake because<br />

'of the «kaleidoscopic>> character of<br />

argillogenesis when taking into<br />

account the interplay of all the vectors,<br />

factors <strong>and</strong> parameters at work<br />

simultaneously.<br />

The weathering sequences<br />

XRD analysis is <strong>and</strong> will remain<br />

without any doubt the paramount<br />

tool in the investigation of clay<br />

minerals. This privilege is due to the<br />

fact that this investigational method<br />

can face the case of multicompositional<br />

mineral phases whereas other,<br />

more sophisticated methods better<br />

suit when analysing monophases,<br />

even rembering that XRD analysis<br />

still lacks any st<strong>and</strong>ar<strong>di</strong>zed method<br />

for sample preparation, mineral determination<br />

<strong>and</strong> quantitative evaluation<br />

(THOREZ, 1985). Now polymineral<br />

phases are a general rule in<br />

the argillogenetic process: an increasing<br />

awareness of the great varie-.<br />

· ty of clay minerals <strong>and</strong> of their nearly<br />

infinite potentiality to be engaged in<br />

multicomponent admixtures <strong>and</strong> interstratifications,<br />

too, has resulted in<br />

a greater number of clay scientists<br />

(clay geologists, pedologists ... ) to become<br />

concerned with the genetic <strong>and</strong>


316 J. Thorez<br />

descriptive ways in which the complexity<br />

of both the mineralogy <strong>and</strong><br />

association of these minerals (simple<br />

clay minerals <strong>and</strong> mixed layers) can<br />

be formulated within the best concise<br />

form: the «weathering sequence>>.<br />

The vastness of cases means that the<br />

latter would better be considered in<br />

the plural.<br />

The investigation about the weathering<br />

processes, <strong>and</strong> their understan<strong>di</strong>ng,<br />

has involved a twofold<br />

approach one purely mineralogical<br />

<strong>and</strong> crystallographical, the other,<br />

geochemical. The form took mainly<br />

its interest in the «follow up» of the<br />

variability of the minerals involved<br />

inJh~ '\V~~!h~rjng se9.11«nc:es,_ of tht!ir<br />

mode of succession <strong>and</strong> relays starting<br />

with the parent silicate material,<br />

<strong>and</strong> en<strong>di</strong>ng with either the clay<br />

minerals or their pure withdrawal<br />

from the system. The geochemical<br />

approach has been the pathway of<br />

Millot's school in Strasbourg, with<br />

particular emphasis on the relationship<br />

between the clay minerals<br />

<strong>and</strong> l<strong>and</strong>scape evolution, by integrating<br />

the geochemical pathways (heritage,<br />

degradation ... ). Here the scale of<br />

the investigation encompasses the<br />

meter (profile) up to the km 3 volume<br />

Weathering of a granite in temperate con<strong>di</strong>tions<br />

FRESH MINERAL<br />

I<br />

CC>NTACT- . . I PLASMIC- SYSTEM<br />

MICROSYSTEM PRESERVED MODIFIED<br />

STRUCTURE<br />

I<br />

FISSURAL<br />

SYSTEM<br />

DEPOSIT<br />

FRAGMENTATION DISSOLUTION<br />

r:-::cc::-:-=-::= _......M 9 -sequence -<strong>di</strong>oct- vermiculite + kaolinite-montmorillonite + kaolinite<br />

I MUSCOVITE! "'-AI _ sequence-illite + kaolinite + (intergrade J-beidellite + kaolinite<br />

DEPOSIT<br />

NEOFORMATION<br />

I BIOTITE 1-(mica -vermiculite) +AI- vermiculite + kaolinite + Fe -Ti -oxides<br />

w-<br />

~ROFISSURE ! IN~~~:i FRACTURE<br />

~<br />

z /~ -~~~ICITE<br />

1jj ~AOUNITE<br />

CLOUDING<br />

SERICITE FRACTURE FRAGMENTATION<br />

r:=:-:-:::-=:-:--::::::1 .....,... kaolinite + AI - vermiculite + sericite<br />

I ORTHOCLASE I ......_ kaolinite • smectite + sericHe<br />

DISSOt.UTION<br />

PLASMA<br />

__. kaolinite + Al-vermiculite + sericite<br />

I PLAGIOCLASEI "'- kaolinite + smectite + sericite<br />

. FRACTURE WITH CUTANE<br />

FRAGMENTATION<br />

DISSOLUTION<br />

Fig. 2- Sequences of weathering <strong>and</strong> associated transmineral mo<strong>di</strong>fications occurring during the.<br />

weathering of a granite submitted to argillogenesis in temperate con<strong>di</strong>tions (after MEUNIER,<br />

1977, mo<strong>di</strong>fied).


of clays <strong>and</strong> clayey materials in<br />

geomorphological environments.<br />

Other researchers (i.e. MEUNIER,<br />

1977; MEUNIER & VELDE, 1979)<br />

have started recently to try to decifer<br />

the weathering processes at the scale<br />

of the compositional minerals forming<br />

a rock, by analysing both what<br />

occurs in the mineral grain itself, <strong>and</strong><br />

in the imme<strong>di</strong>ate vicinities. This<br />

punctual approach is, in the opinion<br />

of the present author, very noteworthy<br />

because, in place of a global <strong>and</strong><br />

«blind» qualitative evaluation (as<br />

performed normally when studying a<br />

whole sample), here a «mineralogic<br />

particularism» can be reached <strong>and</strong><br />

also easily detected by the same<br />

method (XRD). The «geochemical<br />

Argillogenesis <strong>and</strong> the Hydrolysis bidex 317<br />

.,__.INCREASINC OIMENSIONS<br />

OF THE ~UNITS"<br />

wounds» suffered by each mineral<br />

grain can be evaluated separately<br />

<strong>and</strong> firmly before a more global<br />

analysis provides what occurs to the<br />

rock itself. Each mineral can be<br />

traced for itself, step-by-step, or<br />

stage-by-stage. Figure 2 is a synthetic<br />

illustration of MEUNIER's work in<br />

1977, which <strong>di</strong>splays simultaneously<br />

the weathering sequences of common<br />

minerals in a granite <strong>and</strong> the relationship<br />

with the characteristics of<br />

the micro-environment.<br />

Finally an «all-scale approach»,<br />

from the A of the compositionallayer<br />

of the clay minerals towards the km 3<br />

in volume of clayey bo<strong>di</strong>es in the<br />

l<strong>and</strong>scape with a «zooming overview>>,<br />

is the mutual integration of<br />

'~~,m-


318 J. Thorez<br />

the scales at which, each time, any<br />

clay mineral can be looked at: thi~<br />

has led the present author to introduce<br />

the notion of a <br />

(Fig. 3) (THOREZ, 1987). In the scope<br />

of the weathering, an


Argil/ogenesis <strong>and</strong> the Hydrolysis IndeX 319<br />

TABLE 1<br />

Various clay mineral reactions in soils with in<strong>di</strong>cation for their weathering stability index<br />

numbers (see Table 4) (JACKSON, 1963)<br />

Micas<br />

Biotite (4)<br />

Muscovite (7)<br />

Illite (7)<br />

~ Vermiculite (8) ~ Montmorillonite (9) :::; Pedogenic 2:1-2:2<br />

swelling 18 A<br />

\/<br />

Integrade<br />

\<br />

(Fe, Mg, Al) ~Secondary<br />

Chlorite (4) Chlorite (8)<br />

--+ Pedogenic 2:1-2:2<br />

14 A intergrade<br />

/Kaolinite <strong>and</strong><br />

~ Al-Chlorite (9) Halloysite (10)<br />

teration from one mineral to another,<br />

with possible reversals.<br />

The reaction (Table 1) does not incorporate<br />

allophane (stage 11), hematite<br />

(12) <strong>and</strong> anatase (13). In its present<br />

for the reaction has passed large;:_<br />

ly in the text-books <strong>and</strong> other publications<br />

as a kind of . Therefore it<br />

seem worthwhile to recall the nature<br />

of some of the most important <br />

whose interplay con<strong>di</strong>tions the<br />

development of the reaction. The. list<br />

is not exhaustive, <strong>and</strong> the is r<strong>and</strong>om:<br />

1. The reaction is triggered only if<br />

the parent material is a silicate or a<br />

silicate-bearing material. The silicate<br />

nature is thus a necessary premise<br />

<strong>and</strong> the of the solutions<br />

(percolating fluids) if the reaction is<br />

to develop. Other parameters for the<br />

parent material comprise: the grainsize<br />

(decreas_ing size or minuteness of<br />

the particle hastens argillogenesis);<br />

the aggregaticm mode (structural<br />

arrangement of the mineral grains),<br />

the occurrence of (micro )fissures<br />

which will favour percolation.<br />

2. The composition of the fluids is a<br />

st]\ict con<strong>di</strong>tiQn in the matter of richness<br />

in ions (saturation status), available<br />

volume (importance of rainfalls,<br />

in terms of volume, intensity, regularity)<br />

<strong>and</strong> capacity of percolation<br />

(occurrence of (micro)fissures in· the


-~~-~-----~--~----~--<br />

320 J. Thorez<br />

bedrock submitted to clay-transformation).<br />

Thus the availability of solutions is<br />

strictly dependent on the climate<br />

(rainfall, temperature). Percolating<br />

but de- or unsaturated solutions will<br />

better deplete the parent minerals<br />

from certain elements (alkalis, Fe,<br />

Mg, Si) whereas saturated solutions<br />

will induce a decreasing alteration.<br />

The latter is a matter of reactivity of<br />

the minerals towards fluids. The<br />

reactivity, in turn, is triggered <strong>and</strong><br />

developed at three levels or scales as<br />

substantiated by MEUNIER (1977).<br />

The weathering occurs first in the<br />

micro-environments, inside the<br />

mineral grains, <strong>and</strong> is facilitated by<br />

the presence of a « transmineral >><br />

microfissural system, <strong>and</strong> also develops<br />

in the vicinities of the grains<br />

thanks to an original micro-porosity.<br />

The clay products are generally<br />

monophase <strong>and</strong> are strictly under the<br />

dependence of the percolating fluids.<br />

The second level is associated with<br />

the opening <strong>and</strong> widening of the<br />

(micro) fissures, a con<strong>di</strong>tion for an increasing<br />

Circulation of the solutions.<br />

. The products of the reaction mineral<br />

+ waters are multiphase. This latter<br />

characteristic points to either the<br />

cumulative effects of the reaction<br />

operating inside the mineral grain<br />

with a change of geochemistry (successive<br />

clay products are generated<br />

in situ <strong>and</strong> relay one another in the<br />

microenvironment), or to a cumulative<br />

mineral effect produced by the<br />

alteration of several grains of the<br />

same composition <strong>and</strong>/or <strong>di</strong>fferent<br />

nature, undergoing the alteration at<br />

<strong>di</strong>fferent rates. The multiphase composi!i9E~].2<br />

___ ~ls


Argillogenesis <strong>and</strong> the Hydrolysis Index 321<br />

completed. This means that, in ad<strong>di</strong>- sive but moderate weathering. The<br />

tion to the pursuit of the weathering, chlorite weathers first <strong>and</strong> as long as<br />

time (in terms of duration) is also an some (fractions of the) mineral reimportant<br />

parameter since the trans- mains intact, the companion muscoformation<br />

is, generally speaking, a vite (illite) is not affected by the<br />

slow process. . weathering. Here the chlorite plays<br />

3. Among the external factors, one the role of a protective «shield>> for<br />

should certainly emphasize the role the alteration of the illite which<br />

of geomorphology (topography, re- starts to weather later after the «passlief),<br />

bedrock geometry (tectonic set- ing over» of practically the whole<br />

ting), altitude, tectonic· stability chlorite.<br />

(which favours a deeper alteration 5 .. XRD analysis remains, besides<br />

without erosion), heterogeneity of the its real potentialities as an investigasubstratum<br />

itself (i.e. alternating tional method for multicomposional<br />

beds with <strong>di</strong>fferent compositions <strong>and</strong> materials, a kind of «blind» tool becohesiveness<br />

...), <strong>and</strong> the role played cause it produces <strong>di</strong>ffractogrammes<br />

by the biosphere (influence of the consisting of a «more or less dense<br />

vegetation). All the text-books about forest of peaks». If the material to be<br />

physical <strong>and</strong> chemical weathering .analysed has been prepared as<br />

stress the influence of these «stimuli» oriented aggregates, the X-ray patin<br />

<strong>and</strong> on the «Carving» of the l<strong>and</strong>- tern is simplified, <strong>and</strong> the number of<br />

scape. " peaks (reflections) is lessened sensi-<br />

4. Jackson's popular sequence bly as compared to the one of a ran­<br />

(Table 1) <strong>di</strong>splays the possibility of dom powder preparation. Every scireversals<br />

in the reaction, <strong>and</strong> impli- entist familiar with this


322 J. Thorez<br />

___ __<br />

the X-ray pattern of the oriented<br />

aggregate represents (reflects), with~<br />

in a <strong>di</strong>agrammatic way, the crystallographical<br />

properties of an entire<br />

population of clay particles within<br />

the less than ·two micron fraction,<br />

which share a common basal d­<br />

spacing at 10 A». All the particles<br />

give reflections situated in the same<br />

plane; consequently the intensity of<br />

the basal 10 A (001) peak is high, the<br />

peak itself being fairly narrow.<br />

Things become tougher when dealing<br />

with r<strong>and</strong>omly interstratified structures<br />

that or<strong>di</strong>narily <strong>di</strong>splay a or a plateau in the<br />

strategic (001) zone. These features<br />

____testify about the presence of either<br />

<strong>di</strong>sorder existing only within the clay<br />

particle or both in the particles <strong>and</strong><br />

in the whole examined material. The<br />

plateau in<strong>di</strong>cates that all the ra<strong>di</strong>ations<br />

have the same intensity: no simple<br />

or separate peaks appear in the<br />

X-ray pattern; each particle. reflects<br />

separately on its own, the global<br />

effect giving rise to the <strong>di</strong>ffraction<br />

b<strong>and</strong> especially at the level of the d-.<br />

spacing. In ad<strong>di</strong>tion, the nature of the<br />

interlayer spaces <strong>and</strong> the mode of<br />

layer stacking also determine the<br />

value of the parameter d. It is.actually<br />

this d-value which is measured<br />

when analysing the X-ray <strong>di</strong>ffraction<br />

patterns. The variations in the d<br />

value upon classic tests (solvation<br />

with polyalcohols ...) make it possible<br />

to determine the mineral group to<br />

which the interstrafied structure belongs<br />

<strong>and</strong> particularly the nature of<br />

the layers <strong>and</strong> interlayer spaces involved<br />

in buil<strong>di</strong>ng-up the r<strong>and</strong>om interstratified<br />

structure. With an exten<strong>di</strong>ng<br />

<strong>di</strong>ffr:action b


Argillogenesis <strong>and</strong> the Hydrolysis index 323<br />

(1975; 1976) have introduced specific<br />

connotations to describe <strong>and</strong> <strong>di</strong>fferentiate<br />

regular interstratified<br />

!llinerals (which are true minerals)<br />

<strong>and</strong> r<strong>and</strong>omly interstratified structures.<br />

The complexity of interstratified<br />

minerals <strong>and</strong> structures makes it<br />

<strong>di</strong>fficult to arrive at a suitable but<br />

universally used nomenclature.<br />

Hence the necessity for the notations<br />

to be unequivocally understood by<br />

any user. In brief, regular mixedlayers<br />

should be' described by a notation<br />

where the symbols (first letters)<br />

of the associated minerals (layers)<br />

linked by a hyphen are put between<br />

parentheses: i.e. a regular mixedlayer<br />

mineral composed of layers of<br />

mica <strong>and</strong> layers of chlorite should be<br />

written (Mi-C); when mica layers are<br />

predominant, the name of the interstratified<br />

mineral should be chloritic<br />

(Mi-C) mica. When dealing with r<strong>and</strong>omly<br />

interstratified structures,<br />

built up i.e. by layers of illite, <strong>and</strong> interlayers<br />

behaving as a chlorite, the<br />

notation should comprise the symbols<br />

(the d-spacing) of the components<br />

such as (10-14c); the predominance<br />

of illite layers or of chloritic<br />

TABLE 2<br />

Complete weathering sequences, with their transitory stages (mostly represented by the<br />

mixed-layers) derived by the vermiculitization, smectitization, chloritization ... of parent 10<br />

A (muscovite, biotite, illite) <strong>and</strong> 14 A (chlorite) parent clay minerals ·<br />

MUSCOVITE, BIOTITE, ILLITE<br />

vermiculitization (VERM):<br />

lv, Ism <strong>and</strong> le= open illites<br />

I -7 lv-7 10-(10-14v) -7 (10-14v) -7 (1Cl-14v)-14v-7 V<br />

smectitization (SMEC):<br />

I -7 Ism -7 10-(10-14sm) -7 (10-14sm) -7 (10-14smH4sm -7 Sm<br />

chloritization (CHL):<br />

I -7 le -7 10-(10-14c) -7 (10-14c) -7 (10-14c)-14(; -7 C 2 (secondary chlorite)<br />

CHLORITES<br />

vermiculi tiza tion (VERM):<br />

C ~ C-(14c-14v) -7 (14c-14v) -7 (14c-14v)-14v -7 V<br />

smectitization (SMEC):<br />

C -7 Csm -7 C-(14'c-14sm) -7 (14c-14sm) -7 (14c-14sm)-14sm -7 Sm<br />

swelling chloritization (sw-CHL):<br />

C -7 C-(14c-14csw) ,-7 (14c-14csw) -7 (14c-14cswH4csw -7 Csw<br />

combined processes, i.e.:<br />

vermiculitization-smectitization (VERM + SMEC):<br />

V -7 (14v-14sm) -7 Sml (10-14v) -7 V -7 04v-14sm) -7 Sm<br />

secondary chloritization (CHL-2):<br />

V -7 VAl -7 CAl I (14v-14sm) -7 (14v-14smA1) -7 VAl -7 C 2 I (10-14v) -7 (10-<br />

14c) -7 C 2 etc.<br />

later stages (kaolinization, amorphization) (KAOL, AMORPH):<br />

V -7 V Al = C 2 -7 K I amorph_. -7 K I Sm -7 SmAl -7 C 2 -7 K I amorph. -7 K


324 J. Thorez<br />

interlayers should appear in the form ~ (14c-14v)-V/14v ~ V. In other<br />

respectively of: 10-(10-14c) <strong>and</strong> (10~ __ wrQ.s,Jh~_Qrjg~pal_for!IJ.l,!latioi1 given<br />

14c)-14c (as appearing in Table 2). by JACKSON (1963; 1964) could be<br />

Other possibilities <strong>and</strong> explanations developed by incorporating more<br />

are giveri in THOREZ (1976). The sys- stages or phases which are, in fact,<br />

tern of notation proposed here (use of the obligatory «passages» from one<br />

parentheses <strong>and</strong> hyphens, letters or stage to the next one. The transitory<br />

numerals) seems to the present au- stages, represented by the mixedthor<br />

sufficiently clear so as to avoid layers, are truly relatively labile <strong>and</strong><br />

any ambiguity in qualifying the replace one another rather quickly in<br />

mixed-layers, <strong>and</strong> is suitable for the the process of the weathering; they<br />

establishment of the «Hydrolysis In- are easily defined when dealing, for<br />

dex>>, H.I. (see further).<br />

instance, with the weathering of the<br />

6. In its tra<strong>di</strong>tional presentation, sole chlorite in a monophase com­<br />

·Jackson's sequence lacks some imc position, but the <br />

portant «links»: the mixed-layers ·become <strong>di</strong>fficult to extract in the case<br />

which form theoretically <strong>and</strong> also of multicompositional clay mineral<br />

-~-----~~-:r>r;:tc!i~ally d1:1ring the weathering associations particularly because of<br />

-processes. For instance one knows the ovedapping of reflections.<br />

that chlorite (C) passes (quickly or The same remarks could be formuprogressively)<br />

to vermiculite (V) with lated for complete sequences of<br />

the transitory phase represented by a weathering incorporating <strong>di</strong>fferent<br />

mixed-layer chlorite-vermiculite. types of mixed-layers (Table 2).<br />

This stage is in the form either of a The passage from a chlorite to a·<br />

regularly interstratified mineral, (C- vermiculite via the mixed-layer (14c­<br />

V), or of a r<strong>and</strong>omly interstratified 14v) implicates several but simulstructure,<br />

(14c-14v). Both symbols r~- taneous mechanisms. The chlorite<br />

fer to the occurrence of chloritic particle weathers progressively, layer<br />

layers (C, 14c) <strong>and</strong> of either vermicu- by (after) layer; all particles do not<br />

lite layers (V) or interlayers (14v) due . necessarily undergo weathering at<br />

to the removal of some of the origi~af .. the sai:ne speed nor with the same inhydroxy<strong>di</strong>c<br />

layer.<br />

tensity. When analysing the material,<br />

The sequence chlorite to- mixed- no wonder then that in the X-ray patlayer<br />

chlorite-vermiculite to, finally, tern shows an «association>> of pea~s<br />

vermiculite should take the following i.e. at 14 A (chlorite + vermiculite +<br />

notation: C ~(C-V)~ V or C ~ (14c- mixed-layer, in the dry state). After<br />

14v) ~V. If one wants to emphasize heating, this unique 14 A peak gives<br />

better, when possible from the study rise, i.e. to a (less intense) 14 A peak<br />

of the X-ray <strong>di</strong>ffraction pattern, the (= residual but intact parent chlo­<br />

«relay» in predominance of the corn- rite), a broad 1i A peak ( = mixedponents,<br />

the reaction can take the layer (14c-14v)) <strong>and</strong> a 10 A peak (verform<br />

of: C ~ C-(14c-14v) ~ (14c-14v) miculite). The vermiculitization pro-


-<br />

Argillogenesis <strong>and</strong> the Hydrolysis Index 325<br />

ceeds, on the other h<strong>and</strong>, accor<strong>di</strong>ng<br />

to the «clay integron>> (Fig. 3), that is<br />

to say at <strong>di</strong>fferent but integrated<br />

scales: from the layer (A) to the micron<br />

size of the clay particles obtained<br />

through preparation of the material<br />

as an oriented aggregate. This integration<br />

goes further within the collected<br />

sample <strong>and</strong> in the fi


326 J. Thorez<br />

METAHALL.<br />

c ..... C- (14c-14sml ..... (14c-14sm) ..... (14c-14sm)-14sm - Sm (al<br />

c- C (14c-14v) ..... (14c-14v)- (14c-14v)-V -V<br />

c- (14c-14v)- v-(14v-14Sm)-Sm<br />

4 c - (14v -14c)-V- METAHALLOYSITE<br />

5 c- Sm - Sm AI ..... C AI (C)<br />

6 C- (14c-14v)- V - VAI-CAI I C)<br />

c- C 2 ..... 14A INTERGRADE- CAl-K le)<br />

a c- C2 ..... 14A ..... Sm..... 18A INTERGRADE ..... K le)<br />

g c- c2- 14A - v-sm-18 A - K 1e1<br />

10 c-(14c-14vl-VTRI-(14v-14Sm)-Sm-K .Id)<br />

11 c- (14c-14v)- VTRI ..... INTERGRADE AI - Sm Id)<br />

12 c- (14c-14v) ..... VTRI- INTERGRADE Al .... CA! ldl<br />

13 c-·(14c-14v) ..... VTRI ..... K /d)<br />

Fig. 6 - Diagramme block presentation for the weathering sequences of a chlorite mineral.<br />

(b)<br />

le)<br />

Id)<br />

chlorite alteration can lead to a vermiculite<br />

as a (provisional or definitive)<br />

end-product, the vermiculite<br />

being generally trioctahedral, the<br />

associated parent illite can similarly<br />

produce a «vermiculitic structure»,<br />

too. This latter vermiculite can be<br />

either <strong>di</strong>octahedral (generated from<br />

muscovite) or trioctahedral (if the parent<br />

mineral is biotite). This convergence<br />

in the weathering products of<br />

the original parent material, chlorite<br />

plus illite, even if the weathering is<br />

<strong>di</strong>phased as quoted before, cannot.be<br />

extracted from the X-ray pattern because<br />

of the similarity of d-spacing<br />

(cf. (001) behaviours upon identification<br />

tests). What could be stressed is<br />

the general weathering trend: avermiculitization,<br />

affecting both minerals<br />

during the degradation of the<br />

parent minerals.<br />

Equally, the problem may arise for<br />

smectite. Smectitization, as a weath-


ering process, can induce the degradation<br />

.of a silicate (inclu<strong>di</strong>ng<br />

phyllosilicates <strong>and</strong> clay minerals<br />

such as illite, biotite, chlorite) <strong>and</strong><br />

the production of a smectite (cf. degradation<br />

smectite). However, the<br />

smectite can be generated after an<br />

entirely opposite process neoformation.<br />

Both genetic. species may coexist<br />

in the weathering products <strong>and</strong><br />

the XRD analysis cannot <strong>di</strong>fferentiate<br />

them.<br />

8. The composition of the mixedlayers<br />

points to the geochemical processes<br />

which are acting during the<br />

weathering. These geochemical processes<br />

are identified as vermiculitization<br />

(VERM), smectitization (SMEC),<br />

secondary chloritization (CHL), <strong>and</strong><br />

kaolinitization (KAOL) when the<br />

mixed-layers show in their structur:e<br />

(r<strong>and</strong>om mixed-layers) <strong>di</strong>stended interlayers<br />

which behave like respectively<br />

a vermiculite (14v), a smectite<br />

Cl4sm), a chlorite (14c).<br />

For instance a parent chlorite<br />

could weather towards a vermiculite,<br />

smectite or swelling chlorite (14c 5 w)<br />

state (or_ end-product) accor<strong>di</strong>ng to<br />

the following weathering sequences:<br />

C---+ C-(14c-14v)---+ C-(14c-14v)-14v---+<br />

Cl4c-14v) ---+ Cl4c-14v)-14v ---+ V (=<br />

VERMiculitization) ·<br />

C ---+ C-04c-14sm) ---+ C-(14c-14sm)-<br />

14sm ---+ Cl4c-14sm) ---+ Cl4c-14sm)-<br />

14sm---+ Sm (= SMECtitization)<br />

C ---+ C-(14c-14csw) ---+ (14c-14csw) ---+<br />

Cl4c-14csw)-14csw ---+ Csw (swelling<br />

chlorite)<br />

Vermiculi tiza tion, smecti tiza tion,<br />

Argillogenesis <strong>and</strong> the Hydrolysis Index 327<br />

chloritization processes, expressed<br />

within transitory mixed-layers, also<br />

characterize the weathering of 10 A<br />

material (muscovite, biotite, illite) as<br />

illustrated in Table 2.<br />

Moreover, combined but successive<br />

processes exist whether caused<br />

by a change in the weathering con<strong>di</strong>tions<br />

or by the «normal» paths: i.e. a<br />

chlorite could become transformed<br />

by degradation into a vermiculite,<br />

the latter stage becoming further degraded<br />

<strong>and</strong> reaching a smectite stage.<br />

Briefly expressed, the latter combination<br />

will take the form of: C ---+ Cl4c-<br />

14v) ~ V ---+ Cl4v-14 5 m) ---+ Sm (=<br />

VERM + SMEC).<br />

Another way to present these<br />

<strong>di</strong>fferent geochemical-crystallochem-<br />

'-ical pathways is with a <strong>di</strong>agramme<br />

block (Fig. 5) where two «corners>><br />

are occupied by the parent minerals,<br />

illites sensu lata, <strong>and</strong> chlorite. Lateral<br />

<strong>and</strong> <strong>di</strong>agonal «pannels» support the<br />

transitory (mixed-layers) products,<br />

with the last two «corners» devoted<br />

to vermiculite (V) <strong>and</strong> smectite (Sm)<br />

as end-products. However, further<br />

transformation can lead to either Alhydroxylation<br />

of the vermiculite <strong>and</strong><br />

smectite (cf. external pannels) or to<br />

swelling chlorite (C 5 w), <strong>and</strong> finally to<br />

kaolinite. In reality, all these sequences<br />

in their actual presentation<br />

(Fig. 5) appear more complex in the<br />

natural con<strong>di</strong>tions. A global review<br />

related to the <strong>di</strong>fferent pathways <strong>and</strong><br />

by-products of the weathering of both<br />

10 A <strong>and</strong> 14 A clay minerals as well as<br />

that of non-clay minenils (feldspars,


--~~------~-~---~<br />

TABLE 3<br />

Schematic reconstruction of the various transformation pathways with their geothemical implications (vermiculitization, smectitization, ... )<br />

for silicates ! -<br />

I<br />

Bio<br />

c<br />

ILLITE-MUSCOVITE<br />

~ VERM---? CHL2<br />

~ SMEC ---? KAOL<br />

~ CHL2<br />

~ SMEC ---? CHL2<br />

~ KAOL<br />

t<br />

KAOL<br />

- CHL2<br />

BIOTITE<br />

SMEC ---? KAOL<br />

~ VERM---? KAOL<br />

~ CHL ---? SMEC---? KAOL<br />

~ ~ VERM---? KAOL<br />

- ~ KAOL ~ SMEC ---? KAOL<br />

t<br />

KAOL<br />

ILL<br />

CHLORITES<br />

r VERM---? CHL2 ---? SMEC<br />

~ KAOL<br />

SMEC---? KAOL<br />

t<br />

SMEC ---? CHL2<br />

CHL2 ---? KAOL<br />

SYMBOLS<br />

SMEC = Smectitization<br />

VERM = Vermiculitization<br />

~ CHL2<br />

~ CHL2 ---? KAOL<br />

CHL<br />

CHL2<br />

F<br />

FELDSPARS<br />

r SER i---? SMEC---? KAOL<br />

~ ~ CHL2 ---? KAOL ---? GIBBSITE<br />

VERM---? SMEC ---? KAOL<br />

""'~ ~ CHL2 ---? KAOL<br />

~ CHL2 ---? KAOL<br />

KAOL<br />

CHL ---? SMEC ---? KAOL<br />

~<br />

VERM---? SMEC---? KAOL<br />

SMEC---? KAOL<br />

KAOL ---? AMORPHOUS<br />

AMORPHOUS ---? KAOL<br />

PYROXENES-AMPHIBOLES<br />

PYR ---? KAOL + GOETHITE ..<br />

~ AMPHIB ---? CHL ---? VERM---? SMEC---? KAqL<br />

SEQUENCE---?<br />

""- ' SMEC :1<br />

~ ~ r<br />

SMEC ---? AMORPHOUS ---? KAQL<br />

Geochemical pathways for degradation,<br />

aggradation <strong>and</strong> neoformation are represented<br />

by simple clay minerals <strong>and</strong>/or mixed-layers<br />

Chloritization<br />

Secondary chloritization<br />

KAOL = Kaolinitization<br />

ILL = Illitization<br />

"' N<br />

00<br />

:-...<br />

~<br />

~<br />

N


pyroxenes ...) ('fHOREZ, in preparation)<br />

demonstrates a more intricate<br />

pattern in the weathering sequences,<br />

with either stops or combined sequences.<br />

Figure 6 exemplifies for instance<br />

the behaviour of chlorite (C)<br />

alone during weathering with at least .<br />

13 <strong>di</strong>fferent sequences. Table 3 provides<br />

a synthetic approach for all the<br />

weathering sequences regar<strong>di</strong>ng<br />

illite-muscovite, biotite, chlorites,<br />

Argillogenesis <strong>and</strong> the Hydrolysis fiib 329<br />

"<br />

TABLE 4<br />

feldspars, pyroxenes-amphiboles.<br />

The representative sequences are<br />

illustrated here by referring only to<br />

the geochemical pathway, arrows<br />

provi<strong>di</strong>ng the <strong>di</strong>rection of the process.<br />

In this way the high variability<br />

of weathering sequences for each<br />

parent mineral can be demonstrated;<br />

each stage (i.e. VERM of illite(I)) incorporates<br />

in reality a series of interme<strong>di</strong>ates:<br />

I__,. (10-14v) __,.V. Illustration<br />

within separate <strong>di</strong>agramme<br />

blocks is foreseen (THOREZ, in preparation).<br />

It is noteworthy that all the sequences<br />

reach kaolinization at the end<br />

of the process, provided that the<br />

weathering is continuous.<br />

The weathering index<br />

JACKSON <strong>and</strong> eo-workers (1948)<br />

were well aware of the role of clay<br />

minerals in the weathering processes<br />

in soils. They proposed a graphical<br />

method to trace the course of the<br />

weathering (their «weathering sequence>>),<br />

<strong>and</strong> to rank the weathering<br />

(in intensity) <strong>and</strong> the associated<br />

. weathering products (clay <strong>and</strong> non-<br />

Weathering indexes of clay~size minerals in soils <strong>and</strong> se<strong>di</strong>mentary deposits (JACKSON,<br />

. - 1948)<br />

Weathering<br />

Index <strong>and</strong> Symbol<br />

Clay-size minerals<br />

1 Gyp Gypsum (also halite, Na-sulphate, etc.)<br />

2 Clt Calcite (also dolomite, aragonite, apatite, etc.)<br />

3 Horn Hornblende (also olivine, pyroxene, analcite ... )<br />

4 Biot Biotite (also glauconite, mafic chlorite, antigorite, nontronite, etc.)<br />

5 Alb Albite (also plagioclases, microcline, volcanic glass, etc.)<br />

6 Otz Quartz. (also cristobalite, tridymite, etc.)<br />

7 Mi-d 1M~<strong>di</strong>octahedral micas (also muscovite <strong>and</strong> 10 A zones of sericite ... )<br />

8 Verm Vermiculite (also collapsible14 A interstratified zones)<br />

9 Mont Montmorillonite (also beidellite, etc.)<br />

9 Al-Chl Pedogenic <strong>di</strong>octahedral chlorite (inclu<strong>di</strong>ng interstratified 2:2 zones)<br />

10 Allo Allophane (sesquioxi<strong>di</strong>c, halloysitic, etc.)<br />

11 Gibb Gibbsite (also boehmite, etc.)<br />

12 Hem Hematite (also goethite, limonite, lepidocrocite, magnetite ... )<br />

13 Ana Anatase (also rutile, ilmenite, leucoxene, zircon, corundum, etc.)


330 J. Thorez<br />

clay minerals) in terms of successive<br />

appearances <strong>and</strong> relative resistances ..<br />

Their work led to a form of indexing<br />

supported by a series of 13 successive<br />

stages (Table 4).<br />

By presenting this series of stages,<br />

JACKSON et al. (1948) adopted the<br />

views that: i) a «colloidal» size mineral<br />

may in some cases be a parent<br />

material of successive


Argillogenesis <strong>and</strong>the Hydrolysis Index 331<br />

besides the «routine» three tests<br />

(natural-air dried, glycolated, <strong>and</strong><br />

heated preparation), in order to reach<br />

a good <strong>di</strong>scrimination among the <strong>di</strong>fferent<br />

clay components (some of these<br />

sharing common reflections <strong>di</strong>fficult<br />

to separate if only the routine investigation<br />

is completed).<br />

After having established the real<br />

composition of the clay phase, a<br />

quantitative evaluation of their rela-<br />

tive abundance must be reached<br />

whatever the method (or better to<br />

say: the lack of method). The essential<br />

point is to work out the quantification<br />

always following the same<br />

whether the abundance is<br />

translated as percentage or not.<br />

The next step is to have appropriate<br />

indexing for the stages presented<br />

in Table 2. After several tests the indexation<br />

was obtained as reported in<br />

TABLE 5<br />

Stages <strong>and</strong> stage numbers (between parentheses) in the complete weathering sequences for<br />

· 10 A (illite sensu Jato) <strong>and</strong> chlorites<br />

I~ lv ~ 10-(10-14v) ~ 10-(10-14v) ~ (10-14v) ~ (10-14v)-14v ~V<br />

(1) (1.25) (1.5) (1.75) (2) (2.5) (3)<br />

I ~ Ism ---'-7 10-(1 0-14sm) ~ 10-(1 0-14sm) ~ (1 0-14sm)<br />

(1) (1.25) (1.5) (1.75) (2)<br />

~ (10-14sm)-14sm ~ (10-14sm)-14sm'~ Sm<br />

(3) (4) (5)<br />

I~ le~· 10-(10-14c) ~ 10-(10-14c) ~ (10-14c) ~ (10-14c)-14c ~ C 2<br />

(1) (1.25) (1.5) (2) (4) (4.5) (5)<br />

C ~ C-(14c-14v) ~ (14c-14v) ~ (14c-14v)-14v ~V<br />

(1) / ·(1.5) (2) (2.5) (3)<br />

C ~ Csm ~ C-(14c-14srn) ~ (14c-14sm) ~ (14c-14sm)-14sm ~ Sm<br />

(1) (1.25) (1.5) (2) (2.5) (5)<br />

C ~ C-(14c-14c 5 w) ~ (14c-14csw) ~ (14c-14c 5 w)-14csw ~ C 5 w<br />

(1) (1.5) (2) (3) (4)<br />

... V~ VA 1 __,. C 2 __,. K ~ Gibbsite ~Amorphous<br />

(3) (4.5) (5) (7) (8) (9)<br />

... V~ (14v-14sm) ~ Sm ~ SmAI (= Al 17 A) ~ K ~ Gibb. ~ Amorph.<br />

(3) (4) (5) (6) (7) (8) (9)


--<br />

-- ---·------------- - - --~-----<br />

332 I. Thorez<br />

Table 5 (cf. numbers between parentheses<br />

placed below each stage) .. -<br />

The calculation of the H.I. for a<br />

multicompositional phase (as obtained<br />

from the XRD analysis) is<br />

conducted as follows:<br />

a - multiply the relative abundance<br />

(A) of each identified mineral (simple<br />

clay mineral or mixed-layer) by its<br />

representative stage number (taken<br />

from a specific sequence in Table 5),<br />

b - sum up all the products (A X<br />

S.N.) (S.N. for «Stage number>>),<br />

c - identify the residual parent clay<br />

mineral if (still) present (illite, chlorite,<br />

talc), these having a S.N. of (1)<br />

systematically,<br />

- - . - -- --- -- --<br />

d - multiply the A of the parent<br />

mineral(s) by the S.N. (1),<br />

e- <strong>di</strong>vide the sum obtained in (b) by<br />

the one obtained in (d); the result is<br />

the H.I. of the analysed sample.<br />

An example could better illustrate<br />

the method. Suppose a clay composition<br />

with Illite (I) (Abundance, A =<br />

3.25) I (10-14v) (A = 1) I (10-14c) (A =<br />

1.25) I Vermiculite (V) (A = 1.8) I<br />

Smectite (Sm) (A = 1.2) I Kaolinite<br />

(K) (A = 1.5). The H.I. calculation as<br />

in<strong>di</strong>cated above will be completed<br />

step by step:<br />

a- I = 3.25 X 1 I (10-14v) = 1 X 2 I<br />

(1 0-14c) = 1.25 X 4 I V = 1.8 x 3 I Sm<br />

= 1.2 X 5 I K = 1.5 X 7<br />

b - sum of all the products (A x<br />

S.N.) = 32.15<br />

c + d - illi te (I) is the only (residual)<br />

parent mineral: 3.25 x 1 = 3.25<br />

e- 32.15 I 3.25 = 9.89 = H.I.<br />

Some applications of the Hydrolysis<br />

.. l.nd~~~A:o_cLiJs,_r~laJiQn with paleoclimatic<br />

reconstruction<br />

The various weathering sequences<br />

(Tables 2 <strong>and</strong> 5) <strong>and</strong> their correspon<strong>di</strong>ng<br />

geochemical pathways (Fig.<br />

5) implicitly bear a kind of paleoclimatic<br />

signature at both the level of<br />

the clay minerals which appear in<br />

those sequences, <strong>and</strong> at that of the<br />

kind of sequence, whether these are<br />

fully developed or not. Such a signature<br />

results in particular. from the<br />

<strong>di</strong>rect influence <strong>and</strong> the cumulative<br />

effects of i) the global temperature<br />

(cold, temperate or warm), ii) the internal<br />

<strong>and</strong>/or surficial drainage (intensity,<br />

speed, regularity <strong>and</strong> duration)<br />

in the weathering crust, <strong>and</strong> iii)<br />

the relative humi<strong>di</strong>ty (dry, wet or<br />

dry-wet) con<strong>di</strong>tions to which the parent<br />

rocks <strong>and</strong> minerals were submitted<br />

during pedogenesis or deuteric alteration.<br />

However, as <strong>di</strong>scussed by<br />

SINGER (1980) <strong>and</strong> THOREZ (in<br />

preparation), only the more agressive<br />

con<strong>di</strong>tions will leave their crystallochemical<br />

<strong>and</strong> geochemical «finger<br />

prints» .within the final clay mineral<br />

associations. Indeed, any temporary<br />

or definitive reversal of the climatic<br />

con<strong>di</strong>tions, yiel<strong>di</strong>ng milder character,<br />

will usually not be expressed<br />

within the clay assemblage, exception<br />

in the case of polycyclism (i.e. a<br />

later calcrete developement, with a<br />

smectitic or palygorskite clay mineral<br />

occurrence, surimposed on a<br />

kaolinite-bearing latosoil). A synthetic<br />

connection between the kinds <strong>and</strong><br />

trends of weathering sequences, <strong>and</strong>


Argillogenesis <strong>and</strong> the Hydrolysis l~dex<br />

333<br />

OJJJ]] STRONG RAINFALL . AND DRAINAGE<br />

- WEAK RAINFALL AND DRAINAGE<br />

I = ILL1TE<br />

BIO : BJOT/TE<br />

V = VERMICULITE<br />

Sm = SMECTITE<br />

\ J: MIXED LAYE !\<br />

PARENT MINERAL<br />

SEQUENCES OF TRANSFORMATION<br />

~<br />

I- (10~14V)- V VERM<br />

C- (14C-14V)- V V.ERM<br />

WET-DRY<br />

I - (10-14V)- V VERM<br />

......... (10-14C) CHL 2<br />

810- (10-14C) .CHL 2<br />

C - (14C-14V)-V VERM<br />

~<br />

I _('10_14Sm)- Sm SMEC<br />

810- (10·14C)- C2 CHL2<br />

C - (14C-14Sml-Sm SMEC<br />

DRY-(DRY-WET)<br />

I - (10-14 V) I {10-14Sm)<br />

BIO- (10-14V)<br />

C - (14C-14Sm)<br />

~<br />

C - (14C-14Sm)<br />

I - Io(open)<br />

810- (10•14Vl<br />

VERM/SMEC<br />

VERM<br />

SMEC<br />

SMEC<br />

VERM<br />

SMEC : SMECTITIZATION<br />

VERM : VERMICULITIZATION<br />

CHL2 : SECONDARY<br />

CLHORITIZATION<br />

GEOCHEMICAL<br />

;:·(1(:.R;;~~i14V·14Sml- ·sm VERM- SM);,EC;---:,::PA::.;TH::,:W::;A::_Y --~<br />

I- (10-14$m)- Sm SMEC'<br />

C- (14C-14V)- V-(14V-14Sm)-Sm VERM-SMEC<br />

Fig. 7 - Relation between sequences of transformation <strong>and</strong> paleoclimatic ~on<strong>di</strong>tions.<br />

TABLE 6<br />

Stage numbers (S.N.) <strong>and</strong> correspon<strong>di</strong>ng'-clay minerals species (simple clay minerals <strong>and</strong><br />

mixed-layers) grouping<br />

S.N.<br />

Clay Mineral Species<br />

1 Parent minerals: Muscovite, Illite, Biotite; Chlorite; Talc;<br />

Sericite, ...<br />

1.25 Illite with large peak, CM<br />

1:50 Open Illites (Iv, le, Ism); 10-(10-14c); 10-(10-14v)<br />

1.75 10-(1 0-14v ); 10-(1 0-14sm)<br />

2 10-(10-14v)-14v I (10-14v); C-(14c14v)-V I (14c14v),<br />

(14c-14M); (14c-14sw); (10-14c)<br />

2.50 (10)4v)-l4v; (14c-14v)-V; Cl4c-14M)-14M, Csw<br />

3 V; 10-(10-14sm)-14sm I (10-14sm)<br />

4 (10-14sm)-14sm; (10-14c)-14c<br />

4.50 VAI; (10-14c)-14c<br />

5 Sm; C 2 ; (10-14sm)-14sm<br />

6 AL17 V = Vermiculite<br />

7 K Sm = Smectites<br />

8 Gibbsite K = Kaolinites<br />

9 Allophane, Amorphous I = or


i<br />

334 J. Thorez<br />

the inferred climatic con<strong>di</strong>tions (S.N.) for the calculation of the Hy­<br />

(drainage, humi<strong>di</strong>ty) is illustrate<strong>di</strong>n __ dr2lysj_s_IJ:!_qex_f


Argillogenesis <strong>and</strong> the Hydrolysis Index 335<br />

occurrence of the existing by- . <strong>and</strong><br />

end-products generated during the<br />

weathering of the parent minerals,<br />

<strong>and</strong> the stage(s) reached by these during<br />

the weathering. Both data related<br />

to the H.I. <strong>and</strong> to the stages reached<br />

by the clay minerals during the<br />

weathering can be further graphically<br />

presented as in Fig. 8.<br />

The detailed, critical <strong>and</strong> limited<br />

application of the H.I. <strong>and</strong> of the<br />

paleoclimatic parameters will be presented<br />

in another paper (THOREZ, in<br />

preparation). However, to better<br />

emphasize here the usefulness of the<br />

H.I., particularly in tracing back the<br />

possible paleoclimates «printed» in<br />

the clay assemblages, two examples<br />

will be briefly provided.<br />

The first example refers to the Upper<br />

Pleistocene sequence of eoli:~mites<br />

<strong>and</strong> paleosoils at San Giuseppe,<br />

northern Sar<strong>di</strong>nia (Italy) (OZER &<br />

THOREZ, 1980) (Fig. 9). The vertical<br />

evolution of the H.I. is provided by<br />

the study of the clay associations<br />

found in the various layers (eolianites<br />

<strong>and</strong> paleosoils) <strong>and</strong> from which the<br />

inferred paleoclimatic parameters<br />

are extracted in terms of cold,<br />

temperate or warm on the one h<strong>and</strong>,<br />

<strong>and</strong> of dry, dry-wet or wet, on the<br />

other h<strong>and</strong>. If the climatic signature<br />

appears correct for the paleosoils,<br />

some <strong>di</strong>screpancies, however, mark<br />

both the nature of the clay mineral<br />

associations (cement) <strong>and</strong> the reconstructed<br />

paleoclimate for eolianites.<br />

For instance, one knows that the<br />

«normal» eolianites are built up during<br />

dry <strong>and</strong> rather cold (cooler)<br />

period at least during the last Inter-<br />

Feldspar<br />

contents<br />

Relative proportions Hydrolysis index Climatic curve based on the clay analysis Based on the sedlments<br />

ol clay minerals C;!______£,1'1 TL-.,!.d. WL-..!!.h


336 J. Thorez<br />

glacial. Here, one can observe that<br />

these cold <strong>and</strong> dry con<strong>di</strong>tions are not<br />

met from the study of the clay coin-­<br />

position; the latter better points to<br />

temperate <strong>and</strong> humid con<strong>di</strong>tions!<br />

These <strong>di</strong>screpancies are leveled if one<br />

considers that the clay content of the<br />

eolianites is composed, in part, by a<br />

recycled material. The latter is removed<br />

from the upper horizons of the<br />

soils through erosion produced by the-- ·<br />

wind, <strong>and</strong> becomes somewhat mixed<br />

with fresh parent mineral coming<br />

from another source. As a consequence<br />

the global «picture» or «signature»<br />

of the clay association may<br />

be artificial at the point of view of<br />

climatic interpretation <strong>and</strong> needs, for<br />

a corrent reconstruction, an inter<strong>di</strong>sciplinary<br />

approach (stratigraphy,<br />

-geomorphofOgy; se<strong>di</strong>mentology, clay<br />

mineralogy).<br />

The second example is that of a<br />

multi<strong>di</strong>sciplinary study carried out<br />

on the Holocene to Recent se<strong>di</strong>ments _<br />

of the Taranto Gulf, southern Italy<br />

(BELFIORE et al., 1982; PESCA­<br />

TORE et al., 1985). From the palynology,<br />

micropaleontology (Foraminifera)<br />

<strong>and</strong> clay mineralogy, a new<br />

integration of climatic data has been<br />

set up <strong>and</strong> is presented in Fig. 10.<br />

Good parallels can be observed between<br />

the paleoclimatic trends<br />

shown by the pollens <strong>and</strong> Forami-'<br />

nifera (the first being generated- on -<br />

INFERRED<br />

PALAEO·<br />

(14 0 -14v) CORE POLLEN{P) FORAM{F) CLIMATES<br />

+ -<br />

+ +<br />

0 -<br />

+ 0<br />

- -<br />

+ -<br />

0 +-<br />

+ +<br />

0 0<br />

0 0<br />

0 0<br />

+ +<br />

0 -<br />

+' 0<br />

+ +<br />

z<br />

0<br />

;:::<br />

Cii<br />

0<br />

0.<br />

0.<br />

~<br />

0<br />

"' 0<br />

..J<br />

;::: "'<br />

a:<br />

~<br />

+ +<br />

+ -<br />

0 -<br />

"' 0<br />

+<br />

Fig. 10 - Paleoclimatic reconstruction (based on the study of pollen, Foraminifera <strong>and</strong> clay<br />

minerals) of the Holocene to Recent sequence (cores 78, 137 <strong>and</strong> 210 organized in the stratigraphic<br />

position) in the Taranto Gulf, southern Italy (BELFIORE et al., 1982, mo<strong>di</strong>fied).


Argillogenesis <strong>and</strong> the Hydrolysis index 337<br />

the neighbouring continent, <strong>and</strong> the<br />

second living in the ocean waters),<br />

<strong>and</strong> by the clay mineral associations<br />

(from which theH.I.,<strong>and</strong>someparameters<br />

such as the 17 All 0 A peak<br />

ratio, the amounts of smectite, vermiculite<br />

<strong>and</strong> (14c-14v) are here presented).<br />

The <strong>di</strong>screpancies in the<br />

climatic data provided by these two<br />

separate criteria are marked in the<br />

last column at the right h<strong>and</strong> of Fig.<br />

.10; they can be explained by taking<br />

into account, for instance, some dephasing<br />

in the between the climatic<br />

changes occurring on the continent<br />

<strong>and</strong> the cooling or warming of the sea<br />

water; or some packets of se<strong>di</strong>ments<br />

have been removed by density currents<br />

<strong>and</strong> by slumping, the mechanical<br />

process intervening during another<br />

climatic environment as check~d by<br />

the study of the -Foraminifera ~lone.<br />

"<br />

Conclusion<br />

The transformation of silicates<br />

into clays <strong>and</strong> clay minerals is not a<br />

jerking process but a continuous one<br />

comprising several stages; these are,<br />

in. tu_rn, placed in succession <strong>and</strong> relays,<br />

<strong>and</strong> take several forms governed<br />

simultaneously by various external<br />

<strong>and</strong> internal «Stimuli». Parent clay<br />

minerals such as illite sensu lata <strong>and</strong><br />

ch.lorite are possibly residual products<br />

of former non-clay minerals<br />

(feldspars, pyroxenes, amphiboles,<br />

olivine ... ) but act as parents anyway<br />

when the weathering proceeds further<br />

<strong>and</strong> induce the transformation<br />

(degradation) in several by- <strong>and</strong> endproducts<br />

(mixed-layers, vermiculite,<br />

smectite, kaolinite). Different sequences,<br />

thus, exist for illi tes <strong>and</strong> chlorites,<br />

which deliver various kinds of<br />

clay products having the «mark» of<br />

the main geochemical process acting<br />

during the transformation (vermiculitization,<br />

smectitization ... ). The<br />

<strong>di</strong>fferent weathering sequences have<br />

been reconstructed step-by-step <strong>and</strong><br />

their successive stages have been<br />

numbered (stage number, S.N.). Even<br />

if the actual clay composition no longer<br />

presents together all the transitory<br />

stages, these are not purely<br />

theoretical <strong>and</strong> have once existed in<br />

the process but have <strong>di</strong>sappeared in<br />

favour of later (better stabilized)<br />

ones. These, in turn, may be detected<br />

within the multicompositional clay<br />

assemblage submitted to the XRD<br />

analysis. After having completed a<br />

detailed XRD analysis, <strong>and</strong> all the<br />

clay components «quantified», it is<br />

possible to reach a kind of «hydrolysis<br />

influence>> within the actual composition.<br />

The method is in<strong>di</strong>cated<br />

here after having been tested for<br />

several examples to be published later.<br />

The proposed H.l. (Hydrolysis Index)<br />

intends to gather easily <strong>and</strong><br />

quickly a measurement of the final<br />

but global effect of the weathering.<br />

The appreciation of the H.I. must<br />

take into consideration the geological<br />

<strong>and</strong> pedological «background». The<br />

problem of possible heritage of<br />

.. already weathered phases can be<br />

taken into account, too. XRD analysis<br />

remains consequently a complementary<br />

tool in the investigation<br />

supported by other methods of study.<br />

The H.I. proposed may complete the<br />

study of the argillogenesis.


338 J. Thorez<br />

REFERENCES<br />

BELFIORE A., BONADUeE G., DAMBLON F., GARAVELLI C., MASeELLARO P., MASOLI M., MIRABILE L.,<br />

MONTeHARMONT M., MORETTI M., Nuovo G., OzER A., PENNETTA M., PESCATORE T., PLACELLA B.,<br />

PUGLIESE N., Russo B., SENATORE M.R., SGARRELLA F., SPEZIE G.C., STREEL M;, THOREZ J ., TRAMU­<br />

TOLI M., VULTAGGIO M., 1982. La se<strong>di</strong>mentation holocene du golfe de Taranto (Italie meri<strong>di</strong>onale):<br />

approche stratigraphique et paleoclimatique basee sur I' etude de trois carottes de sondage. Bull.<br />

Soc. geol. France 24 (7), n. 3, 581-588.<br />

ERHART H., 1956. La genese des sols en tant que phenomene geologique. Masson et Ci•, Paris.<br />

JACKSON M.L., TYLER S.A., WILLIS A.L., BOURBEAU G.A., PENNINGTON R.P., 1948. Weathering Sequence<br />

of Clay-Size Minerals in Soils <strong>and</strong> Se<strong>di</strong>ments. I: Fundamental Generalities. J. Phys. Colloid.<br />

Chem. 52, 1237-1260.<br />

JACKSON M.L., 1963. Interlayering of expansible layer silicates in soils by chemical weathering. Pp.<br />

29-46, in: Proc. Clays <strong>and</strong> Clay Minerals 11th Nat. Conf. 1962, Ottawa-Canada (E. Ingerson,<br />

e<strong>di</strong>tor), Pergamon Press.<br />

JACKSON M.L., 1964. Chemical composition of the soils. Pp. 71-141, in: Chemistry of the Soils (F.E.<br />

Bear, e<strong>di</strong>tor), Reinhold, New-York.<br />

JACKSON M.L., 1968. Weathering of Primary <strong>and</strong> Secondary Minerals in Soils. Pp. 281-292, in: Transactions.<br />

Vol. IV, 9th Int. Congr. Soil Science, 1968, Adelaide-Australia, Angus & Robertson:<br />

Sidney.<br />

LucAs J., 1962. La transformation des mineraux argileux dans la se<strong>di</strong>mentation. Etudes sur les argiles<br />

du Trias. Mem. Serv. Carte geol. Als. Lorr. 23, 202 p.<br />

LUCAS J ., 1968. The TranSformation of Clay Minerals during Se<strong>di</strong>mentation. A Study on Triassic Clays.<br />

Israel Progr. for Se. Transl., 203 p. ·<br />

MEUNIER A., 1977. Les mecanismes de I' alteration des granites et le role des microsystemes. Etude des<br />

arenes du massif granitique de Parthenay (Deux-Sevres). Ph. D. Thesis, University of Poitiers,<br />

-----------~-----prance.- ~-· -- --~-- -- ··· -<br />

MEUNIER A., VELDE B., 1979. Weathering mineral facies in altered granites: the importance of local<br />

small scale equilibria. Mineral. Mag. 43, 261-268.<br />

MILLOT G., 1967. Les deux gr<strong>and</strong>es voies de I' evolution des silicates a la surface de l'ecorce terrestre.<br />

Rev. Questions Se. 138 (3), 335-357.<br />

OzER A., THOREZ J., 1980. Les depots du Pleistocene Superieur de San Giuseppe (Sardaigne Septentrionale).<br />

Pp. 255-270, in: Actes du Coll. Niveaux Marins et Tectonique Quaternaires clans l'Aire<br />

Me<strong>di</strong>terraneenne, Paris, C.N.R.S., Univ. Paris II.<br />

PEDRO G., 1976. Sols argileux et argiles. Elements generaux en vue d'une introduction a leur etude.<br />

Science du Sol 2, 69-84. -- . ·<br />

PESCATORE T., THOREZ J., SENATORE M.R., ABDEL GADIR S., MONTCHARMONT M., DAMBLON F.,<br />

STREEL M., 1985. Clay Mineralogical Trends in the Holocene Se<strong>di</strong>ments of the Gulf of Taranto,<br />

Southern Italy. These Procee<strong>di</strong>ngs, Abstract. ·<br />

SINGER A., 1980. The paleoclimatic interpretation of Clay Minerals in Soils <strong>and</strong> Weathering Profiles·.<br />

Earth Se. Reviews 15, 303-326.<br />

Suoo T., HAYASHI H., SHIMODA S., 1962:~Mineralogical Problems of Interme<strong>di</strong>ate Clay Minerals. Pp.<br />

378-392, in: Proc. Clays <strong>and</strong> Clay Minerals, 9th Nat. Conf. 1960, Lafayette-In<strong>di</strong>ana (E. Ingerson,<br />

e<strong>di</strong>tor).<br />

TARDY Y., 1969. Geochimie des alterations. Etude des arenes et des eau de quelques massifs cristallins<br />

d'Europe et d'Afrique. Mem. Serv. Carte.geol. Als. Lorr. 31, 199 p.<br />

THOREZ J., VAN LEeKwiJeK W., 1967. Les mineraux argileux et leurs alterations dans le Namurien<br />

inferieur de Belgique. Ann. Soc. Geol. Belgique 90, 329-377.<br />

THOREZ J ., 197 5. Phyllosilicates <strong>and</strong> Clay Minerals. A Laboratory H<strong>and</strong>book for their X-Ray Diffraction<br />

Analysis. G. Lelotte, Dison, Belgium.<br />

THOREZ J., 1976. Practical Identification of Clay Minerals. G. Lelotte, Dison, Belgium.<br />

THOREZ J., 1982. Claygeology, a paleoclimatic tool for Quaternary series. Striolae, IN QU A Newsletter,<br />

1, 4, 10-16.<br />

THOREZ J., 1985. Qualitative Clay Mineral Analysis biased by Sample Treatments. Pp. 383-389, in:<br />

Proc. 5th Meeting European Clay Groups 1983, Prague (J. Konta, e<strong>di</strong>tor), Univerzita Karlova<br />

Praha. ,<br />

THOREZ J., 1987. Physico-chemical Stu<strong>di</strong>es of the Structures of the Solid Supports: X-ray Stu<strong>di</strong>es.<br />

Chapter.b 4 , in: Preparative Chemistry Using Supported Reagents (P. Laszlo, e<strong>di</strong>tor) Academic<br />

Press, New York (in press).<br />

VELDE B., 1985. Clay Minerals. A Physico-Chemical Explanation of their Occurrence. Developments in<br />

Se<strong>di</strong>mentology 40, Elsevier.


Abstracts<br />

339'<br />

Geochemical Aspects Related to Oxidation Phenomena<br />

along some Jointing in Clayey Formations<br />

F. ANTONIOLI, G. LENZI<br />

Labonitorio ai G·eologia ambientale, PAS-SCAMB, ENEA-CASACCIA, Via Anguillarese Km 1+300, 00060 Santa<br />

Maria <strong>di</strong> Galeria, Italia<br />

The geochemical behaviour of clays outcropping in a quarry to the North of<br />

Rome, near Monterotondo, is stu<strong>di</strong>ed, where the cracking phenomenon is<br />

very evident <strong>and</strong> where many yellowish or 'red<strong>di</strong>sh oxidation strips are<br />

present <strong>and</strong> very clear upon both sides of the fissures <strong>and</strong> which .st<strong>and</strong> out<br />

against the remaning bluish-gray geologic formation.<br />

Many samples were taken, at <strong>di</strong>fferent <strong>di</strong>stances around thoseJissures <strong>and</strong><br />

marked as follows:<br />

1) very thin gray part correspon<strong>di</strong>ng to the central zone of fissure, sometimes<br />

very rich in white or whitish salts;<br />

2) oxi<strong>di</strong>zed yellowish part (or strip), sometimes with <strong>di</strong>fferent intensity<br />

shades (oxi<strong>di</strong>zed clay);<br />

3) grey-bluish zone far from the fissure (reduced zone).<br />

The following <strong>di</strong>fferent an~lyses were carried out on the samples:<br />

a) X-ray <strong>di</strong>ffractometry on <strong>and</strong> clay fraction;<br />

b) particle size analyses on three particular samples;<br />

c) chemical analyses by X-ray fluorescence on the yellowish oxi<strong>di</strong>zed <strong>and</strong><br />

graysh parts, <strong>and</strong> by conventional methods (to determine ·the FeO <strong>and</strong><br />

· Fe 2 0 3 ); thermogra·x_imetry to determine the water <strong>and</strong> carbonate content;<br />

analysis of salts present in the interstitial waters of clay samples;<br />

d) physico-chemical analysis on some representative samples to determine<br />

the properties of Cs <strong>and</strong> Sr under well defined con<strong>di</strong>tions.<br />

The X-ray mineralogical analyses showed the following: presence of quartz,<br />

feldspars, calcite, dolomite <strong>and</strong> clay minerals (smectite, about 35%; illite,<br />

about 50%; chlorite, about S%;.kaolinite, about 5%; vermiculite <strong>and</strong> of illitemontmorillonite<br />

mixed layers) traces; their amount is practically constant<br />

in every part of the se<strong>di</strong>ment; zeolite (laumontite ?) <strong>and</strong> gypsum (central zone<br />

of the fissure) away from the graysh parts of the geological formation.<br />

Chemical analyses by X-ray fluorescence reveal a composition quite constant<br />

for the main elements, in both the oxi<strong>di</strong>zed <strong>and</strong> reduced zones; whereas they<br />

show a noticeable <strong>di</strong>versity for trace elements such as Cl, S, <strong>and</strong> Sr; that is to<br />

say these elements in the oxi<strong>di</strong>zed zones are in smaller amounts than in the<br />

reduced zones.<br />

The conventional chemical analyses to determine the FeO <strong>and</strong> Fe 20 3 show,<br />

in the gray samples, Fe2+ about 3.4% <strong>and</strong> Fe 3 + about 1%; on the contrary in<br />

the yellowish ones Fe2+ is about 0.8 to 0.9 <strong>and</strong> Fe 3 + about 5.3%.<br />

The analysis of the salts included in the interstitial waters showed that Na,<br />

Mg, K, Zn <strong>and</strong> Co sulfate are present, as well as Na <strong>and</strong> K chlorides (<strong>and</strong><br />

phosphate traces) also supported by X-ray fluorescence analysis.<br />

Finally, the physico-cheihical analyses carried out on the Cs <strong>and</strong> Sr <br />

properties, using tap water with about 10 French degrees of hardness,<br />

in the yellowish <strong>and</strong> graysh samples, by the <br />

study, showed that the Cs <strong>and</strong> Sr takes place preferentially in the<br />

oxi<strong>di</strong>zed samples, rather than in the reduced ones <strong>and</strong> all this, contrary to<br />

all our expectation, because of the ratio of Kd(oxid.)/Kd(red.) about 2.1 for Cs;<br />

<strong>and</strong> Kd(oxid.)/Kd(red.) = 1.7 for Sr.<br />

In conclusion, along the yellowish oxidation strips existing in the fissures of<br />

the clayey geologic formation outcropping near Monterotondo the Cs <strong>and</strong> Sr<br />

sorption·is higher than in the reduced graysh zones, original of the se<strong>di</strong>men-


-<br />

340 Abstracts<br />

tary rock. It is hypothesized that this phenomenon is not a result of <strong>di</strong>versity<br />

in mineralogical composition (which was found to be more less constant)<br />

but rather the result of a <strong>di</strong>versity~of··geochemieal-composition due to the<br />

leaching to which the original clayey material had undergone <strong>and</strong> in which<br />

clearly a physico·chemical equilibrium is re-established when Cs <strong>and</strong> Sr are<br />

artificially added to the argillaceous se<strong>di</strong>ment.<br />

Interstratified Minerals in <strong>Spanish</strong> Se<strong>di</strong>mentary Facies:<br />

Lower Part of the Keuper in the Siguenza Area<br />

<strong>and</strong> the Tajo Basin, Central Spain<br />

M. DOVAL 1 , M. RODA~ 1 , A. RUIZ AMIU, F. ARAGON'<br />

1<br />

Departamento de Cristalografia y Mineralogia, Facultad de Geologia, Universidad Complutense, 28040 Madrid,<br />

-~-~---------Espai\a _____ ~:-c------ _<br />

2<br />

Instituto de Quimica Inorganica «Elhuyar>>, C.S.I.C., Serrano 113, 28006 Madrid, Espai\a<br />

This paper deals with two cases of interstratified minerals from two quite<br />

<strong>di</strong>fferent geological series. The first one located in the Siguenza area (Guadalajara)<br />

corresponds to the lower part of the Keuper. It is comprised within a<br />

38 m thick unit of alternating silts <strong>and</strong> clays, interbedded with gypsum.<br />

Mineralogically they are composed of quartz, gypsum <strong>and</strong> phyllosilicates,<br />

mostly illite <strong>and</strong> chlorite. The interstratified mineral characterized here<br />

(chlorite-vermiculite) is the main mineral found in the < 2 J.!m fraction of<br />

some samples.<br />

The second case appears in clays interlayered in the Miocene arkoses of the<br />

Tajo basin. Mineralogically the clay levels are composed of quartz <strong>and</strong><br />

phyllosilicates, in which illite is dominating, although smectite <strong>and</strong> sepiolite<br />

also are often found. A mineral whose behaviour under X-ray <strong>di</strong>ffraction<br />

<strong>di</strong>ffers from that of a smectite, being closer to an interstratified chloritesmectite,<br />

appears related to the sepiolite.<br />

In both cases the interstratification has been stu<strong>di</strong>ed by treating the oriented<br />

aggregates of the< 2 J.!m fraction with amines.<br />

The mixing function has been calculated (I= I F 1 1 2 ); this factor defines<br />

the interstratification <strong>and</strong> has been calculated accor<strong>di</strong>ng to the Fourier<br />

method.<br />

- <strong>First</strong> case:<br />

the mixing function is applied to the systems: chlorite-(vermiculite + butylamine),<br />

chlorite (vermiculite + pentylamine), chlorite-(vermiculite + heptylamine)<br />

<strong>and</strong> chlorite-(vermiculite + octylamine).<br />

The results obtained are given in the Table.<br />

- Second case:<br />

the characterization of this material's interstratification is <strong>di</strong>fficult due to its<br />

low crystallinity. The following pretreatments were applied: ·<br />

1) sample homoionization with Na+ <strong>and</strong> K+;<br />

2) solvatation with ethylene glycol for both cases;<br />

3) thermal treatment at <strong>di</strong>fferent temperatures;<br />

4) infrared <strong>and</strong> chemical analyses.


Abstracts 341<br />

On the basis of the results obtained the chlorite-smectite was chosen as an<br />

interstratification model, <strong>and</strong> the interlayered compounds formed with the<br />

amines were subsequently stu<strong>di</strong>ed.<br />

Theoretical (T) <strong>and</strong> experimental (Exp) data obtained from the interlamellar sorption of aliphatic<br />

amines<br />

mo PA = 0.1 PAA = 1<br />

2/10 PA = 0.1 PAA = 1<br />

Butyl14-14.84 Pentyl14-25 Heptyl14-28.72 Octyl14-31.63 Heating 550°C<br />

T 1/10T2/10 Exp T 1/10 T2/10 Exp T 1/10 T2/10 Exp T 1/10 T2/10 Exp Tl/10 T2/10 Exp<br />

20.25 20 20.85 24.61 24.61 25.2 28.57 28.57 - 32 31.37 - 22.80 31.25 23.05<br />

14.81 14.81 14.89 19.51 19.28 19.61 14.28 14.28 14.28 10.52 10.52 10.47 14.08 13.88 14.01<br />

8.60 8.55 8.66 12.40 12:40 12.60 9.52 9.52 7.92 7.92 7.90 9.90 10.00 9.88<br />

5.44 - 10.88 10.88 10.60 7.20 7.14 7.13 6.35 6.32 6.36 5.02 5.00 5.03<br />

4.93 4.93 4.84 8.25 8.24 5.75 5.75 5.74 5.26 5.27 5.26 4.36 4.34 4.42<br />

3.98 6.7 6.9 4.79 4.79 4.74 4.52 4.51 4.54 3.34 3.35 3.34<br />

3.70 3.70 3.68 5.78 5.78 5.71 4.10 4.10 3.51 3.51 3.55 2.81 2.81 2.79<br />

3.56 3.53 4.93 4.93 4.85 3.58 3.58 3.55 3.16 3.16 2.50 2.50<br />

3.49 3.25 3.53 3.54 3.54 3.18 3.18 3.20 2.87 2.87 2.85<br />

3.13 3.06 3.08 3.08 3.06 2.86 2.86 2.86 2.63 2.63 2.59<br />

2.96 2.96 2.95 2.74 2.74 2.61 2.43 . 2.43 2.42<br />

2.58 2.79 2.82 2.46 2.46 2.49 2.39 2.39 2.50 2.11 2.11 2.12<br />

2.47 2.47 2.49 2.00 2.00 2.00 2.00 2.20<br />

1.90 1.90 1.90 2.05 2.05 2.00<br />

Note: As PA = 0.1, PB = 0.9, therefore the ratio verrniculite/chloriteis 9il.<br />

The PAA value (1) implies, for this interstratification, a strong tendency towards segregation.<br />

The Uppermost Miocene of the Granada Basin,<br />

SE Spain: Mineralogy<br />

M. ORTEGA HUERTAS 1·3 , J. RODRIGUEZ FERNANDEZ 2 ·3 , I. PALOMO<br />

DELGAD0 1·3 , J. FERNANDEZ MARTINEZ 2·3, P. FENOLL HACH-ALI 1·3,<br />

A.C. LOPEZ GARRID0 2<br />

1 Departamento de Crjstalografia y Mineralogia, Facultad de Ciencias, Universidad de Granada, 18002 Granada,<br />

Espaii.a<br />

2 Departamento de Estratigrafia, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Espaii.a<br />

3 Departamento de Investigaciones Geol6gicas, C.S.I.C., Facultad de Ciencias, Universidad de Granada, 18002<br />

Granada,Espaii.a<br />

'<br />

The Uppermost Miocene of the Granada Depression is represented by several<br />

detrital Formations correspon<strong>di</strong>ng to a fluvial environment s.l. interbedded<br />

with another one of lacustrine environment, where gypsum <strong>and</strong> carbonate<br />

materials make up the predominant lithology.<br />

This Miocene is well represented in two stratigraphical sections wich are<br />

stu<strong>di</strong>ed iri this work. One of these is situated in the southern margin (


342 Abstracts<br />

del Rey>>) <strong>and</strong> the other one in the northern margin (, ).<br />

The vertebrate remains give an Upper Turolien age for these materials.<br />


Abstracts 343<br />

Neogene Se<strong>di</strong>mentation in the Granada Basin, SE Spain<br />

M. OR'fEGA HUERTAS 2·3 , J. RODRIGUEZ FERNANDEZI.2, J. RODRIGUEZ<br />

GORDILL0 2·3, P. FENOLL HACH-ALI 2·3<br />

1<br />

Departamento de Estratigrafia, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Espana<br />

2<br />

Departamento de Cristalcigrafia y Mineralogia, Facultad de Ciencias, Universidad de Granada, 18002 Granada,<br />

Espana<br />

3<br />

Departamento de Investigaciones Geol6gicas, C.S.I.C., Facultad de Ciencias, Universidad de Granada, 18002<br />

Granada, Espana<br />

Some outcrops of Neogene <strong>and</strong> Quaternary materials (Lower Miocene to<br />

Upper Pleistocene) are found in the Granada Depression. In the Eastern area<br />

several sequences were established, in order to analyse their stratigraphy,<br />

se<strong>di</strong>mentology <strong>and</strong> mineralogy, <strong>and</strong> the following Units <strong>di</strong>fferentiated:<br />

La Peza Formation (Rodriguez Fern<strong>and</strong>ez, 1982). Made up of materials belonging<br />

to the upper part of the Middle Miocene which were deposited before<br />

the Granada Depression was formed. An initial member has been identified<br />

in this Formation, containing marls <strong>and</strong> greyish s<strong>and</strong>s with fibrous gypsum<br />

<strong>and</strong> levels of calcite with chert nodules, Gastropoda <strong>and</strong> Charophyta<br />

remains. Their mineralogy consists of calcite (10-75%), dolomite (0-20%),<br />

quartz (20%), feldspars (5%), gypsum (0-10%), muscovite (20%), paragonite<br />

(< 5%), chlorite (< 5%) <strong>and</strong> smectites (10%).<br />

These results suggest a lacustrine environment with spora<strong>di</strong>c terrigenous<br />

contributions more abundant at the top where they constitute a second,<br />

clearly detrital member.<br />

The compressive post-Serravallian stage folds the materials of this Formation<br />

<strong>and</strong> gives rise to s•everal new depressions, one of them being the Granada<br />

Depression; "<br />

Quentar Formation (Rodriguez Fern<strong>and</strong>ez, 1982). During the Lower Tortonian<br />

a bioclastic se<strong>di</strong>mentation belonging to a carbonate platform took place<br />

in the Granada Depression. It is made up ofbioclastic calcarenites which, in<br />

the middle of the basin, pass to facies of greyish lutites with berithic <strong>and</strong><br />

planonic foraminifera, Dentalium <strong>and</strong> Amusium - like bivalves.<br />

This Formation is characterized by the presence of calcite (10-90%), dolomite<br />

(0-15%), quartz (10-55%), feldspars (0-15%), muscovite (5-15%), paragonite<br />

(< 5%), chlorite (< 5%), <strong>and</strong> smectites (10%).<br />

Generally speaking, the carbonate percentage decreases <strong>and</strong> that of the<br />

inl).erited <strong>and</strong> neoformed phyllosilicates increases at the top of the sequence,<br />

i.e. the Formation develops into a more open marine environment;<br />

Dudar Formation (Rodriguez Fern<strong>and</strong>ez, 1982). During the Upper Tortonian<br />

the materials belonging to this Formation were deposited over the Quentar<br />

Formation. They are composed of lutites interbedded with conglomerate<br />

levels. These conglomerates are more abundant <strong>and</strong> thicker at the top. The<br />

lutitelevels con~ain marine fauna (bivalves, gastropods, benthic foraminifer!i).<br />

Their mineralogy is as follows: calcite (5-10%), dolomite (10-20%), quartz<br />

(20-30%), feldspars (15-20%), muscovite (20%), paragonite (< 5%), chlorite<br />

(< 10%), smectites (5%). The open marine character, first observed at the top<br />

of the Quentar Formation, continues in this Formation; .<br />

Block Formation (Von Drasche, 1879). The Pinos Genii Formation (Block<br />

Formation s.l.) is <strong>di</strong>scordantly deposited over Quentar <strong>and</strong> Dudar Formations<br />

described above, or over the Betic Substratum. It is of a conglomeratic<br />

character <strong>and</strong> is very thick in some zones.<br />

The mineralogy of the fine detrital levels <strong>and</strong> that of the conglomerate<br />

matrix is: calcite (5-40%), dolomite(< 10%), quartz (15-45%), feldspars (5%),<br />

muscovite (10-30%), paragonite (5%), chlorite (5-20%), <strong>and</strong> smectites (5-<br />

30%).<br />

The percentage of kaolinite is very variable, but always less than 10%.


344 Abstracts<br />

The mineral components are inherited <strong>and</strong> correspond, in general,. to a high<br />

energy system of alluvial fans whose component materials had drained from<br />

the Sierra Nevada reliefs. - ~- -·-----~ ..<br />

As to the origin of the constituents of these Formations we have used mineral,<br />

crystallocherpical data <strong>and</strong> trace element analysis to demonstrate that<br />

they derive mainly from rocks belonging to the «Nevado-Fihibride Complex».<br />

This work forms part of the Project "El borde me<strong>di</strong>terraneo espaiiol. Evoluci6n del<br />

or6geno betico y geo<strong>di</strong>namica de !as cuencas ne6genas". (C.S.I.C.- C.A.I.C.Y.T.).<br />

Rodriguez Fern<strong>and</strong>ez J., 1982. El Mioceno del Sector Central de !as Cor<strong>di</strong>lleras Beticas. Ph. D.<br />

Thesis, University of Granada.<br />

Von Drasche R., 1879. Geologische Skieze des Hochgebirsgsteiles der Sierra Nevada in Spanien.<br />

Bol. Cam. Mapa Geol6gico de Espafza 6, 353--388.<br />

Distribution <strong>and</strong> Evolution of Clay Minerals in Central<br />

------~~----Facies,-nuero Basin, Valladolid Province, Spain<br />

M. POZO, S. LEGUEY<br />

Departamento de Geologia y Geoquimica, Facultad de Ciencias, Universidad Aut6noma, Canto Blanco, 28049<br />

Madrid, Espaiia<br />

The materials refilling the central facies at Duero basin (Province ofValladolid,<br />

Spain) are characterized by a variegated lithology which has been <strong>di</strong>fferentiated<br />

in three lithostratigraphic units. Their main features are as<br />

follows:<br />

Lower unit (Facies Tierra de Campos). Characterized by detrital materials,<br />

usually s<strong>and</strong> <strong>and</strong> clays. The main clay minerals are kaolinite, illite <strong>and</strong><br />

smectite with good crystallinity. At the top of this unit levels are often found<br />

with organic matter (0.5-1.7%) <strong>and</strong> palygorskite, illite <strong>and</strong> sniectites as the<br />

clay minerals (Pozo et al., 1984; Garcia Ab bad & Rey Salgado, 1973; Ordoflez<br />

et al., 1980).<br />

Middle unit (Facies Cuesta). With a thickness between 60-80 m, the main<br />

lithology of this unit is mar!, dolostone, limestone <strong>and</strong> in some areas<br />

gypsum. Two zones were <strong>di</strong>fferentiated, with a clay minerals evolution as<br />

. follows: ,<br />

a) Lower zone. The gradual degradation of illite <strong>and</strong> kaolinite <strong>and</strong> the genesis<br />

of smectite <strong>and</strong> palygorskite in alkaline environment were observed:·illitekaolinite-smectite<br />

~ illite/hydromica-smectite-vermiculite-interstratified<br />

minerals-palygorski te.<br />

This mineralogy in<strong>di</strong>cates the transition from a fluvial to lacustrine environment.<br />

In some areas beside dolomite gypsum appears as well as clay levels with<br />

illite, smectite, palygorskite <strong>and</strong> sepiolite (Ordoflez et al., 1981; Pozo &<br />

Carames, 1983);<br />

b) Upper zone. Related to edaphic <strong>and</strong> karstic processes (Pozo & Leguey,<br />

1984), the clay mineral association was as follows: illitelhydromica-palygorskite-sepiolite.


Abstracts 345<br />

Upper unit (Facies Paramos). With a thickness between 2-10 m, this unit was<br />

composed of lacustrine limestones with t)J.in layers of sepiolite related to<br />

karstic processes.<br />

The <strong>di</strong>fferent associations of clay minerals from bottom to top show us the<br />

gradual evolution of the deposition environments from fluvial (lower unit) to<br />

lacustrine (upper unit) with a middle unit of transition.<br />

Garcia AbbadF.J., Rey Salgado J., 1973. Cartografia del terciario y cuaternario de Valladolid. Bol.<br />

Inst. Geol. Min. T-84, IV, 213-227.<br />

Ordoiiez S., L6pez-Aguayo F., Garcia del Cura M.A., 1980. Contribuci6n al conocimiento del sector<br />

centro-oriental de la cuenca del Dtiero. (Sector Roa-Baltanas). Estu<strong>di</strong>os geol. 36, 361-369.<br />

Ordoiiez S., Garcia del Cura M.A., L6pez-Aguayo F., 1981. Chemical carbonated se<strong>di</strong>mimts in<br />

continental basins: The Duero basin. JAS. 2nd. Eur. Mtg., Bologna, Abstract.<br />

Pozo M., Carames M., 1983. Sobre la presencia de minerales fibrosos de la arcilla en el sector<br />

central de la cuenca del Duero (Facies Cuesta). Bol. Soc. esp. Min. 7, 51-58.<br />

Pozo M., Carames M., Fonolla F., 198.4. Estu<strong>di</strong>o mineral6gico, geoquimico y paleontol6gico de los<br />

materiales de transici6n de facies fluviales a evaporiticas en el sector central de la Cuenca del<br />

Duero. Materiales y Procesos Geol6gicos V-II, II, 95-113.<br />

Pozo M., Leguey S., 1984. Estu<strong>di</strong>o mineral6gico y geoquimico de las Facies Cuesta en el sector<br />

suroccidental de la cuenca del Duero. I Congreso Espaiiol de Geologia T-II, 267-283.<br />

Lithium-Muscovites in Granitic Pegmatites<br />

from Central-Western Spai:J?-<br />

A. GARCIA-SANCHEZ 1 , M.T. MARTIN PATIN0 2 , J. SAAVEDRA 1<br />

1<br />

U.E.I. Minera!ogia y Geoquimica, C.S.I.C., Apartado 257, 37071 Salamanca, Espaiia<br />

2<br />

Instituto de Edafologia y Biologja Vegetal, C.S.I.C. <strong>and</strong> Departamento de Geologia y Geoquimica, Universidad<br />

Aut6noma, Canto Blanco, 28049 Madrid, Espaiia<br />

On the basis of a preliminary study <strong>di</strong>rected towards a regional program of<br />

searching for Li in micas from 22 <strong>di</strong>fferent localities, mainly from granitic<br />

pegmatites <strong>and</strong> some greisens, four of them were selected with a Li 20 content<br />

greater than 2%; these micas are rich in Rb <strong>and</strong> Cs, <strong>and</strong> they show a pink<br />

colour. Only one of. these pegmatites has a symmetrically-zoned structure in<br />

several parts of its length (1.5 km); with a maximum of thickness of 6-8 m,<br />

the following mineralogical <strong>di</strong>stribution was observed (samples separated<br />

by heavy liquids, etc., then X-ray <strong>di</strong>ffraction <strong>and</strong> petrographical stu<strong>di</strong>es of<br />

thin sections, etc.): a border zone with spodumene, amblygonite, lithiummuscovite,<br />

albite <strong>and</strong> quartz; a central zone with quartz, lithium-muscovite,<br />

albite <strong>and</strong>.lesser quantities' of amblygonite, bikitaite, eucryptite <strong>and</strong> tourmaline.<br />

This pegmatite contains trace quantities of cassiterite, arsenopyrite,<br />

chalcopyrite <strong>and</strong> sphalerite.ln the other three pegmatitic bo<strong>di</strong>es there is no<br />

zoned structure, but rather a centimetric bed<strong>di</strong>ng of, only, white <strong>and</strong> pink<br />

zones <strong>and</strong> its mineralogical composition is very similar, with lithium-muscovite,<br />

albite <strong>and</strong> quartz as main minerals, <strong>and</strong> cassiterite, amblygonite, topaz,<br />

tourmaline, eucryptite <strong>and</strong> several sulphate <strong>and</strong> phosphate (of Mn, Fe, etc.)<br />

minerals. All samples are mineralized in tin (about 800 ppm) <strong>and</strong> tantalum<br />

(about 100 ppm).<br />

The geoch:emical study of the lithium-muscovites shows that there are no


------------------~- ·---~--<br />

346<br />

Abstracts<br />

systematic variations for Li, Rb, Mn, Cs, Fe <strong>and</strong> Ti with respect to their<br />

position in the same pegmatite <strong>and</strong> the grain size <strong>and</strong>, probably, with respect<br />

to the relative time of crystallization~ -In-:-generai;--there- is-a positive<br />

correlation between Li, Rb <strong>and</strong> Cs <strong>and</strong>, also, their 'concentrations are increased<br />

towards the core of the zoned pegmatite. The high con~ents of these<br />

elements in the wall-rocks (up to several thous<strong>and</strong>s of ppm in relation to<br />

contents lesser that 100 ppm in the regional schists) show a big mobility with<br />

infiltration of residual fluids rich in .these elements.<br />

Five samples ofmicas were chosen for the study of polymorphism <strong>and</strong><br />

specific compositions. X-ray powder <strong>di</strong>ffractograms <strong>and</strong> partial chemical<br />

analysis gave the following results:<br />

Sample<br />

Structure type<br />

LizO Rb Cs MnO FezOJ TiOz<br />

wt% wt% wt% wt% wt% wt%<br />

CA<br />

Red<strong>di</strong>sh lilac<br />

VR<br />

Pink<br />

LN<br />

Whitish pink<br />

F<br />

Pale pink<br />

---·---<br />

VF<br />

Greenish yellow<br />

!M» 2 M 1 4.40 0.52 0.16 0.25 0.24 0.17<br />

!M=2MI 3.24 1.30 0.51 0.21 0.11 0.21<br />

2M 1 >!M 2.63 0.80 0.14 0.15 0.1 0.17<br />

2M 1 >!M 2.61 0.80 0.29 0.19 0.1 0.18<br />

2MI 0.65 0.06 0.20 0.01 0.22 0.15<br />

There is a good correlation between structure-type <strong>and</strong> Li 2 0 (%) (Levinson,<br />

1953; Munoz, 1968; Rinal<strong>di</strong> et al., 1972). Other authors also have considered<br />

this controversial question. Our data do not agree exactly with that previously<br />

proposed about the ra:nge of LizO for <strong>di</strong>fferent structure-type. Also,<br />

the observed basal spacings, the chemical composition <strong>and</strong> the fact that in<br />

the same h<strong>and</strong> sample the micas show <strong>di</strong>fferent structure-types, suggest the<br />

existence of two <strong>di</strong>stinct structures intimately intergrown or as separate<br />

grains: the one rich in lithium (lepidolite) <strong>and</strong> the other Li-poor (Li-muscovite),<br />

when the Li 20-content is interme<strong>di</strong>ate (in this.case, between 2.61 <strong>and</strong><br />

4.40 Li 2 0, wt%).<br />

There is clear a relationship between intensity of pink colour <strong>and</strong> Li 2 0<br />

<strong>and</strong>/or MnO contents, but not with other transition elements such as Fe<br />

<strong>and</strong> Ti. Thus, the ratio Fe/Mn (Deer et al., 1971), is not decisive. The probable<br />

nature of this may be the Mn 3 + (crystal-field theory) or charge transfer<br />

Mn+ 2 _, Mn 3 +, Mn 2 + _, Fe 3 +, without <strong>di</strong>scar<strong>di</strong>ng the possibility of the<br />

existence of a colour-center.<br />

All the mineralogical, chemical, petrographical <strong>and</strong> field data strongly suggest<br />

an origin of Li-micas through probably subsolidus reaction of spodumene<br />

<strong>and</strong> feldspars (plagioclase, etc.) with fluorine-bearing aqueous gas.<br />

Thus, the mechanism of formation of these pegmatites occurs in two stages:<br />

the one on early magmatic stage (<strong>di</strong>rect crystallization from a fluidgranite<br />

derived inward), <strong>and</strong> the second a hydrothermal metasomatic stage, with<br />

migration of Li-rich fluids towards the wall-rocks.<br />

Deer W.A., Howie R.A., Zussman J., 1971. Rock-Forming Minerals. J. Wiley & Sons, New York.<br />

Levinson A., 1953. Stu<strong>di</strong>es in the mica groups. Relationship between polymorphism <strong>and</strong> composition<br />

in the muscovite-lepidolite system. Am. Miner. 38, 88-107.<br />

Munoz J.L., 1968. Physical properties ofsynthetic lepido!ites. Am. Miner. 53, 1490-1512.<br />

Rinal<strong>di</strong> R., Cerny P., Ferguson R.B., 1972. The Tanco Pegmatite at Bernic Lake, Manitoba. VI.<br />

Lithium-Rubi<strong>di</strong>um-Cesium micas. Can. Mineralogist 11, 690-707.


-<br />

Abstracts<br />

Weathering Sequences of Aci<strong>di</strong>c Volcanic Rocks,<br />

Granites <strong>and</strong> Gneisses<br />

347<br />

F. VENIALE, U. ZEZZA, F. SOGGETTI, F. CAUCIA<br />

Dipartimento <strong>di</strong> Scienze della Terra, Sezione mineralogico-petrografica, Universita <strong>di</strong> Pavia, Via A. Bassi 4, 27100<br />

Pavia, Italia<br />

The investigated formations are located in the region between Valsesia <strong>and</strong><br />

lake Maggiore (northern Italy). The climat is inl<strong>and</strong> temperate continental,<br />

with somewhat humid. seasons in spring <strong>and</strong> autumn.<br />

Analyses have been carried out be means of X-ray <strong>di</strong>ffraction, thermal<br />

techniques, electron <strong>di</strong>ffraction <strong>and</strong> microscopy.<br />

The alteration products of aci<strong>di</strong>c volcanic rocks (rhyolitic la vas, tuffo-lavas<br />

·<strong>and</strong> ignimbrites) in<strong>di</strong>cate the original texture of parent rock ground-mass<br />

play an important role in controlling the (neo)formation of clay minerals<br />

within the weathering profiles.<br />

The following main sequences of alteration have been observed:<br />

a) 11itreous texture:<br />

allophane ---7 halloysite ---7 gibbsite<br />

(spheric)<br />

(proto) (meta)<br />

~(lath)/<br />

b) tuffaceous <strong>and</strong> crypto-rnicro-crystalline texture:<br />

'<br />

(allophane) ---7 halloysite ---7 gibbsite<br />

(gibbsite)~--- ~<br />

boehmite (fibrous) ---7 (platy) - kaolinite<br />

(gibbsite)<br />

As a general•rule, allophane is present in the early weathering products of<br />

volcanic rocks having matrix with vitreous texture; the same is not always<br />

the case for facies with tuffaceous ground-mass.It is absent when the texture<br />

of the parent rock is crystalline.<br />

Electron <strong>di</strong>ffraction patterns of single particles showing fibrous-tubular<br />

shape in<strong>di</strong>cate they are halloysite <strong>and</strong>/ora boehmite. The presence of boehm­<br />

. ite as an incipient phase of weathering (although questionable, because it<br />

might also be a deuteric product) can be due to high amounts of Fe-oxyhydroxides<br />

influencing the transformation boehmite ---7 gibbsite. Fibrous<br />

boehmite may evolve into platy particle by ageing. The presence of gibbsite<br />

as interme<strong>di</strong>ate phase is not always certain; in some case it represents the<br />

final breakdown product of kaolin minerals.<br />

No amorphous materials have been detected within the alteration product of<br />

feldspars (pheno-crystals in volcanic rocks, or constituents of granites <strong>and</strong><br />

gneisses). Detailed investigat.ions by SEM <strong>and</strong> microprobe support the existence<br />

of imogolite as (proto) phase on the surface of weathered feldspar<br />

crystals. ·


348 Abstracts<br />

Characteristics of Clays from the Central Valley<br />

of Costa Rica .,<br />

A.G. LOSCHI GHITTONP, M. BERTOLANP<br />

1<br />

Istituto <strong>di</strong> Mineralogia e Petrologia, Universita <strong>di</strong> Modena, Largo S. Eufemia 19, 41100 Modena, Italia<br />

2<br />

Centro Ceramico <strong>di</strong> Bologna, Sezione <strong>di</strong> Modena, Italia<br />

The clay formations of the Central Valley of Costa Rica were examined<br />

during a research trip in April 1983.<br />

The following were identified: a) clays of hydrothermal origin derived from<br />

both volcanic <strong>and</strong> se<strong>di</strong>mentary rocks; b) clays of mixed origin, in part hydrothermal<br />

<strong>and</strong> in part of subaerial alteration; c) residual clays with lateritictype<br />

transformation; even these last clays derive from <strong>and</strong>esitic <strong>and</strong> basaltic<br />

lava, from tuffs, <strong>and</strong> from se<strong>di</strong>mentary rocks, such as limestones, s<strong>and</strong>stones,<br />

<strong>and</strong> siltstones; d) marine se<strong>di</strong>mentary clays, from the low valley of the Rio<br />

Reventazon near Peralta; e) red <strong>and</strong> grey volcano-se<strong>di</strong>mentary clays near<br />

Colon; f) lacustral se<strong>di</strong>mentary clays from the Plio-Pleistocene basin ofRio<br />

Gr<strong>and</strong>e near Ramon.<br />

Predominating among the clays of hydrothermal origin are the kaolinites,<br />

which are always rich in quartz, substituted at times by cristobalite. Illite<br />

may be present with kaolinite. The presence of sulphates, such as alunite <strong>and</strong><br />

jarosite, is rare. The principal deposits are at Tabl6n, Lourdes de Agua<br />

Calienre;·cerfo-Mirias n.-ear-SarifaA.na, Ochomogo, <strong>and</strong> Santa Elena.<br />

Above Turrialba, near Verbena Norte, the clayey mineral is halloysite, with<br />

quartz <strong>and</strong> cristobalite extremely scarce.<br />

Illitic clays of hydrothermal genesis are found at Ochomogo <strong>and</strong> Santa<br />

Elena. In this locality the presence of vermiculite is probable.<br />

At Llano Gr<strong>and</strong>e, hydrothermal processes produced amorphous silica, with<br />

little kaolini te <strong>and</strong> cristobali te.<br />

The residual clays of lateritic-type genesis are abundant in quartz <strong>and</strong> frequently<br />

have large amounts of montmorillonite. They often contain <strong>di</strong>sordered<br />

kaolinite, such as those near Muii.eco, or illite <strong>and</strong> kaolinite which form<br />

banks along the road to Jerico.<br />

Marine se<strong>di</strong>mentary clays contain carbonates in the form of calcite with<br />

quartz <strong>and</strong> feldspar. The prevalent clayey mineral is montmorillonite. Kaolinite<br />

is scarce <strong>and</strong> often <strong>di</strong>sordered.<br />

The clays of Colon are generally illites, with very variable quantities of<br />

feldspar.<br />

Lacustrine se<strong>di</strong>mentary clays have frequently Often undergone hydrothermal<br />

forces. They are kaolinites <strong>and</strong> montmorillonites. Cristobalite often is<br />

associated with or replaces quartz.<br />

Overall, the most widespread clay mineral in Costa Rica is kaolinite, often<br />

<strong>di</strong>sordered, which is prevalently formed hydrothermally, but also beginning<br />

from lateritic transformation, in which case it is very <strong>di</strong>sordered. Montmorillonite<br />

is the typical clay mineral of lateritic products, but it is also abundant<br />

in se<strong>di</strong>mentary clays, especially marine ones. Chlorite is very rare. ,<br />

Part of the clays examined, <strong>and</strong> in particular those of hydrothermal origin,<br />

may be of industrial use, particularly in the ceramic sector, limited however<br />

to industrial products for flooring <strong>and</strong> facing.


Abstracts<br />

349<br />

Occurrence of Fibrous Minerals in the Tertiary of<br />

La Alameda, Ciudad·Real, Spain<br />

J.M. MARTIN-POZAS'. J.M. MARTIN-VIVALDP, J. NAVARRETE 1<br />

1<br />

Departamento de Cristalografia y Mineralogia, Facultad de Geologia, Uriiversidad Complutense, 28040 Madrid,<br />

Espafia<br />

. z Compafiia General de Sondeos, Coraz6n de Maria 15, 28002 Madrid, Espafia<br />

The aim of the present work was to analyze <strong>and</strong> characterize mineralogically<br />

the fibrous clays situated in Tertiary se<strong>di</strong>ments in the Province of Ciudad<br />

Real, close to the small villages of La Alameda <strong>and</strong> Belvis. These Tertiary<br />

materials in transgression over the Paleozoic metase<strong>di</strong>ments of Ossa Morena<br />

are Miocene in age.<br />

On a regional scale, the Tertiary se<strong>di</strong>ments exhibit detrital episodes with<br />

lacustrine <strong>and</strong> even saline environments. From the morphological point of<br />

view, this succession gives rise to depressed reliefs as a result of the lack of<br />

consistency in the materials. The stratigraphical section observable in the<br />

zone stu<strong>di</strong>ed is as follows:<br />

- Marly clays, rather s<strong>and</strong>y, red<strong>di</strong>sh in colour, composed of illite <strong>and</strong><br />

kaolinite clay minerals with a depth of about 5 m;<br />

- Marly clays, compositionally similar to those mentioned above, though<br />

less intense in colour (3 m);<br />

- Absorbent clays composed mainly of palygorskite, accompanied by dolomite<br />

carbonates <strong>and</strong> quartz (approximately 3 m);<br />

- Terminal limestones of the series (2 m).<br />

Apart from the characterization of the palygorskite-bearing materials, the<br />

study also relates the presence of these materials to others similar in composition<br />

situated in <strong>di</strong>ffer~t geographical zones of the Iberian Peninsula.<br />

Huertas F., Linares J., Martin-Vival<strong>di</strong> J.L., 1971. Minerales fibrosos de la arcilla en cuencas<br />

se<strong>di</strong>mentarias espaiiolas. I.- Cuenca del Tajo. Bol. Inst. Geol. Min. LXXXII-VI, 534-542.<br />

Galan E., Brell J.M., La Iglesia A., Robertson R.H.S., 1976. The Caceres palygorskite deposit,<br />

Spain. Pp. 81-94, in: Proc. Int. Clay Conf. 1975, Mexico City (S.W. Bailey, e<strong>di</strong>tor), Wilmette.<br />

Martin-Pozas J .M., Martin-Vival<strong>di</strong> J .M., Sanchez-Camazano M., 1983. El yacimiento de Sepiolita -<br />

Palygorskita de Sacramenia, Segovia. Bol. Inst. Geol. Min. XCIV-II, 113-120.


350 Abstracts<br />

Clay ¥ineralogical Trends in the Holocene Se<strong>di</strong>ments<br />

of the Gulf of Taranto, Southern~Haly-~-<br />

T. PESCATORE 1 , J. THOREZ 2 , M.R. SENATORE 1 , S. ABDEL GADIR 4 , M.<br />

MONTCHARMONP, F. DAMBLON 4 , M. STREEL 4<br />

1 Dipartimento <strong>di</strong> Scienze della Terra, Universita <strong>di</strong> Napo!i, LargoS. Marcellino 10, 80138 Napoli, Italia<br />

2<br />

Laboratoire des Argiles, Institut de Mineralogie, Universite de Liege, 9 place du 20 aout, 4000 Liege, Belgique<br />

3<br />

Istituto <strong>di</strong> Paleontologia, Universita <strong>di</strong> Napoli, LargoS. Marcellino 10, 80138 Napoli, Italia<br />

4<br />

Laboratoire de Palynologie et Paleobotanique, Universite de Liege, 9 place du 20 aout, 4000 Liege, Belgique<br />

This contribution is a part of the «Oceanografia e Fon<strong>di</strong> Marini» programme<br />

(contracts n. 79.1434.88 <strong>and</strong> 80.00674.88) set up by the <strong>Italian</strong> National<br />

Science Research Council. It concerns the study of the Holocene to Recent<br />

se<strong>di</strong>ments of the Gulf of Taranto completed by subsurface (grab) samples<br />

(down to a depth of 10 cm) <strong>and</strong> several cores (3m maximum in length)<br />

located at <strong>di</strong>fferent sites of the gulf. Seven of these cores have been selected<br />

for detailed mineralogical, palynological (pollens <strong>and</strong> Dynoflagelates) <strong>and</strong><br />

micropaleontological (Foraminifera) analyses in ad<strong>di</strong>tion to other techniques.<br />

Such a combined inter<strong>di</strong>sciplinary study has appeared, indeed, useful<br />

<strong>and</strong> even necessary in order to assess the correct but relative stratigraphy of<br />

the accumulated se<strong>di</strong>ments. Moreover, this approach has been referred to in<br />

view of a tentative paleoclimatic _reconstruction. . .<br />

--------------------------- Tne mineraloglcafcomposiiion of the bulk se<strong>di</strong>ments, apart from their relatively<br />

high contents in the clay-size fraction, consists of quartz, carbonates<br />

<strong>and</strong> feldspars. The< 2 Jlm fraction is generally characterized by the admixture<br />

of ten clay components: illites <strong>and</strong> smectites - both with variable<br />

crystallinities <strong>and</strong> crystallochemical compositions-; more or less fresh Fechlorite;<br />

vermiculite <strong>and</strong> minor kaolinite as representative of simple clay<br />

minerals. However, various types of mixed layers also occur: (10-14v), (10-<br />

14c), (10-14sm) (with <strong>di</strong>fferent states of swelling properties), (14c-14v) <strong>and</strong> a<br />

naturally swollen (17 A) complex. All these clay components form admixtures<br />

which, at a first sight, seem to exist with a global, uniform, qualitative <strong>and</strong><br />

quantitative composition. However, sensitive variations may be put forward<br />

accor<strong>di</strong>ng to the geographical position <strong>and</strong> stratigraphical range of the<br />

selected cores. These variations <strong>and</strong> trends are supported by complementary<br />

mineralogical <strong>and</strong> micropaleontological data. Clay mineral changes ate<br />

more evident when referring to a comparison of the minerals two by two<br />

through intensity ratios of their basal spacings (001) as well as when following<br />

the changes of crystallinities for illites <strong>and</strong> swelling components. These<br />

variations <strong>and</strong> trends are themselves controlled <strong>and</strong> supported by the palynological<br />

<strong>and</strong> micropaleontological contents of the se<strong>di</strong>ments; these data<br />

in<strong>di</strong>cate, for instance, clear cuts (stratigraphical gaps), irregularities in the<br />

deposition process <strong>and</strong> variable rates of se<strong>di</strong>mentation. In ad<strong>di</strong>tion to the<br />

periods of non-deposition, recycling processes have taken place due to the<br />

activity of subsurface <strong>and</strong> density currents, a hypothesis which finds its<br />

support from the study of the actual physiography <strong>and</strong> currents pattern-of<br />

the Gulf of Taranto.<br />

From the analysis of the clay compositions, a hydrolysis index (H.I.) has been<br />

calculated (Thorez, these Procee<strong>di</strong>ngs) where numerical data are compared<br />

with those obtained from the other techniques. Clay mineralogy, hydrolysis<br />

index, palynology <strong>and</strong> micropaleontology allow the reconstruction of paleoclimatic<br />

curves for each of the seven cores analysed, which further on may be<br />

correlated, thus provi<strong>di</strong>ng an in<strong>di</strong>cation about the climatic con<strong>di</strong>tions occurring<br />

on the continent <strong>and</strong> in the marine waters. Mean temperatures (warmcold)<br />

of the latter are determined from the study of Foraminifera. An estimation<br />

of the wet <strong>and</strong> dry con<strong>di</strong>tions is sustained by palynological data <strong>and</strong><br />

from the results of the clay mineral stu<strong>di</strong>es, since both materials, pollens <strong>and</strong><br />

clays, were delivered contemporaneously to the gulf. However, caution is _


-<br />

Abstracts 351<br />

required for the interpretation of the climatic information gathered from the<br />

study of the clay assemblages. Some of these may <strong>and</strong> are reworked from<br />

older deposits-se<strong>di</strong>ments <strong>and</strong> paleosoils which become intermixed with freshly<br />

eroded minerals from the substratum <strong>and</strong> transported to the gulf<br />

through rivers (western part of the gulf). There is also the existence of a<br />

multisource potentiality within the surroun<strong>di</strong>ng continental - coast <strong>and</strong><br />

hinterl<strong>and</strong> - formations. The clays are subjected, in the gulf waters, to<br />

surface, subsurface <strong>and</strong> density currents, the latter yiel<strong>di</strong>ng the existence of<br />

mechanically reworked packets of previous se<strong>di</strong>ments at several places,<br />

accor<strong>di</strong>ng to the location in the Taranto Valley.<br />

Despite all these restrictions at the level of the clay mineral interpretation,<br />

but thanks to the information provided by the other stu<strong>di</strong>es, inclu<strong>di</strong>ng the<br />

geology <strong>and</strong> physiography of the whole gulf, it appeared worthwhile to seek<br />

the reliability of all the se<strong>di</strong>mentary <strong>and</strong> paleoclimatic reconstructions proposed<br />

here, in particular because they are supported by independent parameters<br />

<strong>and</strong> factors (clays, pollens, Foraminifera) now found together within<br />

the final deposits. Hence the necessary but useful inter<strong>di</strong>sciplinary study.<br />

This has allowed a control of the nature <strong>and</strong> sources of the clay minerals<br />

(essentially inherited from the near continent, in their fresh <strong>and</strong> weathered<br />

states), the relative stratigraphy of the accumulated se<strong>di</strong>ments (with clues<br />

about their regime of settlement), <strong>and</strong> the paleoclimatic reconstruction even<br />

for series which occur within rather narrow periods of geological time.<br />

Distribution <strong>and</strong> Behaviour of some Trace Elements<br />

in the Gulf of Taranto Muds, Southern Italy<br />

G.NUOVO<br />

Dipartimento Geomineralogico dell'Universita <strong>di</strong>· Bari, Campus, Via G. Salvemini, 70124 Bari, Italia<br />

Traces of Ba, Zn, Rb <strong>and</strong> Sr are present in 16 samples of marine muds<br />

dredged in the Gulf of Taranto, at depths from 40 to 1500 m along the<br />

Calabrian-Apulian coasts. The study of their <strong>di</strong>stribution shows that Sr is the<br />

only element related both to the carbonate phases <strong>and</strong> clay minerals; all the<br />

others are linked to the non-carbonate phases. Statistical analysis of results<br />

shows significant <strong>di</strong>fferences between samples from the western (Calabria)<br />

ancj., respectively, north-eastern area (Apulia). The data obtained permite the<br />

following preliminary considerations:<br />

a) the <strong>di</strong>stribution patterns of the four elements do not show any major<br />

deviation when compared with, known data for infra-Pleistocene se<strong>di</strong>ments;<br />

b) strontium is chiefly related\to the carbonate fractions, showing higher<br />

values in the north-eastern area samples, presumably because of the abundant<br />

carbonate fraction contained in these se<strong>di</strong>ments;<br />

c) the Sr/Ca correlation coefficient, when estimated for all the samples, is<br />

lower in comparison with the correspon<strong>di</strong>ng values, separately estimated for<br />

each of the two sample series. This can be ascribed to <strong>di</strong>fferent genetic<br />

features of carbonates (clastic or biogenic contributions, chemical precipita-<br />

~~- '<br />

Since the carbonate fraction behaves as a <strong>di</strong>luent as regards both Sr <strong>and</strong> Ca,<br />

we stu<strong>di</strong>ed the-correlations among all the elements, inclu<strong>di</strong>ng the trace ones,


352 Abstracts<br />

after removal of carbonates with 0.5 N HCI. Most of the observed correlations<br />

correspond to a probability level less than 1%, the value assumed as<br />

critical in this work. Statistical-calculations-lead-however-to· the following<br />

observations:<br />

- even in carbonate-free samples Sr shows a positive strong correlation<br />

with Ca, taking into account all the samples; while the correlation lacks<br />

significance within each sample series. This can be ascribed to the small<br />

number of samples from the north-eastern area (5 samples) <strong>and</strong> to the low<br />

variability of both Sr <strong>and</strong> Ca contents among the samples from the western<br />

area;<br />

- rubi<strong>di</strong>um appears positively linked to Kin each sample series, but the<br />

significance <strong>di</strong>sappears when all the samples are grouped. Since K-feldspars<br />

are very scarce in all the samples, it is presumable that the Rb/K correlation<br />

chiefly involves the exchangeable K contained in illite type 10 A minerals;<br />

- barium shows more significant correlations in the north-eastern area<br />

samples. With regard to the~ western samples, a positive correlation with K<br />

<strong>and</strong>, to a lesser extent, Na is evident. Taking into account the origin of terrigenous<br />

contributions, it seems that Ba is linked to the quartz-feldspathic<br />

fractions;<br />

- zinc shows, on the whole, a rather irregular behaviour; as regards all the<br />

samples grouped, there are some strong correlations, both negative (Zn/Si,<br />

Zn/K) <strong>and</strong> positive (Zn/Na, Zn/H 2 0+). A strong positive correlation Zn/illite<br />

for the samples from the western area is also evident. It is also likely that<br />

organic substances play an important role in the <strong>di</strong>stribution of this element.<br />

All these features lead to an overall <strong>di</strong>stribution pattern very similar to the<br />

behaviour of these elements in the infra-Pleistocene clays outcropping<br />

------------------~~---- around the (;ulf of Taranto. This is consistent with the statement that the<br />

---:G;lf o(Ta~anto-itself may be considered the actual «continuation» of the<br />

ancient Bradano Foretrough.<br />

Characteristics of the Hercynian Metamorphism<br />

in the Pola de Gord6n Matallana Coal basin,<br />

Le6n Province, Spain<br />

E. GALAN 1 , A. APARICI0 2 , M. DOVAU<br />

1<br />

Departamento de Geologia, Facultad de Quimica, Universidad de Sevilla, Apdo. 533, 41071 Sevilla, Espai\a<br />

' Institute de Geologia, C.S.I.C., Gutierrez AbascaJ 2, 28006 Madrid, Espai\a _<br />

3<br />

Departamento de Cristalografia y Mineralogia, Facultad de Geologia, Universidad Complutense, 28040 Madrid,<br />

Espai\a<br />

The Pola de Gord6n-Matallana coal basin forms part of a synclinal macrostructure<br />

made up of Paleozoic rocks, from the Cambrian up to the Devonian,<br />

in whose core are unconformable marine <strong>and</strong> continental Carboniferous<br />

materials (Namurian-Westphalian, <strong>and</strong> Stephanian, in age, respectively).<br />

Paleozoic materials have undergone an Hercynian very low or low grade<br />

metamorphism. This paper deals with the metamorphism of these Paleozoic<br />

rocks on the basis of the mineralogical assemblages found <strong>and</strong> some crystallochemical<br />

features of phyllosilicates.<br />

For this study, selected shales <strong>and</strong> lutites were sampled from the Cambrian,


Abstracts 353<br />

Ordovician, Silurian, Lower <strong>and</strong> Middle Devonian, <strong>and</strong> marine Carbonifer- .<br />

ous, in various typical sections of this basin.<br />

The mineralogical study was carried out by X-ray <strong>di</strong>ffraction <strong>and</strong> microscopic<br />

analysis.<br />

Accor<strong>di</strong>ng to the age of the samples tested, the following mineralogical<br />

assemblages were found:<br />

-


Section Ill<br />

Crystal Chemistry <strong>and</strong> Structures


Miner. Petrogr. Acta<br />

Vol. 29·A, pp. 357-362 (1985)<br />

Characterization of Naturally Occurring Iron Oxides<br />

<strong>and</strong> Comparative Thermal Reactions with Glycerol<br />

E. MENDELOVICI, A. SAGARZAZU, R. VILLALBA<br />

Laboratorio Fisicoquimica de Materiales, IVIC, Apartado 21827, Caracas, 1020 A, Venezuela<br />

ABSTRACT - The thermal reaction of lepidocrocite with glycerol led to a<br />

complete transformation of y-FeOOH into iron glycerolato complex; whatever<br />

the surface area of the starting material while the reaction of hematite is<br />

strongly dependent on the surface area of the starting material. Goethite (-<br />

5% in the samples stu<strong>di</strong>ed) was completely· transformed by glycerol, but<br />

magnetite (1.83% in the hematite sample) r7Plained unchanged.<br />

Introduction<br />

Experimental<br />

The reaction with glycerol of <strong>di</strong>fferent<br />

pure iron oxides has been' described<br />

by FULS et al. (1970) <strong>and</strong> by<br />

RADOSLOVICH et al. (1970). Presumably,<br />

the same iron glycerolato is<br />

formed as an end product independent<br />

of the initial iron oxide. Accor<strong>di</strong>ng<br />

to FULS et al. (1970) the general<br />

mechanism. of iron alkoxide formation<br />

involves glycerol condensation<br />

<strong>and</strong> redox reactions of the iron oxides,<br />

giving a product whose calculated<br />

formula corresponds to<br />

[(C3Hs03)4 Fez 3 + Fel+J.<br />

Our general objective is to find out<br />

the effects of the structure <strong>and</strong> sur-\<br />

face area of natural iron oxides <strong>and</strong> of ·<br />

associated impurities on the development<br />

of this reaction. For this purpose,<br />

natural iron oxides considered<br />

here were previously analyzed <strong>and</strong><br />

characterized.<br />

The chemical analysis of natural<br />

hematite ore from El Pao, Edo. Bolivar,<br />

was carried out by Atomic<br />

Absorption Spectroscopy (AAS),<br />

after crushing (::5 150 mesh) <strong>and</strong> <strong>di</strong>ssolution<br />

of the sample in hot cone.<br />

HCl. Total iron <strong>and</strong> Fe2+ were determined<br />

by classical <strong>di</strong>chromatometry.<br />

Synthetic <strong>and</strong> natural lepidocrocite<br />

(Wurtemburg, Lubeneck) used in this<br />

work were previously described by<br />

MENDELOVICI et al. (1982; 1984a).<br />

Pure goethite was prepared from<br />

Fe(N03h (SCHULZE, 1982). Pure<br />

magnetite was synthetized from<br />

FeS04 (SIDHU et al., 1978). These<br />

iron oxides were characterized · by<br />

XRD (r<strong>and</strong>om powders) employing<br />

. FeKa ra<strong>di</strong>ation, IR absorption spectroscopy<br />

(0-25% Csi <strong>di</strong>sks) <strong>and</strong> sorptometry<br />

for surface area determination<br />

(BET). Each sample (3g) was<br />

thoroughly reacted with water-free


358 . E. Mendelovici, A. Sagar;;azu, R. Villalba<br />

glycerol (SOcc) at 245°C (reflux temperature)<br />

for 16 hours in a flask fitted<br />

with a large open condenser tube.<br />

The resulting solids were separated<br />

by centrifugation, washed with <strong>di</strong>stilled<br />

water until free of glycerol (eerie<br />

ammonium nitrate test), finally<br />

washed with spectroscopic grade acetone<br />

<strong>and</strong> air dried. The reaction products<br />

were. examined by X-ray powder<br />

<strong>di</strong>ffraction (Philips 1730 model<br />

<strong>di</strong>ffractometer), infrared spectroscopy<br />

(Perkin-Elmer 567 model spectra-<br />

photometer) <strong>and</strong> sorptometry (Quantasorb<br />

apparatus1; -For--comparative<br />

purposes, the same experimental<br />

con<strong>di</strong>tions <strong>and</strong> instrumental settings<br />

were employed for each product.<br />

Results <strong>and</strong> <strong>di</strong>scussion<br />

Accor<strong>di</strong>ng to the XRD information<br />

(Fig. la) the natural iron oxide sample<br />

from Edo. Bolivar, which has a<br />

"' . CO<br />

N<br />

"' CO<br />

"" "' CO<br />

~ "' c "!<br />

N<br />

N<br />

M<br />


Characterization of Naturally Occurring-Iron Oxides ... 359<br />

surface area of < 5m 2 /g, is a crystallized<br />

a-Fe 2 0 3 specimen containing<br />

traces of quartz, goethite (- 5%),<br />

magnetite (1.84%) <strong>and</strong> Alz0 3 (1.06%).<br />

In order to find out the nature of this<br />

aluminium, the sample was treated<br />

with 1.25M NaOH in a shaking bath<br />

at 75oC (MACKENZIE & ROBERT­<br />

SON, 1961). After 24 hours practically<br />

all the aluminium was extracted<br />

by NaOH, in<strong>di</strong>cating that AI is not<br />

substituting for Fe in this natural<br />

hematite.<br />

The reaction of the natural hematite<br />

with glycerol for 16 hours led to<br />

the formation of a small amount of<br />

iron alkoxide, the transformation of<br />

a-Fe 2 0 3 being far from completion.<br />

This can be inferred from the <strong>di</strong>ffractogram<br />

shown in Fig. lb, where<br />

the strong lines due to hematite in<br />

the original sample are clearly <strong>di</strong>scernible<br />

although somewhat less intense<br />

than: in the starting material.<br />

This <strong>di</strong>ffractogram shows also the<br />

main peak due to iron alkoxide at 8 A.<br />

The analysis of Fe 2 + in the reacted<br />

solid can be used as an in<strong>di</strong>cator of<br />

the progress of iron oxide transformation<br />

into iron alkoxide.<br />

When the surface area of natural<br />

hematite was brought to 17 m 2 /g (by<br />

controlled mortar grin<strong>di</strong>ng), the intensities<br />

of the a-Fe 2 0 3 X-ray lines<br />

were <strong>di</strong>minished. The reaction of this<br />

material with glycerol resulted in<br />

higher amounts of iron alkoxide formation<br />

although it, too, <strong>di</strong>d not proceed<br />

to completion, since hematite<br />

was always detected in the <strong>di</strong>ffractogram<br />

of the reacted solid (Fig. le).<br />

Similar results were obtained when<br />

the surface area of the natural hematite<br />

was brought to 33 m 2 /g <strong>and</strong> this<br />

material reacted with glycerol,<br />

although in this case the transformation<br />

proceeded to a greater extent. It<br />

is not plausible here to calculate the<br />

degree of transformation since, in '<br />

ad<strong>di</strong>tion to a-Fe 2 0 3 , the natural iron<br />

oxide sample contains other iron oxides<br />

which are susceptible to transformation<br />

with glycerol. However, in<br />

our reaction of natural hematite, the<br />

relative degree of transformation into<br />

an iron glycerolato compound could<br />

be inferred from the data shown in<br />

Table 1. This table shows a rough<br />

correlation between the surface area<br />

of the iron oxide, the Fe 2 + /total Fe<br />

ratios <strong>and</strong> the integrated area of the<br />

alkoxide X-ray peaks at 8 A.<br />

FULS et al. (1970) reported that an<br />

hematite which has a surface area of<br />

39 m 2 /g was completely transformed<br />

after 16 hours reaction with glycerol.<br />

TABLE 1<br />

Correlation between surface area (S 0<br />

) of iron oxide with Fe 2 + /total Fe ratios <strong>and</strong> correspon<strong>di</strong>ng<br />

alkoxide (X-ray peak) intensities<br />


360 E. Mendelovici, A. Sagarzazu, R. Villalba<br />

We employed such experimental con<strong>di</strong>tions<br />

to ensure an optimum degree<br />

of transformation, that is, stirring the<br />

reaction mixture for thorough contact<br />

<strong>and</strong> 16 hours thermal reaction<br />

time .. Even after 40 hours of thermal<br />

reaction (at 245°C), the natural<br />

hematite was not completely transformed<br />

into iron alkoxide. The colour<br />

of our hematite alkoxide was always<br />

red<strong>di</strong>sh-brown in contrast whh the<br />

typical green colour of alkoxides resulting<br />

from a complete transformation<br />

of iron oxy-hydroxides.<br />

. The small amounts of goethite<br />

(estimated as 5%) originally present<br />

in the hematite ore(!) are no longer<br />

detected in the <strong>di</strong>ffractograms of the<br />

. ·~·-~-~-~·-glycerol·-reactea-proauct:s:·~ This<br />

means that a-FeOOH has been completely<br />

transformed. On the other<br />

h<strong>and</strong>, magnetite (1.83%) was not.<br />

affected here by the reaction with<br />

glycerol, since the <strong>di</strong>ffraction effect at<br />

2.96 A is always detected in the X-ray<br />

<strong>di</strong>ffractograms (see Fig. 1). When<br />

pure synthetic, crystalline magnetite<br />

was reacted with glycerol we found<br />

that only a small amount of iron alkoxide<br />

was formed. The correspon<strong>di</strong>ng<br />

XRD pattern shows that the positions<br />

(I) It is common to find in the nature goethite<br />

accompanying hematite (KAMPF &<br />

SCHWERTMANN, 1982).<br />

<strong>and</strong> intensities of Fe 3 0 4 lines remain<br />

almost unchanged.Theother compo-<br />

;~~ts ofthis··~a:1:ii~af hemaiite stated<br />

in Table 2 do not seem to play any<br />

particular role in the iron glycerolato<br />

formation.<br />

The <strong>di</strong>ffractogram recorded in Fig.<br />

le exhibits, besides the main reflection<br />

at 8.063 A, other peaks attributed<br />

to iron alkoxide (FULS et al.,<br />

1970). The alkoxide derivative of lepidocrocite<br />

gives a similar pattern, but<br />

without the lines due to the starting<br />

material. This means that in this case<br />

y-FeOOH has been completely transformed.<br />

Synthetic goethite (surface<br />

area 22 m 2 /g) is also completely transformed,<br />

although the pattern of the<br />

goethite alkoxide is not the same as<br />

those of iron glycerolato products derived<br />

from a-Fe 2 0 3 _ or y-FeOOH.<br />

Moreover, the X-ray <strong>di</strong>ffractograms<br />

of the latters, <strong>di</strong>splay both, weak<br />

peaks at 7.45, 3.29 <strong>and</strong> 2.85 A, which<br />

are not detected in the pattern of<br />

goethite glycerolato. MURAD (1979)<br />

attributed such reflections to synthetic<br />

akaganeite, ~-FeOOH.<br />

As stated before, the natural lepidocrocite,<br />

which is a well crystallized<br />

y-FeOOH specimen <strong>and</strong> has a surface<br />

area < 5 m 2 /g was completely transformed<br />

into iron alkoxide when<br />

reacted with glycerol. The same results<br />

were obtained with synthetic<br />

TABLE 2<br />

Chemical composition in % of iron oxide from El Pao<br />

0.21 1.06 95.74 0.57 0.10 0.70 0.21 tr tr 0.20 1.06<br />

tr, traces


Characterization of Naturally Occurring Iron Oxides ... 361<br />

.-L---­<br />

"'<br />

4000 3500 3000 2500 2000 1500<br />

cw1<br />

1000 ,500 250<br />

Fig. 2 -Infrared spectra (Csi <strong>di</strong>sks) of iron alkoxides derived from: a, hematite; b, lepidocrocite.<br />

H = hematite.<br />

lepidocrocite, whose surface area is<br />

72m 2 /g. This means that for the open,<br />

orthorhombic structure of y~FeOOH,<br />

the transformation is independent of<br />

the surface area, hence of the particle<br />

size. Also; the impurities contained in<br />

this natural lepidocrocite (as 1.39%<br />

quartz <strong>and</strong> 2.47% MnO) do not have<br />

any specific influence on the iron<br />

glycerolato formation. As expec.ted,<br />

traces of goethite contained by natu':.<br />

ral lepidocrocite were completely<br />

transformed into iron alkoxide.<br />

The hydrolysis by boiling H 2 0 of<br />

the naturallepidocrocite alkoxide to<br />

magneticspinels, which is a topochemical<br />

reaction, has been comparatively<br />

<strong>di</strong>scussed with solid-state topotactic<br />

conversions of y-FeOOH (MEN­<br />

DELOVICI et al., 1984 a, b).<br />

The infrared spectra, in the 4000-<br />

250 cm- 1 region of the glycerolato derivatives<br />

from lepidocrocite <strong>and</strong><br />

hematite, are represented in Fig. 2.<br />

Beside the absorption b<strong>and</strong>s due to<br />

the iron glycerolato complex, the<br />

hematite derivative spectrum exhibits<br />

also those of a-Fe 2 0 3 . FULS et<br />

al. (1970) <strong>and</strong> RADOSLOVICH et aL<br />

(1970) reported the infrared spectra<br />

of iron alkoxides prepared from<br />

goethite, lepidocrocite <strong>and</strong> hematite.<br />

Accor<strong>di</strong>ng to these authors, the end<br />

products are the same whatever the<br />

starting iron oxide <strong>and</strong> the Fe 2 + /total<br />

Fe ratio may explain slight <strong>di</strong>fferences<br />

between their IR spectra. This<br />

statement is probably valid for the<br />

alkoxide of lepidocrocite <strong>and</strong> hematite.<br />

The goethite derivative, which<br />

accor<strong>di</strong>ng to our results has a <strong>di</strong>fferent<br />

X-ray <strong>di</strong>ffraction pattern than<br />

that ofhematite or lepidocrocite, will<br />

be <strong>di</strong>scussed in a further communication.<br />

As expected from thermodynamic<br />

considerations, the structure of iron<br />

oxides plays an important role in explaining<br />

the <strong>di</strong>fference in reactivity<br />

between FeOOH <strong>and</strong> a-Fe 2 0 3 • The<br />

open (orthorhombic) structure of y­<br />

FeOOH is easily transformed into<br />

iron alkoxide, whereas the reaction of<br />

the rigid (rhombohedral) structure of<br />

a-Fe 2 0 3 is much more sluggish.


362 E. Mendelovici, A. Sagarzazu, R. Villalba<br />

REFERENCES<br />

FuLs P .F., RoDRIQUE L., FRIPIAT J .J ., 1970. Iron alkoxide obtained by reacting iron oxides with glycerol.<br />

Clays Clay Miner. 18, 53-62.<br />

KAMPF N., SCHWERTMANN U., 1982. Quantitative determination ofgoethite <strong>and</strong> hematite in kaolinite<br />

soils by X-ray <strong>di</strong>ffraction. Clay Minerals 17, 359-365.<br />

MAcKENZIE R.C., RoBERTSON R.H., 1961. The quantitative determination of halloysite, goethite <strong>and</strong><br />

gibbsite. Acta Univ. Carol. Geol. Suppl. 1, 139-149.<br />

MENDELOVICI E., SAGARZAZU A., VILLALBA R., 1982. Mechanochemical reaction effects on the structure<br />

<strong>and</strong> surface of pure, synthetic lepidocrocite. Mat. Res. Bull. 17, 1017-1023.<br />

MENDELOVICI E., VILLALBA R., SAGARZAZU A., 1984a. Topotactic conversions of y-F e00H <strong>and</strong> comparative<br />

transformation methods of iron oxides in magnetic spinels. Materials Chemistry <strong>and</strong> Physics<br />

10, 579-584.<br />

MENDELOVICI E., NADIV S., LIN I.J., 1984b. Morphological <strong>and</strong> magnetic changes during mechanochemical<br />

transformation of lepidocrocite to hematite. J. Mater. Sci. 19, 1556-1562.<br />

MuRAD E., 1979. Mossbauer <strong>and</strong> X-ray data on [3-FeOOH (akaganeite). Clay Minerals 14, 273-285.<br />

RADOSLOVICH E.W., RAUPACH M., SLADE P.G., TAYLOR R.M., 1970. Crystalline cobalt, zinc, manganese<br />

<strong>and</strong> irdn alkoxides of glycerol. Aust. J. Chem. 23, 1963-1971.<br />

ScHULZE D.G., 1982. Ph.D. Thesis, Technische Universitat Munchen, West Germany.<br />

SIDHU P.S., GILKES R.J., POSNER A.M., 1978. The synthesis <strong>and</strong> some properties ofCo, Ni, Zn, Cu, Mn<br />

<strong>and</strong> Cd substituted magnetites. J. Inorg. Nucl. Chem. 40, 429-435.


Miner. Petrogr. Acta<br />

Vol. 29·A, pp. 363-370 (I 985)<br />

The IR Spectra of Hematite-Type Compounds<br />

with Different Particle Shapes<br />

J.E. IGLESIAS, C.J. SERNA<br />

Instituto de Fisico-Quimica Mineral, C.S.I.C., Serrano 115-dpdo., 28006 Madrid, Espaiia<br />

ABSTRACT- A method is presented to account for particle shape effects in the<br />

IR absorption spectra of powdered hematite. The necessary calculations<br />

have been carried out <strong>and</strong> are presented for <strong>di</strong>rect use in the form of graphs.<br />

Application of this method to two <strong>di</strong>fferent hematite samples permits a good<br />

explanation of the observed spectra. ·<br />

Introduction<br />

The IR absorption spectra -~f powdered<br />

samples has been widely used<br />

for identification purposes under the<br />

assumption that it represents a fairly<br />

constant fingerprint of the phase to<br />

be characterized. It is however well<br />

established (RUPPIN & ENGLMAN,<br />

1970; LUXON, 1969; GENZEL &<br />

MARTIN, 1972; HAYASHI et al.,<br />

1979; SERNA et al., 1982), though<br />

perhaps not sufficiently recognl.zed,<br />

that theIR spectra of particle aggregates<br />

can be drastically dependent on<br />

the shape of the constituent particles.<br />

Failure to allow for this effect has'<br />

even led in the recent past to the<br />

erroneous description of new mineral<br />

phases. Thus the terms


364 J.E. Iglesias, CJ. Serna<br />

the ellipsoid semi-axes become infinite<br />

(VAN DE HULST, 1957; SERNA<br />

et al., 1982). The interest of such calculations<br />

becomes clear when one remembers<br />

that physico-chemical con<strong>di</strong>tions<br />

of formation frequently affect<br />

crystal habit in mineral phases, <strong>and</strong><br />

consequently, genetic environmental<br />

con<strong>di</strong>tions can be often inferred from<br />

a knowledge of crystallite morphology.<br />

The purpose of this paper is to provide<br />

a simple method of analysis of<br />

hematite IR spectra which will permit<br />

the recognition of shape effects<br />

<strong>and</strong> estimation of the particle shape<br />

responsible for them.<br />

Theoretical considerations<br />

The optical constants of a compound<br />

in the infrared can be obtained<br />

from the analysis of the reflectance<br />

spectra of suitable single crystals of<br />

adequate size (>2 mm). The reflectance<br />

spectra of hematite have been<br />

measured by ONARI et al. (1977) <strong>and</strong><br />

their results are summarized in Table<br />

1. Data for the isostructural compounds<br />

a-Crz03 (LUCOVSKY et al.,<br />

1977), a-Ah03 (BARKER, 1963) <strong>and</strong><br />

a-Tiz03 (LUCOVSKY et al., 1978) are<br />

also available. The wavelength dependence<br />

of the complex refractive<br />

index, ft(A.) can be computed once the<br />

above mentioned optical constants<br />

are known.<br />

In the case when the spectrum is<br />

observed in transmission for a sample<br />

consisting of small (


TheIR Spectra of Hematite-Type Compo~nds ... 365<br />

the three principal axes of the ellipsoid.<br />

Ci~~ is linearly related to the<br />

absorption coefficient, <strong>and</strong> hence Ci~~<br />

(A.) is <strong>di</strong>rectly comparable with the<br />

spectrum obtained in absorbance on<br />

a spectrophotometer. The application<br />

of these theoretical results to the<br />

calculation of the IR absorption spectra<br />

of corundum-type microcrysta,lline<br />

oxides with <strong>di</strong>fferent particle<br />

shapes has been recently illustrated<br />

(SERNA et al., J 982).<br />

Method of analysis<br />

Although in the general case a<br />

complete calculation of the absorption<br />

spectrum along the lines<br />

summarized above will be necessary,<br />

for a particular case such as hematite<br />

\<br />

in which the theory has been proven<br />

to match well with the observations,<br />

a procedure can be devised to interpret<br />

the spectrum in terms of particle<br />

shape effects. To this end the frequencies<br />

at which the absorption maxima<br />

occur, i.e. the maxima of Ci~~ (A.) for<br />

the two principal polarizations, have<br />

been plotted as a function of the<br />

shape factor g, under the assumption<br />

that the crystallographic c axis .is<br />

coincident with one of the principal<br />

axes of the ellipsoid. In Fig. 1 such a<br />

plot is presented for KBr which is the<br />

most commonly used matrix. Plots<br />

for four other less common matrix<br />

substances are given in Fig. 2. ·<br />

We assume that a hematite spectrum<br />

has been recorded in KBr. In<br />

what follows we shall also assume<br />

that the hematite particles have a<br />

600<br />

400<br />

/<br />

/<br />

/<br />

,.,.,.,.,.,..---<br />

......<br />

......<br />

------<br />

----- -----~1 _________ _<br />

zoo+-----.---~r----.-----,----,-----~--~r---~S~h~ap~e~f~a~ctTo~r~(g~)~<br />

0 0.1 0.5 0.9<br />

Fig. 1 - Evolution of hematite absorption maxima in KBr (Em = 2.25) with shape factor (g); A 2 u<br />

. (-- -); Eu (--).


j<br />

I<br />

I<br />

366<br />

J.E. Iglesias, CJ. Serna<br />

700~--------------------------.---------------------------~<br />

a) b)<br />

600<br />

500<br />

400<br />

-------------- ---------<br />

300<br />

I E<br />

u<br />

~<br />

::0<br />


TheIR Spectra of Hematite-Type C~rnpounds ... 367<br />

appears to be reasonable since the c<br />

axis of hematite is a crystallographic<br />

three-fold axis of symmetry. If we call<br />

g1 the shape factor associated with<br />

the c axis, the con<strong>di</strong>tion g1 + 2gz = 1<br />

implies 0:5gz:50.5, while the value of<br />

g1 could lie anywhere between 0 <strong>and</strong><br />

1, with no ad<strong>di</strong>tional restriction.<br />

Examination of Fig. 1 allows one to<br />

conclude that a b<strong>and</strong> must appear between<br />

437 cm- 1 (roT) <strong>and</strong> 494 cm- 1 (coL)<br />

<strong>and</strong> in this frequency interval its<br />

assignment is unique (cos). From the<br />

actual frequency observed an estimation<br />

of gz can be made from the plot,<br />

<strong>and</strong> from this .value the frequencies of<br />

ro 3 , ro 4 <strong>and</strong> ro6can be determined <strong>and</strong><br />

compared with the experimental<br />

values. From the determined gz<br />

value, g1 is computed by the relation<br />

gl = 1-2gz <strong>and</strong> from this valu.e of gl<br />

the frequencies expected for ro1 ancl COz<br />

can be read off the graph <strong>and</strong> checked<br />

against the observed values. The<br />

values of g1 <strong>and</strong> g 2 thus found can be<br />

corroborated by running the sample<br />

in a matrix with a <strong>di</strong>fferent <strong>di</strong>electric<br />

constant. Clearly the same g values<br />

must be responsible for the <strong>di</strong>fferent<br />

absorption maxima found in both<br />

matrices.<br />

It is clear from Fig. 1 that the precision<br />

of gz obtained from the observed<br />

frequency of mode cos depends on the<br />

actual value observed, <strong>and</strong> that it de-<br />

creases as the frequen.cy of this mode<br />

increases. In the low precision interval<br />

the best value of gz requires some<br />

trial <strong>and</strong> error.<br />

A <strong>di</strong>fferent approach to the determination<br />

of g1 <strong>and</strong> gz would be the<br />

application of the generalized<br />

Frohlich formula for the case of anisotropic<br />

ellipsoidal particles (LUX­<br />

ON, 1969) (*)<br />

where the product extends to all<br />

modes associated with a particular<br />

<strong>di</strong>rection, Sm is the <strong>di</strong>electric constant<br />

of the matrix, So <strong>and</strong> s~ are respectively<br />

the static <strong>and</strong> high frequency<br />

<strong>di</strong>electric constant of the crystal, <strong>and</strong><br />

g is the relevant shape factor. For the<br />

particular case of hematite in KBr,<br />

equation (4) gives, using the data in<br />

Table 1, equation (5)<br />

0)10)2 [ 18.35gl + 2.25] 112<br />

299·526 = 4.45gl + 2.25<br />

<strong>and</strong> equation (6)<br />

0)30)40)50)6 [21.85g2 + 2.25] 112<br />

227·286·437·524 = 4.75g2 + 2.25<br />

('') LUXON's original formula<br />

TI Oli = [ ceo-1)g + em ] 112<br />

i OlTi (e~ -l)g + em<br />

is in error since from this expression there is no way to obtain either Frohlich's relation (for the<br />

casei= 1, g = 113, em= 1) or LST relation (i = 1, g = -1).


T<br />

368 J.E. Iglesias, CJ. Sema<br />

TABLE 1<br />

Infrared optical constants of hematite<br />

COT<br />

COL<br />

47tp y eoo eo<br />

co1 299 414<br />

COz 526 662<br />

(J)3 227 230<br />

co4 286 368<br />

COs 437 494<br />

(J)6 524 662<br />

11.50 .050<br />

2.20 .057<br />

1.10 .017<br />

12.00 .028<br />

2.90 .046<br />

1.10 .048<br />

6.7 20.6<br />

7.0 24.1<br />

Examples<br />

Reported in Fig. 3 are theIR spectra<br />

of two hematite samples where<br />

shape effects are clearly illustrated.<br />

In each case the spectra calculated by<br />

the theory outlined above are aiso included,<br />

to show that a fairly accur~te<br />

match in frequency <strong>and</strong> intensity can<br />

be achieved. In Table 2 the frequencies<br />

of the maxima estimated by the<br />

method of analysis are presented. In<br />

575<br />

300<br />

Sphere<br />

Lath<br />

440<br />

'<br />

,,<br />

11<br />

11<br />

1 1 485<br />

ri<br />

r I<br />

rl<br />

I I<br />

I I<br />

I I<br />

I \ ~<br />

I \ A A Jl<br />

I \ 1\ I'J\<br />

/ \_, \ 1 \ 23o<br />

___ .,.,. (cm-1) - .......,__,....,..<br />

-/<br />

/<br />

I<br />

I<br />

I<br />

I<br />

j, J<br />

I ._<br />

525<br />

800 600 400 200 800 600 400 200<br />

Fig. 3 - Comparison between observed (--) <strong>and</strong> calculated (- -<br />

microcrysta!s.<br />

-) spectra of hematite


TheIR Spectra ofBematite-Type Compounds ... 369<br />

. TABLE 2<br />

IR absorption maxima for the two hematite samples with defined particle shapes<br />

SPHERE<br />

LATH<br />

Observed Estimated Assignment Observed Estimated<br />

585 C02 650 660<br />

575<br />

595 co6 52,5 525<br />

485 485 COs 440 440<br />

385 386 col 412*<br />

360 358 co4 300 296<br />

230''* co3 230''*<br />

*This b<strong>and</strong> is not observed here due to the very flat morphology (BARRON et al., 1984); for<br />

not so flat oblate ellipsoids the b<strong>and</strong> is observed (WILSON et al., 1981; BARRON et al., 1984)<br />

· *" This b<strong>and</strong> is not observed in this· study owing to the spectra having been run in KBr<br />

matrix<br />

the first case the cos mode lies in a<br />

region of low sensitivity in g; but a<br />

first estimation gives 0.3


370 J.E. Iglesias, CJ. Serna<br />

ONARI S., ARAr T ., Kuoo K., 1976. Infrared lattice vibrations <strong>and</strong> <strong>di</strong>electric <strong>di</strong>spersion in a-Fe 2 0 3 • Phys.<br />

Rev. B 16, 1717-172I.<br />

OsBORN V.A., 1945. Demagnetizing factors of the general ellipsoid:Phys":'Re\17"67; 351cJ57.<br />

RENDON J .L., SERNA C.J ., 1981. IR spectra of powder hematite: Effects of particle size <strong>and</strong> shape. Clay<br />

Minerals 16, 375-382.<br />

RuPPIN R., ENGLMAN R., 1970. Optical phonons of small crystals. Rep. Prog. Phys. 33, 149-196.<br />

SERNA J.C., RENDON J.L., !GLESIAS J.E., 1982. Infrared surface modes in corundum-type microcrystalline<br />

oxides. Spectrochim. Acta 38 A, 797-802.<br />

VAN DE HULST H.C., 1957. Light Scattering by Small Particles. John Wiley & Sons, New York.<br />

WILSON M.J ., RusSELL J .D., TAIT J.M., CLARK D.R., FRASER A.R., STEPHEN I., 1981. A swelling hematite/<br />

layer-silicate complex in weathered granite. Clay Minerals 16, 261-277.<br />

WoLSKA E., 1981. The structure ofhydrohematite. Z. Kristallogr. 154,69-75.<br />

YARIV S.H., MENDELovrcr E., 1979. The effect of degree of crystallinity on the infrared spectrum of<br />

hematite. Appl. Spectrosc. 33, 410-411.


Miner. Petrogr. Acta<br />

Vol. 29·A, pp. 371-379 (1985)<br />

Effect of Perturbing Anions on the Nature of Short-Range<br />

Ordered Precipitation Products of Aluminum<br />

A. VIOLANTE<br />

Istituto <strong>di</strong> Chimica Agraria, Facoltit <strong>di</strong> Agraria, Universitit <strong>di</strong> Napoli, 80055 Portici, Italia<br />

ABSTRACT- The hydrolytic precipitation products of aluminum obtained in<br />

the presence of some selected organic lig<strong>and</strong>s were stu<strong>di</strong>ed by X-ray <strong>di</strong>ffraction,<br />

electron microscopy, infrared <strong>and</strong> thermal analysis.<br />

It has been found that hydroxy-carboxylic acids (salicylic, malic, citric, tartaric<br />

or tannic acid) had a stronger influence in inhibiting the hydrolytic<br />

reaction of Al than monodentate lig<strong>and</strong>s (ketones, amines, acetic or formic<br />

acid), <strong>di</strong>carboxylic (phthalic, succinic or glutaric acid), tricarboxylic (tricarballylic<br />

acid) or amino acids (glycine, aspartic or glutaric acid). The effectiveness<br />

in suppressing Al(OHh crystallization depended on the affinity of<br />

the lig<strong>and</strong>s for Al 3 + <strong>and</strong> on how strongly they were adsorbed on the particles<br />

of the initially formed Al precipitation products. Above critical lig<strong>and</strong>/Al<br />

molar ratios, the in<strong>di</strong>vidual presence of organic lig<strong>and</strong>s promoted the formation<br />

of defective <strong>and</strong>/or <strong>di</strong>sordered boehmites (pseudoboehmites) or noncrystalline<br />

precipitation products.<br />

Al precipitation products noncrystalline to X-ray <strong>and</strong> IR appeared to consist<br />

of spherical particles when examined by electron microscopy. The infrared<br />

spectra of some samples showed that the b<strong>and</strong>s of the lig<strong>and</strong>s coprecipitated<br />

withAl became stronger by increasing the initiallig<strong>and</strong>/Al molar ratio <strong>and</strong><br />

by increasing the structural <strong>di</strong>sorder of the final products.<br />

Introduction<br />

Auminum is a common structural<br />

constituent of primary <strong>and</strong> secondary<br />

minerals of soils. It is released to soil<br />

solution <strong>and</strong> natural waters through<br />

chemical <strong>and</strong> biochemical processes, ·<br />

undergoes hydrolysis <strong>and</strong> may give<br />

rise to precipitated Al-oxides (HSU,<br />

1977). Clay minerals, pH, organic <strong>and</strong><br />

inorganic lig<strong>and</strong>s are the most important<br />

factors which influence the<br />

phase transformation of Al <strong>and</strong> the<br />

mineralogy, order, particle size, specific<br />

surface <strong>and</strong> reactivity of the Al<br />

precipitation products (VIOLANTE<br />

& JACKSON, 1979; 1981; VIO­<br />

LANTE & VIOLANTE, 1980; VIO­<br />

LANTE & HUANG, 1984; 1985).<br />

Many stu<strong>di</strong>es have demonstrated<br />

that fulvic acids <strong>and</strong> low molecular<br />

.,weight organic acids are very important<br />

in the translocation of Al <strong>and</strong> Fe<br />

<strong>and</strong> pedogenesis. Natural organic<br />

acids in soils <strong>and</strong> freshwater environments<br />

are derived from plant <strong>and</strong><br />

animal residues, microbial metabo-


__<br />

372 A. Violante<br />

lism <strong>and</strong> rhizosphere activity. They solution contammg AlCb <strong>and</strong> in<strong>di</strong>are<br />

low <strong>and</strong> variable in their concen~ __ y~c:[~aJ _orJfa:r?:!~J!gaJJ.d~.. The concentration<br />

(from 1 X w-s M to 6 X lQ- 3 tration of AI was 2 X lQ-3 M. The con­<br />

M), because they are utilized by the centration of lig<strong>and</strong>s was chosen to<br />

majority of bacteria <strong>and</strong> fungi. give the lig<strong>and</strong>/Al molar ratios (R)<br />

However, organic acids are con- ranging from 0.0025 to 15. The samtinuously<br />

introduced to soils through pies were aged in polyethylene botfarming<br />

<strong>and</strong>/or natural vegetation des. The materials were washed with<br />

(STEVENSON, 1967). deionized water <strong>and</strong> examined by X-<br />

VIOLANTE & VIOLANTE (1980) ray powder <strong>di</strong>ffraction, electr;on mi<strong>and</strong><br />

VIOLANTE & HUANG (1985) re- croscopy, <strong>and</strong> infrared spectroscopy<br />

vealed the important role of organic using the procedures described by<br />

lig<strong>and</strong>s · in influencing the rate of VIOLANTE & HUANG (1985). Secrystallization<br />

of Al-trihydroxides lected samples of 250 mg were heated<br />

<strong>and</strong> the nature of the resulting solid in a Rikagu Differential Thermal<br />

products. VIOLANTE. & HUANG Analyzer programmed from 25 octo<br />

(1985) found that increasing lig<strong>and</strong>/ 900 oc at a rate of 10° min- 1 using<br />

AI molar ratios influences the final alumina as the reference material.<br />

- ------- ·precipinirion.--products-·or-Al" as fol:- ·<br />

lows:<br />

Al-hydroxide polymorphs ~ Pseudoboehmites<br />

~ X-ray noncrystalline<br />

materials<br />

The aim of this work is to present a<br />

detailed picture of the relative effectiveness<br />

of selected organic compounds,<br />

characterized by the presence<br />

of <strong>di</strong>fferent chelating groups,<br />

namely carboxylic, hydroxyl, amino,<br />

keto, in favouring the formation of<br />

short-range ordered Al~hyd;oxides o~<br />

oxyhydroxides over well crystallized<br />

Al(OH)3 polymorphs.<br />

Materials <strong>and</strong> method<br />

Aluminum hydroxides were precipitated<br />

at pH 8.0, 8.2 or 9.0 by the<br />

slow ad<strong>di</strong>tion of 0.05 M NaOH to the<br />

Results <strong>and</strong> <strong>di</strong>scussion<br />

Precipitation occurs- when an AI<br />

salt solution is neutralized with a<br />

base. In the absence of foreign<br />

lig<strong>and</strong>s <strong>and</strong> at pH >7.0, Al-hydroxides<br />

crystallize in a few days or even a few<br />

hours after the sample preparation<br />

(Fig. 2a).<br />

Organic lig<strong>and</strong>s vary in their ability<br />

to perturb the hydrolytic reactions<br />

of Al <strong>and</strong> to influence the nature<br />

of AI precipitation products (Figs 1, 2<br />

<strong>and</strong> 3).<br />

At initial pH 8.0 <strong>and</strong> lig<strong>and</strong>/ AI ratio<br />

of 0.1, bayerite (Fig. la), gibbsite (Fig.<br />

lb), pseudoboehmite with <strong>di</strong>storted<br />

_crystals of gibbsite (Fig. le) <strong>and</strong> rare<br />

elongated crystals of nordstran<strong>di</strong>te<br />

blended into a noncrystalline material<br />

(Fig. ld) were found after 5<br />

months respectively in the presence


Fig. 1 - Transmission electron micrographs of Al precipitation products formed at initial pH 8.0<br />

<strong>and</strong> lig<strong>and</strong>/A! molar ratio of 0.1, after 5 months of aging. Bayerite formed in the presence of<br />

oxybenzoate (a), gibbsite formed in the presence of tricarballylate (b), pseudoboehmite <strong>and</strong> <strong>di</strong>storted<br />

crystals of gibbsite formed in the presence of oxalate (c), nordstran<strong>di</strong>te <strong>and</strong> noncrystalline<br />

material formed in the presense of acetylacetone (d), noncrystalline materials formed in the<br />

presence of salicylate (e) <strong>and</strong> tartrate (f).


374 A. Violante<br />

Control<br />

a<br />

134<br />

100 300 500 700 900<br />

Temperature, cc<br />

Fig. 2- DTA curves of AI precipitation products formed at initial pH 8.0 after 8 months of aging.<br />

Al(OH)3 polymorphs formed in the absence of lig<strong>and</strong>s (a); pseudoboehmites formed in the presence<br />

of tannate (b; R=O.OI), citrate (c; R=O.Ol) <strong>and</strong> aspartate (d; R=O.l); noncrystalline lJ!aterial<br />

formed in the presence of tartrate (e; R=O.l). R in<strong>di</strong>cates the initial lig<strong>and</strong>/A! molar ratio.<br />

of oxybenzoate, tricarballylate, oxalate<br />

<strong>and</strong> acetylacetone. In the presence<br />

of salicylate (Fig. le) or tartrate<br />

(Fig. lf) noncrystalline materials<br />

formed.<br />

The noncrystalline products obtained<br />

in the presence of <strong>di</strong>dentate<br />

(Fig. le) or tridentate lig<strong>and</strong>s at R between<br />

0.2 to 0.02 at initial pH 8.0<br />

were shapeless colloids with fluffy<br />

surfaces <strong>and</strong> reduced particles size.<br />

At high magnification, noncrystalline<br />

materials appeared to consist of<br />

spherical particles linked together to


Effect of Perturbing Anions on the Nature ... 375<br />

R•O. 003<br />

R•O. 007<br />

R•O. 02<br />

3440<br />

38 34 30 26 17 15 13 11 7x 100<br />

Wavenumber (cm-1)<br />

Fig. 3- Infrared spectra of Al precipitation products formed in the presence of tannic acid after 8<br />

months of aging: a, bayerite <strong>and</strong> pseudoboehmite (R=0.003); b, pseudoboehmite with traces of<br />

bayerite (R=0.007); c, stable pseudoboehmite (R=0.02); d, noncrystalline material (R=O.l).<br />

~ .<br />

form a <strong>di</strong>sorder mosaic. On the contrary,<br />

the noncrystalline materials<br />

formed in the presence of polydentate<br />

lig<strong>and</strong>s were often heavy precipitates<br />

consisting of small particles strongly<br />

aggregated to each other (Fig. 1f).<br />

Differential thermal analyses (Fig.<br />

2) also show that organic lig<strong>and</strong>s at<br />

<strong>di</strong>fferent . initial lig<strong>and</strong>/Al molar<br />

ratios <strong>di</strong>sturbed 'the final products.<br />

The low temperature endotherm centered<br />

at about 140 °C, attributed to<br />

sorbed water, was an important feature<br />

of all patterns. The sample prepared<br />

ih the absence of lig<strong>and</strong> (Fig.<br />

2a) showed a strong endotherm at<br />

310 oc attributed to Al(OH)3 polymorphs.<br />

The samples prepared in the<br />

presence of tannate (R = 0.01), citrate<br />

(R = 0.01) <strong>and</strong> aspartate (R = 0.1)<br />

showed a very broad endotherm centered<br />

near 450 oc (Figs 2b, c, d),<br />

due to poorly crystalline boehmite.<br />

Probably, the higher the intensity of<br />

this endotherm the higher the crystallinity<br />

of boehmite (Fig. 2c versus<br />

Fig. 2b). The broad endotherms at<br />

240 oc <strong>and</strong> 280 oc (Fig. 2d) in<strong>di</strong>cated<br />

the presence of strongly bound water<br />

molecules. Finally, the amorphous<br />

material formed in the presence of<br />

tartrate (R = 0.1; Fig. 2e) showed a<br />

gradual release of water strongly<br />

adsorbed <strong>and</strong>/or occlused into the<br />

aluminous particles.<br />

The ability of organic anions to re-


376 A. Violante<br />

tard crystallization or to perturb the<br />

final products raised as pH decreased<br />

<strong>and</strong> as their concentration· increased<br />

(Fig. 3).<br />

Figure 3 shows the IR spectra of the<br />

Al precipitation products formed in<br />

the presence of increasing concentrations<br />

of tannic acid. At R = 0.003 (Fig.<br />

3a) well defined b<strong>and</strong>s of well crystallized<br />

bayeri~e (3660, 3560, 3470, 3440<br />

cm- 1 ) were detectable. By increasing<br />

the initial tannate/A! molar ratio to<br />

0.007 (Fig. 3b) the b<strong>and</strong>s of bayerite<br />

became barely detectable <strong>and</strong> <strong>di</strong>sappeared<br />

completely at the initial<br />

tannate/A! molar ratio of 0.02 (Fig.<br />

3c), whereas the b<strong>and</strong>s of pseudoboehmite.<br />

-~became mere <strong>di</strong>stinct<br />

(-3340, 3120 cm- 1 ). At R = 0.1 a<br />

broad asymmetrical b<strong>and</strong> at 3440<br />

cm- 1 in<strong>di</strong>cated the presence of noncrystalline<br />

material (Fig. 3d). The<br />

b<strong>and</strong>s of the tannate anions coprecipitated<br />

with Al between 1710 to<br />

1210 cm- 1 became stronger by increasing<br />

the initial concentration of<br />

the organic lig<strong>and</strong>s <strong>and</strong> by increasing<br />

the structural <strong>di</strong>sorder of the f!nal<br />

products.<br />

Chelating organic lig<strong>and</strong>s favoured<br />

at certain critical lig<strong>and</strong>/Al molar<br />

ratios the formation of oxo linkages<br />

0<br />

6.11 A<br />

1.31<br />

1.85<br />

I<br />

2.35 3.16<br />

b<br />

c<br />

f<br />

I '<br />

I<br />

I<br />

!chloride<br />

I<br />

I '<br />

I<br />

I<br />

I<br />

I<br />

:aspartate<br />

75<br />

65 55<br />

45<br />

2B CuKa<br />

35 25 15 5<br />

Ra<strong>di</strong>ation<br />

Fig. 4- X-ray <strong>di</strong>ffractograms of pseudoboehmites formed at initial pH 8.0 after 1 month of aging in<br />

the presence of tartrate (a; R=O.Ol), citrate (b; R=O.Ol), tannate (c <strong>and</strong> d; R=O.Ol <strong>and</strong> 0.02),<br />

chloride (e; R=700) <strong>and</strong> aspartate (f; R=0.2).


Effect of Perturbing Anions on the-Nature ... 377<br />

over that of ollinkages. Fig. 4 shows late structures so that their influence<br />

the formation of short-range ordered on the Al-hydrolytic reactions is relboehmites<br />

(the so-called pseudo- atively poor. At pH 1.0<br />

of broad lines at -6.6, 3.2, 2.3 <strong>and</strong> 1.8 (McHARDY & THOMSON, 1971;<br />

A. It appears obvious that the lower VIOLANTE & VIOLANTE, 1978).<br />

the affinity of an anion for Al (as <strong>di</strong>- The p-oxybenzoic acid is more<br />

scussed below) the higher the lig<strong>and</strong>! common in soils than the benzoic<br />

Al molar ratio at which pseudo- one. It has been identified in PodzolB<br />

boehmite formed. In fact, pseudo- horizon. It had a behaviour almost<br />

boehmite formed at R = 0.01 in the similar to monodentate lig<strong>and</strong>s bepresence<br />

of tartrate, citrate <strong>and</strong> tan- cause it cannot form a chelate ring<br />

nate (Figs 4a, b, c), but at R = 0.2. in with aluminum. At pH 8.0 <strong>and</strong> p­<br />

the presence of aspartate (Fig. 4f). oxybenzoic acid!Al molar ratio of 0.1,<br />

Hydroxy or amino mono-, <strong>di</strong>- or tri- bayerite crystallized (Fig. la).<br />

carboxylic acids favoured the forma- Keto <strong>and</strong> alcoholic groups are pretion<br />

of poorly crystallized or <strong>di</strong>s- sent in compounds which have been<br />

torted boehmites much more than separated from soil organic matter.<br />

)<br />

<strong>di</strong>carboxylic or monocarboxylic ALDCROFT et al. (1969) found that<br />

acids (Figs 1-5). Chloride, ions, very high concentrations of acetone<br />

used as control, which showed the " or ethanol reduced the rate of formapoorest<br />

affinity for Al, promoted the tion of Al(OH) 3 polymorphs. In an<br />

formation of pseudoboehmite only at aqueous alkaline me<strong>di</strong>um containing<br />

R = 700 (Fig. 4e).<br />

20% wt/vol of acetone or ethanol, the<br />

From the experiments, herein re- induction period for the formation of<br />

ported (Figs 1-5), <strong>and</strong> from in- Al-trihydroxides increased from 5 to<br />

formations already available 20 hours. We have ascertained that<br />

(ALDCROFT et al., 1969; HSU, 1977; ketones, alcohols <strong>and</strong> amines had a<br />

VIOLANTE & JACKSON, 1979; 1981; much lower influence than monocar­<br />

VIOLANTE & VIOLANTE, 1980; boxylic acids in retar<strong>di</strong>ng Al(OH) 3<br />

VIOLANTE & HUANG, 1984; 1985}, crystallization (data not shown).<br />

it is possible to co~pare the perturb----<br />

ing power of selected monodentate,<br />

<strong>di</strong>dentate, tridentate <strong>and</strong> polydentate Didentate lig<strong>and</strong><br />

lig<strong>and</strong>s on Al precipitation products.<br />

Monodentate lig<strong>and</strong>s<br />

Monocarboxylic acids (acetic, formic,<br />

benzoic acid) cannot form che-<br />

Dicarboxylic acids (glutaric, succinic,<br />

phthalic, malonic or oxalic acid)<br />

had a stronger efficacy in retar<strong>di</strong>ng<br />

the hydrolytic reactions of Al than<br />

monocarboxylic acids. A decreasing


378 A. Violante<br />

perturbing power has been found in<br />

the order oxalic > malonic > succinic<br />

phthalic acid (VIOLANTE -& glu-tarater-~~ --~- ----- ~-<br />

VIOLANTE, 1980; VIOLANTE &<br />

HUANG, 198S). This corresponds to a<br />

decrease in chelating stability as one<br />

goes from a five- to a sevenmembered<br />

ring. The carboxyl groups<br />

in glutarate are too far apart, hence<br />

glutarate anions behaved like monocarboxylate<br />

lig<strong>and</strong>s (Fig. Sa).<br />

Whereas ketones are very poor perturbing<br />

ling<strong>and</strong>s, <strong>di</strong>ketones (acetylacetone)<br />

strongly complex Al. Acetylacetone<br />

may enolize <strong>and</strong> form stable<br />

six-membered rings with metal<br />

atoms. Acetylacetone inhibited the<br />

hydrolytic reactions of AI much more<br />

-- --- -- --rhan-srrccinicorphthalic acid (Figs<br />

1d <strong>and</strong> S) (VIOLANTE & VIOLANTE,<br />

1980).<br />

tri carba llyl ate<br />

oxalate<br />

4.3~<br />

4.72<br />

6.75A<br />

Tridentate <strong>and</strong> polidentate lig<strong>and</strong>s<br />

All the tridentate lig<strong>and</strong>s stu<strong>di</strong>ed<br />

(glutamic, aspartic, malic or tricarballylic<br />

acid) showed a perturbing<br />

power higher than succinic, phthalic<br />

or malonic acid (Figs 2d, 4f <strong>and</strong><br />

Sb). Tricarballylic acid showed a retar<strong>di</strong>ng<br />

power on AI crystallization<br />

lower than glutamic or aspartic acid<br />

but higher than glycine (Fig. 1 b <strong>and</strong><br />

fig. Sb). Only malic acid was stronger<br />

than oxalic acid in retar<strong>di</strong>ng or<br />

inhibiting AI crystallization (Fig. Se<br />

versus Fig. Se).<br />

Hydroxy <strong>di</strong>-, tri- or polycarboxylic<br />

acids (tartaric, citric or tannic acid)<br />

had a tremendous influence on perturbing<br />

the structural organization of<br />

ma 1 ate<br />

29 25 21 17 13<br />

2B CuKa Ra<strong>di</strong>ation<br />

Fig. 5- X-ray <strong>di</strong>ffractograms of AI precipitation<br />

products formed at pH 9.0 <strong>and</strong> lig<strong>and</strong>/A! molar<br />

ratio of 0.2 after 1 year of aging. Bayerite<br />

formed in the presence of glutarate (a); bayerite<br />

+ pseudo-boehmite formed in the presence of<br />

tricarballylate (b); gibbsite + pseudoboehmite<br />

formed in the presence of oxalate (c); a small<br />

amount of gibbsite formed in the presence of<br />

acetylacetone (d); pseudoboehmite formed in<br />

the presence of malate (e) <strong>and</strong> noncrystalline<br />

material formed in the presence of citrate (f).<br />

the hydrolytic precipitation products<br />

of AI (Fig. lf; Figs 2b, c, e; Fig. 3; Figs<br />

f


Effect of Perturbing Anions on the Nature ... 379<br />

4a, b, c, d; Figs Se, f). The fact that<br />

tartrate complexes were more stable<br />

than. succinate complexes <strong>and</strong> that<br />

citrate complexes were more stable<br />

than tricarballylate complexes in<strong>di</strong>cates<br />

the involvement of the -OH<br />

groups in the chelation process.<br />

The strong influence of tannate_<br />

(<strong>and</strong> fulvate, as reported by KODA­<br />

MA & SCHNITZER; 1980) in inhibiting<br />

Al crystallization (Fig. 3) must be<br />

attributed to their high molecular<br />

weight which aided their physical<br />

adsorption on the surfaces of Al precipitation<br />

products.<br />

Our research data reveal that the<br />

sequence of the relative effectiveness<br />

of organic lig<strong>and</strong>s in retar<strong>di</strong>ng or inhibiting<br />

Al(OH)3 crystallization is as<br />

follows:<br />

ketones = alcohols = amines <<br />

monocarboxylate anions< glutarate<br />


382 C. De Sousa Figueiredo Comes<br />

high temperature crystalline phases<br />

mullite <strong>and</strong> cristobalite <strong>and</strong> also to<br />

the glass formed. Such properties depend<br />

on both the number, <strong>di</strong>mensions<br />

<strong>and</strong> texture of the crystals <strong>and</strong><br />

the amount of glass.<br />

Nowadays, considering that energy<br />

is very expensive, great concern is<br />

<strong>di</strong>rected towards energy savings.<br />

Therefore, in recent years, with the<br />

use of suitable mineralizers to encourage<br />

the anticipated formation of<br />

mullite, cristobalite <strong>and</strong> vitreous<br />

phase has been tried.<br />

The effect of mineralizers on the<br />

temperature, rate <strong>and</strong> products of<br />

kaolinite thermal reactions has been<br />

------~---!he_subject of intensive research (particular<br />

emphasis for: KUPKA, 1974;<br />

LEMAITRE et al., 1976; BULENS &<br />

DELMON, 1977; BULENS et al.,<br />

1978; OAKLEY & SHARP, 1983). In<br />

all these stu<strong>di</strong>es the minetalizers<br />

both in the solid <strong>and</strong> in the liquid<br />

state were facing or fixed at the external<br />

surfaces of the kaolinite crystals.<br />

However, it appears quite logical<br />

that the mineralizer efficacy will be<br />

better in all the kaolinite thermal<br />

reactions if the mineralizer could be<br />

intercalated in the kaolinite interlayer<br />

spaces. This has never been<br />

tested up until now; therefore this paper<br />

is particularly concerned with the<br />

action of intercalated mineralizers<br />

in the formation <strong>and</strong> development of<br />

mullite <strong>and</strong> tristobalite.<br />

It is important to point out that the<br />

existent literature does not explain<br />

clearly the efficacy <strong>and</strong> the mechanisms<br />

of the mineralization process.<br />

But, in any case, mineralizer is defined<br />

as any chemical compound<br />

which-eitheF~pmmotes,-anticipates or<br />

accelerates a chemical reaction by<br />

catalytic, reactive or melting action.<br />

For some mineralizers more than one<br />

mechanism might contribute to its<br />

mineralizing action. The melting <strong>and</strong><br />

the reactive actions should be more<br />

effective if the mineralizers have low<br />

fusion temperatures in order to provide<br />

a liquid phase which would<br />

facilitate atomic <strong>di</strong>ffusion.<br />

Materials <strong>and</strong> methods<br />

Kaolinites<br />

Two kaolinites, one residual <strong>and</strong><br />

structurally well ordered (Supreme<br />

kaolinite from EEC, Engl<strong>and</strong>) <strong>and</strong> the<br />

other se<strong>di</strong>mentary <strong>and</strong> structurally<br />

very <strong>di</strong>sordered (Pugu D kaolinite,<br />

Tanzania) were used. The granulometric<br />

separates of these kaolinites with<br />

e.s.d. less than 1 ).liD have been extracted<br />

<strong>and</strong> characterized chemically<br />

(X-ray fluorescence, flame spectrophotometry,<br />

cation exchange<br />

capacity), structurally (X-ray <strong>di</strong>ffraction,<br />

infrared spectrophotometry)<br />

<strong>and</strong> granulometrically (particle size<br />

<strong>di</strong>stribution estimation using particle<br />

size measurements on transmission<br />

electron microphotographs).<br />

Supreme kaolinite (SUPK)<br />

Chemical analysis(%):<br />

Si02-46.77; Ab0 3 -39.25;<br />

FeO+Fe20 3-0.l8; Ti02-0.09;<br />

Mg0-0.11; Ca0-0.08; K20-0.17;


-<br />

The Effect of Mineralizers, Intercalateirin ... 383<br />

Na 2 0-0.09; Hz0+-13.85.<br />

Hinckley crystallinity index (HINC­<br />

KLEY, 1963): 1.04.<br />

Cation exchange capacity: 3.8 meq/<br />

100 g.<br />

Intercalation degree: 96%.<br />

Particle size <strong>di</strong>stribution (Jlm): 1.0-0.8<br />

-30%; 0.8-0.6-40%; 0.6-0.4-20%;<br />

0.4-0.2-8%; 0.2-0-2%.<br />

Pugu D kaolinite (PUGK)<br />

Chemical analysis(%):<br />

SiOz-46.35; Alz03-38.90;<br />

.FeO+Fez03-0.28; TiOz-0.20;<br />

Mg0-0.05; Ca0-0.25; K 2 0-0.26;<br />

Naz0-0.18; Hz0+-13.75.<br />

Hinckley cristallinity index: 0.<br />

Cation exchange capacity: 6.9 meq/<br />

100 g.<br />

Intercalation degree: 45%. . .<br />

Particle size <strong>di</strong>stribution (Jlm): 1.0-0.8<br />

-5%; 0.8-0.6-8%; 0.6~0.4-20%;<br />

0.4-0.2-55%; 0.2-0-12%.<br />

M ineralizers<br />

The following mineralizers have<br />

been used: Mg(N03)z·6Hz0 (10%);<br />

Ca(N03)z·4Hz0 (10%); MgClz·6HzO<br />

(10%); CaClz·6HzO (10%); Mg(C3H30z)z<br />

·4Hz0 (10%); Ca(C3H30z)z·l/2Hz0<br />

(10%); NHN03 (5%).<br />

The figures inside the parenthesis<br />

represent the molar percentage correspon<strong>di</strong>ng<br />

to kaolinite with a molecular<br />

weight of 258.<br />

Intercalating agents<br />

Hydrazine hydrate: NH 2·NH 2·H 2 0;<br />

Dimethylsufoxide: CH3·SO·CH3,<br />

"<br />

Preparation of the intercalated <strong>and</strong> mineralized<br />

kaolinites<br />

a) 1.5 g of kaolinite + mineralizer are<br />

mechanically mixed <strong>and</strong> ground in<br />

an agate mortar;<br />

b) transference of the mixture into a<br />

platinum crucible;<br />

c) ad<strong>di</strong>tion of the intercalating agent<br />

(5 cm 3 );<br />

d) heating of the suspension formed<br />

to 80 oc on a s<strong>and</strong> bath for 10 minutes;<br />

e) ultrasonic <strong>di</strong>spersion of the suspension<br />

during 5 minutes.;<br />

f) heating of the suspension to 80 oc<br />

on a s<strong>and</strong> bath for 10 minutes (time<br />

usually sufficient for the formation of<br />

a paste);<br />

g) sprea<strong>di</strong>ng of a small part of the<br />

paste onto a glass slide for XRD intercalation<br />

examination; the intercalating<br />

degree is estimated by the index<br />

ID= (I 10.4 A)/(I 10.4 A+ I 7.15 A) for<br />

hydrazine.<br />

Heating temperatures<br />

600, 650, 700, 800, 900, 950, 1000,<br />

1050, 1100, 1200, 1300, 1400 °C. At all<br />

of these temperatures the kaolinite<br />

specimen was quenched for 20 minutes.<br />

Quantification of mullite <strong>and</strong> cristobalite<br />

Mullite <strong>and</strong> cristobalite contents<br />

were estimated assuming that at<br />

1400 oc either mullite or cristobalite<br />

attain maximum development. The<br />

areas of peaks correspon<strong>di</strong>ng to 3.39


384 C. De Sousa Figueiredo Games<br />

A (mullite) <strong>and</strong> 4.1 A (cristobalite) in<br />

the specimens heated at certain<br />

temperatures were compared with<br />

those of the same specimens heated<br />

~t 1400 oc taken as equivalent to<br />

100%.<br />

Results <strong>and</strong> <strong>di</strong>scussion<br />

Kaolinites not mineralized<br />

Mullite- The metaphase mullite I,.<br />

which, accor<strong>di</strong>ng to WAHL (1962)<br />

corresponds to 3Alz0 3 • 2Si0z is detected<br />

at 950 oc approximately <strong>and</strong><br />

develops up to about 1100 °C. Its X­<br />

ray <strong>di</strong>ffraction lines are initially<br />

broad but gain better definition as<br />

~heJe:!!l:pe!"f!:t~r~)~


The Effect of Minera/izers, Intercalated in ... 385<br />

TABLE 1<br />

High temperature metaphases <strong>and</strong> phases developed in a well-ordered kaolinite (SUPK)<br />

either not mineralized or mineralized with Mg(N0 3 h·6H 2 0 (10%)<br />

I~<br />

600<br />

650<br />

700<br />

800<br />

900<br />

950<br />

!000<br />

1050<br />

SiOz-AizOJ<br />

amorphous<br />

or<br />

cryptocrys·<br />

talline<br />

appearance<br />

maximum<br />

SUPK<br />

e.s.d.:;; I ~m<br />

HCI = 1.04<br />

Mullite I<br />

3%+"spinel"<br />

SUPK<br />

e.s.d.:;; I ~m<br />

HCI = 1.04<br />

HYD+Mg(N03)z·6H 2 0(10%)<br />

ID= 96%<br />

Si0 2 -Aiz03<br />

amorphous<br />

or Mullitei<br />

cryptocrys·<br />

talline<br />

appearance<br />

j<br />

maximum<br />

..0<br />

U N<br />

·eo<br />

5


386 C. De Sousa Figueiredo Gomes<br />

TABLE 2 .<br />

High temperature metaphases <strong>and</strong> phases developed in a <strong>di</strong>sordered kaolinite (PUGK) either<br />

not mineralized or mineralized with Mg~N03h·6H20-(-l0%)"--··- -<br />

Si0z-Al 2 0 3<br />

amorphous<br />

or<br />

cryptocrystalline<br />

PUGK<br />

e.s.d.,; 1 ~m<br />

HCI = 0<br />

Mullitel<br />

PUGK<br />

e.s.d.,; 1 ~m<br />

HCI = 0<br />

HYD+Mg(N0 3 )z·6H 2 0(10%)<br />

ID= 45%<br />

SiOz-AlzOJ<br />

amorphous<br />

or Mullitel<br />

cryptocrystalline<br />

PUGK<br />

e.s.d.,; 1 ~m<br />

HCI = 0<br />

Mg(N0 3 )z·6H 2 0(10%)<br />

Si0 2 -Alz0J<br />

amorphous<br />

or<br />

cryptocrystalline<br />

Mullitel<br />

600<br />

650<br />

700<br />

800<br />

900<br />

950<br />

maximum<br />

"spine!"<br />

5%t"spinel"<br />

1000<br />

"spine!"<br />

7%t"spinel"<br />

5%+"spinel"<br />

1050<br />

4%+"spinel"<br />

10%<br />

8%+"spinel"<br />

Cristobalite<br />

Mullite 11<br />

Cristobalite<br />

Mullite 11<br />

1100<br />

8%+"spinel"<br />

5%<br />

40%<br />

5%<br />

25%<br />

Cristobalite<br />

Mullite 11<br />

1200<br />

5%<br />

50%<br />

150%<br />

80%<br />

40%<br />

60%<br />

1250<br />

60%<br />

70%<br />

75%<br />

90%<br />

70%<br />

80%<br />

1300<br />

80%<br />

85%<br />

90%<br />

100%<br />

90%<br />

95%<br />

1400<br />

100%<br />

100%<br />

100%<br />

100%<br />

100%<br />

100%<br />

For symbols see Table 1<br />

gated during <strong>and</strong> after y-Ab0 3 orAl-Si<br />

spinel <strong>and</strong> mullite I development.<br />

The relative enrichment in «amorphous>><br />

or cryptocrystalline Si02 can<br />

be followed by the observation of the<br />

<strong>di</strong>ffuse XRD b<strong>and</strong> localized in the interval<br />

16-32° 28 (CuKa ra<strong>di</strong>ation)<br />

which has developed imme<strong>di</strong>ately after<br />

dehydroxylation. Its maximum<br />

intensity moves from 23° 2Hat 900 oc<br />

to 21 o 28 at 1200 oc <strong>and</strong> in this position<br />

the <strong>di</strong>ffraction maximum characteristic<br />

of cristobalite becomes<br />

visible (Fig. 1).


The Effect of Mineralizers, Intercafitd in ... 387<br />

Kaolinites mzneralized<br />

The efficacy of the mineralizer<br />

fixed at the external surface of the<br />

kaolinite crystals is manifest. The<br />

mineralizer allows the anticipated<br />

formation of the kaolinite high<br />

temperature metaphases <strong>and</strong> phases.<br />

No significant <strong>di</strong>fferences were found<br />

when the effects of salt ra<strong>di</strong>cals N03,<br />

C3H302 <strong>and</strong> Cl· were co~pared.<br />

However, VO~- yields superior efficacy<br />

(Table 4).<br />

Nevertheless, the nature of the<br />

TABLE 3<br />

High temperature metaphases <strong>and</strong> phases developed in a well-ordered kaolinite (SUPK)<br />

either not mineralized or mineralized with Ca(N0 3 )z·4H 2 0 (10%)<br />

SUPK<br />

e.s.d.,;; 1 ~m<br />

HCI = 1.04<br />

SUPK<br />

e.s.d.,;; 1 ~m<br />

HCI = 1.04<br />

HYD+Ca(N0 3 ) 2 -4H 2 0(10%)<br />

ID=. 96%<br />

SUPK<br />

e.s.d.,;; 1 ~m<br />

HCI = 1.04<br />

Ca(N0 3 ) 2 -4H 2 0(10%)<br />

SiOz-AlzOJ<br />

amorphous<br />

or<br />

cryptocrystalline<br />

Mullite I<br />

Si0z-Al 2 0 3<br />

amorphous<br />

or<br />

cryptocrystalline<br />

Mullitei<br />

Si0 2-AlzOJ<br />

amorphous<br />

or<br />

cryp tocrystalline<br />

Mullite I<br />

600<br />

650<br />

700<br />

800<br />

900<br />

950<br />

1000<br />

1050<br />

1100<br />

1200<br />

1250<br />

1300<br />

1400<br />

J<br />

appearance<br />

maximum<br />

Cristobalite<br />

5%<br />

10%<br />

70%<br />

100%<br />

For symbols see Table 1<br />

3%+"spinel"<br />

appearance<br />

j<br />

maximum<br />

appearance<br />

3%+"spinel" maximum<br />

~ ~<br />

,...C:: O.:.:::<br />

8%<br />

·CO "cnca<br />

~en _g~<br />

~ -= e- g<br />

.~ ~ s 15. c<br />

7%+"spinel" ::: E ,"' 6' 10% E 5%+"spinel"<br />

10%<br />

15%<br />

Mullite 11<br />

35%<br />

60%<br />

80%<br />

100%<br />

~------~r-------~ ~ ·c:<br />

Cristobalite Mullite 11 ""'<br />

1----------lr-----------1 .?: c5'<br />

5%<br />

25%<br />

15%<br />

45%<br />

60%<br />

90%<br />

100%<br />

30%<br />

70%<br />

85%<br />

100%<br />

100%<br />

~C/3<br />

~-=·<br />

j<br />

Cristobalite<br />

5%<br />

30%<br />

60%<br />

80%<br />

100%<br />

8%<br />

Mullite 11<br />

35%<br />

55%<br />

75%<br />

90%<br />

100%


388 C. De Sousa Figueiredo Games<br />

cation provides remarkable <strong>di</strong>stinctive lar to that in the specimens not<br />

effects. Mg helps the formation oL~):PJ:Q~I;:tlj~~"d·~-~~,-~,,<br />

y-Ab0 3 or Al-Si spinel metaphases<br />

whereas Ca favours the formation of Kaolinites intercalated a71d mineralized<br />

mullite I (Tables 1 <strong>and</strong> 3). The effect<br />

of kaolinite structural order-<strong>di</strong>sorder The mineralizer adsorbed simulin<br />

the mineralized specimens is simi- taneously both in the external <strong>and</strong> in<br />

TABLE 4<br />

High temperature metaphases <strong>and</strong> phases developed in a well-ordered kaolinite (SUPK)<br />

either not mineralized or mineralized with NH 4·V0 3 (5%)<br />

-----~<br />

600<br />

650<br />

700<br />

800<br />

900<br />

950<br />

1000<br />

1050<br />

1100<br />

Si0z-Alz03<br />

amorphous<br />

or<br />

. cryptocrystalline<br />

appearance<br />

maximum<br />

SUPK<br />

e.s.d . .;; 1 J.lm<br />

HCI = 1.04<br />

Mullitei<br />

3%+"spind"<br />

7%+"spinel"<br />

10%<br />

15%<br />

SUPK<br />

e.s.d.


The Effect of Mineralizers, Intercalated in ... 389<br />

the internal kaolinite crystal surfaces<br />

facilitates much more clearly<br />

the nucleation <strong>and</strong> the growth of the<br />

high temperature metaphases <strong>and</strong><br />

phases regardless of the genetic type<br />

or the structural order-<strong>di</strong>sorder of the<br />

kaolin'i.te. Nevertheless, since the intercalation<br />

is complete or nearly<br />

complete in the well ordered kaolinite<br />

<strong>and</strong> very incomplete in the <strong>di</strong>sordered<br />

kaolinite, the better accessibility<br />

of the mineralizer into the internal<br />

surfaces in the former makes<br />

its effect more efficient.<br />

The .intercalated mineralizer, for<br />

instance Mg(N03)z · 6Hz0, favours the<br />

anticipation in 100-150 oc approximately<br />

of the kaolinite high temperature<br />

phases mullite II <strong>and</strong> cristahalite<br />

comparatively with the specimen<br />

not intercalated <strong>and</strong> mineralized<br />

(Tables 1 <strong>and</strong> 2).<br />

'-<br />

If the mineralizer has the ability of<br />

promoting early mo<strong>di</strong>fications in the<br />

kaolinite tetrahedral or in .the<br />

octahedral sheets, case of NH4V03,<br />

the high temperature phases are<br />

formed at much lower temperatures<br />

(Table 4). The crystallochemical<br />

similarity between SiO~-<strong>and</strong> VO~groups<br />

<strong>and</strong> the higher acid character<br />

of V as compared with Si, favours a<br />

" n~at <strong>and</strong> appreciable anticipation of<br />

the kaolinite thermal reactions. V<br />

substitutes Si in the kaolinite tetrahedral<br />

sheets <strong>and</strong> promotes the<br />

anticipated <strong>di</strong>srupture of these<br />

sheets. This helps the segregation of<br />

Si04 groups <strong>and</strong> their reaction with<br />

Al04 groups <strong>and</strong> consequently facilitates<br />

. the anticipated formation of<br />

cristobalite <strong>and</strong> mullite. A metastable<br />

form of cristobalite is formed at<br />

650 °C. It has maximum development<br />

at 800 oc approximately, <strong>di</strong>minishes<br />

continually up to 1050 oc <strong>and</strong> <strong>di</strong>sappears<br />

at this temperature. Cristobalite<br />

reappears in a stable form at<br />

1200 °C. Mullite I is formed at 650 oc<br />

simultaneously with the metastable<br />

form of cristobalite, but soon, at 800<br />

oc approximately, it recrystallizes in.<br />

mullite II. The mullite II content increases<br />

continually <strong>and</strong> acquires its<br />

maximum development at 1100 °C.<br />

Five percent of NHN03 confers a<br />

yellow colour to the fired kaolinite<br />

specimens. However, if the mineralizer<br />

content does not exceed 2%,<br />

the yellow colour is very pale <strong>and</strong> the<br />

mineralizer efficacy at the 2% level is<br />

nearly as good as at the 5% level.<br />

Tests still going on show that, for<br />

instance in porcelain formulations,<br />

the expected yellow colour confered<br />

by 5% NHN03 is very much attenuated<br />

in comparison with the mineralized<br />

<strong>and</strong> fired kaolinite specimens.<br />

REFERENCES<br />

BuLENS M., DELMON B., 1977. Kinetic control of the formation of high temperature phases in the<br />

kaolinite~mullite reaction sequence. Bull. Soc. Chim. Belg. 86, 405-411.<br />

BULENS M., LEONARD A.J., DELMON B., 1978. Spectroscopic investigations of the kaolinite-mullite<br />

reaction sequence. J. Am. Ceram. Soc. 61, 81-84.


390 C. De Sousa Figueiredo Games<br />

HINCKLEY D.N., 1963. Variability in «crystallinity» values among the kaolin deposits of the Coastal<br />

Plain of Georgia <strong>and</strong> South Carolina. Clays Clay Miner. 11, 229-235.<br />

KUPKA F., 197 4. Thermal decomposition o~ kaolinite~ with-TiCh .-<strong>and</strong>~~20 5 - admixtures, Acta U niv.<br />

Carol., Geol. 1, 25-44.<br />

LEMAITRE J., LEONARD A.J., DELMON B., 1976. Influence of mineralizers on the 950 oc exothermic<br />

reaction ofmetakaolinite. Pp. 539-544, in: Proc. Int. Clay Conf. 1975, Mexico City (S.W. Bailey,<br />

e<strong>di</strong>tor), Appl. Pub!. Ltd., Wilmette.<br />

0AKLEY M.J ., SHARP J .H., 1983. The effect of vana<strong>di</strong>um pentoxide on the thermal reactions ofkaolinite.<br />

Trans. J. Br. Ceram. Soc. 82, 177-182.<br />

WAHL F.M., 1962. Effect of impurities ori kaolinite transformations as examined by high temperature<br />

X-ray <strong>di</strong>ffraction. Advances in X-ray Analysis, Denver, Colo., 5, 264-270.


Miner. Petrogr. Acta<br />

Vol. 29·A, pp. 391-397 (1985)<br />

Infrared Spectra of Nordstran<strong>di</strong>te<br />

F .. PALMIERI, A. VIOLANTE, P. VIOLANTE<br />

Istituto <strong>di</strong> Chimica Agraria, Facolta <strong>di</strong> Agraria, Universita <strong>di</strong> Napoli, 80055 Portici, Italia<br />

ABSTRACT- Synthetic pure nordstran<strong>di</strong>te, one of the three polymorphs of<br />

Al(OHh, obtained in the presence of citric or malic acid in alkaline systems,<br />

was characterized by infrared spectroscopy. IR spectra of gibbsite <strong>and</strong> bayerite<br />

were determined for comparison.<br />

The spectra of nordstran<strong>di</strong>te exhibited hydroxyl streching b<strong>and</strong>s at 3653,<br />

3621, 3563, 3524 cm- 1 comparable to that found in bayerite at 3653 cm- 1<br />

<strong>and</strong> to those found in gibbsite at 3623 <strong>and</strong> 3529 cm- 1 •<br />

A large <strong>di</strong>fference between nordstran<strong>di</strong>te <strong>and</strong> gibbsite was observed in the<br />

OH-ben<strong>di</strong>ng region.<br />

IR spectra of nordstran<strong>di</strong>te showed evidences that this Al(OH) 3 polymorph<br />

has an interme<strong>di</strong>ate structure between gibbsite <strong>and</strong> bayerite.<br />

Introduction<br />

Nordstran<strong>di</strong>te, one of the three<br />

polymorphs of Al(OH)3,_ was found as<br />

a synthetic product mixed with<br />

bayerite <strong>and</strong> gibbsite (VAN NORD­<br />

STRAND et al., 1956). Later it was·<br />

found in natural environments by<br />

many authors (VIOLANTE et al.,<br />

1982; references herein).<br />

Recently, notdstran<strong>di</strong>te synthe­<br />

. sized in the absence <strong>and</strong> in the<br />

presence of montmorillonite<br />

(VIOLANTE & JACKSON, 1979) was<br />

characterized by X-ray <strong>and</strong> electron<br />

microscopy (VIOLANTE et al., 1982).<br />

The general similarity of the <strong>di</strong>ffraction<br />

patterns of Al(OH)3 polymorphs<br />

<strong>and</strong> the limited <strong>di</strong>agnostic value of<br />

their <strong>di</strong>fferential thermal curves have<br />

given <strong>di</strong>fficulties in identifying the<br />

synthetic <strong>and</strong> natural forms of nordstran<strong>di</strong>te<br />

that probably is «an unrecognized<br />

constituent» in many natural<br />

environments.<br />

The aim of the present work was<br />

the characterization by infrared spectroscopy<br />

of essentially pure synthetic<br />

nordstran<strong>di</strong>te in order to better identify<br />

this Al(OH)3 polymorph in soils<br />

or se<strong>di</strong>ments as well as to clarify its<br />

\ structural characteristics still imperfectly<br />

known. In view of the suggestion<br />

that nordstran<strong>di</strong>te consists of a<br />

combination of bayerite <strong>and</strong> gibbsite<br />

layers sequences, the IR spectra of<br />

these Al(OH)3 polymorphs were determined<br />

for comparison.


392<br />

F. Palmieri, A. Violante, P. Violante<br />

Materials <strong>and</strong> methods<br />

tigation were pure gibbsite, bayerite<br />

<strong>and</strong> nordstran<strong>di</strong> te. Rectangular paral-<br />

Aluminum hydroxides were pre~ ~ -l~I~pTp~de-~ or;;:~;:ci;t:~~n<strong>di</strong>te ·.(up ~0<br />

cipitated by ad<strong>di</strong>ng 0.1 M NaOH with 500 nm) formed in the citrate system<br />

stirring to AlCb solutions in the ab- (Fig. 2), whereas in the malate system<br />

sence or presence of organic acids. the crystals were 350 nm· in size<br />

The final concentration of aluminum (not shown).<br />

was 0.01 M.<br />

Figures 3 <strong>and</strong> 4 report infrared<br />

Nordstran<strong>di</strong>te was obtained in the spectra of natural gibbsite, synthetic<br />

presence of citriC acid (Al!citric acid bayerite <strong>and</strong> nordstran<strong>di</strong>te.<br />

molar ratio of 10.0) at pH 10.3, <strong>and</strong> The infrared spectrum of gibbsite<br />

in the presence of malic acid (All (Fig. 3a) exhibits frequencies in the<br />

malic acid molar ratio of 10.0) at pH region between 3623 <strong>and</strong> 3380 cm-1<br />

10.0. similar to those observed by RUS-<br />

.1<br />

Bayerite was synthesized in the SELL et al. (1974), that are assigned<br />

absence of organic lig<strong>and</strong>s at pH 10.0. to <strong>di</strong>stinct types of hydrogen bond­<br />

Gibbsite was a well crystallized nat- ing: the OH b<strong>and</strong> near 3460 cm- 1 to<br />

urally occurring phase from British hydrogen bon<strong>di</strong>ng between adjacent<br />

"--~-··----- Guyana;-- - · layers, the high frequencies at 3529<br />

The samples were aged for 12 cm-1 <strong>and</strong> at 36l3 cm- 1 to longer bymonths<br />

in polyethylene bottles. drogen bon<strong>di</strong>ng between hydroxyls in<br />

Oriented aggregate specimens for X- the same plane. The infrared specray<br />

<strong>di</strong>ffractograms were obtained by trum ofbayerite (Fig. 3b) shows three<br />

drying washed aliquots of suspension b<strong>and</strong>s that correspond to those of<br />

on glass slides. XRD was carried out gibbsite although they are shifted to<br />

with a Rigaku Unit Geigerflex D/MAX higher frequencies, at 3467, 3545 <strong>and</strong><br />

II A instrument using CuKa ra<strong>di</strong>ation 3653 cm-1 respectively. This can be<br />

<strong>and</strong> operating at 30 Kv <strong>and</strong> 20 mA. related to the weakly polarized- by­<br />

Electron micrographs (TEM <strong>and</strong> Pt/C · droxylionsin bayeriteresultinginlonshadowed<br />

replicas) were obtained ger OH-OH bonds (ROTHBAUER et<br />

with a Philips model EM300 micro- al., 1967). The spectrum of nordstranscope,<br />

accor<strong>di</strong>ng to the procedures <strong>di</strong>te (Fig. 3c) exhibits hydroxyl<br />

described by VIOLANTE . et al., stretching at 3653, 3621, 3563, 3524<br />

(1982). IR spectra were obtained on a cm-1 comparable to that found_ in<br />

Perkin-El_mer 567 IR grating spec- bayerite at 3633 cm-1<strong>and</strong> to those<br />

trophotometer after samples prepa- found in gibbsite at 3623 <strong>and</strong> 3529<br />

ration using the KBr technique. cm-1. In the same spectrum the b<strong>and</strong><br />

occurring at 3460 cm- 1 in gibbsite<br />

Results <strong>and</strong> <strong>di</strong>scussion<br />

(Fig. 3a), assigned to hydrogen bond­<br />

. ing between adjacent layers, is<br />

X-ray <strong>di</strong>ffraction patterns (Fig. 1) shifted to a lower frequency (3423<br />

show that the materials under inves- cm- 1 ). This frequency shift can be in-


-- .. --<br />

Infrared Spectra of Nordstran<strong>di</strong>te 393<br />

4.79<br />

4.33<br />

4.21<br />

Nordstran<strong>di</strong>te<br />

3.07<br />

45 35 25 15<br />

20 CuKa Ra<strong>di</strong>ation<br />

Fig. 1 - X-ray <strong>di</strong>ffraction patterns of synthetic nordstran<strong>di</strong>te (Al!malic acid molar ratio of 10.0;<br />

pH = 10.0), bayerite <strong>and</strong> gibbsite.<br />

terpreted as due to an increase in<br />

hydrogen bon<strong>di</strong>ng of inner hydroxyls<br />

to those in superimposed layers as<br />

polymer size grows to form a more<br />

stable polymorph with a higher degree<br />

of polymerization. This b<strong>and</strong><br />

should be considered to arise from inner<br />

hydroxyl groups (ELDERFIELD<br />

& HEM, 1973; FARMER & PAL­<br />

MIERI, 1975).<br />

The OH-bon<strong>di</strong>ng frequency of<br />

amphoteric hydroxides depends significantly<br />

on the energy of OH-bonds<br />

linking OH groups. In this region<br />

there is a large <strong>di</strong>fference between<br />

gibbsite (Fig. 4a) <strong>and</strong> nordstran<strong>di</strong>te


394 F. Palrnieri, A. Violante, P. Violante<br />

,J40RDSi RANDI TE<br />

~ 40 ru:n<br />

Fig. 2 -Electron miCrographs (TEM <strong>and</strong> Pt/C replica) of nordstran<strong>di</strong>te synthesized in the presence<br />

of citrate (Allcitrate molar ratio of 10/0; pH = 10.3).


Infrared Spectra of Nordst~a~<strong>di</strong>te 395<br />

c<br />

~<br />

b<br />

QJ<br />

u<br />


396 F. Palmieri, A. Violante, P. Violante<br />

c .<br />

b<br />

a<br />

1022<br />

12 10 8 6 4 2 X 100<br />

Wavenumb~r<br />

(cm-1)<br />

Fig. 4- Infrared spectra in the OH-ben<strong>di</strong>ng region of aluminum hydroxide polymorphs: a, gibbsite;<br />

b, bayerite; c, nordstran<strong>di</strong>te (Al!malic acid molar ratio of 10.0; pH = 10.0).<br />

OH plane in one unit is superimposed<br />

on another such plane in the<br />

adjacent unit. SCHOEN & ROBER­<br />

SON (1970) suggest that nordstran<strong>di</strong>te<br />

has an interme<strong>di</strong>ate structure<br />

which is probably a regular interlayering<br />

of the gibbsite <strong>and</strong> bayerite<br />

modes of stacking containing both<br />

strongly <strong>and</strong> weakly polarized hydroxyl<br />

ions.<br />

There is a fair measure of agree.­<br />

ment between infrared observations<br />

on nordstran<strong>di</strong>te <strong>and</strong> features ex­<br />

. pected from the proposed structur.e.


Infrared Spectra of Nordstra~<strong>di</strong>te 397<br />

Thus the positions of the two high<br />

frequence b<strong>and</strong>s, at 3653 <strong>and</strong> 3621<br />

. cm- 1 , are consistent with the presence<br />

of weakly polarized hydroxyl<br />

ions. The decrease of the low frequen~<br />

cy b<strong>and</strong> from 3460 cm- 1 in gibbsite,<br />

to. 3423 cm- 1 should be related to<br />

increased polarization of hydroxyl<br />

ions in the formation of a stable polymorph<br />

such as nordstran<strong>di</strong>te.<br />

REFERENCES<br />

ELDERFIELD H., HEM J.D., 1973. The development of crystalline structure in aluminum hydroxide<br />

polymorphs in ageing. Mineral. Mag. 39, 89-96.<br />

FARMER V.C., PALMIERI F., 1975. The Characterization of Soil Minerals by Infrared Spectroscopy. Pp.<br />

573-670, in: Soil Components, vol. 11, Springer-Verlag, New York. ·<br />

ROTHBAUER R., ZIGAN F., O'DANIEL H., 1967. Refinement of the structure ofbayerite, Al(OHh, inclu<strong>di</strong>ng<br />

some proposals for H-position. Z. K.ristallogr. 125, 317-331.<br />

RUSSELL J .D., PARFITT R.L., FRASER A.R., FARMER V.C., 1974. Surface structure of gibbsite, goethite<br />

<strong>and</strong> phosphated goethite. Nature 248, 220-221.<br />

ScHOEN R., RoBERSON E.C., 1970. Structures of aluminum hydroxide <strong>and</strong> geochemical implication.<br />

Am. Miner. 55, 43-77.<br />

VAN NoRDSTRAND R.A., HETTINGER W.P., KEITH C.D., 1956. A new alumina thrihydrate. Nature 177,<br />

713-714.<br />

VroLANTE A., J ACKSON M.L., 1979. Crystallization of nordstran<strong>di</strong>te in citrate systems <strong>and</strong> in the presence<br />

of montmorillonite. Pp. 517-525, in: Proc. lnt. Clay Conf. 1978, Oxford (M.M. Mortl<strong>and</strong> <strong>and</strong> V.C.<br />

Farmer, e<strong>di</strong>tors), Developments· in Se<strong>di</strong>mentology 27.<br />

VIOLANTE P., VIOLANTE A., TAIT J .M., 1982. Morphology of nordstran<strong>di</strong>te. Clays Clay Miner. 30, 431-<br />

437. ~


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 399-408 (1985)<br />

Dehydroxylation of Micas <strong>and</strong> Vermiculites.<br />

The Effect of Octahedral Composition<br />

<strong>and</strong> Interlayer Saturating Cations<br />

J.M. SERRATOSA, J.A. RAUSELL-COLOM<br />

Institute de Fisico-Quimica Mineral, C.S.I.C., Serrano 115-dpdo., 28006 Madrid, Espaiia<br />

ABSTRACT - Structural OH groups in phyllosilicates have a parti~ular<br />

environment constituted by the octahedral cations to which they are coor<strong>di</strong>nated,<br />

plus the interlayer cation compensating the negative charge of the<br />

silicate layers. In vermiculites <strong>and</strong> micas (trioctahedral) dehydroxylation<br />

temperatures depend on the OH environment, <strong>and</strong> the dependance may be<br />

asessed by following the evolution with temperature of the infrared b<strong>and</strong>s<br />

correspon<strong>di</strong>ng to the stretching frequencies of the OH groups. ..<br />

Our res).llts show that for vermiculites saturated with K+, Rb+, cs+ <strong>and</strong><br />

Ba 2 + (ionic ra<strong>di</strong>i >1.3 A), OH groups from unoccupied <strong>di</strong>trigonal cavities are<br />

lost at lower temperatures that those from cavities occupied by an interlayer<br />

cation. For vermiculites saturated with Na., Sr". or Ca"' (ioniC ra<strong>di</strong>i


400 J.M. Serratosa, J.A. Rausell-Colom<br />

present as Fe 3 +. Llano <strong>and</strong> Malawi 2. Clear brown phlogopite from<br />

vermiculite have compositions partic- Mannum (Australia)<br />

ularly suited: in these minerals OH 3. Brown phlogopite &;~M~~=-·--<br />

groups are mainly associated to two grave Ranges (Australia)<br />

<strong>di</strong>fferent environments, i.e. 3Mg <strong>and</strong> 4. White vermiculite from Llano<br />

2MgAl for the former <strong>and</strong> 3Mg <strong>and</strong> County, Texas U.S.A.<br />

2MgFe 3 + for the latter. Therefore, 5. Dark brown vermiculite from<br />

their infrared spectra consist, simply, Kapirikamodzi (Malawi)<br />

of two v H 0<br />

b<strong>and</strong>s assigned to the cor- Chemical analyses for samples 1, 2<br />

respon<strong>di</strong>ng environments. Upon sat- <strong>and</strong> 4 have been reported by RAUuration<br />

with <strong>di</strong>fferent monovalent SELL-COLOM et al. (1965) <strong>and</strong> by<br />

<strong>and</strong> <strong>di</strong>valent cations <strong>and</strong> subsequent BRADLEY & SERRATOSA (1960).<br />

dehydration,silicatelayersarebrought Samples 3 <strong>and</strong> 5 were analysed, reto<br />

contact, a mica-like structure is spectively, by AMDL laboratory<br />

· · formed <strong>and</strong> OH groups are perturb- (South Australia) <strong>and</strong> by K. Norrish,<br />

ed by the interlayer cations. For the Division of Soils, CSIRO (South Auslow<br />

charge Malawi vermiculite about tralia). Table 1 gives the corresponone<br />

third of OH groups remain un- cling mineralogical formulae.<br />

--~------perturbecf(:RAlYSELCc6L6Met-a.r--_-_-B-otn-vermfciifites have fu11 octahe-<br />

1980; RAUSELL-COLOM & SERRA- dral occupancy. Uano vermiculite<br />

TOSA, 1985).<br />

has Al as the main, <strong>and</strong> practically<br />

the only, isomoiphous substitution<br />

The aim of this work is to study the -<br />

for octahedral Mg. Malawi vermiculite<br />

has Fe 3 + replacing Mg. The struc­<br />

influence on dehydroxylation resulting<br />

from exchanging interlayer cations<br />

(homoionic vermiculites) while<br />

tural layer charge is high for Llano<br />

vermiculite (0.9 e- per formula unit)<br />

the octahedral environment of OH<br />

<strong>and</strong> is low for Malawi vermiculite<br />

groups remains constant. For the case<br />

(0.66 e- per formula unit). Octahedral<br />

vacant sites are high for mica 1,<br />

of mica-like K-saturated vermiculites<br />

the observed effects will helpto<br />

me<strong>di</strong>um for mica 3, <strong>and</strong>'very low for<br />

clarify the sequence of OH loss in·<br />

mica 2. Micas 2 <strong>and</strong> 3, have nearly<br />

_phlogopites <strong>and</strong> biotites whose octahedral<br />

composition are more corn-<br />

identical contents of octahedral Mg<br />

<strong>and</strong> Fe, the former being free from<br />

plex.<br />

octahedral Al. Mica 1 is high in Fe<br />

<strong>and</strong> Al, <strong>and</strong> very low in Mg. Ti is high<br />

in micas 1 <strong>and</strong> 3, <strong>and</strong> lower in mica 2.<br />

Mineral specimens<br />

Mineral specimens used in this<br />

study were<br />

1. Brown biotite from Quebec<br />

(Canada)<br />

Experimental<br />

Sections 1 cm X 1 cm were cut<br />

form large cleavage flakes, -50 I-LID in


TABLE 1 ~<br />

!}<br />

Mineralogical formulae for micas <strong>and</strong> vermiculites.<br />

Calcinated samples, 11 oxygen atoms per half formula unit ~<br />

~<br />

Tetrahedral Octahedral Interlayer 6·<br />

;:!<br />

Sample<br />

" .Q,<br />

MICAS<br />

1 2,65 1,35 0,48 0,08 0,17 0,68 1,33 0,02 0,02 2,78 0,04 0,91 0,06 0,01 1,93 R.<br />

2 3,06 -0,88 0,06 0,02 0,09 2,26 0,48 0,02 0,06 2,93 0,02 0,07 0,87 1,01 0,01 0,98 ~<br />

3 2;81 1,19 0,09 0,06 0,16 2,16 0,40 0,01 - 2,88 0,02 0,92 1,12 0,01 0,87 ~<br />

c;·<br />

VERMICULITES<br />

4 2,89 1,11 0,13 0,01 0,03 2,83 - - 3,00 0,45H - - - (2,00) "'<br />

;1<br />

5 2,89 1,04 0,07 - 0,31 0,06 2,63 - - 3,00 0,34H - - - (2,00)<br />

tl1 "'<br />

(H) Ca - saturated ~<br />

("")<br />

;<br />

\:::1<br />

"'<br />

Si 4 + AP+ Fe 3 + Al3+ Fe 3 + Ti 4 + Mg2+ Fe 2 + Mn~+ u+ L oct. Ca 2 + Na+ K+ Mg2+ p- cl- oHis::<br />

c;·<br />

"'<br />

"' ;:!<br />

:::<br />

~<br />

tit<br />

....<br />

~


402 J.M. Serratosa, J.A. Rausell-Colom<br />

thickness, of the <strong>di</strong>fferent micas, <strong>and</strong> rated from the membrane <strong>and</strong>, as for<br />

were used for i.r. absorption determinations<br />

after being heated for 12 temperatures prior to i.r. examination.<br />

hours to temperatures from 300 octo<br />

1000 °C. They were coated with i.r. The i.r. spectra were recorded between<br />

3000 <strong>and</strong> 4000 cm- 1 with a<br />

transparent fluorolube oil to prevent<br />

the presence of interference b<strong>and</strong>s o­ double beam Perkin Elmer spectro~<br />

verlapping with the absorption b<strong>and</strong>s meter at low recor<strong>di</strong>ng rates (8<br />

from the specimens.<br />

cm- 1 /min), large time constants (10<br />

Self supporting oriented films of sec), <strong>and</strong> using wide aperture slits<br />

vermiculite, approximately 100 )liD (0.45 mm). Specimens were placed<br />

in thickness <strong>and</strong> 2-3 cm in <strong>di</strong>ameter, inclined at 40° to the incident i.r.<br />

were prepared from powdered Nasaturated<br />

samples which were ex­<br />

to particle orientation.<br />

beam to enhance <strong>di</strong>chroic effects due<br />

changed with propylammonium hydrochloride<br />

solutions <strong>and</strong> <strong>di</strong>spersed<br />

in water by ultrasonic shaking. The<br />

<strong>di</strong>spersion was then filtered in a 0.1 ~m Results<br />

---micropore membrane~the gel allowecr-·--- --------- --- ---<br />

to dry at room temperature <strong>and</strong> Figures 1, 2 <strong>and</strong> 3 show the spectra<br />

the resulting vermiculite film made of Llano vermiculite saturated with<br />

homoionic by repeated treatments monovalent <strong>and</strong> with <strong>di</strong>valent catwith<br />

1 M solution of the respective ions, after being heated at the tempehydrochlorides,<br />

followed by washing ratures in<strong>di</strong>cated. The evolution with<br />

with <strong>di</strong>stilled water. Upon drying at temperature may be summarised as<br />

50-60 ac vermiculite films were sepa- follows:<br />

3711<br />

V-LlanoK<br />

3708<br />

V - L 1 a no Rb<br />

V -·Llano Cs<br />

3703<br />

3672<br />

3000<br />

3672<br />

Fig. 1- I.R. spectra of oriented films ofV-K, V-Rb <strong>and</strong> V-Cs heated at various temperatures. Llano<br />

vermiculite.


Dehydroxylation of Micas <strong>and</strong> Vermiculites~ The Effect ...<br />

403<br />

V- Llano Na<br />

3708<br />

V - Llano Sr<br />

3672<br />

V - Llano Ba<br />

3672<br />

3672<br />

Fig. 2- I.R. spectra of oriented films ofV-Na, V-Sr <strong>and</strong> V-Ba heated at various temperatures. Llano<br />

· vermiculite.<br />

(i) A decrease of the broad absorption<br />

at the lower frequency side<br />

(vH,o b<strong>and</strong> at 3550-3650 cm- 1 ). The<br />

temperatures at which this b<strong>and</strong> is<br />

finally lost increase as the hydration<br />

energies of the interlayer cations decrease.<br />

(ii) A progressive decrease of the<br />

V- Llano Li<br />

V - Llano Mg<br />

3630<br />

3668<br />

.3750 3700 3650 3600 cm-1<br />

Fig. 3 - I.R. spectra of oriented films of V-Li <strong>and</strong> V-Mg heated at various temperatures. Llano ·<br />

- vermiculite.


404 J.M. Serratosa, J.A. Rausell-Colom<br />

intensity of the b<strong>and</strong>s in the region<br />

3650-3800 cm- 1 (voH absorption<br />

b<strong>and</strong>s) for temperatures above 650 oc.<br />

At temperatures above 700 oc the<br />

b<strong>and</strong>s at higher frequency (>3900<br />

cm- 1 ) have reduced their intensity<br />

less than the b<strong>and</strong>s at lower frequency<br />

(


Dehydroxylation of Micas <strong>and</strong> Vermicuzties. The Effect ... 405<br />

goooc<br />

800°C<br />

700°C<br />

600°C<br />

500°C<br />

400°C<br />

3800 3600 3400 3800 . 3600 cm- 3400 3800 3600 cmcm-<br />

1<br />

1 1<br />

3400<br />

Fig. 5 -·I.R. spectra of mic~ flakes heated at various temperatures: q., Mica 1; b, Mica 2; c, Mica 3.<br />

sent, being finally lost at 1000 oc. Mi­<br />

. ea 3 shows an evolution interme<strong>di</strong>ate<br />

between mic;:t 1 <strong>and</strong> mica 2. At temperatures<br />

between 500~800 oc the in-<br />

.,<br />

tensities of the I <strong>and</strong> V components<br />

are progressively reduced in an<br />

evenly manner', both b<strong>and</strong>s being lost<br />

at -900 oc. Next, the NA component<br />

is lost at T -1000 oc.<br />

Discussion<br />

Dehydroxylation in vermiculite is<br />

the last stage of thermal-dehydration.<br />

At temperatures of 600-1000 oc one<br />

water mo.lecule is eliminated out of<br />

every two OH groups from the silicate<br />

structure. The morphology of the<br />

mineral is preserved but other properties,<br />

i.e., interlayer hydration, are<br />

irreversibly lost on dehydroxylation.<br />

Accor<strong>di</strong>ng to FRIPIAT et al. (1965)<br />

itrri.ay be postulated thatdehydroxylation<br />

takes place by <strong>di</strong>ssociation of<br />

protons from OH groups, followed<br />

by migration to neighbouring OH positions<br />

where they react to form H 2 0,<br />

which is then released from the lattice<br />

by <strong>di</strong>ffusion. At. the temperature of


-,..<br />

I<br />

406 J.M. Serratosa, J.A. Rausell-Colom<br />

reaction protons can migrate within temperatures at which perturbed or<br />

the layer structure but water mole- unperturbed OH _gr()'lJ.~~-yre b_~igg_<br />

culesshould<strong>di</strong>ffusealongtheinterlay- lost. It should be pointed, however,<br />

er volume <strong>di</strong>splacing interlayer cat- that the temperature of total deions<br />

from their positions within the hydroxylation is, for u+ saturated<br />

<strong>di</strong>trigonal cavities.<br />

vermiculite, at least 150-200 oc lower<br />

Accor<strong>di</strong>ng to such scheme the va- than for other homoionic vermiculence<br />

<strong>and</strong> ionic ra<strong>di</strong>i of interlayer cat- lites. This could result from penetraions<br />

become relevant with regards tion of Li+ ions into the <strong>di</strong>trigonal<br />

to the ease or <strong>di</strong>fficulty with which cavities towards the OH site what<br />

water migration can occur: cations of would facilitate, both, proton <strong>di</strong>ssolarge<br />

ionic ra<strong>di</strong>i should cause greater ciation ~nd water <strong>di</strong>ffusion. Such<br />

steric hindrance than smaller cations process would resemble that of u+<br />

<strong>and</strong>, for equal ionic ra<strong>di</strong>i, <strong>di</strong>valent penetration at temperatures of 3oocations<br />

should cause less hindrance 400 oc into the layer structure tothan<br />

monovalent cations since there wards vacant octahedral sites in <strong>di</strong>ocis<br />

twice the number of the latter in tahedral phyllosilicates (GONZALEZ<br />

the interlayer volume.<br />

GARCIA, 1949; HOFMANN & KLE-<br />

Our results are consistent with t:he-:MEN,-19"50;--GlAESER & MERING,<br />

above reasoning. As shown clearly in 1967; PROST & CALVET, 1969).<br />

Figs 1 <strong>and</strong> 2 for vermiculite saturated The octahedral composition of verwith<br />

K+, Rb+, cs+ <strong>and</strong> Ba 2 ~, OH miculite has also an influence on degroups<br />

not perturbed by cations are hydroxylation. This is best illustralost<br />

at lower temperature than those ted by comparing the spectra of Ma-<br />

1<br />

perturbed by cations: This is more lawi vermiculite <strong>and</strong> ofLlano vermicevident<br />

in the spectra of V-Ba, where ulite (Figs 1 <strong>and</strong> 4). In con<strong>di</strong>tions of<br />

only one half of the existing cavities same steric hindrance due to interare<br />

occupied by Ba 2 + ions. The same is layer cations (both K+ saturated) OH<br />

apparent when comparing vermicu- groups are selectively lost at progreslites<br />

of <strong>di</strong>fferent layer charge (Figs 1 sively increasing temperatures: OH<br />

<strong>and</strong> 4): OH groups in 3 Mg environ- groups with 2MgFe 3 + environments<br />

ments (unperturbed) are lost in K- from <strong>di</strong>trigonal cavities ncit occupied<br />

saturated Malawi vermiculite at tern- by K+ are lost at the lowest temperaperatures<br />

of -500 oc, against 650- ture, followed by the same QH<br />

700 oc for Llano vermiculite where groups from occupied cavities, next<br />

unperturbed OH groups are less by OH with 3Mg enviro~ments from<br />

abundant.<br />

unoccupied cavities <strong>and</strong>, finally, the<br />

Steric hindrance is less effective same OH from occupied cavities. It<br />

upon saturation with cations of small- may be appreciated that OH groups<br />

er ionic ra<strong>di</strong>i (Li+, Na+, Mg 2 +, Sr 2 ~). with 2MgFe 2 + environments in Mala­<br />

From the spectra of Figs 2 <strong>and</strong> 3 there wi vermiculite are totally lost at ternis<br />

no in<strong>di</strong>cation of <strong>di</strong>fferences in the peratures of -700-750 oc, in contrast


Dehydroxylation of Micas <strong>and</strong> Vermiculft~. The Effect ... 407<br />

to OH groups with 2MgAl environments<br />

in Llano vermiculite that<br />

withst<strong>and</strong> temperatures of 840 oc or<br />

higher, which is consistent with the<br />

known fact that ferric phyllosilicates<br />

have lower dehydroxylation temperatures<br />

than magnesium or aluminium<br />

phyllosilicates. This would in<strong>di</strong>cate<br />

a weakening of the force constant<br />

of OH bonds induced by Fe 3 +<br />

ions, which would allow <strong>di</strong>ssociation<br />

of the proton at lower temperature.<br />

The presence of Fe 2 + in the octahedral<br />

composition of phlogopites <strong>and</strong><br />

biotites is of special relevance because<br />

thermally induced oxidation to Fe 3 +<br />

may take place at the expense of OH<br />

groups, with liberation of H2 as reaction<br />

product (VEDDER & WILKINS,<br />

1969):<br />

,·<br />

Fe 2 + +OH-~o= + Fe 3 + + H'-<br />

In view of the low oxidation potential<br />

of Fe2+, dehydroxylation of Fe 2 +<br />

phyllosilicates should proceed at<br />

temperatures lower than for magnesium<br />

or aluminium phyllosilicates<br />

be


i<br />

408 J.M. Serratosa, J.A. Rausell-Colom<br />

termines the ease or the <strong>di</strong>fficulty<br />

with which water molecules formed on<br />

dehydroxylation may <strong>di</strong>ffuse ·along<br />

the interlayer volume. Large interlayer<br />

cations cause more hindrance<br />

than small cations, <strong>and</strong> monovalent<br />

cations more than <strong>di</strong>yalent cations<br />

of equal ionic ra<strong>di</strong>i, thus resulting<br />

in higher dehydroxylation temperatures.<br />

For u+ saturated vermiculites<br />

lower dehydroxylation temperatures<br />

result, possibly, from thermally activated<br />

migration of the small u+ ions<br />

toward~ OH sites within the cavities,<br />

thus favouring <strong>di</strong>ffusion of the water<br />

molecules formed. Dehydroxylation<br />

in micas proceeds either by Fe 2 + to<br />

by H 20 formation at the expense of<br />

neighbouring OHgroups,-Dr-by-bCJthmechanisms<br />

acting simultaneously.<br />

Thermal dehydroxylation proceeds<br />

selectively accor<strong>di</strong>ng to octahedral<br />

composition. For trioctahedral environments<br />

(N <strong>and</strong> I) OH stability follows<br />

the sequence<br />

N,I


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 409-423 (1985)<br />

Perturbation of VoH Infrared Frequencies by<br />

Interlayer Cations in Homoionic Vermiculites.<br />

Structural Implications<br />

J.A. RAUSELL-COLOM, J.M. SERRATOSA<br />

Institute de Fisico-Quimica Mineral, C.S.I.C., Serrano 115-dpdo .• 28006 Madrid, Espafta<br />

ABSTRACT- The position occupied by interlayer cations in vermiculite,<br />

relative to the ·a,b plane has been inferred from the perturbation that they<br />

cause in the stretching vibration of structural hydroxyls.<br />

Replacement by ion exchange of interlayer Mg 2 + by monovalent cations,<br />

followed by dehydration, results in variations of OH stretching frequencies<br />

in<strong>di</strong>cating that interlayer cations are located within the <strong>di</strong>trigonalcavities of<br />

the silicate structure in interaction with the octahedral OH groups.<br />

A correlation exists between the observed frequency shifts <strong>and</strong> the ionic ra<strong>di</strong>i<br />

of the interlaye'r cations. For cations of ionic ra<strong>di</strong>i larger than 1.3 A, the<br />

frequency shift decreases as the ionic ra<strong>di</strong>i increase.<br />

The observed behaviour is best explained by the following assumption relating<br />

the manner in which silicate layers are stacked together: i) large cations<br />

(K+, Rb+, cs+) cause vermiculite layers to be stacked so that <strong>di</strong>trigonal rings<br />

of adjacent lay"rs ex'actly superimpose around the interlayer cations. Each<br />

cation occupies the centre of a cavity, imme<strong>di</strong>ately above <strong>and</strong> below two<br />

structural OH grolips. The stretching frequencies of these are perturbed<br />

inversely to the Me-OH <strong>di</strong>stance, <strong>and</strong> ii) small cations (Li+, Na+) cause<br />

lateral <strong>di</strong>splacements of stacking layers, in order to satisfy their coor<strong>di</strong>nation<br />

requirements with oxygen atoms of adjacent surfaces. Cations are still midway<br />

between layers, but occupy positions away from the 0-H bond <strong>di</strong>rec- ·<br />

tion. The stretching frequencies of OH groups above <strong>and</strong> below are perturbed<br />

depen<strong>di</strong>ng on both the cation-proton <strong>di</strong>stance <strong>and</strong> the inclination of the<br />

0-Me vector relative to the OH bond <strong>di</strong>rection.<br />

Introduction<br />

It is well known that the i.r. stretch­<br />

·'ing .frequencies of hydroxyl groups<br />

in mineral structures are affected\<br />

by short range interactions with the<br />

elements that constitute their closet<br />

~nvironment, hence OH groups<br />

are a suitable probe for ascertaining<br />

the chemical nature of such environment<br />

<strong>and</strong> exploring ordering trends<br />

in the <strong>di</strong>stribution of its components.<br />

In 2:1 phyllosilicates, OH groups<br />

are one third of the anions which<br />

build up the octahedral sheet of the<br />

layer structure. In trioctahedral vermiculites<br />

OH bond <strong>di</strong>rections are perpen<strong>di</strong>cular<br />

to the layer plane; v 0 H<br />

frequencies are, thus, affected by cations<br />

in any of three following categories:<br />

- Interlayer cations compensating<br />

the negative layer charge.


l<br />

410 J.A. Rausell-Colom, J.M. Serratosa<br />

- Cations at the centres of three Materials <strong>and</strong> methods<br />

Me04 (OH)z octahedra sharing each White vermi~ulite~fcor_n ____ Llano ______<br />

OH group (Me=Mg 2 +, Fe 3 +, AP+, County, Texas (U.S.A.) <strong>and</strong> dark<br />

Ti 4 i).<br />

brown vermiculite from Kapirikam-<br />

- Cations at the centres of six odzi (Malawi) were selected for the<br />

Me04 tetrahedra forming the <strong>di</strong>trigo- experiments because they have chemnal<br />

cavity around each OH group ical compositions that allow a<br />

(Me= Si 4 +, AP+, Fe3+). straightforward interpretation of<br />

Hydroxyl stretching frequencies re~ their (unperturbed) i.r. spectra. Their<br />

suiting from particular octahe&al oc- structural formulae are the followcupancies<br />

have been extensively stud- ing:<br />

ied in micas, kaolinite, talc. <strong>and</strong> chlorite<br />

by several authors, <strong>and</strong> the _


Perturbation of voH Infrared FrequencieS by Interlayer ... 411<br />

placed flaf in a specimen holder con:<br />

sisting of a heating stage allowing<br />

measurements at constant temperature<br />

in the range 20-350 oc. Preheatments<br />

at higher temperatures<br />

(500-600 °C) were necessary in occasions<br />

to eliminate interlayer water,<br />

these being performed externally in<br />

an oven. The heating stage in the X­<br />

ray <strong>di</strong>ffractometer was used during<br />

recor<strong>di</strong>ng to maintain temperatures<br />

sufficiently high to prevent sample<br />

rehydration. In vermiculite, replacement<br />

of interlayer Mg 2 + for K+, Rb +<br />

or cs+ often gives rise to poorly organised,<br />

r<strong>and</strong>omly stacked sequences of<br />

silicate layers, due to residual water<br />

being trapped irregularly in the interlayer<br />

space. The same holds for<br />

Na-vermiculite upon dehydration,<br />

Li-vermiculite retaining wafer even<br />

at temperatures close to deh~droxylation.<br />

In the present study, recor<strong>di</strong>ng<br />

temperatures <strong>and</strong> heating pretreatments<br />

were carefully experimented<br />

<strong>and</strong> selected to yield phases<br />

(anhydrous or hydrated) with rational<br />

dcool) sequences up to high values<br />

of 29 (dcool) ~1 A).<br />

X-ray data from homoionic vermiculites<br />

(anhydrous <strong>and</strong> hydrated<br />

phases)refertorationaldcool)spacings:<br />

peak positions wererecorded <strong>and</strong>, for<br />

those phases where electron density<br />

profiles had to be calculated, the correspon<strong>di</strong>ng<br />

integrated intensities<br />

were also measured. These were converted<br />

to structure factors Fobs by applying<br />

the appropriate corrections for<br />

absorption <strong>and</strong> for <strong>di</strong>ffraction geometry<br />

(BRINDLEY . & GILLERY,<br />

1956). A first set of signs for the Fobs<br />

was obtained from the atomic coor<strong>di</strong>nates<br />

(z) <strong>and</strong> temperature factors (B)<br />

reported by SHIROZU & BAILEY<br />

(1966) for the atoms in the layer structure<br />

of Mg-vermiculite.<br />

I.R. spectra were recorded in the<br />

spectral region 3000-4000 cm- 1 with<br />

a double beam Perkin-Elmer 225<br />

spectrometer, using wide slits (0.45<br />

mm) <strong>and</strong> slow recor<strong>di</strong>ng rates (8<br />

cm- 1 /min). A special cell with transparent<br />

CaF 2 windows was used as<br />

specimen holder (ANGELL &<br />

SCHAFFER, 1965) allowing heating<br />

to -600 oc as well as evacuation<br />

(p beam to enhance <strong>di</strong>chroic effects<br />

due to particle orientation. Also, specimens<br />

may be kept at the desired<br />

state of hydration while spectra are<br />

being recorded by appropriate temperature<br />

pretreatments. Such pretreatments<br />

were always identical to<br />

those applied to' specimens for x~ray<br />

measurement. In order to prevent o­<br />

verlap of V oH <strong>and</strong> VH 2<br />

o b<strong>and</strong>s, spectra<br />

of hydrated vermiculite phases were<br />

obtained after replacing interlayer<br />

water for D 2 0. When dehydration<br />

required heating at elevated temperatures<br />

(T>200 °C) such replacement<br />

was not allowed because simultaneous<br />

deuteration of structural OH<br />

groups also takes place (RUSSEL &<br />

FRASER, 1971).<br />

Results<br />

Table 1 gives the basal spaCings o£<br />

the various homoionic vermiculites,


I<br />

412 J.A. Rausell-Colom, J.M. Serratosa<br />

TABLE 1<br />

Basal spacings, water content, number. of_d


Perturbation ofv 08 Infrared FrequenCies by Interlayer ... 413<br />

z=5.07 A fbr V-K, z=5.36 A for V-Cs<br />

<strong>and</strong> z=4.90 A for V-Na is quite unequivocal.<br />

Electron density profiles<br />

for the 11.8 A monolayer hydrate of<br />

Na-vermiculite <strong>and</strong> for the 12.2 A<br />

monolayer hydrate of Li-vermiculite<br />

have been reported by BRADLEY et<br />

al. (1963) <strong>and</strong> by MAMY & LE<br />

RENARD (1970). They report the position<br />

of cations at the mid-plari.e of<br />

interlayer space, at z=5.9 A for V-Na<br />

<strong>and</strong> at z,;; 6.1 A for V-Li. Water molecules<br />

are split in two planes at<br />

z 1 = 5.75 A <strong>and</strong> z 2 = 6.45 A from the<br />

origin for Li-saturated vermiculite,<br />

<strong>and</strong> at z 1 = 5.6 A <strong>and</strong> z 2 = 6.2 A for Nasaturated<br />

vermiculite. The water to<br />

cation ratio is equal to 2 for V-Na <strong>and</strong><br />

equal to 2.4 for V-Li.<br />

Figure 2 shows the i.r. spectra from<br />

Mg saturated vermiculite, room tern-<br />

\<br />

p~rature stable hydrated phase~ of<br />

14.3 A for Llano vermiculite <strong>and</strong> of<br />

14.4 A for Malawi vermiculite. Inter-<br />

layer water has been replaced for<br />

D 2 0. Only two b<strong>and</strong>s are present in<br />

the spectra, one at 3675 cm- 1 <strong>and</strong> a<br />

second, less intense b<strong>and</strong>, at 3636<br />

cm- 1 for Llano vermiculite <strong>and</strong> 3620<br />

cm- 1 for Malawi vermiculite. Both<br />

sets of b<strong>and</strong>s show strong <strong>di</strong>chroism<br />

in<strong>di</strong>cating OH bonds oriented per- ·<br />

pen<strong>di</strong>cularly to the plane of the aggregate,<br />

at right angles to the a,b<br />

plane of the silicate structure. These .<br />

two spectra will serve as reference for<br />

interpreting the changes observed in<br />

the remaining spectra (homoionic<br />

vermiculi tes).<br />

Replacement of Mg 2 + for K+, Rb+<br />

or cs+' followed by dehydration, results<br />

in the following changes: in Llano<br />

vermiculite (Fig. 3) the more intense<br />

b<strong>and</strong> has shifted to 3 711 cm - 1<br />

for V-K, to 3708 cm- 1 for V-Rb <strong>and</strong><br />

3703 cm- 1 forV-Cs, with a less intense<br />

b<strong>and</strong> at 3672 cm- 1 <strong>di</strong>ssymmetrically<br />

deformed towards the low frequency "<br />

3675<br />

3675<br />

a<br />

3620<br />

3636<br />

375.0<br />

cm-1<br />

Fig. 2 - Infrared spectra of Mg-verrriiculite (d(Ool)= 14.3 A) in the OH stretching region. D20<br />

replacing interlayer H 2 0 oriented films inclined 45° to the incident beam. a: Llano vermiculite;<br />

· b: Malawi vermiculite.<br />

3750<br />

cm-1


414<br />

3711<br />

J.A. Rausell-Colom, J.M. Serratosa<br />

<strong>and</strong> 450 oc for V-Li (d(oo 1 )-10A) the<br />

b<strong>and</strong> at .3675 cm- 1 is less intense,<br />

<strong>and</strong> a new ban


Perturbation of V oH Infrared Frequencies1iy- Interlayer ... 415<br />

3668<br />

Fig. 4- Infrared spectrum K-saturated Malawi vermiculite. Oriented film preheated to 500°C.<br />

to interlayer occupancy. Accor<strong>di</strong>ng to<br />

SHIROZU & BAILEY (1966) int~rlayer<br />

Mg 2 + ions in vermiculite (14.3 A<br />

phase) are located over the bases .of<br />

Si0 4 tetrahedra, separated from the<br />

silicate surface by one layer of.water<br />

molecules, <strong>and</strong>, therefore, too <strong>di</strong>stant<br />

apart from the OH groups . to influence<br />

their vibration. The fact that the<br />

v 0 H frequency assigned to OH associated<br />

to 3Mg coincides with that in<br />

the spectrum of talc, a mineral with-<br />

3675<br />

11<br />

I'<br />

I * I<br />

I I<br />

I<br />

I I<br />

3695/ \ _,....._~<br />

...V ~.<br />

' I .£"3636'-·-<br />

V I \J \ - ....... ~....... .<br />

i : ' .......___ ........_,<br />

_j_ I<br />

-------~--'::.::::_·-·-·-·-<br />

3800 3500 3400 3300<br />

3100 cm-1<br />

Fig. 5 -Infrared spectra of Li-saturated Llano vermiculite.<br />

--;--oriented film preheated to 450 oc;<br />

-·-·-·oriented film preheated to 550 oc (dcoo1)=9.4 A);,<br />

----oriented film at room temperature (dcool)= 12.2 A);<br />

0 2 0 replacing interlayer H 20.


416 J.A. Rausell-Colom, J.M. Serratosa<br />

.<br />

1 I<br />

\ i i 3636<br />

V "!A ....--....-----.....<br />

I ,, it."' . .......................,_<br />

I. '· ....................<br />

------------ ..... ._...<br />

. ------ ...........<br />

~ - ---<br />

3800 3700 3600<br />

c<br />

Fig. 6- Infrared spectra of Na-saturated Llano vermisulite.<br />

---oriented film preheated to 80 ·c (d(Ool)=9.8 A);<br />

-·---oriented film preheated to 550 oc (d(ool)=9.8 A);,<br />

-·-·~·oriented film at room temperature (d(ool)= 11.8 A);<br />

D20 replacing interlayer H20.<br />

out interlayer cations in the structure,<br />

is consistent with the above reasoning.<br />

The influence of interlayer cations<br />

is best felt by OH groups in the absence<br />

of interlayer water when the<br />

size of the cations, relative to the <strong>di</strong>mensions<br />

of the <strong>di</strong>trigonal cavities in<br />

the silicate structure, pre<strong>di</strong>sposes layer<br />

stacking arrangements as in phlogopite,<br />

where every K+ is located<br />

within two <strong>di</strong>trigonal cavities in<br />

adjacent layers (STEINFINK, 1962).<br />

This is the case for V-K, \'-Rb <strong>and</strong> V­<br />

Cs: the electron density profiles of<br />

Fig. 1 show the ions at the mid-plane<br />

of the structure, <strong>and</strong> with the thickness<br />

of the interlayer volume (dcool)<br />

= -9.4 A) being in every case smaller<br />

than twice the <strong>di</strong>mension of the respective<br />

ionic ra<strong>di</strong>i (Table 1) there is<br />

no space to accomodate the interlayer<br />

cations otherwise. Each cation is,<br />

thus, located imme<strong>di</strong>ately above <strong>and</strong><br />

below two OH groups, in con<strong>di</strong>tion to<br />

perturb the valence vibration of the<br />

same. This is apparent from the spectra<br />

of Figs 3 <strong>and</strong> 4. In Llano vermiculite<br />

the b<strong>and</strong> from OH in 31\1g environment<br />

appears now at 3711 cm-1,<br />

at the same frequency as that reported<br />

by VEDDER (1964) <strong>and</strong> WIL­<br />

KINS (1967) for OH groups with 3Mg<br />

environment in phlogopite (v 0<br />

H =<br />

3712 cm- 1 ). The b<strong>and</strong> has shifted ,1v<br />

= + 36 cm- 1 relative to the uqperturbed<br />

b<strong>and</strong> in Mg-vermiculite. Because<br />

of the high layer charge of this vermiculite<br />

(0.9 e/half unit cell), the perturbation<br />

affects to-.90% of the structural<br />

OH so that a weak unperturbed b<strong>and</strong><br />

at 3675 cm- 1 should remain in the<br />

spectrum overlapping with the b<strong>and</strong><br />

at 3672 cm- 1 from OH groups in


Perturbation of voH Infrared Frequenczes by Interlayer ... 417<br />

2MgAl environment perturbed by<br />

K+. The shift resulting from perturbation<br />

by Rb+ <strong>and</strong> Cs+ are of Llv =<br />

+33 c;m- 1 <strong>and</strong> Llv = +28 cm- 1 , respectively.<br />

The same is observed for<br />

Malawi vermiculite: with a smaller<br />

layer charge than Llano vermiculite<br />

(0.66 e!half unit cell), only two thirds<br />

of the OH groups are perturbed by<br />

K+, <strong>and</strong> the spectrum in Fig. 4 shows<br />

a b<strong>and</strong> from unperturbed OH groups<br />

with 2MgFe 3 + environments at 3620<br />

cm - 1 , ~ second b<strong>and</strong> from perturbed<br />

OH groups with 3Mg environments<br />

at 3712 cm- 1 <strong>and</strong> a third b<strong>and</strong> at<br />

3668 cm- 1 resulting from the overlap<br />

of those from unperturbed 3Mg <strong>and</strong><br />

from perturbed 2MgFe 3 + hydroxyl<br />

groups.<br />

Figure 7 gives the relationship between<br />

the observed frequency shifts<br />

<strong>and</strong> the <strong>di</strong>stance from the i 1 ~terlayer<br />

. ~<br />

catiOns to structural OH groups, de-<br />

,_ rived from the X-ray data (Table 1).<br />

Included are frequency shifts from<br />

VoH frequencies reported by SERRA­<br />

TOSA et al. (1970) for oetylammonium<br />

vermiculite complexes with<br />

dcool) spacings of 19 A <strong>and</strong> 28.1 A, <strong>and</strong><br />

NH! ... HO <strong>di</strong>stances ·reported by<br />

JOHNS & SEN GUPTA (1967) from<br />

electron density profiles of the same<br />

complexes. The same Llano vermiculite<br />

material as for the present study<br />

was used.The inclusion of this data is<br />

justified from the fact that in such<br />

complexes, - NH! ra<strong>di</strong>cals at the end<br />

of alkylammonium chains, have the<br />

same ionic ra<strong>di</strong>i asK+ <strong>and</strong> are keyed,<br />

too, into the <strong>di</strong>trigonal cavities of the<br />

silicate structure. It is apparent from<br />

Fig. 7 that, for ions of the same charge<br />

occupying identical positions on<br />

the silicate surfaces, the perturbation<br />

induced on the VoH vibration is in~<br />

versely related to the cation-OH <strong>di</strong>s 1 -<br />

tance, such <strong>di</strong>stance being determined<br />

by the ionic ra<strong>di</strong>us of the saturating<br />

cation.<br />

A full interpretation of the i.r. spec-<br />

' E<br />

u<br />

:I:<br />

.,.o<br />

3. 5<br />

4.0 4.5<br />

Distance OH-- Me+ (A)<br />

Fig. 7 - Relationship between V oH wave numbers <strong>and</strong> Me+ ... OH <strong>di</strong>stances for Llano vermiculite<br />

saturated with various monovalent cations.


418 J.A. Rausell-Colom, J.M. Serratosa<br />

tra of the dehydrated phases of Li+ found in <strong>di</strong>fferences in the manner<br />

<strong>and</strong> Na+ saturated vermiculite is not with which adjacent layers stack tostraight<br />

forward due to overlap ofthe gether to trap~i:Iie-ions within'i:h.e cav­<br />

VoH b<strong>and</strong>s with the strong absorp- ities at the midplane of the struction<br />

b<strong>and</strong>s of residual water. Never- ture. The ra<strong>di</strong>us of the cavity being 1.3<br />

theless, the perturbation due to the A, cations of the same or larger ionic<br />

interlayer cations is quite conspic~ ra<strong>di</strong>i would rest upon the oxygen<br />

uous at the high frequency side of atoms in positions centered to the<br />

the spectra (Figs 5 <strong>and</strong> 6), resulting in r:ing, facing <strong>di</strong>rectly the OH groups<br />

frequency shifts of Liv= +33 cm- 1 for below<strong>and</strong>above.Forcationsofsmall­<br />

V-Na (dcoo1=9.8 A) <strong>and</strong> of Llv=+lO · er ionic ra<strong>di</strong>i (Li+, Na+) the volume<br />

'cm- 1 for V-Li (dcoo1 = 9.2 A) for OH available within two cavities is larger<br />

groups in 3 Mg+ environments. than the cation volume, so one would<br />

It is apparent from Fig. 5, ,spec- expect <strong>di</strong>splacements of opposite<br />

trum of sample heated at 550 oc, that layers to accomodate the interlayer<br />

the ratio of the intensities at 3708 cations in the manner best suited<br />

<strong>and</strong> 3675 cm- 1 is, approximately, the to satisfy the coor<strong>di</strong>nation requiresame<br />

as for the spectra of V-K: V-Rb ments of the cation with oxygen<br />

~- -----~- -<strong>and</strong>-V-Cs-in-Fig;-3-:-This=wou-I-d-rn-<strong>di</strong>=----atoms-from the two surfaces. Accordcate<br />

that as for the latter vermiculites ingly, cations would be laterally <strong>di</strong>seach<br />

Na+ ion in V-Na perturbs the placed relative to the 0-H bond <strong>di</strong>vibration<br />

of two OH groups which, in rection of hydroxyl groups above <strong>and</strong><br />

turn, is in<strong>di</strong>cative of Na+, ions being _ below <strong>and</strong>, even with smaller dcool)<br />

located within the space formed by spacings, the effective repulsion expairs<br />

of <strong>di</strong>trigonal cavities in adja- erted on the proton by the interlayer<br />

cent layers. Again, the recorded dcool) cation can be considerably reduced<br />

spacings prevent alternative arrange- depen<strong>di</strong>ng on cation inclination <strong>and</strong><br />

ments. Measured in terms of the screening by surface o:x.ygens.<br />

induced frequency shifts the magni- Obviously, the sma1ler the cation the<br />

tude of the perturbation shows, how- larger the <strong>di</strong>splacement <strong>and</strong> the<br />

ever, a trend opposite to that ob- smaller the perturbation on voH·<br />

served forthe large interlayer cations Figure 8 illust.rates layer stacking<br />

(K+, Rb+, Cs+) i.e., despite of the modes for the <strong>di</strong>fferent anhydrous<br />

smaller dcool) spacings <strong>and</strong>, there- phases, consistent with the observed<br />

fore, of smaller expected cation-OH v 0 H perturbation. In Fig. 8a (V-k, V­<br />

<strong>di</strong>stances, the small Li+ ions perturb Rb <strong>and</strong> V-Cs) <strong>di</strong>trigonal cavities in<br />

OH vibrations less than the large adjacent surfaces are stacked face to<br />

Na+ ions, the values for Llv increasing face. Such <strong>di</strong>sposition is actually<br />

now with ionic ra<strong>di</strong>i.<br />

found from crystal structure determi-<br />

The reason why cations with appar- nations in phlogopites <strong>and</strong> biotites<br />

ently identical locations cause per- (STEINFINK, 1962). For Na+ satuturbations<br />

of opposite trends may be ratedvermiculitea<strong>di</strong>splacementof<strong>di</strong>-


V-K,V-Rb<br />

V - Cs<br />

a<br />

b<br />

V - L i<br />

.::1 = - a/3<br />

c<br />

Fig. 8- Layer stacking modes for anhydrous phases of Llano vermicu!ite .<br />

. a: V-K, V-Rb <strong>and</strong> V-Cs; .<br />

b: V-Na;<br />

c: V-Li.<br />

/ .0. = Displacement of <strong>di</strong>trigonal cavities in adjacent layers<br />

----Upper layer;<br />

---Lower layer.


420 J.A. Rausell-Colorn, J.M. Serratosa<br />

trigonal cavities ofa/3 (Fig. Sb) leaves dom sequence of translations of<br />

Na+ ions in six-fold coor<strong>di</strong>nation +0.307b,O<strong>and</strong>_=Q_J()7'1£_The_r:s:.sult::_<br />

with three oxygen atoms from each. ing interlayer configuration is illussurface,<br />

with resulting Na ... o= <strong>di</strong>s- trated in Fig. 9a, showing Na+ ibns<br />

tances of 2.52 A <strong>and</strong> of 2.64 A. For in six-fold coor<strong>di</strong>nation with two sur­<br />

Li+ saturated vermiculite, a <strong>di</strong>splace- face oxygen atoms <strong>and</strong> four water<br />

ment of -a/3 (Fig. Se) leaves Li+ molecules, with Na ... OcH<br />

2<br />

o) <strong>di</strong>stances<br />

ions in four-fold coor<strong>di</strong>nation with of 2.59 A. The location of Na+ ions is<br />

two oxygen atoms from each surface, sufficiently <strong>di</strong>stant apart from the OH<br />

the Li...o= <strong>di</strong>stances being 2.06 A. groups at the centres of the cavities<br />

The last two configuratiOJ?.S are equiv- to prevent V oH perturbation.<br />

alent to those proposed for vermicu- For the 12.2 A phase of Li-vermicu-_<br />

lite saturated with <strong>di</strong>valent cations of lite, X-ray <strong>di</strong>ffraction data by MAMY<br />

equal ionic ra<strong>di</strong>i (9.78 A phase ofV-Sr &"LE RENARD (1970) consisting of<br />

byRAVSELL-COLOMetal., 1980; 9.02 integrated intensities for 24 observed<br />

A phase of V-Mg by WALKER 1956). (001) rational reflections have afford-<br />

Upon.·hydration, interlayer cations ed those authors an electron density<br />

in V-Li <strong>and</strong> V-Na are extracted from proyection along z* allowing resolu-<br />

-----------------their-:[5osi1ionsw11nin.·r:ne<strong>di</strong>lfigonar· -ii0il-0fo.51 ~r better, in which two<br />

cavities <strong>and</strong> placed away from the_ well resolved peaks are shown, 0.6 A<br />

vicinity of OH groups. The absence of apart, for the surface oxygen atoms<br />

v0 H perturbation in the corn~spon- <strong>and</strong> for tetrahedral Si,AL Despite<br />

<strong>di</strong>n~ monolayer hydrates prevents that, a broad peak at z = 6.1 A was<br />

any conclusion to be drawn from i.r. interpreted by the authors as due to<br />

data with respect to the positions oc- four water molecules in ·two planes,<br />

cupied by cations <strong>and</strong> water mole- 0.7apart,atz=5.75A<strong>and</strong>z=6.45A,<br />

cules in the a,b plane of the structure. <strong>and</strong> to Li+ ions at the mid-plane of<br />

Crystal structure determinations by the structure. One would expect Li+<br />

conventional X-ray methods are im- ions to be in four-fould coor<strong>di</strong>nation,<br />

practicable because the absence of with Li ... O <strong>di</strong>stances of 2 A, which<br />

long range regularity in the layer can hardly be achieved from the restacking<br />

sequence is a characteristic ported positions for water <strong>and</strong> catof<br />

these hydrated phases (DE LA ions unless a considerable flattening<br />

CALLE et al., 1985). of the Li coor<strong>di</strong>nation polyhedr~ is<br />

For the 11.8 A hydrate of Na-ver- admitted. Alternatively, the electron<br />

miculite DE LA CALLE et al. (1984) density peak at z = 6.1 A could be inreport<br />

<strong>di</strong>ffuse layer lines for all reflec- terpreted by allocating all water moltions<br />

other than (h 0 1) in Weissen- ecules in one plane at z = 6.1 A <strong>and</strong><br />

berg <strong>di</strong>agrams. By analysing the in- Li+ ions in two planes at z = 5.3 A <strong>and</strong><br />

tensity modulation along those lines, 6.9 A. In fact, the electron density<br />

the above authors propose a layer profile to be expected from such <strong>di</strong>sstacking<br />

model consisting of a ran- position would match very closely


Perturbation of VoH Infrared Frequencies7)y Interlayer ... 421<br />

V - Na<br />

L1 = - a/3. o.3o7b'<br />

V - L i<br />

J = D.32 b<br />

Fig. 9 - Layer stacking modes for one layer hydrates of Llano vermiculite.<br />

a: Na-saturated (Dcooi) = 11.8 A);<br />

b: Li-saturated (dcooo = 12.2 A);<br />

~ ~ Displacement of <strong>di</strong>trigonal cavities in adjacent layers<br />

---- Upper layer;<br />

--- Lower layer.<br />

to the one reported. See for comparison<br />

the shape of the peak for 3H 20 at<br />

z = 6 A in the electron density projections<br />

for the exp<strong>and</strong>ed phases of<br />

V-Li, V-Na <strong>and</strong> V-Ca by the same<br />

authors.<br />

Should the second interpretation<br />

be the right one, i.e., water in one·<br />

plane at 6.1 A. <strong>and</strong> u+ in two planes<br />

at 5.3 A <strong>and</strong> 6.9 A, then the configuration<br />

of molecules <strong>and</strong> cations in the<br />

interlayer volume would be straight


T<br />

422 J.A. Rausell-Colom, J.M. Serratosa<br />

forward. Figure 9b shows Li+ ions<br />

tetrahedrally coor<strong>di</strong>nated to one<br />

oxygen a tom from one surface <strong>and</strong> to<br />

three water molecules, on top of<br />

oxygen atoms from the adjacent surface,<br />

arranged in the same manner as<br />

each one of the water layers in the<br />

14.3 A phase of Mg-vermiculite (SHI­<br />

ROZU & BAILEY,J5L6_6J._Acl1ac::em_<strong>di</strong>-___<br />

trigonal cavities are <strong>di</strong>splaced 0.32 b.<br />

Distances Li...O are of 2 A, <strong>and</strong> <strong>di</strong>stances<br />

Li ... OH 2 are or 2.1 A. No perturbation<br />

of OH groups should result<br />

from such <strong>di</strong>sposition.<br />

REFERENCES<br />

ANGELL C.L., ScHAFFER P.C., 1965. Infrared spectroscopic investigations of zeolites <strong>and</strong> adsorbed<br />

molecules. Structural OH groups. J. phys. Chem. 69, 3463-3470.<br />

BASSETT W.A., 1960. Role of hydroxyl orientation in mica alteration. Geol. Soc. Am. Bull. 71, 449-45.6.<br />

BRADLEY W.F., WEISS E.J., ROWLAND R.A., 1963. A glycol-so<strong>di</strong>um vermiculite complex. Clays Clay<br />

Miner. 10, 117-122.<br />

BRINDLEY G.W., GILLERY F.H., 1956. X-ray identification of chlorite species. Am. Miner. 41, 169-186 .<br />

. CHAUSSIDON J., 1973. Le spectre infrarouge des~biotites: Vibrations d'elongation basse frequence des<br />

OH du reseau. Pp. 99-106, in: Proc. Int. Clay Conf. 1?72, M_adrid(J.M. Serratosa, e<strong>di</strong>tor),<br />

--------- ----------·cs:I:c:,""Maarill:--- ---------- ------ ---- ·· -- · ··<br />

DE LA CALLE C., PLAN«;:ON A., PoNs C.M., DUBERNAT J., SuouET H., PEZERAT H., 1984. Mode d'empilement<br />

des feuillets dans la vermiculite Na hydratee a une couche. Clay Minerals 19, 563-578.<br />

DE LA CALLE C., SUQUET H., PEZERAT H., 1985. Vermiculites hydratees a une couche. Clay Minerals 20,<br />

221-230.<br />

FARMER V.C., 1964. Infrared absorption of hydroxyl groups in kaolinite. Science 145, 1189-1190.<br />

FARMER V.C., RussELL J.D., 1967. Infrared absorption spectrometry in clay stu<strong>di</strong>es. Clays Clay Miner.<br />

15, 121-142. r<br />

JoHNS W.D., SEN GuPTA P.K., 1967. Vermiculite-alkylammonium-complexes. Am. Miner. 52, 1706-<br />

1724.<br />

Juo A.S.R., WHITE J .L., 1969. Orientation of the <strong>di</strong>pole moments of hydroxyl groups in oxi<strong>di</strong>zed <strong>and</strong><br />

unoxi<strong>di</strong>zed biotite. Science 165, 804-805.<br />

MAMY J., LE RENARD J., 1970. Contribution a I' etude de la structure de l'espace interfeuillet des micas<br />

alterees. Pp. 17-20, in: Proc.R.euni6n Hispano-Belga de Minerals de la Arcilla (J.M. Serra:tosa,<br />

e<strong>di</strong>tor), C.S.I.C., Madrid. ' v<br />

RAUSELL-COLOM J.A., SANZ J., FERNANDEZ M., SERRATOSA J.M., 1979. Distribution of octahedral ions<br />

in phlogopites <strong>and</strong> biotites. Pp. 27-36, in: Proc. Int. Clay Conf. 1978, Oxford (M.M. Mortl<strong>and</strong> <strong>and</strong><br />

V.C. Farmer, e<strong>di</strong>tors), Developments in Se<strong>di</strong>mentology 27.<br />

RAUSELL-COLOM J.A., FERNANDEZ M., SERRATOSA J.M., ALCOVER J.F., GATINEAU 1., 1980. Organisation<br />

de l'espace interlamellilire dans des vermiculites monocouches et anhydres. Clay Minerals 15,<br />

37-58.<br />

ROUSSEAUX J.M., GOMEZ LAVERDE C., NATHAN Y., ROUXHET P.G., 1973. Correlation between the<br />

hydroxyl stretching b<strong>and</strong>s <strong>and</strong> the chemical composition of trioctahedral micas. Pp. 89-98, in:<br />

Proc. Int. Clay Conf. 1972, Madrid (J.M. Serratosa, e<strong>di</strong>tor), C.S.I.C., Madrid.<br />

RussELL J.D., FRASER A.R., 1971. I.R. spectroscopic evidence for interaction between hydronium ions<br />

<strong>and</strong> lattice OH groups in fnontmorillonite. Clays Clay Miner. 19, 55-59.<br />

SERRATOSA J.M., BRADLEY W.F., 1958. Infrared absorption of OH bonds in micas. Nature 181, 111.<br />

SERRATOSA J.M., HIDALGO A., VINAS J.M., 1962. Orientation of OH bonds in kaolinite. Nature 195,<br />

486.<br />

SERRATOSA J.M., JOHNS W.D., SHIMOYAMA A., 1970. Infrared study of alkyl-ammonium vermiculite<br />

complexes. Clays Clay Miner. 18, 107-113.<br />

SERRATOSA J.M., VIN:As J.M., 1964. Infrared investigation of the OH bonds in chlorites. Nature 202,<br />

999.<br />

SHIROZU H., BAILEY S.W., 1966. Crystal structure of a two layer Mg-vermiculite. Am. Miner. 51, 1124-<br />

1143.<br />

STEINFINK H., 1962. Crystal structure of a trioctahedral mica: phlogopite. Am. Miner. 47, 886-896.


Perturbation of VoH Infrared Frequenci-es- by Interlayer ... 423<br />

VEDDER W., 1964. Correlations between infrared spectrum <strong>and</strong> chemical composition of mica. Am.<br />

Miner. 49, 736-768.<br />

WALKER G.F., i956. The mechanism of dehydration of Mg-vermiculite. Clays Clay Miner. 4, 101-105.<br />

WrLKINS R.W .T ., 1967. The hydroxyl-stretching region of the biotite mica spectrum. Mineral. Mag. 36,<br />

325-333.<br />

WILKINS R.W.T., !To J., 1967. Infrared spectra of some synthetic talcs. Am. Miner. 52, 1649-1661.


Abstracts<br />

425<br />

Dependence of Chemistry on Genesis in Zeolites:<br />

Multivariate Analysis of Variance <strong>and</strong><br />

Discriminant Analysis<br />

A. ALBERTI, M.F. BRIGATTI<br />

Istituto <strong>di</strong> Mineralogia e Petrologia, Universita <strong>di</strong> Modena, LargoS. Eufemia 19,41100 Modena, Italia<br />

This work was undertaken in order to establish the presence of correlations<br />

between genesis <strong>and</strong> chemical composition in zeolites. It is a well known fact<br />

that the chemical composition of a mineral depends on thermodynamic<br />

con<strong>di</strong>tions <strong>and</strong> genetic environment of growth, while it is a problem to<br />

establish which chemical elements <strong>and</strong> to what extent, are affected during<br />

growth, <strong>and</strong> how they interact. Multivariate analysis of variance <strong>and</strong> <strong>di</strong>scriminant<br />

analysis were used to tackle this problem. Three hundred <strong>and</strong> three<br />

chemical analyses of the mineralogical families: heulan<strong>di</strong>te, chabazite, erionite,<br />

phillipsite <strong>and</strong> analcime, 164 of hydrothermal <strong>and</strong> 139 of se<strong>di</strong>mentary<br />

genesis respectively were considered. For each of them, 10 chemical elements<br />

(Na, K, Mg, Ca, Sr, Ba, Fe 3 +, AI, Si, H 2 0) were taken into account. The<br />

results in<strong>di</strong>cate that for the five families considered a strong chemical boundary<br />

exists between hydrothermal <strong>and</strong> se<strong>di</strong>mentary zeolites, <strong>and</strong>, in fact, '<br />

only 5% of the samples were incorrectly classified with regard to their 1<br />

genetic groups .. Conversely, these results show the power of these statistical<br />

methods for problems of classification <strong>and</strong> <strong>di</strong>scrimination. The ability of the<br />

elements to <strong>di</strong>scriminate between the two genetic groupings <strong>di</strong>ffers for the<br />

<strong>di</strong>fferent families. For example, while the Si/A! ratio is generally an important<br />

<strong>di</strong>scriminating factor, the weight of the other elements, in particular<br />

Ca, H 2 0, <strong>and</strong> Mg, varies for the <strong>di</strong>fferent families. Among the 10 elements<br />

considered in this study, there is no proof of influence by genesis in Na only.<br />

Discriminant analysis for the s'amples classified into two groups on the basis<br />

of genesis only, <strong>di</strong>sregar<strong>di</strong>ng the <strong>di</strong>fferent families, classifies 83% of the<br />

samples correctly. The analysis of variance justifies this high number of<br />

incorrectly classified samples compared with the number found when the<br />

families are considered separately as the presence of a strongly significant<br />

interaction between geneses <strong>and</strong> families shows. Only Sr does not seem to be<br />

affected. Finally, the high significance of the <strong>di</strong>scriminant functions provides<br />

a satisfactory criterion in identifying the genetic grouping of new unclassified<br />

samples.


426 Abstracts<br />

Differences of Crystal Chemistry in Al-Rich<br />

Smectite Types: Multivariate A:nalysis~uf~,<br />

Variance <strong>and</strong> Discriminant Analysis<br />

A. ALBERTJI, M.F .. BRIGATTJI, L. POPPF<br />

1 Istituto <strong>di</strong> Mineralogia e Petrologia, Universita <strong>di</strong> Modena, LargoS. Eufemia 19, 41100 Modena, Italia<br />

2 Istituto <strong>di</strong> Mineralogia e Petrografia, Universita<strong>di</strong> Bologna, Piazza <strong>di</strong> Porta S, Donato I, 40127 Bologna, Italia<br />

It is well known that the physico-chemical properties of smectites (such as<br />

cation exchange capacity, thermal behaviour, reactions to physico-chemical<br />

treatments, etc.) can <strong>di</strong>ffer widely; these <strong>di</strong>fferences have been used to characterize<br />

the <strong>di</strong>fferent species <strong>and</strong>/or types of smectites. The end members of<br />

montmorillonite-beidel!ite series, for example, were <strong>di</strong>stinguished by the Li~<br />

test proposed by Greene-Kelly (1953). Grim & Kulbicki (1961) emphasized<br />

the presence of two <strong>di</strong>fferent montmorillonites (Cheto- <strong>and</strong> Wyoming-type)<br />

on the basis of cation exchange capacity, thermal behaviour, reaction to K­<br />

<strong>and</strong> Mg-treatments, <strong>and</strong> firing products. Schultz (1969) keeps the term Wyoming-type<br />

as jn Grim & Kulbicki (1961) but sub<strong>di</strong>vides Cheto-type samples<br />

into Otay-, Tatatilla-, <strong>and</strong> Chambers-type having <strong>di</strong>fferent DTA curves, firing<br />

products, <strong>and</strong> behaviour after K- treatment; the same author also introduces<br />

_the, term, .o


Abstracts<br />

427<br />

The Influence of Chromium (Ill) on the Crystallization<br />

of Iron Oxides at Low Temperature<br />

J. BARRIOS, J. TORRENT<br />

Departamento de Edafologia, E.T.S.I.A., Alameda del Obispo, Apdo. 3048, 14071 C6rdoba, Espafta<br />

Plants grown in soils having low amounts of available Cr have a low content<br />

of this element <strong>and</strong>, consequently, animals fee<strong>di</strong>ng on them can develop<br />

some deficiency symptoms because Cr has been shown to be essential for the<br />

glucose metabolism in animals.<br />

Chromium is present in soils in both Cr (Ill) <strong>and</strong> Cr (VI) compounds, whose<br />

relative proportions depend on several factors inclu<strong>di</strong>ng, especially redox<br />

con<strong>di</strong>tions. Plants seem to take Cr as the Cro~- ion, thus the formation of the<br />

highly insoluble Cr (III) compounds renders Cr relatively unavailable to<br />

plants unless some supply of Cro~- is assured.<br />

Inasmuch as Cr (Ill) seems to be usually occluded in iron oxides we undertook<br />

research to see the effect of Cr (Ill) on crystallization a:t low temperatures<br />

(t :5 100°C) of synthetic Fe oxides as well as to know the form in which<br />

Cr (Ill) is present in the synthetic er-containing Fe oxides. We report here the<br />

effect of Cr (Ill) on the crystallization of Fe oxides.<br />

In our experiments we started by coprecipitating protoferrihydrite <strong>and</strong> Cr<br />

(Ill)-hydroxide (from the nitrates, using NH 3 ) such that the molar ratio Cr/Fe<br />

+ Cr ranged from 0 to 30%. The precipitates were stored for 50 days at 55 or<br />

100°C <strong>and</strong> at pH 7 or pH 10. In the final products we calculated the proportions<br />

of goethite <strong>and</strong> hematite by comparing the areas of the peaks of their X­<br />

ray <strong>di</strong>ffractog,ams with the areas of appropriate external st<strong>and</strong>ards.<br />

As the ratio Cr/Fe + Cr increased the crystallinity of the final crystalline Fe<br />

oxides, as evaluated from the width at half height of their X-ray <strong>di</strong>ffractograms,<br />

decreased <strong>and</strong> the proportion of crystalline Fe oxides in the final<br />

product also decreased. ·<br />

The goethite/hematite ratio increased with increasing Cr content. At this<br />

point the effect of Cr (Ill) seems to be the opposite to that of AI (Gastuche et<br />

al., 1964) even though both cations have ionic ra<strong>di</strong>i smaller than that of Fe<br />

(Ill).<br />

Increasing the temperature of storage favoured hematite over goethite. Hematite<br />

was favoured over goethite by increasing the pH from 7 to 10, in contrast<br />

with pure Fe systems (Schwertmann & Murad, 1983).<br />

Gastuche M.C., Bruggenwert T., Mortl<strong>and</strong> M.M., 1964. Crystallization of mixed iron <strong>and</strong> aluminium<br />

gels. Soil Sci. 98, 281-289.<br />

Schwertmann U., Murad E., 1983. Effect of pH on the formation of goethite <strong>and</strong> hematite from<br />

ferrihydrite. Clays Clay Miner. 31, 277-284.


I<br />

I<br />

428 Abstracts<br />

Mossbauer Study of the Spontaneous<br />

Alteration of H-Bentoriite--<br />

i<br />

C GESSA 1 , P. MELIS 1 , V. SOLINAS 1 , N. BURRIESCF, M. PETRERA 3<br />

1 Istituto <strong>di</strong> Chimica Agraria, Facolta <strong>di</strong> Agraria, Universita <strong>di</strong> Sassari, Via E. De Nicola, 07100 Sassari, Italia<br />

2 Istituto <strong>di</strong> rucerche sui Meto<strong>di</strong> e Processi Chimici per la Trasformazione e l'Accumulo deli'Energia, C.N.R., Via<br />

Salita S. Lucia 39, Pistunina, 98!00 Messina, Italia<br />

3 Laboratorio Monte<strong>di</strong>son «G. Donegani», Via Fauser 4, 28!00 Novara, Italia<br />

Mossbauer spectroscopy was used to study the <strong>di</strong>splacement by protons of<br />

Fe 3 + from the octahedral layer of H-montmorillonites. Two clays collected<br />

from quarries at Costa Para<strong>di</strong>se, Sar<strong>di</strong>nia, <strong>and</strong> the well known Wyoming<br />

bentonite were subjected to <strong>di</strong>alysis <strong>and</strong> the Mossbauer spectra were recorded<br />

on the samples after <strong>di</strong>fferent <strong>di</strong>alysis times. The observed decrease of<br />

the relative trans- to cis-Fe 3 + resonant absorption area was interpreted as a<br />

preferential <strong>di</strong>splacement of the trans-coor<strong>di</strong>nated form. This effect can be<br />

connected with <strong>di</strong>fferent bond-strengths for the two sites but <strong>di</strong>fferent stabilities<br />

of the interme<strong>di</strong>ate iron forms during the substitution process also<br />

could play a role.<br />

The selective substitution of trans-Fe 3 + supports the model based on H+<br />

<strong>di</strong>ffusion through the planar surfaces proposed by Shainberg et al. ( 197 4) for<br />

------meTransforhiafior'i'ofH- <strong>and</strong> Nacmontmorillonite to Al-montmorillonites in<br />

water. The hydrolysis of two clays follows a parabolic rate law, in<strong>di</strong>cating a<br />

prevalence of the Fe 3 + substitution reaction by protons. The third clay<br />

exhibits a more complex behaviour which is attributed to a lower structural<br />

stability.<br />

Iron <strong>di</strong>stribution in H-bentonites before'<strong>and</strong> after 155 days of <strong>di</strong>alysis<br />

sample Fe Fetrans Fecis<br />

0<br />

sample Fe, Fetrans Fecis ~etrans .6.Fecis ~Fe<br />

A1/A 2<br />

A1/Az<br />

mg mg mg .mg ~Fe ~Fe Fe 0<br />

Wyoming 250 6.87 0.78 3.01 3.86 212 4.88 0.34 1.24 3.64 0.89 0.11 0.29<br />

White C.P. 250 6.27 0.58 2.30 3.97 218 4.93 0.28 1.08 3.85 0.91 0.09 0.21<br />

Red C.P. * 250 7.40 0.70 3.05 4.35 235 5.8o+ 0.36 1.54 4.26 0.94 0.06 0.22<br />

* after 40 days of <strong>di</strong>alysis<br />

+ determined after extraction of the oxide fraction by so<strong>di</strong>um <strong>di</strong>thionite both before <strong>and</strong> after<br />

<strong>di</strong>alysis<br />

AI <strong>and</strong> Mg <strong>di</strong>stribution in Wyoming clay before <strong>and</strong> after <strong>di</strong>alysis<br />

before <strong>di</strong>alysis<br />

after <strong>di</strong>alysis<br />

--<br />

sample Alo M go sample AI, Mg, M! llMg<br />

mg mg Alo M go<br />

250 31.15 4.85 212 24.86 3.10 0.20 0.36<br />

x 0 (x = Fe,Al,Mg) = amount of the cation at zero days of <strong>di</strong>alysis<br />

x, (x = Fe,Al,Mg) = amount of the cation at t days of <strong>di</strong>alysis; t = !55 d<br />

~<br />

Shainberg I., Low P.F., Kafkafi U., 1974. Electrochemistry of so<strong>di</strong>um-montmorillonite suspensions:<br />

I. Chemical stability of montmorillonite. Soil Sci. Soc. Amer. Proc. 38, 751-756.


Abstracts 429<br />

Grin<strong>di</strong>ng Effects on Crystallinity <strong>and</strong><br />

St<strong>and</strong>ard Free Energy of Kaolinite<br />

A. LA IGLESIA<br />

Divisi6n de Elementos Combustibles y Estructurales, Junta de Energia Nuclear, Ciudad Universitaria, 28040<br />

Madrid, Espafta<br />

~G 0 f values for several kaolinite samples are reported as a function of particle<br />

size <strong>and</strong> crystallinity. The results are <strong>di</strong>scussed in the light of several<br />

processes originated by the grin<strong>di</strong>ng.<br />

For the present study two <strong>di</strong>fferent kaolinite samples from Province of Cuenca<br />

(Spain) were used: samples PS <strong>and</strong> V correspon<strong>di</strong>ng to Perpetuo Socorro<br />

<strong>and</strong> Valdecabras Wealden deposits, respectively. Following the Murray &<br />

Lyons (1956) classification, the former can be considered as a well crystallized<br />

kaolinite showing crystals of an average size of about 1 Jlm, specific<br />

surface (ES) of 7.4 m 2 /g <strong>and</strong> a Hinckley (1963) index (H) of 1.2. On the other<br />

h<strong>and</strong>, sample V was an ordered kaolinite with an irregular morphology <strong>and</strong><br />

whose average crystal size was.0.3 Jlm; the rest of the above parameters were<br />

as follows: ES = 8.0 m 2 /g <strong>and</strong> H = 1.0. Each of these two samples was treated<br />

with a (tungsten carbide) ballon-grinder up to twelve hours.<br />

Particle size measurements \Vere made by X-ray <strong>di</strong>ffraction (Scherrer<br />

method) <strong>and</strong> electron microscope analyses. Crystallinity was monitored by<br />

X-ray <strong>di</strong>ffraction using two methods: (a) Hinckley index <strong>and</strong> (b) internal<br />

st<strong>and</strong>ard.<br />

~Gof values were obtained measuring the silica <strong>and</strong> aluminium concentration<br />

<strong>and</strong> the pH of solutions in equilibrium with (normal or ground) kaolinite<br />

samples at T = 298°K.<br />

Figures 1 <strong>and</strong> 2 show:_ ~G 0 f as a function of the crystallinity percentage<br />

(%C) <strong>and</strong> specific surface (SE), respectively. Note how both samples increase<br />

their ~G 0 f as SE <strong>di</strong>minishes accompanied by an amorphous behaviour to<br />

X-ray <strong>di</strong>ffraction. It should be noted that the present ~Gl value of -897<br />

kcallmol agrees well with that of Hem et al. (1973) for an amorphous gel with<br />

a composition similar to that of kaolinite. Fig. 1 also shows how crystallinity<br />

only appears within a narrow range of ~Gl, i.e., from -902.5 +1.1 <strong>and</strong><br />

-896.5 +1.1 kcallmol <strong>and</strong> consequently a short range of SE values would.<br />

-902<br />

0 :900<br />

~<br />

~<br />

u ""<br />

~<br />

'-' ~893<br />

04-<br />

(!}<br />

""'<br />

10 40 60<br />

Crystallinity (%C)<br />

Fig. 1


T<br />

430 Abstracts<br />

also correspond to this crystallinity interval. This is shown in Fig. 2 from 7 to<br />

25 m 2 /g. The last SE value is close to other poorly crystallized, almost<br />

amorphous, kaolinite determinations.<br />

-~~--~-~-___ ..... ___<br />

(<br />

-902<br />

0 -900<br />

E<br />

---...<br />

"' u<br />

~<br />

04- -898<br />

<br />

'


Abstracts 431<br />

Raman Spectra of Layer Silicates<br />

A.HIDALGO,M.SANTOS<br />

Instituto de Optica «Daza de Valdes>>, C.S.I.C., Serrano 121, 28006 Madrid, Espaii.a<br />

Raman spectroscopy has developed rapidly in the last years. The fact that a<br />

stable high-energy coherent source of ra<strong>di</strong>ation - the laser - is now a<br />

routine part of Raman instrumentation, more than any other single factor,<br />

has provided new impetus for continuing rapid growth in this area of<br />

spectroscopy.<br />

Although Raman spectra give new <strong>and</strong> complementary information to infrared<br />

spectroscopy, no much attention have received by clay scientists.<br />

In this work we present the Raman spectra of natural samples of talc,<br />

kaolinite, <strong>di</strong>ckite, muscovite, lepidolite, pyrophyllite <strong>and</strong> margarite.<br />

In the high frequency OH stretching vibration region quite good spectra are<br />

obtained, confirming the assignations done from the infrared data. Some of<br />

the samples give also good spectra in the 30-200 cm- 1 region which are<br />

complementary to those obtained recently by far infrared specfroscopy.<br />

X-ray Diffraction Intensity of Mixed Layer Clay Minerals.<br />

Some Theoretical Considerations on Mixing Function


432 Abstracts<br />

The <strong>di</strong>agram shows the relationships existing among C1, C 2 , p <strong>and</strong> D.<br />

0.5<br />

I<br />

\<br />

\<br />

\<br />

\<br />

\<br />

'o<br />

I \1<br />

,o ,..,<br />

\,.<br />

\<br />

I<br />

\<br />

\<br />

I<br />

5b<br />

\"r5'<br />

\<br />

\<br />

I<br />

------<br />

a;<br />

'<br />

.,._<br />

' '<br />

' '<br />

' '<br />

' '<br />

' ' ' ' '<br />

-- ........ ,,<br />

----.:-.:-_:: ~~~<br />

' 0<br />

' 11<br />

-- .................. ~,~'<br />

0.5<br />

C1 values are taken into account as follows:<br />

1) 17.8 A= smectite glycerol treated;<br />

2) 15.0 A = smectite with two water layers;<br />

~ 14.2 A = chlorite;<br />

4) 12.5 A = smectite with one water layer;<br />

5) 10.0 A = illite or dehydrated smectite.<br />

C 2 values are constantly changed:·<br />

1) from 0.0 to 17.0;<br />

2) from 0.0 to 14.0;<br />

3) from 0.0 to 12.5;<br />

4) from 0.0 to 11.0;<br />

5) from 0.0 to 9.0.<br />

I .<br />

Kaolinite with a translation of 7.15 is taken as C 2 •<br />

Graphs show curves of migration of maxima switching from a rectangular<br />

hyperbola to a sinuxoid to a straight line. ,<br />

In the graphs we can note two zones: the first called «unreal zone>> <strong>and</strong> the<br />

second «real zone». The second one comprises all the true interstratifications,<br />

but the two zones are strictly bounded since the curves of the real zone<br />

are the continuations of the unreal ones.<br />

Figure 1 shows that in the case. of p = 0.1, the curves are independent of D<br />

<strong>and</strong> are branchs of a rectangular hyperbola with equation sC 2 = K. ·<br />

In Fig. 2 (p = 0.5) the equation of the hyperbola is instead (C1 + C 2 )s = K.<br />

When D ~ 1.0 the curves become sinuxoidal, mostly for low values of s as<br />

shown in Fig. 3.<br />

Lastly (Fig. 4), when p = 0.9 the curves are independent of D <strong>and</strong> are parallel<br />

to the abscissa (C 2 ).


-<br />

c 1 :17.8 p:O .. 1 0:0.0+1.0<br />

q:r7.8 p:0.5 0:0.2<br />

.5<br />

s<br />

Unrea 1 Zone<br />

I<br />

I<br />

:Rea 1 Zone<br />

s Unreal Zone<br />

.5<br />

I<br />

I<br />

:Rea 1 Zone<br />

I<br />

s<br />

.5<br />

.4<br />

.:3<br />

.2<br />

.1<br />

• 0<br />

0 5<br />

Fig. 1<br />

p:0.5<br />

D:1.q<br />

I I<br />

I I<br />

Unreal Zone Real Zone<br />

-.....<br />

':-......<br />

~ ~ .......... ........<br />

- - "'-."f"--,. ..... ..........<br />

'<br />

......<br />

----<br />

r--- / -...........l ............... ........... ......<br />

I.<br />

I<br />

I<br />

.-..<br />

/"--..... ~--~--<br />

I<br />

I<br />

r----<br />

!.- -.L--<br />

I<br />

1----t-1--<br />

~ t-f---<br />

-<br />

I<br />

I<br />

- I<br />

-...!.. ../<br />

I<br />

-<br />

.......<br />

1----<br />

1---<br />

Fig. 3<br />

I<br />

I<br />

I<br />

:<br />

.0+------+--~--~--L-~--~<br />

s<br />

.5<br />

.4<br />

.3<br />

.2<br />

.1<br />

.0<br />

0<br />

c 1<br />

:17.8<br />

Unreal<br />

5<br />

Fig. 2<br />

p:0.9 0:0. 0;.1. 0<br />

I I I I<br />

I<br />

Zone<br />

1 Rea 1 Zone<br />

5<br />

Fig. 4<br />

/1 I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

!<br />

I<br />

I<br />

I<br />

I<br />

I I I


434 Abstracts<br />

Figures 2 <strong>and</strong> 3 show how the reflections react each with other: the (001)<br />

with (002), the (002) with (004), the (003) with (006), etc.<br />

Furthermore, the graphs clarify the already expFessed-questions-about -the<br />

meaning of <strong>di</strong>fferent basal reflections with various C 1 - C 2<br />

- p <strong>and</strong> D.<br />

Allegra G., 1964. The calculation of the intensity of X-ray <strong>di</strong>ffracted by mono<strong>di</strong>mensionally <strong>di</strong>sordered<br />

structures. Acta crystallogr. 17, 579-598.<br />

Cesari M., Morelli G.L., Favretto L., 1961. Identification d'un mineral a interstratification partiellement<br />

reguliere d'illite-montmorillonite dans les argiles noires de la Sicile du Sud-Est. Acta<br />

Univ. Carol., Geologica, Suppl. 1, 257-262.<br />

Cesari M., Morelli G.L., Favretto L., 1963. Determination of the type of stacking in mixed layer clay<br />

minerals. Acta crystallogr. 18, 189-196.<br />

Morelli G.L., 1966. Intensita della <strong>di</strong>ffrazione dei raggi X da parte <strong>di</strong> minerali argillosi a strati<br />

misti. I- Calcoli per vari modelli strutturali. Rend. S.M.l. Anno XXII, 175-186.<br />

Morelli G.L., Favretto L., Asklund A.M., 1967. Determination of the type of stacking in a mixed<br />

layer clay mineral from Kinnekulle. Clay Miner. Bull. 7, 113-115.<br />

Morelli G.L., Cesari M., 1967. Intensita della <strong>di</strong>ffrazione dei raggi X da parte <strong>di</strong> minerali argillosi a<br />

strati misti. 11- Caso <strong>di</strong> inter!aminazione <strong>di</strong> due strati aventi <strong>di</strong>fferenti fattori <strong>di</strong> struttura. Atti<br />

Soc. It. Sci. Nat. CV!, Fasc. III, 209-216.


Section IV<br />

Soil Mineralogy· <strong>and</strong> Geochemistry


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 437·453 (1985)<br />

Mineralogical Characteristics of the Fine Fraction of Soils<br />

from the Emilia-Romagna Region, Northern Italy<br />

G. FELICE 1 , G.C. GRILLINP, N. MORANDP, G. VIANELLF<br />

I Istituto <strong>di</strong> Mineralogia e Petrografia, Universitil <strong>di</strong> Bologna, Piazza <strong>di</strong> Porta S. Donato 1, 40127 Bologna, Italia<br />

2 Regione Emilia-Romagna, Ufficio Cartografico, Via Galliera 21, 40121 Bologna, Italia<br />

ABSTRACT - Forty six soil profiles variously <strong>di</strong>stributed through the entire<br />

Emilia-Romagna Region, for a total of 156 horizons were examined as a part<br />

of the research program relative to the study of the mineralogical composition<br />

of the fine fraction of soils in this Region.<br />

The extensive data collected have lead to the following conclu<strong>di</strong>ng considerations:<br />

- Jndependent of type of parent rock lithology <strong>and</strong> of the soil evolution it<br />

was observed that the mineralogical components, chlorite <strong>and</strong> kaolinite, are<br />

not significant <strong>and</strong> that the whole range of illite <strong>and</strong> smectite variation is<br />

found, with higher frequency in the range of ratios 1:1 to 3:2.<br />

-The profiles characterized'by high aci<strong>di</strong>ty show the regular presence of<br />


438<br />

G. Felice, G.C. Grillini, N. Moran<strong>di</strong>, G. Vianelli<br />

tions of the fine fractions of the various<br />

horizons of the same profile, between<br />

those of the various profiles<br />

formed on analogous lithological<br />

substrates or between those obtained<br />

from profiles formed on <strong>di</strong>fferent<br />

types of substrates.<br />

related to the nature of the substrate<br />

<strong>and</strong> they_ S_ll


«Hill soils»<br />

Mineralogical Characteristics of the Fine Fraction of Soils ... 439<br />

MA - Soils found on substrates<br />

consisting of flyschioid se<strong>di</strong>ments<br />

(s<strong>and</strong>stones, marls <strong>and</strong> siltites) of the<br />


440 G. Felice, G.C. Grillini, N. Moran<strong>di</strong>, G. Vianelli<br />

way it is possible to identify the various<br />

types of interlayers present in<br />

the profiles <strong>and</strong> to · determine the<br />

characteristics of some particular<br />

phases previously stu<strong>di</strong>ed in detail by<br />

the authors (MONGIORGI &<br />

MORANDI, 1970; FELICE et al.,<br />

1981).<br />

The semi-quantitative data relative<br />

to the clay minerals were obtained<br />

following the method of BISCA YE<br />

(1965), mo<strong>di</strong>fied accor<strong>di</strong>ng to the suggestions<br />

of other authors (WALKER,<br />

1957; THOREZ, 1975; MEZZETTI et<br />

al., 1980; FELICE et al., 1981). These<br />

mo<strong>di</strong>fications were used for the determination<br />

of the phases defined in<br />

this work as « 14 A mineral» <strong>and</strong><br />

.,,-clay=Verniiculite» <strong>and</strong> of. the<br />

amounts of serpentine.<br />

The pedological data were<br />

obtained accor<strong>di</strong>ng to the methods<br />

which are presently in use at the<br />

laboratories of the «Servizio Cartografico>><br />

of the Emilia-Romagna Region.<br />

The determination of the percents<br />

of s<strong>and</strong> (S) (2-0.05 mm), silt (L) (0.05-<br />

0.002 mm) <strong>and</strong> clay (A) (


Mineralogical Characteristics of the Fine Fraction of Soils ... 441<br />

have «vertic» characteristics. They<br />

were used as reference soils for comparison<br />

purposes. The mineralogy of<br />

the


TABLE 1 I<br />

Pedological characteristics <strong>and</strong> clay components of FA rnd TF soils (for abbreviations see text)<br />

Hori-<br />

DEPTH TEXTURE I<br />

Sample Classification<br />

CaC03 CLAY COMPONENTS (to 100%)<br />

zons<br />

(cm) (%) I pH total<br />

from to s L A! % Sm I I-Sm Cl K Se 14 A<br />

I<br />

I<br />

FA1 Entic Chromoxererts Ap 0 60 21 30 491 7.9 13 45 43 6<br />

AC<br />

6<br />

1 60 80 15 32 531 7.9 14 30 33 25 6<br />

AC2g<br />

6<br />

80 140 23 26 51 i 7.9 14 21 46 21 6 6<br />

N<br />

""'<br />

FA2 Entic Chromoxererts Ap 0 so 25 26 49, 7.6 14 25 28 30 9 8 0<br />

AC 1 so 80 26 26 48i 7.7 13 23 33 27 9 8<br />

"lj<br />

AC -<br />

2 80 115 20 31 49: 7.7 14 23 39 19 10 9 - - "'<br />

c,g 115 150 24 26 so: 7.8 15 24 38 19 11 8 -<br />

~~<br />

C2g 150<br />

i<br />

210 - - :<br />

- 17 38 28 11 6 - C'l<br />

I<br />

FA3<br />

h<br />

Entic Chromoxererts Ap 0 so 19 34 47! 7.8 7 33 24 34 9 - C'l<br />

AC, so 110 18 30 52 i 7.9 3<br />

;:!,<br />

28 19 46 - 7 -<br />

~<br />

AC2g 110 190 n.d. n.d. n.d.i n.d. n.d. 24 27 42<br />

Cg<br />

7<br />

190 250<br />

-<br />

n.d. n.d. n.d.i n.d. n.d. .:-·<br />

43 18 29 10 -<br />

~<br />

FA4 Entic Chromoxererts Ap 0 50 .17 30 53 8.0 11 25 42 - 18 15 - ~<br />

ACg so<br />

0<br />

80 13 34 53 8.3 8 19 55 - 14 12 - - i:1<br />

C,g 80 120 15 24 61 . 8.5 4 23 53<br />

;:s<br />

13 11 - _!:::<br />

FAS Entic Chromoxererts Ap 0 40 15 26 59 7.9 3 23 47 16 14 - :<br />

0<br />

ACg 40 70 15 24 61 8.5 5 17 57 - 13 12 - - $<br />

Ctg 70 140 11 36 53 ~<br />

9.0 19 19 63 10 9 -<br />

;:s<br />

Cjg 140 200 p 32 51 8.9 14 10 58 17 14 "'<br />

-<br />

C3g 200 220 17<br />

-<br />

26 57<br />

E::<br />

8.5 4 13 55 - 17 15 -<br />

,I<br />

FA6 Entic Chromoxererts Ap 0 70 18<br />

I<br />

29 53 7.7 10 17 52 - 17 14 - ;<br />

AC 1 g 70 ~50 18 29 53 8.0 14 22 49 - 17 12 -<br />

AC2g 150 205 14 25 61 8.0 16 21 55 - 13 11 -<br />

FA7 Entic Chromoxererts Ap 0 45 15 32 53 7.8 13 43 33 - 14 10<br />

ACg 45 80 15 22 63 8.1 5 42 44 - 8 6<br />

C,g 80 100 17 20 63 8.1 - 36 44 11 9<br />

C2g 100 165 17 30 53 8.3 12 46 31 - 12 11<br />

C3g 165 230 17 26 47 8.0 2 29 35 - 10 8 18<br />

I<br />

l


~-~-1<br />

TABLE I<br />

Pedological characteristics <strong>and</strong> clay components of FA <strong>and</strong> TF soils (for abbreviations see text)<br />

DEPTH TEXTURE CaC0<br />

Hori-<br />

3 CLAY COMPONENTS (to 100%)<br />

Sample Classification (cm) (%) pH total ~<br />

zons<br />

from to s L A % Sm I I-Sm Cl K Se 14 A ;s·<br />

;:; "'<br />

FA8 Entic Chromoxererts Ap 0 so 17 . 24 59 7.7 7 46 34 11 9 - ~<br />

1)'<br />

ACg 50 85 17 48 65 7.9 5 39 42 10 9 - - f2..<br />

Ctg 85 110 17 23 60 8.2 8 42 40 9 9 - (')<br />

;::;-<br />

C2g 110 180 17 38 45 8.5 3 59. 21 7 7 6<br />

!'><br />

IIC 3 g 180 240 17 44 39 8.8 19 43 34 - 12 11<br />

;:;<br />

FA9 Ap 0 50 16 / 30 54 7.9 10 so 20 20 5 5<br />

FAIO Entic Chromoxererts Ap 0 so 14 36 so 7.9 13 40 26 24 5 5 -<br />

"'<br />

~-<br />

FAll Ap 0 so 15 40 45 7.8 12 65 12 16 tr. 7 - .Q,<br />

TF1 Typic Haploxeralfs Ap 0 40 38 46 16 7.5' 30 23 40<br />

s.<br />

7 -<br />

Bt 40 75 34 42 24 7.6 - 32 25 31 12 -<br />

"' "lj<br />

;s·<br />

B21t 75 105 32 42 26 7.6 57 36 - 7 -<br />

IIC 1 g 105 150 36 35 29 7.7 - 95 - - 5<br />

"''<br />

..... "ll'·<br />

IIC2g 150 190 n.d. n.d. n.d. n.d. - 95<br />

!'> ',<br />

- - - 5 -<br />

-~<br />

IIC 3 g 220 240 23 32 45 8 2~ 72 17 - 41 - - 6'<br />

IIC4g 240 265 39 14 47 7.8 78 14 - - 8 -- -<br />

;,:<br />

.Q,<br />

TF2 Typic Haploxeralfs A2 1 16 42 44 14 4.1 - 36 33 10 7 - 15 en<br />

0<br />

Bt 16 42 34 40 26 5.0 12 40 36 6 6 - -<br />

F<br />

B 21 t 42 88 34 40 26 5.6 - 18 37 34 12<br />

B 2 ~t 88 95 38 34 28 6.1 - 90 ' 10<br />

B 23 t 95 145 25 32 43 7.5 - - 90 10<br />

IIC 1 g 180 205 n.d. n.d. n.d. n.d. - - 90 - 10<br />

~<br />

•(\><br />

;:t<br />

..,.<br />

w


444 G. Felice, G.C. Grillini, N. Moran<strong>di</strong>, G. Vianelli<br />

- Even though formed on qualitatively<br />

<strong>di</strong>fferent starting materials, it<br />

cannot be excluded that the alkaline<br />

pH of TF 1 favoured the formation of<br />

swelling minerals; whereas, the acid<br />

pH of TF 2 would favour the conservation<br />

of the non swelling phase<br />

(14 A mineral, high illite content) in<br />

the upper part of the profile. With a<br />

sufficiently neutral pH, abundant<br />

amounts of swelling phases have<br />

been formed in TF 2.<br />


Mineralogical Characteristics of the Fine- Fraction of Soils ... 445<br />

nent, in agreement with FELICE et al.<br />

(1981). MA 2-3 are less acid than the<br />

others <strong>and</strong> are richer in illite.<br />

- MA 1, the profile with the highest<br />

pH values of the whole group,<br />

shows a characteristic «comma» 'behaviour<br />

determined by the presence<br />

of aB horizon (the most acid with the<br />

highest percent of 14 A mineral) with<br />

traces of the accumulation of illuvial<br />

clay (s<strong>and</strong> = 29%, silt = 35%, clay =<br />

36% in the Bzt horizon).<br />

-The shape of the compositional<br />

areas (oriented along the I-14 A axis)<br />

<strong>and</strong> the particular abundance of interstratified<br />

minerals in<strong>di</strong>cate a<br />

. rather extensive mineralogical evolution<br />

confirming the pedological data<br />

(presence of a B horizon, complete<br />

Jack of carbonates <strong>and</strong> low desaturation).<br />

MA (8-12)<br />

'-<br />

MA 9 is slightly <strong>di</strong>fferentiated from<br />

the substrate <strong>and</strong> has not evolved<br />

very much because of erosion. The<br />

other profiles have a B horizon <strong>and</strong><br />

are well provided with basic cations.<br />

There are traces of the accumulation<br />

of illuvial clays in MA 8.<br />

The mineralogy of these soils is<br />

characterized by dominant illite <strong>and</strong><br />

clay-vermiculite (V) which sometimes<br />

are accompanied by chlorite.<br />

Both types of minerals are considera<br />

b 1 y <strong>di</strong>sordered. Based on ~ the information<br />

reported in Fig. 3, the fol-\<br />

lowing considerations can be made:<br />

- The mineralogical composition<br />

is concentrated in a restricted area<br />

(In Vz3 - b Vn) with quite wide<br />

variations in the chlorite content.<br />

This is in<strong>di</strong>cation of a certain degree<br />

of homogeneity in the lithological<br />

substrates but with some local variations.<br />

-The shape of the compositional<br />

areas, oriented along the I-V axis, is<br />

in<strong>di</strong>cation of a certain mineralogical<br />

evolution within the in<strong>di</strong>vidual profiles.<br />

An examination of the two MA<br />

groups shows that they are characterized<br />

by two <strong>di</strong>fferent minerals (14 A<br />

mineral for the first group <strong>and</strong> clayvermiculite<br />

for the second) even<br />

though there is considerable superimposition<br />

of their respective areas<br />

in the ternary <strong>di</strong>agram. This demonstrates<br />

their dependence on the same<br />

type of substrate <strong>and</strong> a pedogenetic<br />

evolution tied to <strong>di</strong>fferent physicochemical<br />

factors.<br />

b) MC (Table 3)- MC 1 <strong>and</strong> 2 are·<br />

poorly developed because of erosion.<br />

MC 3 <strong>and</strong> 4 have a B horizon <strong>and</strong> are<br />

moderately desaturated; they show<br />

traces of accumulation of illuvial<br />

clay. MC 5 <strong>and</strong> 6 show incipient podzolization.<br />

There is a progressive <strong>di</strong>fferentiation<br />

from substrate in going<br />

from MC 1 to MC 6. With the exception<br />

of MC 6 (described in FELICE et<br />

al., 1981), the mineralogical composition<br />

consists of 14 A mineral, I, I-14 A<br />

(in MC 4-B 21 t <strong>and</strong> Bzzt, the interstratified<br />

minerals are of the Cl-Sm type)<br />

Cl <strong>and</strong> sometimes K.<br />

Observation of Fig. 3 leads to the<br />

following considerations:<br />

-With the exception of MC 6, the<br />

areas for these profiles are concentrated<br />

in a restricted zone of the<br />

triangle, in<strong>di</strong>cating a relative<br />

homogeneity of the substrates.


_J<br />

TABLE 2 I<br />

Pedological characteristics <strong>and</strong> clay components of MJ\ soils (for abbreviations see text)<br />

. I<br />

DEPTH TEXTURE ·j<br />

Hori-<br />

CaC03 CLAY COMPONENTS (to 100%)<br />

Sample Classification (cm) (%) I pH total<br />

zons<br />

from to s L AI % 14 A V I I-Sm Cl K<br />

i<br />

MAl Typic Hapludalfs At 3 10 44 44 12 5.7 - 9 39 41 11<br />

A3 10 40 45 39<br />

6.9 17 28 38 17<br />

Bt 40 70 55 27 ~~ 6.2 - 18 24 44 14<br />

B 2 t 70 115 29 35 3q 6.6 - 9 33 53 5<br />

0<br />

'>:1<br />

c 115 140 n.d. n.d. n.1. 6.5 8 - 42 43 "7<br />

I<br />

MA2<br />

t<br />

J<br />

Umbric Dystrochrepts At 1 30 42 45 q 5.0 - 22 21 57 -<br />

<br />

;s<br />

"'<br />

MA5 Typic (


,<br />

TABLE 1<br />

Pedological characteristics <strong>and</strong> clay components of FA <strong>and</strong> TF soils (for abbreviations see text)<br />

DEPTH TEXTURE CaC0 3<br />

CLAY COMPONENTS (to 100%)<br />

Hori-<br />

Sample Classification (cm) (%) pH total<br />

zons<br />

from to s L A % Sm I I-Sm Cl K Se 14 A<br />

MA7 Typic («Spo<strong>di</strong>c) Hapludults AI 2 7 63 28 9 3.8 11 17 64 8 "' ;::;<br />

A2 7 20 63 25 12 4.4 - 53 - 6 41 tr. - ,g<br />

B2 20 60 62 21 17 4.6 65 6 29 tr. c:;·<br />

B'2t 60 110 35 35 30 4.9 - 18 - 40 42 tr. - ~<br />

(')<br />

;s-<br />

MA8 Typic Hapludalfs AI 1 5 60 28 12 4.9 20 70 10<br />

I'><br />

;::;<br />

B1 10 30 58 -25 17 7.0 - - 56 44 - - - ()<br />

(li<br />

B21 70 90 58 25 17 8.3 3 52 48 - -<br />

MA9 Lithic Xerorthents 15 58<br />

B22tca 120 140 57/ 30 23 8.5 34 48 52 - - - a·<br />

"'<br />

AI 2 29 13 8.0 17 - 30 so - 20 a<br />

......,<br />

;;,;.<br />

MAlO Lithic Xerochrepts AI 1 5 42 39 19 8.0 15 38 52 10<br />

"'<br />

B1 5 25 36 45 19 8.3 7 39 52 9 '>1<br />

~·,<br />

B2 25 45 34 47 19 8.4 26 - 30 58 - 12 -<br />

'>1,<br />

MAll Typic Eutrochrepts Ap1 0 20 so 31 19 8.0 3 - 47 53<br />

Ap2 20 40 so 31 19 8.1 3 - 52 48 5·<br />

~-<br />

B1 40 80 52 29 19 8.2 5 - 47 53 - a<br />

B2 80 180 53 28 19 8.3 5 42 58 - - -<br />

......,<br />

(/)<br />

c 180 225 62 27 11 8.2 5 48 52 - - ::1.<br />

r<br />

MA12 Dystric Eutrochrepts Ap 20 40 52 31 17 7.9 - 27 73<br />

B 70 90 54 29 17 7.8 23 77<br />

B2 110 130 60 23 17 7.8 - 28 72<br />

c1 180 200 54 26 20 7.9 35 65<br />

C2 210 230 56 26 18 7.9 38 62<br />

u c3 230 280 70 19 11 7.6 27 73<br />

is:<br />

;:i•<br />

~-<br />

~1<br />

"'<br />

+><br />

+><br />

--.]


i<br />

I<br />

I<br />

TABLE 3 I :<br />

Pedological characteristics <strong>and</strong> clay components of MC, AS <strong>and</strong> PV soils (for abbreviations see text)<br />

-!'>-<br />

-!'>-<br />

00<br />

I<br />

I<br />

Sample Classification<br />

Hori-<br />

DEPTH TEXTURE! CaC03 CLAY COMPONENTS (to lOO%)<br />

(cm) (%) I<br />

zons<br />

pH total<br />

from to s L 1A % 14 A I I-Sm Cl K<br />

MC1 Lithic Udorthents AI 0 23 70 15<br />

MC2 Lithic Udorthents AI 0 15 40 48<br />

115<br />

112<br />

7.3 16 53 16 10 5<br />

5.2 - 20 40 20 20<br />

MC3 Ultic Hapludalfs AI 0 30 42 40 118 4:8 - 16 34 44 6 tr.<br />

B2t 30 70 40 34 126 5.0 15 37 31 12 5<br />

c 70 120 40 37 \23 4.7. 11 55 17 17 - 0<br />

'lj<br />

MC4 Typic Hapludalfs AI 0 20 47 35 :18 5.1 31 49 20<br />

~<br />

1<br />

- ()•<br />

B21t 45 80 46 30 z4 6.3 - 62 38 - .!'><br />

B 22 t 80 120 48 30 122 6.9 - 69 31 -


TABLE 4<br />

B:::<br />

Pedological characteristics <strong>and</strong> clay components of GE soils (for abbreviations see text)<br />

;s·<br />

"'<br />

DEPTH TEXTURE CaC03 CLAY COMPONENTS (to 100%) i:l<br />

Hori- 0<br />

Sarriple Classification (cm) (%) pH total<br />

zons<br />

"" c;·<br />

from to s L A % 14 A V I I-Sm Cl K ~<br />

()<br />

GEl Typic Xerorthents c, 8 30 60 36 4 7.4 7 36. ;:s-<<br />

- 24 33 7 tr. .,<br />

c2 30 60 57 -.40 3 7.5/ 7 45 23 24 8 tr. i:l<br />

"(;;<br />

GE2 Typic Xerorthents c, 8 25 75/ 18 7 6.3 37 30 33 tr. tr. ;:!.<br />

c2 80 100 75 18 7 5.5 - - "'<br />

~-<br />

GE3 Typic Eutrochrepts A12 4 30 25 39 36 .7.6 32 27 36 tr. 5 .Q,<br />

B2 30 60 18 44 38 7.8 17 26 - 28 36 5 5 ~<br />

B3 60 85 22 42 36 8.1 6 24 28 38 5 5 "lj "'·<br />

c" 85 150 21 41 38 8.2 15 21 39 34 tr. 5 ~·,'<br />

IIC2 150 250 34 60 6 7.4 11 20 - 43 25 6 6 "lj,<br />

.,,<br />

... ,<br />

GE4 R 0 15 n.d. n.d. n.d. 34 28 24 9 5 "' 6·<br />

;s<br />

GE5 R 0 15 n.d. n.d. n.d. 42 - 35 16 7 .Q,<br />

GE6 Lithic Xerorthents A12ca 4 20 32 38 30 7.4 16 57 30 - 7 6 ~<br />

c 20 40 29 65 6 7.8 30 85 - 10 5 tr.<br />

c 20 40 27 45 28 7.7 8 90 10 - tr. tr.<br />

(/)<br />

0<br />

t<br />

'D


450 G. Felice, G.C. Grillini, N. Moran<strong>di</strong>, G. Vianelli<br />

- The compositional areas of MC<br />

3-4-5 are oriented along the I-14 A<br />

mineral axis <strong>and</strong>,Jrom a mineralogical<br />

point of view,. in<strong>di</strong>cate a considerable<br />

evolution.<br />

-MC 6 is <strong>di</strong>stinctly <strong>di</strong>fferent from<br />

the other profiles; the mineralogical<br />

composition puts. it nearer the 14 A<br />

mineral vertex (in this case also<br />

smectite), in<strong>di</strong>cating a particular<br />

mineralogical-pedological evolution<br />

of the profile (podzolization).<br />

-The pedological data relative to<br />

the state of <strong>di</strong>fferentiation from the<br />

substrate is confirmed by the variable<br />

I/14 A mineral ratio, a mineralogical<br />

index of the state of evolution of<br />

the soil.<br />

<<br />

·------~---- -~- Tlle--cl1Torl1:e--coii1en.-t-1n.- thesesoils<br />

is among the highest found in<br />

the present study. This is sometimes<br />

linked to the high aci<strong>di</strong>ty of these<br />

soils (FELICE et al., 1981) as well as<br />

to the peculiar composition of the parent<br />

rock.<br />

c) PV <strong>and</strong> AS (Table 3) - The soils<br />

have a B horizon <strong>and</strong> they are well<br />

provided with basic cations. The <strong>di</strong>fferentiation<br />

from the substrate is<br />

moderate. The mineralogical compositon<br />

consists of I (<strong>di</strong>stinctly predominate<br />

in PV), I-14 A mineral, 14 A<br />

mineral, Cl <strong>and</strong> K.<br />

The observation in Fig. 3 of profiles<br />

PV <strong>and</strong> AS leads to the following considerations:<br />

- These two mineralogically similar<br />

groups occupy <strong>di</strong>stinctly <strong>di</strong>fferent<br />

areas of the <strong>di</strong>agram, confirming on<br />

the one h<strong>and</strong>, that each group is<br />

formed on the sarrie substrate <strong>and</strong> on<br />

the other, that the two types of substrates<br />

are <strong>di</strong>stinctly <strong>di</strong>fferent even if<br />

they belo:gg_tl2!h~ sam(;! «f()~~~tion».<br />

- The subcircular shape of the<br />

compositional areas confirms in both<br />

cases the moderate evolution of the<br />

profiles (high contents in illite <strong>and</strong><br />

chlorite).<br />

d) GE (Table 4) -. GE 1-2-3 are<br />

slightly <strong>di</strong>fferentiated profiles with<br />

little evolution, due to erosion; GE 3<br />

has aB horizon. GE 6- represents<br />

pockets of material with a finer texture<br />

present in the C horizon.<br />

The mineralogical composition is<br />

as follows: <strong>di</strong>sordered Sm, degraded<br />

I, <strong>di</strong>sordered I-Sm, Cl <strong>and</strong> sometimes<br />

K. GE 2 <strong>di</strong>ffers from the others in that<br />

it contains V in place of the Sm. In all<br />

the. profiles~ howeve~, a part of the<br />

smectite does not completely exp<strong>and</strong><br />

after treatment with KCl, lea<strong>di</strong>ng to<br />

the supposition that the mineral is<br />

mixed with a clay-vermiculite.<br />

Examination of Fig. 2 leads to the<br />

following considerations:<br />

~The compositions are quite <strong>di</strong>fferent<br />

even if it seems evident that<br />

there is a strong predominan~e of<br />

smecti te in these soils.<br />

-The anomalous nature of GE 6<br />

probably can be· attributed to particular<br />

formation mechanisms (note<br />

the presence of pockets) rather than<br />

to mineralogical <strong>and</strong>/or chemical<br />

variations.<br />

- Considering GE 4-5 as the most<br />

probable parent rock for these soils,<br />

it seems clear that from the mineralogical<br />

point of view, the exten.t of<br />

evolution in all these profiles is low.<br />

-Because of both its s<strong>and</strong> content<br />

<strong>and</strong> the presence of clay-vermiculite,


Mineralogical Characteristics of the Fi~eFraction of Soils ... 451<br />

GE 2 seems to have been formed on a<br />

<strong>di</strong>fferent substrate from that of the<br />

other soils in this group or, at least, to<br />

have undergone a peculiar pedogenetic<br />

process.<br />

e) OF- These soils are found on<br />

ophiolitic rocks of various nature<br />

(gabbro, hydrothermalite <strong>and</strong> predominantely<br />

serpentinite); they have<br />

the common characteristic of being<br />

only slightly developed in depth. It<br />

often is <strong>di</strong>fficult to <strong>di</strong>stinguish between<br />

the various horizons of an in<strong>di</strong>vidual<br />

profile. The~ mineralogical<br />

study of the fine fraction of the hori-<br />

. zons sampled in these 5 profiles<br />

showed the presence of trioctahedral<br />

smectite (d (060) = 1.53 A), chloriter<br />

<strong>and</strong> interstratified · chloritetrioc.tahedral<br />

smectite (both <strong>di</strong>sor-<br />

. c<br />

dered <strong>and</strong> ordered) as well as small<br />

amounts of primary minerals of ' the<br />

parent rock. Quantitative information<br />

on these components was not<br />

obtained because of the absence of<br />

illite which must be utilized as the<br />

reference mineral.<br />

Soils with similar compositions derived<br />

from serpentinite have been reported<br />

recently in the literature<br />

(ROBENHORST et al., 1982) but the<br />

mechanism of formation <strong>and</strong> the type<br />

of evolution involved in the development<br />

of these chlorite-type structures<br />

. derived from serpentines by simple\<br />

pedogenetic action, still are not clearly<br />

understood. (At present, some of<br />

the authors are involved in completing<br />

further research <strong>di</strong>rected towards<br />

obtaining a better understan<strong>di</strong>ng of<br />

the chemical <strong>and</strong> physical parameters<br />

on :which these transformations<br />

are based).<br />

The OF soils were included in this<br />

research for the purpose of increasing<br />

the range of data but they are completely<br />

<strong>di</strong>fferent from all the other<br />

soils previously described here.<br />

Conclu<strong>di</strong>ng remarks<br />

The extensive data collected have<br />

lead to the following conclu<strong>di</strong>ng considerations:<br />

1) Illite is present in variable proportions<br />

but, with only the exception<br />

being the soils found on ophiolitic<br />

rocks, its percentage in all the soils,<br />

derived from an especially wide variety<br />

of parent rock, was concentrated i<br />

in the range 30 to 50%. The comparison<br />

of the compositions of the hori-.<br />

zons of each in<strong>di</strong>vidual profile gave<br />

evidence of the strong evolutive<br />

tendency to the alteration of illite toward<br />

swelling structures (smectite,<br />

clay-vermiculite or interstratified<br />

minerals) or to non swelling minerals<br />

having Al-hydroxy interlayers (14 A·<br />

minerals).<br />

2) Chlorite <strong>and</strong> kaolinite, especially<br />

'the former, were components almost<br />

always present in the numerous soil<br />

profiles stu<strong>di</strong>ed; in general, the<br />

amount of these minerals was around<br />

15%. In cases where an enrichment of<br />

chlorite or kaolinite was found, it al-.<br />

ways could be attributed to the particular<br />

lithology of the substrate.<br />

3)-0nly the plain soils (FA <strong>and</strong> TF)<br />

<strong>and</strong> those related to the Messinian<br />

evaporitic succession (GE) were <strong>di</strong>s-


1<br />

452 G. Felice, G.C. Grillini, N. Moran<strong>di</strong>, G. Vianelli<br />

tinctly smectitic which seems to be<br />

due i) to the presence of a lithological<br />

substrate already rich in degraded<br />

clay minerals which have not yet<br />

undergone <strong>di</strong>agenesis or ii) to con<strong>di</strong>tions<br />

where, there is considerable<br />

availability of basic exchangeable cations.<br />

This particular chemical environment,<br />

was favoured by the geographic<br />

<strong>and</strong> geomorphologic situation<br />

of the Po Valley <strong>and</strong> by the considerable<br />

mobilization of Ca within the<br />

lithotypes related to the «Gessoso­<br />

Solfifera>> succession.<br />

4) All the hill soils related to the<br />

se<strong>di</strong>mentary lithological successions<br />

of the «Marnoso-Arenacea>>, the<br />

-~-~---~---- ____«MacignO>> __ or __:the_ -~Caotic_o_jn<strong>di</strong>f­<br />

ferenziato>> contain either clayvermiculite<br />

or more frequently the 14<br />

A mineral. Similar characterizations<br />

seem to be related mainly to chemical<br />

factors: the type <strong>and</strong> amount of<br />

ions mobilized in the profile <strong>and</strong> the<br />

pH, respectively (c.f., the interdependence<br />

found between acid pH<br />

<strong>and</strong> the presence of the 14 A mineral).<br />

5) The horizons within in<strong>di</strong>vidual<br />

profiles tend to be <strong>di</strong>fferentiated,<br />

from a mineralogical point of view,<br />

by the pedogenetiC phenomena to<br />

which they _are subjected (c.f., the<br />

elongated shape of the areas which<br />

represent the.compositions.~of the in<strong>di</strong>vidual<br />

profiles). The extent of this<br />

effect is sensibly reduced when the<br />

se<strong>di</strong>ment of the substrate itself is the<br />

product of intense elaboration during<br />

the depositional phase (c.f., many of<br />

the FA soils on fluvial se<strong>di</strong>ments with<br />

fine grained textures <strong>and</strong> the AS <strong>and</strong><br />

. PV soils on the «Caotico In<strong>di</strong>fferenziato>>).<br />

This mineralogical <strong>di</strong>fferentation<br />

can be considered as being an evolutive<br />

process involving the gradual<br />

tr~nsformation of crystalline phases<br />

into other more swelling phases.<br />

Observing Figs 2 <strong>and</strong> 3, one will note<br />

that_ \Vhen the compositional areas<br />

tend to be elongated, they are always<br />

elongated parallel to the illitesmectite-type<br />

side of the triangle;<br />

this leads to the following conclusions:<br />

a) the chlorite <strong>and</strong> kaolinite<br />

phases represent stable components<br />

in the soils; b) illite tends to evolve<br />

towards clay-vermiculite, towards<br />

the 14 A mineral or towards smectite<br />

depen<strong>di</strong>ng mainly on chemica.l variables<br />

(pH <strong>and</strong> ionic concentrations),<br />

geographic variables (valley or hill<br />

areas) <strong>and</strong>, less frequently, on variables<br />

related to the parent rock.<br />

REFERENCES<br />

BrsCAYE P .E., 1965. Mineralogy <strong>and</strong> se<strong>di</strong>mentation of recent deep-sea clay in the Atlantic Ocean <strong>and</strong><br />

adjacent seas <strong>and</strong> oceans. Geol. Soc. Am. Bull. 76, 803-832.<br />

BouYoucos G.J., 1962. Hydrometer method improved for making particicle size analyses of soils.<br />

Agronomy J. 54, 464-465. ·<br />

FELICE G., GRILLINI G .C., MO RAND I N., 1981. Characteristics of a 14 A clay mineral in podzolic soils of<br />

Lizzano.in Belvedere (Bologna). Miner. Petrogr. Acta 25, 79-90.


Mineralogical Characteristics of the Fine Fraction of Soils ... 453<br />

MEZZETTI R.', MO RAND! N., PIN! G A., 1980. Stu<strong>di</strong>o mineralogico delle porzioni pelitiche nelle «Mame <strong>di</strong><br />

Antognola» della zona <strong>di</strong> Zocca (Modena). Miner. Petrogr. Acta 24, 57-75.<br />

MoNGIORGI R., MO RAND! N., 1970. Al saponite e strati misti clorite-Al saponite nelle idroterrnaliti <strong>di</strong> una<br />

breccia a contatto coi <strong>di</strong>abasi <strong>di</strong> Rossena nell'Appennino reggiano. Miner. Petrogr. Acta 16,<br />

139-154: .<br />

MO RAND! N., PoPPI L., GRASS! G., 1976-77. Semplice apparato riscaldante per la tecnica <strong>di</strong>ffrattometrica<br />

<strong>di</strong> preparati orientati <strong>di</strong> argille. Miner. Petrogr. Acta 21, 145-148.<br />

RABENHORST M.C., Foss J.E., FANNING D.S., 1982. Genesis of Maryl<strong>and</strong> Soils Formed from Serpentinite.<br />

Soil Sci. Soc. Am. J. 46, 607-616.<br />

SocrETA !TALIANA ScrENZA DEL SuoLO, 1976. Meto<strong>di</strong> norrnalizzati <strong>di</strong> analisi del suolo. Tipolitografia G.<br />

Capponi, Fininze.<br />

SOIL SuRVEY STAFF, 1975. Soil Taxonomy. A Basic System of Soil Classification for Making <strong>and</strong><br />

Interpreting Soil Surveys. USDA Agric. H<strong>and</strong>book, no. 436, 754.<br />

THOREZ J., 1975. Phyllosilicates <strong>and</strong> Clay Minerals.Ed. G. Lelotte, Dison, Belgique.<br />

VAI G.B., Rrccr LucCHI F., 1976. Algae-bearing <strong>and</strong> clastic gypsum in a «Cannibalistic>> evaporite<br />

basin: a case history from the Messinian of northern Apennines. Messinian Seminar no. 2,<br />

Gargano, 1976, Field Trip Guidebook, 1-16.<br />

WALKER G.F., 1957. Differentiation ofverrniculites <strong>and</strong> smectites in clays. Clay Miner. Bull. 3, 154-<br />

163.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 455-460 (1985)<br />

Quantitative Determination of Minerals in Clays<br />

from Profiles in the West of Central Spain<br />

by Differential Scanning Calorimetry<br />

M.T. MARTIN PATIN0 1 , C. TURRION 2 , M.V. ROUX 2 , J. SAAVEDRA 3 ,<br />

A. MILLAN 4<br />

1 Instituto de Edafologia y Biologia Vegetal, C.S.I.C. <strong>and</strong> Departamento de Geologia y Geoquimica, Universidad<br />

Aut6noma, Canto Blanco, 28049 Madrid, Espafia<br />

2 Instituto de Quimica Fisica «Rocaso!ano», C.S.I.C., Serrano 119,28006 Madrid, Espaiia<br />

3 Centro de Edafologia y Biologia Aplicada, C.S.I.C., Cordel de Merinas 40-52, Apartado 257, 37008 Salamanca,<br />

Espafia<br />

4 Departamento de Geologia y Geoquimica, Universidad Aut6noma, Canto Blanco, 28049 Madrid, Espafia<br />

ABSTRACT- Differential Scanning Calorimetry (DSC) was used for the quantitative<br />

determination· of gibbsite <strong>and</strong> halloysite contents. The endothermic<br />

peak areas determine the heat of reaction changes (LlrH) <strong>and</strong> therefore the<br />

mineral quantities.<br />

The method has been utilized for the study of two alteration profiles developed<br />

on granites. It is considered suitable in cases such as these, without<br />

the need of selective separation of the accompanying minerals <strong>and</strong> without<br />

nee<strong>di</strong>ng the pu;.e mineral as a st<strong>and</strong>ard.<br />

Introduction<br />

, This study is part of one on the origin<br />

of economically interesting alumini<br />

urn minerals in the Provinces of<br />

_Salamanca <strong>and</strong> Avila (Spain).<br />

In previous' stu<strong>di</strong>es, SAAVEDRA<br />

ALONSO & MARTIN PATINO (1983)<br />

<strong>and</strong> MARTIN PATINO et al. (1985);<br />

determined the mineralogy of two<br />

· profiles developed from deeply<br />

weathered granites situated in midwestern<br />

Spain. The authors consider<br />

some of the factors that affect the<br />

formation of aluminium hydroxides<br />

<strong>and</strong> oxy-hydroxides. Gibbsite is the<br />

main component of clays from the<br />

soils <strong>and</strong> granitic saprolites. The<br />

mineral is relict <strong>and</strong> is formed in the<br />

weathering process <strong>di</strong>rectly from<br />

mica <strong>and</strong> in<strong>di</strong>rectly from feldspar<br />

through hydrolysis in an alkaline environment.<br />

Halloysite (10 A) is found<br />

filling the water-circulation cracks in<br />

one of these profiles.<br />

Research carried out with the financial support of the <strong>Spanish</strong> «Comisi6n Asesora de Investigaci6n<br />

Cientifica y Tecnica>>.


456 M.T. Martin Patino,.C. Turri6n, M. V. Roux, J. Saavedra, A. Millan<br />

The purpose of this study was to<br />

determine the amounts of gibbsite<br />

<strong>and</strong> hall~ysi te (1 0 A) from the soils<br />

<strong>and</strong> the saprolite cited. The problems .<br />

of the origin of the gibbsite <strong>and</strong> of its<br />

<strong>di</strong>stribution at <strong>di</strong>fferent depths also<br />

have been examined.<br />

Materials <strong>and</strong> methods<br />

Eight clay samples, two from soils<br />

<strong>and</strong> two from weathered rock from<br />

each profile, I <strong>and</strong> II were analysed<br />

employing Differential Scanning<br />

Calorimetry (DSC). A Perkin-Elmer,<br />

Model DSC-2C, was used, connected<br />

······---------to.a Model 3600-Data Bank··-<br />

Experimental technique<br />

Samples of <strong>di</strong>fferent mass, but always<br />

less than 5 i:ng, were analysed,<br />

in N2. atmosphere, in covered pans of<br />

aluminium for gibbsite (heating from<br />

110 octo 427 oq <strong>and</strong> of gold for halloysite<br />

(10 A) (heating from 380 octo 680<br />

°C). The temperatures were increased<br />

at 5 °C/min.<br />

The gibbsite <strong>and</strong> halloysite (10 A)<br />

contents were calculated from the<br />

changes in their correspon<strong>di</strong>ng heats<br />

of reaction (LlrH) determined for the<br />

endothermic peak area (Figs 1 <strong>and</strong> 2) ..<br />

Gibbsite <strong>and</strong> halloysite (10 A) show<br />

DSC endothermic peaks at about 250<br />

oc <strong>and</strong> 500 oc respectively. The information<br />

obtained was stored in the<br />

1-.8 1-1 WT = 2.82 m9<br />

SCAN RATE • 5.00 de9/min<br />

1.6<br />

1.4<br />

1.2 ~<br />

1.0 ~<br />

0.8<br />

0.6<br />

PEAK· .FROM= 466.49<br />

T0=583.5<br />

0.4 ONSET= 508.15<br />

CAL/GRAM = 121.48<br />

0.2<br />

temperature (K)<br />

0.0<br />

390 450 510 570 630 690<br />

1.8-<br />

1.6<br />

1.4<br />

1.2<br />

~<br />

1.0<br />

~<br />

0.8<br />

0.6 PEAK FROM= 463.49<br />

TO= 809<br />

0.4 ONSET= 505.98<br />

CAL/GRAM = 182<br />

0.2<br />

min = 535.00<br />

0.0<br />

temperature (K)<br />

390 450 510 570 630 690<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1..0. ~<br />

0.8<br />

1-2 WT=2.56m9<br />

SCAN RATE= 5.00 deg/min<br />

Ol<br />

"'-<br />

0.6 PEAK FROM= 472.99<br />

T0=631.5<br />

0.4 ONSET= 513.75<br />

CAL/GRAM = 190.6<br />

0.2<br />

0.0 '"- temperature (K)<br />

390 450 510 570 630 690<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

1-4 WT=L75m9<br />

SCAN RATE= 5. 00 de9/mi n<br />

~<br />

~<br />

0.6 PEAK FROM= 472.99<br />

TO= 613<br />

0.4 ONSET= 504.82<br />

CAL/GRAM = 182.53<br />

0.2<br />

tempera tu re ( K)<br />

0.0<br />

390 450 510 570 630 690<br />

Fig. 1 - Endotherm peak areas of gibbsite from DSC curves, profile I.


Quantitative Determination of Minerals in Clays from Profiles ... 457<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

PEAK FROM • 505.99<br />

TO • 547.51<br />

ONSET • 517.92<br />

CAL/GRA/1= 6.13<br />

390 450 510 570<br />

1.6<br />

2·2 WT= 4.43m9<br />

SCAN RATE • 5.00 de9/min<br />

1.4<br />

1.2 !<br />

1.0 "'<br />

min = 531.26<br />

0.8<br />

0.6<br />

0.4<br />

PEAK FROM=502.49<br />

TO= 544.0'1<br />

ONSET= 515.21<br />

CAL/GRAI~ = 6. 5<br />

0.2<br />

390 450 510<br />

1.8<br />

2·3 WT = 3.91 m9<br />

SCAN RATE=S.OOdeg/min<br />

1.6<br />

1.4<br />

1.2<br />

:.l<br />

1.0 ::::.<br />

0.8 ~<br />

0.6<br />

PEAK FROM= 471.49<br />

0. 4 TO= 615.5<br />

0 · 2 ~~~;~;A~ 1 = 2 ;:; .94<br />

570<br />

390 450 510 570<br />

630 690<br />

630 690<br />

. 630 690<br />

Fig. 2- Endotherm peak areas of gibbsite from<br />

DCS curves, profile JI.<br />

Data Bank <strong>and</strong>, with the help of the<br />

st<strong>and</strong>ard programme, the ex-<br />

_perimental enthalpy ~rH (exp.), of<br />

the dehydroxylation reaction <strong>and</strong> the<br />

peak temperature was established<br />

(Table 1). The percentage of each<br />

mineral was determined by the<br />

known ~rH ofthepure mineral (gibbsite<br />

= 257.0 cal·g- 1 , halloysite (10 A)<br />

= 157.0 cal·g- 1 ). These values are reported<br />

by KARATHANASIS & HA­<br />

JEK (1982).<br />

A temperature calibration was<br />

made for the DSC using in<strong>di</strong>um, tin,<br />

lead <strong>and</strong> zinc with a high degree of<br />

purity <strong>and</strong> known fusion temperatures.<br />

The calibration constant (f) =<br />

6.80/6.92 was obtained with in<strong>di</strong>um<br />

(6.80 cal· g- 1 is the ~rH st<strong>and</strong>ard <strong>and</strong><br />

6.92 cal· g- 1 is the MH obtained in<br />

our DSC-2C).<br />

Results <strong>and</strong> <strong>di</strong>scussion<br />

The results for gibbsite are shown<br />

in Table 2. In the upper horizon ()f the<br />

soil (sample 1-1) the amount of this<br />

mineral decreases noticeably. This is<br />

due to its destabilization <strong>and</strong> coincides<br />

with the presence of boehmite,<br />

which is associated with the high i<br />

concentration of fulvic acid within<br />

the present-day edaphic level (MAR­<br />

TIN PATINO et al., 1985). In the other<br />

clays of profile I <strong>and</strong> in the clay of<br />

weathered rock of profile II, the<br />

amount of the mineral, was considered<br />

to be similar. These similarities<br />

contrast with the apparent <strong>di</strong>fferences<br />

observed in the study of the<br />

whole un<strong>di</strong>sturbed samples by scanning<br />

electron microscopy, in which<br />

the amQunt of mineral appears to increase<br />

with depth. However, it is consistent<br />

with the fact that on the surface<br />

the rock loses its primitive structure,<br />

while the gibbsite crystals that<br />

are released to become part of the<br />

fine fraction remain attached to the<br />

minerals from which they originated<br />

at deeper levels (Figs 3 <strong>and</strong> 4). This<br />

demonstrates the vali<strong>di</strong>ty of these results.


458 M.T. Martin Patino, C. Turri6n, M.V. Roux, J. Saavedra, A. Milltin<br />

TABLE 1<br />

El(perimental results<br />

- -~-~c~·~--~-~-~-~~-<br />

Experiment m ,irH(exp) ,irH<br />

num. mg oc cal c- 1 cal g- 1<br />

Sample 1-1<br />

1 2,93 265 126,7 124,6<br />

2 2,07 255 119,8 117,8<br />

3 2,82 262 121,5 119,4<br />

4 5,36 270 120,1 118,0<br />

Aveq~ge value: 120,0<br />

St<strong>and</strong>ard deviation: ±1,6<br />

Sample 1-2<br />

1 3,83 272 192,5 189,2<br />

2 3,05 271 191,8 188,5<br />

3 1,22 256 185,4 182,2<br />

4 2,56 270 190,6 187,4<br />

5 4,63 273 189,9 186,7<br />

Average value: 186,8<br />

St<strong>and</strong>ard deviation: ±1,2<br />

·--~-·· ·-----·-··-···------ -------- -- ----- -- -- ----- -<br />

Sampl~:n-3<br />

1 2,33 267 181,5 178,4<br />

2 2,52 266 187,7 184,5<br />

3 2,87 261 182,0 178,9<br />

4 3,82 270 180,2 177,1<br />

Average value: 179,7<br />

St<strong>and</strong>ard deviation: ±1,6<br />

Sample 1-4<br />

1 2,74 265 187,5 184,3<br />

2 2,01 261 187,8 184,6<br />

3 1,75 257 182,5 179,4<br />

4 3,19 268 179,8 176,7<br />

Average value: 181,3<br />

St<strong>and</strong>ard deviation: ±1,9<br />

Sample 2-3<br />

1 6,00 21'3 189,9 186,7<br />

2 3,91 268 183,9 180,8<br />

3 2,80 279 174,2 171,2<br />

4 3,18 263 173,7 170,7<br />

5 4,19 270 192,2 189,0<br />

Average value: 179,7<br />

St<strong>and</strong>ard deviation: ±3,8<br />

m = sample mass; t c= the corrected peak temperature; ,irH(exp) = the reaction enthalpy in<br />

the experiment; ,irH the reaction enthalpy = ,irH(exp) X f<br />

In the soil samples of profile II (2-1<br />

<strong>and</strong> 2-2), the total removal of organic<br />

matter before clay exctraction was<br />

practically impossible. The reaction<br />

of these samples to heat. treatment<br />

was also <strong>di</strong>fferent. Two endother-


Quantitative Determination of Minerals in Clays from Profiles ... 459<br />

TABLE 2<br />

Percentage of gibbsite in clay samples<br />

Clay<br />

% Gibbsite<br />

1-1<br />

1-2<br />

1-3<br />

1-4<br />

2-1<br />

2-2<br />

2-3<br />

120,0 ± 1,6<br />

186,8 ± 1,2<br />

179,7 ± 1,6<br />

181,3 ± 1,9<br />

6,03 ± 2,0<br />

6,39 ± 2,3<br />

179,7 ± 3,8<br />

46,7<br />

72,7<br />

69,9<br />

70,5<br />

2.34<br />

2.48<br />

69,9<br />

mic peaks (Fig. 2) appear in the<br />

DSC analysis of material from the<br />

top horizon (sample 2-1). The first<br />

peak corresponds to the free mineral,<br />

<strong>and</strong> the second may be due to the<br />

effect of organic matter attached to a<br />

fraction of gibbsite or to free aluminium.<br />

This, however, remains to be<br />

confirmed. In sample 2-2 (Fig. 2) the<br />

first endothermic peak corresponds "<br />

to gibbsite. There are other energy<br />

changes due to non-eliminated organic<br />

matter. Parallel treatments show<br />

that energy is released at temperatures<br />

below 400 oc as a result of the<br />

loss of constitutional water from carboxyl<br />

<strong>and</strong> phenolic hydroxyl groups.<br />

Energy is also released aoove 450 °C,<br />

but it is of a <strong>di</strong>fferent kind <strong>and</strong> comes<br />

from humic aromatic nuclei<br />

(SCHNITZER & KHAN, 1972).<br />

For halloysite (10 A) (sample 2-4,<br />

Fig. 5), 146.4 cal· g- 1 was obtained for<br />

the dehydroxyhttion reaction <strong>and</strong> the<br />

mineral percentage calculated was<br />

88 per cent.<br />

The results give a high content of<br />

these minerals in the clay fraction,<br />

but it must be remembered that such<br />

fractions are low in these s<strong>and</strong>y samples.<br />

The technique is considered suitable<br />

for quantitative determinations<br />

in cases such as the above without.<br />

Fig. 3 - Gibbsite crystals between the swelling<br />

plates of mica: saprolite profile I, 2.500 ic.<br />

Fig. 4 - Last one micrograph at high magnification:<br />

saprolite profile I, 5.000 x.


T<br />

460 M.T. Martin Patina, C. Turri6n, M. V. Row:, J. Saavedra,·A. Millan<br />

S.OO~H7a~ll~o-ys~i7te~2--~4--------------------------------------~<br />

0<br />

UJ<br />

"'<br />

j<br />

WT 1.50mg<br />

Scan rate 20.00 deg/min<br />

Peak from 702.3<br />

to 820.26<br />

Onset 720.62<br />

Cal/gram 170.27<br />

2.50<br />

min. ·769 .96<br />

O.OO~r-----~----.-----,------r-----,----~t=em~p~e~ra~t~u~re~(~K~)~DS~C~~<br />

610 650 690 730 770 810 850 890 930 970<br />

Fig. 5 . Endotherm peak area of halloysite from DSC curve, profile II.<br />

either the need of selective separation<br />

of the accompanying minerals or the<br />

requirement of having a pure mineral<br />

as a st<strong>and</strong>ard.<br />

REFERENCES<br />

K.ARATHANASIS D., HAJEK B.F., 1982. Revised Methods for Rapid Quantitative Determination of Minerals<br />

in Soil Clays. Soil Sci. Soc. Am. J. 46, n~ 2, 419-425. ·<br />

MARTIN PATINO M.T., SAAVEDRA J., MILLAN A., 1985. A mineralogical study of aluminium hydroxides<br />

<strong>and</strong> oxyhydroxides in profiles of granitic alterations in Spain's Mid-West. Pp. 181-186, in: Proc.<br />

5th Euroclay Meeting 1983, Prague (J. Konta, e<strong>di</strong>tor); Univerzita Karlova Praha.<br />

SAAVEDRA ALONSO J., MARTIN PATINO M.T., 1983. Consideraciones sabre factores que afectan a la<br />

formaci6n de oxihidr6xidos e hidr6xidos de AI en perfiles de alteraci6n del Centro-Oeste de Espaiia.<br />

Bol. R. Soc. esp. Hta. Nat. 81, 1-4.<br />

'<br />

ScHNITZER M., KHAN S. V., 1972. Humic Substances in the Environment. Marcel Dekker, New York.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 461-471 (1985)<br />

Mineralogical <strong>and</strong> Geochemical Relationships in<br />

Pedological Profiles of Soils<br />

N. MORANDI, M.C. NANNETTI, G.C. GRILLINI<br />

Istituto <strong>di</strong> Mineralogia e Petrografia, Universita <strong>di</strong> Bologna, Piazza <strong>di</strong> Porta S. Donato 1, 40127 Bologna, Italia<br />

ABSTRACT- The present study was <strong>di</strong>rected towards verifying whether or not<br />

the action of weathering, even though starting from parent rock of <strong>di</strong>fferent<br />

composition, tends to lead to the formation of soils with similar mineralogical<br />

<strong>and</strong> geochemical characteristics in the fine fraction.<br />

For this purpose, 25 horizons, grouped in 7 profiles of soils sampled in the<br />

Emilia-Romagna Region (northern Italy) were examined. The


-<br />

462 N. Moran<strong>di</strong>, M.C. Nannetti, G.C. Grillini<br />

<strong>di</strong>stinguish between characteristics<br />

inherited from ancient weathering<br />

cycles <strong>and</strong>/or <strong>di</strong>agenesis from those<br />

related to true pedogenetic processes<br />

(BELLANCA et al., 1980). ,<br />

With this background in mind, the<br />

present study was <strong>di</strong>rected towards<br />

determining what correlations exist<br />

between the physical characteristics<br />

<strong>and</strong> the mineralogical composition of<br />

the complete soil profiles with the<br />

correspon<strong>di</strong>ng <strong>di</strong>stribution of the major<br />

<strong>and</strong> trace elements within the fine<br />

fraction. The specific objective of the<br />

work was to reconstruct the existing<br />

relationships between soil <strong>and</strong> parent<br />

material. (of s.~<strong>di</strong>m.e}:;tJ150<br />

7.6 2.5 y 5/2<br />

7.7 2.5Y 4/2<br />

8.2 2.5 y 6/2<br />

8.2 5 y 513<br />

8.1 5 y 6/2<br />

Caste! Nuovo<br />

Rangone<br />

CR3 (MO)<br />

Alluvial<br />

deposits<br />

(Pleistocene-<br />

Olocene)<br />

Alluvial<br />

plane<br />

43-1<br />

·2<br />

-3<br />

-4<br />

-5<br />

A1<br />

B2t<br />

B3<br />

cl<br />

C2<br />

0-14<br />

14-29<br />

29-45<br />

45-80<br />

>80<br />

6.8 2.5 y 4/2<br />

7:5 10 YR 4/3<br />

7.8 2.5 y 5/2<br />

8.1 2~:S y 5/2<br />

8.0 5 ·y 5/3<br />

Savignano<br />

sul Panaro<br />

S.239 (MO)<br />

«Caotico<br />

in<strong>di</strong>fferenziato»<br />

stde exposed<br />

to North;<br />

inclination<br />

14"<br />

36-1<br />

-2<br />

-3<br />

46-1<br />

-2<br />

-3<br />

-4<br />

A1;<br />

A13<br />

c<br />

Ap<br />

B 21 t<br />

B22t<br />

Bca<br />

0-13<br />

13-34<br />

34-50<br />

0-50<br />

50-90<br />

90-120<br />

>120<br />

7A 2.5 y 4/2<br />

8.1 2.5 y 512<br />

8.2 2.5 y 5/2<br />

5.9 10 YR 5/6<br />

7.2 10 YR 4/2<br />

7.3 2.5 y 5/6<br />

8.2 10 YR 5/4<br />

8.3<br />

8.3<br />

Palazzo <strong>di</strong><br />

Prada- 17<br />

(BO)<br />

Caste! Nuovo<br />

Rang one.<br />

CR1 (MO)<br />

Savignan~<br />

sul Panaro<br />

S.240 (MO)<br />

Dark grey<br />

marls<br />

(Miocene)<br />

Paleosoils on<br />

alluvial dep. ·<br />

(Pleistocene-Olocene)<br />

«Caotico<br />

in<strong>di</strong>fferenziato»<br />

Side of a<br />

level ridge-<br />

Alluvial<br />

plane ·<br />

Crest


ols used for their identification,<br />

their thicknesses, pH <strong>and</strong> colour (estimated<br />

by comparison with the American<br />

code of the «MUNSELL SOIL<br />

COLOR CHARTS>>).<br />

In all cases, the samples were taken<br />

from soils developed on se<strong>di</strong>mentary<br />

materials (fine <strong>and</strong> larger grained<br />

alluvial material, clay, marls <strong>and</strong><br />

« Caotico In<strong>di</strong>fferenzia to>>) belonging ·<br />

to formations of variable age, from<br />

the Miocene to the Interglacial Riss­<br />

Wurm, <strong>di</strong>stributed in a wide area of<br />

the Emilia-Romagna Region (northern<br />

Italy).<br />

Samples 56-1R <strong>and</strong> 56-1V correspond<br />

to two fractions (red<strong>di</strong>sh <strong>and</strong><br />

greenish in color, respectively) from a<br />

B horizon sampled at Savignano sul<br />

Panaro in soil developed on .<br />

The samples collected from e_ach<br />

horizon were first repeatedly washed<br />

<strong>and</strong> wet screened to remove nearly<br />

all of the organic matter <strong>and</strong> then the<br />


.....,..<br />

'[<br />

464 N. Moran<strong>di</strong>, M.C. Nannetti, G.C. Grillini<br />

TG <strong>and</strong> DT A curyes after subtracting<br />

the values of C02.<br />

The analyses of major, minor <strong>and</strong><br />

trace elements were carried out on<br />

samples previously heated in an oven<br />

at 850 oc for around 12 hours. This<br />

was done in order to avoid weighting<br />

errors which are quite frequent in'<br />

samples having high percents of<br />

adsorbed water as well as to facilitate<br />

the preparation <strong>and</strong> maintenance of<br />

the ~pellets for X-ray fluorescence<br />

(XRF) analysis. Spectrographic tests<br />

for some elements on samples before<br />

<strong>and</strong> after drying <strong>di</strong>d not show any<br />

significant variations in the chemistry<br />

of the more volatile elements.<br />

··----~--·· J'!I


cm 0 .------..--<br />

40<br />

64<br />

Clay<br />

Horizons<br />

A11<br />

A/B<br />

c<br />

:=. Ka Il<br />

u<br />

40- 1<br />

- 2<br />

-3<br />

15<br />

cm 0 ..---------.r--<br />

Ap<br />

c<br />

0 "'<br />

u,<br />

~~ ll<br />

1 /s Sm Q Cc<br />

49- 1<br />

-2<br />

D<br />

1 I<br />

-3<br />

47- 1<br />

- 2<br />

Bca<br />

B<br />

Ka<br />

-3<br />

.::4<br />

Bg<br />

- 5<br />

43- 1<br />

- 2<br />

- 3<br />

c,<br />

Il<br />

Sm<br />

cq<br />

-4<br />

-5<br />

Il<br />

Il<br />

46- 1<br />

Ve<br />

50<br />

..; 2<br />

- 3<br />

Cc - 4<br />

100<br />

Fig. 1- Mineralogical composition <strong>and</strong> clay fraction of horizons of 40 1 49,47,43, 36 <strong>and</strong> 46 profiles.


466 N. Moran<strong>di</strong>, M.C. Nannetti, G.C. Grillini<br />

tion being that of profile 46, in which<br />

the three «B» horizons are almost<br />

totally vermiculitic with a sharp passage<br />

towards the «A» horizon, characterized<br />

by the presence of 4 clay<br />

minerals among which illite predominates.<br />

This heterogeneity between<br />

the surface Ap horizon <strong>and</strong> the<br />

3 underlying horizons can be attributed<br />

to the superimposition of two<br />

<strong>di</strong>fferent soils, as seen from pedological<br />

stu<strong>di</strong>es. The amount of kaolinite<br />

increases in the horizons characterized<br />

by low pH values.<br />

The mineralogical compositions<br />

(%) of the fine fractions of profile 56<br />

(lR <strong>and</strong> 1V) are the following:<br />

- 56-1R: chlorite 11, kaolinite 7,<br />

·-~-----·---~-- -iUite-58;illite•smectite 15, quartz 6,<br />

dolomite 3.<br />

- 56-1V: chlorite 12, kaolinite 9,<br />

illite 50, illite-smectite 15, quartz 6,<br />

calcite 4, dolomite 4.<br />

It can be noted that even though<br />

the compositions of the two samples<br />

<strong>di</strong>ffer, they both have a dominant<br />

illite content with the unusual presence<br />

of dolomite. From the point of<br />

view of mineralogical composition,<br />

there are strong similarities between<br />

profiles 40 <strong>and</strong> 49 which along with<br />

profile 56 are the only cases where<br />

chlorite is present.<br />

Geochemistry<br />

Reported in Tables 2, 3 <strong>and</strong> 4 are<br />

the results of the chemical analyses<br />

carried out on the fine fractions of<br />

each horizon of the in<strong>di</strong>vidual profiles<br />

examined.<br />

The following observations can be<br />

made based<br />

--<br />

on the overall data<br />

---~---~-·- ~-. --·-<br />

obtained:<br />

l. Profiles 40 <strong>and</strong> 49 had high SiOz<br />

contents (around 49%) accompanied<br />

by low Alz03 contents (around 22%)<br />

as compared with the average values<br />

for the other profiles (46% <strong>and</strong> 24%,<br />

respectively). In the same two profiles,<br />

the MgO content is more than<br />

4%, a value greater thah the MgO<br />

content in any of the other profiles.<br />

The amounts of these oxides can be<br />

correlated to the mineralogical compositions<br />

of the respective profiles,<br />

characterized by the presence of<br />

abundant amounts of I/S mineral<br />

<strong>and</strong> Sm mineral <strong>and</strong> by the presence,<br />

although not in great amounts, of<br />

chlorite.<br />

2. The oscillations of total Fez03<br />

(from 8% to 12%) in the various profiles<br />

can be related to variations in<br />

the content of poorly crystalline hydroxides<br />

which can not be seen by<br />

X-ray <strong>di</strong>ffraction analyses.<br />

3. The Ti02 contents, from 0.7% to<br />

' 1%, do not vary sensibly within the<br />

various horizons of an in<strong>di</strong>vidual profile<br />

<strong>and</strong> only in profile 36 is the TiOz<br />

content as low as 0.6%.<br />

4. The percent of K 2 0 varies from<br />

2.5 to 5.2, depen<strong>di</strong>ng on the illite content<br />

of the in<strong>di</strong>vidual horizons.<br />

5. Overall, there were no sensible<br />

variations in the main chemistry<br />

within the various profiles nor within<br />

the various horizons of, in<strong>di</strong>vidualf<br />

profiles.<br />

The data relative to the minor elements<br />

(Li, V, Cr, Co, Ni, Cu, Zn, Ga,<br />

Rb, Sr, Y, Zr, Ba, Pb) determined in


Mineralogical <strong>and</strong> Geochemical R~l-;tionships ... 467<br />

TABLE 2<br />

Chemical composition (weight% <strong>and</strong> ppm)<br />

40 49 56<br />

% 2 3 2 3 1R 1V<br />

Si0 2 48.19 50.84 48.41 48.85 49.31 49.23 45.05 46.25<br />

TiOz 0.88 0.90 0.98 0.89 0.83 0.87 0.97 0.65<br />

Alz03 21.80 21.71 23.06 22.09 21.54 21.07 24.41 25.23<br />

FEz03 10.00 8.76 8.05 10.02 9.98 9.21 12.38 10.86<br />

MnO 0.12. 0.13 0.13 0.18 0.17 0.17 0.11 0.14<br />

MgO 4.22 4.07 4.99 4.10 4.40 4.59 3.10 3.91<br />

CaO 1.90 1.37 0.87 1.22 0.97 1.67 0.78 0.61<br />

Na 2 0 0.24 0.44 0.52 0.38 0.58 0.65 0.37 0.34<br />

K 2 0 3.58 3.65 4.35 4.53 4.66 4.21 5.60 5.59<br />

PzOs 0.21 0.20 0.19 0.20 0.18 0.17 0.11 0.14<br />

HzO+ >2S0°C 8.86 7.93 8.45 7.54 7.38 8.16 7.12 6.28<br />

pp m<br />

198 197<br />

Li 96 146 153 216 237 206<br />

V 240 241 246 240 247 241 236 274<br />

Cr 361 279 282 224 229 233 164 174<br />

Co 30 27 33 29 29 31 25 29<br />

Ni 169 135 140 138 138 142 76 90<br />

Cu 28 29 17 45 60 52 56 126<br />

Zn 156 148 164 169 173 170 136 161<br />

Ga 26 28 28 37 29 23 28 28<br />

Rb 167 162 202 195 184 208 194 229<br />

Sr 255 291 365 474 462 517 132 175<br />

y 33 34 36 36 33 35 30 37<br />

Zr 123 120 ,·139 119 106 122 114. 130<br />

Ba 279 349 29~ 498 273 504 396 402<br />

Pb 30 15 16 36 29 18 32 15<br />

the layer silicate portion of the fine<br />

fraction of the in<strong>di</strong>vidual horizons<br />

provide the following in<strong>di</strong>cations:<br />

-a) Variations in the amounts of<br />

these elements in the various horizons<br />

of the same profile are limited,<br />

with the exception of Pb which usually<br />

increaseq to the point of doubling<br />

in amount in the surface horizon as a<br />

consequence of biogenetic processes<br />

or because of pollution.<br />

b) In the various profiles, striking •<br />

variations in the content of these elements<br />

are found which can be correlated<br />

to the dominant type of clay<br />

mineral present. In particular, sensible<br />

increases of Cr, Co <strong>and</strong> Ni are<br />

found in profile 40 <strong>and</strong> to a lesser extent<br />

in profile 49. This d?ta; clearly<br />

related to the mineralogical composition<br />

(presence of chlorite <strong>and</strong> enrichment<br />

in MgO), probably in<strong>di</strong>cates<br />

that the profile derives from parent<br />

material which tends to be basic<br />

in nature. The Cu content, me<strong>di</strong>um<br />

high, increases in profiles rich in<br />

smectite or vermiculite. Finally, the<br />

variations in Rb content are <strong>di</strong>rectly<br />

related to the variations in illite <strong>and</strong><br />

KzO content.<br />

c) Some minor elements (Li, V, Zn,<br />

Sr, Ba) show variations which have<br />

little relationship to the mineralogical<br />

content <strong>and</strong>, therefore, may well


e determined by the type of parent<br />

rock.<br />

-0.5<br />

Statistical analyses<br />

Cluster analysis of the samples (Qmode)<br />

<strong>and</strong> of the variables (R-mode)<br />

was carried out using the mineralogical,<br />

chemical <strong>and</strong> pH data for all<br />

the horizons examined. The dendragram<br />

resulting from the cluster analysis<br />

of the samples (Fig. 2) shows that,<br />

for all the variables examined, the<br />

horizons of the in<strong>di</strong>vidual profiles are<br />

strongly correlated among them-<br />

+o.s<br />

Fig. 2 - Dendrogram of the single horizons (Qmode).


Mineralogical <strong>and</strong> Geochemical Rela"iionships ... 469<br />

TABLE 4<br />

Chemical composition (weight% <strong>and</strong> ppm)<br />

43<br />

% 2 3 4<br />

Si0 2 44.42 47.46 47.39 47.16<br />

TiOz 0.87 0.64 0.69 0.69<br />

Alz03 24.80 23.72 23.73 23.87<br />

Fez03 10.03 10.06 10.42 9.89<br />

MnO 0.13 0.12 0.12 0.14<br />

M gO 2.82 3.30 3.80 4.00<br />

CaO ·1.62 2.27 1.79 1.58<br />

Na20 0.28 0.21 0.12 0.47<br />

KzO 3.98 3.74 3.86 3.85<br />

PzOs 0.14 0.11 0.17 0.18<br />

Hzo+ >zso 0 c 9.21 8.37 7.91 8.17<br />

Org. mat. 1.70<br />

pp m<br />

Li 73 77 64 80<br />

V 183 217 208 107<br />

Cr 143 168 192 180<br />

Co 20 18 14 14<br />

Ni 63 93 120 111<br />

Cu 45 49 61 49<br />

Zn 159 155 158 172<br />

Ga 23 21 26 19<br />

Rb 187 178 191 186<br />

Sr 114 109 124 129<br />

y 28 33 32 31<br />

Zr 95 106 108 'J02<br />

Ba 365 281 212 204<br />

Pb 21 9 11 7<br />

46<br />

5 2 3 4<br />

45.89 45.45 45.83 46.98 47.12<br />

0.74 1.00 0.87 0.82 0.79<br />

24.58 23.34 24.94 24.23 22.55<br />

10.74 11.84 11.87 11.50 11.00<br />

0.11 0.12 0.11 0.11 0.12<br />

3.78 2.57 3.00 2.88 2.90<br />

1.94 1.36 1.78 2.03 3.30<br />

0.23 0.27 0.24 0.20 0.32<br />

4.05 2.80 2.55 2.56 2.88<br />

0.18 0.24 0.10 0.12 0.15<br />

7.76 9.51 8.71 8.57 8.87<br />

1.50<br />

84 112 104 88 87<br />

381 203 202 203 190<br />

245 184 179 171 155<br />

15 22 20 20 20<br />

131 98 116 103 89<br />

70 85 62 53 58<br />

382 212 173 152 156<br />

24 24 24 24 26<br />

189 187 165 160 168<br />

130 87 113 121 145<br />

31 32 37 40 32<br />

105 77 104 106 116<br />

171 592 416 398 338<br />

9 26 13 19 14<br />

selves. Exception to this is the surface<br />

horizon of profile 46 which pedologists<br />

describe as soil developed on<br />

transported <strong>and</strong> heterogeneous materials,<br />

characterized, among other<br />

things, by limited values of pH <strong>and</strong><br />

considerable anomalies in mineralogical<br />

composition. In ad<strong>di</strong>tion, profiles<br />

49 <strong>and</strong> 40 are strongly correlated<br />

with each other: these two profiles<br />

can be referred to the same lithological<br />

substrate.<br />

The correlations with high significance<br />

(2::: 99.9%), obtained from the<br />

cluster analysis of the variables, are<br />

reported schematically in Fig. 3 (the<br />

negative correlations are in<strong>di</strong>cated<br />

with a dashed line). It can be seen<br />

that only two clay minerals have significant<br />

correlations: illite with K<br />

<strong>and</strong> Rb, <strong>and</strong> chlorite with Co, Li <strong>and</strong><br />

Zr. Of the two, the first is to be expected<br />

(SAWHNEY, 1972) <strong>and</strong> the<br />

second in<strong>di</strong>cates a mixed derivation<br />

for chlorite, from acid rock (with<br />

... biotite) <strong>and</strong> from basic rock. The<br />

highly significant correlations between<br />

Mg-Ni-Cr, Co-Ti <strong>and</strong> Fe-Cu in<strong>di</strong>cate<br />

that the clay minerals in the<br />

soil examined were derived from<br />

basic rock.<br />

In the dendrogram of Fig. 4,


~<br />

470 N. Moran<strong>di</strong>, M.C. Nannetti, G.C. Grillini<br />

8---<br />

Fig. 3 - Schematic representation of positive<br />

<strong>and</strong> negative (dashed lines) correlations among<br />

the chemical <strong>and</strong> mineralogical variables.<br />

obtained from the cluster analysis of<br />

the variables, significant correlations<br />

can be noted, some of which already<br />

have been <strong>di</strong>scussed <strong>and</strong> others for<br />

which some __ com.ments~_are ~worthwhile.<br />

Indeed, the positive Tikaolinite<br />

correlations, combined<br />

with the observation that Ti also is<br />

always present in the absence of<br />

kaolinite, are in good agreement with'<br />

what has been reported in the literature<br />

<strong>and</strong> may in<strong>di</strong>cate either that Ti<br />

is present in a separate phase which<br />

associates easily with kaolinit.e _<br />

(WEAVER, 1976) or that the Ti substitutes<br />

for Al in the kaolinite structure<br />

itself (RENGASAMY, 1976).<br />

The V-Zn-smectite correlation<br />

clearly in<strong>di</strong>cates the preference of<br />

these two elements for the exp<strong>and</strong>able<br />

structures; such a result is in<br />

good agreement with MOSSER et al.<br />

(1974). The high Fe-Cu correlation<br />

<strong>and</strong> the less significant correlation of<br />

these two elements withAl would in<strong>di</strong>cate<br />

the presence of poorly crystalline<br />

iron <strong>and</strong> aluminium hydroxides<br />

which always show a high geochemical<br />

affinity with Cu, V, Ni, <strong>and</strong> Co,<br />

some of which are present in large<br />

amounts in the soils examined. Finally,<br />

the positive high correlation between<br />

PzOs <strong>and</strong> <strong>di</strong>sordered interstratified<br />

I/S may be in<strong>di</strong>cation for a<br />

preference of phosphorus for 2: 1<br />

layer silicate structures characterized<br />

by structural <strong>di</strong>sorder.<br />

Conclusion<br />

Based on the results obtained, the<br />

following conclusions can be drawn:<br />

Fig. 4 - Dendrogram of the variables (R-mode).<br />

1. The statistical analyses of the<br />

mineralogical <strong>and</strong> chemical data of


the fine fraction of the soils provides<br />

useful in<strong>di</strong>cations for the characterization<br />

of the profiles <strong>and</strong> for the determination<br />

of anomalies in the succession<br />

of the horizons of an in<strong>di</strong>vidual<br />

profile. Indeed, soils deriving<br />

from lithologically <strong>di</strong>fferent substrates<br />

seem to be <strong>di</strong>stinctly <strong>di</strong>fferent<br />

as regards the mineralogical composition<br />

<strong>and</strong> chemistry of the fine<br />

fractions. In ad<strong>di</strong>tion, within in<strong>di</strong>vidual<br />

profiles, the various horizons<br />

do not show profound <strong>di</strong>versification;<br />

however, especially through use of<br />

the chemical data, it is possible to determine<br />

easily those horizons which<br />

have developed on transported <strong>and</strong><br />

Mineralogical <strong>and</strong> Geochemical Relati~~ships ... 471<br />

vertically heterogeneous material or<br />

on material which has been subjected<br />

to anthropic activity.<br />

2. The minor elements related to<br />

the clay minerals or to the poorly<br />

crystalline hydroxides do not undergo<br />

significant vertical movem~nt<br />

during the pedogenetic process.<br />

3. The mineralogy of the soils<br />

, seems to have only a slight effect on<br />

the geochemical behaviour of many<br />

minor elements, as in<strong>di</strong>cated by the<br />

poor in<strong>di</strong>vidual correlations, but<br />

does have a somewhat greater effect<br />

on the main "chemistry of the fine<br />

fraction.<br />

REFERENCES<br />

BELLANCA A., Dr CACCAMO A., NERI R., 1980. Mineralogia e geochimica <strong>di</strong> alcuni suoli della Sicilia<br />

Centro-Occidentale: Stu<strong>di</strong>o delle variazioni composizionali lungo profili pedologici in relazione ai<br />

litotipi d' origine. Miner. Petrogr. Acta 24, 1 c 15.<br />

BISCAYE P.E., 1965. Mineralogy <strong>and</strong> se<strong>di</strong>mentation of recent deep sea clays in the Atlantic Ocean <strong>and</strong><br />

adjacent seas <strong>and</strong> oceans. Geol. Soc. Am. Bull. 76, 803-832.<br />

BocCHI G., LUCCHINI F., MINGUZZI V., MbRANDI N., NANNETTI M.C., 1982-83. Significato del chimismo<br />

delle porzioni pelitiche nelle «Marne <strong>di</strong> Antognola» della zona <strong>di</strong> Zocca (Modena). Rend. Soc. It.<br />

Min. Petr. 38 (2), 839-847.<br />

BoCCJ:II G., MINGUZZI V., 1979. Dosaggio del boro nei silicati me<strong>di</strong>ante spettrografia d'emissione.<br />

Contributo alia conoscenza <strong>di</strong> rocce St<strong>and</strong>ard Internazionali. Miner. Petrogr. Acta 23, 175-187.<br />

CHESWORTH W., 1973. The parent rock effect in the genesis of soil. Geoderma 10, 215-225.<br />

FABBRI B., GAZZI P., ZUFFA G.G., 1973. La detemzinazione della componente carbonatica nelle rocce.<br />

Miner. Petrogr. Acta 19, 137-154.<br />

FELICE G., GRILLINI G.C., MoRANDI N., 1981. Characteristics of a 14 A clay mineral in podzolic soil of<br />

Lizzano in Belvedere (Bologna). Miner. Petrogr. Acta 25, 79-90.<br />

FRANZINI M., LEONI L., SAITTA M., 1975. Revisione <strong>di</strong> una metodologia analitica per fluorescenza<br />

basata sulla correzione completa degli effetti <strong>di</strong> matrice. Rend. Soc. It. Min. Petr. 31 (2), 365-378.<br />

LEONI L., SAITTA M., 1976. X-ray fluorescence analysis of 29 trace elements in rocks <strong>and</strong> mineral<br />

st<strong>and</strong>ards. Rend. Soc. It. Min. Petr. 32 (2), 47.9-510.<br />

MossER C., WEBER F., GAc J.Y., 1974. Elements tfaces dans des kaolinites d'alteration formees sur<br />

·granite et schiste amphiboliteux en Republique C,entrafricaine. Chem. Geol. 14, 95-115.<br />

RENGASAMY P., 1976. Substitution of iron <strong>and</strong> titanium in kaolinites. Clays Clay Miner. 24, 265-266.<br />

SAWHNEY B.L., 1972. Selective sorption <strong>and</strong> fixation ofcations by clay minerals: a review. Clays Clay<br />

Miner. 20, 93-100.<br />

WALKER G.F., 1957. Differentiation ofvermiculites <strong>and</strong> smectites in clays. Clay Miner. Bull. 3, 154-<br />

163.<br />

WEAVER C., POLLARD L.D., 1973. The Chemistry of Clay Minerals. Elsevier, Amsterdam.


Mi~er. Petrogr. Acta<br />

Vol. 29-A, pp. 473-481 (1985)'<br />

On the Effectiveness of the Extractable Forms of Fe, AI <strong>and</strong> P<br />

in Identifying Soil Chronosequence Terms<br />

E. ARDUINO, E. ZANINI, E. BARBERIS, V. BOERO, F. AJMONE MARSAN<br />

Istituto <strong>di</strong> Chimica Agraria, Facolta <strong>di</strong> Agraria, Universita <strong>di</strong> Torino, Via P. Giuria 15, 10126 Torino, Italia<br />

ABSTRACT - Four soil profiles were sampled on three terraces forming a<br />

chronosequence originated from a high plain fan in the Po Valley in northern<br />

Italy (45°27' to 45°31' N; 8°10' to 8°12' E). For the horizon of each profile the<br />

following data were determined: forms of inorganic P; forms of Fe; forms of<br />

AI; loam; clay <strong>and</strong> cation exchange capacity. The data were subjected to<br />

analysis of variance <strong>and</strong> principal component analysis. Forms of Fe <strong>and</strong> AI<br />

associated with cation exchange capacity <strong>and</strong> fine material supplied an<br />

index which <strong>di</strong>scriminated between soils of terraces of <strong>di</strong>fferent ages.<br />

Introduction<br />

1 the study of the soils which represent<br />

the terms of chronosequence<br />

attention is concentrated on those<br />

properties which depend on the time<br />

involved in the formation of the soils.<br />

To this aim numerous parameters<br />

have been considered <strong>and</strong> used as indexes<br />

of pedogenesis, sometimes correlated<br />

with the age of the soils. Those<br />

most used are certainly (i) the ratio<br />

oxalate-extractable· Fe/<strong>di</strong>thionite-extractable<br />

Fe (FeJFed) (ALEXANDER;<br />

1970; ALEXANDER & HOLO­<br />

WAYCHUK, 1~83; BRUNNACKER,<br />

1970; TORRENT et al., 1980),.(ii) the<br />

ratio Fed"Fe 0 /total Fe (NAGATSUKA<br />

et al., 1983; ARDUINO et al., 1984),<br />

<strong>and</strong> (iii) the relative proportions of<br />

calcium bonded phosphorous <strong>and</strong><br />

easily reducible phosphorous<br />

(BAUWIN & TYNER, 1957; GOD­<br />

PREY & RIECKEN, 1954; HAWKINS<br />

& KUNZE, 1965; SMECK NEIL,<br />

1973; WESTIN & BUNTLEY, 1967).<br />

YAALON (1975) suggested the application<br />

of statistical. functions to<br />

pedogenetic problems when the reactions<br />

are very complex or when independent<br />

factors cannot easily be pinpointed.<br />

On this basis various authors<br />

have developed regressiop<br />

equations which relate the formation<br />

time of soils to their characteristics<br />

(RUXTON, 1968; SONDHEIM et al.,<br />

1981; 1983). The statistical methods<br />

used are normally analysis of<br />

variance, factor analysis <strong>and</strong> nonlinear<br />

regressions.<br />

In this study numerical <strong>and</strong> statis-


1<br />

474 E. Arduino, E. Zanini, E. Barberis, V. Boero, F. Ajmone Marsan<br />

tical methods were applied to a chronosequence<br />

with the aim of verifying<br />

whether the extractable forms of Fe,<br />

AI <strong>and</strong> P can be utilized as in<strong>di</strong>cators<br />

of the <strong>di</strong>ffering ages of soils developed<br />

on fluvial terraces. To this<br />

aim, the results of Principal Component<br />

Analysis were interpreted (BAR­<br />

MAN, 1967; WEBSTER, 1979), <strong>and</strong><br />

the principal factors . whose indexes<br />

<strong>di</strong>scriminated the success.ive terms of<br />

the chronosequence were identified.<br />

The soils· of chronosequence<br />

The chronosequence stu<strong>di</strong>ed (Fig.<br />

1) consists of three fluvial terraces de-<br />

nominated A1, Az <strong>and</strong> B, originated<br />

from a p~g£1 -el~in f~n. i~~~ll~'Yestern<br />

part of the Po Valley in the North of<br />

Italy (45°27' to 45°31' N; 8°10' to 8°12'<br />

E). The terraces overlie the same substratum<br />

<strong>and</strong> are . at an elevation<br />

above the present bed of the river<br />

which originated them of 20-24 m for<br />

A1, 12-16 m for A 2 <strong>and</strong> 3-4 m for B.<br />

Although an absolute dating is not<br />

available, it was possible to establish,<br />

consistently with the international<br />

scale of chronological correlation<br />

(RICHMOND, 1982) that the terraces<br />

A1 <strong>and</strong> Az were formed during the<br />

Middle Pleistocene, that is between<br />

0.73 <strong>and</strong> · 0.13 million years ago,<br />

<strong>and</strong> specifically that A 1 is npt before<br />

1<br />

~ '<br />

'<br />

3<br />

c=J<br />

4<br />

~<br />

~ •<br />

Fig. 1 -The area stu<strong>di</strong>ed <strong>and</strong> sampling localities. 1: A1 Terrace; 2: A3 (reworked A2 se<strong>di</strong>ments);<br />

" 3: A2 Terrace; 4: B Terrace; e: Location of the profile.<br />

km 3


On the Effectiveness of the Extractao[e-Forms of .. 475<br />

0.30 m.y. ago, whereas terrace B originated<br />

during the Upper Pleistocene,<br />

that is between 0.130 <strong>and</strong> 0.010 m.y.<br />

(CARRARO & FORNO, 1982). On<br />

the three terraces, four profiles were<br />

sampled, of which one was on A 1, one<br />

on Az <strong>and</strong> two on B.<br />

Materials <strong>and</strong> methods<br />

Laboratory methods<br />

The analytical data relative to the<br />

profiles have already been published<br />

(ARDUINO et al., 1982); from these,<br />

together with the morphological<br />

characteristics of the various horizons,<br />

a classification emerged; Aquic<br />

Fragiudalf, fine-loamy, mesic (A 1);<br />

Aeric Haplaquept, loamy, mesi.c (Az);<br />

\<br />

Psammentic U<strong>di</strong>fluvent, loa~J.Y,<br />

mesic (B) <strong>and</strong> Typic skeletal U<strong>di</strong>fluvent,<br />

loamy, acid, mesic (B).<br />

The data reported here concern Fe<br />

<strong>and</strong> Al soluble in <strong>di</strong>thionite-citratebicarbonate<br />

(Fed, Ald) obtained with<br />

the MEHRA-JACKSON method<br />

(1960), Fe <strong>and</strong> Al soluble in. oxalate<br />

(Feo, Alo) obtained with the<br />

SCHWERTMANN method (1964) <strong>and</strong><br />

the fractioning of inorganic P into P<br />

bonded to Ca (Pea), to Al (PAJ), to Fe<br />

(PF.) <strong>and</strong> lastly easily reducible or<br />

occluded P (Po) (WILLIAMS, 1971).<br />

The data concerning loam, clay<br />

<strong>and</strong> cation exchange capacity were<br />

obtained with the SISS (SOCIETA<br />

ITALIANA DELLA SCIENZA DEL<br />

SUOLO) method (1976). All the<br />

analyses were performed on the


TABLE 1<br />

Analytical data<br />

I<br />

I<br />

I<br />

-..j<br />

""<br />

""'<br />

. !(<br />

Depth PAl PFe Pea Poc Fed Fe 0 Alct Ala Silt Clay C.E.C.<br />

Profile Horizon<br />

~<br />

cm pp m pp m pp m pp m % % % % % % meq/100 g ;J>.<br />

i<br />

it<br />

!::<br />

Al Ap 0- 30 52.9 122.0 70.2 96.1 1.90 I 0.43 0.41 0.16 41 26 11.2 s·<br />

Blt 30- 56 21.6 19.6 10.9 52.4 2.24 0.28 0.52 0.13 so 30 8.8 $><br />

A'2g 56- 93 7.0 77.4 20.0 87.0 2.55 0.35 0.51 0.14 35 29 9.2 ~<br />

B'21t 93-113 16.4 74.1 19.9 134.6 3.32 0.37 0.82 0.16 37 41 17.2 ., N<br />

B'22x 113-146 15.8 60.1 22.0 130.0 3.59 0.30 0.60 0.15 46 36 21.4 ;s<br />

B'23x 146-183 23.9 103.0 27.7 126.6 4.32 I 0.34 0.73 0.15 41 35 21.2 .,.... s·<br />

B'24x 183-224 22.8 94.2 35.7 193.9 3.12 0.46 0.52 0.14 37 38 17.8<br />

B'25x 224-165 57.7 165.4 36.7 156.2 3.36 0.94 0.66 0.22 35 38 21.8 ~<br />

tJ:j<br />

B'3 265-309 63.9 186.8 38.2 218.1 4.09 0.82 0.70 0.18 27 31 19.0 .,<br />

Cl 309-337 144.7 230.0 126.4 194.4 3.29 0.80 0.61 0.19 36 25 15.9 ;;.<br />

(I)<br />

C2 337AOO 200.4 199.2 243.6 123.6 2.10 0.73 0.39 0.25 22 18 15.3 ;:!,<br />

~<br />

A2 Apl 0- 9 46.9 115.9 42.2 69.9 1.61 0.44 0.28 0.14 44 20 11.0<br />

Ap2 9- 30 32.4 77.6 81.3 62.5 1.30 0.45 0.25 0.13 44 21 10.9 :.<br />

~.<br />

B Al 0- 20 39.1 109.7 143.7 34.9 1.97 0.66 0.29 0.20 34 18 18.4<br />

Cl 30- 55 9.3 50.8 153.1 14.9 1.66 0.71 0.25 0.17 29 15 14.6<br />

:::<br />

0<br />

;s<br />

C2 60- 90 43.1 33.6 179.2 30.2 1.40 0.85 0.18 missing 23 10 )9.4<br />

(I)<br />

C3 90-115 35.0 72.1 182.8 0.0 0.82 0.47 0.16 0.11 18 9 i 7.6 ., ;s::<br />

C4 115-140 30.0 58.8 223.2 0.0 0.49 0.28 0.11 0.07 11 4 14 6<br />

CS 140-156 16.8 72.1 202.3 18.9 1.20 0.71 0.08 0.07 7 4 ! 4:5<br />

.,<br />

B' Ap 0- 30 134.4 156.8 125.4 6.0 1.02 0.46 0.19 0.10 44 15 I 9.6<br />

Cl 30- 60 91.4 149:4 137.1 7.4 1.10 0.45 0.19 0.10 29 17 8.7<br />

C2 60-150 133.9 156.6 126.0 5.7 1.40 0.50 0.26 0.13 23 18 0.0<br />

~<br />

;s


On the Effectiveness of the Extraefiible F onns of .. 477<br />

capacity -Whereas the quantity of<br />

particles below 50 Jlm increases in the.<br />

more developed <strong>and</strong> less recent profiles,<br />

the exchange cation capacity<br />

does not always increase in correspondance<br />

with the amount of clay,<br />

due to the <strong>di</strong>versity of the clay minerals<br />

present.<br />

Fonns of Fe <strong>and</strong> Al- The quantities<br />

extracted in <strong>di</strong>thionite, which<br />

correspond to the elements no longer<br />

in the crystalline lattices of silicates<br />

increase in the older soils. The oxalate<br />

is able to <strong>di</strong>scriminate the forms<br />

of Fe sufficiently well, showing that it<br />

is the B horizons which are ;poorer in<br />

the more «active» forms, but is less<br />

efficient in this respect in the case of<br />

Al.<br />

Fonns of P - The quantity of P<br />

bonded to Fe <strong>and</strong> to Al is greater in<br />

the A <strong>and</strong> C horizons of the'pr~files;<br />

quantities of p bonded to ea' <strong>and</strong><br />

occluded P <strong>di</strong>ffer widely among the<br />

profiles, consistent with the situation<br />

often described in the literature: as<br />

pedogenesis progresses the occluded<br />

forms of P increase <strong>and</strong> the more<br />

soluble forms <strong>di</strong>minish.<br />

Principal Component Analysis (PCA)<br />

- PCA was performed on the parameters<br />

listed in Table 1 <strong>and</strong> on the<br />

<strong>di</strong>fferences Fect-Feo <strong>and</strong> Alct-Al 0 , taking<br />

each horizon as an independent sample.<br />

This analysis was performed<br />

separately on two sets of variables: 1)<br />

forms of P, fine particles, cation exchange<br />

capacity, <strong>and</strong> 2) forms of Fe<br />

<strong>and</strong> of Al, fine particles <strong>and</strong> cation<br />

exchange c;;1pacity.<br />

For the first set of variables (PCA 1)<br />

two principal components were<br />

found with eigenvalues greater than 1<br />

<strong>and</strong> accounting for 83% of the total<br />

variance, whereas for the second set<br />

(PCA 2) only one component exceeded<br />

the above mentioned threshold <strong>and</strong><br />

accounted for 80% of the variance<br />

(Table 2).<br />

The factor 1 scores for the two<br />

analyses were found to be highly<br />

correlated (r = 0.915; P = 0.001) <strong>and</strong><br />

TABLE 2.<br />

Results from Factor Analysis (Principal components extraction)<br />

COMPONENT LOADINGS<br />

ANALYSIS: PCA.1 PCA.2 PCA.3<br />

FACTOR: I II II<br />

PAl -0.204 0.924 '"**''(* -0.138 0.931<br />

PFe 0.133 0.955 **'~** 0.149 0.943<br />

Pea -0.874 0:316 ****


I<br />

478 E. Arduino, E. Zanini, E. Barberis, V. Boero, F. Ajmone Marsan<br />

therefore it was decided to apply PCA<br />

to all the available variables, again<br />

taking each horizon as an independent<br />

sample. This analysis (PCA 3)<br />

produced two factors accounting for<br />

83% of total variance. Except for PAl<br />

<strong>and</strong> PFe, all the other properties were<br />

. str~mgly corre!~ te_c:t~i!!J.. fac:!or 1.<br />

The first factor of each analysis<br />

tends to be the most explicative <strong>and</strong><br />

generalizing one, <strong>and</strong> this is confirmed<br />

by the efficiency of variance<br />

TABLE 3<br />

Oneway analysis of variance of factor I from PCA.l by profile<br />

ANALYSIS OF VARIANCE<br />

Source DF ss MS F F PROB.<br />

between groups 3 I6.972 5.657 I5.50 ~ 0.000<br />

(profiles)<br />

within groups 22 8.028 0.365<br />

Total 25 25.000<br />

SNK MULTIPLE RANGE TEST:(*) denotes pairs of groups significantly <strong>di</strong>fferent at the 0.05<br />

level.<br />

PROFILES<br />

B B' A2<br />

AI mean (FACTOR I)<br />

PROFILES<br />

B<br />

B'<br />

A2<br />

AI<br />

,, ,,<br />

*<br />

*<br />

*<br />

*<br />

-1.24<br />

-0.78<br />

0.40<br />

0.67<br />

TABLE 4<br />

Oneway analysis of variance of Factor I from PCA.2 by profile<br />

Source<br />

between groups<br />

(profiles)<br />

DF<br />

3<br />

ANALYSIS OF VARIANCE<br />

ss<br />

MS<br />

I6.573 5.524<br />

F<br />

F PROB.<br />

I5.62 0.000<br />

within groups<br />

2I<br />

7.427<br />

0.354<br />

Total<br />

24<br />

24.000<br />

SNK MULTIPLE RANGE TEST:('') denotes pairs of groups significantly <strong>di</strong>fferent at the 0.05<br />

level.<br />

PROFILES<br />

B B' A2 AI mean (FACTOR I)<br />

,<br />

PROFILES B * * -1.13<br />

B'<br />

,,<br />

* -0.89<br />

A2<br />

,,<br />

* -0.15<br />

~·:<br />

AI<br />

*<br />

0.84


On the Effectiveness of the Extractable Forms of .. 479<br />

TABLE 5<br />

Oneway analysis of variance of factor I from PCA.3 by profile<br />

ANALYSIS OF VARIANCE<br />

Source DF ss MS F FPROB.<br />

between groups 3 17.220 5.740 17.78 0.000<br />

(profiles)<br />

within groups 21 6.780 0.320<br />

Total 24 24.000<br />

SNK MULTIPLE RANGE TEST:('') denotes pairs of groups significantly <strong>di</strong>fferent at the 0.05<br />

level.<br />

PROFILES<br />

B B' A2 A1 mean (FACTOR I)<br />

PROFILES<br />

B<br />

B'<br />

A2 *<br />

A1 *<br />

,,<br />

*<br />

,,<br />

~·:<br />

-1.19<br />

;,<br />

-0.89<br />

;,<br />

-0.09<br />

0.84<br />

2 Factor I<br />

200<br />

300<br />

•<br />

-1<br />

Data fitting to polynomial trends<br />

.. A1: Y=0.02*X-5.3*10-S*X 2 -0.41;<br />

• A2: Y=0.02*X-7.7*10-S*X 2 -0.65;<br />

-2<br />

0v 8: Y=-7.5*10- 3 *X-0.48;<br />

Fig. 2- Polynomial trends of Factor I from PCA.2 with mean horizon depth of the profiles stu<strong>di</strong>ed.


480 E. Arduino, E. Zanini, E. Barberis, V. Boero, F. Ajmone Marsan<br />

analysis in <strong>di</strong>fferentiating groups of<br />

horizons (profiles). In particular, the<br />

factor 1 score of PCA 2 <strong>di</strong>fferentiated<br />

better than <strong>di</strong>d that of PCA 1, whereas<br />

the factor 1 score of PCA 3 was as<br />

effective as that of PCA 2.<br />

In Tables 3-5 are shown the results<br />

of the above analysis of variance<br />

<strong>and</strong> the a posteriori Student­<br />

Newmann-Kneuls Multiple Range<br />

Test. As can be seen, factor 1 of PCA 1<br />

<strong>di</strong>fferentiated the profiles of the most<br />

recent terrace from those of terraces<br />

A1 <strong>and</strong> Az taken together; factor 1 of<br />

PCA 2 was more effective <strong>and</strong> <strong>di</strong>fferentated<br />

also between profiles A1<br />

<strong>and</strong> A 2·• The same effectiveness was<br />

shown by factor 1 of PCA 3.<br />

The conclusion which may be<br />

drawn is that forms of Fe <strong>and</strong> Al<br />

associated with cation exchange<br />

capacity values <strong>and</strong> fine material·<br />

quantities are able to supply an index<br />

which <strong>di</strong>scriminates between<br />

soils of terraces of <strong>di</strong>fferent ages.<br />

This also appears evident observing<br />

the factor 1 scores of PCA 2, plotted<br />

accor<strong>di</strong>ng to the mean depth of<br />

the horizons in the four profiles (Fig.<br />

2). The behaviour of the single values<br />

in the profiles of the three terraces<br />

are neatly <strong>di</strong>fferentiated <strong>and</strong> well interpretable.<br />

REFERENCES<br />

ALEXANDER E.B., 1974. Extractable iron in relation to soil age on terraces along the Truckee River,<br />

Nevada. Soil Sci. Soc. Amer. Proc. 38, 121-124.<br />

ALEXANDER E.B., HoLOWAYCHUK N., 1983. Soils on terraces along the Cauca river, Colombia: I. Chronosequence<br />

characteristics. Soil Sci. Soc. Am. J. 47, 715-721.<br />

ARDUINO E., AJMONE MARSAN F., ZANINI E., BARBERIS E., 1982. Classificazione dei suoli della Baraggia<br />

<strong>di</strong> Verrone (Provincia <strong>di</strong> Vercelli). Ann. Fac. Sci. Agr. Torino ~2, 297-328.<br />

ARDUINO E., BARBERIS E., CARRARO F., FORNO M.G., 1984. Estimating relative ages from iron-oxides!<br />

total-iron ratios of soils in the western Po valley, Italy. Geoderma 33, 39-52.<br />

BAUWIN G .R., TYNER E.H., 1957. The <strong>di</strong>stribution of nonextractable phosphorous in some Gray-Brown<br />

Podzolic, Brunizem <strong>and</strong> Planosol soil profiles. Soil Sci. Soc. Amer. Proc. 21, 245-250.<br />

BRUNNAKER J., 1970. Kriterien zur relativen Dtitierung quartarer Palaboden. Z. Geomorphol. Neue<br />

Folge 14, 354-360.<br />

CARRARO F., FoRNO M.G., 1982. Carta geologica della Baraggia <strong>di</strong> Verrone. Consorzio <strong>di</strong> Bonifica della<br />

Baraggia Vercellese, Vercelli.<br />

GooFREY G.L., RIECKEN F.F., 1954. Distribution of phosphorous in some genetically related loessderived<br />

soils. Soil Sci. Soc. Am. Proc. 18, 80-84.<br />

HARMAN H.H., 1967. Modern factor analysis. University of Chicago Press, Chicago. ,<br />

HAWKINS R.H., KuNZE G .W ., 19.65. Phosphate fractions in some Texas Grumusols <strong>and</strong> their relation to<br />

soil weathering <strong>and</strong> a,vailable phosphorous. Soil Sci. Soc. Amer. Proc. 29, 650-656.<br />

KAISER H.F., 1958. The Vahmax criterion for analytical rotation in factor analysis. Psichometrika 23,<br />

187-200.<br />

KAISER H.F., CAFFRY J., 1965. Alpha Factor Analysis. Psichometrika 30, t'-14.<br />

LAWLEY D.N., MAXWELL A.E., 1971. Factor Analysis as a statistical method. 2nd E<strong>di</strong>tion. Butterworths,<br />

London.<br />

MEHRA O.P., JACKSON M.L., 1960. Iron oxides removal from soils <strong>and</strong> clays by a <strong>di</strong>thionite-citrate<br />

system buffered with bicarbonate. Clays Clay Miner. 7, 317-327.<br />

NAGATSUKA S., KANEKO S., IsHIHARA A., 1983. Soil genesis on the raised coral reef terraces of Iohigaki<br />

<strong>and</strong> Okinawa-Isl<strong>and</strong>s in the Ryukyu isl<strong>and</strong>s, Japan. I. Relations among soils <strong>and</strong> geomorphic<br />

plains <strong>and</strong> chronosequential change of soil chemical properties. Soil Sci. Plant Nutr. 29, 343-354.


On the Effectiveness of the Extractable Forms of .. 481<br />

RicHMOND G.H., 1982. Il pleistocene me<strong>di</strong>a in !talia. Geogr. Pis. Dinam. Quat. 5 (1), 242-243.<br />

RuxTON B.P., 1968. Rates of weathering of Quaternary volcanic ash in northeast Papua. Int. Congr.<br />

Soil Sci. Trans. 9th (Adelaide, Austr.) 4, 205-213.<br />

ScHWERTMANN U ., 1964. The <strong>di</strong>fferentiation of iron oxides in soils by a photochemical extraction with<br />

acid ammonium oxalate. Z. Planznerniihr. Dung. Bodenkd. 105, 194-202.<br />

SMECK NEIL E., 1973. Phosphorous: an in<strong>di</strong>cator of pedogenetic weathering processes. Soil Sci. 115,<br />

199-206.<br />

SOCIETA lTALIANA DELLA SC!ENZA DEL SUOLO (Bol!ettino del!a), 1976. 10, 15-98.<br />

SoKAL R.R., RoHLF F.J., 1969. Biometry. W.H. Freeman <strong>and</strong> Co., San Francisco. ,<br />

SONDHEIM M.W., SINGLETON G.A., LAVKULICH L.M., 1981. Numerical analysis of a chronosequence<br />

inclu<strong>di</strong>ng the development of a chronofunction. Soil Sci. Soc. Am. J. 45, 558-563.<br />

· SoNDHEIM M.W., STANDISH J.T., 1983. Numerical analysis of a chronosequence inclu<strong>di</strong>ng an assessment<br />

of variability. Cana<strong>di</strong>an J. Soil Sci. 63,501-517.<br />

SPSS INc., 1983. Spss-X, User's Guide. Me Graw-Hill, New York.<br />

TORRENT J., SCHWERTMANN U., SCHULZE D.J., 1980. Iron oxide mineralogy of some soils of two river<br />

terrace sequences in Spain. Geoderma 23, 191-208.<br />

WEBSTER R., 1977. Quantitative <strong>and</strong> numerical methods in soil classification <strong>and</strong> survey. Clarendon<br />

Press, Oxford. ·<br />

WILLIAMS J.D.H., SYERS J.K., HARUS. R.F., ARMSTRONG D.E., 1971. Fractionation of inorganic phosphate<br />

in calcareous lake se<strong>di</strong>ments. Soil Sci. Soc. Amer. Proc. 35, 250-255.<br />

YAALON D.H., 1975.~Conceptual models in pedogenesis: can soil-forming functions be solved?. Geoderma<br />

14, 189-205.<br />

'


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 483-488 (1985)<br />

Geochemistry of Available Micronutrients in Soils<br />

from Vega de Velez, Malaga, Spain<br />

A.RUIZ 1 ,S.JAIME 1 ,A.AGUILAR 1 ,E.BARAHONA 2 ,F.HUERTAS 2 ,J.LINARES 2<br />

1 Estaci6n Experimental «La Mayora», C.S.I.C., Algarrobo-Costa, Malaga, Espaiia<br />

2 Estaci6n Experimental del Zai<strong>di</strong>n, C.S.I.C., Profesor Albareda !, 18008 Granada, Espaiia<br />

ABSTRACT- The Valley of the Velez River is located in the SW part ofthe<br />

Malaga Province (Spain). The zone is used extensively for growing avocado<br />

trees. This paper is a part of a more extensive study connected witn tne<br />

availability of micronutrie'nts for this crop. The soils are mainly calcareous<br />

Fluvisols with minor inclusions of calcic Cambisols <strong>and</strong> Luvisols.<br />

Ninety soil samples were taken on a stratified r<strong>and</strong>om sampling scheme <strong>and</strong><br />

were stu<strong>di</strong>ed for mineralogical <strong>and</strong> physicochemical properties. Available<br />

Cu, Fe <strong>and</strong> B were chemically extracted.<br />

The soils are rich in quartz <strong>and</strong> phyllosilicates <strong>and</strong> show a great homogeneity<br />

in composition. Carbonates are generally under 10% <strong>and</strong> organic matter is<br />

lower than 3%. Most soils are s<strong>and</strong>y loams. Available K increases with clay<br />

content <strong>and</strong> <strong>di</strong>minishes with whole phyllosilicate content due to the presence<br />

of the coarse fractions of phengite <strong>and</strong> paragonite micas.<br />

Statistical analysis reveals that the extractable Cu (mean value 0.7 ppm)<br />

depends mainly on the clay, carbonate <strong>and</strong> organic matter content. A fraction<br />

of Cu must be'associated with Fe-oxyhydroxides since there is a significant<br />

correlation between extractable Fe <strong>and</strong> Cu.<br />

The extractable Fe (me~n value 3.3 ppm) is associated with carbonates. T~e<br />

correlation with·organic matter <strong>and</strong> other mineral components is negative.<br />

Finally, e'xtractable B (mean value 2.5 ppm) is related to organic matter,<br />

carbonates <strong>and</strong> phyllosilicates. Part of the extractable B must be present as<br />

soluble salts.<br />

Infroduction<br />

The Valley of the Velez River is located<br />

on the southeastern part of the<br />

Malaga Province (Spain). It occupies<br />

an area of about 30 km 2 <strong>and</strong> is entrenched<br />

between materials of the<br />

Malaguide Complex (Cambrian to<br />

Carboniferous), consisting of limestones,<br />

greywackes, quartzites <strong>and</strong><br />

phyllites, '<strong>and</strong> those from the ~lpujarride<br />

Complex (Cambrian to Permo­<br />

-Triassi.c) constituted by marbles,cmica<br />

schists <strong>and</strong> quartzites.<br />

The Velez River transported part of<br />

these materials <strong>and</strong> deposited them<br />

'in an extensive valley floor (vega)<br />

which is the location selected for the<br />

present study.<br />

The soils derived from these materials,<br />

are mostly used to grow subtropical<br />

crops, especially avocado.<br />

The present paper is part ofa more


484 A. Ruiz, S. Jaime, A. Aguilar, E.' Barahona, F. Huertas, J. Linares<br />

extensive study of the factors governing<br />

the mineral nutrition of the<br />

crop.<br />

A still little known subject, in this<br />

respect, is the role played by micronutrients.<br />

In this communication<br />

preliminary results on available Cu,<br />

Fe <strong>and</strong> B content in the soils as related<br />

to- theiF-miner:alogk:al-GompGsition<br />

are presented.<br />

Materials <strong>and</strong> experimental methods<br />

The soils formed from recent flood<br />

plain deposits are mainly Fluvisols ..<br />

A I p u jar r i de eo ri1 pIe X<br />

M a I a g u id e Co m pI ex<br />

MEDITERRANEAN<br />

SEA<br />

0 5 10 15 km<br />

Fig.· i -L~c~ti~n of the sampling zone (dotted area)_


Geochemistry of Available Micronutrients in Soils ... 485<br />

On some ondulating, <strong>and</strong> geomorphologically<br />

older surfaces, more<br />

strongly developed soils also occur,<br />

such as calcic Cambisols <strong>and</strong> even<br />

Luvisols.<br />

Ninety samples of the plow layer<br />

were tak~n, following a stratified r<strong>and</strong>om<br />

sampling procedure (Fig. 1).<br />

Mineralogical analyses were carried<br />

out on the bulk samples by XRD<br />

(powder method), using a Philips<br />

1730 <strong>di</strong>ffractometer. A semiquantitative<br />

analysis was made using the reflecting<br />

factors reported by BARA­<br />

HONA (1974).<br />

The available elements were extracted<br />

with an aqueous acetiC acid<br />

solution at pH 2.5 (ROMERO, 1981).<br />

Organic matter was determined by<br />

wet oxidation with potassium <strong>di</strong>chromate<br />

(ANAL. METH. WORK.<br />

GROUP, 1973). The mechan~cal<br />

analysis was carried out with the<br />

hydrometer method (BOUYOUCOS,<br />

1951). Also, the conductivity of the<br />

saturation extracts (CHAPMAN .&<br />

PRATT, 1973) <strong>and</strong> the pH of the saturated<br />

paste (ANAL.' METH. WORK.<br />

GROUP, 1973) were determined as<br />

well as available P (CAPITAN &<br />

MARTINEZ, 1954), K(ANAL. METH.<br />

WORK. GROUP, 1976) <strong>and</strong> total nitrogen<br />

contents (ANAL. METH.<br />

WORK. GROUP, 1973).<br />

Experimental results <strong>and</strong> <strong>di</strong>scussion,<br />

The mean values <strong>and</strong> st<strong>and</strong>ard deviations<br />

of the variables stu<strong>di</strong>ed are<br />

reported in Table 1.<br />

The dominant textural class is s<strong>and</strong>y<br />

loam. The mineralogical composition<br />

of the soils is very homogeneous.<br />

They are rich in phyllosilicates <strong>and</strong><br />

quartz, in agreement with the nature<br />

of the parent materials. The carbonate<br />

content is, generally, under 10%,<br />

TABLE 1<br />

Mean values (x) <strong>and</strong> st<strong>and</strong>ard deviations (s) of the variables stu<strong>di</strong>ed (90 samples)<br />

Extractable Cu pp m 0.66 0.28<br />

Extractable Fe pp m 3.30 1.78<br />

Extractable B pp m 2.55 1.24<br />

Phyllosilicates % 58.64 8.42<br />

Quartz % 30.44 7.37<br />

Plagioclase % 4.24 1.65<br />

K-feldspar % 0.31 0.72<br />

Calcite % 5.17 4.20<br />

Dolomite % 1.29 2.32<br />

pH 7.41 0.25<br />

Conductivity 2.68 1.39<br />

Equivalent carbonate % 5.41 4.49<br />

Organic Matter % 1.69 0.55<br />

Nitrogen mg/100 113.95 31.98<br />

PzOs mg/100 50.76 28.74<br />

KzO mg/100 34.75. 21.61<br />

Clay % 18.42 8.40<br />

Silt % 28.82 9.95<br />

S<strong>and</strong> % 52.91 15.40<br />

x<br />

s


l<br />

486 A. Ruiz, S. Jaime, A. Aguilar, E. Barahona, F. Huertas, 1. Linares<br />

<strong>and</strong> calcite more abundant than dolomite.<br />

Taking into account the correlation<br />

between grain size separates <strong>and</strong><br />

mineral constituents, it .may be deduced<br />

that the s<strong>and</strong> fraction (53%)<br />

consists of 30% quartz, 4% plagioclase,<br />

1% K-feldspar <strong>and</strong> 1% dolomite.<br />

The silt fraction (29%) is constituted<br />

by 27% phyllosilicates <strong>and</strong> 2% calcite.<br />

They clay fraction is constituted<br />

by 15% phyllosilicates <strong>and</strong> 3% calcite.<br />

The pH values vary very little <strong>and</strong><br />

are governed by the assemblage<br />

phyllosilicates-carbonates. The conductivity<br />

of the saturation extract is<br />

---------~ __ jnyersely_related to pH, probably because<br />

as ionic strength increases,<br />

more H+ ions are <strong>di</strong>splaced from the.<br />

exchange complex to the sGil solution.<br />

The organic matter content is never<br />

above 3% <strong>and</strong> is highly significantly<br />

related to theN, P <strong>and</strong> B contents.<br />

Available P <strong>and</strong> K are related to one<br />

another. The latter depends mainly<br />

on clay content but is independent of<br />

the total amount-of-phyllosilicates in<br />

the bulk sample, since these consist<br />

partly of coarse mica fractions of<br />

phengite <strong>and</strong> paragonite, ·derived<br />

from metamorphic mica shists.<br />

In order to study the relationships<br />

between available elements <strong>and</strong> the<br />

rest of the variables, a multiple linear<br />

regression analysis was carried out.<br />

Some selected results are summarized<br />

in Table 2.<br />

Extractable Cu is related to organic<br />

matter, clay <strong>and</strong> carbonate content;<br />

hence the Cu in the soil must occur<br />

chiefly in the form of chelates, exchangeable<br />

ions <strong>and</strong> carbonates.<br />

Probably, Cu must also be associated<br />

with Fe oxyhydroxides (not determined),<br />

since there is a significative<br />

correlation between extractable Cu<br />

<strong>and</strong> Fe. From the partial regression<br />

coefficients it may be deduced that<br />

organic matter contributes 5.4, clay<br />

1.3, calcite 3.1 <strong>and</strong> dolomite 1.3 ppm<br />

per unit weight to the total extractable<br />

Cu. By weighted ad<strong>di</strong>ng of all<br />

TABLE 2<br />

Selected results of multiple linear regression analysis<br />

Ext. Cu = 0.333 + 0.054 Organic Matter + 0.013 Clay<br />

R = 0.404<br />

Ext. Cu = 0.479 + 0.031 Calcite + 0.013 Dolomite<br />

R = 0.495<br />

Ext. Fe = 2.183 + 0.191 Calcite + 0.099 Dolomite<br />

R = 0.474<br />

Ext. B<br />

Ext. B<br />

-0.968 + 1.300 Organic Matter + 0.049 Clay + 0.014 Silt<br />

R = 0.715<br />

-17.237 + 2.239 pH+ 0.258 Conductivity+ 0.060 Equivalent CaC0 3 + 0.010 N +<br />

+ 0.017 P20s + 0.003 K20 .<br />

R = 0.726<br />

The correlation coefficients are significant at 0.01 level


Geochemistry of Available Micronutfie-iits in Soils ... 487<br />

contributions, a value for Cu is<br />

obtained that closely resembles the<br />

observed mean values.<br />

Extractable Fe is significantly related<br />

to carbonate content. Accor<strong>di</strong>ng<br />

to the regression coefficients, the unitary<br />

contributions of calcite <strong>and</strong><br />

dolomite are 19.1 <strong>and</strong> 9.9 ppm Fe respectively.<br />

Summing up both contributions,<br />

the observed mean value<br />

for Fe is not reached by far, this could<br />

imply that a part of the extractable<br />

Fe might be associated with Fe oxyhydroxides.<br />

On the other h<strong>and</strong>, this<br />

element is not accounted for by either<br />

organic matter or phyllosilicates,<br />

since the correlation coefficients are<br />

negative.<br />

There are two sources of extractable<br />

boron, namely, organic matter<br />

<strong>and</strong> clay. The unitary contributions<br />

are ·130 <strong>and</strong> 4.9 ppm respectively.<br />

Therefore, organic compounds ri2h in<br />

B must be a fairly abundant component<br />

in the soils of this region. It must<br />

be taken into account that micas constitute<br />

a potential source of ;B. This ,<br />

element is hydrolyzed <strong>and</strong> concentrated<br />

in neoformed clay minerals,<br />

<strong>and</strong> in ad<strong>di</strong>tion forr'ns complexes<br />

with organic matter. By summing up<br />

the weighted contributions of both B<br />

sources, a value is obtained which is<br />

higher than the observed mean value.<br />

It could happen that the multiple regression<br />

coefficients were <strong>di</strong>storted<br />

by a concealed effect of soluble B.<br />

It may be concluded that the<br />

amounts of extractable Cu <strong>and</strong> B depend<br />

mainly on the organic matter<br />

content, <strong>and</strong> that of Fe, on carbonate<br />

content. Cu is also partly related to<br />

carbonates <strong>and</strong> clay, while B is related,<br />

to a certain extent, to the clay<br />

content.<br />

In Table 3 values of extractable Cu<br />

<strong>and</strong> B are compared with those<br />

given in the literature. The values<br />

found fall within normal ranges, so<br />

that probably the soils are not deficient<br />

in these elements.<br />

Finally, since Fe is closely related<br />

to carbonate content, it is of interest<br />

to assess whether the concentrations<br />

in· extractable Fe are in solubility<br />

equilibrium with the correspon<strong>di</strong>ng<br />

carbonate compound (siderite). The<br />

reaction may be \Yritten as:<br />

FeC03 + 2H+ ~ Fe 2 + + COz + HzO<br />

log K = 7.92 (LINDSAY, 1979)<br />

Assuming that the soil moisture<br />

content is about 10 percent, a con-<br />

TABLE 3<br />

ppm values of extractable Cu <strong>and</strong> B compared with those given in the literature<br />

This Paper 2<br />

Cu 0.66 2.9 0.06-0.3<br />

(0.002-19.2)<br />

B 2.55 1.9 0.1 -2<br />

(0.01-130)<br />

1: from FAIRBRIDGE & FINKL (1979); 2: from AUBERT & PINTA (1971); Numbers in<br />

parentheses give the ranges of variation


1<br />

488 A. Ruiz, S. Jaime, A. Aguilar, E. Barahona, F. Huertas, J. Linares<br />

centration of 10·3·23 M for extractable<br />

Fe is obtained. Since the dominant<br />

texture is loamy s<strong>and</strong>, the soils<br />

should be well aerated <strong>and</strong> their C02<br />

content should be very close to that of<br />

the free atmosphere (10·3·5 atm). Consequently,<br />

substituting this value in:.<br />

log K = log Fe + log C02 + 2 pH<br />

we QP.t


Miner. Petrogr. Acta<br />

Vol. 29-A. pp. 489-498 (I 985)<br />

Geochemistry of Soils from Peridotite<br />

in Los Reales, Malaga, Spain<br />

A. YUSTA 1 , E.BARAHONA 2 ,F.HUERTAS 2 , E.REYES 2 ,J. YANEZ 2 ,J.LINARES 2<br />

1 Departamento de Qufmico-Ffsica, Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos, 29071<br />

Malaga, Espaiia<br />

2 Estaci6n Experimental del Zaidfn, C.S.I.C., Profesor Albareda I, 18008 Granada, Espaiia<br />

ABSTRACT- Los Reales mountain belongs to the Ronda ultramaphic complex<br />

<strong>and</strong> is located near the southern coast of Spain. The peridotites are partially<br />

serpentinized in some places.<br />

A soil profile representative of the zone stu<strong>di</strong>ed was sampled. The soils are<br />

Chromic Cambisols or Typic Xerochrepts. For the geochemical <strong>and</strong> mineralogical<br />

study samples of fresh rocks, altered fragments (gravels included<br />

within the soil) <strong>and</strong> soil horizons were taken.<br />

The fresh rocks are composed of olivine, enstatite, <strong>di</strong>opside <strong>and</strong> serpentine.<br />

Since the primary minerals have nearly constant chemical compositions, the<br />

calculation of a mineralogical norm was feasible, <strong>and</strong> the structural formula<br />

of serpentine was deduced. These results checked against <strong>di</strong>ffractometric<br />

data allowed reflecting power factors to be obtained for these minerals, in<br />

order to facilitate their semiquantitative determination by XRD analysis.<br />

In altered rocks, in ad<strong>di</strong>tion to primary minerals, a trioctahedral smectite<br />

\saponite) was found.<br />

The soils are rich i~organic matter. The exchange complex is dominated by<br />

magnesium <strong>and</strong> the degree of saturation is always high. Free iron oxyhydroxides<br />

are abundant <strong>and</strong> they concentrate in the B horizons. In the upper<br />

horizons small quantities of quartz <strong>and</strong> chlorite of eolian origin are found.<br />

It can be concluded from mass balance calculations that a 54% loss occurred<br />

for the transformation of fresh to altered rock while the loss for the transformation<br />

from fresh rock to soil was 63%. Important amounts of serpentine,<br />

olivine, Cr, Zn .<strong>and</strong> Co are lost.<br />

Introduction<br />

The peridotite exposure occurring<br />

at Los Reales is located in the Ronda\<br />

ultrabasic complex <strong>and</strong> belongs to<br />

the inner zones of the Betic Ranges.<br />

This complex extends over about 300<br />

km 2 , near the southern <strong>Spanish</strong><br />

coast. In places, the peridotite body is<br />

partially serpentinized by a subsequent<br />

process of metasomatism<br />

(TORRES, 1979). This zone has been<br />

stu<strong>di</strong>ed by several authors, among<br />

them DICKEY (1970) <strong>and</strong>. OBATA<br />

(1979), who determined the chemical<br />

composition of olivines, ortho- <strong>and</strong><br />

clinopyroxenes <strong>and</strong> of some other<br />

accessory minerals (spinel, garnet,<br />

amphibole, etc.); in all cases, minimal<br />

compositional changes were found.<br />

The purpose ofthis study is to gain


490 A. Yusta, E. Barahona, F. Huertas, E. Reyes, J. Yanez, J. Linares<br />

some knowledge of the matter balance<br />

associated with the processes of<br />

surficial alteration of peridotites.<br />

The ease with which the primary<br />

minerals of these rocks an~ destroyed<br />

permits the important losses of matter<br />

in these processes to be stu<strong>di</strong>ed. In<br />

ad<strong>di</strong>tion, it is possible to determine<br />

the mobilization of trace elements<br />

associated with these minerals.<br />

Furthermore, given the small variation<br />

in the chemical composition of<br />

olivines, pyroxenes, etc., a calculation<br />

of the mineralogical norms can<br />

be made. These results, checked<br />

against <strong>di</strong>ffractometric data allow re'!.<br />

fleeting power factors to be obtained<br />

__________ for _these minerals, in order to facilitate<br />

their semiquantitative determination<br />

by XRD analysis.<br />

Materials <strong>and</strong> experimental methods<br />

The sampling site is located near<br />

the top of Los Reales mountain where<br />

the colluvial cover is minimal <strong>and</strong><br />

the soils show well developed weath-.<br />

ering horizons.<br />

Soil profile description<br />

Classification: Chromic Cambisol,<br />

Typic Xerochrept. Location: Los<br />

Reales, Malaga. Topographic sheet<br />

1071, UTM coord.: 029398. Physiographic<br />

position: Sideslope near the<br />

mountain top. Elevation: 1300 m.<br />

Slope: Steep (28%). Vegetation: Coniferous<br />

forest (Pinus pinaster sol.).<br />

I<br />

Parent material: Peridotite residuum.<br />

All 0-1:3 cm:· Dark-red<strong>di</strong>sh brown<br />

(5YR 3/3) silty loam (moist), strong<br />

fine granular structure, slightly plastic,<br />

very friable, common coarse fragments<br />

(stones <strong>and</strong> gravels), many fine<br />

pores, many fine roots, clear smooth<br />

boundary.<br />

B21 13-25 cm: Dark red<strong>di</strong>sh brown<br />

(2.SYR 3/4) loam, moderate me<strong>di</strong>um<br />

subangular blocky structure, moderately<br />

plastic, friable, few gravels,<br />

frequent fine pores <strong>and</strong> fine roots,<br />

smooth gradual boundary.<br />

B22 25-40 cm:· Dark red (5YR 3/6)<br />

silty loam, moderate me<strong>di</strong>um subangular<br />

blocky structure, no clay<br />

skins are visible, moderately plastic,<br />

friable, few gravels, frequent fine<br />

pores <strong>and</strong> very fine roots, smooth gradual<br />

boundary.<br />

B31 40-60 cm: Strong brown<br />

(7.5YR 3.5/6) loam, weak me<strong>di</strong>um<br />

subangular blocky structure, no clay<br />

skins, moderately plastic, friable,<br />

some ston"es, few pores, few roots,<br />

gradual wavy boundary.<br />

B32 60-70 cm: Yellowish brown<br />

(lOYR 4.5/6) loam, very weak<br />

me<strong>di</strong>um subangular blocky structure,<br />

moderately plastic, friable,<br />

abundant rock fragments (40% vol),<br />

gradual wavy boundary. ,<br />

Cl 70-100 cm: Light olive brown<br />

(2.5Y 5/4) s<strong>and</strong>y loam with common<br />

yellowish red streaks, massive,<br />

slightly plastic, horizon truncated<br />

laterally by hard rock.<br />

C2 100-130+ cm: Light olive brown<br />

(2.5Y 5/4) loamy s<strong>and</strong> (saprolite) with


common yellowish red streaks, massive,<br />

non plastic, friable, truncated<br />

laterally by hard rock.<br />

Master horizons. were sampled for·<br />

laboratory determinations, <strong>and</strong>, in<br />

ad<strong>di</strong>tion, a more detailed sampling<br />

was made in a nearby site, with identica.l<br />

profile characteristics. Here, the<br />

horizons were sub<strong>di</strong>vided into a total<br />

of 14 soil samples.<br />

Nine samples of fresh rock, not<br />

showing signs of external alteration,<br />

were takeri. Also, gravel~ occurring in<br />

each horizon were sampled as well as<br />

a rock showing <strong>di</strong>stinct evidence of<br />

alteration, so that the <strong>di</strong>fferent<br />

weathering stages would be represented.<br />

The mineralogical analysis was<br />

carried qut by XRD. For fresh<br />

rock mineralogical semiquantitative<br />

analysis, the starting point ~as the<br />

"<br />

mineralogical norm, calculated from<br />

"<br />

chemical analysis of rocks, taking<br />

into account the composition of<br />

<strong>di</strong>fferent minerals (Table 1). The<br />

percentages so obtained were checked<br />

against the areas of <strong>di</strong>agnostic<br />

Geochemistry of Soils from-Peridotite ... 491<br />

peaks for minerals. Finally, the following<br />

reflecting power factors were<br />

obtained: <strong>di</strong>opside = 1.7; enstatite,<br />

olivine <strong>and</strong> serpentine = 1, for the J<br />

2.99, 2.87, 2.64 <strong>and</strong> 7.3 A reflections,<br />

respectively. These values are in<br />

accordance with the respective<br />

«mass attenuation 'coefficients»,<br />

(MAC).<br />

For the mineralogical analysis of<br />

altered rocks, the linear regressions<br />

between mineral percentages <strong>and</strong> the<br />

_correspon<strong>di</strong>ng <strong>di</strong>agnostic peak areas,<br />

for fresh rock samples, were calculated.<br />

For the amphibole, in accordance<br />

with its MAC, a reflecting power<br />

factor of one was assumed. From <strong>di</strong>ffractometric<br />

data, the percentages of<br />

primary minerals were calculated by<br />

using the above mentioned regression<br />

equations. The rest (up to 100)<br />

was exf1ressed as free iron oxyhydroxides<br />

(previously determined by<br />

chemical analysis) <strong>and</strong> as smectite<br />

neoformed by alteration.<br />

' For carrying out the mineralogical<br />

analysis of soils, the regression between<br />

smectite content <strong>and</strong> the 17 A<br />

peak area (i.e. solvated) was calculated.<br />

By using this equation <strong>and</strong> the<br />

above mentioned ones, the percentages<br />

for mineral components were<br />

calculated. The remainder up to 100<br />

was expressed as free iron oxyhydrox- .<br />

ides (chemically determined) <strong>and</strong> as '<br />

chlorite <strong>and</strong> quartz, using in this case<br />

the reflecting power factors obtained<br />

by BARAHONA (1974).<br />

The chemical analysis of major elements<br />

was carried out with the<br />

method given by HUERTAS & LI­<br />

NARES (1974). Trace elements were<br />

determined by atomic absorption<br />

<strong>and</strong> arc spectrography following the<br />

method of LACHICA & YANEZ<br />

(1974). ·Free iron was determined<br />

accor<strong>di</strong>ng to HOLMGREN's (1967)<br />

method. Exchange cations <strong>and</strong> CEC<br />

were determined by the NH4Ac<br />

method. Statistical analysis of the<br />

data was done by computer, using<br />

programs implemented by E. BARA­<br />

HONA (pers. comm.). Surface area<br />

measurements were carried out following<br />

the method of KEELING<br />

(1961).


-.<br />

492 A. Yusta, E. Barahona, F. Huertas, E. Reyes, J. Yanez, J. Linares<br />

Experimental results <strong>and</strong> <strong>di</strong>scussion sample, which is. chemically <strong>and</strong><br />

mineralQgi~aJJy~~~O~ll~!~_t_e_JlLWitl;l~ the_<br />

Fresh rock following mineralogical composi-<br />

The chemical composition of oli- tion: 96% serpentine, 3% <strong>di</strong>opside<br />

vine (Fo90Fa10) <strong>and</strong> that of enstatite <strong>and</strong> 1% free iron. The chemical con-<br />

(En91Fe9) was established using the tribution of <strong>di</strong>opside <strong>and</strong> free iron<br />

methods outlined by AGTERBERG was subtracted from the chemical<br />

(1964) <strong>and</strong> HIMMELBERG & JACK" analysis of sample R-0, to obtain the<br />

SON (1967) respectively. The results composition of the serpentine (Table<br />

obtained are within the range pre- 1).<br />

viously found by DICKEY (1970) <strong>and</strong> Chemical analyses of pure minerals<br />

OBATA (1979). The chemical corn- <strong>and</strong> fresh rocks are listed in Table 1.<br />

position of serpentine was deduced The mineralogical composition of<br />

from the mineralogical norm of R-0..,, samples is given in Table 2. Reported<br />

TABLE 1<br />

Chemical analyses<br />

-·-------·-····-----<br />

Sample Si0 2 Alz03 Fe203 Ti0 2 M gO CaO Na 2 0 KzO Hzo+ Total<br />

R-0 40.52 0.91 7.45 0.0 37.41 1.43 0.16 0.01 12.43 100.32<br />

R-1 40.95 2.41 7.21 0.0 39.01 2.37 0.31 0.19 7.15 99.60<br />

R-2 42.45 3.17 8.44 0.21 36.20 3.89 0.84 0.02 5.15 100.37<br />

R-3 41.14 1.48 8.87 0.0 38.59 2.64 0.57 0.20 7.20 100.69<br />

R-4 40.34 2.17 6.28 0.0 41.25 2.54 0.60 0.10 7.55 100.83<br />

R-5 41.44 2.38 . 6.35 0.0 40.64 2.07 0.44 0.14 7.18 100.64<br />

R-6 41.16 2.08 7.01 0.0 39.26 2.46 0.73 0.05 7.71 100.46<br />

R-7 39.93. 1.75 8.72 0.0 39.20 1.67 0.48 0.08 8.06 99.89<br />

AR-1 42.73 1.13 8.57 0.0 37.33 2.83 0.56 0.12 6.52 99.79<br />

AR-2 46.67 3.53 9.12 0.44 28.34 4.03 0.71 0.11 7.22 100.17<br />

AR-3 48.90 3.44 8.67 0.41 24.80 6.79 0.91 0.10 6.03 100.05<br />

AR-4 40.94 7.80 8.01 0.39 25.20 8.97 0.71 0.18 7.39 -99.59<br />

AR-5 45.60 3.08 7.83 0.24 29.09 6.64 0.81 0.08 7.06 100.43<br />

AR-6 47.34 3.07 6.42 0.37 28.31 8.40 0.46 0.19 5.47 100.03<br />

AR-7 41.24 3.22 6.62 0.20 28.71 12.53 0.86 0.10 5.80 99.28<br />

AR-8 41.50 4.50 9.01 0.69 33.95 2.60 0.46 0.16 7.14 100.01<br />

All 42.21 6.87 13.10 0.27 25.72 3.75 0.42 0.27 7.20 99.81<br />

B21 40.60 7.77 14.24 1.02 24.37 3.40 0.83 0.29 7.44 99.96<br />

B22 43.87 7.18 14.28 0.39 22.62 4.14 0.83 0.21 7.08 100.50<br />

B31 43.82 6.56 13.15 0.38 22.22 4.64 0.73 0.18 7.05 100.23<br />

B32 43.34 7.00 13.06 0.32 22.57 5.33 0.75 0.18 7.36 99.91<br />

Cl 44.47 7.45 5.99 0.34 25.21 9.17 0.83 0.07 6.09 99.62<br />

C2 42.87 7.04 6.82 0.21 29.73 6.16 0.87 0.06 6.03 99.79<br />

Olivine 42 7 51 100<br />

Enstatite 53 6 7 33 1 100<br />

Diopside 53 6 3 16 21 1 100<br />

Am phi bole 44 14 4 2 18 12 4 2 100<br />

Serpentine 41 2 6 37 14 100<br />

Samples R-0 to R-7: fresh peridotite rocks; samples AR-1 to AR-8: altered rocks; samples All<br />

to C2: soil horizons; chemical compositions of primary minerals after OBATA (1979), for<br />

serpentine see text


Geochemistry of Soils from.Peridotite ... 493<br />

TABLE 2<br />

Mineralogical compositions<br />

Sample Sapo. Serp. Diop. Enst. Oliv. Amphib. Free Fe Chlor. Quar.<br />

R-0 96 3 1<br />

R-1 44 8 15 31 t 2<br />

R-2 40 9 18 31 t 2<br />

R-3 52 5 16 24 t 3<br />

R-4 52 5 12 29 t 2<br />

R-5 43 8 14 33 2<br />

R-6 42 8 16 32 2<br />

R-7 42 6 "19 31 t 2<br />

AR-1 21 20 5 30 19 2 3<br />

AR-2 12 15 12 22 32 4 3<br />

AR-3 43 t 15 18 10 11 3<br />

AR-4 32 5 11 37 12 t 3<br />

AR-5 25 9 19 22 17 5 3<br />

AR-6 14 3 20 37 15 8 3<br />

AR-7 13 7 37 27 11 2 3<br />

AR-8 14 18 17 16 28 4 3<br />

All 22 6 4 20 17 5 9 9 8<br />

B21 18 3 4 19 7 10 11 12 16<br />

B22 22 5 9 26 11 6 12 5 4<br />

B31 23 8 6 26 10 8 10 5 4<br />

B32 31 9 7 31 8 4 10<br />

Cl 46 3 6 22 5 10 8<br />

C2 32 4 17 38 6 2 1<br />

Sapo.: saponite; Serp.: serpentine; Diop.: <strong>di</strong>opside; Enst.: enstatite; Oliv.: olivine; Amphib.:<br />

amphibole; Chlor.: chlorite; Quar.: quartz; t: traces<br />

"'- TABLE 3 .-<br />

Trace element contents (ppm), fre~ iron oxyhydroxides (%) <strong>and</strong> surface area (m 2 /g) values<br />

Sample Cr Zn Co Ni Mn B V Fe S.A.<br />

R-0 540 383 129 2169 378 25 20 0.63 82<br />

R-1 1453 220 209 2300 755 8 36 1.71 89<br />

R-2 1438 375 lSQ 2368 750 2 115 2.29 115<br />

R-3 1770 363 219 4890 730 1 40 3.08 132<br />

R-4 1213 154 233 2181 678 2 32 1.50 49<br />

R-5 1118 141 201 2081 728 2 63 1.58 48<br />

R-6 1248 247 225 2059 688 6 19 1.17 46<br />

R-7 1178 147 184 2119 810 2 28 2.96 so<br />

AR-1 1780 320 162 2523 863 1 42 1.58 so<br />

AR-2 1825 453 139 2334 930 5 75 2.83 110<br />

AR-3 2035 303 222 1701 678 2 10 3.00 200<br />

'AR-4 2938 233 141 2010 928 15 79 n.d. 248<br />

-AR-5 2358 249 298 3052 1055 4 15 n.d. 135<br />

AR-6 2008' 372 255 1715 985 2 174 n.d. 87<br />

AR-7 2023 285 234 2117 869 2 200 n.d. 105<br />

AR-8 2728 132 284 2952 985 2 132 n.d. 239<br />

All 3717 120 354 2655" 1710 19 91 9.17 202<br />

B21 4460 135 331 2953 1330 2 200 10.25 103<br />

B22 2928 88 293 2855 1208 3 100 11.05 225<br />

B31 3080 258 355 3021 1185 3 125 7.70 238<br />

B32 2658 117 284 2233 lOOS 17 72 3.91 271<br />

Cl 2398 173 258 1734 738 2 166 0.96 268<br />

C2 1833 121 220 1247 833 6 150 1.22 239<br />

Fe: free iron oxyhydroxides;_ S.A.: surface area


494 A. Yusta, E. Barahona, F. Huertas, E. Reyes, J. Yafiez, J. Linares<br />

in Table 3 are the trace element <strong>and</strong><br />

free iron oxyhydroxide contents as<br />

'well as the surface area val~es of the<br />

samples.<br />

Taking into account the variable<br />

associations evidenced by an R-mode<br />

Factor analysis with Varimax rotation,<br />

a set of multiple linear correlations<br />

<strong>and</strong> regressions was calculated.<br />

Some of the results will be <strong>di</strong>scussed<br />

below.<br />

The regression coefficients correspon<strong>di</strong>ng<br />

to the regression between<br />

serpentine <strong>and</strong> the rest of minerals<br />

in<strong>di</strong>cate that this mineral is derived<br />

mainly from the transformation of<br />

<strong>di</strong>opside <strong>and</strong>, to a lesser extent, that'<br />

of enstatite <strong>and</strong> olivine (%serpentine<br />

·······- ··----;;-·91.48. --l :2.5% -dfopsfde :::-6.96% ·enstatite<br />

- 0.78% olivine, R = 0.999).<br />

Free iron contains a sizeable<br />

amount of several trace elements,<br />

probably in an occluded form (i.e.: %<br />

free iron = 0.35 + 0.003 Zn (ppm) +<br />

0.001 Co (ppm), R = 0.985).<br />

In some of the regression equations<br />

between J[i!.C~:u~le_Il1enJ§ <strong>and</strong> i:r.tinerals,<br />

the independent term is very<br />

high, probably due to the presence of<br />

minor quantities of Cr- <strong>and</strong> Ni-bearing<br />

spinels, not accounted for in the<br />

mineralogical analysis by XRD (i.e.<br />

Cr (ppm) = 518.18 + 357.32% free<br />

iron + 3.32% serpentine, R = 0.923).<br />

From the multiple regressions between<br />

the trace elements <strong>and</strong> mineral<br />

assemblage in fresh rocks it was<br />

feasible to calculate the unitary contributions<br />

of each mineral to the<br />

trace element contents. The data<br />

listed in Table 4, where the mean<br />

values for all samples stu<strong>di</strong>ed are<br />

given (fresh <strong>and</strong> altered rocks <strong>and</strong><br />

so-ils) were calculated from these contributions.<br />

There is good agreement<br />

between the values obtained by statistical<br />

analysis <strong>and</strong> those determined<br />

partially by DICKEY (1970)<br />

<strong>and</strong> OBATA (1979) using the electron<br />

microprobe. These results are also in<br />

TABLE 4<br />

Mean trace element contents in minerals<br />

Element Serp. Diop. Enst. Oliv. Am phi b. Spin. Sapo. Chlor. Fe Perid.<br />

Cr (1) n.d. 3563 1567 n.d: 3962 71156 n.d. n.d. n.d. 1231<br />

Cr (2) 2658 . 2395 12000 3671 n.d. 1182 13500 3.5% 1348<br />

Mn (1) n.d. 723 1152 n.d. 529 2224 n.d. n.d. n.d. 928<br />

Mn (2) 5058 814 960 6303 618 n.d. 5095 7620 748<br />

Ni (1) n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 2069<br />

Ni (2) 4344 734 3977 10610 n.d. 11342 1.5% 2184<br />

Zn (2) 1000 60 855 n.d. 140 85 5% 235<br />

Co (2) 297 435 64 518 n.d. 813 900 203<br />

V (2) 600 315 1575 n.d. 190 3430 47<br />

(1) mean data from DICKEY (1970) <strong>and</strong> OBATA (1979); (2) this paper: statistical approach;<br />

n.d.: not determined; -: absence of statistical signification


Geochemistry of Soils from Peridotite ... 495<br />

. TABLE 5<br />

Structural formulae for saponites<br />

Si IV Al 1 v Fe 1 v<br />

Gravel 6.76 1.20 0.04<br />

Lower horinzons 6.57 1.30 0.13<br />

Upper horizons 5.92 1.87 0.21<br />

AlVI MgVI Fe VI x+ Ozo(OH)4<br />

5.24 0.57 1.05 )}<br />

0.11 5.12 0.60 1.06 >><br />

0.15 5.24 0.60 1.35 )}<br />

agreement with data reported by<br />

WEDEPOHL (1968-1978) for minerals<br />

<strong>and</strong> rocks of the same type.<br />

Altered rocks<br />

In the altered rock fragments<br />

(gravel included in soil horizons) in<br />

ad<strong>di</strong>tion to the minerals occurring in<br />

fresh rocks, a trioctahedral smectite<br />

<strong>and</strong> an amphibole were found, the<br />

latter being almost undetectable in<br />

X-ray <strong>di</strong>ffractograms of fresh rocks.<br />

The results of the mineralogical<br />

analysis are shown in Table 2. The<br />

components existing in each mineral "<br />

species were derived from the chemical<br />

analyses (Table 1) <strong>and</strong> using<br />

this information it was possible to determine<br />

the chemical composition of<br />

the smectite, which corresponds to<br />

that of a saponite (Table 5).<br />

Soils<br />

By their characteristics, the soils<br />

can be classified as Chromic Cambisols<br />

(FAO, 1977) or ~ypic Xerochrepts<br />

(SOIL SURVEY STAFF, 1975).<br />

The organic matter is well humified<br />

(Table 6) <strong>and</strong> the pH is nearly<br />

neutraL The exchange complex is<br />

dominated by magnesium <strong>and</strong> the<br />

degree of saturation is a~ways high.<br />

The Fe oxyhydroxides are abundant<br />

<strong>and</strong> they concentrate mainly in B<br />

horizons. In the upper horizons, in<br />

ad<strong>di</strong>tion to minerals occurring in<br />

fresh <strong>and</strong> altered rocks, small quantities<br />

of quartz <strong>and</strong> chlorite (Table 2)<br />

are found. Based on their grain size<br />

(silt); both the chlorite <strong>and</strong> quartz<br />

probably originated from Saharian<br />

dust of eolian origin. The chemical<br />

compositions of saponite <strong>and</strong> chlorite<br />

TABLE 6<br />

Analytical data for soils<br />

All B21 B22 B31 B32 Cl C2<br />

S<strong>and</strong>% 26.96 30.13 29.96 35.97 37.15 53.68 67.65<br />

Silt% 52.61 44.35 52.48 45.16 42.31 32.41 27.26<br />

Clay% 20.19 25.12 17.33 18.65 20.24 13.85 4.93<br />

pH 6.50 6.75 6.85 6.95 6.95 6.95 7.05<br />

Organic Matter% 12.61 2.57 \ 1.26 0.90 0.57 0.20 0.30<br />

N 336.7 123.2 86.8 123.2 43.4 22.4 86.8<br />

C!N 21.77 12.13 8.44 4.25 7.64 5.19 2.01<br />

C.E.C. 35.40 20.20 24.20 27.70 34.70 24.20 30.90<br />

Ca 5.99 1.25 0.75 0.50 1.25 1.00 1.00<br />

Mg 20.81 12.01 13.66 18.34 26.82 23.28 24.68<br />

Na 0.54 0.53 0.52 0.52 0.53 0.52 0.51<br />

K 0.21 0.06 0.04 0.05 0.06 0.03 0.03<br />

Saturation % 78 69 62 70 83 100 85


496 A. Yusta, E. Barahona, F. Huertas, E. Reyes, J. Yafiez, J. Linares<br />

we!'e obtained by subtracting from<br />

the chemical analysis (Table 1) the<br />

components ascribable to minerals of<br />

known composition, taking into<br />

account the percentages of each present.<br />

Regression equations relating<br />

oxide percentages to saponite content<br />

were derived from the remaining<br />

components, recalculated to give a<br />

total of 100. Extrapolation to a value<br />

of zero for saponite gave the composition<br />

of chlorite <strong>and</strong> the composition<br />

of saponite was obtained from the remainder.<br />

On the other h<strong>and</strong>, extrapolation<br />

to a value of 100 for saponite<br />

<strong>di</strong>d not give sensible results. Two<br />

types of saponite were <strong>di</strong>stinguished,<br />

correspon<strong>di</strong>ng to (i) the upper <strong>and</strong> (ii)<br />

---~ --· -----the1owernorizons_---- -- - ·-<br />

Minerals found in the s<strong>and</strong>, silt <strong>and</strong><br />

clay fractions of the soil were the following:<br />

s<strong>and</strong> - <strong>di</strong>opside, olivine, enstatite,<br />

amphibole <strong>and</strong> quartz; .<br />

silt - amphibole, quartz <strong>and</strong> all the<br />

other minerals found in the clay fraction;<br />

clay - serpentine, chlorite, saponite<br />

<strong>and</strong> quartz.<br />

It can be deduced from the regression<br />

equations that the organic matter<br />

contains about 8600 ppm Cr, 564<br />

ppm Co, 3175 ppm Ni, 5900 ppm Mn<br />

<strong>and</strong> 106 ppm E, while the free iron<br />

oxyhydroxides. contain 14700 ppm<br />

Cr, 16000 ppm Ni, 180 ppm Zn, 900<br />

ppm Co <strong>and</strong> 3190 ppm Mn (i.e.: Cr<br />

(ppm) = 1512.36 + 86.02% organic<br />

matter + 146.96% free iron, R =<br />

0.789; Ni (ppm) = 898.20 + 31.73%<br />

organic matter + 161.72% free iron,<br />

R = 0.88:J:)~~-____ ---~-<br />

Balances of matter<br />

Using the mean values of the chemical<br />

analysis data, the iso-oxygen<br />

calculation of EARTH (1948) was performed<br />

for fresh <strong>and</strong> altered rocks<br />

(Table 7). In this way a global matter<br />

loss of 54% was obtained, with important<br />

losses of Si <strong>and</strong> Mg <strong>and</strong>, to a<br />

lesser extent, Fe. A matter balance<br />

made upon mineralogical data, <strong>and</strong><br />

based on the assumption that <strong>di</strong>opside<br />

remains constant, resulted in an<br />

overall loss of 56%. The most important<br />

losses correspond to serpentine<br />

<strong>and</strong> olivine (Table 9). As regards trac:e<br />

elements, important amounts of Ni,<br />

Co, Mn <strong>and</strong> Zn are lost (Table 8).<br />

Earth's balance was also applied to<br />

the stage of transformation of fresh<br />

rock to soil (Table 7). In this case a<br />

mean loss of 63% was obtained. The<br />

mineral losses correspond to serpentine,<br />

<strong>di</strong>opside <strong>and</strong> olivine, <strong>and</strong> to Si,<br />

Zn, Ni, Co <strong>and</strong> Mn (Tables 8 <strong>and</strong> 9).<br />

Consequently, it can be stated that<br />

the most important step in the surficial<br />

alteration of peridotites takes<br />

place in the transformation of fresh<br />

rock to altered gravels, since in the<br />

subsequent transformation of the latter<br />

to soil only an ad<strong>di</strong>tional )oss of<br />

8% occurs.·<br />

The data obtained allow us to deduce<br />

that 430 kg serpentine, 260 kg<br />

olivine, 60 kg enstatite <strong>and</strong> 40 kg<br />

<strong>di</strong>opside are lost per ton of peridotite<br />

transformed into soil. A loss of 2206<br />

g Ni, 867 g Cr, 218 g Zn, 158 g Co <strong>and</strong><br />

28 g V also occurs. At the same time


-------- ---·---~-~-------------<br />

------------·<br />

----------------<br />

--<br />

TABLE 7<br />

Ions in 160-oxygen rock cell (Barth balance)<br />

Si AI Fe n Ca Mg Na K<br />

/<br />

Fresh rock 38.05 2.40 5.12 /0.09 1.57 50.53 0.12 0.09<br />

Altered rock* 18.21 2.40 2.64 0.08 2.08 18.69 0.24 0.08<br />

Weight of fresh rock/ 1065 65 286 4 63 1228 3 4<br />

Weight of altered rock 527 65 147 4 83 454 6 3<br />

Weight loss (fresh-altered rocks) 538 0 139 0 -20 774 -3 1<br />

Soil* 14.68 2.40 3.47 0.07 1.22 12.82 0.20 0.12<br />

Weight of soil 411 65 194 3 49 311 5 5<br />

Weight loss (fresh rock-soil) 654 0 92 1 14 917 -2 -1<br />

a) Weight loss for fresh to altered rock tranformation = 54%<br />

b) Weight loss for fresh rock to soil transformation = 63%<br />

* Balance for Al constant<br />

H 0<br />

40.47 160<br />

9.67 71.11 .<br />

41 2560<br />

10 1138<br />

31 1422<br />

9.61 57.31<br />

10 917<br />

31 1643<br />

Total<br />

138.44<br />

54.09<br />

5319<br />

2437<br />

2882<br />

101.90<br />

1970<br />

334Q<br />


-,<br />

498 A. Yusta, E. Barahona; F. Huertas, E. Reyes, 1. Yanez, 1. Linares<br />

TABLE 8<br />

Trace elements. Balance of matter<br />

Cr Zn Co Ni Mn B V<br />

Fresh rock 1348 235 203 2571\ 748 3 47<br />

AI tered rock* 968 128 95 1006 399 2 40<br />

Weight loss (fresh-altered rocks) 380 107 108 1565 249 1 7<br />

Soil* 481 17 45 365 182 19<br />

Weight loss (fresh rock-soil) 867 218 158 2260 566 3 28<br />

* Balance for Al constant<br />

TABLE 9<br />

Mineralogical balance<br />

Serp. Diop. Enst. Oliv. Amphib. Fe Sapo.<br />

Fresh rocks 45 7 16 30 t 2 0<br />

Altered rocks 5 7 11 8 2 1 10<br />

Soils 2 3 10 4 3 4 11<br />

Mineral balance * (rock-soil) -43 -4 -6 -26 +3 +2 +11<br />

* losses (-); gains ( +)<br />

110 kg of saponite are formed, <strong>and</strong> a<br />

relative enrichment of 30 kg amphibole<br />

<strong>and</strong> 20 kg free iron oxyhydroxides<br />

takes place.<br />

REFERENCES<br />

AGTERBERG F.P., 1964. Statistical analysis ofX-ray data for olivine. Mineral. Mag. 33, 742-748.<br />

BARAHONA E., 1974. Arcillas de ladrilleria de la provincia de Granada: Evaluaci6n de algunos ensayos<br />

de materias primas. Ph. D. Thesis, University of Granada.<br />

BARTH T.W., 1948. Oxygen in rocks: a basis for petrographic calculations. J. Geol. 56, 60-61.<br />

DICKEY U.S., 1970. Partial fusion products in alpine type peridotites: Serrania de Ronda <strong>and</strong> other<br />

examples. Min. Soc. Amer. Special Paper 3, 33-49,<br />

F.A.O., 1977. Guias para la descripci6n de perfiles de suelos. F.A.O., Roma. .<br />

HIMMELBERG G .R., JACKSON E.D ., 1967. X-ray determinative curve for some orthopyroxenes. U .S. Geol.<br />

Surv. 575, 101-102. ·<br />

HoLMGREN G.G.S., 1967. A rapid citrate-<strong>di</strong>thionite extractable iron procedure. Soil Sci. Soc.Amer.<br />

Proc. 31, 210-_211.<br />

HuERTAS F., LINARES J., 1974. Analisis quimico de rocas y minerales. Report-Tnterno. Estaci6n Experimental<br />

del Zai<strong>di</strong>n, C.S.I.C., Granada. · -<br />

KEELING P.S., 1961. The examination of clays by !LIMA. Trans. Br. Ceram. Soc. 60, 217-244.<br />

LACHICA M., YANEZ J ., 197 4. Analisis de elementos traza en minerales y rocas. Report interno, Estaci6n<br />

Experimental del Zai<strong>di</strong>n, C.S.I.C., Granada.<br />

0BATA M., 1979. The Ronda peridotite: garnet, spine/ <strong>and</strong> plagioclase lherzolite facies <strong>and</strong> the P-T'<br />

trajectories of a high-temperature mantle intrusion. J. Petrology 21, 933-948.<br />

SOIL SURVEY STAFF,'1975. Soil Taxonomy. U.S. Dept. Agric.<br />

TORRES R.L., 1979. La evoluci6n tecti:mometam6rfica del macizo de Los Reales. Ph. D. Thesis,<br />

. . University of Gra?ad!J:c.. Spair:. . .. _ _ _ .·=- ,. .<br />

: WEDEPOHL K.H., 1968-78. H<strong>and</strong>book ofGeochemistry. Springer-Verlag, Berlin.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 499-509 (1985)<br />

The Effect of Gypsum on the Poral System<br />

Geometry in Two Clay Soils<br />

A.B. DELMAS 1 , C. BINP, J. BERRIER 1<br />

1<br />

Laboratoire des Sols, Station Centrale d'Agronomie, C.N.R.A., Etoile de Choisy, Route de Saint-Cyr, 78000<br />

Versailles (Yve!ines), France ..<br />

2<br />

Istituto <strong>di</strong> Geopedologia e Geologia ,Applicata, Fa.colta <strong>di</strong> Scienze Agrarie e Forestali, Universita <strong>di</strong> Firenze,<br />

Piazzale delle Cascine 15, 50144 Firenze, Italia<br />

ABSTRACT - This work is devoted to the study of the reorganization of the<br />

para! system in clay materials subjected to a wide range of calcium concen-.<br />

tration.<br />

By SEM observations it is shown that as calcium level increases, both a<br />

mo<strong>di</strong>fication of the domains in the samples, <strong>and</strong> a re-organization of the<br />

para! system appears, concerning shape, size, arrangement of pores <strong>and</strong> clay<br />

particles.<br />

A tentative explanation of the observed phenomena, linked to the <strong>di</strong>ffusion<br />

process, is given. Possible consequences both in the weathering/pedological<br />

field <strong>and</strong> in the engineering/agronomical one are suggested.<br />

Introduction<br />

The present necessity for increasing<br />

agricultural production has<br />

addressed recent agronomic technology<br />

towards the utilization of<br />

l<strong>and</strong>s with high limitations (e.g. clay<br />

soils).<br />

There is already a literature on the<br />

technology concerning the improve- .<br />

ment of alkaline soils (CHISCI et al.,<br />

1978; BUSSIERES et al., 1982).<br />

On the contrary, adequate experimentation<br />

concerning the reclamation<br />

of acid soils (which are widely<br />

<strong>di</strong>ffused. especially in the tropical- .<br />

equatorial zones) has not yet been<br />

carried out (JANOT, 1983).<br />

The improvements accomplished<br />

are usually attributed to exchange<br />

phenomena between Ca 2 + <strong>and</strong> the<br />

ions Na+, <strong>and</strong> Mg 2 +, <strong>and</strong> to the soil<br />

solution concentration.<br />

In the case of soils whose exchange<br />

complex is often saturated in calcium,<br />

the sole cation exchange processes.<br />

seem to be inadequate to explain<br />

the accomplished improvez:nents<br />

(GUYOT et al., 1984).<br />

This paper deals with a laboratory<br />

e~perimental study carried out on<br />

two acid clay soils. The purposes<br />

are to control the poral system<br />

Research carried out with the financial support of M.P.I. 40%: «Capacita d'{rso dei suoli argillosi».


~<br />

500 A.B. Delmas, C. Bini, J. Berrier<br />

re-organization after treatment with<br />

gypsum crystals, as well as to evaluate<br />

the effect of gypsum on the structural<br />

behaviour <strong>and</strong> its pedological<br />

<strong>and</strong> agronomical implications.<br />

Materials <strong>and</strong> methods<br />

Samples of the B horizon of two<br />

desaturated clay soils - a brown<br />

leached soil <strong>and</strong> a red fersiallitic one<br />

- developed on calcareous rocks in<br />

the Jura Region (France) were hom9-<br />

genized <strong>and</strong> intensively mixed with a<br />

limited amount of <strong>di</strong>stilled water, in<br />

order to st<strong>and</strong>ar<strong>di</strong>ze the materials.·<br />

The physical, mineralogical <strong>and</strong><br />

. --- -·------chern.icalcharactedstics ofth.e samples<br />

are shown in Table 1.<br />

Subsequently, several fractions<br />

(lOO gr) of the st<strong>and</strong>ar<strong>di</strong>zed materials<br />

were subjected to mechanical pressure.<br />

The pressure was increased until<br />

the humi<strong>di</strong>ty <strong>and</strong> pF of the samples<br />

approached those of the soil in the<br />

field (2 bars).<br />

St<strong>and</strong>ard cylindrical sticks 0 40<br />

mm <strong>and</strong> 50 mm high, such as to reproduce<br />

the soil aggregates in saturation<br />

con<strong>di</strong>tions, were thus obtained.<br />

The sticks wer~ coveted with a parafilm<br />

membrane <strong>and</strong> held in a closed<br />

chamber, at constant remperature<br />

(10 °C), in order to impede the desiccation.<br />

Subsequently, gypsum monocrystals<br />

were laid on one end of the soil<br />

polyhedra, at <strong>di</strong>fferent periods of<br />

time (from 7 to 90 days), <strong>and</strong> constant<br />

temperature (10 °C). In this way, a<br />

range of calcium concentration <strong>di</strong>ffusing<br />

in the clayey materials was<br />

obtained from the slowly <strong>di</strong>ssolving<br />

mineral.<br />

At the planned deadline of the<br />

treatment, the residual gypsum was<br />

retrieved <strong>and</strong> the <strong>di</strong>ssolution features<br />

have been observed by SEM.<br />

Each clay stick was cut into small<br />

<strong>di</strong>sks 5 mm thick, <strong>and</strong> subjected to<br />

physical <strong>and</strong> chemical analyses<br />

(humi<strong>di</strong>ty, pF, extractable calcium)<br />

·as well as microscopic analyses by<br />

SEM.<br />

The SEM analyses were made with<br />

a Jeol SM 35 microscope, while preserving<br />

the humid con<strong>di</strong>tions of the<br />

samples, accor<strong>di</strong>ng to the cryoscan<br />

technique (samples frozen at -40 oc<br />

·with liquid nitrogen cooled by Freon<br />

22: TESSIER & BERRIER, 1979).<br />

Results <strong>and</strong> <strong>di</strong>scussion<br />

SEM-CRYOSCAN obse1Vations<br />

a) Samples not treated with gypsum.<br />

During the hydratation process,<br />

the samples, subjected to the same<br />

constant pressure (2 bars) showed<br />

to react <strong>di</strong>fferently.<br />

In the red soil water is rapidly<br />

drained off, as the poral system<br />

geometry seems to be quite rigid <strong>and</strong><br />

isotropic (Fig. la), since it is con<strong>di</strong>tioned<br />

by the interlayered iron. The<br />

clay particles, pores <strong>and</strong> fissures are<br />

equi<strong>di</strong>mensional, <strong>and</strong> their size is<br />

quite small. Coarser magnifications<br />

show clay particles <strong>di</strong>sposed in such<br />

a way as to create a cellular structure<br />

of smectitic type (Fig. lb) (TESSIER,


-~<br />

A<br />

B<br />

TABLE 1<br />

Physical plus mineralogical (A) <strong>and</strong> chemical analyses (B) of the B horizons at two sites in the Jura*<br />

Site <strong>and</strong> soil type Texture% Colour Mineralogy<br />

-- --<br />

Mont Rond Clay fine silt coarse silt fine s<strong>and</strong> coarse sa~d Kaolinite Smectite Vermiculite S-V<br />

brown leached soil 82.1 12.1 2.5 2.9 0.4 10YR 5/6 5 so 10 25<br />

Maisod 62.4 26.7 7.7 2.8 0.4 SYR 6/8 10 20 15 50<br />

red fersiallitic soil_-<br />

CEC<br />

pH water O.M.% meq/100gr Exch. Ca lions meq/100gr Satur. Fe tot Extr. Fe% AI tot-<br />

Ca Mg Na K % % Di Ox Py %<br />

Mont Rond 5.48 2.2 34.4 32.7 1.1 0.1 0.5 55 6.68 3.2 0.5 0.4 10.22<br />

Maisod 6.72 0.8 23.2 22.1 0.8 0.1 0.5 65 6.44 0.4 0.5 0.2 8.28<br />

* For the complete soil description <strong>and</strong> other analytical data, see BRESSON, 1974 <strong>and</strong> 1981<br />

Quartz Goethite<br />

5 5<br />

5 tr<br />

Extr. AI%<br />

Di Ox Py<br />

0.5 0.5 0.2<br />

0.6 0.6 0.3<br />

:;1<br />

(I><br />

h1<br />

~<br />

~<br />

-Q.,<br />

~<br />

~<br />

~<br />

~<br />

0<br />

;:::<br />

1r<br />

d'<br />

~<br />

~<br />

v.'<br />

" r<br />

VI<br />

8


-2!-LID<br />

d-1 !liD<br />

e-2 !liD f-10!-lrrr


The Effect of Gypsum on the Poral System ... 503<br />

1984). In these hydric con<strong>di</strong>tions,<br />

pores of such size (2-3 Jlm) are reg-·<br />

ularly <strong>di</strong>stributed, <strong>and</strong> they become<br />

empty, while the aggregates are detached.<br />

In the brown soil the water is<br />

drained off slowly, since it is impounded<br />

because of the small pore<br />

size. The geometry of the system<br />

shows a marked orientation, owing to<br />

the mechanical constraint exercized<br />

(Fig. le). The clay particles are <strong>di</strong>sposed<br />

mainly F-F, they are packed<br />

<strong>and</strong> the packets are separated by<br />

pores <strong>and</strong> fissures very <strong>di</strong>fferent in<br />

size. (Fig. ld). Sometimes, along the<br />

edges of the fissures, «open>> particles<br />

<strong>di</strong>sposed E-F are present: it means<br />

that during the dehydratation process<br />

the system is re-organizing its<br />

geometry.<br />

b) Samples treated with gypsum.<br />

The behaviour of the fersiallitic soil<br />

<strong>di</strong>d not show substantial <strong>di</strong>fferences<br />

throughout the treatment (7 to 90<br />

days): the rigid structure typical of<br />

the organization of clay particles<br />

plays a decisive role in cancelling any<br />

possible gypsum effect.<br />

The system geometry as observed<br />

after 15 days of treatment (Fig. le)<br />

<strong>di</strong>splays packets of particles tightly<br />

connected, <strong>di</strong>sposed F-F, <strong>and</strong> separated<br />

by pores <strong>and</strong> fissures constantly<br />


--<br />

504 A.B. Delmas, C. Bini, J. Berrier<br />

pen<strong>di</strong>cularly to the fissures themselves,<br />

accor<strong>di</strong>ng a E-F organization,<br />

This kind of organization is particularly<br />

developed on the edge of the<br />

large fissures which surround either<br />

ancient, non-<strong>di</strong>spersed nodules or<br />

was in contact with the gypsum crystal<br />

shows an organization formed by<br />

large particles separated by elon"<br />

gated, boat-shaped fissures (0 2-3<br />

!-!ID). Along the edges of the fissures,<br />

small-size particles are <strong>di</strong>sposed pera-5!lm<br />

b-5!lm<br />

c-5!lm<br />

d-2!lm<br />

Fig. 2- Brown leached soil. After 15 days treatment: a) At the contact surface, clay particles seem to<br />

open themselves towards a E-F organization. The fissures show a typical boat-shape. b) Far from<br />

the treated surface, particles are packed F-F <strong>and</strong> separated by empty cavities. After 45 days<br />

treatment: c) At the contact surface, the starting orientation is overcome. The fissures' edges are<br />

enriched with perpen<strong>di</strong>cular particles (size about 1 x 0.2!lm). d) At a <strong>di</strong>stance of 3 cm from the<br />

surface, small empty cavities separate particles <strong>di</strong>sposed F-F, without any re-filling. Note, in the<br />

center, a curious E-F aggregation ().


quartz grains of silt size (Fig. 2a).<br />

As we move away from the treated<br />

surface towards the bottom of the<br />

stick, the system geometry remains<br />

as described previously in the nontreated<br />

samples. Elongated, <br />

fissures separate packets of large<br />

particles which are <strong>di</strong>sposed F-F <strong>and</strong><br />

oriented (Fig. 2b).<br />

The above described theme of a reorganization<br />

of clay particles along<br />

the edges of the fissures recurs<br />

throughout the experimental data,<br />

from 30 to 90 days, <strong>and</strong> it is attributed<br />

to what we call


506 A.B. Delmas, C. Bini, I. Berrier<br />

a-1 ~m b-1 ~m<br />

c-2 ~m d-20 ~m<br />

Fig. 3 - Brown leached soil. After .60 days treatment: a) Beneath 1 cm under the treated surface,<br />

packets of particles are opened <strong>and</strong> <strong>di</strong>sposed E-F. b) Beneath 3 cm from the SJJ.rface, an F-F<br />

organization is still present. The poral system geometry is mantained. After 90 days treatment:<br />

c) At a <strong>di</strong>stance of 4.5 cm from the surface, clay particles seem to be still F-F packed <strong>and</strong> separated<br />

by empty cavities. d) A number of small, empty fissures <strong>di</strong>vides a non-<strong>di</strong>spersed microaggregate.<br />

The clay material's structure before treatment with gypsum is thus recorded.<br />

observe the crystal surface; second,<br />

analyses were made of exchangeable<br />

calcium in the sticks, after having <strong>di</strong>vided<br />

each stick into ten <strong>di</strong>sks 0 40x5<br />

mm.<br />

(i) The SEM observations gave a<br />

number of <strong>di</strong>ssolution features which<br />

<strong>di</strong>ffered accor<strong>di</strong>ng to the period of<br />

contact between gypsum <strong>and</strong> clay.<br />

Such features have not yet been classified,<br />

<strong>and</strong> they will not be <strong>di</strong>scussed<br />

further in this paper.


The Effect of Gypsum on the Porarsystem ... 507<br />

(ii) Exchangeable Ca2+ <strong>di</strong>stribution<br />

in the clay sticks confirms the SEM<br />

observations. There was indeed Ca 2 +<br />

mobilization in the gypsum-clay system<br />

proportional to the ·. contact<br />

period. Moreover, the mobilization is<br />

in relation to the intensity of the<br />

as examined by<br />

SEM. Calcium <strong>di</strong>stribution curves, in<br />

fact, show (Fig. 4) that throughout<br />

the testing period there is a Ca 2 +<br />

accumulation at the surface, an inflection<br />

zone between 1 <strong>and</strong>· 3 cm,<br />

<strong>and</strong> a minimum Ca 2 + content at the<br />

other extremity of the stick. The maximum<br />

Ca 2 + accumulation, of course,.<br />

takes place after a 90 day gypsum <strong>di</strong>ssolution.<br />

We can try to explain kinetically<br />

this trend by the migration of protons<br />

from the surface of the micro-system<br />

to the bottom; this migration, is<br />

caused by a calcium excess, due to<br />

gypsum <strong>di</strong>ssolution (DELMAS, 1979).<br />

Since the system is closed, the trans-<br />

ferred protons move the Ca 2 + from<br />

the bottom to the centre of the stick<br />

by a retro-<strong>di</strong>ffusion process, that<br />

brings the system back to the starting<br />

con<strong>di</strong>tions. The suggested mechanism<br />

must be necessarily accompanied<br />

by a pH variation in acid <strong>di</strong>rection,<br />

from the top to the bottom of the<br />

micro-system, a variation that we<br />

really ascertained.<br />

The pH values, during the experimental<br />

tests, varied from 5.95 at<br />

the top of the stick, to 5.25 at the bottom.<br />

The zone of the stick correspon<strong>di</strong>ng<br />

to that of the inflection of<br />

the calcium <strong>di</strong>stribution curves (between<br />

1 <strong>and</strong> 3 cm) showed pH values<br />

close to that of the starting material,<br />

that is 5.5.<br />

Conclusions<br />

Since the above experimental<br />

study modelizes a natural system<br />

0 cm<br />

10<br />

25 30 35<br />

meq/1 OOgr<br />

Fig. 4- Brown leached soil. Exchangeable calcium <strong>di</strong>stribution curves (meq/100 gr) in clay sticks<br />

as a function of time of gypsum application. Sticks are cutted into <strong>di</strong>sks 50 mm thick (no. 1 to 1 0).<br />

A: Ca 2 + after 15 days. treatment with gypsum; B: Ca 2 + after 30 days treatment with gypsum;<br />

C: Ca 2 + after 45 days treatment with gypsum; D: Ca 2 + after 60 days treatment with gypsum;<br />

E: Ca 2 + after 75 days treatment with gypsum; F: Ca 2 + after 90 days treatment with gypsum.


508 A.B. Delmas, C. Bini, J. Berrier<br />

[rock-clay-pore] as well as what happens<br />

at the interface clay-Ca bearing<br />

mineral, the following pedological<br />

<strong>and</strong> agronomical conclusions may be<br />

drawn:<br />

1. The «gypsum effect» on a poorly<br />

structured, non-salted clayey material<br />

(brown soil), whose exchange<br />

complex is close to Ca 2 + saturation,<br />

results in a mo<strong>di</strong>fication of the starting<br />

structural con<strong>di</strong>tions. Clay particles,<br />

which were organized mainly F­<br />

F, tend to detach themselves <strong>and</strong> to<br />

be oriented B-F in the coarsest pores.<br />

These, indeed, will not be «shut»;<br />

they will remain «open». On the<br />

other h<strong>and</strong>, the presence Of iron in<br />

the clay structure (red soil) strongly<br />

limits the effect of gypsum, <strong>and</strong> does<br />

not support appreciable mo<strong>di</strong>fications<br />

of the poral system geometry.<br />

2. The role played by the gypsum is<br />

not yet well known. As far as we can<br />

see, it is responsible for a microfissuration<br />

with re-<strong>di</strong>stribution of<br />

,poral spaces in the material, by creating<br />

a system of micropores whose<br />

size is still favorable to the passage of<br />

soil solutions, thus increasing thepermeability.<br />

3. In our opinion, the cation Ca 2 +<br />

cannot be the only factor promoting<br />

structural improvement, as has been<br />

shown in experimental stu<strong>di</strong>es carried<br />

out with CaClz · 2H 2 0 solutions<br />

(GUYOT et al., 1984). On this basis,<br />

we suggest that it is the anion S04 2 '<br />

that exercises a specific action on the<br />

clayey material, probably because<br />

of its tetrahedral structure.<br />

4. Gypsum application on clayey<br />

materials in a determined hydric<br />

state (40% H 20) gives positive results<br />

in a relatively short time, but it takes<br />

at least three months. to have a<br />

structural improvement 5 cm under<br />

the surface.<br />

5. An improvement of soils affected<br />

by strong limitations (e.g. acid clay<br />

soils) is thus possible with gypsum<br />

application over periods of average<br />

length - without risks of soils salinization-<br />

as an alternative to other<br />

soil con<strong>di</strong>tioners.<br />

REFERENCES<br />

BRESSON L.M., 1974. La rubefaction recente des sols en climat tempere humide. These Ill cycle, Paris<br />

VI, pp. 185.<br />

BRESSON L.M., 1981. Tournee 15-61 Oct. 1981. Feuille «S. Claude•• de la Carte Pedologique de<br />

France, echelle 1/100.000. III partie. INAPG, Laboratoire de Pedologie, Grignon, Paris. ·<br />

BussrERES P ., GrRou A., CALLOT G., AND RE L., 1982. Dissolution de particules d' amendement calcaire.<br />

Science du Sol 4, 263-273.<br />

CALVET R., 1967. La <strong>di</strong>ffusion dans les systemes argi/e-eau. II Ann. Agron. 18(4), 429-444.<br />

CHISCI G., LORENZI G., PICCOLO L., 1978. Effects of a ferric con<strong>di</strong>tioner on clay soils. Pp. 309-319, in:<br />

Mo<strong>di</strong>fications of Soil Structure (W.W. Emerson, R.D. Bond <strong>and</strong> A.R. Dexter, e<strong>di</strong>tors), J. Wiley<br />

& Sons, New York.<br />

DELMAS A.B., 1979. Etude experiment ale du phenomene de <strong>di</strong>ssolution des sels et des silicates. Approche<br />

cinetique. These Doct. Etat. Paris VI/INRA.<br />

GUYOT J., DELMAS A.B., JACQUIN M.; 1984. Amelioration de la structure. de sols non sales, par le gypse.<br />

Trans. Eur. Col!. «Fonctionnement hydrique et comportement des sols», Dijon (in press).


The Effect of Gypsum on the Porat System ... 509<br />

JANOT M.F., 1983. Influence du phosphogypse sur le comportement physique des sols argileu.x. Mem.<br />

D.E.A. Univ. Rennes!INRA (<strong>di</strong>ff. limitee), p. 83.<br />

TESSIER D., BERRIER J., 1979. Utilisation" de la microscopie electronique a balayage dans /'etude des<br />

sols. Observations des sols humides soumis a <strong>di</strong>fferent pF. Science du Sol 1, 67-82.<br />

TESSIER D., 1984. Etude experimentale de /'organisation des materiau.x argileu.x. These, INRA, Paris.


Abstracts. 511<br />

Clay Mineralogy of the Piedmont Soils, Italy: A Survey<br />

E. ARDUINO, E. BARBERIS, G. PICCONE, M. FRANCHINP, F. AJMONE<br />

MARSAN, V. BOERO<br />

Istituto <strong>di</strong> Chimica Agraria, Facolta <strong>di</strong> Agraria, Universita <strong>di</strong> Torino, Via P. Giuria 15, 10126 Torino, Italia<br />

1 Dipartimento <strong>di</strong> Scienze della Terra, ur:iversita <strong>di</strong> Torino, ViaS. Massimo 22, 10123 Torino, Italia<br />

Soil genesis in Piedmont (NW Italy) has been affected by very <strong>di</strong>fferent<br />

geological, geomorphological <strong>and</strong> climatic situations. Since some important<br />

features of the soil depend on its < 2 J.Lm fraction, an extensive research on<br />

the clay minerals was carried out with scientific <strong>and</strong> utility purposes. It is<br />

well known that the quality of the clay minerals is related to the parent rock<br />

<strong>and</strong> to the climate occurring during pedogenesis; therefore in this study,<br />

which is still in progress, several situations significantly located throughout<br />

the area were considered: plain, high plain, middle slope <strong>and</strong> top.<br />

The piedmontese plains <strong>and</strong> high plain consist mainly of fluvial <strong>and</strong> fluvioglacial<br />

mixed-grained se<strong>di</strong>ments which can be allocated to the interglacial<br />

phases. Most of them are terraced <strong>and</strong> the evolution of'the clay fraction of<br />

their soils depends chiefly on the climatic con<strong>di</strong>tions <strong>and</strong> the time. In fact, in<br />

the ·early Middle Pleistocene soils vermiculite <strong>and</strong> kaolinite are dominant7<br />

owing to an intense pedogenetic evolution, while in the more recent soilssometimes<br />

superimposed on the former- chlorite <strong>and</strong> illite are abundant.<br />

This situation is well supported by the data concerning the soils developed<br />

along the river Po near Turin 6 : in the more ancient ones (left banck) we find<br />

mainly vermiculite· whereas chlorite is more frequent in the more recent<br />

soils of the right bank."<br />

The correlation between age <strong>and</strong> quality of the clay minerals was also<br />

observed in the high plain: a recently stu<strong>di</strong>ed chronosequence near Biella 1 • 2<br />

shows dominant vermiculite + interlayered illite + kaolinite in the ancient<br />

soils while chlorite <strong>and</strong> illite are abundant in the more recent ones.<br />

L<strong>and</strong>scape<br />

Location<br />

Lithology<br />

of the<br />

parent<br />

rock (I)<br />

Age (2)<br />

N.<br />

of<br />

samples<br />

<strong>First</strong>, second <strong>and</strong> third<br />

predominant clay<br />

minerals (x)<br />

Lenta (VC) L UPH 3 CI-I-V<br />

FSCG EMP 6 Poorly crystallized min. -V<br />

Mottalciata (VC) FSSG EMP 8 V-V/I-K<br />

Vercelli FG UH 19 I-Cl-V<br />

FSSG UP 6 I-Cl-V<br />

Biella (VC) FSSG MP 5 I-1/V-K<br />

FSSG MP 11 V-V/1-K(G)<br />

Plain Balangero (TO) FSCG EMP 3 K-V/interl.-Clllnterl.<br />

<strong>and</strong> Torrazza (TO) FS. LMP 2 V-I/CI-I<br />

high Poirino (TO) FS' EMP I V-1/V<br />

plain FSS UPH I V-1-1/V<br />

Carmagnola (TO) FSS UPH I V-I-UC!<br />

Rivoli (TO) L UPH 20 I-V-UV<br />

Bran<strong>di</strong>zzo (TO) FSSG MH 9 CI-I-M<br />

Gassino (TO) FGSG UPH 8 V-Cl-I<br />

Testona (TO) L UPH 3 CI-I-VC!<br />

L UPH 2 CI-I-V<br />

Ternavasso (TO) FSSG EMP 7 V-VII-CI


512 Abstracts<br />

Middle Val Sessera (VC) hEM 4 V-VII-I<br />

slope mEM Pre-alpine 6 1-1/V-V/Interl.<br />

(700- p orogenic __ ~2~CLJJ-illire··a:n:d '15iotite 4 vermiGulik as a consequence of a moderate<br />

pedogenesis seem therefore to be likely.<br />

Monte l'Eco lies at the boundary between the alpine crystalline rock <strong>and</strong> the<br />

apennine shales <strong>and</strong> argillites so its mineralogy is more complex. In the top<br />

soils 5 the femic minerals of the Cretaceous <strong>di</strong>abases have given rise, through a<br />

moderate pedogenesis, to abundant chlorite <strong>and</strong> sometimes also to chloritevermiculite;<br />

the middle slope soils 3 show a similar clay fraction although<br />

in those developed along the argillaceous border, more heterogeneous clay<br />

minerals resulted form more intense weathering <strong>and</strong> pedogenesis of the finegrained<br />

se<strong>di</strong>ments, viz. montmorillonite, M/Cl, I/Cl <strong>and</strong> kaolinite.<br />

The following conclusions can be drawn about the clay minerals of the<br />

Piedmontese soils: i) the clay minerals of the plain <strong>and</strong> high plain depend<br />

mainly on the climate <strong>and</strong> the time, ii) in the middle slope <strong>and</strong> top soils they<br />

are largely affected by the parent rock, <strong>and</strong> iii) since the pedogenesis is<br />

generally moderate, the more frequent clay minerals are chlorite <strong>and</strong> interlayered<br />

illite except for the buried or exhumed paleosoils.<br />

Arduino E., Ajmone Marsan F., Barberis E., Zanini E., Franchini M., 1986. Clay minerals <strong>and</strong> Fecixides<br />

<strong>di</strong>stribution as in<strong>di</strong>cators for soil chronosequences: a significant pedologic situation in the<br />

Piedmontese area (Italy). Geoderrna, (in press).<br />

Arduino E., Franchini M., Barberis E, Piccone G., 1977. Stu<strong>di</strong>o <strong>di</strong> un profile <strong>di</strong> suolo della zona<br />

Baraggiva Piemontese (Comune <strong>di</strong> Lenta, provincia <strong>di</strong> Vercelli). Geol. Appl. Idrogeol. 22, 235-50.<br />

Arduino E., Piccone G., 1968. I terreni dei pascoli montani del Piemonte. 11. I pascoli <strong>di</strong>'mezza<br />

costae i prati pascoli della F.D. <strong>di</strong> Monte l'Eco (Aless<strong>and</strong>ria). Ann. Fac. Sci. Agr. Univ. Torino 4,<br />

359-374.<br />

1<br />

2<br />

3<br />

4<br />

Arduino E., Piccone G., Manassero P., 1971. I terreni dei pascoli montani del Piemonte. I pascoli<br />

<strong>di</strong> vetta della F.D. «Val Sessera» (Vercelli). Ann. Fac. Sci. Agr. Univ. Torino 6, 87-102.<br />

5<br />

Cecconi S., Arduino E., 1966. I terreni dei pascoli montani del Piemonte.l. I pascoli <strong>di</strong> vetta della<br />

F.D. <strong>di</strong> Monte l'Eco (Aless<strong>and</strong>ria). Ann. Fac. Sci. Agr. Univ. Torino 3, 349-370.<br />

6<br />

Facchinelli A., 1983. Private comunication.<br />

7<br />

Manassero P., Arduino E., Piccone G., 1973. I terreni della Baraggia Vercellese. I. Zona <strong>di</strong><br />

Mottalciata. Ann. Fac. Sci. Agr. Univ. Torino 8, 173-194.<br />

8<br />

Piccone G., Manassero P., Arduino E., 1972. I terreni dei pascoli montani del Piemonte. I pascoli<br />

<strong>di</strong> mezza costa della F.D. «Val Sessera>> (Vercelli). Ann. Fac. Sci. Agr. Univ. Torino 7, 53-68.


Abstracts<br />

513<br />

Micromorphological Features of Clay Translocations in<br />

Me<strong>di</strong>terranean Red Soils (Rhodoxeralfs-Haploxeralfs)<br />

C. BANOS, M. AYERBE<br />

Centro de Edafologia y Biologia Aplicada del Cuarto, C.S.I.C., Apdo. 1052, 41080 Sevilla, Espaiia<br />

In Soil Micromorphology, a thin-section is representative of a horizon. The<br />

basic descriptive unit is the s-matrix; it consists of the plasma, skeletcm grains<br />

<strong>and</strong> voids (porosity) ... (Kubiena, 1938; Brewer, 1964).<br />

The arrangement of these basic components <strong>and</strong> the proportions of plasma,<br />

silt <strong>and</strong> s<strong>and</strong> lead to formation of <strong>di</strong>stinct «related <strong>di</strong>stribution patterns».<br />

The plasma- colloidal fraction of the soil- is the most active component of<br />

the soil material <strong>and</strong> is capable of reorganization, translocation <strong>and</strong> neoformation.<br />

In Soil Taxonomy (Soil Survey Staff, 1975), soils are classified based on the<br />

activity of the plasma or on the characteristic given to the soil by a specific<br />

behaviour of the plasma (v.gr. in the argillaceous horizon, plasma has accumulated<br />

by translocation).<br />

Although a colloidal size is specified, in<strong>di</strong>vidual plasma can not be seen with<br />

the petrographic microscope <strong>and</strong>'even with the scanning electron microscope<br />

a magnification of more than 10,000 is generally necessary. However,<br />

plasma domains are rea<strong>di</strong>ly <strong>di</strong>scernible (Eswaran & Baflos, 1976).<br />

Skeleton grains comprise a range of minerals which are primary or secondary,<br />

which vary in solubility, which are or may be present in all stages of<br />

transformation <strong>and</strong> which are present in all size fractions greater thari<br />

colloidal size.<br />

In this paper, micfomorphologica:l features of clay translocation in B, horizons<br />

of me<strong>di</strong>terranean.,«red soils>> are stu<strong>di</strong>ed. They are located in the Guadalquivir<br />

River basin (Seville, Spain).<br />

The principal process occurring in this group of soils is probably the illuviation<br />

of fine clay in the argil!aceous horizons B, in<strong>di</strong>cated by the existence of.<br />

ferriargilans (cutans with clay <strong>and</strong> iron oxides) in conducting channels.<br />

Examination of thin-sections by petrographic microscopy showed the existence<br />

of


514 Abstracts<br />

Clay Minerals in Brown Soils of Cantabria, Spain<br />

M.T. GARCIA-GONZALEZ, M.P. RECIO<br />

Institute de Edafo1ogia y Biologia Vegetal, C.S.I.C., Serrano 115 · dpdo., 28006 Madrid, Espafia<br />

The clay mineralogy of two soil profiles from Puerto de !os Tornos <strong>and</strong> Puerto<br />

de la Gtanja, respectively, has been investigated. These profiles were shown,<br />

among others, during the XIIth Meeting of the <strong>Spanish</strong> Soil Science Society<br />

as representative soils of Cantabria.<br />

Both profiles are developed on Cretaceous s<strong>and</strong>stone under mesic <strong>and</strong> u<strong>di</strong>c<br />

climatic con<strong>di</strong>tions; their clay fraction is around 30%. They have been classified<br />

as Inceptisol Humaquept. The profile of Puerto de !os Tornos (I) contains,<br />

accor<strong>di</strong>ng to Soil Taxonomy (1975), the following horizons: Au1-Au2-<br />

B/A-Bg1-Bg2-BCg1-BCg2-Cg <strong>and</strong> R. Their pH's are between 4.9 <strong>and</strong> 5.2 <strong>and</strong><br />

their base saturation is low, specially in the lower horizons. The profile of<br />

Puerto de la Granja (II) can be described as Au1-Au2-Bg-BCg-Cg1-Cg2-Cg3-C<br />

<strong>and</strong> R, the plj values being between 4.7 <strong>and</strong> 5.4. Their base saturation is<br />

rather low, although increasing in the horizons Cg3 <strong>and</strong> C.<br />

The clay fraction of profile I contains <strong>di</strong>octahedral mica as the main component.<br />

Its X-ray <strong>di</strong>ffraction pattern shows an asymmetric maximum at about<br />

10 A, with a bulge on the low angle side. After treatment with glycerol, the<br />

symmetry of the 10 A peak increases considerably <strong>and</strong> no ad<strong>di</strong>tional peak is<br />

observed at lower Bragg angles. The heated specimens at 110°C (48 hours)<br />

<strong>and</strong> 300°C (24 hours) show a gradual decrease of the lower angle tail. After<br />

heating at 500°C (24 hours), the peak becomes more symmetrical <strong>and</strong> ~ifts<br />

to lower theta values (10.3 A). Heller-Kallai & Kalman (1972), when studying<br />

some illitic-Paleozoic se<strong>di</strong>ments from Israel, reported somewhat similar<br />

<strong>di</strong>ffraction effects, which were interpreted in terms of the existence of about<br />

20% of a r<strong>and</strong>omly interstratified illite-smectite. The lack of an ad<strong>di</strong>tional·<br />

peak (after glycolation) can, however, also be due to a contents of ordered<br />

exp<strong>and</strong>able layers less than about 20% (Rower & Mowatt, 1966). From the<br />

facts reported above <strong>and</strong> until a more complete analysis is made, we may<br />

only suggest that this mineral is mainly illite, with a small amount of some<br />

exp<strong>and</strong>able species, perhaps r<strong>and</strong>omly interstratified. This illitic material is<br />

found in every horizon of profile I, although in the lowest one (C) it seems to<br />

be much more organized, as it occurs in the clay fraction of the parent<br />

material. Goethite <strong>and</strong> lepidocrocite are also found in this profile as minor<br />

components. The clay fraction of the parent material contains high<br />

proportions of goethite.<br />

Illite is also found in profile II as the main component, although less<br />

degraded than in I. Its alteration increases in the upper horizons. Kaolinite<br />

minerals are also found in this profile, their proportion decreasing in the<br />

deepest horizons. Illite <strong>and</strong> kaolinite minerals are also detected in the parent<br />

material.<br />

The clay mineralogy of these profiles is the common one for strongly weathered<br />

acid soils, which show hydromorphic properties, being developed in<br />

areas with high rainfall <strong>and</strong> updulating topography.<br />

Heller-Kallai L., Kalman Z.H., 1972. Some naturally occurring illite-smectite interstratifications.<br />

Clays Clay Miner. 20, 165-168.<br />

Rower J., Mowatt T.C., 1966. The mineralogy of illites <strong>and</strong> mixed-layer illite/montmorillonites.<br />

Am. Miner. 51, 825-854.<br />

Soil Taxonomy, 1975. A basic system of soil classification .for making <strong>and</strong> interpreting soil surveys.<br />

Soil Survey Staff, Washington.


Abstracts<br />

515<br />

Zeta Potential as a Tool for Investigating the<br />

Dispersion-Flocculation Processes of Clay Soils<br />

G. GIOVANNINI, M. GIACHETTI, S. LUCCHESI<br />

lstituto per la Chimica del Terreno, C.N.R., Via Corridoni 78, 56100 Pisa, Italia<br />

Many clay soils of the Me<strong>di</strong>terranean area present very poo:r physical characteristics.<br />

Clay material in the presence of water, (rain or irrigation) may<br />

become higly <strong>di</strong>spersed whereas soil used for agricultural purposes must be<br />

kept in a flocculated state in order that it be porous. Clay <strong>di</strong>spersion .may<br />

lead to particle rearragement by way of detachment <strong>and</strong> migration <strong>and</strong> may<br />

partly fill or plug the pores <strong>and</strong> channels in the soil <strong>and</strong> thus reduce soil<br />

permeability with the relevant effects, for instance, on correct irrigation<br />

practice <strong>and</strong> on.soil ero<strong>di</strong>bility.<br />

The flocculation of clay suspensions is determined by the characteristics of<br />

the double layer which surrounds the particles <strong>and</strong> extends into the bulk as<br />

described in the well known Gouy-Chapman colloidal model. In this model<br />

certain potentials may be identified: the potential existing between the shear<br />

plane <strong>and</strong> the bulk phase, called Zeta potential, is of special importance<br />

since it can be measured.<br />

The Zeta potential may be used as an useful in<strong>di</strong>cator of the electrical state of<br />

.the double layer <strong>and</strong> may supply information on the <strong>di</strong>spersion-flocculation<br />

processes of the clays. Many papers dealing with the Zeta potential of pure<br />

colloids <strong>and</strong> clay minerals are reported, whereas there are few in the field of<br />

clay soils; but the fin<strong>di</strong>ngs on the flocculability of the clay minerals cannot<br />

be translated literally to the clay soil because in soil the clay fraction is<br />

interconnected with other mineral fractions, with the organic matter <strong>and</strong><br />

with electrolytes. ',<br />

We are therefore forced to measure the Zeta potential on the whole clay soil<br />

or on its fractions: s<strong>and</strong>, silt, cl~y <strong>and</strong> on very concentrated suspensions, the<br />

more similar to that present in field con<strong>di</strong>tions.<br />

For this goal we have chosen the apparatus based on the electrophoretic<br />

mass-transport analyzer reported by Oliver & Sennet (1965), <strong>and</strong> described<br />

as suitable for Jtleasurements on concentrated suspensions. The paper<br />

reports our early results on the reliability of the instrument for clay soil<br />

material as well as on the choice of the best measurement con<strong>di</strong>tions.<br />

Adamson A.W., 1967. Physical Chemistry of Surfaces. Interscience Publishers, New York.<br />

Oliver J.P., Sennet P., 1965. Electrokinetics effect in kaolin-water systems: the measurement of<br />

electrophoretic mobility. 5th Conf. Clay Minerals, Pittsburgh.<br />

Sennet P., Oliver J.P., 1965. Colloidal <strong>di</strong>spersion, Electrokinetic effeCts <strong>and</strong> the concept of Zeta<br />

Potential. Ind. Eng. Chem. 57, 32-50.<br />

Van Olphen H., 1977. An Introduction to Clay Colloid Chemistry. J. Wiley & Sons, New York.


516 Abstracts<br />

Clay Mineralogy of Organic Soils from the<br />

«Cor<strong>di</strong>llera Central», -Spain----- --- ------~<br />

M.J. SANCHEZ-MARTIN, M.A. VICENTE, M. SANCHEZ-CAMAZANO<br />

Centro de Edafologia y Biologia Aplicada, C.S.I.C., Cordel de Merinas 40-52, Apdo. 257, 37008 Salamanca, Espafla<br />

This stucfy forms part of a detailed project on the mineralogy <strong>and</strong> genesis of<br />

clays from soils from the «Cor<strong>di</strong>llera Central» (Luffiego et al., 1976; Sanchez­<br />

Camazano & Vicente, 1979; Vicente & Sanchez-Camazano, 1981; Vicente et<br />

al., 1984). Five profiles, characterized by water logged con<strong>di</strong>tions during a<br />

large part of the year, of the situated at altitudes ranging<br />

from 1500-1780 m, were stu<strong>di</strong>ed.<br />

The classification <strong>and</strong> other details of these profiles, located in the Province<br />

of Avila, have already been reported by Luffiego et al. (1976).<br />

----·~ ------------------.<br />

Profile Location Geology Soil type<br />

I Hoyos del Collado Granite Histosol<br />

II Hoyos del Collado Granite Gleyic Cambisol<br />

III La Herguijuela Schists - Histosol<br />

IV Santiago del Collado Granite Histosol<br />

V Navacepeda de Tonnes Granite Humic Cambisol<br />

The techniques adopted were X-ray <strong>di</strong>ffraction <strong>and</strong> thermic analysis. In<br />

ad<strong>di</strong>tion, cation exchange capacity also was determined. The clay fractions<br />

of <strong>di</strong>fferent horizons were extracted, sub<strong>di</strong>vided into two series <strong>and</strong> treated<br />

in the following manner. The first series of samples was saturated with .<br />

magnesium <strong>and</strong> the X-ray <strong>di</strong>ffractograms of these Sample were obtained.<br />

Following this, all the samples were either treated with glycerol or subjected<br />

to a temperature of 500°C <strong>and</strong> their X-ray <strong>di</strong>ffractograms obtained. The<br />

second series of samples was first treated with so<strong>di</strong>um citrate to liberate free<br />

oxides <strong>and</strong> subsequently saturated with either magnesium or potassium.<br />

X-ray <strong>di</strong>ffractograms of these samples were obtained in ad<strong>di</strong>tion to those of<br />

K-saturated samples to temperatures of 110°C <strong>and</strong> 300°C.<br />

The clay fraction of profiles II <strong>and</strong> V is composed of kaolinite, illite, gibbsite<br />

<strong>and</strong> a vermiculite-chlorite intergrade, part of which is interstratified with<br />

illite. Profile II also contains chlorite. The potassium test in<strong>di</strong>cated that a<br />

part of the intergrade behaved like vermiculite. The transformation of illite<br />

<strong>and</strong> chlorite to intergrades is more pronounced in deeper horizons characterized<br />

by high humi<strong>di</strong>ty. In the active organic matter rich profile II the most<br />

predominant process is the destruction of 2/1 layer silicates <strong>and</strong> increase.of<br />

kaolinite <strong>and</strong> gibbsite contents, while fn profile V the process of evolution of<br />

illite ~intergrade predominates.<br />

Profiles I, III <strong>and</strong> IV are very rich in organic matter("' 33%). Profiles I <strong>and</strong> IV<br />

with polycyclic evolution have a similar mineralogical composition in their<br />

clay fraction, which contains illite, kaolinite, chlorite, gibbsite <strong>and</strong> interc<br />

grade. The kaolinite rich G horizon is the most characteristic feature· of<br />

these profiles.<br />

Profile III is almost similar to I <strong>and</strong> IV. The kaolinite <strong>and</strong> chlorite contents<br />

are lower <strong>and</strong> constant throughout the profile. The deeper horizons exhibit a<br />

strong illite ~ intergrade transformation.<br />

The nature of organic matter <strong>and</strong> degree of humi<strong>di</strong>ty are the major factors<br />

determining the evolution of these soils. The higher constant humi<strong>di</strong>ty of the<br />

deeper horizons favours a high degree of evolution or destruction of 2/1 layer<br />

silicates <strong>and</strong> an increase in the quantity of kaolinite <strong>and</strong> gibbsite.


Abstracts 517<br />

Luffiego M., Garcia Rodriguez A., Gallardo J .F., 1976. Contribuci6n a] estu<strong>di</strong>o de Ios suelos histicos<br />

y gleis de la vertiente norte de la Sierra de Gredos.An. Cent. Edafol. Biol. Apl. Salamanca 3, 155-<br />

177.<br />

Sanchez-Carnazano M., Vicente M.A., 1979. Mineralogia de arcillas de sue Ios forestales del Centro­<br />

Oeste de Espafta. I. Sierra de Gata. An. Cent. Edafol. Biol. Apl. Salamanca 5, 231-242.<br />

Vicente M.A., Sanchez-Carnazano M., 1981. Mineralogenesis de arcillas de suelos forestales del<br />

Centro-Oeste de Espafia. II. Sierra de Francia. An. Edaf Agrobiol. 40, 367-380.<br />

Vicente M.A., Sanchez-Carnazano M., Sanchez-Martin M.J ., 1984. Mineralogia de arcillas de suelos<br />

glei y de cesped alpino de la Cor<strong>di</strong>llera Central (in press).


Section V<br />

Ceramic Clays


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 521-533 (1985)<br />

Drying Properties of Ceramic Clays<br />

from Granada Province, Spain<br />

E. BARAHONA 1 , F. HUERTASI, A. POZZUOLP, J. LINARES 1<br />

1 Estaci6n Experimental del Zai<strong>di</strong>n, C.Sl.C., Profesor Albareda 1, 18008 Granada, Espaiia<br />

2 Dipartimento <strong>di</strong> Geofisica e Vulcanologia de\l'Universitit <strong>di</strong> Napoli, LargoS. Marcellino 10,80138 Napoli, Italia<br />

ABSTRACT - A critical study is made of the <strong>di</strong>fferent for!Tls of e;>epressing<br />

drying shrinkage, <strong>and</strong> it is concluded that the best index is the volume<br />

shrinkage expressed as percentage of fin


522 E. Barahona, F. Huertas, A. Pozzuoli, J. Linares<br />

since it often leads to piece failures<br />

due to excessive or unequal shrinkage<br />

of molded pieces. The first stage ~of<br />

water loss is equal in weight to the<br />

volume contraction. This «shrinkage<br />

water» is that held by clay particles<br />

due to colloidal mechanisms.


Drying Properties of Ceramic Clays ... 523<br />

TABLE 1<br />

Drying properties of the samples<br />

Sample H Ac Ap DA p cvs CLS Ks<br />

Ac-ll 30.9 14.8 16.1 1.87 30.1 27.7 8.5 .92<br />

Ab-ll 33.6 13.8 19.8 1.69 33.4 23.3 7.2 .70<br />

Ah-11 27.5 12.1 15.4 1.89 29.1 22.9 7.1 .79<br />

Ah-21 27.2 ll.S 15.7 1.88 29.5 21.6 6.7 .73<br />

Ah-31 34.4 13.2 21.2 1.70 36.0 22.4 7.0 .63<br />

Ah-32 30.4 12.1 18.3 1.79 32.8 21.7 6.8 .66<br />

Ah-33 35.6 11.6 14.0 1.69 27.4 22.7 7.1 .83<br />

Ah-41 31.5 13.1 18.4 1.81 33.3 23.7 7.3 .71<br />

Ah-42 40.1 18.4 21.7 1.71 37.1 31.5 9.6 .85<br />

Ah-51 27.9 12.8 15.1 1.88 28.4 24.1 7.5 .85<br />

Ah-52 31.9 13.8 18.1 1.75 31.7 24.2 7.5 .76<br />

J-11 33.7 17.6 16.1 1.84 29.6 32.4 9.8 1.09<br />

J-12 30.2 15.0 15.2 1.90 29.8 28.5 8.7 .99<br />

J-21 31.6 12.3 19.3 1.79 34.7 22.0 6.8 .64<br />

J-31 33.0 17.3 15.7 1.88 29.5 32.5 9.8 1.10<br />

J-41 33.7 17.3 16.4 1.88 30.8 32.5 9.8 1.05<br />

J-51 29.8 15.2 14.6 1.90 27.7 28.9 8.8 1.04<br />

J-52 33.6 18.6 15.0 1.92 28.8 35.7 10.7 1.24<br />

J-53 34.0 17.6 16.4 1.86 30.5 32.7 9.9 1.07<br />

J-54 33.9 17.0 16.9 1.89 32.0 32.1 9.4 1.01<br />

J-55 32.5 6.7 25.8 1.60 41.3 10.7 3.4 .26<br />

Mn-ll 31.0 16.3 14.7 1.88 27.6 30.6 9.3 1.11 .<br />

Mn-21 33.7 15.5 18.2 1.80 32.8 27.9 8.6 .85<br />

Pi-ll 39.0 18.0 21.0 1.70 35.7 30.6 9.3 .86<br />

Pi-12 38.5 18.7 19.8 1.73 34.2 32.3 9.8 .94<br />

Pi-13 34.3 16.4 17.9 1.81 32.4 29.7 9.1 .92<br />

Ch-11 31.0 16.8 14.2 1.90 27.0 31.9 9.7 1.18<br />

Ch-12 31.2 17.2 1'4.0 1.84 25.8 31.6 9.6 1.23<br />

Ga-ll 26.6 12.1 14.5 1.93 28.0 23.4 7.3 .83<br />

Ga-21 29.8 14.3 15.5 1.88 29.1 26.9 8.3 .92<br />

Ma-ll 34.0 17.8 16.2 1.84 29.8 32.8 9~9 1.10<br />

Ma-12 30.9 17.3 13.6 1.96 26.6 33.9 10.2 1.27<br />

Ma-13 26.2 13.8 12.4 1.99 24.7 27.5 8.4 1.11<br />

Ma-14 23.2 11.0 12.2 2.00 24.2 22.0 6.8 .90<br />

Pc-ll 37.4 23.2 14.2 1.91 27.1 44.3 13.0 1.63<br />

Vi-ll 26.9 13.8 13.1 1.92 25.2 26.5 8.2 1.05<br />

B-ll 49.9 35.1 14.8 1.88 27.8 66.0 18.4 2.37<br />

B-12 47.6 32.3 15.3 1.90 29.1 61.4 17.3 2.ll<br />

B-13 37.7 22.2 15.5 1.90 29.4 42.2 12.4 1.43<br />

B-14 38.4 24.6 13.8 1.85 25.5 45.5 13.3 1.78<br />

B-21 30.5 14.8 15.7 1.89 29.7 28.0 8.8 .94<br />

D-ll 36.0 15.0 21.0 1.70 35.7 25.5 7.7 .71<br />

G-ll 32.7 16.7 16.0 1.86 29.8 31.6 9.6 1.04<br />

Mo-ll 22.1 11.5 10.6 2.12 22.4 24.4 7.5 1.08<br />

Mo-21 19.0 7.0 12.0 2.10 25.0 14.7 4.7 .58<br />

Mo-22 '29.1 9.0 20.1 1.74 35.0 15.7 5.0 .44<br />

Mo-31 34.2 11.7 22.5 1.68 37.8 19.7 6.2 .52<br />

Mo-41 29.8 11.1 18.7 1.74 32.6 19.3 6.1 .59<br />

Ac: Acequias; Ab: Albuftuelas; Ah: Alhen<strong>di</strong>r:t; J: Jun; Mn: Monachil; Pi: Pinos Genil;<br />

Ch: Chauchina: Ga: Gabia; Ma: Caracena; Pc:' Pantano de Cubillas; Vi: Viznar; B: Baza;<br />

D: Diezma; G: Gua<strong>di</strong>x; Mo: Motril<br />

tionship may be considered as linear<br />

<strong>and</strong> this method was also selected,<br />

for it is often used by manufacturers.<br />

Experimental methods<br />

Samples were crushed <strong>and</strong> sieved


524 E. Barahona, F. Huertas, A. Pozzuoli, J. Linares<br />

to 2 mm <strong>and</strong> water was added until a<br />

consistency correspon<strong>di</strong>ng to Rieke' s<br />

sticky point was reached. After<br />

knea<strong>di</strong>ng, test pieces approximately<br />

cylindrical in shape with a volume of<br />

about 20 cm 3 were molded by h<strong>and</strong><br />

<strong>and</strong> allowed to dry at room temperature<br />

<strong>and</strong>, then, in an oven at 105 °C.<br />

Moist <strong>and</strong> dry weights (Ph <strong>and</strong> Ps)<br />

were recorded. Moist <strong>and</strong> dry<br />

volumes (Vh <strong>and</strong> Vs) were measured<br />

by mercury <strong>di</strong>splacement. From<br />

these values, the following characteristic<br />

values were calculated:<br />

Volume shrinkage, CVS = (Vh-Vs)<br />

lOONs;<br />

Linear shrinkage, CLS was de­<br />

- ·---


Drying Properties of Ceramic Czqys ... 525<br />

60<br />

60<br />

50 50<br />

40 .. 40 ..<br />

'» ·>.<br />

u<br />

u<br />


526 E. Barahona, F. Huertas, A. Pozzuoli, J. Linares<br />

15 ..<br />

~-----·-·--·-~---- -------w<br />

Fig. 5 - Drying shrinkage (CLS) lines. Samples<br />

from Jun.<br />

<strong>di</strong>n (Ah-42), Jun (J-55), Pinos (Pi-11),<br />

Diezma (D-11) <strong>and</strong> Motril (Mo-22 <strong>and</strong><br />

20 ...<br />

Cl<br />

-"'<br />


Drying Properties of Ceraniic-Cl~ys ... 527<br />

the drying curve shows that this is<br />

not the case. As a matter offact, since<br />

volume shrinkage is CVS = VNs <strong>and</strong><br />

shrinkage water is Ac = V/Ps, where<br />

V is the volume change, the slope is<br />

given by CVS/Ac or PsNs, namely,<br />

the bulk density of dry bo<strong>di</strong>es. Thus,<br />

<strong>di</strong>fferences in bulk density among<br />

samples give rise to the fact that the<br />

same water removed on a volume<br />

basis is. manifested by <strong>di</strong>fferent figures<br />

when expressed on a weight<br />

basis, which is undoubtedly unrelated<br />

to the ease of drying.<br />

On the other h<strong>and</strong>, where Vh is the<br />

specimen moist volume, Vs the dry<br />

volume, Vo the volume of the solid<br />

phase, Va the volume of tempering<br />

water <strong>and</strong> Vp the volume of pores, we<br />

have that:<br />

Vh = Va·Vo <strong>and</strong><br />

Vs = Vp•Vo, so that<br />

Vh-Vs = Va-Vp<br />

Therefore, CVS = (Vh-Vs)Ns could<br />

be also expressed as CVS = (Va-Vp)/<br />

Vs or CVS = VaNs-VpNs.<br />

Taking into account that the bulk<br />

density is D = PsNs <strong>and</strong> that porosity<br />

is P = VpNs the expression for<br />

volume shrinkage can be written as:<br />

. CVS = H · D-P<br />

where D is the bulk density, H the<br />

tempering water <strong>and</strong> P the porosity.<br />

This is the equation of a straight line<br />

whose slope is the bulk density <strong>and</strong><br />

the origin intercept, the porosity of<br />

dried specimens. Assuming a value of<br />

2.65 for the true particle density, this<br />

equation reduces to:<br />

CVS = D(H + 37.7)-100<br />

80 Vl<br />

><br />

u<br />

60<br />

a;<br />

Cl<br />

-"'<br />

s:::<br />

s....<br />

.


528 E. Barahona, F. Huertas, A. Pozzuo/i, J. Linares<br />

Thus we can describe shrinkage as<br />

a function of moisture content, by<br />

only knowing the dry bulk density.<br />

This. is illustrated in Fig. 7 where<br />

shrinkage values estimated using the<br />

above equation are plotted against<br />

the experimental values. Note the<br />

very low error of the estimated<br />

shrinkage values.<br />

The shrinkage curves obtained by<br />

using the values of pore water <strong>and</strong><br />

linear shrinkage, do not clearly de-<br />

. \<br />

scribe some phenomena, such as the<br />

secondary shrinkage that occurs durl.ng<br />

pore water removal. Actually, a<br />

~harp critical point where shrinkage<br />

, ceases .. does not exist. However, the<br />

curves so obtained are satisfactory,<br />

__________ as.can-be seen- -i-n-Fig~- 8- where the<br />

shrinkage curves were constructed by<br />

multiple recor<strong>di</strong>ng of volumes <strong>and</strong><br />

weights during the drying process.<br />

The values of calculated pore water<br />

<strong>and</strong> those obtained by extrapolation<br />

of these curves ary coincident (see top<br />

10 Mo 11 Ga11 Ah32 Ah31 J55<br />

of Fig. 8). On the other h<strong>and</strong>, the existence<br />

of a, secondary sJ:l:r::~J:lJ


Drying Properties of Ceramic Ctays ...<br />

529<br />

20<br />

(/)<br />

--'<br />

(.)<br />

•<br />

~<br />

QJ<br />

Ol<br />

15 -"'<br />

c<br />

·s::<br />

.s=<br />

(/)<br />

,_<br />

10<br />

QJ<br />

"' c<br />

--'<br />

... . . ... ...<br />

• ..<br />

/ ••<br />

.. . .<br />

•<br />

••••<br />

••• •<br />

• •<br />

5<br />

y = 2.398 + 0.220x<br />

r = 0.844<br />

"<br />

Cl ay %<br />

20 40 50<br />

Fig. 9 - Linear shrinkage (CLS) versus clay content.<br />

80<br />

summarized in Table 3. Most of the<br />

shrinkage variance (50%) is<br />

accounted for by the illite content.<br />

Both illite <strong>and</strong> smectite show a positive<br />

unitary contribution, while paragonite,<br />

chlorite <strong>and</strong> kaolinite tend to<br />

<strong>di</strong>minish shrinkage_.<strong>and</strong> show negative<br />

signs for the regression coefficients.<br />

The pre<strong>di</strong>ction of linear<br />

. shrinkage through smectite <strong>and</strong> illite<br />

content is better than that obtained<br />

by simple linear regression against<br />

TABLE 3<br />

Correlations <strong>and</strong> multiple linear regression equations. Relationships between linear<br />

shrinkage <strong>and</strong> clay minerals contents<br />

CLS = 3.506+0.195 Smectite +0.230 Illite<br />

R=0.905 Degree of freedom: 45 St<strong>and</strong>ard error: 1.18<br />

CLS,;, 10.740- 1.056 Paragonite- 0.386 Chlorite- 0.061 Kaolinite<br />

R = 0.432 Degree of freedom: 44 St<strong>and</strong>ard error: 2.52<br />

Clay minerals are expressed as percentages of the whole sample


530 E. Barahona, F. Huertas, A. Pozzuoli, J. Li1-;ares<br />

clay content (multiple regression<br />

coefficient R = 0.905).<br />

It is worth stressing that the best<br />

single pre<strong>di</strong>ctor for drying shrinkage<br />

is the hygroscopicity of raw materials,<br />

as determined accor<strong>di</strong>ng to the<br />

method outlined by KEELING (1966)<br />

(Fig. 10). The correlation coefficient<br />

(0.94) is significantly higher than any<br />

considered above. This determination<br />

is very simple, but takes into<br />

account both the amount <strong>and</strong> quality<br />

of the clay fraction, for it is a rough<br />

measure of the specific surface, <strong>and</strong><br />

its use is strongly recommended for<br />

routine work.<br />

20<br />

On the other h<strong>and</strong>,_porosity <strong>and</strong> the<br />

relatecl ~~9,riabl_e,s.,.~J2C!t::_e~ ~ater ancl<br />

bulk density, are dependent on grain<br />

size <strong>di</strong>stribution, since the packing of<br />

solid particles is increased as heterometry<br />

increases. The most used measures<br />

of -grain size heterometry are:<br />

the semiinterquartile range (0 3 -QI)/2<br />

(Krumbein's Qd __,<br />

u<br />

...<br />

15<br />

QJ<br />

C"><br />

"""


Drying Properties of Ceramic Clays ... 531<br />

TABLE 4<br />

Correlations <strong>and</strong> simple linear regression equations. Pore water, porosity <strong>and</strong> bulk density<br />

versus heterometry indexes<br />

y X r Regression equation<br />

Pore water-Qdcp<br />

Pore water-He<br />

Pore water-P10-P9o<br />

Porosity-Qdcp<br />

Porosity-He<br />

Porosity-P10-P9o<br />

Bulk density-Qdcp<br />

Bulk density-He<br />

Bulk densi-ty-P10-P9o<br />

r= -0.727<br />

r= -0.621<br />

r= -0.664<br />

r= -0.706<br />

r= -0.655<br />

r= -0.633<br />

r= +0.813<br />

r= +0.741<br />

r= +0.750<br />

y=25.11-4.18x<br />

y= 23.32-3.88x<br />

y=24.72-1.08x<br />

y=40.94-5.20x<br />

y= 38.79-4.86x<br />

y= 40.31-1.32x<br />

y= 1.52+0.16x<br />

y= 1.59+0.15x<br />

y= 1.53+0.04x<br />

MANN (1956) was used without conclusive<br />

results. Thus, the drying behaviour<br />

of materials in commercial<br />

practice at some type localities was<br />

used to judge the drying sensitivity,<br />

taking into account both drying con<strong>di</strong>tions<br />

<strong>and</strong> size of the manufactured<br />

pieces.<br />

At Motril, drying is performed by<br />

<strong>di</strong>rect exposition to sun, without<br />

further precautions. Pieces are<br />

molded by h<strong>and</strong>, because of lack of<br />

plasticity, <strong>and</strong> these materials can be<br />

considered as non sensitive. Nosova's<br />

index ranges from 0.43 to 0.75 with a<br />

mean value of 0.55.<br />

This is also the case for Alhen<strong>di</strong>n,<br />

but here hollow bricks are manufac-<br />

tured by vacuum extrusion. Drying<br />

sensitivity is considered to be low. Ks<br />

ranges from 0.58 to 0.87, with a mean<br />

with heterometry, while the opposite<br />

is true for the bulk density. The best<br />

pre<strong>di</strong>ctor is, in all cases, Krumbein's<br />

Qd


532 E. Barahona, F. Huertas, A. Pozzuoli, J. Lin_ares<br />

Nosova's index<br />

Excessive<br />

-• ~---~ ~~DY'yirig.:..- ~- -~~~<br />

Sensitivity<br />

L_ ____ o_._7 ______ ~o._s _____________ 1~.4--------,:><br />

Clay ~b<br />

116 17. 21 24 25 26 43 ><br />

L...--..,.,-t -l--I--;l.---.1 ___ _<br />

Hygroscopicity % ,1.3 1.5 2 2.4 2.5 2.7 4.8 "'<br />

L..,-t ----,fr-. --~tr-:tr-----v'<br />

Plasticity<br />

Barnas's index<br />

Plasticity<br />

Rieke's index<br />

~---o._4 _____________ o_.4_5-r------------------->·<br />

t<br />

__;___><br />

L__l7 ___ 9 _<br />

Pl asti city<br />

- ··-too -low for·<br />

small pieces<br />

Plasticity<br />

too low fo-r<br />

big pieces<br />

~ ·- -<br />

Fig. 11 -Guide-numbers for evaluating raw materials. Clay <strong>and</strong> hygroscopicity values were derived<br />

from regressions against plasticity <strong>and</strong> sensitivity indexes.<br />

sidered to be moderate. Ks ranges<br />

from 0.75 to 1.25, with a mean value<br />

of 1.06.<br />

The materials from Baza are a<br />

clear example of high drying sensitivity.<br />

The driers used are closed chambers,<br />

without an internal heat source,<br />

so as to slow down the drying speed,<br />

<strong>and</strong> large sized pieces . are not currently<br />

manufactured because of their<br />

rate of drying failure. Here Ks ranges<br />

from 1.28 to 2.37, with a mean value<br />

of 1.88. Such is.the case, also, for a<br />

sample of Pantano de CU:billas. This<br />

material was used by several manufacturers<br />

of J un <strong>and</strong> Maracena <strong>and</strong><br />

ab<strong>and</strong>oned because of multiple<br />

drying failures (Ks = 1.83).<br />

Ifwe take the mean values between<br />

type localities as guide-numbers, the<br />

classes obtained are very similar to<br />

those given by BUDNIKOV (1964).<br />

Figure 11 summarizes the guidenumbers<br />

obtained for drying sensi- •<br />

tivity, plasticity indexes <strong>and</strong> the correspon<strong>di</strong>ng<br />

clay <strong>and</strong> hygroscopicity<br />

values. Clays low in drying sensitivity<br />

are also low in plasticity, which<br />

becomes a limiting factor. Such critical<br />

values are to be taken only as a<br />

rule of thumb <strong>and</strong> should be revised<br />

if better installations for mol<strong>di</strong>ng <strong>and</strong><br />

drying are introduced in working<br />

practice.


Drying Properties of Ceramic Clays ... 533<br />

REFERENCES<br />

BARAHONA E., HUERTAS F., POZZUOLI A., LINARES J., 1982. Mineralogia e genesi dei se<strong>di</strong>menti della<br />

provincia <strong>di</strong> Granada (Spagna). Miner. Petrogr. Acta 26, 61-99.<br />

BARAHONA E., HUERTAS F., Pozzuou A., LINARES J ., 1983. Sulla plasticita dei se<strong>di</strong>menti della provincia<br />

<strong>di</strong> Granada (Spagna). Miner. Petrogr. Acta 27, 161-182.<br />

BuDNIKOV P.P., 1964. The Technology of Ceramics <strong>and</strong> Refractories. Edward Arnold, London.<br />

FoRD R.W., 1964. Drying. Mac Laren & Sons, London.<br />

KEELING P.S., 1966. !LIMA. A practical metho4 of assessing pottery clays. 'Irans. Br. Ceram.Soc. 65,<br />

463-477.<br />

KRiscHER 0., KROLL K., 1956. Trocknungstechnik, B<strong>and</strong> 2: Trockner und Trocknungsverfahren.<br />

Springer-Verlag, Berlin.<br />

LIPPMANN F., 1956. Uber einen einfachen Test zur Erkennung der Trockenempfindlichkeit van Tonen.<br />

Ber. dt. keram. Ges. 33, 150-153.<br />

NORTON F.H., 1949. Refractories. Mac Graw-Hill, New York.<br />

STONE R.L., 1957. Determinative Tests of Aid in the Design of Driers <strong>and</strong> Kilns.Bull. Am. Ceram. Soc.<br />

36, 1-5.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 535-545 (1985)<br />

Clays <strong>and</strong> Complementary Raw Materials<br />

for Stoneware Tiles<br />

B. FABBRI, C. FIORI<br />

Istituto <strong>di</strong> Ricerche Tecnologiche per la Ceramica, C.N.R., Via Granarolo 6, 48018 Faenza, Italia<br />

ABSTRACT- The chemical-mineralogical characteristics of the main types of<br />

clay used in the production of <strong>Italian</strong> stoneware tile are described. On the<br />

basis of average chemical <strong>and</strong> mineralogical compositions of bo<strong>di</strong>es used on<br />

an industrial scale, criteria are given to develop optimal mixes with the described<br />

clays <strong>and</strong> complementary quartz-feldspar raw materials in order to<br />

obtain stoneware tiles of good qualitY: The objective is that of contributing<br />

to a better knowledge of the compositional characteristics of the clay used<br />

for ceramic products as well as that of developing simple <strong>and</strong> reliable<br />

methods for the preliminary verification of the suitability of a clay material<br />

for use by the ceramic industry, even though the data about the clay material<br />

has been obtained for a <strong>di</strong>fferent purpose.<br />

Introduction<br />

Clays are the basic raw mq.terials<br />

for many tra<strong>di</strong>tional ceramic products.Asanexampleoftheirapplication<br />

in _the manufacture of ceramics, we<br />

chose the use of clay materials in the<br />

production of stoneware tiles by the<br />

modern rapid single-firing technique.<br />

Theseproductsrepresentagood<br />

quality goal of the <strong>Italian</strong> Ceramic<br />

Industry, because of their high mechanical<br />

strength <strong>and</strong> frost resist-\<br />

ance, <strong>and</strong> their aesthetic characteristics,<br />

which allow their use for pavements<br />

<strong>and</strong> walls both indoors <strong>and</strong><br />

outdoors.<br />

In keeping to the specific subject<br />

of this Conference, the present paper<br />

deals with clays <strong>and</strong> complementary<br />

raw materials used "in the manufacture<br />

of vitrified stoneware tile bo<strong>di</strong>es,<br />

<strong>and</strong> the materials used for glazed will<br />

not be taken in to consideration. Stoneware<br />

tiles are essentially of two<br />

types: «red gres» <strong>and</strong> «white gres».<br />

The white gres actually is_ gray in<br />

most cases, while the red gres can be<br />

brown, dark-brown, dark-purple <strong>and</strong><br />

so on. Nowaday, coloured stoneware<br />

tiles are obtained by using ceramic<br />

pigments in the white gres body compositions.<br />

Going back to the two fundamental<br />

bo<strong>di</strong>es for stoneware tiles, it should<br />

be pointed out that their colouring<br />

depends mainly on the clay utilized:<br />

- for the «red gres >>, illi tic-chlori tic


B. Fabbri, C. Fiori<br />

clays with an iron content of 6-8%<br />

Fe 2 0 3 are used;<br />

- for the «white gres>> illitic-kaolinitic<br />

clays with an Fe 2 0 3 content<br />

less than 1.5% are used.<br />

The complementary raw materials<br />

used as stoneware body components,<br />

together with the. above said clays,<br />

can be <strong>di</strong>vided into two main categories:<br />

feldspars <strong>and</strong> s<strong>and</strong>s.<br />

With regard to feldspars, it should<br />

be pointed out that rather than using<br />

pure feldspars, the ceramic industry<br />

frequently uses feldspar-rich rocks,·<br />

because of their lower cost <strong>and</strong> their<br />

quartz content; otherwise quartz<br />

must be added separately to the bo<strong>di</strong>es.<br />

-- - -----~.. pso mchidea a-mon~( ille-feldspars<br />

are feldspathoid-rich rocks used as<br />

«fluxes>> <strong>and</strong> well-known as nepheline-syenites.<br />

Among the s<strong>and</strong>s, quartz-feldspar<br />

types are more frequently' used than<br />

high purity quartz s<strong>and</strong>s.<br />

The illitic-chloritic clays for the<br />

typical <strong>Italian</strong> stoneware tiles come<br />

from the «argille varicolori>> or <br />

behaviour; they develop a<br />

remarkable amount of vitreous phase<br />

during firing, without the necessity<br />

of ad<strong>di</strong>ng fluxes to the starting bo<strong>di</strong>es.<br />

The clay fraction of these materials<br />

is characterized by the illi techlorite<br />

association, while kaolinite<br />

<strong>and</strong> montmorillonite often are present,<br />

but, generally, in smaller <strong>and</strong><br />

fairly variable amounts. This kind of<br />

clay also contains relatively high<br />

amounts .QLQ)(i.,<br />

with variable characteristics,<br />

available for importation to<br />

Italy from the above said countries. In<br />

fact, even if the main mineralogical<br />

components are always the same<br />

(illite, kaolinite, quartz), they range<br />

from materials with a high quartz<br />

content <strong>and</strong> relatively poor- illitekaolinite<br />

fraction, which in the ceramic<br />

industry are usually referred to<br />

as kaolinitic s<strong>and</strong>s, to real kaolins<br />

whose main constituent is kaolinite.<br />

AI1f.ong the accessory minerals, potash<br />

feldspar is very frequentlY: present.<br />

Chemical characteristics represented<br />

by means of ternary <strong>di</strong>agrams<br />

There is a remarkable mass of data<br />

regar<strong>di</strong>ng the chemical composition


Clays <strong>and</strong> Complementary Raw)J:c!terials ... 537<br />

Fe 2 o 3 + Ti o 2 +<br />

MgO + CaO +<br />

Na 2<br />

0 t KzO<br />

Fe 2 o 3 + Ti o 2 +<br />

MgO + CaO<br />

SiOz Alz0 3<br />

Na 2 0+K 2 0 ~lgO+CaO<br />

Fig. 1 - The three ternary <strong>di</strong>agrams used to represent the variability limits of the chemical<br />

composition of clays <strong>and</strong> complementary raw materials for the production of stoneware tiles.<br />

rameters relative to the four groups<br />

of raw materials. This objective was<br />

attained using ternary <strong>di</strong>agrams, already<br />

applied in previous stu<strong>di</strong>es,<br />

<strong>and</strong> shown schematically in Fig. 1. At<br />

the vertices we have respectively: on<br />

the first <strong>di</strong>agram: silica, alumina <strong>and</strong><br />

the sum of the other oxides; on the<br />

second (which excludes silica): alumina,<br />

alkali oxides <strong>and</strong> the sum of the<br />

of the four fundamental groups of<br />

raw materials. They are available in<br />

the literature or in catalogues published<br />

by the suppliers of raw materials.<br />

Irt general, the mineralogical<br />

compositions of the materials are<br />

known only qualitatively. Our study,<br />

essentially statistical in nature, had<br />

the aim of defining the limit~ of variability<br />

of the principal chemica:I paa)<br />

il ritic- chloritic clays<br />

b) illitic- kaolinitic materials<br />

b 1 )<br />

b")<br />

b 11 • 1 )<br />

german<br />

engl ish<br />

french<br />

Fig. 2- Compositional fields of clays for red <strong>and</strong> «white>> stoneware tiles in the ternary <strong>di</strong>agram<br />

Si0 2 /Alz03/(Ti0z + Fez03 + MgO + CaO + Nazb +KzO).


538 B. Fabbri, C. Fiori<br />

remammg oxides; on the third<br />

(which excludes both alumina <strong>and</strong><br />

silica): alkali oxides, alkaline-earth<br />

oxides <strong>and</strong> iron oxide plus titanium<br />

oxide. A further objective of our work<br />

was that of describing the contribution<br />

of the in<strong>di</strong>vidual raw materials<br />

to the chemical <strong>and</strong> mineralogical<br />

composition of typical bo<strong>di</strong>es for<br />

stoneware tile.<br />

The first <strong>di</strong>agram, silica/alumina/<br />

other oxides (Fig. 2), takes into account,<br />

practically, the whole chemical<br />

analysis (with the exception of the<br />

ignition loss) <strong>and</strong> so it is the most<br />

significant <strong>and</strong> the most suitable <strong>di</strong>agram<br />

for the determination of typical<br />

··-~~---- __ co~e~~tion fields ~or th~ va!i~l:l~<br />

types of raw materials <strong>and</strong> ceramic<br />

mixes or for their classification on<br />

the basis of their chemical composition.<br />

On this <strong>di</strong>agram the composition<br />

fields of the illitic-chloritic clays<br />

(hatched area) <strong>and</strong> the illitic-kaolinitic<br />

materials, separated on the basis<br />

of the country of origin (white areas),<br />

have been delineated. This was done<br />

by taking into consideration 38 chemical<br />

analyses of illitic-chloritic clays<br />

available in the literaturec(EMILIANI<br />

& VICENZINI 1974; PALMONARI et<br />

al., 1974; BIFFI, 1976; LOSCHI.<br />

GHITTONI & MINOPULOS, 1976;<br />

LOSCHI GHITTONI, 1977; VICEN­<br />

ZINI & FIORI, 1977; BIFFI et al.,<br />

1979; FABBRI & FIORI, 1981), 57<br />

analyses of German, 40 of English,<br />

<strong>and</strong> 30 of French kaolinitic raw materials,<br />

partly declared by the suppliers,<br />

<strong>and</strong> partly from results obtained<br />

at our Institute. Each material<br />

has been r~presented on the <strong>di</strong>agram<br />

by one point <strong>and</strong> the boundary of the<br />

fields has bee_n_


Clays <strong>and</strong> Complementary Raw Matenals ...<br />

539<br />

60%<br />

a) illitic-chioritic clays<br />

b) illitic- kaolinitic materials<br />

b' ) german<br />

b") engl ish<br />

b"') french<br />

~~----~------~------~------~~----~~--~~60%<br />

Na 20+K20<br />

Fig. 3 - Compositional fields of clays for red <strong>and</strong> stoneware tiles in the ternary <strong>di</strong>agram<br />

Alz03/(NazO + K 2 0)/(Ti0 2 + Fe 203 + MgO + CaO).<br />

MgO+CaO<br />

a) illitic- chloritic clays<br />

b) illitic- kaolinitic materials<br />

b' )<br />

b")<br />

b 111 )<br />

german<br />

english<br />

french<br />

K 2<br />

o<br />

Fig. 4- Compositional fields of clays for red <strong>and</strong> «white>> stoneware tiles in the ternary <strong>di</strong>agram<br />

(NazO + K 2 0)/(Ti0z + Fez03)/(MgO + CaO).<br />

Fez03


540 B. Fabbri, C. Fiori<br />

ides, <strong>and</strong> the field of illitic-kaolinitic<br />

materials. However there is a <strong>di</strong>screte<br />

amount of <strong>di</strong>fferentiation within the<br />

illitic-kaolinitic field itself. In fact,<br />

the field of French materials is located<br />

close to the alumina-remaining<br />

oxides side, showing an extreme<br />

scarceness of alkali oxides.<br />

Analogous consideration can be<br />

made in regard to the third <strong>di</strong>agram<br />

Na 2 0 + K 2 0/Fe 2 0 3 + TiOz/MgO +<br />

CaO (Fig. 4) where the field of the<br />

French materials is clearly separate<br />

from the fields of the English <strong>and</strong><br />

German materials, which are practically<br />

superimposed one on the other.<br />

The sal:ne ternary <strong>di</strong>agrams seen<br />

for the clay materials have been util-<br />

~-~~~--·~---·---~1ze-d~t


Clays <strong>and</strong> Complementary Raw-Materials ... 541<br />

<strong>and</strong> shifted in comparison with;them<br />

towards the silica vertex. It can be<br />

said that there is no solution of conti-·<br />

nuity between the areas of the <strong>di</strong>agram<br />

occupied by the feldspars <strong>and</strong><br />

feldspathic rocks <strong>and</strong> by the quartzfeldspar<br />

s<strong>and</strong>s. The quartz s<strong>and</strong>s,<br />

composed almost exclusively of<br />

quartz, <strong>and</strong> the nepheline-syenites,<br />

silica unsatured rocks, occupy positions<br />

<strong>di</strong>stinctly separate from those<br />

of the other complementary raw materials.<br />

The other two ternary <strong>di</strong>agrams<br />

relative to the complementary<br />

raw materials were drawn, but are<br />

not reported here since they have<br />

little significance.<br />

Theoretical formulation of bo<strong>di</strong>es for<br />

stoneware tile<br />

Vitrifiable bo<strong>di</strong>es for tile produc­<br />

"-<br />

tion are mixes of the raw ~aterials<br />

we have <strong>di</strong>scussed here. Reported together<br />

on the ternary <strong>di</strong>agram silicaJalumina/sum<br />

of the other oxides<br />

are (i) the composition fields of the<br />

four fundamental raw materials, <strong>and</strong><br />

(ii) the typical fields of the body compositions<br />

used industrially for the<br />

production of


542 B. Fabbri, C. Fiori<br />

nary <strong>di</strong>agram just illustrated was<br />

used for this purpose. The first example<br />

(Fig. 7) is for the formulation of a<br />

mix for red gres, composed by only<br />

two materials: illitic-chloritic clay<br />

(85%) <strong>and</strong> quartz-feldspar s<strong>and</strong><br />

(15%). The relative amounts of the<br />

two materials were chosen so that<br />

the representative point of the mix<br />

falls inside the field of the industrial<br />

compositions of red gres. Of course<br />

the representative point of the mix<br />

lays on the line that joins the points<br />

of the two raw materials at <strong>di</strong>stances<br />

from them inversally proportional to<br />

the amounts of these raw materials<br />

in the mix. Because of the relatively<br />

small amount of s<strong>and</strong>, the minera-<br />

. - - --···-·-·-------logical-composition of the mix does<br />

not <strong>di</strong>ffer very much from that of the<br />

clay. Thi,:;.is~~i~-~g£t:~Q!>) to them serves mainly to<br />

mo<strong>di</strong>fy the)particle size <strong>di</strong>stribution<br />

of the clay.<br />

,The following body composition<br />

for potassic white gres was formulated:<br />

55% illitic-kaolinitic clay, 15%<br />

potassic feldspar <strong>and</strong> 30% quartzfeldspar<br />

s<strong>and</strong> (Fig. 8). In this case, the<br />

·representative point of the mix falls<br />

within the triangle having as vertices<br />

the representative points of the three<br />

raw materials used, the relative a­<br />

mounts of which were calculated in<br />

such a way that the point of the mix<br />

50%<br />

Fe2D3+ Ti D2+MgO+<br />

+Ca0+Na 2 0+K20<br />

A<br />

body<br />

quartz 20 55 25<br />

K- feldspar 18<br />

Body for red gres:<br />

85% A<br />

15% s<br />

Na- feldspar 12 15 13<br />

kaolinite<br />

ill ite +muse. 34 30<br />

chlorite 12 10<br />

dolomite<br />

hematite<br />

accessories<br />

Fig. 7- Formulation of a mix for red gres with only two raw materials: an illitic-chloritic clay <strong>and</strong> a<br />

quartz-feldspar s<strong>and</strong>.


Clays <strong>and</strong> Complementary Raw Materials ...<br />

543<br />

50%<br />

Fe 2 o 3 + Ti 0 2 +Mg0+<br />

+Ca0+Na 2 0+K 2 0<br />

FP<br />

body<br />

quartz<br />

25<br />

55<br />

31<br />

K- feldspar<br />

72<br />

18<br />

18<br />

Na- feldspar<br />

19<br />

15<br />

kaol inite<br />

20<br />

11<br />

illite+musc.<br />

accessories<br />

50<br />

30<br />

100%~--------~--------~--~----~--------~--------~50%<br />

A1 2 o 3<br />

Fig. 8 - Formulation of a body for potassic white gres with only three raw materials: an illitickaolinitic<br />

clay, a potassic feldspar <strong>and</strong> a quartz-feldspar s<strong>and</strong>.<br />

s'o "<br />

Fe 2<br />

o 3<br />

+ Ti0 2<br />

+Mg0+ '<br />

+CaO+Na 2 0+K 2 0<br />

FS<br />

body<br />

quartz 23<br />

K- feldspar<br />

Na- feldspar<br />

kaolinite 40<br />

illite+musc. 30<br />

accessories<br />

55 25<br />

18<br />

92 15 27<br />

22<br />

18<br />

11<br />

So<strong>di</strong>c white 11 gres:<br />

Si0 2<br />

Fig. 9 - Formulatfon of a body for so<strong>di</strong>c white gres with only three raw materials: an illitickaolinitic<br />

clay, a so<strong>di</strong>c feldspar <strong>and</strong> a quartz-feldspar .s<strong>and</strong>.


544 B. Fabbri, C. Fiori<br />

also falls inside the composition field<br />

of the potassic white gres. Reported<br />

in the table alongside of ~he <strong>di</strong>agram,<br />

are the mineralogical compositions<br />

of the three raw materials <strong>and</strong> of the<br />

mix. It can be seen easily from these<br />

data that the clay makes the greatest<br />

contribution to the clay minerals<br />

content of the mix, while, for the<br />

most part, the feldspar rock <strong>and</strong> to a<br />

lesser extent the quartz-feldspar s<strong>and</strong><br />

contribute to the feldspar content of<br />

the mix. The clay <strong>and</strong> the s<strong>and</strong> contribute<br />

in fairly equal measures to .<br />

the quartz content of the mix.<br />

Finally, an example is given of a<br />

mix formulation for a so<strong>di</strong>c white<br />

gres body (Fig. 9) composed as fol-<br />

-- -·-~------------· -·- --10Ws:S5o/~-iTTitic-k3.-0lill{tiC claY, iS%<br />

so<strong>di</strong>c feldspar <strong>and</strong> 20% of the same<br />

quartz-feldspar s<strong>and</strong> used for the<br />

·mixes described in the previous two<br />

examples: The consi)derationsfor the<br />

previous potassic mix. also are valid<br />

in this case.<br />

Conclusions<br />

The representation of the composition<br />

fields of ceramrc raw materials<br />

in ternary <strong>di</strong>agrams based on chemical<br />

parameters can be valid when all<br />

the prin"cipal. g~tc,:l~s~ ~[t'U~lcf!n ir].to<br />

consideration. The ternary <strong>di</strong>agram<br />

which includes silica, alumina <strong>and</strong><br />

the sum of the other oxides of the socalled<br />

,<br />

is without doubt the most significant<br />

<strong>and</strong> the most useful, since the ignition<br />

loss <strong>and</strong> possible trace elements<br />

remain excluded (generally trace elements<br />

are not determined in the<br />

analyses of ceramic laboratories).<br />

The other two <strong>di</strong>agrams proposed<br />

are less valid, particularly the<br />

one based only on minor constituents<br />

of the chemical composition. Also for<br />

each in<strong>di</strong>vidual <strong>di</strong>agram the significance<br />

of the fields delineated is <strong>di</strong>f-<br />

. Ierent for the various raw materials.<br />

The ternary <strong>di</strong>agram Na 2 0 +<br />

K 2 0/Fe-z0 3 + Ti0 2 /Mg0 + CaO, for<br />

example, includes elements which<br />

may be relatively abundant in illiticchloritic<br />

clays <strong>and</strong> in feldspathic<br />

ro~ks, while they are quite secondary<br />

in illitic-kaolinitic clays <strong>and</strong> in s<strong>and</strong>s.<br />

In conclusion, such ternary <strong>di</strong>agrams<br />

can be quite useful for the formulation<br />

of ceramic body compositions<br />

as illustrated by the examples presented.<br />

REFERENCES<br />

BIFFI G., 1976. Stu<strong>di</strong>o mineralogico e tecnolo}tico <strong>di</strong> affioramenti <strong>di</strong> argille rosse da gres situati in zona<br />

S. Clemente (aN del T. Sillaro). La Ceramica 19 (6), 19-26.<br />

BrFFI G., EMo G., FABBRI B., FroRr C., 1979. Le argille dei


Clays <strong>and</strong> Complementary Raw Materials ... 545<br />

LoscHI GHITTONI A.G ., 1977. Caratteristiche petrografiche <strong>di</strong> argille varicolari parmensi. La Ceramica<br />

20 (4), 6-12.<br />

LoscHr GHITTONI A.G., MINOPULOS P., 1976. Caratteristiche mineralogiche e petrografiche <strong>di</strong> alcune<br />

argille rosse dell'alto Appennino Emiliano in funzione <strong>di</strong> un loro possibile impiego ceramico.<br />

Ceramurgia 6 (3), 129-135. . . .<br />

PALMONARI C., BERTOLANI M., ALIETTI A., 0RTELLI G., 1974. Emilia-Romagna. Pp. 55-86, in: Giacimenti<br />

<strong>di</strong> Argille Ceramiche in Ita!ia (F. Veniale <strong>and</strong> C. Palmonari, e<strong>di</strong>tors), Gruppo It


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 547-562 (1985)<br />

Manufacture of Heavy-Clay Products with the Ad<strong>di</strong>tion<br />

of Residual Sludges from other Ceramic Industries<br />

C. PALMONARI, A. TENAGLIA<br />

Centro Ceramico, Via Martelli 26,40138 Bologna, Italia<br />

ABSTRACT- Clays of <strong>di</strong>verse origin are used for the manufacture of heavy clay<br />

products. The chemical <strong>and</strong> mineralogical characteristics of these clays may<br />

vary within a relatively wide range: for this reason, it was felt worth wile to<br />

investigate the· possibility of using these clays as receivers for ceramic<br />

sludges from the waste water treatment systems of other ceramic industries,<br />

in particular from the ceramic floor <strong>and</strong> wall tile industry. A typical clay<br />

used for the manufacture of heavy clay products was chosen for the experimental<br />

stu<strong>di</strong>es. Various quantities of sludge with <strong>di</strong>fferent chemical<br />

compositions were added to the clay: the sludges used were classified accor<strong>di</strong>ng<br />

to their lead content which was chosen as the determining parameter.<br />

For mixtures of clays with fixed sludge ad<strong>di</strong>tions, the variations in structural<br />

characteristics <strong>and</strong> <strong>di</strong>mensions were evaluated as a function of firing temperature.<br />

Introduction<br />

Chemical <strong>and</strong> mineralogical characteristics<br />

of clays employed in Italy<br />

for heavy-clay products may vary<br />

within a relatively wide range<br />

(Tables 1 <strong>and</strong> 2). Based on data from<br />

scientific literature on this topic<br />

(TENAGLIA, 1982) <strong>and</strong> contacts with<br />

the national <strong>and</strong> international heavyclay<br />

industry it can be seen that there<br />

is no other ceramic product for which<br />

such a variation of raw materials is<br />

employed. It is worth wile to note that<br />

the raw materials used in a factory<br />

may vary slightly, depen<strong>di</strong>ng on un-<br />

TABLE 1<br />

Chemical analysis (%) of clays for heavy-clay production<br />

) 2 3 4 5<br />

L.I. 15.54 15.70 18.56 16.52 15.42<br />

SI02 49.50 46.01 39.24 46.12 47.31<br />

Al20 3 13.46 13.62 15.01 14.81 14.23<br />

TI02 0.27 0.23 ' 0.45 0.09 0.07<br />

Fe 2 0 3 3.98 4.48 3.74 6.21 6.51 '<br />

CaO 11.90 13.52 1.6.74 11.51 10.21<br />

M gO 1.94 1.75 2.51 0.86 1.68<br />

KzO 2.11 2.28 2.25 1.92 2.07<br />

NazO 1.84 2.02 1.19 1.97 2.04<br />

CaC0 3 20.51 22.37 28.30 20.22 18.78


548 C. Palmonari, A. Tenaglia<br />

CLAY<br />

MINERALS<br />

TABLE 2<br />

Raw materials for heavy-clay products<br />

l<br />

kaolinite<br />

smectite<br />

. chlorite<br />

vermiculite<br />

illite-smectite mixed-layers<br />

quartz<br />

NKa<br />

feldspars<br />

{<br />

Ca<br />

calcite<br />

ACCESSORY<br />

carbon.ates dolomite<br />

MINERALS {<br />

siderite<br />

l<br />

goethite<br />

iron compounds<br />

lepidocroci hematite<br />

te<br />

pyrite, marcasite<br />

gypsum<br />

_____ avoidable ___ <strong>di</strong>suniformities in the_<br />

quarry. Such variations do not exert<br />

any influence on the consistency of<br />

the product properties. For this<br />

reason, it was felt worthwile to investigate.<br />

the possibility of using<br />

these clays as receivers for ceni.mic<br />

sludges from the waste water treatment<br />

systems of the ceramic floor·<br />

<strong>and</strong> wall tile industry.<br />

Ceramic sludges<br />

The sludges obtained from the<br />

waste water treatment plants of the<br />

ceramic £loor <strong>and</strong> wall tile industry<br />

are characterized (PALMONARI et<br />

al., 1983) by the presence of residues<br />

of clay <strong>and</strong> mixtures of various silicates,<br />

hydroxides <strong>and</strong> carbonates originating<br />

from the purification of water<br />

containing residues of glazes. On<br />

the basis of recent stu<strong>di</strong>es, it was<br />

found that the composition of these<br />

ceramic sludges (Table 3) varied as a<br />

function of the particular type of product<br />

being manUfactured (complete<br />

double firing cycle with red or white<br />

ware, single firing of red or white<br />

ware, only the glost firing cycle), but<br />

always ranged within relatively wide<br />

limits. Present in the sludges are substances<br />

also found in clays (silica,<br />

alumina <strong>and</strong> oxides of iron, titanium,<br />

calcium, magnesium, potassium <strong>and</strong><br />

so<strong>di</strong>um), metal oxides <strong>and</strong> carbonates<br />

used for the production Of glazes<br />

(lead, zinc, nickel, copper) <strong>and</strong> borate<br />

compounds. Therefore, ceramic<br />

sludges may be defined only as<br />

«silica-al umina-based ·inorganic<br />

materials (in nearly all the samples<br />

examined the sum of silica <strong>and</strong> alumina<br />

exceeds 50%) containing variable<br />

amounts of heavy metals, alkali<br />

<strong>and</strong> alkaline-earth elements».<br />

X-ray <strong>di</strong>ffraction analysis (Table 4)<br />

allowed rough estimates of the<br />

various crystalline species to be<br />

obtained. On the basis of the results,


Manufacture of Heavy-Clay Products -with the Ad<strong>di</strong>tion ... 549<br />

TABLE 3<br />

Average chemical analyses <strong>and</strong> ranges of variability of sludges collected, relating to the<br />

production type ·<br />

Production type<br />

A B c D E F<br />

Loss on % 5.94 10.97 1.78 8.83 10.30 11.43<br />

ignition 2.47-12.96 3.42-33.70 1.40-2.05 3.66-15.97 8.81-10.73 1.60-37.09<br />

Si02 % 49.05 39.81 52.94 41.48 41.02 34.15<br />

30.30-59.54 10.74-59.37 48.67c57.12 36.87-49.14 40.99-48.27 15.31-48.37<br />

Al203 % 9.25 12.12 9.92 11.76 13.12<br />

7.24-10.56 6.01-20.77 8.37-10.52 8.63-19.25 9.37-15.69<br />

TiO % 0.22 0.65 0.08 1.58 2.84<br />

0.12-0.35 0.14-1.09 0.03-0.27 0.09-3.87· 1.69-3.89<br />

CaO % 3.34 6.27 1.53 6.96 4.49<br />

2.14-5.82 1.78-15.47 0.88-2.15 0.21-21.21 2.29-7.96<br />

MgO % 0.32 0.37 0.34 1.10 0.57<br />

0.13-0.7~ 0.17-0.82 0.19-0.59 0.27-1.69 0.38-1.77<br />

B203 % 8.02 6.40 8.63 5.37 3.91<br />

6.36-11.25 4.86-10.53 5.82-10.37 2.79-9.36 2.13-5.96<br />

Zr02 % 3.83 2.72 2.91 6.36 2.05<br />

1.07-5.31 2.42-3.40 1.85-3.83 2.13-10.66 0.61-3.15<br />

Fe203 % 1.41 3.94 IS' 1.01 5.66 3.74<br />

0.70-2.99 0.74-12.73 0.81-1.27 3.19-11.24 2.28-5.12<br />

PbO % 9.02 11.42 11.04 5.85 0.49 -<br />

2.84-15.94 1.20-24.02 4.98-16.39 0.64-15.41 0.15-1.18<br />

ZnO % 5.40 1.98 1.95 4.02 4:44<br />

1.82-15.82 0.99-2.84 0.55-3.27 1.56-7.26 0.37-8.25<br />

CdO % 0.00 0.03 0.02 0.01 0.00<br />

0.00-0.14 0.00-0.06 0.00-0.05<br />

NiO % 0.09 0:07 0.00 0.02 .· 0.03<br />

0.00-0.19 0.00-0.18 0.00-0.06 0.01-0.11<br />

CuO % 0.04 0.04 0.00 0.38 1.83<br />

0.00-0.16 0.00-0.11 0.01-0.96 0.00-3.96<br />

MnO % 0.03 0.19 0.04 0.32 1.76<br />

0.00-0.08 0.06-0.63 0.01-0.08 0.08-0.94 0.35-3.71<br />

CoO % 0.17 0.03 0.01 0.01 0.00<br />

0.01-0.53 0.00-0.09 0.00-0.09 0.00-0.06<br />

Cr203 % 0.06 0.24 0.09 0.07 0.11<br />

0.00-0.14 0.13-0.42 0.05-0.21 0.00-0.18 0.06~0.41<br />

Li20 % 0.14 0.07 0.02 0.11 0.16<br />

0.02-0.43 0.00-0.21 0.01-0.08 0.04-0.18 0.09-0.29<br />

K20 % 2.42 0.88 0.95 1.67 0.92<br />

0.82-3.96 0.20-1.41 0.51-1.32 0.75-2.96 0.59-1.61<br />

Na20 % 2.16 1.74 3.09 1.48 2.46<br />

1.53-3.31 0.41-2.93 1.34-3.95 0.88-2.09 2.13-3.07<br />

er- % 0.62 0.09 0.23 0.42 n.d.<br />

0.10-1.60 0.01-0.16 0.01-0.39 0.03-0.91<br />

10.77<br />

5.91-30.59<br />

0.57<br />

0.37-0.72<br />

7.58<br />

0.59-17.98<br />

0.35<br />

0.21-0.86<br />

6.42<br />

2.19-11.19<br />

1.99<br />

1.16-3.31<br />

3.78<br />

1.55-8.31<br />

'16.83<br />

1.63-28.39<br />

1.75<br />

0.46-4.55<br />

0.01<br />

0.00-0.04<br />

0.07<br />

0.00-0.22<br />

0.07<br />

0.00-0.17<br />

0.31<br />

0.00-1.83<br />

0.03<br />

. 0.00-0.17<br />

0.17<br />

0.01-0.53<br />

0.12<br />

0.05-0.22<br />

0.71<br />

0.29-L73<br />

1.32<br />

0.51-2.39<br />

0.30<br />

0.07-0.62<br />

A) 5 factories producing majolica (complete double firing cycle)<br />

B) 7 factories producing cottoforte (complete double firing cycle)<br />

C) 5 factories producing whiteware bo<strong>di</strong>es "(complete double firing, cycle)<br />

J:?) 5 factories producing red-ware bo<strong>di</strong>es (si~gle firing cycle)<br />

E) 5 factories producing light colored ware (single firing cycle)<br />

F) 7 factories for glazing the tiles (factories where only the glazing <strong>and</strong> glost firing operations<br />

are carried-out)<br />

,_<br />

the sludges have been <strong>di</strong>vided into<br />

the following groups:<br />

a) sludges from purification systems<br />

in factories producing majolica,


550 C. Palmonari, A. Tenaglia<br />

TABLE 4<br />

X-ray <strong>di</strong>ffraction analyses of sludges, relating to the production type as in Table 3<br />

Production type<br />

Crystalline species A B c D E F<br />

Zircon m m m m se m<br />

a-Quartz se se tr m ab m<br />

Calcite tr se a tr m tr<br />

Na-feldspar a a a ,, tr m a<br />

ZnO tr a a a se a<br />

Hematite a a a tr tr tr<br />

TiOz a a a tr se a<br />

Kaolinite se tr m tr m se<br />

Other clay minerals a a a tr tr a<br />

Amorphous phase ab ab ab ab se ab<br />

ab: abundant, ~: me<strong>di</strong>um, se: scarce, tr: traces, a: absent<br />

cottoforte, whiteware bo<strong>di</strong>es, singlefired<br />

red-bo<strong>di</strong>ed ware <strong>and</strong> from factories<br />

carrying out only the glazing<br />

________________ a~d glost ~ring operations; ~<br />

b) sludges from purification systems<br />

in factories manufacturing<br />

single-fired, light-colour products.<br />

In the first case the waste waters<br />

contain glazes with high frit contents<br />

<strong>and</strong> thus have high concentrations of<br />

<strong>di</strong>ssolved metals, especially lead <strong>and</strong><br />

zinc; purification of these waste waters<br />

is obtained mainly by a process<br />

of flocculation, with the formation of<br />

insoluble amorphous substances<br />

which tend to trap the crystalline<br />

substances present inside the floes,<br />

even though in small quantities<br />

(quartz, feldspars). An exception to<br />

this occ;urs with the zirconia-bearing<br />

s<strong>and</strong>s which, because of their high<br />

density (4.56 g/cm 3 ), separate from<br />

the turbide waters by simple se<strong>di</strong>mentation<br />

without being incorporated<br />

in the precipitated floes. In<strong>di</strong>cation<br />

of this phenomenon is found<br />

in the characteristic bell shape which<br />

amorphous material gives to the<br />

background of the X-ray <strong>di</strong>ffraction<br />

patterns.<br />

The higher firing temperature used<br />

for the single-fired light-colour<br />

bo<strong>di</strong>es permits the use of glazes with<br />

relatively modest amounts of frit <strong>and</strong><br />

sometimes no frit at all is used in the<br />

glazes employed in this process;<br />

however the percentage of ad<strong>di</strong>tives<br />

in th~ mill is high. The waste waters<br />

from this process contain a large<br />

amount of material in suspension<br />

<strong>and</strong> lower quantities of <strong>di</strong>ssolved<br />

metals. The sludges resulting· from<br />

the purification of these waste waters<br />

contain high quantities of crystalline<br />

materials <strong>and</strong> a relatively limited<br />

amount of colloidal substances (hydroxides<br />

<strong>and</strong>/or carbonates of heavy<br />

metals). The amorphous phase is<br />

scarce while, in ad<strong>di</strong>tion to· the zirconia<br />

s<strong>and</strong>s previously mentioned,<br />

quartz, feldspars <strong>and</strong> CaC0 3 are also<br />

present, kaolinite, too, is very evident<br />

<strong>and</strong> originates both from the glaze<br />

<strong>and</strong> from the raw materials used in<br />

preparation of the tiles.<br />

Waste waters from glazing depart-


Manufacture of Heavy-Clay Products with ihe Ad<strong>di</strong>tion ... 551<br />

ments contain argillaceous materials<br />

in suspension only in single-firing cycles;<br />

in all the other cases the body is<br />

previously fired, so fragments that<br />

may breakoff are composed of amor­<br />

I?hous alumino-silicates, <strong>and</strong> there if<br />

no evidence of minerals typical of<br />

clays.<br />

Such heterogeneity in chemical<br />

compositions renders problematic<br />

the reuse of sludges inside the same<br />

ceramic industry; an exception to<br />

this is their introduction into raw<br />

materials for tile bo<strong>di</strong>es. This solution,<br />

however, is not always suitable<br />

(for example in factories where only<br />

the glazing <strong>and</strong> glost-firing operations<br />

are carried out).<br />

Dispo~al <strong>and</strong> re-use for heav:y clay<br />

products ,<br />

As documented in the literature,<br />

raw materials for heavy-clay products<br />

have been shown in various<br />

ca_ses to be good receivers of residue<br />

sludges of <strong>di</strong>verse origin.<br />

The aspects which led to the consideration<br />

of <strong>di</strong>spersing predetermined<br />

quantities of sludge iiJ. the raw<br />

materials for the ma:~;mfacture of<br />

J::teavy clay products as a possible<br />

means of <strong>di</strong>sposal <strong>and</strong> reuse of ceram- ·<br />

ic 1 sludges deriving from floor <strong>and</strong><br />

wall tile production are the follow- \<br />

ing:<br />

a) the characteristic extreme<br />

variability in composition of these<br />

ceramic sludges, not only from one<br />

factory to another, but also within<br />

the same factory from ·on~ day to<br />

another, accor<strong>di</strong>ng to the changes in<br />

production;<br />

b) the toxicity of these ceramic<br />

sludges;<br />

c) the water content of these<br />

sludges at which they can be transported<br />

without excessive cost;<br />

d) the massive presence of low<br />

melting point substances in these<br />

sludges.<br />

In fact, raw materials for the<br />

manufacture of heavy~clay products<br />

are


552 C. Palmonari, A. Tenaglia<br />

the E<strong>di</strong>lfornaciai factory in the Province<br />

of Bologna (Italy), manufacturing<br />

heavy clay products. It is a s<strong>and</strong>y,<br />

calcareous clay from the Olocene (recent<br />

Quaternary) characterized by a<br />

relatively large amount of smectite<br />

<strong>and</strong> illite in the day fraction. On the<br />

basis of particle size analysis the<br />

E<strong>di</strong>lfornaciai clay may be classified,<br />

accor<strong>di</strong>ng to SHEPARD (1954), as a<br />

s<strong>and</strong>y silty clay. From these results<br />

this clay can be described as being a<br />

typical raw material for the manufacture<br />

of heavy clay products (Table 5<br />

<strong>and</strong> Figs 1, 2 <strong>and</strong> 3).<br />

Laboratory tests<br />

~--~-~--- ~--~--~~- Tn c5rd~erto evaluate the~effeds of<br />

sludge ad<strong>di</strong>tions on the technical<br />

characteristics of fired products,<br />

clay-sludge mixtures were prepared<br />

using the dry~i~~i~g p~o~~s~:~<br />

A sludge with a me<strong>di</strong>um-high lead<br />

content (ranging from 15% to 17%)<br />

was used. This parameter was felt to<br />

be <strong>di</strong>scriminative, based on data<br />

from chemical analyses, relative to<br />

the various production types, <strong>and</strong> on<br />

the relevant fluxing action of this element.<br />

The batches (with 0%, 5%,<br />

10%, 15% sludge content) were drymilled,<br />

granulated, dried, pressed<br />

into 40 mm <strong>di</strong>ameter, 4 to 6 mm thick<br />

<strong>di</strong>sks <strong>and</strong> fired at temperatures ranging<br />

from 950° to 1100 °C. Determinations<br />

of linear shrinkage <strong>and</strong> water<br />

absorption were made on the resulting<br />

fired <strong>di</strong>sks.<br />

The results (Fig. 4) illustrate the<br />

TABLE 5<br />

E<strong>di</strong>lfornaciai clay<br />

Chemical composition (%):<br />

Loss on ignition<br />

11.67<br />

SiOz<br />

56.90<br />

Alz03<br />

13.64<br />

Carbonates: 18.92<br />

Ti0 2<br />

0.19<br />

CaO<br />

9.36<br />

M gO<br />

0.45<br />

K 2 0. Na 2 0<br />

2.01 1.42<br />

Gravel<br />

Coarse s<strong>and</strong><br />

Fine s<strong>and</strong><br />

Silt<br />

Clay<br />

Particle size (J.Lm)<br />

>2000<br />

2000-256<br />

256-63<br />

63-3.9<br />

3


Manufacture of Heavy-Clay Products with the Ad<strong>di</strong>tion ... 553<br />

42 39 36 33 30 27 24 21 18 15 12<br />

Fig. 1 - X-ray <strong>di</strong>ffraction patterns of the E<strong>di</strong>lfornaciai Clay:·a: in acetone; b: ·in H 2 0.<br />

2e<br />

fluxing action of the sludges, in particular<br />

for ad<strong>di</strong>tions greater than<br />

10%. However, phenomena of softening<br />

or excessive deformation <strong>di</strong>d not<br />

occur to such an extent so as to " ex-<br />

elude the use of sludges presumably<br />

even in fractions greater than those<br />

stu<strong>di</strong>ed.<br />

Ad<strong>di</strong>tional day-sludge mixtures<br />

were prepared, containing 0, 10, 20<br />

30 27 24 21 18<br />

15 12<br />

Fig. 2 - X-ray <strong>di</strong>ffraction patterns _of the oriented clay fractions of the E<strong>di</strong>lfornaciai clay. a: natural;<br />

b: glycolated; c: heated at 550 oc for 2 hours. '<br />

29


554 C. Palmonari, A. Tenaglia<br />

Fraction < 2!'-m 70<br />

Temperature ( °C)<br />

885<br />

- · ~- -~-~~--- --- --~----~~---~-- -~--0~ ~--lOO-~.-·. 200 --~- 300 --400 - 500 - .600. ~ - 700 800 900<br />

Fig. 3 -Differential thermal analyses of the E<strong>di</strong>lfomaciai clay.<br />

<strong>and</strong> 30% sludge from which'test bars<br />

were obtained by extrusion with a<br />

laboratory extruder. The test bars<br />

were fired in an industrial kiln at 980<br />

cc using a 28 h firing cycle. Ben<strong>di</strong>ng<br />

strength <strong>and</strong> water absorption of the<br />

fired pieces were measured (Fig. 5).<br />

Neither of those two parameters<br />

seem to undergo important variations<br />

with sludge contents up to 20%;<br />

with 30% sludge, however, the ben<strong>di</strong>ng<br />

strength was <strong>di</strong>stinctly greater,<br />

by about 30%, than that of the test<br />

pieces without sludge ad<strong>di</strong>tions. The<br />

fluxing action of the sludges also is<br />

clearly evident in the colour <strong>and</strong> external<br />

appearance of the samples,<br />

which tend to look «Overfired>> with<br />

increasing frequency as the sludge<br />

content increases.<br />

Microstructural characterization<br />

of fired samples was performed with<br />

optical microscopy <strong>and</strong> scanning<br />

electron microscopy. The results (Fig.<br />

6) show the presence of fuse-d phases<br />

increasing with increasing sludge<br />

content. The higher glass content<br />

promotes: i) the formation of large<br />

but not communicating pores (mostly<br />

closed porosity), <strong>and</strong> ii) a higher degree<br />

of cementation which imparts<br />

increased mechanical resistance to<br />

the fired products.<br />

The highest sludge contents promoted<br />

the presence of recrystallization<br />

in cavities caused by localiz,ed fusion.<br />

This phenomenon results from the<br />

shaping technique adopted for preparing<br />

the laboratory samples (extr:usion),<br />

typical for heavy clay products


Manufacture of Heavy-Clay [>roducts with the Ad<strong>di</strong>tion ...<br />

555<br />

20<br />

16<br />

12<br />

8<br />

4<br />

::.:. -== =-=--: ---- !---<br />

-·-- ---- -··-··-··- ·--·---.... r- a b<br />

-··-<br />

-.......<br />

~ .......... '.../.<br />

W.A. .........<br />

......... '<br />

.........<br />

r· '<br />

~. c '<br />

"\<br />

·~ \~/d<br />

~<br />

0::::<br />

0<br />

:;::;<br />

c.<br />

s..<br />

0<br />

V1<br />

.0<br />

c:r:<br />

s..<br />


556 C Palmonari, A. Tenaglia<br />

a<br />

b<br />

c<br />

Fig. 6 - Scanning electron micrographs of the fired samples. a: without sludge ad<strong>di</strong>tions;<br />

b: with 10% sludge ad<strong>di</strong>tions; c: with 30% sludge ad<strong>di</strong>tions.


Manufacture of Heavy-Clay Products with -the Ad<strong>di</strong>tion ... 557<br />

but which does not achieve optimum<br />

mixing of the raw material.<br />

Industrial scale tests<br />

Verification of the laboratory results<br />

was organized in four series of<br />

industrial tests carried out at the<br />

E<strong>di</strong>lfornaciai factory in Fiesso, Castenaso,<br />

Province of Bologna (equipped<br />

with camera dryers <strong>and</strong> a mobile<br />

flame Hoffman-type kiln). In the first<br />

three tests, verifications were made<br />

on a small scale (1000 bricks) of the<br />

results obtained with mixtures previously<br />

stu<strong>di</strong>ed in the laboratory. A<br />

comparison of the fired products<br />

without sludge ad<strong>di</strong>tions fired at the<br />

same time as those with sludge ad<strong>di</strong>tions<br />

showed that increasing sludge<br />

ad<strong>di</strong>tions (8%, 15%, 20%, 25%) only<br />

caused a decrease in water absorption<br />

of the fired samples (from _16% to<br />

13%). No particular production problems<br />

were encountered in any phase<br />

of the technological cycle.<br />

Successively a larger scale series<br />

was carried out: three days of production<br />

for a total of 100000 perforated<br />

bricks with a 25% sludge ad<strong>di</strong>tion;<br />

four <strong>di</strong>fferent firing curves characterized<br />

by maximum temperatures<br />

of 800°, 850°, 900° <strong>and</strong> 1000 oc were<br />

employed. The time-temperature relationship<br />

characteristic of mobile<br />

500<br />

400<br />

300<br />

e<br />

I<br />

N<br />

u<br />

......<br />

I<br />

en<br />

I<br />

-" I<br />

~<br />

_,..<br />

I<br />

..


flame kilns was followed using thermocouples<br />

dropped down from the<br />

ceiling of the kiln <strong>and</strong> positioned inside<br />

the piles of bricks to be fired. The<br />

most interesting result is the increase<br />

in compressive strength (Fig. 7),<br />

which went from 283 kg/cm 2 for normal<br />

production to 396 kg/cm 2 for<br />

bricks containing the sludge ad<strong>di</strong>tions<br />

<strong>and</strong> fired at the same temperature;<br />

even materials fired at lower<br />

temperatures show an increase in<br />

compressive strength, with respect to<br />

normal production, which went from<br />

361 kg/cm 2 at 900 °C, to 340 kg/cm 2 at<br />

850 oc <strong>and</strong> 306 kg/cm 2 at 800 °C. The<br />

compressive strength after 20 freezethaw<br />

tests conformed to the require-<br />

~------~~-<br />

558 C. Palmonari, A. Tenaglia<br />

ments of <strong>Italian</strong> St<strong>and</strong>ards. The extentofwater<br />

absorptionoJ}'iig .. 81}Y::_ts<br />

always slightly lower for the bricks<br />

containing the sludge ad<strong>di</strong>tions than<br />

for normal production; however, the<br />

values were always well within the<br />

requirements of the UNI 5632 St<strong>and</strong>ard<br />

(the water absorbed by dry<br />

heavy clay products falls between 8%<br />

<strong>and</strong> 28%).<br />

A study was made on the environmental<br />

impact of the ad<strong>di</strong>tion of<br />

ceramic sludges to the clay used in<br />

the manufacture of heavy clay products.<br />

Comparison of the data<br />

obtained during normal production<br />

with those obtained when sludge<br />

ad<strong>di</strong>tions were made showed that no<br />

Water<br />

Absorption (%)<br />

15<br />

10<br />

Fig. 8 - Variations in water absorption of test bricks with sludge ad<strong>di</strong>tions as a .function of firing<br />

temperature. For comparison, .also shown is the value relative to bricks of normal production<br />

'<br />

without sludge ad<strong>di</strong>tions (fired .at 980-1000 °C).


Manufacture of Heavy-Clay Products wfth the Ad<strong>di</strong>tion ... 559<br />

Pb<br />

1. 6 (mg/Nm 3 )<br />

0.8<br />

400<br />

200<br />

16<br />

8<br />

0~~~~~~~~~~~~~<br />

160~~~~~r.rl~~~~b7~77~~~"+r'-"~V7TTrn~777i<br />

80<br />

0<br />

800<br />

400<br />

0<br />

' '<br />

'<br />

Time. (h)<br />

6 2 18<br />

Fig. 9 - Concentrations of pollutants in the stack emission during firing of the bricks containing<br />

sludge ad<strong>di</strong>tions. Pb: Lead compounds; SO,: Sulphur oxides; F: Fluorine compounds; Pv: Particu-<br />

. late matter.<br />

(!)<br />

0""><br />

,__ ro<br />

(!)<br />

><br />

c:(


560 C. Palmonari, A. Tenaglia<br />

particular problems arose at any<br />

level (pollutant emissions, workroom<br />

environment, release of heavy metals<br />

from fired samples).<br />

A study was made on the environmental<br />

impact of the ad<strong>di</strong>tion of<br />

ceramic sludges to the clay used in<br />

the manufacture of heavy clay products·.<br />

During the entire firing cycle<br />

for the industrial scale tests, samples<br />

were taken of the stack emissions <strong>and</strong><br />

analyzed for total suspended particles,<br />

lead compounds, fluorine compounds<br />

<strong>and</strong> sulfur oxides. Analogous<br />

analyses were made during normal<br />

production before the sludge ad<strong>di</strong>tions<br />

were made to the raw materials.<br />

The values of the concentration<br />

_______ _ ----of -pGllutants-measured- duFing the<br />

tests (Fig. 9) with sludge ad<strong>di</strong>tions<br />

were not appreciably <strong>di</strong>fferent from<br />

those associated whh'normal production.<br />

This means that for the dosage<br />

stu<strong>di</strong>ed, - i:l:ie a'd<strong>di</strong>-1Io~-~-;;:f~ c~~amic<br />

sludge to the raw materials <strong>di</strong>d not<br />

create situations with regard to the<br />

pollutant em1sswns appreciably<br />

<strong>di</strong>fferent from those associated with<br />

normal production. With regard to<br />

lead, whieh is absent under normal<br />

production con<strong>di</strong>tions, it was found<br />

that more than 70% of the determinations<br />

-gave values correspon<strong>di</strong>ng to<br />

concentrations less than 0.6 mg/Nm 3<br />

<strong>and</strong> that 65% of the determinations<br />

gave values less than 0.4 mg/Nm 3 • For<br />

comparison, the st<strong>and</strong>ard set for the<br />

ceramic floor <strong>and</strong> wall tile industry is<br />

a maximum of 0.5 mg/Nm 3 .<br />

Samples of air within the workroom<br />

environment were taken during<br />

the industrial tests in order to evalu-<br />

- 3<br />

r·1inera1 dusts<br />

(mg;m3)<br />

Lead<br />

(JLg/m3)<br />

6<br />

2<br />

·-·-·-·-·- .<br />

Pb,Test<br />

·-·-·-·--. j_<br />

............ ·-·--·<br />

~1d,Test .......<br />

J_. .... ....-:<br />

-=~<br />

-' ---,<br />

·- • Md,Production<br />

Stacking of dr~ bricks<br />

1<br />

Extruder 2 3<br />

Right side<br />

Left .si de<br />

Fig. 10 - Average concentrations of lead <strong>and</strong> of the suspended mineral dusts in the workroom<br />

environment during normal production <strong>and</strong> during the industrial scale tests with sludge ad<strong>di</strong>tions<br />

to the raw materials. -<br />

l<br />

4<br />

2


Manufacture of Heavy-Clay Products with the Ad<strong>di</strong>tion ... 561<br />

ate the possible risk involved in the<br />

use of material containing lead compounds.<br />

The results, reported in Fig.<br />

10, show that the concent~ations of<br />

suspended particles <strong>and</strong> lead are well<br />

below the limits established by the<br />

ACGIH (American Conference of Governmental<br />

Industrial Hygienists).<br />

The extent to which the ceramic<br />

sludges had been rendered innocuous<br />

by the mixiJ:.Lg with clay <strong>and</strong> subsequent<br />

firing was evaluated by stucljes<br />

of heavy metal release by the fired<br />

brick. Heavy metal release, in particular<br />

Pb, Zn <strong>and</strong> Fe, was determined<br />

using the leaching method<br />

proposed by the U.S. EPA (Environmental<br />

Protection Agency). The<br />

values of the concentrations of the<br />

heavy metals leached are shown in<br />

Fig. ll. The· results show that firing<br />

the sludges mixed with clays renders<br />

Leaching (mg/1)<br />

50<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Fig. 11 -Results of leaching test carried out on the test bricks with sludge ad<strong>di</strong>tions fired at various<br />

temperatures. For comparison, the limits of acceptability are also show\1.


562 C. Palmonari, A. Tenaglia<br />

them sufficiently innocuous. Already<br />

at the lowest firing temperature stu<strong>di</strong>ed<br />

(800 °C) the release of the heavy<br />

·metals · analyzed for was well below.<br />

the limits of acceptability. As the firing<br />

temperature was increased above<br />

800 °C, heavy metal release from the<br />

fired products decreased because of<br />

the formation of a greater amount of<br />

glassy phase in the products to hold<br />

the heavy metals present with the<br />

formation of stable, inert silicates<br />

<strong>and</strong> alumino-silicates.<br />

Conclusions<br />

The clay for heavy-clay products<br />

can be considered a good receiver for<br />

the residual sludges from treatments<br />

of waste wa ters~~fromthe ce~amic<br />

floor <strong>and</strong> wall tile industry. Disposal<br />

<strong>and</strong> reuse can be easily achieved because<br />

of the relatively wide range of<br />

variability in chemical characteristics<br />

of the raw materials as well as<br />

the typical features of the technological<br />

cycle used for heavy clay production.<br />

This solution allows improvements<br />

in the qualitative properties<br />

of the fired products to be<br />

obtained along with energy savings<br />

as well as rendering these sludges innocuous,<br />

sludges which once were<br />

considered not only unusable, but<br />

also toxic <strong>and</strong> harmful.<br />

REFERENCES<br />

PALMONARI C., BERTOLANI M., ALIETTI A., 0RTELLI G., 1974. Emilia-Romagna. Pp. 55-86, in:<br />

Giacimenti <strong>di</strong> Argille Ceramiche in Italia (F. Veniale <strong>and</strong> C. Palmonari, e<strong>di</strong>tors), Gruppo <strong>Italian</strong>o<br />

A.I.P.E.A., Cooperativa Libraria E<strong>di</strong>trice, Bologna.<br />

PALMONARI C., TENAGLIA A., TIMELLINI G., 1983. Jnquinamento idrico da industrie ceramic he- Smaltimento<br />

e riutilizzo dei fanghi residui. Ed. Int. Centro Ceramico Bologna.<br />

SHEPARD F.P., 1954. Nomenclature based on s<strong>and</strong>-silt-clay ratios. 1. Se<strong>di</strong>ment. Petrol. 24, 151-158.<br />

TENAGLIA A., 1982. Piu argille per laterizi. L'Ind. <strong>Italian</strong>a dei Laterizi 1, 11-16.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 563-575 (1985)<br />

High Temperature Reactions <strong>and</strong> Use of Bronze Age<br />

Pottery from La Mancha, Central Spain<br />

J. CAPEL 1 , F. HUERTAS 2 , J. LINARES 2<br />

1 Departamento de Prehistoria y Arqueologia, Facultad de Filosofia y Lettras, Poligono Universitario de Cartuja,<br />

18012 Granada, Espafta<br />

2 Estaci6n Experimental del Zai<strong>di</strong>n C.S.I.C., Profesor Albareda 1, 18008 Granada, Espafta<br />

ABSTRACT- In La Mancha (Ciudad Real) there are numerous hills of low<br />

altitude called «Motillas>> which very often correspond to prehistoric settlements<br />

which date from the late Copper to Bronze Ages. Sixty eight ceramic<br />

fragments of <strong>di</strong>fferent typologies belonging to eleven archaeological sites were<br />

stu<strong>di</strong>ed by X-ray <strong>di</strong>ffraction. Taking into account the regional geology, seve-.<br />

ral clayey se<strong>di</strong>ments close to the archaeological sites were selected under the<br />

assumption that they would be similar to the raw materials of the ceramics.<br />

Test pieces were moulded <strong>and</strong> fired at several temperatures (st<strong>and</strong>ard test<br />

pieces) <strong>and</strong> were stu<strong>di</strong>ed following the same scheme as that for the<br />

archaeological ceramics. In order to simulate the effects of a long-lasting<br />

burial the test pieces were submitted to autoclave treatment.<br />

In general, the mineralogical composition of the archaeological ceramic<br />

pieces coincides with that of the st<strong>and</strong>ard test pieces fired at 700-800 °C.<br />

Therefore it can b.e concluded that most of the ceramic pieces of Bronze Age<br />

in this zone are mamifactured with materials neighbouring the settlement.<br />

Furthermore, free energies as a function of temperature were calculated for<br />

nine reactions accounting for destruction <strong>and</strong> neoformation of the <strong>di</strong>fferent<br />

phases of the mineralogical ceramic system.<br />

Comparison of the theoretical data with the actual mineralogical composition<br />

of the ceramic pieces shows that mineral destruction is not fully<br />

achieved at theoretical temperatures; the minerals persist at higher temperatures<br />

due probably to kinetic effects. Furthermore, the neoformed phases<br />

always appear at temperatures higher than the theoretical ones, due to the<br />

necessary recrystalliza tion process.<br />

Through the alteration obtained by the autoclave treatment, the mineralogical<br />

transformations due to the effect of burial, as well as those originating<br />

from usage (cooking, etc.) could be reproduced. In both cases there was a<br />

neoformation of smectite from amorphous vitreous material. Smectite is not<br />

found in the raw materials nor in some types of ceramic pieces (for instance,<br />

<strong>di</strong>shes). However, smectite is always present in cooking pottery,. specially<br />

stewpots. Theoretical calculations show that in this zone burial contributes<br />

minimally to smectite neoformation.<br />

Introduction<br />

1 this work we present some of the<br />

more significant results obtained<br />

from the study of archaeological<br />

ceramics through application of<br />

physical analytical techniques, such<br />

as X-ray <strong>di</strong>ffraction, atomic absorption<br />

spectroscopy <strong>and</strong> treatment in<br />

an autoclave.


562 C. Palmonari, A. Tenaglia<br />

them sufficiently innocuous. Already<br />

at the lowest firing temperature stu<strong>di</strong>ed<br />

(800 oq the release of the heavy<br />

metals analyzed for was well below<br />

the limits of acceptability. As the firing<br />

temperature was increased above<br />

800 °C, heavy metal release from the<br />

fired products decreased because of<br />

the formation of a greater amount of<br />

glassy phase in the products to hold<br />

the heavy metals present with the<br />

formation of stable, inert silicates<br />

<strong>and</strong> alumino-silicates.<br />

Conclusions<br />

The clay for heavy-clay products<br />

can be considered a good receiver for<br />

the residual sludges from treatments<br />

of waste~waters~-fiom the ce~amic<br />

floor <strong>and</strong> wall tile industry. Disposal<br />

<strong>and</strong> reuse can be easily achieved because<br />

of the relatively wide range of<br />

variability in chemical characteristics<br />

of the raw materials as well as<br />

the typical features of the technological<br />

cycle used for heavy clay production.<br />

This solution allows improvements<br />

in the qualitative properties<br />

of the fired products to be<br />

obtained along with energy savings<br />

as well as rendering these sludges innocuous,<br />

sludges which once were<br />

considered not only unusable, but<br />

also toxic <strong>and</strong> harmful.<br />

REFERENCES<br />

PALMONARI C., BERTOLANI M., ALIETTI A., 0RTELLI G., 1974. Emilia-Romagna. Pp. 55-86, in:<br />

Giacimenti <strong>di</strong> Argille Ceramiche in Italia (F. Veniale <strong>and</strong> C. Palmonari, e<strong>di</strong>tors), Gruppo <strong>Italian</strong>o<br />

A.I.P.E.A., Cooperativa Libraria E<strong>di</strong>trice, Bologna.<br />

PALMONARI C., TENAGLIA A., TIMELLINI G., 1983. Jnquinamento idrico da industrie ceramic he- Smaltimento<br />

e riutilizzo dei fanghi residui. Ed. Int. Centro Ceramico Bologna.<br />

SHEPARD F.P., 1954. Nomenclature based on s<strong>and</strong>-silt-clay ratios. 1. Se<strong>di</strong>ment. Petrol. 24, 151-158.<br />

TENAGLIA A., 1982. Piu argille per laterizi. L'Ind. <strong>Italian</strong>a dei Laterizi 1, 11-16.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 563-575 (1985)<br />

High Temperature Reactions <strong>and</strong> Use of Bronze Age<br />

Pottery from La Mancha, Central Spain<br />

J. CAPEL 1 , F. HUERTAS', J. LINARES'<br />

1<br />

Departamento de Prehistoria y Arqueologia, Facultad de Filosofia y Lettras, Poligono Universitario" de Cartuja,<br />

!8012Granada,Espafia<br />

2 Estaci6n Experimental del Zai<strong>di</strong>n C.S.I.C., Profesor Albareda I, 18008 Granada, Espafia<br />

ABSTRACT- In La Mancha (Ciudad Real) there are numerous hills of low<br />

altitude called «Motillas» which very often correspond to prehistoric settlements<br />

which date from the late Copper to Bronze Ages. Sixty eight ceramic<br />

fragments of <strong>di</strong>fferent typologies belonging to eleven archaeological sites were<br />

stu<strong>di</strong>ed by X-ray <strong>di</strong>ffraction. Taking into account the regional geology, seve-.<br />

ral clayey se<strong>di</strong>ments close to the archaeological sites were selected under the<br />

assumption that they would be similar to the raw materials of the ceramics.<br />

Test pieces were moulded <strong>and</strong> fired at several temperatures (st<strong>and</strong>ard test<br />

pieces) <strong>and</strong> were stu<strong>di</strong>ed following the same scheme as that for the<br />

archaeological ceramics. In order to simulate the effects of a long-lasting<br />

burial the test pieces were submitted to autoclave treatment.<br />

In general, the mineralogical composition of the archaeological ceramic<br />

pieces coincides with that of the st<strong>and</strong>ard test pieces fired at 700-800 °C.<br />

Therefore it can b.e concluded that most of the ceramic pieces of Bronze Age<br />

in this zone are manufactured with materials neighbouring the settlement.<br />

Furthermore, free energies as a function of temperature were calculated for<br />

nine reactions accounting for destruction <strong>and</strong> neoformation of the <strong>di</strong>fferent<br />

phases of the mineralogical ceramic system.<br />

Comparison of the theoretical data with the actual mineralogical composition<br />

of the ceramic pieces shows that mineral destruction is not fully<br />

achieved at theoretical temperatures; the minerals persist at higher temperatures<br />

due probably to kinetic effects. Furthermore, the neoformed phases<br />

always appear at temperatures higher than the theoretical ones, due to the<br />

necessary recrystallization process.<br />

Through the alteration obtained by the autoclave treatment, the mineralogical<br />

transformations due to the effect of burial, as well as those originating<br />

from usage (cooking, etc.) could be reproduced. In both cases there was a<br />

neoformation of smectite from amorphous vitreous material. Smectite is not<br />

found in the raw materials nor in some types of ceramic pieces (for instance,<br />

<strong>di</strong>shes). However, smectite is always present in cooking pottery,. specially<br />

stewpots. Theoretical calculations show that in this zone burial contributes<br />

minimally to smectite neoformation.<br />

Introduction<br />

1 this work we present some of the<br />

more significant results obtained<br />

from the study of archaeological<br />

ceramics through application of<br />

physica1 analytical techniques, such<br />

as X-ray <strong>di</strong>ffraction, atomie absorption<br />

spectroscopy <strong>and</strong> treatment in<br />

an autoclave.


564 J. Cape/, F. Huertas, J. Linares<br />

Most of the sherds analyzed here<br />

come from the archaeological excavation<br />

of the


High TemperatureReactions <strong>and</strong> Use-of Bronze ... 565<br />

during heating <strong>and</strong> the consequent<br />

formation of high temperature<br />

phases. It is therefore worthwhile to<br />

establish a theoretical scenario<br />

which allows the pre<strong>di</strong>ction of composition<br />

variations. We have based<br />

such a scenario on the evaluation of<br />

free energy release in the relevant<br />

reactions, which should take place in<br />

the clay matrix during the firing process.<br />

As starting components we have<br />

chosen phyllosilicates (illite), quartz,<br />

calcite <strong>and</strong> dolomite. Other usual<br />

components of a clay such as plagioclase<br />

<strong>and</strong> K-feldspar have been rejected<br />

due to its scarce presence in<br />

our ceramic samples, which reduces<br />

its possibile influence on the .reactions.<br />

The inclusions of these components<br />

would unnecessarily complicate<br />

the computation. The most relevant<br />

high temperature phases, such<br />

as wollastonite, anorthite, K­<br />

feldspar, <strong>di</strong>opside <strong>and</strong> enstatite are<br />

explained with the reactions considered.<br />

They are the following:<br />

-<br />

A) gehlenite formation<br />

illite calcite gehlenite<br />

K Alz (Si3Al)010(0Hh + 6 Ca C03 ~ 3 Ca2SiAlz07 +<br />

+ 6 C02 + 2 H20 + K20 + 3 Si02<br />

B) anorthite formation<br />

illi te<br />

"<br />

calcite<br />

K Alz (Si3Al)010(0Hh + 3 Ca C03 ~<br />

+ 3 C02 + 2 H20 + K20<br />

C) wollastonite formation<br />

D) <strong>di</strong>opside formation<br />

anorthite<br />

3 Ca Alz Si20s +<br />

quartz calcite wollastonite<br />

2 Si 0 2 + ea co3 ~ ea Si 03 + C02<br />

quartz<br />

dolomite<br />

<strong>di</strong>opside<br />

2 Si02 + Ca Mg (C03h ~ Ca Mg Si206 + 2 C02<br />

E) gehlenite <strong>and</strong> K-feldspar formation ·<br />

illi te<br />

calcite<br />

K Alz(Si3Al)010(0H2) + 2 Ca C03 +<br />

gehlenite<br />

quartz<br />

Si02<br />

+ Ca2AlzSi07 + 2 C02 + H20<br />

K-feldspar<br />

~ K AlSi 3 0 8 +


566 J. Capel, F. Huertas, J.- Linares<br />

F) anorthite <strong>and</strong> K-feldspar formation<br />

illi te calcite quartz K-feldspar<br />

K Al 2 (Si3Al)0 10 (0H)z + CaC03 + 2 Si0 2 ~ K A1Si30s +<br />

anorthite<br />

+ Ca AlzSi 20 8 + COz + HzO<br />

G) gehlenite, enstatite <strong>and</strong> K-feldspar formation<br />

illite dolomite quartz<br />

3 Si0 2<br />

K Alz(Si 3 Al)0 10 (0H)z + 2 Ca Mg (C0 3 )z. +<br />

gehlenite enstatite K-feldspar<br />

Ca 2 Al 2 Si 0 7 + 2 MgSi03 + K A1Si 3 0 8 + 4 C0 2 + HzO<br />

H) gehlenite destruction<br />

gehlenite<br />

Ca 2 Al 2 Si 0 7 +<br />

quartz wollastonite anorthite<br />

2 Si0 2 ~ CaSi03 + Ca AlzSizOs<br />

I) gehlenite destruction<br />

gehlenite<br />

Ca 2 AlzSi 0 7 + KzO +<br />

quartz K-feldspar<br />

5 Si0 2 ~ 2 KA1Si30 8 + . 2 CaO<br />

The sign of the free energy variation<br />

produced in each reaction AG =<br />

~AG final products - ~AG initial<br />

componer1ts obviously in<strong>di</strong>cates the<br />

sense in which the reaction will preferentially<br />

take place under the given<br />

pressure <strong>and</strong> temperature con<strong>di</strong>tions.<br />

The AG values are therefore an in<strong>di</strong>cation<br />

of stability <strong>and</strong> of creation<br />

or destruction of a certain mineral at<br />

a given temperature. For each mineral<br />

specimen we have used the AG<br />

values given by ROBIE & WALD­<br />

BAUM (1968). In Fig. 1 we have plotted<br />

the variations of AG with temperature<br />

for the <strong>di</strong>fferent reactions listed<br />

previously. As can be seen, reactions<br />

A <strong>and</strong> B producing gehlenite <strong>and</strong><br />

anorthite from illite + calcite behave<br />

in a similar way with temperature<br />

variations. The sign of AG in both<br />

reactions changes from positive to<br />

negative around 670 °C. However,<br />

these reactions not only require a<br />

sufficiently high temperature, but<br />

also a suitable velocity. Due to this,<br />

the production ofgehlenite <strong>and</strong> anorthite<br />

through reactions A <strong>and</strong> B is not<br />

significant below 800 oc (BARAHO­<br />

NA, 1974). Reactions E <strong>and</strong> F must be<br />

also considered in the production of<br />

these phases. Up to 870 °C, E is more<br />

probable than A, i.e. AGE


High Temperature Reactions <strong>and</strong> Use-o(B~onze ... 567<br />

0<br />

0<br />

E<br />

......<br />

';;;<br />

-40<br />

u<br />

::.::<br />

200 400 600 800 1000 1200<br />

"' ""1<br />

-80<br />

-120<br />

80<br />

40<br />

0<br />

-40<br />

-80<br />

0<br />

E<br />

......<br />

';;;<br />

u<br />

::.::<br />

"'<br />

"<br />

-120<br />

~160<br />

-200...J_---,--,...--..-----.-----.----..,,.-----.<br />

200 400 600 800 1000 1200<br />

Fig. 1 -Variation of D.G with temperature for\the <strong>di</strong>fferent mineralogical reactions.<br />

reaction F is preferred to B up to 1000<br />

oc for the same reason. With respect<br />

to reactions E <strong>and</strong> F we point out that- ·<br />

the quantities of K-feldspar produced<br />

by them in laboratory experiments<br />

(BARAHONA et al., 1985) are not significant<br />

due probably to its formation<br />

as a vitreous phase, which<br />

actually contributes to the stiffness of<br />

the fired vessels. .


568 J. Cape/, F. Huertas, J. Linares<br />

The LlG variations for reactions C<br />

<strong>and</strong> D in<strong>di</strong>cate a higher probability<br />

for the formation of <strong>di</strong>opside than<br />

wollastonite, but the latter actually<br />

presents larger abundances due<br />

mainly to the higher content in calcite<br />

than in dolomite in the original<br />

se<strong>di</strong>ments.<br />

Finally, we alsonote that reactions<br />

H <strong>and</strong> I describing destruction of<br />

gehleni te-'-caiL~ ,take .... place- .. at . all<br />

temperatures (llG


<strong>and</strong> the theoretical considerations<br />

just outlined are complemented with<br />

the data obtained from the analysis<br />

of a test ceramics sample elaborated<br />

<strong>and</strong> fired in the laboratory. These<br />

data are represented in Fig. 2, which<br />

shows the absence of the clay minerals<br />

at temperatures above 800 oc <strong>and</strong><br />

not 900 °C, as would be expected.<br />

This is due to the excee<strong>di</strong>ngly small<br />

particle size of the available illite<br />

(Table 1).<br />

Otherwise, the curves can be used<br />

to interpolate the results of our<br />

mineralogical analysis <strong>and</strong> to get relatively<br />

accurate estimates of the fir- ...<br />

ing temperatures. However, this determination<br />

can be affected by errors<br />

coming from the unknown composition<br />

of the original clay <strong>and</strong> the influences<br />

that it has on the foriD;ation of<br />

new phases during the firing process.<br />

'<br />

With the procedure outlined, we estimate<br />

baking temperatures ranging<br />

between 690 oc <strong>and</strong> 735 oc for 60% of<br />

the samples <strong>and</strong> above 735 oc for the<br />

remaining sherds.<br />

In order to ve:dfy the vali<strong>di</strong>ty of the<br />

estimated firing temperatures, we<br />

have refired the sherds of the samples<br />

to a temperature of 1000 °C. In Fig. 3<br />

we show the results of a comparison<br />

between the mineralogical composition<br />

of the refined pieces <strong>and</strong> that of<br />

the original ones. As can be seen in<br />

this figure, phyllosilicates <strong>and</strong> calcite.<br />

High Temperature Reactions <strong>and</strong> Use of Bronze ... 569<br />

are completely destroyed, whereas<br />

the amounts of K-feldspar, plagioclase,<br />

gehlenite <strong>and</strong> <strong>di</strong>opsidewollastonite<br />

present a relative increase.<br />

We also searched for a possible correlation<br />

between thickness of the<br />

sherds <strong>and</strong> formation of high temperature<br />

phases. This correlation can be<br />

reasonably well reproduced by a<br />

linear least squares fit, given by the<br />

equation:<br />

T = 760.34- 4.29 C, r = 0.40, N = 25.<br />

T is the firing temperature <strong>and</strong> C the<br />

thickness in millirneters. As it was expected,<br />

formation of high temperature<br />

phases is favoured in thinner<br />

sherds, where homogeneization is<br />

easier <strong>and</strong> faster.<br />

Influence of use <strong>and</strong> burial<br />

We now turn to the <strong>di</strong>scussion of<br />

possible mo<strong>di</strong>fications in mineralogical<br />

composition, which may have<br />

been casued by the use given to the<br />

vessels <strong>and</strong> by the later burial period,<br />

through an hydrolysis effect. This<br />

effect was simulated on our test<br />

pieces by submitting them to treatment<br />

in an autoclave at a temperature<br />

of 130 oc <strong>and</strong> a pressure of 2<br />

atmospheres. X-ray <strong>di</strong>ffraction analyses<br />

of the samples were carried out<br />

during this treatment at regular, pre-<br />

TABLE 1<br />

Illite parameters. Mean values<br />

~r~:(t\li.~~~~ .. :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::· 17~:~i!9~:~i ~~j<br />

/


570 J. Capel, F. Huertas, J. Linares<br />

30<br />

Archaeological Arch~ological Ceramics<br />

Ceramics<br />

10<br />

20<br />

60<br />

20<br />

o-l-.....---.--r---,----l=~==;:=:::::~f-:.....---r--.....---.---:==:----!:=1---.<br />

60<br />

K-F<br />

-----~ ~~-28<br />

<br />

rtl<br />

~ 40<br />

4-<br />

0<br />

• Pla<br />

~ a+-~~~~~~~~~~~~~~~~--.<br />

60<br />

20<br />

D+W<br />

80<br />

Geh<br />

40<br />

01+---.-~--,-~~~~--~~~~~~~~~~~<br />

80<br />

Hem<br />

40<br />

t~i nera l %<br />

-Fig. 3- Differences between the mineral contents of the refired archaeological ceramics (lQOO •c)<br />

<strong>and</strong> those ofi:he original ones. Mineral abbreviations as in Table 2.


High Temperature Reactions arrd·Use-of Bronze ... 571<br />

.\ .. ~ ..<br />

20<br />

viously fixed time intervals. The re- ..--0--..:::::::<br />

suits of this experiment are reported .;, "'<br />

10<br />

in Table 2 <strong>and</strong> plotted in Fig. 4.<br />

It is interesting to note that the<br />

most significant v.ariations of come<br />

position with time of treatment in the ·<br />

autoclave are shown by" those test<br />

fragments fired at 800 °C. We find<br />

in these fragments significant<br />

20<br />

neoformation <strong>and</strong> destruction of .::1<br />

c<br />

minerals, as is the case of phyllosili- .!::<br />

10 ~<br />

cates <strong>and</strong> quartz, respectively. The· ..<br />

test pieces fired at 700 oc do not show<br />

any. relevant changes, except the<br />

clear increase in the calcite content.<br />

Otherwise, this increase becomes less<br />

.. o~o<br />

.·--·--·~<br />

c------------<br />

200 400<br />

200 400<br />

~c--c-<br />

10


--------~---<br />

-28-·<br />

572 J. Cape/, F. Huertas, J. Linares<br />

TABLE 2<br />

Mineralogical alteration of the test fragments with time of treatment in autoclave<br />

"-'""-" o• -- --~~-<br />

T t Phy Qz Cal K-F Pia D+W Geh Hem<br />

oc hours % % % % % % % %<br />

700 0 78 13 8 1<br />

700. 260 72 12 14 0.5<br />

700 310 86 12 10 0.5<br />

700 362 72 13 14<br />

800 0 21 34 5 18 16 5<br />

800 26 40 36 5 6 5 3 3<br />

800 62 41 36 5 6 5 3 3<br />

800 150 43 32 7 4 5 4 5<br />

800 254 49 28 6 4 6 3 3<br />

800 370 37 27 12 5 7 5 5 2<br />

800 512 40 25 9 5 7 7 5 2<br />

800 562 43 21 13 4 8 5 5 1<br />

800 614 36 28 14 5 5 6 4 2<br />

800 622 28 28 14 8 7 6 5 4<br />

900 0 14 28 6 26 17 5 .. 4<br />

900 260 26 22 10 12 18 8 4<br />

900 310 16 24 5 12 16 15 8 4<br />

900 362 21 24 13 15 15 9 3<br />

950 0 11 8 26 19 6 2<br />

950 260 0.5 28 2 13 31 17 5 4<br />

950 310 0.5 24 3 20 25 19 6 3<br />

950 362 0.5 23 4 25 24 15 7 2<br />

Phy: phyllosilicates; Qz: quartz; Cal: calcite; K-F: K-feldspar; Pia: plagioclase; D+W: <strong>di</strong>opside+wollastonite;<br />

Geh: gehlenite; Hem: hematite<br />

evident the higher th~ firing temperature.<br />

Plagioclase <strong>and</strong> K-feldspar behave<br />

exactly as would be expected<br />

from their known formation prop-<br />

' erties. The former presents a clear decrease<br />

in the pieces fired at 800 oc<br />

during the first hours in autoclave<br />

<strong>and</strong> remains constant thereafter. In<br />

our opinion, this is due to the small.<br />

particle size of the plagioclase<br />

neoformed during the firing process<br />

which makes it easily hydrolyzable.<br />

On the other h<strong>and</strong>, the increase of K­<br />

feldspar in the 900 oc sherds can be<br />

explained by neoformation of this<br />

mineral, which is favoured in a confined<br />

environment by the vitreous<br />

matter produced in the destruction of<br />

the phyllosilicates.<br />

Among the neoformed high<br />

temperature phases, the stability of<br />

gehlenite st<strong>and</strong>s out, whereas wol-<br />

·lastonite presents a more complicated<br />

behaviour due to the variable<br />

particle size, which actually depends<br />

on the firing temperature ..<br />

In Fig. 5 we show the results of<br />

the X-ray <strong>di</strong>ffraction analysis for the<br />

original test fragments as compared<br />

with those obtained after <strong>di</strong>fferent<br />

times of treatment in the autoclave.<br />

As can be seen, hydrolysis indeed<br />

changes the mineralogical composition<br />

but somewhat preserves. the


High Temperature Reactions an:dVse of Bronze ... 573<br />

60 ~<br />

40<br />

20<br />

u<br />

E~·<br />

0.. •<br />

~ '950 'C<br />

..<br />

"C 0<br />

o; 0<br />

....<br />

'<br />

"'<br />

20<br />

700 'C<br />

~<br />

% Phy<br />

40 60 80 100<br />

Fig. 5 - Variation of the content in K-feldspar<br />

+ Plagioclase through hydrolysis in autoclave<br />

(see Table 2).<br />

80<br />

"' s..<br />

"' 0.<br />

"0 "'<br />

60 ~<br />

~<br />

..., "' OJ<br />

40 :3<br />

"' 0<br />

..<br />

20 ';:,<br />

s:<br />

-20<br />

clustering around the original values,<br />

avoi<strong>di</strong>ng to some extent the mixture<br />

between data of hydrolyzed sherds<br />

fired at <strong>di</strong>fferent temperatures.<br />

Figure 6 shows the behaviour of the<br />

<strong>di</strong>fference % phyllosilicates ·c- % total<br />

feldspar against firing temperqture<br />

for samples treated in the autoclave.<br />

As can be seen, the use <strong>and</strong> ageing<br />

cause an increase of this quantity in<br />

the ceramics fired at temperatures<br />

below 900 °C. This increase means<br />

neoformation of phyllosilicates <strong>and</strong>/<br />

or. destruction of feldspar <strong>and</strong> is<br />

actually what one would expect as<br />

the result of an intensive hydrolysis<br />

due to use. However, for sherds fired<br />

at temperatures hotter than 900 oc<br />

we find just the opposite effect.<br />

On the other h<strong>and</strong>, the time of burial<br />

could also influence these trans-\<br />

formations. An in<strong>di</strong>cation of that<br />

might be the presence in the<br />

archaeological ceramics of phyllosilicates,<br />

such as montmorillonite,<br />

which are not present in the original<br />

se<strong>di</strong>ments.<br />

-40<br />

T °C<br />

600 700 800 900 1000<br />

Fig. 6 - Influence of the ·use on the mineralogical<br />

composition.<br />

We start from the fact that the<br />

ceramic fragments contain a certain<br />

amount of vitreous matter, which is<br />

essentially an interme<strong>di</strong>ate product<br />

of the reactions forming high temperature<br />

phases from phyllosilicates,<br />

calcite, quartz, etc. This glass should<br />

have a similar composition to that of<br />

the feldspars <strong>and</strong> therefore in our<br />

estimations we can use the known<br />

data for hydrolysis of feldspars at<br />

room temperature. Following<br />

HELGESON et al. (1969) 0.3 g of<br />

, albite can produce, through hydrolysis<br />

with lliter of water, 0.2 g of montmorillonite<br />

at 25 oc temperature.<br />

We consider now a typical fragment<br />

of cubical shape <strong>and</strong> lOO g<br />

weight. Assuming a density of 2 g/


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 577-590 (1985)<br />

Firing Properties of Ceramic Clays<br />

_from Granada Province, Spain<br />

E. BARAHONA 1 , F. HUERTAS 1 , A. POZZUOLF, J. LINARES 1<br />

1 Estaci6n Experimental det Zai<strong>di</strong>n, C.S.I.C., Profesor ALbareda I, 18008 Granada, Espana<br />

2 Dipartamento <strong>di</strong> Geofisica e Vulcanologia, Universita <strong>di</strong> Napoli, Largo S. Marcellino 10, 80138 Napoli, Italia<br />

ABSTRACT - The firing properties of ceramic clays from Granada Province<br />

(Spain) are stu<strong>di</strong>ed. The properties determined were weight loss, firing<br />

shrinkage, water absorption, crushing strength <strong>and</strong> mineralogy of specimens<br />

fired at temperatures of 700, 800, 900, 950, 1000, 1050 °C.<br />

The weight loss on firing is closely related to carbonate content. The changes<br />

of firing shrinkage with temperature depend on content <strong>and</strong> grain size <strong>di</strong>stribution<br />

of carbonates <strong>and</strong> on clay content.<br />

Calcareous samples exhibit an appreciable firing shrinkage at low temperatures,<br />

but have, in general a greater <strong>di</strong>mensional stability than non calcareous<br />

ones.<br />

Generally, non calcareous samples show a water absorption capacity 10%<br />

lower than the calcareous ones. Water absorption after 24 hours immersion<br />

in cold water exhibits a similar pattern to water absorption after 5 hours<br />

boiling.<br />

Indexes of resistence to freezing damage found for the samples stu<strong>di</strong>ed were<br />

not high but this was not judged a limiting factor due to the mild regional<br />

climatic con<strong>di</strong>tions.<br />

Crushing strength in12reases with firing temperature. There is a strong correlation<br />

between crushing strength <strong>and</strong> clay content, since this is probably<br />

the component that supplies a vitreous cement at low temperatures. The<br />

hygroscopicity of unfired samples is a better pre<strong>di</strong>ctor of crushing strength<br />

than the clay content.<br />

Finally, the mineralogy of fired test pieces was stu<strong>di</strong>ed by XRD. The evolution<br />

with firing temperatures of the neoformed phases (gehlenite, wollastonite,<br />

<strong>di</strong>opside, plagioclase, hematite <strong>and</strong> anhydrite) was analyzed with the<br />

purpose of ai<strong>di</strong>ng in the study of archaeological ceramic fragments.<br />

Introduction<br />

This paper deals with the firing<br />

properties of ceramic clays of Granada<br />

Province (Spain).<br />

The raw materials are used mainly<br />

for the manufacture of structural clay<br />

products. Forty eight samples corre-<br />

spon<strong>di</strong>ng to 15 localities were taken.<br />

The geological setting, mineralogy,<br />

mol<strong>di</strong>ng <strong>and</strong> drying properties have<br />

been described elsewhere (BARAHO­<br />

NA et al., 1982; 1983; 1985).<br />

Experimental methods<br />

The samples were crushed to 2 mm<br />

This research work was carried-out with the financial support of M.P.I.


578 E. Barahona, F. Huertas, A. Pozzuoli, J. Linares<br />

<strong>and</strong> water was added to prepare a<br />

plastic mass with a water content<br />

correspon<strong>di</strong>ng to Rieke's sticky point.<br />

Test pieces, approximately cylindrical<br />

in shape, with a volume of about<br />

20 cm 3 were molded by h<strong>and</strong> <strong>and</strong><br />

dried at room temperature <strong>and</strong> then<br />

at 16.5 "c:A.Tso~cuoForTquefies; 2cm<br />

on a side were prepared. Test pieces<br />

<strong>and</strong> briquettes were heated in an<br />

TABLE 1<br />

Weight loss(%) on firing at several temperatures<br />

Firing temperature oc<br />

Sample 700 800 900 950 1000 1050<br />

Ac-11 7.6 13.9 14.2 14.1 14.1 14.2<br />

Ab-ll 10.0 18.4 19.6 19.6 19.5 19.6<br />

Ah-ll 7.9 10.4 10.6 10.6 10.4 10.4<br />

Ah-21 7.5 12.8 12.9 12.9 12.9 13.1<br />

Ah-31 9.4 ll.3 11.5 ll.S 11.5 ll.4<br />

Ah-32 9.1 11.2 11.2 11.3 11.5 11.9<br />

Ah-33 9.4 14.7 15.0 15.0 15.1 15.1<br />

Ah-41 8.0 11.3 ll.4 11.4 11.4 11.3<br />

Ah-51 8.9 11.6 11.8 11.8 11.9 11.9<br />

Ah-52 9.2 13.5 13.8 13.7 13.7 13.8<br />

J-ll 10.6 14.8 15.0 15.0 15.2 15.1<br />

J-12 9.1 14.4 14.6 14.5 14.6 14.7<br />

---------------J:ZT---- -----8os--- 12.0 -u.o 12.1 13.2 14.6<br />

J-31 9.0 15.6 15.8 15.8 16.0 16.6<br />

J-41 9.8 14.5 14.5 14.8 15.6 17.7<br />

J-51 8.6 14.4 14.6 14.8 14.5 14.7<br />

J-52 10.0 17.2 18.0 18.1 18.4 18.8<br />

J-53 8.1 14.3 15.6 15.8 15.6 16.0<br />

J-54 7.6 14.6 18.1 18.2 18.2 18.5<br />

J-55 4.0 7.7 8.1 8.2 8.1 8.0<br />

Mn-ll 7.5 12.6 12.8 12.8 12.9 12.9<br />

Mn-21 6.9 12.3 13.0 13.1 13.2 13.3<br />

Pi-ll 7.0 11.9 11.8 12.1 12.6 12.8<br />

Pi-12 7.6 13.2 13.4 13.5 13.6 14.0<br />

Pi-13 7.4 12.1 12.2 12.3 12.5 13:0<br />

Ch-ll 11.7 19.4 19.7 19.7 20.0 20.0<br />

Ch-12 12.1 19.3 19.6 19.5 19.6 19.4<br />

Ga-ll 10.1 12.2 12.1 12.4 12.3 12.7<br />

Ga-21 7.5 14.2 15.2 15.3 15.2 15.2<br />

Ma-ll 10.2 17.0 17.1 17.3 17.2 17.2<br />

Ma-12 9.5 16.5 17.0 17.0 16.9 17.2<br />

Ma-13 6.8 13.8 16.0 16.0 15.9 15.7<br />

Ma-14 6.1 12.7 16.4 16.3 16.3 16.2<br />

Pc-11 12.2 22.2 22.7 22.8 22.7 22.9<br />

V i-ll 6.2 11.4 13.4 13.5 13.4 13.2<br />

B-ll 7.2 7.0 7.6 7.7 7.6 7.6<br />

B-12 19.0 17.8 18.0 17.9 18.0 18.3<br />

B-13 16.1 19.9 20.0 20.0 19.9 19.9<br />

B-14 14.1 18.9 19.1 19.1 19.1 19.2<br />

B-21 11.7 19.2 19.4 19.5 19.3 19.4<br />

D-ll 9.2 13.5 13.7 13.9 13.8 14.1<br />

G-ll 4.4 4.5 4.6 4.7 4.7 4.7<br />

Mo-ll 2.9 3.1 3.2 3.2 3.4 3.3<br />

Mo-21 2.8 3.0 3.1 3.2 3.1 3.1<br />

Mo-22 7.1 8.4 8.5 8.5 8.4 8.1<br />

Mo-31 7.3 9.6 9.6 9.6 9.6 9.6<br />

Mo-41 5.7 8.5 8.8 8.8 8.7 8.7


Firing Properties of Cera'mic Clays ... 579<br />

electric furnace at 700, 800, 900, 950, ing the first two hours <strong>and</strong> 200 oc per<br />

1000 <strong>and</strong> 1050 oc under oxi<strong>di</strong>zing hour during the following hours until<br />

con<strong>di</strong>tions. The temperature was reaching the maturing temperature,<br />

raised at a rate of 100 oc per hour dur- at which the temperature was held<br />

TABLE 2<br />

Linear <strong>di</strong>mensional change(%) on firing at several temperatures<br />

Firing temperature oc<br />

Sample 700 800 900 950 1000 1050<br />

Ac-11 +1.0 -0.0 -.6 -.1 -.3 +0.0<br />

Ab-11 +1.0 +.1 -.7 -.4 -.5 -.7<br />

Ah-ll +.8 +.1 +.1 +.2 +.1 +.1<br />

Ah-21 +.6 +.4 +0.0 +.1 +.1 +.1<br />

Ah-31 +1.0 +.6 +.2 +.2 -0.0 -.1<br />

Ah-32 +1.0 +.1 -.1 -.3 -.3 -.4<br />

Ah-33 +.8 +.3 -.3 -.3 -.5 -.5<br />

Ah-41 +.8 +.5 +.1 -.1 -.1 -.3<br />

Ah-42 +.9 +0.0 -.5 -.4 -.5 -.6<br />

Ah-51 +.8 +.6 -.1 -.1 -.1 -.2<br />

Ah-52 +.5 -1.0 -1.1 -1.5 -1.5 -1.6<br />

J-11 +.8 . -.2 -.5 -.6 -.8 -.9<br />

J-12 +.9 -.6 -.6 -.7 -.9 -.6<br />

J-21 +.7 -.2 '-.7 -.7 -.9 -.9<br />

. J-31 +.4 -1.0 -1.1 -1.4 -1.7 -1.7<br />

J-41 +.7 -.1 -.1 -0.0 -.2 -.5<br />

J-51 +.6 -.5 -1.1 -1.2 -1.2 -1.0<br />

J-52 +.5 -.'9 -1.4 -1.5 -1.6 -1.8<br />

J-53 +.4 .+.3 "- -1.3 -1.3 -1.3 -1.2<br />

J-54 +.8 +1.3 +1.2 +1.4 +1.3 +1.2<br />

J-55 +.7 +0.0 -.4 -.3 -.7 -.6<br />

Mn-11 +.7 +.3 +.4 -.2 -.3 -.4<br />

Mn-21 +.5 -.4 -.5 -.7 -.6 -.3<br />

Pi-ll +.6 -.1 -.8 -.9 -.9 -.8<br />

Pi-12 +.7 -.1 -.4 -.3 -.3 -.8<br />

. Pi-13 +.8 -.7 -.7 -.6 -.6 -.6<br />

Ch-ll +.7 -.9 -.7 -.6 -.5 -.4<br />

Ch-12 +1.0 -.2 -.3 -.7 -.8 -.5<br />

Ga-ll +.8 +.1 -.7 -.2 -1.6 -.5<br />

Ga-21 +.6 +.2 -.4 -.4 -.4 -.7<br />

Ma-ll +.6 -.7 -.9 -1.2 -1.2 -1.1<br />

Ma-12 +.6 -.8 -1.1 -1.0 -1.4 -1.3<br />

Ma-13 +.7 +.4 -.6 -.6 -.4 -.6<br />

Ma-14 +.8 +A -.5 -.1 -.2 -.3<br />

Pc-ll +.4 -2.9 -4.6 -4.6 -4.8 -4.0<br />

Vi-11 +.6 +.6 -.2 -0.0 -.1 -.4<br />

B-11 -.2 -1.0 -5.4 -3.3 -2.3 -.1<br />

B-12 +.1 -1.4 -1.1 -2.1 -2.4 -2.3<br />

B-13 +.7 -1.1 -.5 -.4 -.4 -.6<br />

B-14 +.5 -1.5 -1.3 -1.4 -2.4 -2.0<br />

B-21 +.5 -.4 ,-.4 -.3 -.2 -.6<br />

D-ll +.7 +.1 .:....8 -.8 -1.0 -1.2<br />

G-ll +.6 +.6 -.3 -.3 -2.3 -4.1<br />

Mo-11 +.9 +.9 +.9 +.5 -.3 -1.2<br />

Mo-21 +.9 +.9 +.9 +.6 -.1 -.8<br />

Mo-22 +1.1 +1.0 +1.0 +.9 +.8 -0.0<br />

Mo-31 +1.1 +.8 +.3 +.2 +0.0 -.3<br />

+: expansion; -: contraction


580 E. Barahona, F. Huertas, A. Pozzuoli, J. Linares<br />

constant for two hours.<br />

The following determinations were<br />

performed on the test pieces:<br />

a) weight loss, referred to weight of<br />

the piece dried at 1050 °C;<br />

b) firing shrinkage, computed as the<br />

volume change from oven dry (150<br />

°C) to fired state <strong>and</strong> expressed as<br />

percentage of fired volume. Volume<br />

shrinkage was converted to linear<br />

shrinkage using the tables given by<br />

NORTON (1949). Volume measurements<br />

were carried out by mercury<br />

<strong>di</strong>splacement;<br />

c) water absorption capacity of test<br />

pieces. Two measurements were<br />

made: 1) after 24 hours soaking in<br />

cold water <strong>and</strong> 2) after 2 hours soak-<br />

.. - ---- -----ilig :tn-ooJ.Ting water; Ieavl:O.g the<br />

pieces immersed in water during the<br />

cooling. In both cases the weight increase<br />

was recorded <strong>and</strong> expressed as<br />

a percentage of the weight of fired<br />

pieces previously dried at 105 °C;<br />

d) crushing strength. Two cube faces<br />

were smoothed~_on~a. car:borundum<br />

plate <strong>and</strong> their surface calculated<br />

from their sides, measured with a<br />

caliper. Crushing strength tests were<br />

carried out with a 10 ton hydraulic<br />

press. The load was increased at a<br />

rate of about 90 to 100 kg per cm 2<br />

min <strong>and</strong> six replications were made<br />

of each test.<br />

Experimental results <strong>and</strong> <strong>di</strong>scussion<br />

The weight <strong>and</strong> <strong>di</strong>mensional<br />

change on firing at several temperatures<br />

are given in Tables 1 <strong>and</strong> 2. For<br />

most samples, the weight loss increases<br />

stea<strong>di</strong>ly from 700 oc up to<br />

somewhere between 800 <strong>and</strong> 900 °C,<br />

remaining constant beyond this<br />

point. Samples containing gypsum<br />

(J-21, J-41) show a secondary loss of<br />

weight at about 1000 °C, due, prob-<br />

30<br />

""<br />

y=5.15+0.43x<br />

u<br />

r=0.924<br />

0<br />

...,<br />

0<br />

0<br />

2Sy·x ,.-<br />

+'.<br />

20 "'<br />

Ul<br />

Ul<br />

0<br />

10<br />

...,<br />

.


Firing Properties of Ceramic Clc£ys ... 581<br />

ably, to the thermal decomposition of<br />

CaS0 4 with the evolution of S02 •<br />

The weight loss on firing is closely<br />

.related to carbonate content. The regression<br />

line (Fig. 1) shows a


582 E. Barahona, F. Huertas, A. Pozzuoli, J. Linares<br />

particle size (61% clay). Curves of the<br />

types 1, 2 <strong>and</strong> 3 correspond to calcareous<br />

materials, <strong>and</strong> the shapes of<br />

these curves are not easily related to<br />

sample characteristics. The common<br />

feature of these curves is that shrinkage<br />

at low temperatures (between<br />

700 <strong>and</strong> 900 °C) is related to carbonate<br />

content, <strong>and</strong>, hence, must be due<br />

to the volume changes that accompany<br />

the decomposition of CaC03.<br />

Thus, the transformation of CaC03<br />

(molar volume 36.9) to CaO (molar<br />

volume 16.78) implies a 54% reduction<br />

in volume. Also, transformation<br />

of calcite into wollastonite following<br />

the equation:<br />

CaC03 + SiOz ;;:::::: CaSi0 3 + C0 2<br />

is accompanied by a 33% reduction<br />

in volume. It must be noted that in<br />

ad<strong>di</strong>tion to the amount, the grain size<br />

<strong>di</strong>stribution of carbonates plays an<br />

important role in determining the firing<br />

shrinkage: the finer the size, the<br />

more probable that carbonate decomposition<br />

or transformation will<br />

induce an overall shrinkage. This<br />

might be the case for sample Pc-11,<br />

extremely rich in fine grained carbonates,<br />

which shows an excee<strong>di</strong>ngly<br />

high amount of sl)rinkage even at<br />

low temperatures. Below certain<br />

thresholc! values for grain size <strong>and</strong><br />

carbonate content, the decomposition<br />

of carbonate, for steric reasons,<br />

will induce an increase in porosity<br />

rather than a reduction in volume, or<br />

both processes at the same time.<br />

Actually, in most calcareous samples<br />

there are both an increase in water<br />

absorption between 700 <strong>and</strong> 800 oc<br />

<strong>and</strong> a volume reduction accompanying<br />

the weight loss due to carbonate<br />

decomposition.,~~-~-~,·-·--~--·<br />

Figure 3 shows the relationship of<br />

firing shrinkage between 700 <strong>and</strong> 900<br />

oc with lime <strong>and</strong> clay content. The<br />

correlation coefficient is higher for<br />

clay content <strong>and</strong> a somewhat better<br />

pre<strong>di</strong>ction is achieved when both<br />

variables are summed together.<br />

Generally, calcareous clays show a<br />

lower firing shrinkage than non calcareous<br />

clays, not greater than 2 per<br />

cent, so that, for these materials,<br />

<strong>di</strong>mensional changes will be not a<br />

problem within the firing range.<br />

Values for water absorption after<br />

24 hours soaking in cold water are<br />

given in Table 3 <strong>and</strong> those for 5 hours<br />

soaking in boiling water, in Table 4.<br />

The former are intended to be an expression<br />

of the rea<strong>di</strong>ly accessible<br />

pore space, while the latter are a<br />

measure of total open porosity. Non<br />

rea<strong>di</strong>ly accessible porosity (nearly<br />

closed pores) is given by the <strong>di</strong>fference<br />

between these two values, <strong>and</strong><br />

provides free space for relieving<br />

stresses produced on freezing, by<br />

plastic extrusion of ice crystals into<br />

the void pores. Hence durability, or<br />

resistance to freezing, will increase<br />

with the proportion of nearly closed<br />

pores, <strong>and</strong> may be evaluated by the<br />

expression<br />

D = (B + CIB) 100<br />

where D is durability, B is the water<br />

absorption after 5 hours boiling <strong>and</strong><br />

C is the water absorption after 24<br />

,hours of immersion in cold water.<br />

Although not entirely reliable (:aUT­<br />

TERWORTH, 1964), the· following


Firing Properties of CeraYIJ.ic_Clays ... 583<br />

TABLE 3<br />

Water absorption(%) of samples fired at several temperatures after 24 hours immersion in<br />

cold water<br />

Firing temperature oc<br />

Sample 700 800 900 950 1000 1050<br />

Ac-11 20.7 24.5 22.4 19.3 21.2 20.6<br />

Ab-11 27.0 33.0 30.2 30.9 24.0 30.0<br />

Ah-11 19.9 21.0 19.6 18.5 18.5 18.8 .<br />

Ah-21 19.0 22.2 20.2 20.2 20.1 19.7<br />

Ah-31 26.4 27.1 23.5 27.3 25.2 24.3.<br />

Ah-32 23.3 23.9 23.0 21.1 22.6 20.3<br />

Ah-33 19.0 22.8 20.3 19.5 20.3 19.0<br />

Ah-41 21.6 24.1 22.7 21.8 21.2 18.5<br />

Ah-42 . 22.0 20.8 21.9 16.8 19.5 19.6<br />

Ah-51 24.8 28.6 26.0 26.3 26.0 25.6<br />

Ah-52 21.7 23.8 19.7 20.2 19.1 18.0<br />

J-11 19.3 20.2 18.5 17.6 18.5 19.8<br />

J-12 22.4 22.6 20.7 18.6 17.7 18.2<br />

J-21 20.5 24.8 18.9 18.4 21.6 20.8<br />

J-31 19.6 20.3 18.3 17.3 18.6 16.4<br />

J-41 18.8 22.2 20.0 18.8 19.0 17.7<br />

J-51 19.7 22.9 19.6 21.7 20.4 19.6<br />

J-52 20.0 24.2 19.6 18.8 19.6 19.5<br />

J-53 19.4 23.8 21.1 21.9 19.3 21.4<br />

J-54 27.3 28.7 28.6 29.3 29.0 28.8<br />

J-55 20.4 20.4 18.9 17.7 19.4 18.8<br />

Mn-11 21.7 23.7 23.2 18.2 19.3 20.9<br />

Mn-21 23.3 28.6 26.6 27.5 23.7 25.7<br />

Pi-ll 23.3 27.0,- 25.6 25.8 26.1 25.2<br />

Pi-12 22.6 21.8 23.7 23.5 22.4 22.0<br />

Pi-13 21.4 24.7 "- 22.8 21.7 22.1 21.2<br />

Ch-ll 23.6 26.0 26.9 22.9 25.3 24.0<br />

Ch-12 22.0 20.9 19.2 19.0 18.4 18.2<br />

Ga-ll 18.0 20.5 19.6 18.3 19.1 17.4<br />

Ga-21 21.3 25.8 20.1 22.9 22.2 21.2<br />

Ma-ll 24.1 26.2 24.1 24.2 22.0 23.5<br />

Ma-12 18.0 20.1 17.9 18.8 19.9 19.6<br />

Ma-13 14.9 19.1 17.7 17.9 16.0 15.1<br />

Ma-14 14.2 18.8 19.6 19.4 18.1 16.2<br />

Pc-11 23.2 25.3 19.1 18.4 20.8 21.9<br />

Vi-11 18.0 19.3 17.9 19.1 18.5 18.7<br />

B-11 19.0 15.3 1.3 1.1 1.0 .9<br />

B-12 23.7 21.4 18.6 18.9 18.8 19.4<br />

B-13 26.7 27.9 27.2 24.0 26.2 26.1<br />

B-14 22.2 24.6 22.0 21.6 20.0 22.4<br />

B-21 22.8 26.0 25.7 25.4 25.2 23.9<br />

D-ll 24.6 27.1 25.4 21.8 24.9 24.3<br />

G-11 J5.7 17.0 14.7 14.3 10.4 6.0<br />

Mo-ll 10.6 10.5 10.3 9.6 8.4 6.6<br />

Mo-21 10.8 10.8 10.3 9.7 8.7 7.3<br />

Mo-22 24.6 24.6 23.7 23.2 22.2 21.2<br />

Mo-31 25.2 27.1 2_5.6 25.6 22.5 23.0<br />

values are often used as a guide for<br />

durability:<br />

D < 75, high resistence to freezing;<br />

D > 95, low resistence to freezing.<br />

In the samples stu<strong>di</strong>ed, curves for<br />

water absorption (Fig. 2) show a<br />

rather irregular pattern, due probably<br />

to the lack of replication. Only


584 E. Barahona, F. Huertas, A. Pozzuoli, J. Linares<br />

TABLE 4<br />

Water absorption (%) of samples fired at several temperatures after 5 hours immersion in<br />

boiling water<br />

~-:--~---<br />

Firing temperature oc<br />

--~~-==-===-=~~~--~ .. ~. ~-~-·.<br />

Sample 700 800<br />

Ac-ll 21.2 24.5<br />

Ab-ll 28.8 33.5<br />

Ah-ll 20.8 22.5<br />

Ah-21 19.2 22.1<br />

Ah-31 27.9 29.4<br />

Ah-32 23.8 24.4<br />

Ah-33 19.5 23.2<br />

Ah-41<br />

Ah-42<br />

23.6<br />

23.1<br />

27.0<br />

22.0<br />

Ah-51 27.0 30.8<br />

Ah-52 22.1 24.1<br />

J-ll 20.3 19.1<br />

J-12 22.4 23.4<br />

J-21 .


Firing Properties of Ceramic Clays ...<br />

585<br />

4<br />

y = -0.043 + 0.059 X<br />

r = 0.616<br />

u<br />

0<br />

0<br />

0<br />

0'1<br />

-o<br />

c<br />


586 E. Barahona, F. Huertas, A. Pozzuoli, J. Linares<br />

samples there is an almost parallel<br />

increase in both types of .water<br />

absorption from 700°C up to 800-900<br />

oc <strong>and</strong>, above this temperature, the<br />

water absorption remains constant<br />

or changes irregularly, but there also<br />

is a clear <strong>di</strong>vergence between both<br />

absorption curves, which is evidence<br />

of non rea<strong>di</strong>ly accessible porosity.<br />

This phenomenon does not exist in<br />

lime free samples.<br />

In any case, with the exception of a<br />

few non calcareous samples the durability<br />

index is almost always greater<br />

than 95 or, even, 100, thus these<br />

materials could be considered as non<br />

durable. However, no cases of frost<br />

____________ c:lamage ha ve_beenreporte<strong>di</strong>n the re- .<br />

gion, <strong>and</strong> the suitability of the above<br />

mentioned critical values should be<br />

questioned under the climatic con<strong>di</strong>tions<br />

of southern Spain.<br />

The values for crushing strength of<br />

some selected samples, fired at several<br />

temperature-nrre givenYi1Taole · 5.<br />

It must be pointed out that these<br />

values are dependent on briquette<br />

size <strong>and</strong>, therefore, are only valid for<br />

comparative purposes within the<br />

sample set. Almost all samples show<br />

a steady increase in strength with firing<br />

temperature, except for some<br />

cases in which crushing strength stabilizes<br />

above 900 °C. Crushing<br />

strength depends closely upon clay<br />

content (Fig. 4) probably because<br />

clay sized material supplies the vitreous<br />

cement <strong>and</strong> new high temperature<br />

phases that hold solid particles<br />

together. This dependence is lower at<br />

1000 oc probably because of the ad<strong>di</strong>tional<br />

contribution of other grain size<br />

separates to the formation of bin<strong>di</strong>ng<br />

agents.<br />

Neither quartz content nor water<br />

absorption (or porosity) are good pre-<br />

TABLE 5<br />

Crushing strength (kg/cm 2 ) of some selected samples fired at <strong>di</strong>fferent temperatures. Mean<br />

values of 5 replications<br />

Sample 7oooc 800°C 900°C 1000°C<br />

Ah-32 256 403 472 524<br />

Ah-41 206 299 404 472<br />

Ah-51 428 552 637 1142<br />

J-12 377 536 732 769<br />

J-21 262 372 343 337<br />

J-51 365 497 641 654<br />

J-53 532 548 937 956.<br />

J-54 329 535 716 687<br />

J-55 17 25 98 175<br />

Mn-21 323 440 519 568<br />

Pi-13 307 425 511 479<br />

Ga-ll 322 443 541 486<br />

Ma-12 464 599 625 752<br />

Vi-11 385 480 549 608<br />

Ba-ll 735 928 1232<br />

D-11 263 447 603 893<br />

G-11 313 334 472 816<br />

Mo-21 181 254 344 447<br />

Mo-41 110 205 240 418


-<br />

Firing Properties of Ceramic Clays.:.<br />

587<br />

1000<br />

1 ODD<br />

500<br />

500<br />

.


- ----~- ---~----<br />

588 E. Barahona, F. Hu(!rtas, A. Pozzuoli, J. Linares<br />

100 Calcite 100<br />

80 80<br />

'""" .=-/\ ..<br />

/ .<br />

•<br />

oo


Firing Properties of Ceramic Clays ... 589<br />

<strong>and</strong> quantified by XRD. Quartz, mica<br />

·<strong>and</strong> calcite were. detected as residual<br />

phases. The neoformed phases detected.<br />

were plagioclase, anhydrite,<br />

hematite, gehlenite, wollastonite <strong>and</strong><br />

<strong>di</strong>opside. In ad<strong>di</strong>tion, leucite, corundum,<br />

<strong>and</strong>alusite <strong>and</strong> mullite were<br />

found as minor, questionable, phases.<br />

The evolution . of residual <strong>and</strong><br />

neoformed phases with firing temperature<br />

is illustrated in Figs 5 <strong>and</strong><br />

6. Only general tendencies should be<br />

taken into consideration <strong>and</strong> no<br />

weight should be given to several<br />

strange occurrences, such as the<br />

irregular evolution pattern for quartz<br />

in some samples, due probably to<br />

faulty quantification. Based on these<br />

results, the following qualitative<br />

statements may be made:<br />

- Samples rich in calcite, on firing,<br />

yield gehlenite, wollastonite <strong>and</strong><br />

<strong>di</strong>opside.<br />

- Samples rich in dolomite yield<br />

the same minerals as obtained from<br />

60<br />

Diopside<br />

+<br />

Wollastonite<br />

30<br />

Diopside<br />

o<<br />

._,.<br />

"'<br />

N<br />

10<br />

o<<br />

00<br />

a:<br />

N<br />

40<br />

800 1000<br />

20<br />

o<<br />

>,M<br />

.. 00<br />

" .el<br />

. ,5<br />

20<br />

·:;; ,; 10<br />

Wall astonite<br />

.----·-·--·<br />

/,~.:::::::,. .. :>< •<br />

,?:--· / --· 6.<br />

800 1000<br />

40<br />

Plagioclase<br />

30<br />

Hematite<br />

o< 20<br />

0<br />

"'<br />

M<br />

10<br />

800 1000 Firing temperature (oc) 800 1000<br />

Fig. 6- Evolution of high temperature phases with firing temperature for some selected samples.


590 E. Barahona, F. Huertas, A. Pozzuoli, J. Linares<br />

the calCite rich samples plus <strong>di</strong>opside.<br />

- The presence of albite in the<br />

fired specimens should be related to<br />

the presence of paragonite in the raw<br />

materials.<br />

'<br />

-The absence of the above mentioned<br />

phases <strong>and</strong> the presence of<br />

sizeable amounts of hematite in<strong>di</strong>cate<br />

a carbonate free raw material.<br />

The relative abundance of each<br />

high temperature phase may be in<strong>di</strong>cative<br />

of the firing temperature:<br />

-The presence of large amounts of<br />

calcite in<strong>di</strong>cates that the firing<br />

temperature was probably under 800<br />

oc.<br />

--------------'fhepr:esence-Qf-abundantgehlenite<br />

points to a firing temperature<br />

probably over 800 °C.<br />

- If mica is absent, the firing<br />

temperature was probably above<br />

1000 °C.<br />

- The same is to be suspected if<br />

<strong>di</strong>opside, wollastonite or plagioclase<br />

are abundant.<br />

The following multiple regression<br />

equation:<br />

Temp. oc = 675.71 - 0.92 phyllosilicates<br />

+ 5.36 quartz +, 10.41 plagioc~ase<br />

+ 1.21 (gehlenite + <strong>di</strong>opside +<br />

wollastnnite)<br />

allows the firing temperatures to be<br />

obtained from the amounts of the<br />

high temperature phases present as<br />

determined by XRD, with a 95% confidence<br />

limit of 67 oc for calcareous<br />

samples. For XRD quantification the<br />

foll?wing reflecting power factors<br />

were used: phyllosilicates 0.1 for 4.45<br />

A spacing, quartz 1.5 for 3.34 A spacing,<br />

plagioclase, gehlertite, <strong>di</strong>opside<br />

<strong>and</strong> wollastonite 1.0 for 3.18, 2.85,<br />

2.99 <strong>and</strong> 9.97 A spacings, respectively.<br />

In the case of lime free samples no<br />

reliable equation for the pre<strong>di</strong>ction of<br />

firing temperature was found.<br />

The results may be useful for making<br />

inferences about the raw material<br />

composition <strong>and</strong> firing temperature<br />

of ceramic fragments in archaeological<br />

stu<strong>di</strong>es.<br />

REFERENCES<br />

BARAHONA E., HUERTAS F., Pozzuou A., LINARES J., 1982. Minera/ogia e genesi dei se<strong>di</strong>menti del/a<br />

provincia <strong>di</strong> Granada (Spagna). Miner. Petrogr. Acta 26, 61-99.<br />

'<br />

BARAHONA E., HUERTAS F., Pozzuou A., LINARES J ., 1983. Sul/a p/asticita dei se<strong>di</strong>menti del/a provincia<br />

<strong>di</strong> Granada (Spagna). Miner. Petrogr. Acta 27, 161-182.<br />

BARAHONA E., HUERTAS F., POZZUOLI A., LINARES J., 1985. DryingProperties u( Ceramic Clays from<br />

Granada Province, Spain. These Procee<strong>di</strong>ngs.<br />

· BuTTERWORTH B., 1964: The recor<strong>di</strong>ng, comparison <strong>and</strong> use of outdoor exposure test. Trans. Br.<br />

Ceram. Soc. 63, 615-629.<br />

KrEFER C., 1957. Proprietes <strong>di</strong>latometriques des mineraux phylliteux entre 0 et 1.400 °C. Bull. Soc. fr.<br />

Ceram.35, 95-114.<br />

NoRRISH K., RAoosLovrcH E.W., 1957. Effect ofbiotite on the firing characteristics of certain weathered<br />

schists. Clay Miner. Bull. 3 (18), 189-192.<br />

NoRTON F.H., 1949. Refractories. McGraw-Hill, New York.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 59!-598 (1985)<br />

Degradation of Ceramic Sculptures on the<br />

Cathedral of Seville<br />

C. MAQUEDA 1 , J.L. PEREZ RODRIGUEV, A. JUSTO ERBEZ 2<br />

1 Centro de Edafologia y Biologia Aplicada del Cuarto, C.S.I.C., Apartado 1052, 41080 Sevilla, Espaiia<br />

2 Departamento de Quimica Inorganica y Fisico-Quimica, Facultad de Farmacia, Universidad de Sevilla, Apartado<br />

874, 41012 Sevilla, Espaiia<br />

'<br />

ABSTRACT - The alteration of the statues adorning the Baptism <strong>and</strong> Birth<br />

Porticos of the Cathedral of Seville (Spain) made by Lorenzo Merc?dante was<br />

stu<strong>di</strong>ed.<br />

The statues are covered by dust which contains organic matter, nitrogen<br />

(organic <strong>and</strong> ammoniacal) <strong>and</strong> phosphorus coming from animal excrements<br />

<strong>and</strong> other environmental contamination. The lead content, caused by petrol<br />

combustion is very high (0.38%).<br />

The study of the ceramics shows sulphur contents changing from 0.81% in<br />

the altered ceramic to 0.26% in the unaltered parts.<br />

Some zones of the surface have a red<strong>di</strong>sh colour <strong>and</strong> a similar composition to<br />

the ceramic, but with a higher iron content. Accumulation of iron oxides on<br />

the surface comes from release of this element from the ceramic <strong>and</strong> ulterior<br />

precipitation.<br />

The environment.provides SOz, SH 2 , C0 2 , Pb, nitrogen compounds, humi<strong>di</strong>ty,<br />

mechanical erosion, etc., <strong>and</strong> also salts (external <strong>and</strong> from the ceramic),<br />

that cause considerable alteration of these ceramic sculptures.<br />

Introduction<br />

The degree <strong>and</strong> causes of alteration<br />

of materials employed in buil<strong>di</strong>ng<br />

<strong>and</strong> ornamentatjon of monuments is<br />

very important from the viewpoint of<br />

its conservation (MARIJNISSEN,<br />

1967; ROSSI-MANARESI, 1976). The<br />

alteration produced in urban buil<strong>di</strong>ngs<br />

because of their exposure to the<br />

atmosphere is essentially mechanical<br />

<strong>and</strong> chemical. WINKLER (1966;<br />

1973) <strong>and</strong> INIGUEZ-HERRERO<br />

(1967) have pointed out the <strong>di</strong>fferent<br />

.J<br />

causes of decay of stones used for<br />

buil<strong>di</strong>ng.<br />

In the Seville Cathedral there are<br />

two Porticos decorated by Mercadante<br />

between 1453 <strong>and</strong> 1467. Each<br />

one of these porticos <strong>di</strong>splays on its<br />

jambs six statues made of terra cotta.<br />

In a previous paper, PEREZ-RO­<br />

DRIGUEZ et al. (1985) have stu<strong>di</strong>ed<br />

the materials <strong>and</strong> techniques used<br />

to make the statues. In the manufacture<br />

of this ceramic two <strong>di</strong>fferent firing<br />

temperatures were used (below<br />

950 cc <strong>and</strong> over 950 cC) <strong>and</strong> the possi-


592 C. Maqueda, J.L., Perez Rodriguez, A. Justo Erbez<br />

Fig. 1 - Baptism Portico of the Cathedral of Seville.


Degradation of Ceramic Sculptures ... 593<br />

Fig. 2 - Birth Portico of the Cathedral of Seville.


594 C. Maqueda, J.L., Perez Rodriguez, A. Justo Erbez<br />

ble material employed was a blue<br />

marl consisting of illite, smectite,<br />

kaolinite, quartz, feldspars, calcite<br />

<strong>and</strong> iron oxide.<br />

The deteriorating quality of the<br />

urban atmosphere of Seville (FER­<br />

RAND et al., 1969; 1975; REPETTO<br />

& MENENDEZ, 1971), has greatly<br />

accelerated the decay of these ceramic<br />

statues. In regard to the great<br />

value of this artistic monument, the ·<br />

present work was undertaken to<br />

study the causes <strong>and</strong> degree of alteration<br />

supported by this ceramic.<br />

Materials <strong>and</strong> methods<br />

The Baptism <strong>and</strong> Birth Porticos<br />

are shown in Fig. 1 <strong>and</strong> Fig. 2, respectively.<br />

Samples of the dust that cover the<br />

statues, dust from accumulation<br />

zones, original unaltered ceramic,<br />

ceramic with <strong>di</strong>fferent degrees of alteration,<br />

<strong>and</strong> rock surroun<strong>di</strong>ng the<br />

statues, were taken.<br />

Chemical analysis. The determination<br />

of Si, AI, Fe, Ti, Ca, Mg~ Mn <strong>and</strong><br />

Ph was made following the method<br />

proposed for the <strong>di</strong>ssolution of silicates<br />

by BENNET et al. (1962), with<br />

the concentration of the elements<br />

being determined by atomic absorption<br />

spectrometry.<br />

X-ray <strong>di</strong>ffraction. XRD <strong>di</strong>agrams<br />

were obtained with a Siemens Unit,<br />

using Ni-filtered CuKa ra<strong>di</strong>ation <strong>and</strong><br />

a scanning speed of 1 o 28 per minute<br />

(BRINDLEY & BROWN, 1980).<br />

Thermal analysis. Differential thermal<br />

<strong>and</strong> thermogravimetric analyses<br />

were carried out using a Rigaku Unit,<br />

operating at a heating rate of 15°C per<br />

minute{MACKENZIE,l9'JO).~·····<br />

Infrared analysis. IR spectra were<br />

recorded from 400 to 4000 cm -l, using<br />

a Perkin Elmer model377 double<br />

beam spectrophotometer after sample<br />

preparation utilizing the KBr<br />

<strong>di</strong>sk-technique (FARMER, 1974).<br />

Sulphur analysis. The sulphur content<br />

was determined in a Leco set<br />

model 522 by formation of so2 in an<br />

induction furnace <strong>and</strong> subsequent<br />

titration with potassium iodate.<br />

Carbon analysis. The concentration<br />

of carbon was obtained by oxidation<br />

-of organic matter with potassium<br />

<strong>di</strong>chromate.<br />

Nitrogen analysis. Total nitrogen<br />

was determined following the Kjeldahl<br />

method. The nitrogen from nitrates<br />

<strong>and</strong> nitrites was determined by<br />

fixation with salicylic acid <strong>and</strong> reduction<br />

with so<strong>di</strong>um thiosulphate,<br />

<strong>and</strong> ulterior titration in a Kjeldahl<br />

apparatus (NEHRING, 1960).<br />

Phosphorus analysis. The analyses<br />

for phosphorus were performed<br />

accor<strong>di</strong>ng to the method of MURPHY<br />

& RILEY (1962).<br />

Results <strong>and</strong> <strong>di</strong>scussion<br />

In order to obtain a better understan<strong>di</strong>ng<br />

of the nature of the alteration<br />

of these sculptures, the compositions<br />

of the <strong>di</strong>fferent layers observed<br />

from the external to internal part of<br />

the ceramic were stu<strong>di</strong>ed.<br />

The most external part of the statues<br />

is covered by dust that contains<br />

gypsum, calcite <strong>and</strong> quartz, as is<br />

shown by the X-ray <strong>di</strong>agram (Fig.<br />

3a).


Degradation of Ceramic Sculptures ... 595<br />

Fig. 3- X-ray <strong>di</strong>ffraction patterns of the dust covering the statues (a) <strong>and</strong> that found in accumulation<br />

zones (b). Gy: gypsum; Q: quartz; Cal: calcite; M: mica; F: feldspar.<br />

The dust accumulated in '-some<br />

zones of the statues (Fig. 3b) has a<br />

·higher proportion of quartz, mica<br />

<strong>and</strong> feldspar <strong>and</strong> a lower proportion<br />

of gypsum in relation to ~he dust<br />

from the most external part. The <strong>di</strong>fference<br />

between the two samples<br />

may be due to the coarser grains<br />

coming from external contributions,<br />

<strong>and</strong> the altered ceramic that remains<br />

in the accumulation zones.<br />

The chemical analysis of the dust<br />

(Table 1) shows a high content in<br />

organic matter, nitrogen (organic<br />

<strong>and</strong> ammoniacal) <strong>and</strong> phosphorus,<br />

coming from animal excrements <strong>and</strong><br />

other environmental contamination.<br />

The high lead content (0.38%) can<br />

only be produced by petrol combustion.<br />

The high suplhur content<br />

agrees with X-ray <strong>di</strong>ffraction <strong>di</strong>agrams<br />

that show gypsum in its composition,<br />

probably arising from external<br />

contributions <strong>and</strong> alteration of<br />

the ceramic by the S0 2 in the atmosphere.<br />

TABLE 1<br />

Chemical analysis of dust that cover the statues(%)<br />

Nitrogen<br />

Nitrates<br />

Organic matter<br />

Carbon<br />

Sulphur<br />

Phosphorus<br />

Lead<br />

0.59<br />

0.00<br />

7.50<br />

4.40<br />

0.85<br />

0.49<br />

0.38


596 C. Maqueda, J:L., Perez Rodriguez, A. Justo Erbez<br />

All this suggests the existence of<br />

acid pH <strong>and</strong> salts that alter the<br />

ceramic material.<br />

In some altered parts, the dust<br />

mixed with the remainder of the<br />

ceramic forms a hard crust, whose<br />

composition is interme<strong>di</strong>ate between<br />

the dust <strong>and</strong> the ceramic.<br />

The X-ray <strong>di</strong>ffraction study shows<br />

that the proportion of gypsum, calcium<br />

carbonate <strong>and</strong> other components<br />

found in the dust decreases<br />

from the external to internal part of<br />

the ceramic.<br />

The proportion of sulphur in the<br />

ceramic changes from 0.81% in the<br />

external part (altered ceramic) to<br />

0.26% in the internal part (un-<br />

- ------------~-- alrered). The presence- of ·a ·substantial<br />

proportion of sulphur in the internal<br />

part is very significant from<br />

the point of view of the alteration.<br />

100 200 300 400 500 600 700 800 900 1000<br />

Fig. 4 _ Gravimetric <strong>and</strong> thermal analysis<br />

curves of a sample of altered ceramic.<br />

The gravimetric <strong>and</strong> <strong>di</strong>fferential<br />

thermal analysis curves of altered<br />

ceramic (Fig:4)igre~- withtbe X-ray<br />

<strong>di</strong>ffraction <strong>di</strong>agrams. The thermal<br />

curve shows an endothermic effect at ·<br />

158 oc <strong>and</strong> also a weight loss caused<br />

by dehydration of gypsum. At 335 oc<br />

there is a broad exothermic effect <strong>and</strong><br />

a weight loss in<strong>di</strong>cative principally of<br />

organic components <strong>and</strong> gels of iron,<br />

originating from environmental contamination<br />

<strong>and</strong> alteration of the<br />

ceramic, respectively. Endothermic<br />

effects at 573 oc <strong>and</strong> 780 oc are due to<br />

the a-~<br />

quartz transformation <strong>and</strong><br />

the decomposition of calcium carbonate,<br />

respectively. The endothermic<br />

effect at 890 oc is due to the dehydroxylation<br />

of smectite, illite <strong>and</strong><br />

kaolinite only partially decomposed<br />

in the original ceramic, while the exothermic<br />

effect at 920 oc is due to<br />

the recrystallization to wollastonite,<br />

kilchoanite <strong>and</strong> anorthite. The reason.<br />

for the two last effects is that the<br />

altered ceramic was fired at a<br />

temperature below 950 oc (PEREZ­<br />

RODRIGUEZ et al., 1985).<br />

Some zones of the surface of the<br />

statues have a red<strong>di</strong>sh colour. The<br />

chemical analysis data for Fe, Ca <strong>and</strong><br />

Mn from the red<strong>di</strong>sh patina <strong>and</strong> the<br />

most internal part of the same ceramic<br />

are shown in Table 2. The iron<br />

<strong>and</strong> manganese contents are higher<br />

on the surface, probably due to a release<br />

of these elements from the ceramic<br />

<strong>and</strong> ulterior precipitation,<br />

producing the red<strong>di</strong>sh colour.<br />

The rocks that surround the ceramic<br />

statues may also influence the al-<br />

teration process. The petrographic


Degradation of Ceramic Sculptures ... 597<br />

TABLE 2<br />

Chemical analysis of Fe 2 0 3 , CaO <strong>and</strong> Mn from the external <strong>and</strong> internal part<br />

red<strong>di</strong>sh part<br />

external<br />

internal<br />

part<br />

Fe203 6.33% 4.95%<br />

CaO 19.86% 14.12%<br />

Mn 573 ppm 450 ppm<br />

a~d X-ray <strong>di</strong>ffraction stu<strong>di</strong>es show<br />

that this rock is a calcareous s<strong>and</strong>stone<br />

consisting of calcite, quartz <strong>and</strong><br />

feldspar. This material is easily<br />

altered, loosing the cementating<br />

components <strong>and</strong> yiel<strong>di</strong>ng gypsum.<br />

These components are deposited on<br />

the statues <strong>and</strong> have influenced their<br />

alteration, because of an extra contribution<br />

of salts.<br />

The experimental results suggest<br />

the following causes of altera.tion:<br />

1. The environment provides 'S02,<br />

SH2, C02, Pb, nitrogen compounds,<br />

animal excrements, salts (external<br />

<strong>and</strong> from the ceramic), humi<strong>di</strong>ty,<br />

mechanical erosion, etc., that cause a<br />

high alteration of these ceramic<br />

· sculptures.<br />

2. The S02 .in the atmosphere originates<br />

from contamination (petrol<br />

combustion from cars <strong>and</strong> from industry).<br />

It has been shown ex-<br />

. perimentally (FUZZ! & VITTORI,<br />

1976) that a high transformation of<br />

so2 to so3 can happen in urban.<br />

atmospheres when NH 3 is present. In<br />

the ceramics of the Seville Cathedral<br />

there is a high proportion of ammoniacal<br />

nitrogen <strong>and</strong> also Pb, which<br />

can catalyze the formation of sulphuric<br />

acid. This acid may produce<br />

gypsum by reaction with the calcium<br />

carbonate or other calcium bearing<br />

minerals of the ceramic.<br />

3. The recarbonation of smali ~alcium<br />

oxide nodules formed during<br />

the manufacture of the ceramic, as<br />

has been shown in a previous paper<br />

(PEREZ-RODRIGUEZ et al., 1985),<br />

may produce strain, but does not<br />

cause any visible cracks in the ceramic.<br />

These nodules <strong>and</strong> the calcium<br />

carbonate from external contamination<br />

react with the environmental<br />

C02 yiel<strong>di</strong>ng calcium bicarbonate<br />

that produces movement of salts<br />

through the ceramic, thus contributing<br />

to its alteration.<br />

4. The proportion of sulphate <strong>and</strong><br />

carbonate found is very high in relation<br />

to the content of CaO initially<br />

present in the ceramic, <strong>and</strong> thus,<br />

there must be contributions from the<br />

Seville atmosphere <strong>and</strong> from the alteration<br />

of the rock that surrounds<br />

the sculptures.<br />

5. Salts, <strong>and</strong> especially the influence<br />

of atmospheric agents in some<br />

zones of the ceramic, produce the liberation<br />

<strong>and</strong> migration of iron <strong>and</strong><br />

manganese from the interior to the<br />

surface with subsequent precipitation<br />

on it, produ~ing a red patina.


598<br />

C. Maqueda, J.L., Perez Rodfiguez, A. Justo Erbez<br />

REFERENCES<br />

BENNET H., EARDLEY R.P., HAWLEY W.G., THWAITES !., I 962. Routine control analysis of high-silica<br />

<strong>and</strong> aluminosilicate materials. Trans. Br. Ceram. Soc. 61, 636-666.<br />

BRINDLEY G.W., BROWN G. (e<strong>di</strong>tors), 1980. Crystal Structures of Clay Minerals <strong>and</strong> their X-ray Identification.<br />

Mineralogical Society, London.<br />

FARMER V.C. (e<strong>di</strong>tor), 1974. The Infrared Spectra of Minerals. Mineralogical Society, London.<br />

FERRAND C., REPETTO M., BtASCO P., MENENDEZ M., ALVAREZ-DARDET A., I969. La contaminaci6n<br />

atmosferica en Sevilla. Rev. Sanidad e Higiene Publica XLIII, 72I-748.<br />

FERRAND C., BtASCO P., KUHN A., REPETTO M., LAZARO J., GARC!A-SERNA D., 1975. La COntaminaci6n<br />

atmosferica en Sevilla. Rev. Sanidad e Higiene Publica XLIX, 14I-I58.<br />

Fuzzr S ., VITTORI 0 ., I 976. Climatic chamber for laboratory experiments on the system S02-wet marble.<br />

Airborne particles. Pp. 65I-66I, in: Proc. Int. Symposium «The Conservation of Stone>> I 975,<br />

Bologna- Italy, Centra per la Conservazione delle Sculture all'Aperto, Bologna, Italy.<br />

I!ir!GUEZ-HERRERO Paris. J., I967. Alteration des calcaires et des gres utilises dans la construction. Eyrolles,<br />

MAcKENZIE R.C. (edjtor), 1970. Differential Thermal Analysis. Academic Press, London.<br />

MARIJNISSEN R.H., 1967. Degradation, conservation et restauration de l'oeuvre d'art. Arcade,<br />

Bruxelles.<br />

MURPHY J., RILEY J .P., 1962. A mo<strong>di</strong>fied single solution method for the determination of phosphate in<br />

natural water. Anal. Chiin. Acta 27, 3I-36.<br />

NEHRING K., 1960. Agrikulturchemische Untersuchungs-methoden fur Dii.ge- und Futtermittel, Boden<br />

und Milch: Bestimmung des Gesamt-stikstoffs, methode van 0. Foerster. Verlag Paul Parey,<br />

Hamburg.<br />

PEREZ-RODRIGUEZ J.L., MAQUEDA C., JusTo A., 1985.Scientific study of the sculptures from the Baptism<br />

<strong>and</strong> Birth Porticos of Seville Cathedral. Stu<strong>di</strong>es in Censervation 30, 3I-38 .<br />

. ____ REPETTO-M.,-MENENDEz· M.,· 197L La poluci6n atmosferica en Sevilla, 1970-71. Rev. Sanidad e<br />

Higiene PUblica XLV, 921-954.<br />

Rossr-MANARESI R. (e<strong>di</strong>tor), 1976. The Conservation of Stone. Centra per la Conservazione delle<br />

Sculture all'Aperto, Bologna, Italy.<br />

WINKLER E.M., I 966. Important agents of weathering for buil<strong>di</strong>ng <strong>and</strong> monumental stone. Eng. Geol. 1<br />

(5), 38I-400.<br />

WINKLER E.M., I973. Salt action in urban buil<strong>di</strong>ngs. Pp. 139,I49, in: Proc. Sem. «Application of<br />

Science in Examination of Works of Art>> 1970, Boston (W.J. Young, e<strong>di</strong>tor), Museum of Fine<br />

Arts, Boston.


Abstracts . 599<br />

Kaolin <strong>and</strong> Sericite Clays from SW Spain: Particle Size<br />

Distribution, Mineralogical <strong>and</strong> Ceramic Study<br />

F. GONZALEZ-GARCIA, G. GARCIA-RAMOS, J.M. MESA, M.T. RUIZ-ABRIO,<br />

P.J. SANCHEZ-SOTO<br />

Departamento de Quimica Inorganica, Facultad de Quimica <strong>and</strong> Departamento de Investigaciones Fisicas y<br />

Quimicas, Centra Coor<strong>di</strong>nado del C.S.I.C., Universidad de Sevilla, C/Tramontana, 41012 Sevilla, Espafla<br />

Nine samples of natural clays with high aluminium contents, from <strong>di</strong>fferent<br />

southwestern <strong>Spanish</strong> deposits, mainly used in the ceramic industry were<br />

stu<strong>di</strong>ed.<br />

The deposits from Sta. Eufemia (Cordoba) <strong>and</strong> Garlitos (Badajoz) are formed<br />

by ampelitic Ordovician-Silurian materials, while the ones from Zalamea<br />

<strong>and</strong> Monterrubio de la Serena (Badajoz), which have similar characteristics,<br />

are Lower-Pevonian in age. However, all the deposits show a very low-grade<br />

metamorphism, <strong>and</strong> there are some break networks formed by the Hercynian<br />

Orogeny which enabled the fluids to flow.<br />

The Carboniferous deposits of the Province of Sevi!la belong to coal exploita-.<br />

tions. The Villanueva del Rio y Minas deposit is of pre-Orogenic Westphalian<br />

origin; the one from Guadalcanal is also of post-Orogenic Westephanian<br />

origin.<br />

The Conquista (Cordoba) bed belongs to an old alluvial deposit which developed<br />

over the granitic batholith of Los Pedroches. The Cazalla de la Sierra<br />

(Sevilla) bed is placed on the southern edge of a syenitic intrusion, weathered<br />

in a supergenic-like way. The Zalamea la Real (Huelva) deposit is formed<br />

by acid volcanic materials belonging to the SW Iberian pyritic belt.<br />

With reference to the ceramic industry applications of high temperatures<br />

(stoneware, feldspathic tableware, porcelain <strong>and</strong> refractories), the particle<br />

size <strong>di</strong>stribution, mineralogy <strong>and</strong> sintering temperatures are stu<strong>di</strong>ed.<br />

Accor<strong>di</strong>ng to the particle size analysis, three groups of materials are <strong>di</strong>fferentiated:<br />

with 80%, 25% or 10% particle size smaller than 63 J.Lm. The samples,<br />

accor<strong>di</strong>ng to the mineralogical data, excepting the feldspathic one ·of magmatic<br />

origin, are defined as kaolinitiC <strong>and</strong> illitic-kaolinitic (sericites) types.<br />

There is also, among the latter ones, a sample with 25% pyrophyllite <strong>and</strong> 5%<br />

carbo~ates. The < 63 J.Lm fraction is richer in .kaolin minerals <strong>and</strong> generally<br />

has a greater content in AlzOJ.<br />

Sintering temperature <strong>di</strong>agrams to 1450°C show that a great part of these<br />

materials could be used as silica aluminous refractories, after the concentration<br />

process. The feldspathic sample is appropriate for feldspar earthenware,<br />

or as a raw material in vitrous ceramic ware.<br />

Natural clays stu<strong>di</strong>ed<br />

Origin<br />

Sample<br />


,---r-~--=-----~~-~-==-e


Abstracts 601<br />

<strong>and</strong> Middle Age times, have been investigated by X-ray <strong>di</strong>ffractometry,<br />

scanning electron microscopy (SEM) <strong>and</strong>· thin sections under the polarizing<br />

microscope.<br />

Clays constituting the ceramic-pottery matrix were of <strong>di</strong>fferent <br />

(particle size <strong>and</strong> <strong>di</strong>stribution) <strong>and</strong> composition; although, in certain<br />

samples the original mineralogy has been deeply mo<strong>di</strong>fied by firing techniques<br />

<strong>and</strong> temperatures, rendering inconsistent any in<strong>di</strong>cations regar<strong>di</strong>ng<br />

origin.<br />

Some primitive firing equipment <strong>di</strong>d not exceed 500°C, quartz <strong>and</strong> cristobalite<br />

in<strong>di</strong>cate a firing range of 600-700°C, the presence of gehlenite may<br />

in<strong>di</strong>cate temperatures between 700-850°C (but it may be decomposed over<br />

900-950°C), <strong>di</strong>opside was formed at 850°C. The presence of fine calcite <strong>and</strong><br />

reducing-oxi<strong>di</strong>zing atmospheres (magnetite: hematite ratio) may shift the<br />

temperature of formation of the new phases.<br />

The ratio between clayey matrix <strong>and</strong> chamotte grains is widely variable;<br />

<strong>di</strong>fferent materials (limestone, <strong>di</strong>orite, granite, gneiss, mica-schist) were<br />

used as chamotte, reflecting the materials available locally. Manufacts with<br />

s<strong>and</strong>y-quartz chamotte are considered imported from African Me<strong>di</strong>terranean<br />

countries. Porous, void filled, isoriented, welded, vitrified, etc. textures<br />

<strong>and</strong> fabrics of the ground-mass, reaction rims around quartz, feldspar, mica,<br />

calcite grains, as observed by SEM, are <strong>di</strong>scussed as being representive of<br />

manufacturing techniques <strong>and</strong> firing reactions.<br />

Raw Materials <strong>and</strong> Technological Data of Ancient<br />

Ceramic Piece's of the Archaeological<br />

Bed of Cerro Macareno, Seville<br />

M.C. GONZALEZ VILCHES, G. GARCIA-RAMOS, F. GONZALEZ-GARCIA<br />

Departament.o de Quimica Inorganica y Fisico-Quimica, Facultad de Farmacia, Universidad de Sevilla, Apdo. 874,<br />

41012 ,Sevilla, Espafla<br />

A group of ceramic materials from the archaeological bed of Cerro Macareno<br />

(Seville, N-NE, 7 Km from the city on the Guadalquivir riverside),' was<br />

stu<strong>di</strong>ed.<br />

Forty four samples, from 28 amphora fragments used by ancients in the<br />

Me<strong>di</strong>terranean countries, were investigated with the aim of determining the<br />

provenance of the raw materials <strong>and</strong> the technology used in the fabrication<br />

of the amphoras.<br />

The study carried out consisted mainly of chemical analysis, X-ray <strong>di</strong>ffraction<br />

<strong>and</strong> heating of the fragments to 1100°C, with observation of the colour<br />

changes that take place in the freshly cut surface. In some cases an X-ray<br />

<strong>di</strong>ffraction study on the transformations induced during the heating was also<br />

undertaken. The results provide useful information not only on the type of<br />

materials employed but also on the temperatures <strong>and</strong> con<strong>di</strong>tions of the<br />

original firing process.<br />

Thus, it can be concluded that all the samples contain important amounts of<br />

calcite <strong>and</strong> quartz, <strong>and</strong> that a number of them also contain dolomite, plagioclase,<br />

potassium feldspars <strong>and</strong> small amounts of illite <strong>and</strong> kaolinite.<br />

Certain reactions occur upon heating the samples from 700 to ll00°C in a


602 Abstracts<br />

muffle furnace: <strong>di</strong>sapP,earance of calcite <strong>and</strong> dolomite <strong>and</strong> also of illite <strong>and</strong><br />

kaolinite, a decrease in the percentage of quartz, <strong>di</strong>sappearance of the potassium<br />

feldspars between 700 <strong>and</strong> 900~C,_fpJ:1I!~t_iQJl_q_f__}VSJJlastoni!e,e!c ..... _<br />

These data <strong>and</strong> the colour changes observed upon heating in<strong>di</strong>cate that 8 of<br />

the samples investigated were fired at temperatures lower than 700°C, 13<br />

between 700 <strong>and</strong> 750°C <strong>and</strong> 7 samples at 800°C or slightly higher.<br />

In ad<strong>di</strong>tion, it is possible to conclude that with the exception of four<br />

pieces imported from Palestine-Phoenicia, the remaining were made with<br />

raw materials from the Cerro Macareno area.<br />

Red Bed Clays: Fundamental Raw Materials for Fast<br />

Single Firing of Ceramic Floor <strong>and</strong> Wall Tile<br />

--- ------ -A~ TENKGLIA- 1 ; V: VENTURF -<br />

1<br />

Centra Ceramico, Via Martelli 26, 40138 Bologna, ltalia<br />

2 Geoceramic Researches, Via Bacchello 9, 40050 Monte San Pietro, Bologna, Italia<br />

The recent technological innovations in manufacturing processes in the field<br />

of ceramics have provided the incentive for stu<strong>di</strong>es <strong>and</strong> applied research in<br />

the field of raw materials. In this respect, particular needs <strong>and</strong> requirements<br />

have developed as a result of the especially large role which fast single firing<br />

has begun to play (for both red <strong>and</strong> white ware bo<strong>di</strong>es) at ·the expense of<br />

double firing (also for both red <strong>and</strong> white ware bo<strong>di</strong>es) <strong>and</strong> of slow single<br />

firing. This trasformation is based on a ra<strong>di</strong>cal mo<strong>di</strong>fication of ceramic<br />

manufacturing cycles. In ad<strong>di</strong>tion to changes in firing methods, the shaping<br />

operation (pressing) <strong>and</strong> especially grin<strong>di</strong>ng methods also have undergone<br />

profound mo<strong>di</strong>fications.<br />

In the case of single fired white ware bo<strong>di</strong>es, wet grin<strong>di</strong>ng of the raw materials<br />

followed by spray drying is in<strong>di</strong>spensable. This leads to the problem of<br />

cost of the operation from the energy point of view. Also, the raw materials<br />

used, in particular the clays, must be imported. This too leads to higher<br />

overall cost of the final product.<br />

With respect to single fired red ware, initially, the clays being used are those<br />

which already.have been employed for some time for production of red gres<br />

(stoneware), typical tra<strong>di</strong>tional <strong>Italian</strong> ceramic products. These clays are<br />

national raw materials which can be grouped together under the common<br />

denomination of «red bed» clays. They include clays of various geological<br />

formation, in general during the Oligocene <strong>and</strong> in some cases, also during the<br />

Eocene.<br />

With the advent of fast firing cycles, materials preparation by wet grin<strong>di</strong>ng<br />

became more common, resulting in increased energy comsumption. Presently,<br />

however,. there seems to be a move towards the return to dry grin<strong>di</strong>ng.<br />

This tendency has stimulated stu<strong>di</strong>es of both clay <strong>and</strong> non-clay raw materials<br />

<strong>di</strong>rected towards obtaining a better understan<strong>di</strong>ng of the characteristics<br />

of particular importance from the applications point of view.<br />

The present study reviews a wide range of red clays presently used for _fast<br />

single firing. Chemical-mineralogical data <strong>and</strong> physico-ceramic data are


Abstracts 603<br />

given for each clay stu<strong>di</strong>ed. An examination of the data allows relationships<br />

to be established between the type of raw material <strong>and</strong> its behaviour during<br />

the industrial manufacturing cycles. The presentation of the data in appropriate<br />

<strong>di</strong>agrams allows the suitability of the clays for use with the new<br />

technologies to be determined, a priori, on the basis of certain chemicalmineralogical<br />

data.<br />

Analogous data are given for the non-clay raw materials (s<strong>and</strong>, basalts,<br />

volcanic rocks) used in the mixtures as structural components. Their<br />

function is to consent the use of local rather than imported clays <strong>and</strong> to allow<br />

dry grin<strong>di</strong>ng or turbogranulation techniques to be employed, thus avoi<strong>di</strong>ng<br />

the heavy energy consumption associated with wet grin<strong>di</strong>ng.<br />

A Study of Eneolithic Ceramics from<br />

La Pefia del Aguila, Avila, Spain<br />

S. LdPEZ-PLAZA 1 , J. VICENTE-HERNANDEZ 2 , P. HERNANDEZ-HERNAN­<br />

DEZ2, M.A. VICENTP<br />

1<br />

Departamento de Prehistoria, Facultad de Geografia e Historia, Universidad de Salamanca, 37019 Salamanca,<br />

Espaiia ,-<br />

2 Departamento de Quimica Analitica, Facultad de Ciencias, Universidad Aut6noma, Canto Blanco, 28049<br />

Madrid, Espaiia<br />

'·<br />

3<br />

Centro de Edafologia y Biologia Aplicada, C.S.I.C., Cordel de Merinas 40-52, Apd!'J. 257, 37008 Salamanca,<br />

Espaiia<br />

The settlement La Pefia del Aguila is situated on the plateau of a small hill<br />

on the southern slope of the Avila mountain range, at about 18 km S.W.<br />

of Avila in the township of Mufiogalindo. Its exact location is in<strong>di</strong>cated by<br />

the coor<strong>di</strong>nates 1°12'21" longitude west <strong>and</strong> 4°36'21" latitude north at an<br />

altitude of 1160 m above sea level, as per sheet 530 Va<strong>di</strong>l!o de la Sierra of the<br />

map (1:50.000) of the Geographical <strong>and</strong> Statistical Institute.<br />

The excavation made in this sett!ementrevealed the existence of three levels,<br />

characterized initially by <strong>di</strong>fferences in soil colour. From the top to the<br />

bottom the levels could be described as follows:<br />

Level I. It is constituted by brown s<strong>and</strong>y soil <strong>and</strong> demonstrates a maximum<br />

power of 48 cm;<br />

Level II. It is formed by a blackish soil <strong>and</strong> lies imme<strong>di</strong>ately below level I<br />

with a maximum power of 60 cm;<br />

Level III. It is characterized by a fine ash-grey soil with a maximum power of<br />

70 cm. The importance of this level lies in the presence of a large number of<br />

circular or oval shapes excavated in the rock at the bottom.<br />

Materials of archaeological interest found, show great homogeneity throughout<br />

the period of existence of this settlement. Besides, they also in<strong>di</strong>cate a<br />

slow evolution <strong>and</strong> could be dated to the Regional.Eneolithic beginning<br />

about 2500 B.C. Levels II <strong>and</strong> III, which could be Classified under the prebeaker<br />

period, show neolithic tra<strong>di</strong>tions of «Cave Culture>>. These levels<br />

could be linked to the Eneolithic settlements of the Portuguese Extremadura,<br />

based on certain other proved characteristics identified by the ceramic<br />

industry. The presence of a small frag~ent of a bell beaker in level I in<strong>di</strong>cates<br />

the contact of this settlement with the Ciempozuelos beaker.


604 Abstracts<br />

Adopting the techniques of Arc-emission Spectroscopy, XRD <strong>and</strong> DTA, 8<br />

ceramic samples, three from level Ill (samples 1, 4 <strong>and</strong> 6), four from level II<br />

(samples 2, 3, 5, 7) <strong>and</strong> one pertaining-to a-type-of-painted-ceramic:-, collected<br />

from the top layer, but known to occur in all the levels,- were stu<strong>di</strong>ed.<br />

Certain samples demostrate a black interior <strong>and</strong> an aspect totally <strong>di</strong>fferent<br />

from the exterior. Both parts were stu<strong>di</strong>ed separetely <strong>and</strong> a sample, when<br />

subjected to a temperature of 500°C under oxi<strong>di</strong>zing con<strong>di</strong>tions, acquired a<br />

uniform brick-red.color.<br />

All the ceramic samples had similar chemical compositions. Si, Fe, Mg, Na,<br />

Ca <strong>and</strong> Al occur in higher proportions while K, Ti <strong>and</strong> Mn in lower proportions.<br />

Cr <strong>and</strong> Cu occur only in trace quantities. The surface layer is quantitatively<br />

similar, although with a lower proportion of Si. In all DTA curves, the<br />

thermal inversion of quartz could be seen at 573°C <strong>and</strong> also certain small<br />

effects owing to the presenceof <strong>di</strong>fferent oxides.· Samples 1, 3, 6 <strong>and</strong> 8, all<br />

black in colour, produce a large exothermic effect, in<strong>di</strong>cating the presence of<br />

considerable organic matter in them. X-ray <strong>di</strong>ffractograms show <strong>di</strong>ffraction<br />

effects at: 9.90-9.40 <strong>and</strong> 3.36-3.18 A due to micas <strong>and</strong>/or collapsed smectites;<br />

4.23-4.04, 3.83-3.62 <strong>and</strong> 3.26-3.15 A due to feldspars; 3.24 due to quartz, <strong>and</strong><br />

other effects due to Al <strong>and</strong> Fe oxides. Sample number 1 is the only one<br />

demonstrating effects due to kaolinite.<br />

It could therefore be concluded that ceramic samples obtained from <strong>di</strong>fferent<br />

levels were made using similar materials <strong>and</strong> the polished surfaces<br />

made using the finest fraction of the same materiaL All of them were heated<br />

to temperatures less than 500°C <strong>and</strong> the black samples made under reducing<br />

con<strong>di</strong>tions.<br />

Mineralogy of Ceramic Clays from<br />

the Sagra Area, Central Spain<br />

B.GALVANMARTINEZ,C.RODRIGUEZPASCUAL,J.M.GONZALEZPENA',<br />

J. GALV AN GARCIA<br />

Institute de Edafelegia y Bielegia Vegetal, C.S.I.C., Serrane !IS - dpde., 28006 Madrid, Espafla<br />

1<br />

Institute de Ceramica y Vidrie, Arg<strong>and</strong>a del Rey - Madrid, Espafla<br />

The tectonic trough of the Tagus river was filled during the Tertiary with<br />

materials from the Central <strong>and</strong> the Iberian Ranges, <strong>and</strong> the Toledo Mountains.<br />

·<br />

Those materials are made up of a detrital facies which change~ gradually to<br />

evaporitic facies towards the center of the Tagus basin.<br />

The area of interest corresponds to Miocene materials, such as clays, marls,<br />

gypsiferous marls, gyp~um, limestones, s<strong>and</strong>s, etc.<br />

This paper concerns the Miocene clays which have a wide <strong>di</strong>stribution in the<br />

Tagus basin.<br />

The area of study is limited to the following localities: Illescas, Yuncos,<br />

Pantoja <strong>and</strong> Alameda of the Sagra. The clays present a high degree of purity,<br />

<strong>and</strong> are progressively enriched in a detrital fn,.ction which becomes coarser<br />

to the west.<br />

Those clays are used in the ceramic industry, mainly for the manufacture of<br />

bricks, roofingtiles <strong>and</strong> small vaults. .<br />

Sixteen samples were investigated by the following physical-chemical


Abstracts 605.<br />

techniques: X-ray <strong>di</strong>ffraction, transmission electron microscopy, infrared<br />

absorption spectroscopy <strong>and</strong> thermal methods. A semi-quantitative analysis<br />

was carried out on the < 2 mm fraction. The estimated amounts of minerals<br />

were the following: layer <strong>and</strong> fibrous silicate species (85-55%), quartz (27-<br />

10%) <strong>and</strong> feldspars (22-2%). Calcite <strong>and</strong> dolomite occur occasionally, but<br />

always in small amounts. The mineralogy of the clay fraction ( < 2 11m size) of<br />

the Miocene se<strong>di</strong>ments, from the de Sagra area, is usually dominated by<br />

degraded mica (illite), <strong>and</strong> smectite with lesser amounts of chlorite <strong>and</strong> :<br />

kaolinite. Almost all samples contain sepiolite. Appreciable amounts of palygorskite,<br />

vesy_well_ crystallized with long fibres, were also found in two .<br />

samples. Primary minerals, such as, quartz, feldspar, calcite <strong>and</strong> dolomite ·<br />

were still present in the clay fraction, but always in small quantities. The<br />

presence of kaolinite in this area is of great mineralogical interest. A granulometric<br />

analysis was performed <strong>and</strong> the position of samples on Casagr<strong>and</strong>e's<br />

<strong>di</strong>agram was obtained in order to know the exploitation possibilities by the<br />

ceramic industries.<br />

Alonso J.J., Garcia V.S., Riba 0., 1961. Se<strong>di</strong>mentos finos del centro de la cuenca terciaria del Tajo.<br />

Aetas 2" Reun. Gr. esp. Se<strong>di</strong>ment. C.S.I.C., 21-55, Madrid.<br />

Huertas F., Linares J., Martin Vival<strong>di</strong> J.L., 1971. Minerales fibrosos de la arcH!a en cuencas ·<br />

se<strong>di</strong>mentarias espaiiolas. I. Cuenca del Tajo. Eo/. Inst. Geo/. Min. t-82, Fasc. 6, 534-542, Madrid.<br />

I.G .M.E. 197 4. Map a de Roe-as .Industriales. Escala 1 :200.000 Hoja y Memoria, n. 45-5/6, Madrid.<br />

I.G.M.E. 1974. Mapa de Rocas Industriales. Escala 1:200.000 Hoja y Memoria, n. 53-5/7, Toledo.


Section VI<br />

Geotechnical Properties <strong>and</strong> Applications


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 609-619 (1985)<br />

Mineralogical Composition <strong>and</strong> Geotechnical Properties<br />

of the Pelitic Antognola: Formation from<br />

the Baiso Area, Northern Apennines<br />

A. CANCELLJI, A. FAILLA 2 , N. MORANDF<br />

1<br />

Dipartimento <strong>di</strong> Ingegneria Strutturale, Politecnico <strong>di</strong> Milano, Piazza Leonardo da Vinci 32, 20133 Milano,<br />

Italia<br />

2 Istituto <strong>di</strong> Mineralogia e Petrografia, Universita <strong>di</strong> Bologna, Piazza <strong>di</strong> Porta S. Donato 1, 40127 Bologna, Itali~<br />

ABSTRACT- A pelitic portion of the Antognola Formation from the Baiso area<br />

(northern Apennines, Italy) is considered. Mineralogical analyses (non-clay<br />

to clay ratio <strong>and</strong> clay mineral content) <strong>and</strong> geotechnical tests (shear strength<br />

parameters <strong>and</strong> swelling characteristics) are reported <strong>and</strong> correlated with<br />

each other. These analyses put in evidence a wide spectrum of geotechnical<br />

properties, in accordance with the mineralogical composition.<br />

Introduction<br />

This study takes into consideration<br />

the correlation between geotechnical<br />

behaviour <strong>and</strong> mineralogical composition<br />

of the pelitic Antognola<br />

Formation (northern A,pennines, Italy).<br />

The opportunity for this research<br />

work was gi:ven by the engineering<br />

geological study (being carried out<br />

by two of the Authors, A.C. <strong>and</strong> A.F.)<br />

of an extended l<strong>and</strong>slide, which involved<br />

<strong>and</strong> goes on involving the<br />

Antognola Formation in the Baiso<br />

area (Province of Reggio Emilia;<br />

locality about 1 km south of Costetto;<br />

Carta Tecnica Regionale no.<br />

218124-BAISO). The main mass.<br />

movement can be classified as an<br />

«earth block slide», the foot pf which<br />

gives origin to two earthflows (Fig.l).<br />

The Antognola Formation<br />

The Antognola Formation belongs<br />

to the Oligomiocenic «Complessi<br />

Emiliani», outcropping as floating<br />

. plates on the allochthonous substra­<br />

\ turn (ROVER!, 1966), <strong>and</strong> characterized<br />

by semiautochthony, because<br />

they took part only in the last phases<br />

of the Ligurian nappe translation<br />

This research work has been carried out within the program <strong>and</strong> with the financial support of<br />

C.N.R. <strong>and</strong> M.P.I.


610 A. Ca!'!celli, A. Failla, N. Moran<strong>di</strong><br />

0 100 200 300 m<br />

2<br />

~ V777l<br />

~~<br />

5 6<br />

~<br />

3 4<br />

7 8<br />

• *<br />

Fig. 1 ~ Schematic map of the area stu<strong>di</strong>ed <strong>and</strong> position of samples. 1: Antognola Formation;<br />

2: «Complessi liguri>>; 3: Earthflow; 4: Fault; 5: Main scarp; 6: Movement <strong>di</strong>rection; 7: Sample;<br />

8: Position« 1».<br />

(DALLAN NARDI & NARDI, 1975):<br />

This Formation is mainly composed<br />

of a pelitic portion (marls, clay<br />

marls, sometimes clays), interbedded<br />

with rare <strong>and</strong> thin s<strong>and</strong> layers.<br />

This pelite shows homogeneous <strong>and</strong><br />

typical features, such as dark greengreyish<br />

colour, frequent manganese<br />

coats <strong>and</strong> a characteristic conchoidal<br />

fracturing.<br />

A mineralogical <strong>and</strong> petrographic<br />

study of the pelitic portion of the<br />

Antognola Formation was published<br />

recently for the Vetto-Carpineti Syncline<br />

(BOLZAN et al., 1983). This research<br />

shows a homogeneous clay<br />

mineral composition of the fine fraction:<br />

smectite/illite ratio close to<br />

unity, serpentine always present<br />

<strong>and</strong> often prevailing on chlorit~, <strong>and</strong><br />

kaolinite always scarce or absent:


Mineralogical Composition <strong>and</strong> Geotechnical Properties ... 611<br />

Samples <strong>and</strong> methods<br />

For engineering geological investigations,<br />

the sampling (Fig. 1) of the<br />

Antognola Formation was made in the<br />

crown area (samples no. 2, 3, 4, 5, 6,<br />

7, 8) <strong>and</strong> near the toe (sample no. 9) of<br />

the l<strong>and</strong>slide, <strong>and</strong> in a quarry next to<br />

the eastern flank of the l<strong>and</strong>slide<br />

(sample no. 10 <strong>and</strong> several samples<br />

from position 1).<br />

All the samples showed the typical<br />

macroscopic characteristics . of the<br />

pelitic Antognola Formation (as mentioned<br />

before), except for sample 10<br />

an~ samples collected from position<br />

1, which are less compact, less<br />

cemented <strong>and</strong> more clayey than the<br />

others.<br />

The semiquantitative analyses of<br />

clay minerals were made accor<strong>di</strong>ng<br />

to the methods proposed by JOHNS<br />

et al. (1954), BISCAYE (1965) <strong>and</strong><br />

MEZZETTI et al. (1980). The quartz<br />

<strong>and</strong> feldspar contents were determined<br />

by XRD analysis, as suggested<br />

by BOCCHI et al. (1982).<br />

Results·<br />

The result.s of mineralogical analyses<br />

carried out on all samples are<br />

shown in Table 1.<br />

The samples collected in the l<strong>and</strong>slide<br />

area (no. 2 to 9) have a CaC0 3<br />

content variable from ll%o to 19%<br />

(except for one sample with 25%);<br />

therefore they are classified as marly<br />

clays. Their most abundant clay components<br />

are illite <strong>and</strong> smectite, with a<br />

ratio generally close to unity; chlorite<br />

<strong>and</strong> kaolinite are present as minor<br />

components, with the former prevailing<br />

over the latter; serpentine content<br />

is around 10%.<br />

This composition is very similar to<br />

that found in a great number of.<br />

«Antognola Marls» samples from<br />

other areas of the northern Apennines<br />

(MEZZETTI et al., 1980; BOLZAN et<br />

al., 1983), where serpentin_e is considered<br />

the characterizing mineral of<br />

the Antognola Formation.<br />

The samples collected from position<br />

1 in the quarry adjacent to the<br />

TABLE 1<br />

Clay minerals content (to 100%) of fine fractions of pelites from the Baiso area<br />

sample illite smectite serpentine chlorite kaolinite CaC0 3 *<br />

2 34 42 11 7 6 16<br />

3 '35 46 8 7 4 16<br />

4 33 40 12 8 7 15<br />

6 so 35 6 6 tr 17<br />

7. 46 43 \5 4 tr 11<br />

8 41 43 7 6 tr 18<br />

9 51 31 7 8 tr 25<br />

10 38 25 16 21 tr<br />

1** 47 18 15 21<br />

* The CaC0 3 content is referred to whole samples<br />

·** Mean composition of samples from position 1<br />

tr, traces.


-------------------<br />

612 A. Cancelli, A. Failla, N. Moran<strong>di</strong><br />

... ___ ~--·----~------------<br />

l<strong>and</strong>slide mass <strong>and</strong> sample no. 10<br />

show some <strong>di</strong>fferences from the<br />

others: illite is the most abundant<br />

mineral; smectite, serpentine <strong>and</strong><br />

chlorite are present with equivalent<br />

amounts, while kaolinite is absent.<br />

The low content of smectite,<br />

together with the absence of CaC03,<br />

justifies the exc.avation of this material<br />

for ceramic uses.<br />

However, even if such a composition<br />

does not correspond exactly to<br />

that typical of ~


Mineralogical Composition <strong>and</strong> Geoteclinical Properties ... 613<br />

tics of the fraction passing an ASTM<br />

no. 40 sieve, all points fall into the<br />

field of (see Casagr<strong>and</strong>e's<br />

plasticity chart in Fig. 3-<br />

right).<br />

However, the degree of <strong>di</strong>agenesis,<br />

acting as a cementing agent, recommends<br />

the use of non-st<strong>and</strong>ard proce-<br />

. dures for sample preparation, in order<br />

to favour a better <strong>di</strong>saggregation of<br />

the solid particles forming the clastic<br />

fraction; several procedures were<br />

suggested for the <strong>Italian</strong> clay f?rmations<br />

(see e.g. RIPPA & PICARELLI,<br />

1977; JAPPELLI et al., 1977).<br />

For this study the following procedures<br />

were adopted. The sample was<br />

dried at 40 oc <strong>and</strong> subsequently<br />

crushed by means of l)l rubber pestle;<br />

then it was soaked in water <strong>and</strong><br />

dried again at 40 °C. A sequence of 10<br />

alternate, drying <strong>and</strong> wettin'g c:ycles<br />

was. applied. Then new granulometrical<br />

<strong>and</strong> plasticity analyses<br />

were carried out, <strong>and</strong> the values, represented<br />

by full dots in Figs 2 <strong>and</strong> 3,<br />

were obtained. The <strong>di</strong>fference is out-<br />

60<br />

lp(% )<br />

40<br />

20<br />

~ Active<br />

"~ormal ~<br />

~<br />

I~<br />

""'<br />

. '\<br />

~ .... '\.<br />

Inactive ~ ,'\ ~<br />

60 (%) CF 40<br />

20<br />

I<br />

I<br />

i~L<br />

I<br />

I<br />

lJ<br />

stan<strong>di</strong>ng, both in terms of granulometrical<br />

classification <strong>and</strong> in terms<br />

of plasticity.<br />

The activity index la, defined as the<br />

ratio of plasticity index lp to the per<br />

cent of particles finer than 0.002 mm<br />

CF (SKEMPTON, 1953), is about 0.8,<br />

depen<strong>di</strong>ng on the prevalence of inactive<br />

minerals (illite, serpentine, chlorite)<br />

in the clay fraction (GRIM,<br />

1962); the method of sample preparation.<br />

does not alter the value of la<br />

(Fig. 3-left).<br />

The high degree of compactness is<br />

marked by the low values of the<br />

porosity n <strong>and</strong> the void ratio e (the<br />

mean values are, respectively, fi =<br />

16% <strong>and</strong> e = 0.19). Accor<strong>di</strong>ngly,<br />

though the degree of saturation Sr is<br />

always higher than 0.9 <strong>and</strong> often<br />

close to unity, the natural water<br />

content W 0 is only 7.0% <strong>and</strong> the unit<br />

weighty reaches 24.5 kN/m 3 •<br />

Such a compactness is the result of<br />

high compressive stresses. In fact,<br />

from a conventional oedometer test<br />

on the un<strong>di</strong>sturbed speci~en ''-~»-.(~ee<br />

V<br />

0<br />

• /<br />

CL 0/<br />

/<br />

/<br />

ML<br />

OL<br />

CH<br />

V<br />

/<br />

MH<br />

OH<br />

/<br />

..<br />

/r<br />

20 40 60 80 WL (%) 100<br />

60<br />

p(%)<br />

40<br />

20<br />

· o st<strong>and</strong>ard method<br />

• after drying <strong>and</strong> wetting ·cycles<br />

Fig. 3 - Left: plasticity index Ip vs. clay fractio~ Cp; representation of the activity indexi:a<br />

(SKEMPTON, 1953). Right: Casagr<strong>and</strong>e's plasticity chart. All points represent specimens from<br />

position « 1 ».


~--·- -<br />

614 A. Cancelli, A. Failla, N. Moran<strong>di</strong><br />

Fig. 4), a maximum apparent preconsolidation<br />

pressure p~ as high as 20<br />

MPa can be evaluated, both by the<br />

classical Casagr<strong>and</strong>e's graphical construction<br />

on the compression-log p<br />

curve <strong>and</strong> by plotting the secondary<br />

compression ratio Ca versus the vertical<br />

pressure p (Fig. 4-b).<br />

The «Marne <strong>di</strong> Antognola» Formation<br />

is Oligo-Miocenic <strong>and</strong> the samples<br />

examined belong to the Lower<br />

Miocene; therefore, the maximum<br />

thickness of covering formations can.<br />

t _<br />

.. _ _<br />

15<br />

.. r- ..<br />

(%) ................<br />

.. ..,<br />

10<br />

......_<br />

~- -~ --· --<br />

~:--:r-- ~----<br />

"<br />

..<br />

0<br />

5<br />

"' ,..--o--·o<br />

..<br />

""'<br />

r<br />

0.<br />

--- -.<br />

f-b ~-::........ '?-<br />

11 B ..<br />

" I I I<br />

~::£-.-i<br />

"<br />

0<br />

"' ,_<br />

"'<br />

P.<br />

E<br />

0<br />

u<br />

5<br />

..<br />

be estimated as about 1000 m. Consequent!y_,~!!J:e~.<br />

af~!:~!E:~!J:tio:~H~~~gigh<br />

values of p~ seem to be due not only to<br />

lithostatic pressure, but also to tectonic<br />

stresses <strong>and</strong>/or to <strong>di</strong>agenetic<br />

bonds.<br />

To determine the swelling properties<br />

of the rocks examined, three<br />

specimens of pelite from the same<br />

outcrop no. 1 were put into one<strong>di</strong>mensional<br />

consolidometers; then:<br />

- specimen A was subjected to a<br />

routine compression test, no initial<br />

--<br />

- li"'


Mineralogical Composition <strong>and</strong> Geoteclinical Properties ... 615<br />

TABLE 2<br />

Geotechnical data<br />

Sample/specimen no.<br />

Swelling potential S (under Po = 7kPa)<br />

Swelling pressure p~<br />

Swelling index C.;<br />

within the range 100 + 10 kPA<br />

within the range 1000 + 100 kPa<br />

Virgin compression index Cc<br />

nor final expansion being. allowed<br />

(Fig. 4-a);<br />

- for specimens B <strong>and</strong> C, free initial<br />

expansion under a vertical load p= 1<br />

p.s.i. = 7 kPa was permitted, in order<br />

to measure the swelling potential S<br />

in the un<strong>di</strong>sturbed state (CHEN,<br />

1975); subsequently, compression<br />

under vertical loads up to 15-20 MPa<br />

(so measuring the swelling pressure<br />

p~) <strong>and</strong> final swelling under p=7 kPa<br />

were performed (Fig. 4-a).<br />

All results of the geotechnicaL_analyses<br />

are summarized in Table 2. The<br />

swelling properties (namely s' p~, c.)<br />

of specimen C are quite higher than<br />

those of specimen B.<br />

The <strong>di</strong>fferent geotechnical behaviour<br />

of specimens B <strong>and</strong> C, despite<br />

the same location <strong>and</strong> the same<br />

macroscopical appearance, could<br />

only be due to <strong>di</strong>fferences of minelA<br />

lB lC<br />

(%) 4.2 14.0<br />

(MPa) 1.8 2.2 6.0<br />

(%) 2.4 6.0<br />

(%) 2.4 3.8 5.5<br />

(%) 9.2 9.6 9.0<br />

ralogical composition. For this reason,<br />

intensive mineralogical investigations<br />

were carried out on samples<br />

from position 1, <strong>and</strong> the range reported<br />

in Table 3 was established.<br />

It is important to remark that clay<br />

fraction contents <strong>and</strong> smectite percents<br />

are rather widely scattered <strong>and</strong><br />

vary in <strong>di</strong>rect correlation. As a consequence,<br />

the smectite content of the<br />

whole sample can vary from 2.5% to<br />

9% (ratio about 1 to 3); the extremes<br />

of the range of values for the smectite.<br />

content arerepresented by <strong>di</strong>ffractograms<br />

of glycolated material in Fig.<br />

5. The same ratio (about 1 to 3) was<br />

found for the geotechnical parameters<br />

determined on specimens 1B<br />

<strong>and</strong> 1C (cfr. values of S, p~ <strong>and</strong> c. in<br />

Table 2). This fact suggests a correlation<br />

between the smectite content<br />

<strong>and</strong> the swelling characteristics of<br />

TABLE 3<br />

Mineralogical composition of outcrop 1<br />

Mineral composition range (%)<br />

Quartz<br />

Feldspars<br />

Carbonates<br />

Clay fraction (to 100%)<br />

.<br />

Clay minerals range of fine fraction(%)<br />

Illite<br />

Smectite<br />

Serpentine<br />

Chlorite<br />

47<br />

30<br />

23<br />

49<br />

11<br />

17<br />

25<br />

36<br />

20<br />

44<br />

44<br />

21<br />

14<br />

19


616 4.. Cancelli, A. Failla, N." Moran<strong>di</strong><br />

Cl<br />

Fig. 5 - Schematic representation of <strong>di</strong>ffractograms<br />

of samples from position « 1 ,, , · correspon<strong>di</strong>ng<br />

to the extreme values of the amount<br />

of smectite.<br />

clay rocks. Moreover, a smectite content<br />

as low as 9% can be ~esponsible<br />

for high swelling properties. 1·<br />

·Because of its primary importance<br />

on the long-term stability of slopes,<br />

r the shear strength in drained con<strong>di</strong>tions<br />

was extensively investigated,<br />

both on un<strong>di</strong>sturbed <strong>and</strong> on re-.<br />

moulded pelite specimens, by <strong>di</strong>rect<br />

shear <strong>and</strong> ring shear tests. All specimens<br />

tested were cut from the sample<br />

drawn from position 1.<br />

For <strong>di</strong>rect shear tests, both square<br />

(breadth B = 100 mm) <strong>and</strong> circular<br />

(<strong>di</strong>ameter D = 60 mm) boxes were<br />

adopted; for un<strong>di</strong>sturbed specimens,<br />

after having allowed complete swelling<br />

or consolidation under the<br />

selected normal pressure p, peak <strong>and</strong><br />

residual (after multiple-reversal<br />

shear) values were determined. The<br />

residual strength was also measured<br />

Sm<br />

so<br />

by . shearing remoulded soil speci­<br />

~ :mens along~~~~oilli:


Mineralogical Composition <strong>and</strong>Geotechnical Properties ...<br />

/<br />

1.0+-------/·<br />

/.<br />

• •<br />

•<br />

/"<br />

• •<br />

•<br />

Peak resistance<br />

0.5<br />

Un<strong>di</strong>sturbed<br />

0.5<br />

• Direct shear; square section; peak<br />

0<br />

•<br />

circular<br />

11<br />

'' residual<br />

peak<br />

residual<br />


618 A. Cancelli, A. Failla, N. M;ran<strong>di</strong><br />

was found between ring shear tests<br />

<strong>and</strong> <strong>di</strong>rect shear tests along a soil/<br />

rock contact, <strong>and</strong> the correlation<br />

with lp proposed by KANJI (1974) resulted<br />

fairly well satisfied.<br />

Conclusions<br />

On the basis of mineralogical data,<br />

the pelitic facies of the Antognola Formation,<br />

extracted from the Baiso area<br />

for ceramic industries <strong>and</strong> examined<br />

in several samples, <strong>di</strong>ffers from the<br />

typical average composition of this<br />

t<br />

•<br />

Formation: the absence of carbonates,<br />

the low content of smectite <strong>and</strong><br />

the high percentage of skeletal particles<br />

(quar:tz"-amf,_feldspar:s) "are .. to.be.<br />

mentioned.<br />

Within the pelites of position 1, a<br />

wide range of geotechnical properties<br />

were found (obtained also by non tra<strong>di</strong>tional<br />

techniques), namely the<br />

swelling <strong>and</strong> the shear strength parameters,<br />

in accordance with a scattering<br />

in the ratio of non-clay to clay<br />

minerals <strong>and</strong> in the mir;teralogical<br />

composition of the clay fraction.<br />

Such variability of data, on a small<br />

scale (about 1 m), is unusual in a fine<br />

grained se<strong>di</strong>ment (silty clay) <strong>and</strong> suggests<br />

an uncommon depositional<br />

mechanism.<br />

REFERENCES<br />

BrsCAYE P.E., 1965. Mineralogy <strong>and</strong> se<strong>di</strong>mentation of recent deep-sea clay in the Atlantic Ocean <strong>and</strong><br />

adjacent seas <strong>and</strong> oceans. Geol. Soc. Am. Bull. 76, 803-832. ·<br />

BJERRUM L., SIMONS N.E., 1960. Comparison of Shear Strength Characteristics of Normally Consolidated<br />

Clays. Pp. 711-726, in: Proc. ASCE Conf. on Shear Strength of Cohesive Soils, Denver.<br />

BOCCHI G., LuCCHINI F., MINGUZZI V., MoRANDI N., NANNETTI M.C., 1982. Significato .del chimismo<br />

delle porzioni pelitiche delle «Marne <strong>di</strong> Antognola» della zona <strong>di</strong> Zocca (Modena). Rend. Soc. It.<br />

Min. Petr., 38 (2), 839-847.<br />

BOLZAN R., CECCARELLI 1., FAILLA A., MEZZETTI R., MORANDI N., ROMANO A., 1983. Caratteri composizionali<br />

delle peliti oligo-mioceniche della sinclinale <strong>di</strong> Vetto-Carpineti (prov. <strong>di</strong> Reggio Emilia e<br />

Parma). Miner. Petrogr. Acta 27, 51-71.<br />

CANCELLI A., 1979. Sulla misura della resistenza residua dei terreni me<strong>di</strong>ante prove <strong>di</strong> taglio lungo un<br />

contatto suolo!roccia. Geol. Appl. Idrogeol. XIV (Ill), 351-365.<br />

CHEN F.H., 1975. Foundation on Expansive Soils. Elsevier, Amsterdam, 280 pp.<br />

DALLAN NARDI L., NARDI R., 1975. Structural Pattern of the Northern Apennines. In:


Mineralogical Composition <strong>and</strong> Geotechnical Properties ... 619<br />

LUPIN! J.F., SKINNER A.E., VAUGHAN P.R., 1981. The Drained Residual Strength of Cohesive Soils.<br />

Geotechnique 31 (2), 181-213. .<br />

MEZZETTI R., MORANDI N., PINI G.A., 1980. Stu<strong>di</strong>o mineralogico delle porzioni pelitiche nelle «Marne <strong>di</strong><br />

Antognola» della zona <strong>di</strong> Zocca (Modena). Miner. Petrogr. Acta 24, 57-75.<br />

RIPPA F., PICARELLI L., 1977. Some Considerations on Index Properties of Southern Italy Shales. Pp.<br />

401-406, in: Proc. Int. Symp. on the Geotechnics of Structurally Complex Formations, I, Capri<br />

(Italy). .<br />

RovER! E., 1966. Geologia della sinclinale Vetto-Carpineti (RE). Mem. Soc .. Geol. It. 5, 241-267.<br />

SKEMPTON A.W., 1953. The coiloidal ,;G_ctivfry~; o(clay. Pp. 57-61, in: Proc .. 3rd Int. Conf. Soi1<br />

Mechanics Foundation Engineering, I, Zurich.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 621·628 (1985)<br />

Geomorphological <strong>and</strong> Geotechnical Aspects<br />

of the Fissured Clays of Lucera,<br />

Apulia Region, Southern Italy<br />

C. CHERUBINP, A. GUERRICCHI0 2 · , . .<br />

1 Istituto <strong>di</strong> Geologia Applicata e Geotecnica, Facolta <strong>di</strong> lngegneria, Universita d1 Bari, Via Re David 200, 70125<br />

Bari, Italia<br />

2<br />

Dipartimento <strong>di</strong> Difesa del Suolo, Universita degli Stu<strong>di</strong> dell'1- Calabria, 87036 Arcavacata <strong>di</strong> Rende, Italia<br />

ABsTRACT- The subapenninic blue-grey clays outcropping in the vicinity of<br />

Lucera (Apulia Region, southern Italy) consist of clays, marls <strong>and</strong> s<strong>and</strong>y<br />

clays etc. dated generically, in the literature, as Upper Pliocene-Calabrian.<br />

On the basis of the existence of a <strong>di</strong>sconformi ty, of a clear change of the facies<br />

<strong>and</strong> of a clean break in the system of fissures affecting the basal clay formation<br />

of Upper-Pliocenic age, the Authors recognize a new cycle of se<strong>di</strong>mentation<br />

for the higher clays.<br />

Moreover, after a geotechnical characterization of the <strong>di</strong>fferent types of<br />

clays, some stability analyses were made by the simplified Bishop's method.<br />

Such analyses have pointed out that, since the slopes are affected by mining<br />

activity they present minimal safety factors, except in the very unusual case<br />

where the ground-water is at ground level. Those slopes cut at the base by<br />

quarries have ea precarious equilibrium that, in some cases, has already produced<br />

deformativ~ phenomena <strong>and</strong>/or slumps.<br />

Introduction<br />

Stability con<strong>di</strong>tions of some slopes<br />

<strong>and</strong> quarry fronts of marly blue-clays<br />

near Lucera (Apulia Region, southern<br />

Italy) are examined (Fig. 1).<br />

The importance of such a study has<br />

been recognized because of the exist-'<br />

ence, in the village, of important human<br />

structures both archaeologicalhistorical<br />

(e.g. Norman Castle) <strong>and</strong><br />

social (e.g. state hospital, houses,<br />

etc.), threatened by the aforesaid<br />

quarry fronts developed at the foot of<br />

the slopes, at the top of which the<br />

above-mentioned structures exist.<br />

The lack of an intensive study of engineering<br />

geological characteristics<br />

is felt more strongly because of the<br />

numerous quarries existing in the<br />

area. They are generally at the foot of<br />

the slopes with ·consequences that,<br />

even at a purely qualitative level, are<br />

easy to imagine. Added to all this is<br />

the <strong>di</strong>lapidated state in which some<br />

of them are to day without any prospect<br />

of reclamation in either the<br />

short or the long ter.m.


622 C. Cherubini, A. Guerricchio ·<br />

....<br />

D I I Gill] ITIJ]]<br />

~<br />

G)>\ t t t<br />

0 0.5 1.0 1.5 km<br />

2 .3 4 5 6 7 8 9 10<br />

Fig. 1- Geological map of Lucera village <strong>and</strong> it.s environs. 1: Fills; i: Re~ent <strong>and</strong> modern ~lluvial<br />

deposits; 3: Pebbles <strong>and</strong> conglomerates with s<strong>and</strong>y levels (Pleistocene); 4: S<strong>and</strong>y-clayey soils (Calabrian);<br />

5: Clays <strong>and</strong> clayey-marls (Upper Pliocene); 6: Attitude of strata; 7: Slumps bo<strong>di</strong>es <strong>and</strong><br />

' crowns; 8: Creep; 9: Geological section line; 10: Active quarry.<br />

*<br />

Geological outlines<br />

The soils outcropping in the village<br />

of Lucera, from the bottom to the top<br />

are represented by (i) subapenninic<br />

blue-grey clays (DELL'ANNA et al.,<br />

1974) on which se<strong>di</strong>ments rich in s<strong>and</strong>y<br />

levels <strong>and</strong> centimetrical strata of<br />

<strong>di</strong>agenized s<strong>and</strong>stones (all of marine<br />

origin) lean unconformly, <strong>and</strong> (ii) by<br />

other deposits of continental origin<br />

(Figs 1 <strong>and</strong> 5).<br />

The subapenninic blue-grey clays,<br />

as it is known, derive from the ·


Geomorphological <strong>and</strong> Geotechnical Aspects of the Fissured ... 623<br />

Pleistocenic-Suprapliocenic cycle of<br />

the Post-Orogen Complex of the «Fossa<br />

Bradanica» (OGNIBEN, 1969; DEL­<br />

L'ANNA et al., 1974; BALENZANO<br />

et al., 1977; JACOBACCI et al., 1976).<br />

They are made up of clays, marly<br />

clays <strong>and</strong> clayey marls of blue-grey<br />

colour, with thin millimetrical silty,<br />

s<strong>and</strong>y <strong>and</strong> sometimes blackish organic<br />

(algal remains, etc.) levels.<br />

The clays contain quartz, biotite,<br />

<strong>and</strong> clasts of methamorphic rocks.<br />

The microfauna associations given by<br />

Bulimina marginata, Bolivina silvestrina,<br />

Bolivina usensis, Globobulimina<br />

pseudospinescens, Bolivina alata,<br />

Uvigerina nodosa, Ammonia inflata,<br />

in<strong>di</strong>cate an Upper Pliocenic age <strong>and</strong><br />

an infralittoral environment.<br />

The micropalaeontological data a­<br />

bo~t the transgressive s<strong>and</strong>y-clayey<br />

succession are not yet sufficient to<br />

clarify the exact age.<br />

The blue-grey clays of the Upper<br />

Pliocene (Fig. 2) are affected by a<br />

close net of fissures <strong>and</strong> joints represented<br />

in the <strong>di</strong>agram of Fig. 3.<br />

Such fissures have generally a<br />

planar trend, sometimes with local<br />

ondulations, so that it was always<br />

possible to represent their significant<br />

average trend <strong>and</strong> therefore to recognize<br />

the following groups of <strong>di</strong>scontinuities:<br />

group A N 70° E, S 20° E: 80°<br />

group B EW, S: 80°<br />

group C N 50° E, N 40° W: 40°<br />

group D NS: 90°<br />

Fig. 2 - Particular of a quarry's front where <strong>di</strong>sconformity between the basal. clays of Upper<br />

Pliocene age <strong>and</strong> s<strong>and</strong>y-clayey soils is visible with the systems of fissures clearly stopping along the<br />

transgressive contact. ·


624 C. Cherubini, A. Guerricchio<br />

w<br />

Fig. 3 - Structural analysis of the -fissures sur~,<br />

veyed in the Upper-Pliocenic clay Formatiop<br />

(Lambert equal area projection).<br />

group EN 60° E: 90°<br />

---~---- -group FN-40°W~N60°-W: 90° ~---'~-­<br />

group G N 20° W: 90°<br />

The fissures, in particular those<br />

with an east-west trend, visible in<br />

Fig. 1 cease along the line of contact<br />

with the higher clayey-s<strong>and</strong>y formation;<br />

this latter, for the sudden<br />

change of the facies, the- irregular surface<br />

of the contact with the underlying<br />

marly clays as well as for the<br />

aforesaid reasons seems to belong to<br />

another epoch, probably Pleistocenic.<br />

Stick shaped concretions with a<br />

limonitic-goethitic covering, fill, as<br />

far as a certain height of the quarry<br />

fronts, some fissure intersections,<br />

such as for example those with the<br />

<strong>di</strong>rections EW <strong>and</strong> NS. The inner<br />

part of such concretions is formed by<br />

poorly crystallized sulphurs (pyrite<br />

<strong>and</strong>/or marcasite), crystals of gypsum,<br />

mono<strong>di</strong>mensional grains of<br />

quartz <strong>and</strong> feldspars.<br />

The oxidation zones that surround<br />

N<br />

s<br />

E<br />

all the fissures <strong>and</strong> joints, in many<br />

cases for some centimetres, prove the<br />

ex!stence- of a' certain ch-cui~tion of<br />

water <strong>and</strong>/or oxi<strong>di</strong>zing air <strong>and</strong> they<br />

seem to continue in the depth below.<br />

The spacing between the fissure<br />

edges- ranges from a few millimeters<br />

to one centimetre, also in the fresh<br />

cuts of the quarry fronts. Obviously<br />

these fissure networks have a considerable<br />

importance for the stability<br />

con<strong>di</strong>tions of the quarry fronts as<br />

well as for the natural slopes, considering<br />

also the stiffness of such<br />

clays (Fig. 4) <strong>and</strong> the probable circulation<br />

of water inside the <strong>di</strong>scontinuities.<br />

As regards the mineralogical characteristics<br />

deduced from the work of<br />

BALENZANO et al. (1977), the clays<br />

sampled in the quarry fronts present<br />

clayey contributions from the Apenninic<br />

chain <strong>and</strong> calcareous contributions<br />

form the Murgian region.<br />

In particular the carbonates form a<br />

remarkable fraction of the total, so<br />

that the soils of Lucera must be classified<br />

as clayey marls. Among the carbonates,<br />

stoichiometric calcite prevails<br />

considerably over dolomite<br />

while aragonite is subor<strong>di</strong>nate.<br />

Among the clayey minerals, 2M<br />

polytype <strong>di</strong>octahedral illite (40-60%)<br />

prevails over the other three siallitic<br />

minerals, represented by calcic<br />

montmorillonite (5-15%), by ferriferous<br />

chlorite (10-15%) <strong>and</strong> lastly by<br />

kaolinite fireclay (20-35%).<br />

The chemical composition (% wt)<br />

of the samples after removal of carbonates<br />

is mainly constituted by. Si02


Geomorphological <strong>and</strong> Geotechnical Aspects of the Fissured ... 625<br />

Fig. 4 - Stiff clayey-marls blocks fallen from the quarry's front with sticks of sulphurs along the<br />

main fissure surfaces.<br />

(63.92-62.10), Ah0 3 (19.95-18.27),<br />

Fe20 3 (4.88-5.02) <strong>and</strong> H20 (5.88-6.71).<br />

Geotechnical data<br />

·Blue clays<br />

From the geotechnical point of<br />

view the Pliocene clays, to be considered<br />

overconsolidated <strong>and</strong> very<br />

often stiff, show the following characteristics.<br />

Total unit weight is variable from<br />

2.05 to 2.12, while dry unit weight<br />

ranges from 1.70 to 1.75 t/m 3 •<br />

Natural water contents vary from<br />

20.0 to.23.5% <strong>and</strong> the clay fraction(<br />


626 C. Cherubini, A. Guerricchio<br />

values of the -effective friction angle<br />

<strong>and</strong> cohesion intercept:<br />

q, = 25° <strong>and</strong> c' = 4 t/m 2<br />

S<strong>and</strong>y clayey soils<br />

In places where the s<strong>and</strong>y fraction<br />

<strong>di</strong>d not prevail it was possible to<br />

carry out some total unit weight<br />

(1.93-1.98) <strong>and</strong> consistency limit (WL<br />

variable among 31.5-37.8, Wp from<br />

19.5 to 20.1) measurements. The clay<br />

fraction of such soils is about 20%.<br />

In these more clearly «s<strong>and</strong>y»<br />

materials, the clayey fraction descends<br />

to values of 16-.17% with the<br />

> 20 Jlm fraction variable from 46 to<br />

70%, <strong>and</strong> the silt fraction from 13 to<br />

-- --------38%.It-wasnotpossible to carry out<br />

any mechanical tests on soils such as<br />

these.<br />

Comments about the stability of the<br />

slopes <strong>and</strong> of the quarry front<br />

Four typical sections of the slopes<br />

, of Lucera are reported in Fig. 5. In<br />

,:J<br />

order, they represent: I) the still<br />

working_


Geomorphological <strong>and</strong> Geotechnical Aspects of the Fissured ... 627<br />

with the following input data:<br />

y = 2.0 t/m 3<br />


628 C. Cherubini, A. Guerricchio<br />

BALENZANO F., DELL'ANNA L~, DI PIERRO M., 1977. Ricerche rnineralogiche, chirniche e granulornetriche<br />

su argille subappennine della Daunia (Puglia). Atti 2° Congr. Naz. sulle Argille 1976, Bari, Geol.<br />

Appl. Idrogeol. 12, parte II, 33-55. ------ ~~-~-----~---~~-<br />

JACOBACCI A., MALA TESTA A., MARTELLI G., STAMP ANON! G., 1967. Note illustrative della Carta Geologica<br />

d'Italia alla scala 1:100.000. F.163 «Lucera». Roma, pp. 36.<br />

OGNIBEN L., 1969. Schema introduttivo alla geologia del confine calabro-lucano. Mem. Soc. Geol. It. 8,<br />

453-763.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 629-645 (1985)<br />

Geological <strong>and</strong> Mineralogical Aspects of <strong>and</strong> Geotechnical<br />

Approach to the L<strong>and</strong>slides in the «Crete Nere» Formation<br />

in the Noce River Valley, Lucania, Southern Italy<br />

L. DELL'ANNA 1 , M. DI PIERR0 1 , A. GUERRICCHI0 2 , G. MELIDOR0 3<br />

1 Dipartimento Geomineralogico dell'Universita <strong>di</strong> Bari, Campus, Via G. Salvemini, 70124 Bari,Italia<br />

2<br />

Dipartimento <strong>di</strong> Difesa del Suolo, Universita della Calabria, 87036 Arcavacata <strong>di</strong> Rende, Italia<br />

3 Istituto <strong>di</strong> Geologia Applicata e Geotecnica, Facolta <strong>di</strong> lngegneria, Universita <strong>di</strong> Bari, Via Re David 200, 70125<br />

Bari, Italia<br />

ABSTRACT- The , ouctropping in<br />

the Noce River Valley (Lucania, southern Italy), consists of clay shales with<br />

intercalations of limestones, mar!y limestones, etc.<br />

The very <strong>di</strong>fficult to assess geotechnical characteristics were determined both<br />

for the weathered <strong>and</strong> softened clay shales <strong>and</strong> for fresh ones. The prevailing<br />

clay minerals are represented by the association of mixed-layers illitesmectite<br />

<strong>and</strong> <strong>di</strong>ckite + kaolinite, sometimes with illite <strong>and</strong> chlorite. The<br />

presence of <strong>di</strong>ckite, found for the first time in the «Crete Nere>> Formation,<br />

offers the possibility to develop some speculations about its origin <strong>and</strong> the<br />

geotechnical behaviour of the clay shales.<br />

The approach to the correlations between mineralogical composition <strong>and</strong><br />

geotechnical characteristics seems to be complicated by the scaly microstructure<br />

<strong>and</strong> some,<strong>di</strong>agenetic links.<br />

A detailed geological <strong>and</strong> geomorphological map of the l<strong>and</strong>slide phenomena<br />

is also reported.<br />

Introduction<br />

A rather important reference in the<br />

study of mass movements in the Noce<br />

River Valley is provided by the relics<br />

of the deposits of a large, now extinguished,<br />

Pleistocene lake (DE LOREN-.<br />

ZO, 1898) (Fig. 1). The lake was ere-.<br />

ated by damming of tectonic origin<br />

(GUERRICCHIO & MELIDORO,<br />

1981; 1983; MELIDORO, 1982). After<br />

the failure <strong>and</strong> erosion of the natural<br />

dam, which took place about 700,000<br />

years B.P. during the last tectonic<br />

phase, the stream system in the subtended<br />

basin began to subside <strong>and</strong><br />

this fast movement gave rise to many<br />

This work was carried out under the «Finalized Project on Soil Conservation- Subproject L<strong>and</strong>slide<br />

Phenomena>>, <strong>Italian</strong> National Research Council (C.N.R.): Contract n. 80.1254.87 <strong>and</strong> was also<br />

supported by the Ministry of Public Education with grant No. 82/7264 (40%) <strong>and</strong> No. 82/07129.<br />

Some of the mineralogical-geochemical data were presented by L. Dell'Anna <strong>and</strong> G. Melidoro at<br />

the Meeting «Finalized Project Soil Conservation- L<strong>and</strong>slide Phenomena» which was held in Bari<br />

on May 22-23, 1978. - ·


630 L. Dell'Anna, M~ Di Pietro, A. Guerricchio, G. Melidoro<br />

... ----'~-----Fig. 1--Schematic-geological·map of the Noce·RivedYasin;·l :· Meso-cenozoic car bona tic formations<br />

/ of the Campano-Lucanian Platform; 2: Mesozoic siliceous schists; 3: «Crete Nere» Formation <strong>and</strong><br />

Galestrine Flysch; 4: Slipped Large rock bo<strong>di</strong>es (limestrone rocks, siliceous schists); 5: Pleistocenic<br />

lacustrine deposits of the Noce River basin; 6: Alluvial deposits; 7: Overthrust contacts; 8: Zone of<br />

. ·tectonic damming of the Pleistocene lake of the Noce River basin; 9: Contour l~ne of the 500 metres.<br />

impressive, <strong>and</strong> still ongoing, gravitational<br />

movements. These movements<br />

are especially active in flyschoid<br />

formations essentially represented<br />

by the «Crete Nere» («Black<br />

Clays») Formatiop <strong>and</strong> by the Galestrine<br />

Flysch.<br />

Geological features<br />

The «Crete Nere» Formation as defined<br />

by SELLI (1962) was stu<strong>di</strong>ed<br />

stratigraphically by VEZZANI<br />

(1968), but even before that COTEC­<br />

CHIA (1958) described its main geological<br />

characteristics although he <strong>di</strong>d<br />

include it under the term «Scaly<br />

ophiolitiferous clays».<br />

The «Crete Nere» Formation, also<br />

termed «Black Flysch» (SCANDONE,<br />

1971), outcrops in southern Italy in<br />

patches <strong>di</strong>stributed along a belt running<br />

from the Ionian coast beginning<br />

not far from the village of Trebisacce<br />

<strong>and</strong> stretching out in the NNW <strong>di</strong>rection<br />

to the Thyrrenian coast almost<br />

as far as the Gulf of Policastro. It is<br />

allochthonous <strong>and</strong> is included in the<br />

«North-Calabrian <strong>and</strong> I::.agonegro<br />

Sheets» («Coltri nord-calabresi e<br />

lagonegresi») by SELLI (1962) <strong>and</strong><br />

in the «Liguride Complex» by<br />

OGNIBEN (1968). Within such a tectonic<br />

unit, the Formation is located<br />

between the overlaying Saraceno<br />

Formation <strong>and</strong> the underlaying Frido<br />

Formation; locally, it may lie <strong>di</strong>rectly


Geological <strong>and</strong> Mineralogical Aspects of~nd Geotechnical ... 631<br />

on the «Panormide Complex» or on<br />

the more elevated rocks of the «Basal<br />

Complex» <strong>and</strong> it may be overlain by<br />

the transgressive Albidona Flysch or<br />

else by the Pleistocenic conglomerates<br />

of the «Bacino <strong>di</strong> S. Arcangelo».<br />

More recently, SPADEA (1976) excluded<br />

the hypothesis that the Frido­<br />

Crete Nere-Saraceno sequence can<br />

belong to one <strong>and</strong> the same tectonic<br />

unit <strong>and</strong>, based on petrographic considerations,<br />

accepted that the Frido<br />

Formation belongs instead to a tectonic<br />

unit other than the one which includes<br />

the Crete Nere-Saraceno sequence.<br />

In the Noce River Valley, the<br />

«Crete Nere» Formation does notalways<br />

overlie the «Panormide Complex»;<br />

indeed, in the area between<br />

Rivello <strong>and</strong> Nemoli, at Lauria etc.<br />

(GRANDJAQUET, 1963; GUERRIC­<br />

CHIO & MELIDORO, 1981; 1983) it<br />

is the «Panormide Complex>> which<br />

was found to overlie the «Crete Nere»<br />

'Formation. This formation consists of<br />

clay shales <strong>and</strong> marls of ·blackish,<br />

leaden gcey, blackish grey <strong>and</strong> occasionally<br />

greenish colours, separated<br />

into small scales <strong>and</strong> thin plates,<br />

occasionally laminated, with thin<br />

blackish levels of carbon substances<br />

with either thinly or thickly packed<br />

levels of limestones, marly limestones,<br />

silica limestones <strong>and</strong> marls,<br />

blackish or grey-blackish calcarenites<br />

<strong>and</strong> sparse· levels of calcareous'<br />

fine breccias <strong>and</strong> calcareous-quartzymicaceous<br />

s<strong>and</strong>stones interstratified.<br />

As pointed out later, one characteristic<br />

feature is the presence of <strong>di</strong>ckite<br />

which is the first fin<strong>di</strong>ng in the<br />

formation. Occasionally, small mass- .<br />

es of serpentine are found embedded<br />

in tectonic contacts. The age, relative<br />

to that part of the formation which<br />

outcrops in the Noce River Valley,<br />

should be the same as suggested by<br />

VEZZANI (1968) for other areas,<br />

namely the Aptian-Albian age.<br />

Being allochthonous, the «Crete<br />

Nere» Formation has been subjected<br />

to intensive tectonic stresses <strong>and</strong> its<br />

general appearance is creased <strong>and</strong><br />

twisted, locally chaotic. At the surface,<br />

it is mostly chaotic, weathered,<br />

<strong>di</strong>splaced <strong>and</strong> mixed up by l<strong>and</strong>slip<br />

movements; only some minor <strong>di</strong>tches<br />

reveal stackings of un<strong>di</strong>sturbed<br />

layers. Because of their marked susceptibility<br />

to sli<strong>di</strong>ng, the «Crete<br />

Nere» offer a l<strong>and</strong>scape with gentle<br />

forms <strong>and</strong> mild slopes in which the<br />

few relatively more resistant spots<br />

<strong>and</strong> slipped calcareous masses<br />

emerge.<br />

Mineralogical characteristics<br />

The mineralogical analysis was<br />

carried out on the >63 J..lm fractio~<br />

(>90% of the total) of 21 samples of<br />

clay shales(Fig. 2, Table 1)- 5 from<br />

Lagonegro, 3 from Nemoli, 12 from<br />

Lauria <strong>and</strong> 1 from Trecchina - by<br />

X-ray <strong>di</strong>ffraction, using a Philips<br />

power <strong>di</strong>ffractometer with Ni-filtered<br />

CuKa ra<strong>di</strong>ation. Quantitative determination<br />

of the most widely represented<br />

minerals was done using the<br />

methods of SCHULTZ (1964), RAISH<br />

(1964) <strong>and</strong> GRIFFIN (1971) with·<br />

MoSz <strong>and</strong> MgC0 3 as the internal stan-


632 L. Dell'Anna, M. Di Pierro, A. Guerricchio, G. Melidoro<br />

4~<br />

Fig. 2 - Location map of the boreholes <strong>and</strong> trench cutting from which samples have been drawn: a)<br />

borehole; b) trench cutting; c) broken railway bridge of Lagonegro Village.<br />

dards. For nonclay minerals, the X­<br />

ray stu<strong>di</strong>es were integrated with<br />

polarizing microscope <strong>and</strong> stereomicroscope<br />

observations on coarser<br />

grains.<br />

The samples investigated were<br />

found to consist of clay minerals,<br />

quartz, feldspars <strong>and</strong> carbonates. The<br />

clay minerals are mixed-layer illitesmectite<br />

(I/S), illite, chlorite, smectite,<br />

kaolinite <strong>and</strong> <strong>di</strong>ckite; the feldspars<br />

are orthoclase <strong>and</strong> Naplagioclase;<br />

with weathered clay<br />

patches on the coarser grains; the<br />

carbonates consist of secondary<br />

stoichiometric calcite, magnesiferous<br />

calcite ·of the limestone fragments,<br />

<strong>and</strong> dolomitic limestone probably derived<br />

from the fragmentation of dolomites<br />

<strong>and</strong> of calcareous dolomites.<br />

The mixed layers liS were identified<br />

<strong>and</strong> determined after the<br />

methods of REYNOLDS (1980): they<br />

are of the ordered type with about<br />

30% exp<strong>and</strong>able layers.<br />

Following the definition of BRAD-


Lagonegro<br />

sample 1 2 3 4<br />

borehole SI SI Sw' Sw<br />

deptli (m) · 36 4E2 35.5 45<br />

(*)drawn from trench cutting cl4<br />

TABLE 1<br />

Noce River Valley


-<br />

634 L. Dell'Anna,, M. Di Pierro, A. Guerricchio, G. Melidoro<br />

LEY & GRIM (1961), the illite is a 2M<br />

polytype with a chemism- as determined<br />

by the methods of BROWN &<br />

BRINDLEY (1980) - which reveals<br />

Al as the principal cation in the<br />

octahedral sheet <strong>and</strong> a low HzO con-<br />

J<br />

tent; it has varying degrees of crystallinity<br />

(WEBER et al., 1976) (E = 95 to<br />

420 A) <strong>and</strong> paragonitization (x = 4 to<br />

17%) which was assessed on the basis<br />

of the ratio suggested by CIPRIANI et<br />

al. (1968). The (001) reflections give C 0<br />

sin~ values around 19.96 A. Chlorite<br />

is represented by the II b polytype<br />

(BAILEY, 1980); its crystallochemical<br />

formula, as determined after<br />

BROWN & BRINDLEY (1980) is<br />

(Mgz.oAlL4Fez.6)(Siz.?Alu)(OH)sOw <strong>and</strong><br />

. --------can-he aitriouted to the ripidolite<br />

family (HEY, 1954). The behaviour of<br />

the characteristic reflections as a result<br />

of heating (JOHNS et al., 1954)<br />

<strong>and</strong> the position of the (060) reflection<br />

seem to in<strong>di</strong>cate good crystal<br />

structure <strong>and</strong> bo values equal to 9.306<br />

A. Little crystallochemical information<br />

can be obtained for the smectite<br />

because its characteristic reflections<br />

SiOz<br />

TiOz<br />

Al203<br />

Fe203<br />

M gO<br />

CaO<br />

K 2 0<br />

Na 2 0<br />

HzO<br />

46.65<br />

39.49<br />

13.86<br />

TABLE 2<br />

Chemical composition of the <strong>di</strong>ckite<br />

literature data<br />

2 3 4<br />

45.07 44.87 45.59<br />

0.01 0.64 0.04<br />

40.20 38.04 39.60<br />

0.09 1.67 0.31<br />

0.03 0.28 0.22<br />

0.21 0.17 0.24<br />

0.15 0.12 0.04<br />

0.02 0.11<br />

13.84 14.41 13.88<br />

overlap those of other minerals that<br />

are pr:es~nLiiLg:r.e.atc:;cal;n.mdauce ..<br />

The smectite has a low degree of crystallinity.<br />

The kaolinite, too, because<br />

of the poor resolution of the characteristic<br />

doublets (HINCKLEY, 1963),<br />

is poorly crystallized. Conversely, the<br />

<strong>di</strong>ckite is well crystallized <strong>and</strong> is <strong>di</strong>stinguishable<br />

from the other clay<br />

minerals by its colour <strong>and</strong> occurrence.<br />

In fact, it is found between the<br />

scales of the soil as thin beds, spots<br />

<strong>and</strong> streaks of a white colour. It does<br />

not occur in association with kaolinite<br />

<strong>and</strong> its chemical composition<br />

(Table 2), as determined in 8 samples<br />

obtained from representative clay<br />

shales, is very close to the<br />

stoichiometric composition with<br />

Fez03, MgO, CaO, KzO <strong>and</strong> NazO in<br />

traces, as in the natural compounds<br />

to which it can be compared with respect<br />

to X-ray <strong>and</strong> optical properties<br />

(Tables 3 <strong>and</strong> 4) <strong>and</strong> density (Dmeas.<br />

<strong>and</strong> Dcalc. = 2.61 g/cm 3 ).<br />

Concerning the relationship between<br />

the identified components in<br />

terms of abundance (Table 5), the<br />

«Crete Nere» (8 samples)<br />

45.97<br />

0.07<br />

39.54<br />

0.23<br />

0.15<br />

0.11<br />

0.05<br />

0.02<br />

13.96<br />

:2:<br />

0.2<br />

0.4<br />

0.2<br />

C%<br />

0.5<br />

0.9<br />

1.3<br />

100.00<br />

99.62 100.20 100.03<br />

100.10<br />

1: stoichiometric <strong>di</strong>ckite; 2: FERLA & ALAIMO (1975); 3: DEER et al. (1962); 4: average<br />

sample (AMICARELLI et al., 1977)


Geological <strong>and</strong> Mineralogical Aspects of <strong>and</strong> Geotechnical... 635<br />

TABLE 3<br />

Lattice constants of the <strong>di</strong>ckite<br />

5.149<br />

8.949<br />

14.419<br />

98°48'<br />

litera tu re data<br />

2<br />

5.150 ± 0.001<br />

8.940 ± 0.001<br />

14.424 ± 0.002<br />

96°44' ± 1'<br />

3<br />

5.154 - 5.160<br />

8.930 - 8.942<br />

14.418 - 14.430<br />

96°49' - 96°51'<br />


a­<br />

"' a-<br />

TABLE 5<br />

Mineralogical composition of the


Geological <strong>and</strong> Mineralogical Aspects o(<strong>and</strong> Geotechnical... 637<br />

rock portion- appears to be splitting<br />

into scales, thin plates or hard<br />

little prisms in depth; at the surface,<br />

wherever it has been affected by<br />

weathering processes <strong>and</strong> <strong>di</strong>slocation<br />

<strong>and</strong> mixed up by l<strong>and</strong>slide phenomena,<br />

the clay shale portion has<br />

undergone a softening process which<br />

has partially destroyed its scaly nature<br />

<strong>and</strong> structural layout with an<br />

ensuing remarkable decay of its<br />

mechanical strength characteristics.<br />

The geotechnical behaviour of the<br />

unweathered <strong>and</strong> softened scaly clay<br />

shale is obviously <strong>di</strong>fferent. This is<br />

shown in Table 6 which gives the<br />

mean values of laboratory tests made<br />

on 12 un<strong>di</strong>sturbed samples obtained<br />

from boreholes at Lauria.<br />

The textural microscopic features<br />

are similar to the macrosc_opic features.<br />

In fact, the microphotographs<br />

presented in Figs 3a <strong>and</strong> 3b obtained<br />

by the scanning electron microscope<br />

(SEM) show a high level of isoorientation<br />

of the thin plates with a<br />

flat-undulating microtexture; The<br />

surfaces of microscales are very<br />

smooth <strong>and</strong> on them the domains <strong>and</strong><br />

particles appear to be «imbricated»<br />

<strong>and</strong> welded almost in continuity, by<br />

stress activities <strong>and</strong> <strong>di</strong>agenetic<br />

bonds. This gives rise to a strongly<br />

anisotropic mechanical behaviour<br />

both parallel <strong>and</strong> normal to the fissility<br />

surfaces. When the scales are intact,<br />

unweathered, their microstructure<br />

is rather compact with very minute<br />

pores.<br />

Particle-size <strong>di</strong>stribution, as determined<br />

with the ASTM technique,<br />

shows that the «s<strong>and</strong>» <strong>and</strong> «gravel»<br />

contents prevail over the clay contents.<br />

This is quite often due to the<br />

argillitic nature of the soils, so that<br />

these conventional techniques are inadequate<br />

to obtain complete <strong>di</strong>saggregation<br />

of the hardest little scales.<br />

On the basis of the colloidal activity,<br />

taken as the ratio between the plasticity<br />

index <strong>and</strong> the clay content (d:::;<br />

0.002 mm), they can be classified as<br />

TABLE 6<br />

Mean values of some geotechnical characteristics of the


638 L. Dell'Anna, M. Di Pierro, A. Guerricchio, G. Melidoro


Geological <strong>and</strong> Mineralogical Aspects of <strong>and</strong> Geotechnical... 639<br />

Fig. 3 - Microtexture of «Crete Nere>> (Black Clays) of La~ria Inferiore V_ill~~e by the SE!'1·<br />

a: cross-section to the fissility surface; planar ondulated m1crotexture; b: flSSI!rty surface w1th<br />

planar microtexture constituted by isoriented <strong>and</strong> «welded>> domains <strong>and</strong> plates; c: <strong>di</strong>ckite associations<br />

along a fissility surface.<br />


640 L. Dell'Anna, M. Di Pierro, A. Guerricchio, G. Melidoro<br />

same soil, but weathered <strong>and</strong> with a<br />

low scale content, is higher than the<br />

average (0.95), with an experimental<br />

peak of 0.98. For the weathered <strong>and</strong><br />

softened surface soil, lower unit<br />

weight values <strong>and</strong> higher water<br />

limits <strong>and</strong> contents were obtained.<br />

Concerning the characteristics of<br />

residual shear strength determined<br />

by means of reversal, the effective<br />

mean friction angle is 16°. Such low<br />

strength ought to be close to that<br />

which occurs along the scaly surfaces.<br />

Lastly, preliminary tests in<strong>di</strong>cate<br />

that the mechanical strength is considerably<br />

lowered by large amounts<br />

of <strong>di</strong>ckite; very likely, this is due to<br />

the «lubricating effect» of this powdery<br />

mineral along the scaly surfaces.<br />

L<strong>and</strong>slide phenomena<br />

The rupture of the tectonic damming<br />

in the Noce River Valley, which<br />

had created the big Pleistocene lake,<br />

\<br />

marks the beginning of a long l<strong>and</strong>sli<strong>di</strong>ng<br />

phase due to the rapid sinking<br />

of the stream system. Gravitational<br />

movements of large masses, which<br />

are <strong>di</strong>splaced by a sli<strong>di</strong>ng mechanism<br />

·are often interpreted as active tectonic<br />

phenomena just because they<br />

occur at sites which correspond to<br />

structural organizations produced by<br />

faults, tectonic superpositions, etc.,<br />

accor<strong>di</strong>ng to the recent fin<strong>di</strong>ngs by<br />

GUERRICCHIO & MELIDORO<br />

(1981) in the South Apennine Range.<br />

Th~y are more apparent by characteristic<br />

«fresh>> b<strong>and</strong>s, of a lighter colour,<br />

which become unevenly broader<br />

as time goes by along the contacts between<br />

masses of limestones <strong>and</strong><br />

dolomitic limestones <strong>and</strong> flyschioid<br />

formations or colluvia .. Quite often<br />

these b<strong>and</strong>s are «freshened up>> as a<br />

result of an earthquake as, for example,<br />

at Senerchia, in the Sele River<br />

Valley <strong>and</strong> in the Valley of the Sauro<br />

Torrent near Stigliano (Lucania), following<br />

the catastrophic earthquake<br />

which occurred in Campania <strong>and</strong><br />

Lucania on November 23, 1980. In<br />

the Noce Valley, these «fresh>> areas<br />

have been observed as a b<strong>and</strong> marking<br />

the site of l<strong>and</strong>slide detachment<br />

in the limestone masses at Lauria.<br />

Concerning the susceptibility to<br />

l<strong>and</strong>sli<strong>di</strong>ng of the Noce River basin, a<br />

rather ·interesting comment was<br />

made by BRUNO (1891) at the end of<br />

the last century: «In this basin, except<br />

for some peculiar exceptions, everything<br />

may be said to be in motion:<br />

so great is the number of l<strong>and</strong>slips<br />

<strong>and</strong> sli<strong>di</strong>ng soils>>. Obviously this<br />

statement should be understood with<br />

reference to the flyschioid formations.<br />

Among the major l<strong>and</strong>slide movements<br />

in the basin stu<strong>di</strong>ed, special<br />

mention should be made with reference<br />

to the built up areas at Lauria,<br />

Lagonegro, Trecchina, <strong>and</strong> Nem9li or<br />

to road <strong>and</strong> railway infrastructures.<br />

The stream system is subject to continuous<br />

deformation <strong>and</strong>, as a consequence,<br />

the channelled waters produce<br />

toe erosions which in turn<br />

cause remobilization of large l<strong>and</strong>slide<br />

bo<strong>di</strong>es. These l<strong>and</strong>slides are responsible<br />

for major problems with


~ - - -- -<br />

Geological <strong>and</strong> Mineralogical Aspects of <strong>and</strong> Geotechnical... 641·<br />

respect to soilconservation <strong>and</strong> economic<br />

<strong>and</strong> social development all<br />

over the valley.<br />

Because of its specific geological<br />

<strong>and</strong> geomorphological con<strong>di</strong>tions,<br />

Lauria is, at present, one of the villages<br />

most seriously affected by the<br />

l<strong>and</strong>slide phenomena which mostly<br />

prevail in the «Crete Nere» or are induced<br />

by them in the calcareous<br />

rocks (GUERRICCHIO & MELIDORO,<br />

1983).<br />

At Lagonegro, the calcareous cliff<br />

on which the older part of the town<br />

tests is involved in the mass movement:<br />

the mass was crossed by a railway<br />

tunnel <strong>and</strong> a high a~ch bridge<br />

was built at the exit from the tunnel<br />

in the 1930's (Fig. 4). Above this<br />

structure, soon after it was completed,<br />

there bega.n to develop, deformations<br />

<strong>and</strong> failures which are<br />

still going on due to the very slow<br />

«Sinking» motion into the flysch <strong>and</strong><br />

to the tilting movement of the rock<br />

mass.<br />

At Trecchina, impressive l<strong>and</strong>slide<br />

)movements are observed inside the<br />

«Crete Nere» from where they begin<br />

<strong>and</strong> deve}op upwards to <strong>di</strong>smantle<br />

the overlying Pleistocene lacustrine<br />

deposits.<br />

Lake Sirino is believed by some to<br />

be of glacial origin, whereas others<br />

think it was simply created by l<strong>and</strong>slide<br />

damming across the lake's<br />

effluent. Recently, it has been demonstrated<br />

(GUERRICCHIO & MELI­<br />

DORO, 1981) that the whole body of<br />

water is a classical l<strong>and</strong>slide-created<br />

lake which was formed as a result of<br />

the slopewise sli<strong>di</strong>ng, along the bed<strong>di</strong>ng<br />

planes, of a huge bulk of «silica<br />

schists» <strong>and</strong> galestrine flysch that<br />

had fallen off the mountain <strong>and</strong><br />

whose large failure surface is still<br />

visible.<br />

The map in Table 1 reports a geolo-<br />

.Fig. 4 - Failure of the railway bridge near Lagonegro Village (see Fig. 1) produced by the slow<br />

movement of the masses of carbonatic rocks on the flyschioid formations, partially constituted by<br />

the «Black Flysch». ·


642 L. Dell'Anna, M. Di Pierro, A. Guerricchio, G. Melidoro<br />

gical <strong>and</strong> geomorphological survey of<br />

the mass movements in the soil at<br />

<strong>and</strong> around Nemoli, reproduced on a<br />

1:2000 scale. In ad<strong>di</strong>tion to normal<br />

l<strong>and</strong>slide phenomena such as slumps<br />

<strong>and</strong> earthflows, large mass movements<br />

are also present which are due<br />

to «deep gravitational failure>>,.<br />

«lateral spread>> <strong>and</strong>, occasionally,<br />

«sackung>>. Ancient dormant mass<br />

movements have been <strong>di</strong>stinguished<br />

from ongoing ones by using <strong>di</strong>fferent<br />

colours in the map. Within each<br />

l<strong>and</strong>slide phenomenon, various<br />

morphological features such as edges<br />

<strong>and</strong> primary <strong>and</strong> secondary failure<br />

scarps-have-·been mapped· wherever<br />

they are still visible, <strong>and</strong> so have the<br />

boundaries of the l<strong>and</strong>slide body, depressions<br />

<strong>and</strong> basins, counterslope<br />

surfaces, the main <strong>di</strong>rection of the<br />

mass movement, etc.<br />

Interesting phenomena of lateral<br />

spread are observed in the Arenazza<br />

carbonate relief, only part of which<br />

falls within the northwest section of<br />

the surveyed area (Fig. 5).<br />

It often happens that the earthflows<br />

<strong>di</strong>chotomize the stream beds,<br />

as in Vallone Ferriera, an event that<br />

2 ~===~ --<br />

a<br />

4~<br />

0<br />

200 400<br />

Fig. 5 - Schematic geological map of the lateral spreads in the Arenazza carbonate relief <strong>and</strong> of the<br />

flows in the «Black Shales Formation~. 1: Calcarenites, calcilutites, dolo mites of the M.te Fora porta<br />

se.rie <strong>and</strong> dolomites with Megalodon of the Carbonatic serie of Lucanian-Silentini massif; 2: «Crete<br />

Nere>> Formation; 3: Nomenclature of a l<strong>and</strong>slide; a) crown a;nd main scarp; b) slumps; c) secondary<br />

scarp; d) sense ofthe movement; e) flows; f) limit ofthe l<strong>and</strong>slide body; 4: overthrust; 5: springs.


Geological <strong>and</strong> Mineralogical Aspects of <strong>and</strong> Geotechnical ... 643<br />

is clearly apparent in the body of the<br />

ancient mass movements.<br />

Due to the high rate of viscosity of<br />

the clay material, the flows have a remarkable<br />

dragging capacity so that<br />

large calcareous-dolomitic blocks<br />

(often as large as hundreds of metres)<br />

from the overlying mass are <strong>di</strong>slocated<br />

<strong>and</strong> crushed, or else left behind<br />

along .the sides of the «channels» in<br />

the form of .<br />

The slumps <strong>and</strong> earthflows described<br />

thus far are only Qccasional<br />

<strong>and</strong> local manifestations in the large<br />

rock mass underlain . by the deep<br />

gravitational failure. Elsewhere, the<br />


644 L. Dell'Anna, M. Di Pierro, A. Guerricchio, G. Melidoro<br />

which <strong>di</strong>sguised such correlations.<br />

Difficulties could also arise from<br />

possible local <strong>di</strong>fferences deriving<br />

from the fact that the clay shales<br />

were involved in <strong>di</strong>fferent geologic<br />

events during anP/or after their deposition<br />

so that the genetic interpretation<br />

of the main identified association<br />

becomes extremely <strong>di</strong>fficult<br />

to underst<strong>and</strong>. In fact, the heterogeneity<br />

of the identified minerals<br />

seems to point to a heritage in the<br />

genesis of the se<strong>di</strong>ment: still, the presence<br />

<strong>and</strong> occurrence of <strong>di</strong>cki te seem<br />

to suggest a rather strong postdepositional<br />

<strong>di</strong>agenesis resulting<br />

from burial <strong>and</strong>/or tectonization<br />

---- which might be responsible for the<br />

buil<strong>di</strong>ng of ordered mixed-layer IfS<br />

through the mechanism smecti te --7<br />

mixed-layer IfS --7 illite. In this context,<br />

however, one could not underst<strong>and</strong><br />

the absence of <strong>di</strong>ckite <strong>and</strong>/or<br />

nacrite in samples containing the~<br />

simple association illite + chlorite.<br />

Furthermore, the fact that certain<br />

illites are poorly crystallized <strong>and</strong> paragonitized<br />

seems to in<strong>di</strong>cate further<br />

transformations during an early <strong>di</strong>agenesis<br />

<strong>and</strong> that these were also re-<br />

SJ?Onsible for feldspar weathering;<br />

the formatioRof-<strong>di</strong>ckite~too, accor<strong>di</strong>ng<br />

to the most recent genetic interpretation<br />

(FERLA, 1982) could be<br />

ascribed to this <strong>di</strong>agenesis. There are<br />

·no elements contrary to the genetic<br />

hypothesis accor<strong>di</strong>ng to which <strong>di</strong>ckite<br />

was formed through hydrothermal<br />

effects which were penecontemporaneous<br />

or posterior to<br />

se<strong>di</strong>mentation; the hydrothermal<br />

effects would be more or less <strong>di</strong>rectly<br />

responsible for the presence of thenar<strong>di</strong>te,<br />

Na 2 S0 4 , which was found to<br />

be associated with <strong>di</strong>ckite in some<br />

«Crete Nere» samples during further<br />

analyses. Lastly, the geological <strong>and</strong><br />

geomorphological detailed study of<br />

the mass movements in Nemoli <strong>and</strong><br />

its surroun<strong>di</strong>ngs not only provides a<br />

precise idea about the typology, entity<br />

<strong>and</strong> frequency of these gravitational<br />

movements, but it also clearly<br />

shows that the _mass movements<br />

which are normally observed are,<br />

in many instances, nothing but<br />

occasional <strong>and</strong> local manifestations<br />

of far more deep-seated movements<br />

affecting very much larger rock<br />

masses.<br />

REFERENCES<br />

AMICARELLI V., BALENZANO F., DELL'ANNA 1., GUERRICCHIO A., MELIDORO G., PETRELLA M., 1977.<br />

Dickitenelle argille varicolori dell'Italia Meri<strong>di</strong>onale. Atti 2° Congr. Naz. sulle Argille 1976, Bari,<br />

Geol. Appl. Idrogeol. 12, parte II, 353-368.<br />

BRADLEY W.F., GRIM R.E., 1961. Mica Clay Minerals. Pp. 208-241, in:


. ..----<br />

Geological <strong>and</strong> Mineralogical Aspects of <strong>and</strong> Geotechnical ... 645<br />

CIPRIANI C., SASSI F.P., VITERBO BASSANI, C., 1968. La composizione delle miche chiare in rapporto con<br />

le costanti reticolari e col grado metamorfico. Rend. Soc. It. Min. Petr. 24, 1-37.<br />

CorECCHIA V., 1958. Le argille scagliose ofiolitifere della Valle del Frido a nord del M. Pollino. Boll. Soc.<br />

Geol. It. 77 (3), 205-245.<br />

COTECCHIA V., FEDERICO A., GUERRICCHIO A., MELIDORO G., PETLEY D.J., 1983. Introductory backanalysis<br />

of l<strong>and</strong>slides in some complex formations of Southern Apennines, Italy. Geol. Appl.<br />

Idrogeol. 18, parte I, 241-259.<br />

DEER A.W., Howm R.A., ZussMAN J., 1962. Rock-Forming Minerals. Vol. 3. Sheet Silicates. J. Wiley &<br />

Sons, New York.<br />

DE LORENZO G., 1898. Reliquie <strong>di</strong> gran<strong>di</strong> laghi pleistocenici nell'Italia meri<strong>di</strong>onale. Atti Ace. Se. Fis. e<br />

Mat., Napoli, serie 2, 9 (6), 1-74.<br />

FERLA P., ALAIMO R., 1975. Dickite nelle argille variegate <strong>di</strong> Caltavuturo-Scillato (Madonie, Sicilia).<br />

Miner. Petrogr. Acta 20, 129-149.<br />

FERLA P ., 1982. Significato genetico della <strong>di</strong>ckite presente in <strong>di</strong>verse formazioni argillose della Sicilla e<br />

dell'Appennino Meri<strong>di</strong>onale. Boll. Soc. Geol. It. 101, 233-246.<br />

GRANDJAQUET C.L., 1963. Schema structural de l'Apennin campano-lucanien (Italie). Rev. Geogr.<br />

Phys. Geol. Dyn. 5 (3), 185-202.<br />

GRIFFIN G.M., 1971. Interpretation of X-ray Diffraction Data. Pp. 541-569, in: Procedures in<br />

Se<strong>di</strong>mentary Petrology (R.E. Carver, e<strong>di</strong>tor), J. Wiley & Sons, New York.<br />

GuERRICCHIO A., MELIDORO G., 1981. Movimenti <strong>di</strong> massa pseudotettonici nell'Appennino dell'Italia<br />

Meri<strong>di</strong>onale. Geol. Appl. Idrogeol. 16, 251-294.<br />

GUERRICCHIO A., MELIDORO G., 1982. New views on the origin ofbadl<strong>and</strong>s in the Plio-Pleistocenic clays<br />

of Italy. Pp. 227-238, in: Proc. 4th Int. Congr. IAEG, vol. 11, New Delhi (In<strong>di</strong>a).<br />

GUERRICCHIO A., MELIDORO G., 1983. Fenomeni franosi ed assetto urbanistico dell'abitato <strong>di</strong> Lauria<br />

(Prov. Potenza). Geol. Appl. Idrogeol. 18, parte I, 327-343.<br />

HEY M.H., 1954. New review of the chlorites. Mineral. Mag. 30, 277-292.<br />

HINCKLEY D.N., 1963. Variability in «crystallinity» values among the kaolin deposits of the Coastal<br />

Plain of Georgia <strong>and</strong> South Carolina. Clays Clay Miner. 11, 229-235.<br />

JoHNS W.D., GRIM R.E., BRADLEY W.F., 1954. Quantitative estimations of clay minerals by <strong>di</strong>ffraction<br />

methods. J. Se<strong>di</strong>ment. Petrol. 24, 242-251.<br />

MANFREDINI G., MARTINETTI S., RIBACCHI R., SANTORO V.M., SCIOTTI M., SILVESTRI T., 1981. An earthflow<br />

in the Sinni Valley (Italy). Pp. '457-462, in: Proc. lOth Int. Conf. SMFE, vol. 3, Stockholm.<br />

MELIDORO G., 1982. Aspetti geomorfologicie tettonici dei movimenti <strong>di</strong> massa. Pp. 235-248, in: Atti<br />

Convegno Conclusivo Progetto Finalizzato , CNR, Roma.<br />

NEWNHAM R.E., BRINDLEY G.W., 1956. The crystal structure of <strong>di</strong>ckite. Acta crystallogr. 9, 759-769.<br />

NEWNHAM R.E., 1961. A refinement of the <strong>di</strong>ckite structure <strong>and</strong> some remarks on polymorphism in<br />

kaolin minerals. Mineral. Mag. 32, 681-705.<br />

OGNIBENL, 1969. Schema introduttivo alla geologia del confine calabro-lucano. Mem. Soc. Geol.It. 8,<br />

fasc. 4, 453-763. ·<br />

RAISH H.D., 1964. Quantitative mineralogical analysis of carbonate rocks. Texas J. Sci. 16, 172-180.<br />

REYNOLDS R.C., 1980. Interstratified Clay Minerals. Pp. 249-303, in: Crystal Structures of Clay Minerals<br />

<strong>and</strong> their X-ray Identification (G .W. Brindley <strong>and</strong> G. Brown, e<strong>di</strong>tors), Mineralogical Society,<br />

London. .<br />

· ScANDONE P ., 1971. Note illustrative dei fogli 199-Potenza e 21 0-Lauria. II E<strong>di</strong>z. della Carta Geologica<br />

d'Italia, Servizio Geologico d'Italia, Roma.<br />

SCHULTZ L.G ., 1964. Quantitative interpretation of mineralogical composition from X-ray <strong>and</strong> chemical<br />

data for the Pierre shale. Prof. Pap. U.S. geol. Surv. 391-C.<br />

SELL! R., 1962. Il Paleogene nel quadro della geologia dell'Italia Meri<strong>di</strong>onale. Mem. Soc. Geol. It. 3,<br />

737-790.<br />

SPADEA P., 1976. I car;bonati nelle rocce metacalcaree della Formazione del Frido della Lucania. Ofioliti<br />

3, 431-456.<br />

VEZZANI L., 1968. Stu<strong>di</strong>o stratigrafico della Formazione delle Crete Nere (Aptiano-Albiano) al confine<br />

calabro-lucano. Atti Ace. Gioenia Se. Nat. Catania, serie VI, 189-221.<br />

WEBER F., DUNOYER DE SEGONZAC G., EcoNOMOU, 1976. Une nouvelle expression de la


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 647-660 (1985)<br />

Upper Miocene Clays from Vallone Salina, SW Cosenza,<br />

Calabria: Textural <strong>and</strong> Compositional Characteristics<br />

with Geotechnical <strong>and</strong> Paleoenvironmental Aspects<br />

F. BALENZAN0 1 , L. DELL'ANNA 1 , M. DI PIERR0 1 , V. RIZZ0 2<br />

1 Dipartimento Geomineralogico dell'Universita <strong>di</strong> Bari, Campus, Via G. Salvemini, 70124 Bari, Italia<br />

2<br />

Istituto <strong>di</strong> Ricerca per la Protezione Idrogeologica, C.N.R., Via Marconi 28, 87030 Castiglione Cosentino Stazione,<br />

Italia<br />

ABSTRACT- In accordance with geological data (ORTOLANI et al., 1979), the<br />

pelitic se<strong>di</strong>ments of Vallone Salina (southwest of Cosenza) were deposited in<br />

a neritic environment after a long transport in suspension during the period<br />

ranging from the Upper Tortonian to the Messinian.<br />

The largest part of the se<strong>di</strong>ments derives essentially from the metamorphites<br />

<strong>and</strong> magmatites of the Calabrian Alpine overthrust rocks; the clay minerals<br />

(illite, smectite, mixed-layer illite-smectite, chlorite, kaolinite <strong>and</strong> mixedlayer<br />

hydrobiotite-vermiculite) are the products of various areas of <strong>di</strong>agenesis<br />

in a continental environment during weathering of the parent rocks<br />

<strong>and</strong> in a marine environemnt during transport <strong>and</strong> se<strong>di</strong>mentation.<br />

During deposition of the me<strong>di</strong>um to high part of the se<strong>di</strong>ments, almost at the<br />

time of the passage from the Upper Tortonian to the Messinian, a deepening<br />

of the se<strong>di</strong>mentation basin took place. With the deepening, there. occurred an<br />

enrichment in clay, smectite <strong>and</strong> calcite from <strong>di</strong>rect chemical precipitation,<br />

as well as from a change in the source areas. At first, material was brought in<br />

from the upper overthrust rocks (Polia-Copanello Units), <strong>and</strong> later from those<br />

in an interme<strong>di</strong>ate position (Castagna Units <strong>and</strong> Bagni-Fondachelli Units) of<br />

the Calabrian Alpine chain.<br />

The deepening began in correspondence with a volcanic event that caused<br />

the <strong>di</strong>rect deposition of volcanic ash. Probably the volcanic event <strong>and</strong><br />

deepening of the basiri are geologically related.<br />

In the upper part of the se<strong>di</strong>ments, in correspondence with the beginning of<br />

the deposition of <strong>di</strong>atoms, a partial closing of the basin took place.<br />

The pelitic se<strong>di</strong>ments of Vallone Salina have very poor geotechnical properties.<br />

The Atterberg limits are correlated with the clay content <strong>and</strong> are<br />

strongly affected by the amounts of carbonates <strong>and</strong> clay minerals present,<br />

particularly smectite.<br />

introduction<br />

The clays investigated outcrop at<br />

Serra d'Aiello, Cleto <strong>and</strong> Savuto (Fig.<br />

1), southwest of Cosenza, Calabria<br />

(southern Italy). They belong to Upper<br />

Miocene sequences of the Calabrian<br />

coastal chain <strong>and</strong> were deposited<br />

before the tectogenic phase of<br />

,the Lower Messinian (ORTOLANI et<br />

al., 1979). These sequences have similar<br />

environmental facies with local<br />

variations (DI NOCERA et al., 1974;<br />

This research work was carried-out with the financial support of C.N.R. ·


648 F. Balenzano, L. Dell'An.na, M. Di P!erro, V. Rizzo<br />

------r ·----------~-~-----·--- -·· ___ )" __ -·<br />

-z_<br />

EZJ2<br />

EJE]4<br />

0 2 4 6km<br />

Fig. 1 -Geological scheme of the area considered <strong>and</strong> location of the section stu<strong>di</strong>ed. 1: Quaternary;<br />

2: Messinian-Lower Pliocene se<strong>di</strong>mentation cycle; 3: Tortonian-Messinian se<strong>di</strong>mentation cycle; 4:<br />

SJlbstratum (ORTOLANI et al., 1979).<br />

ROMEO & TORTORICI, 1980). From<br />

the base upward, the sequences consist<br />

of continental conglomerates, littoral-calcareous<br />

s<strong>and</strong>stones, pelagic<br />

clays with abundant microfauna,<br />

euxinic <strong>di</strong>atoms <strong>and</strong> evaporites. The<br />

clayey unit is a maximum o~ 80 m<br />

thick. In the area of Serra d'Aiello,<br />

Cleto <strong>and</strong> Savuto the clays are interbedded<br />

with minor s<strong>and</strong>stone layers<br />

<strong>and</strong> sometimes with conglomerates<br />

of pelagic rock elements (Fig. 2) ..<br />

The clays are rich in planctonic<br />

foraminifera, lamellibranchia with<br />

thin shells <strong>and</strong> Dentalia (DI NOCERA<br />

et al., 1974); the microfauna suggest


s::<br />

·~ "'<br />

s::<br />

Vl<br />

Vl<br />

Cl)<br />

:;:<br />

s::<br />

·~<br />

s:: "'<br />

0<br />

4-'<br />

"' 0<br />

I-<br />

Cl)<br />

"'<br />

D..<br />

D..<br />

:::><br />

100<br />

~<br />

-rd.,-,-- 80<br />

...!;!_<br />

.............. ...._<br />

....... ...L. ..L 60<br />

..,... .,...d...._<br />

..L. ...L.<br />

25 r-·-.-_~• __,..._, 40<br />

..L...L."T'"-rj<br />

24 a 20<br />

2~ .,.. ..,... ...... .J.<br />

22 1<br />

21 ,- ,- ..L ......<br />

20<br />

19 a<br />

Upper Miocene Clays from Vallone Salina ... 649<br />

E


650 F. Balenzano, L. Dell'Anna, M. Di Pierro, V. Rizzo<br />

large amounts of Mn (BONI &<br />

ROLANDI, 1975). The two samples<br />

from the lowest part of the s~ries<br />

were taken at a site west of Savuto,<br />

where the passage to underlying 'calcareous<br />

s<strong>and</strong>stones can be seen.<br />

The objectives of the work presented<br />

here were to determine the<br />

granulometric, mineralogical <strong>and</strong><br />

chemical features of the clayey unit<br />

. in relation to the general characteristics·<br />

of se<strong>di</strong>mentation, origin of the<br />

minerals <strong>and</strong> the main related<br />

geotechnical properties.<br />

Particle size analysis was carried<br />

out by wet sieving for the greater<br />

than 32 ).LID fractions <strong>and</strong> by se<strong>di</strong>mentation<br />

for the other size fractions<br />

(MILNER, 1962).<br />

The mineralogical stu<strong>di</strong>es were<br />

carried out using a Philips powder X­<br />

ray <strong>di</strong>ffractometer with Ni-filtered<br />

CuKa ra<strong>di</strong>ation. Mixed-layer illitesmectite<br />

(liS) clay minerah were<br />

identified in accordance with ihe<br />

methods of REYNOLDS (1980) <strong>and</strong><br />

SRODON (1981); the structural <strong>and</strong><br />

chemical characteristics of illite,<br />

accor<strong>di</strong>ng to CIPRIANI et al. (1968),<br />

WEBER et al. (1976), BRADLEY &<br />

GRIM (1961), BROWN & BRINDLEY<br />

(1980), <strong>and</strong> DI PIERRO (1981); those<br />

of the smectites accor<strong>di</strong>ng to<br />

GREENE-KELLY (1953), MAC<br />

EWAN (1961), BISCAYE (1965), BRI­<br />

GATTI (1983), <strong>and</strong> DESPRAIRES<br />

(1983); those of chlorite, accor<strong>di</strong>ng to ·<br />

. J<br />

HEY (1954), JOHNS et al. (1954),<br />

CARROL (1970), BAILEY (1980), <strong>and</strong><br />

BROWN & BRINDLEY (1980);- <strong>and</strong> .<br />

;the degree of crystallinity ofkaolinite<br />

accor<strong>di</strong>ng to HINCKLEY (1963).<br />

The quantitative evaluation of the<br />

main minerals was carried out on the<br />

s<strong>and</strong> (63-125 ).LID); silt (4-63 ).LID) <strong>and</strong><br />

clay (less than 4 ).LID) fractions in<br />

order to reduce errors due to the<br />

«matrix .effect»; the methods of<br />

RAISH (1964), SCHULTZ (1964) <strong>and</strong><br />

GRIFFIN (1971) were followed using<br />

MoSz <strong>and</strong> MgC03 as internal st<strong>and</strong>ards.<br />

The mineralogical analyses of<br />

the non-clay minerals were completed<br />

with microscopic observations<br />

using a polarized light microscope.<br />

Methods of analysis<br />

------------~~------------ __________ __i:he~fal an~Jyses of the samples<br />

after removal of carbonates were<br />

done by X-ray fluorescence spectroscopy<br />

using a Cr tube. Atomic absorption<br />

spectroscopy was used to determine<br />

the Ca <strong>and</strong> Mg in the carbonates,<br />

<strong>and</strong> the Brush-Penfield method<br />

(TREADWELL, 1954) was used to determine<br />

HzO+. The Atterberg consistency<br />

limits were measured following<br />

ASTM st<strong>and</strong>ards D 423-66<br />

<strong>and</strong> D 424-59 (65).<br />

Results<br />

Samples 1-16, taken from the lower<br />

part of the clayey sequence, were<br />

found to have <strong>di</strong>fferent particle size<br />

<strong>and</strong> compositional characteristics<br />

than those of samples 18-25, taken<br />

from the me<strong>di</strong>um-high part of the<br />

same sequence. Sample 17, which <strong>di</strong>vides<br />

these two groups of-samples, is<br />

rich in ash tuff material.


TABLE 1<br />

Granulometric characteristics<br />

%Wt<br />

% Cumulative<br />


652 ·F. Balenzano, L. Dell'Anna, M. Di Pierro, V. Rizzo<br />

a) Particle size analysis. All samples The smectite is Al-rich (bo varying<br />

consist of very fine grained material. from 9.05 A to 9.15 A; Mg+Fe­<br />

The grains have a maximum size of octahedral= 0.10-0.20), with Mg-~;:;d~--<br />

125 Jlm <strong>and</strong> are predominantly in the Kas the interlayer cations, <strong>and</strong> J.:las a<br />

less than 2 Jlm <strong>and</strong> 8-16 Jlm fractions high degree of crystallinity (v/p=1).<br />

(Table 1). As compared with samples The mixed-layer liS minerals are<br />

1-16, samples 18-25 are richer in clay mostly <strong>di</strong>sordered <strong>and</strong> have 20% to<br />

(t = 4.31; P ~ 99.9%)(1) <strong>and</strong> poorer in 50% smectite layers. The chlorite is<br />

silt (t = 3,24; P ~ 99.9%) (Table 1). the lib polytype <strong>and</strong> has a rather<br />

Samples 18-25 fall in the clay <strong>and</strong> good degree of crystallinity; its chemsilty-clay<br />

fields of SHEPARD's <strong>di</strong>a- istry varies from ripidolite to the<br />

gram (1954), while samples 1-16 fall pseudothuringite-daphnite composiin<br />

the silty-clay <strong>and</strong> clayey-silt fields .tions (bo varying from 9.30 A to 9.35<br />

(Fig. 2).<br />

A). The kaolinite has a low degree of<br />

After carbonate removal, the decar- crystallinity. The carbonates are calbonated<br />

samples show an enrich-. cite <strong>and</strong> dolomite, with traces of Mgment<br />

of the fine fractions at the ex- calcite <strong>and</strong> aragonite. The feldspars<br />

, pense of the 8-16 Jlm fraction as well are Na-plagioclases <strong>and</strong> K-feldspars.<br />

--~1------- -as a consiaera01e atteniia1ion_m_fue--""Mrcroscoj5ic observations of the<br />

<strong>di</strong>fference between the two groups of coarser fractions showed that the<br />

samples. The cumulative curves (Fig. quartz <strong>and</strong> feldspars are often cata-<br />

2) show an upward concavity, more clastic. The feldspars present are<br />

marked in samples 1-16. Sample 17 mainly albite <strong>and</strong> microcline with<br />

has characteristics interme<strong>di</strong>ate be- patches of weathered clay <strong>and</strong> sometween<br />

those of the two groups. times with quartz <strong>and</strong> apatite inclub)<br />

Mineralogical analysis. All sam- sions. The micas are greenish-brown<br />

ples consist of clay minerals,' carbon- biotite <strong>and</strong> .muscovite which often<br />

ates, quartz, feldspars <strong>and</strong> micas. The show inclusions of ilmenife <strong>and</strong><br />

clay minerals present are illite, smec- graphite. Microscopic analysis also<br />

tite, mixed-layer illite-smectite (liS), showed the presence of chlorite, mica"<br />

chlorite <strong>and</strong> kaolinite. The powder schists <strong>and</strong> chlorite-rich schists,<br />

<strong>di</strong>ffraction data in<strong>di</strong>cate that the Na-ampbiboles (glaucophane <strong>and</strong><br />

illite is the 2M polytype (eo sin ~ riebeckite), actinolite <strong>and</strong> hornvarying<br />

from 19.978 A to 20.124 A) blende amphiboles, alman<strong>di</strong>ne garwith<br />

Al as the main oct~hedral cation net, tourmaline, · sillimani te,' chlo­<br />

(bo varying from 9.008 A to 9.013 A), ritoid, phlogopite, apatite, strengite,<br />

<strong>and</strong> K as the interlayer cation (the de- vivianite, rutile, ilmenite, birnessite,<br />

gree of paragonitization varies from Fe-hydroxide from weathering,<br />

2% to 15%); the degree of crystallin- glauconite, gypsum, sponge spicules<br />

1<br />

<strong>and</strong> pyritized echinoderm · remains.<br />

ity is moderate (from 90 A to 21 o A).<br />

(I) t = Student' !-test; P = statistical significance.


TABLE 2<br />

Mineralogical characteristics<br />

total<br />

clay fraction<br />

I s liS Ch K Q F Ca Do C.m. C.a. Q+F I s liS Ch K<br />

Sample 1 21 13 7 4 3 12 2 35 3 48 38 14 44 27 15 8 6<br />

2 27 11 4 3 1 13 3 35 3 46 38 16 59 24 9 6 2<br />

3 23 10 2 6 2 14 3 35 5 43 40 17 53 23 5 14 5<br />

4 25 10 5 5 2 10 2 37 4 47 41 12 53 21 11 11 4<br />

5 27 8 5 5 2 12 2 35 4 47 39 14 57 17 11 11 4<br />

6 31 10 5 3 2 10 2 34 3 51 37 12 61 19 10 6 4<br />

7 23 9 7 4 2 13 2 36 4 45 40 15 51 20 15 9 5<br />

8 23 12 5 5 tr 11 2- 38 4 45 42 13 51 26 11 11 1 ~<br />

'


654 F. Balenzano, L. Dell'Anna, M. Di Pierro, V. Rizzo<br />

The clay minerals (:X = 47%) are rarely so<strong>di</strong>c (glaucophane <strong>and</strong><br />

slightly more abundant than the car- riebeckite), while those in the .. seconcL<br />

bonates (:X = 40%) <strong>and</strong> prevail over group are almost exclusively so<strong>di</strong>c.<br />

quartz (:X = 11 %) <strong>and</strong> feldspars (:X = The carbonates in the first group are<br />

2%) (Table 2). Among the clay mine- essentially organogenic, but inorganrals,<br />

illite (:X= 24%) is more abundant ic carbonates are also present, while<br />

than smectite (:X = 11 %) <strong>and</strong> prevails those in the second group are almost<br />

over mixed-layer I/S (:X = 6%), chlo- exclusively organogenic. Mica schists<br />

rite (x = 4%) <strong>and</strong> kaolinite (x = 2%). <strong>and</strong> chlorite-rich schist fragments are<br />

Among the carbonates, calcite (x = found almost exclusively in samples<br />

36%) prevails over dolomite (x = 4%). 18-25, which sometimes also contain<br />

The mineralogical characteristics hydrobiotite <strong>and</strong> ·mixed-layer<br />

(Table 2) of samples 1-16 are <strong>di</strong>fferent hydrobiotite-vermiculite, while<br />

from those of samples 18-15. The phlogopite is found almost exclusiveillite<br />

in samples 18-25 is more Al-rich ly in samples 1-16.<br />

(bo = 9.008 A) than that in samples In accordance with the gran-<br />

1-16 (bo = 9.013 A). The chlorite in the ulometric data <strong>and</strong> the particle size<br />

first group of samples (18-25) is <strong>di</strong>stribution of clay minerals (DEL-<br />

·-···--·-·--------pseudothuringite~daphllite--in--co~- ·- L'ANNA &-:R.Izzo, 1979), samples<br />

position <strong>and</strong> has the average struc-. 18-25 (Fig. 3) are richer in smectite (t<br />

tural formula, (Mgz.3oFez.osAl~.~s) = 4.43; P ~ 99.9%) <strong>and</strong> poorer in<br />

(AlJ.szSizAs)Ow(OH)s, while the chlo- illite (t = 3.19; P ~ 99.5%); howevrite<br />

in the second group (samples 1- er, they also are richer in carbonates<br />

16) is ripidolite (HEY, 1954) <strong>and</strong> has (t = 4.15; P ~ 99.9%) both as calcite<br />

the average formula (MgL9zFez.7oAlu 8 ) (t = 3.18; P ~ 99.5%) <strong>and</strong> as dolo-<br />

(AluzSiz.6s)Ow(OH)s. The amphiboles mite (t = 2.60; P ~ 99%).<br />

of the first group are mostly actino- The mineralogical composition of<br />

lite <strong>and</strong> hornblende <strong>and</strong> are only sample 17 is <strong>di</strong>stinctly <strong>di</strong>fferent from<br />

25 50 50<br />

l/S+Ch+KL------...,....------~<br />

50 50<br />

Fig. 3- Mineralogical <strong>di</strong>fferences between samples 1-16 (A) <strong>and</strong> samples 18-25 (B). Mineral abbreviations<br />

as in Table 2.


Si0 2<br />

Ti0 2<br />

Al 2 0 3<br />

Fe 2 0 3<br />

M nO<br />

Cab<br />

M gO<br />

Na 2 0<br />

K 2 0<br />

PzOs<br />

Hzo+<br />

CaQ<br />

M gO<br />

C0 2<br />

tr: traces<br />

TABLE 3<br />

Chemical analyses<br />

--<br />

Sample<br />

2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24 25<br />

38.1 38.0 37.3 36.5 37.2 39.0 36.2 JS.l 37.2 37.4 38.6 36.7 36.7 39.6 40.2 38.4 47.2 35.6 34.5 35.4 38.0 34.5 36.4 37 .I 36.5<br />

0.6 0.6 0.5 0.5 0.6 0.6 0.5 . 0.6 0.6 0.6 0.6 ·. 0.6 . 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5<br />

11.6 11.4 11.0 10.3 11.1 11.6 11.4 11.0 11.5 11.6 11.7 11.6 11.9 11.9 11.9 11.0 12.6 9.8 11.1 10.7 11.2 10.4 10.4 10.7 10.4<br />

3.5 3.6 3.0 3.2 3.8 3.7 3.3 3.3 3.5 3.6 -1.6 3.4 3.5 3.6 3.7 3.5 4.3 2.9 3.3 3.3 3.5 3.3 3.5 3.7 3.4<br />

OJ. 0.1 0.2 0.1 0.1 0.1 0.1 tr tr tr tr 0.1 0.1 0.1 0.1 0.1 0.1 0.1 tr 0.1 tr tr tr . 0.1 0.1<br />

0.6 .. 0.8. 0.6 0.5 0.4 0.4 " 0.4 0.4 0.3 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.7 0.3 0.2 0.2 0.3 0.3 0.3 0.4 0.3<br />

·1.4 1.4 .. 1.3 1.3 1.4 1:4: 1.4 1.3 1.5 1.5 1.5 1.4 1.4 1.4 1.5 1.4 1.8 1.2 1.3 1.3 1.4 1.3 1.4 1.5 1.4<br />

0.7 0.7 0.8 0.8 0.7 0.7 0.8 0:6 0.1 0.7 0.8 0.6 0.7 0.8 0.7 0.7 0.9 0.7 0.6 0.6 0.7 0.6 0.6 0.6 0.6<br />

1.8 1.8 1.7 1.8 1.9 •. 1.9 . 1.8 1.8 1.9 1.9 1.9 1.9 .• 1,9 2.0 2.0 L9 2.0 1.6 1.8 1.8 1.8 1.8 1.9 1.9 1.8<br />

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 .0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1<br />

3.5 3.7 2.9 3.4 3.7 3.6 3.1 3.7 3.5 3.8 3.5 3.6 3.7 3.7 3.9 3.2 3.4 2.5 3.5 3.3 3.4 3.2 3.2 3.5 3.1<br />

20.5 20.3 21.3 . 22.1 2LI •' 19.8 .. 2L8 22.3 20.8 20.6 19~9 21.0 21.2- 18.9 18.4 20.7 138 23.9 22.6 23.0 2\.i 23.9 22.0 21.1 . 21.6<br />

0.8 0.7 1.1 0.8 0.8 0;1 0.9 0.9 0.8 0.8 0.7 1.0 0.8 0.8 0.8 0.8 0.9 1.1 1.1 0.8 0.8 0.8 1.0 p 1.5<br />

17.0 16.7 17.9 18.2 ·17.4 16.3 18.1 18.5 i7.2 17.0 16.4 17.6 17.5 15.7 15.3 17.1 11.8 20.0 18.9 18.9 17.4 19.6 18.4 17.9 18.6<br />

100.3 99.9 99.7 99.6 100.3 99.9 99~9 99.6 99.6 100.0 99.7 99.9 100.4 99.5 99.5 99.8 100.1 100.3 99.5 10(}.0 100.2 100.3 99.7 100.3 99.9<br />

~<br />

'


I"''<br />

F. Balenzano, L. Dell'Anna! M. Di Pierro, V. Rizzo<br />

· the others. Along with a limited = 0.432, P ;;,: 98%; Ip, r = 0.402,<br />

quantity of the minerals found in the P ;=: 97%); therefore the g:r:mw oL<br />

group of samples 1-16, sample 17 has samples 1-16 is geotechnically <strong>di</strong>ffean<br />

abundance of smectite <strong>and</strong> volcan- . rent from the group of samples 18-25<br />

ic ash composed of vitreous frag- (WL, t = 2.380, P ;;,: 99%; Wp, t =<br />

ments <strong>and</strong> pumice with inclusions of 1.776, P ;;,: 93%; Ip, t = 1.574, P ;;,:<br />

quartz, orthoclase <strong>and</strong> biotite; the 92%). Accor<strong>di</strong>ng to Casagr<strong>and</strong>e's<br />

vitreous fragmens have an index of plasticity chart the samples in the<br />

refraction of 1.50-1.51. Samples 16, first group have a me<strong>di</strong>um to high<br />

18 <strong>and</strong> 19 also contain small amounts plasticity, while those in the second<br />

of volcanic ash. The morphological group fall into the high plasticity<br />

characteristics of the grains of sam- field (Table 4; Fig. 4). In ad<strong>di</strong>tion,<br />

pies 16 <strong>and</strong> 17 show a <strong>di</strong>rect se<strong>di</strong>- samples 1-16 show both normal <strong>and</strong><br />

mentation of the volcanic ash with- inactive coll~idal activities (Table 4;<br />

out transport by water.<br />

Fig. 5), while those in the second<br />

The clays from the highest parts of group (samples 18-25) are all inactive<br />

the sequence, above sample 25, were probably because of the <strong>di</strong>fferent infound<br />

to have considerably less de- fluence of various carbonates. Sam-<br />

----r---.-----·-tritar fragments- ··aiid___ caroonates;---pie--f7has-hlgher consistency limits,<br />

while the presence of pyrite was probably because of the presence of<br />

appreciable <strong>and</strong> there were conside- large amounts of smectite <strong>and</strong> relrable<br />

amounts of birnessite <strong>and</strong> <strong>di</strong>- atively small amounts of carbonates;<br />

atoms.<br />

it also has a high plasticity <strong>and</strong> highc)<br />

Chemical analysis. The results of er colloidal activity (Table 4; Figs. 4<br />

the chemical analyses are reported in <strong>and</strong> 5).<br />

Table 3. In accordance with the<br />

mineralogical composition, the noncarbonate<br />

chemical components are Discussion<br />

mostly SiOz, Ab03, Fez03 <strong>and</strong> HzO+.<br />

After the carbonates have been removed,<br />

chemically there are no significant<br />

<strong>di</strong>fferences between the two<br />

groups of samples (samples 1-16 <strong>and</strong><br />

18-25). In ad<strong>di</strong>tion to its very low carbonate<br />

content (26%), sample 17 has<br />

a singular chemical composition<br />

(Table 3) because of the abundance of<br />

volcanic ash.<br />

d) Geotechnical properties. The<br />

Atterberg consistency limits are<br />

linearly correlated with the clay content<br />

(WL, r =_0.564, P ;;,: 99%; Wp, r<br />

The Vallone Salina Upper Miocene<br />

pelitic se<strong>di</strong>ments show granulometric<br />

characteristics of a neritic<br />

se<strong>di</strong>mentation; the grain size <strong>di</strong>stribution<br />

is characterized by a, moderate<br />

sorting which improves with<br />

the <strong>di</strong>sappearance of organogenic<br />

carbonates <strong>and</strong> in<strong>di</strong>cates deposition<br />

after prolonged suspension in water.<br />

The increase in the amounts of fine<br />

fraction <strong>and</strong> smectite <strong>and</strong> the appearance<br />

of fine carbonates from chemical<br />

precipitation in the me<strong>di</strong>um-high .


Upper Miocene Clays from Vallone Salina ... 657<br />

TABLE 4<br />

Atterberg consistency limits<br />

WL Wp lp lp/


'':<br />

F. Balenzano, L. Dell'A nna, M. Di Pierro V R'<br />

------T-----=~=~,:·· 1 zzzo<br />

Low ~1e<strong>di</strong>um High<br />

F 30<br />

LiOOid 1 ;;n ,<br />

40<br />

80<br />

Jg. 4 - Plast' !City · Chart A' s:o 60<br />

. . samples 1-16· ' B. . samples 18-2570<br />

20 -~~--~-~~~~,~<br />

70<br />

..<br />

X<br />

60<br />

'"<br />

~<br />

~<br />

·u<br />

t<br />

50 0:: "'<br />

Active<br />

Normal<br />

sample 17<br />

...<br />

! Inactive<br />

40<br />

F' Jg. 5 - Colloidal 10 . ActivJ't 20 Ch 30 40 50 60 Cl ay fraction (


mon in metamorphites <strong>and</strong> magma-<br />

--~~~- tites of the Alpine overthrust rocks.<br />

The presence of <strong>di</strong>fferent types of<br />

amphiboles, alman<strong>di</strong>nE: garnet, tourmaline,<br />

chlorithoid, sillimariite,<br />

phlogopite, <strong>and</strong> Fe <strong>and</strong> Ti minerals<br />

confirms the origin from metamorphic<br />

rocks of the se<strong>di</strong>meJ;J.tS <strong>and</strong><br />

appears to be related with the overthrust<br />

unit sequence (AMODIO­<br />

MORELLI et al., 1976). In ad<strong>di</strong>tion,<br />

some typical mineralogical characteristics<br />

of the clays are similar to<br />

those of the Alpine overthrust rocks<br />

(the glaucophane content of the Na-<br />

. amphiboles, the essentially triclinic<br />

character of the K-feldspars, the<br />

essentially albite composition of the<br />

.. plagioclase, the inclusion of both<br />

quartz <strong>and</strong> apatite in the feldspars<br />

<strong>and</strong> of ilmenite <strong>and</strong> graphite _in the<br />

micas, the remarkable catacla~tic<br />

texture in the sialic <strong>and</strong> femic minerals<br />

<strong>and</strong> the colour of the biotites <strong>and</strong><br />

chlorites). However, the almost exclusivepresence<br />

in the group of samples<br />

1-16 of Na-amphiboles <strong>and</strong><br />

· phogopite associated with sillimanite<br />

<strong>and</strong> rutile leads to the hypothesis of<br />

contributions from the upper units of<br />

the Alpine chain (Polia-Copanello U­<br />

nits, accor<strong>di</strong>ng to AMODIO-MORELLI<br />

et al., 1976) while the presence of various<br />

amphiboles <strong>and</strong> micaschists <strong>and</strong><br />

chlorite-rich schist fragments in the<br />

group of samples 18-25 suggests a<br />

derivation from the middle units of<br />

the same chain (Castagna Units <strong>and</strong><br />

Bagni~Fondachelli Units, accor<strong>di</strong>ng<br />

to AMODIO-MORELLI et al., 1976).<br />

This hypothesis also is supported by<br />

Upper Miocene Clays from Vallone Salina ... 659<br />

the ferri-muscovite composition of<br />

the illites (bo = 9.013 A) in samples<br />

1-16, the essentially muscovite composition<br />

in samples 18-25 (bo = 9.008<br />

A), (DIETRICH et al., 1976) <strong>and</strong> by the<br />

marked ferromagnesian composition<br />

of the chlorites in the first group as<br />

compared to those of the second<br />

group of samples.<br />

In regard to the origin of the clay<br />

minerals, the illite may be derived<br />

froro the weathering of the feldspars<br />

<strong>and</strong> muscovite already in the parent<br />

rocks; the kaolinite <strong>and</strong> chlorite<br />

probably were derived from the<br />

weathering of the feldspars <strong>and</strong> chlorite<br />

in the parent rocks. The stnectite,<br />

because of its higher crystallinity,<br />

could have been formed by aggradation<br />

both in continental <strong>and</strong> marine<br />

environments during transport <strong>and</strong><br />

se<strong>di</strong>mentation, while the mixed-layer<br />

minerals probably were derived from<br />

early <strong>di</strong>agenesis accor<strong>di</strong>ng to the<br />

following transformation sequence: ,<br />

illite ~mixed-layer I/S <strong>and</strong> biotite ~<br />

hydrobiotite ~ mixed-layer hydrobiotite-vermiculite.<br />

The se<strong>di</strong>mentation environment<br />

changes entirely in the most upper<br />

part of the peli tic sequence of Vallone<br />

Salina. The carbonates <strong>and</strong> the<br />

amount of detrital se<strong>di</strong>mentation decrease<br />

considerably; sulfides, <strong>and</strong> Fe<br />

\ <strong>and</strong> Mn hydroxides increase, <strong>and</strong><br />

f::Onsiderable amounts of <strong>di</strong>atoms are<br />

found. This may have been caused by<br />

the absence of sea-bottom currents<br />

<strong>and</strong> poor oxygenation of the water<br />

due to partial closing of the basin.<br />

(


660 F. Balenzano, L. Dell'Anna, M. Di Pierro, V. Rizzo<br />

REFERENCES<br />

AMODIO-MORELLI L., BONARDI G., COLONNAV., DIETRICH D., GIUNTA G., IPPOLITO F., LIGUORI V., LOREN­<br />

ZONI S., PAGLIONICO A., PERRONE V., PICCARRETA G., Russo M., SCANDONE P., ZANETTIN.LORENZONL~­<br />

E., ZUPPETTA A., 1976. L' area calabro-peloritano nell' orogene appenninico-maghrebide. Mem. Soc.<br />

Geol.It. 17, 1-60.<br />

BAILEY S.W., 1980. Structures of Layer Silicates. Pp. 1-123, in: Crystal Structures of Clay Minerals<br />

<strong>and</strong> their X-ray Identification (G.W. Brindley <strong>and</strong> G. Brown, e<strong>di</strong>tors), Mineralogical Society,<br />

London. ·<br />

BrscAYE P.E., 1965. Mineralogy <strong>and</strong> se<strong>di</strong>mentation of recent deep-sea clay in the Atlantic Ocean <strong>and</strong><br />

adjacent seas <strong>and</strong> oceans. Geol. Soc. Am. Bull. 76, 803-832.<br />

BoNr M., RoLANDI G., 1975. Mineralizeazioni manganesifere nel messiniano del versante tirrenico della<br />

catena costiera calabra (Serra d'Aiello). Rend. Ace. Se. Fis. Mat., Soc. Naz. Scienze, Lettere e Arti<br />

in Napoli, Serie 1, 42, 1-29. ·<br />

BRADLEY W.F., GRIM R.E., 1961. Mica Clay Minerals. Pp. 208-241, in: The X-ray Identification <strong>and</strong><br />

Crystal Structures of Clay Minerals. (G. Brown, e<strong>di</strong>tor), Mineralogical Society, London.<br />

BRIGATTI M.F., 1983. Relationship between composition <strong>and</strong> structure in Fe-rich smectites. Clay<br />

Minerals 18, 177-186.<br />

BROWN G., BRINDLEY G.W., 1980. X-ray Diffraction Procedures for Clay Mineral Identification. Pp.<br />

305-359, in: Crystal Structures· of Clay Minerals <strong>and</strong> their X-ray Identification (G.W. Brindley<br />

<strong>and</strong> G. Brown, e<strong>di</strong>tors), Mineralogical Society, London.<br />

CARROL D., 1970. Clay Minerals: A guide to their X-ray identification. Geol. Soc. Amer., Spec. Paper<br />

126,80 p.<br />

CIPRIANI C., SASSI F.P ., VITERBO BASSANI C., 1968. La composizione delle mic he chiare in rapporto con<br />

le costanti reticolari e col grado metamorfico. Rend. Soc. It. Min. Petr. 24, 1-37.<br />

DELL'ANNA L., Rrzzo V., 1979. Argille grigio-azzurre della me<strong>di</strong>a valle del Crati: composizione mineralogica,<br />

granulometrica e alcune caratteristiche geotecniche. Geol. Appl. Idrogeol. 14, 57-86.<br />

DESPRAIRIES A., 1983. Relation entre le parametre b des smectites et leur contenu en fer et magnesium.<br />

~,- ~---~-----------Applicalion-aTltuae -des- sMiliuints~ 'CfliYMineraTS 18, lo5-T7S: - ·<br />

DIETRICH D., LORENZONI S., SCANDONE P ., ZANETTIN LORENZONI E., 197 6. Contribution to the knowledge<br />

of the tectonic units of Calabria. Relationship between composition of K-white micas <strong>and</strong> metamorphic<br />

evolution. Boll. Soc. Geol.It. 95, 193-217.<br />

Dr NocERA S., 0RTOLANI F., Russo M., ToRRE M., 1974. Successioni se<strong>di</strong>mentarie messiniane e limite<br />

Miocene-Pliocene nella Calabria Settentrionale. Boll. Soc. Geol. It. 93, 575-607.<br />

Dr PIER:OO M., 1981. Caratteri composizionali delle argille pleistoceniche della zona <strong>di</strong> Miglionico (MT).<br />

Rend. Soc. It. Min. Petr. 37, 229-240.<br />

GREENE-KELLY R., 1953. Identification of montmorillonoids. J. Soil. Sci. 4, 233-237.<br />

GRIFFIN G.M., 1971. Interpretation of X-ray Diffraction Data. Pp. 541-569, in: Procedures in<br />

· Se<strong>di</strong>mentary Petrology (R.E. Carver, e<strong>di</strong>tor), J. Wiley & Sons, New York.<br />

HEY H.H., 1954. A new review of the chlorites. Mineral. Mag. 30, 277-292.<br />

HINCKLEY D.N., 1963. Variability in «cristallinity» values among the kaolin deposits of the Coastal<br />

Plain of Georgia <strong>and</strong> South Carolina. Clays Clay Miner. 11, 229-235.<br />

JoHNS W.D., GRIM R.E., BRADLEY W.F., 1954. Quantitative estimations of clay minerals by <strong>di</strong>ffraction<br />

methods. J. Se<strong>di</strong>ment. Petrol. 24, 242-251.<br />

MAcEwAN D.M.C., 1961. Montmorillonite Minerals. Pp. 143-207, in: The X-ray Identification <strong>and</strong><br />

Crystal Structures of Clay Minerals (G. Brown, e<strong>di</strong>tor), Mineralogical Society, London.<br />

MILNER H.B., 1962. Se<strong>di</strong>mentary Petrography. J. Allen & Unwin, London ..<br />

0RTOLANI F., ToRRE M., Dr NocERA S., 1979. I depositi altomiocenici del bacino <strong>di</strong> Amantea (Catena<br />

costiera calabra). Bell. Soc. Geol. It. 98, 559-587.<br />

RAISH H.D., 1964. Quantitative mineralogical analysis of carbonate rocks. Texas J. Sci. 16, 172-180.<br />

REYNOLDS R.C., 1980. I nterstratified Clay Minerals. Pp. 249-303, in: Crystal Structures of Clay Minerals<br />

<strong>and</strong> their X-ray Identification (G.W. Brindley <strong>and</strong> G. Brown, e<strong>di</strong>tors), Mineralogical ~ociety,<br />

London.<br />

RoMEO M., ToRTORICI L., 1980. Stratigrafia dei depositi miocenici della catena costiera meri<strong>di</strong>onale e<br />

della me<strong>di</strong>a valle del F. Crati (Calabria). Boll. Soc. Geol. It. 99, 303-318.<br />

ScHULTZ L.G., 1964. Quantitative interpretation of mineralogical composition from X-ray <strong>and</strong> chemical<br />

data for the Pierre Shale. Prof. Pap. U.S. geol. Surv. 391-C.<br />

SHEPARD F.P., 1954. Nomenclature based on s<strong>and</strong>-silt-clay ratios. J. Se<strong>di</strong>ment. Petrol. 24, 151-158.<br />

SRODON J ., 1981. X-ray identification of r<strong>and</strong>omly interstratified illite-smectite in mixtures with <strong>di</strong>screte<br />

illite. Clay Minerals 16, 297-304.<br />

TREADWELL F.P., 1954. Trattato <strong>di</strong> Chimica Analitica. F. Vallar<strong>di</strong>, Milano, 2, 543-544.<br />

WEBER F., DUNOYER DE SEGONZAC G., ECONOMOU C., 1976. Une nouvelle expression de la cristallinite de<br />

l'illite et des micas. Notion d'epaisseur apparente des crista/lites. C.R. somm. Soc. Geol. Fr. 5,<br />

225-227:


_...I<br />

Ii<br />

Miner. Petrogr. Acta<br />

yol. 29-A, pp. 661-670 (1985)<br />

Techniques of Analysis for Lithostratigraphic<br />

Correlations in the Subsoil of Milan<br />

V. FRANCANP, L. SCESP, F. VENIALP, A. CANCELLP, F. PREVITALI\<br />

A. FARINP, I. ASSP<br />

1 Istituto <strong>di</strong> Vie e Trasporti, Sezione geologica, Politecnico <strong>di</strong> Milano, Piazza Leonardo da Vinci 32, 20133 Milano,<br />

Italia<br />

2<br />

Dipartimento <strong>di</strong> Scienze della Terra, Sezione miner~logico-petrografica, Universita <strong>di</strong> Pavia, Via A. Bassi 4,<br />

27100 Pavia, ltalia<br />

3 Dipartimento <strong>di</strong> lngegneria Strutturale, Politecnico <strong>di</strong> Milano, Piazza Leonardo da Vinci 32, 20133 Milano,<br />

ltalia<br />

4 Istituto <strong>di</strong> Idraulica Agraria, Gestione Risorse Idriche, Conservazione del Suolo, Facolta <strong>di</strong> Agraria, Universita<br />

<strong>di</strong> Milano, Via Celoria 2, 20133 Milano, Italia ·<br />

5 Istituto <strong>di</strong> Chimica Agraria, Faco!ta <strong>di</strong> Agraria, Universita <strong>di</strong> Milano, Via Celoria 2, 20133 Milano, Italia<br />

ABSTRACT - A multi<strong>di</strong>sciplinary methodology allowing for correlations in<br />

alluvial deposits is pointed out. A lot of samples, extracted from wells drilled<br />

in Milan (Lombardy Region, northern Italy), were tested, under the<br />

following aspects: geological, mineralogical, chemical, pedological, <strong>and</strong><br />

geotechnical. Some weathered levels, marked by an initial stage of reddening,<br />

were recognized in particular at 20 to 25 m <strong>and</strong> 60 to 65 m. The<br />

genesis of these lev:els can. be ascribed to climatic con<strong>di</strong>tions which were<br />

<strong>di</strong>fferent from the present ones.<br />

"<br />

Introduction<br />

Even though its geological, hydrogeological<br />

<strong>and</strong> geotechnical features<br />

have for some time been known<br />

in suffiCient detail, noneth~less the<br />

subsoil of Milan (Lombardy Region,<br />

northern Italy) still presents some<br />

unanswered questions, as regards<br />

genetic <strong>and</strong> stratigraphic correlations<br />

between lithologically related<br />

levels (FRANCANI & PREVITALI,<br />

1983). This investigation, referring to<br />

samples taken from well drilling car~<br />

ried out for the Milan Wate~ Board,<br />

aims in fact to determine the suitable<br />

characteristics for a reconstruction of<br />

the processes determining the accumulation<br />

<strong>and</strong> evolution of continental<br />

se<strong>di</strong>ments in the area stu<strong>di</strong>ed.<br />

Samples were analysed by methods<br />

selected also with reference to a<br />

general knowledge of the geological·<br />

setup of the alluvial materials in the<br />

Po valley <strong>and</strong> of the palaeoclimatic<br />

events that affected it over the ages<br />

(ALLASON et al., 1984).<br />

The study, still under way; has thus<br />

made it possible, in a first approx-<br />

This research work was spo~sored -by M.P .I.. (Ministry of Public Education of Italy).


'" 1<br />

662 · V. Francani, L. Scesi, F. Veniale, A. Cancelli, F. Previtali, A. Farini, I. Assi<br />

imation, to recognize eolic, fluvial,<br />

fluvio-glaCial <strong>and</strong> swampy se<strong>di</strong>mentological<br />

phases, <strong>and</strong> soil forming,<br />

processes.<br />

Selection of samples<br />

Milan is an extended city (about<br />

100 km 2 ); its subsurface is geologically<br />

formed by se<strong>di</strong>ments coming<br />

from several rivers (Olona, Seveso,<br />

Lambro, etc.). The analysed samples<br />

can be referred to such se<strong>di</strong>ments<br />

(POZZI & FRANCANI, 1981).<br />

There are about 50 pumping plants<br />

with an average of 10 wells each;<br />

--------'-----among--them, .t-wo or three ha-ve been<br />

chosen to outline a selection (Fig. 1).<br />

The three enclosed sections show a<br />

, succession that is schematically represented<br />

in the follow-ing -~~!!:~t!:__<br />

graphic column (see Fig. 2): 0 to 25 m,<br />

, gravel <strong>and</strong> s<strong>and</strong> in varying proportions;<br />

25 to 65 m, gravel <strong>and</strong> ·san<strong>di</strong>nterbedded<br />

with clay; 65 to 100 m, the<br />

same, but inch.i<strong>di</strong>ng more clay levels<br />

<strong>and</strong> some conglomerates; below 100<br />

m, gray clay with peat <strong>and</strong> s<strong>and</strong><br />

lenses.<br />

Methodology of the study<br />

The tests, analyses, observations<br />

<strong>and</strong> forthcoming <strong>di</strong>scussions, which<br />

have to be considered provisional<br />

since .the-investigation is still under<br />

way, concerned the following features.<br />

i<br />

NORD<br />

r ,<br />

Fig. 1 - Location of pumping plants <strong>and</strong> trace of sections.


Techniques of Analysis for Lithostratigraphic Correlations ... 663<br />

gravel <strong>and</strong> s<strong>and</strong><br />

s<strong>and</strong> with gravel <strong>and</strong> clay<br />

peculiar levels turned out to be very<br />

interesting; in fact, they show a<br />

marked weathering (proved by<br />

mineralogical analyses) <strong>and</strong> an evident<br />

redness stage.<br />

Such levels are found all over the<br />

area, only locally interrupted by erosion,<br />

<strong>and</strong> successive rese<strong>di</strong>mentation,<br />

along the bed of the most important<br />

rivers.<br />

Mineralogical Analyses (F. Veniale)<br />

clay with s<strong>and</strong> lenses<br />

Fig. 2 _ Representative stratigraphic column.<br />

Geology (L. Scesi)<br />

The enclosed sections (Figs 3, 4, 5)<br />

essentially confirm the lithological<br />

sequence. .<br />

Nevertheless, the presence of some<br />

The mineralogical composition of<br />

the finest soils was determined by<br />

semi-quantitative, X-ray <strong>di</strong>ffraction<br />

methods. Various levels at <strong>di</strong>fferent<br />

depths can be <strong>di</strong>stinguished, as shown<br />

in Fig. 6.<br />

A good agreement between <strong>di</strong>fferent<br />

boreholes is found at 20 to 25 m <strong>and</strong><br />

' at 60 to 65 m of depth, on the basis of<br />

a more significant abundance of<br />

quartz, feldspar, smectite, vermiculite,<br />

illite <strong>and</strong> kaolinite.<br />

A relative abundance of the same<br />

minerals was detected at 45 to 50 m,<br />

75 to 80 m <strong>and</strong> 95 to 100 m beneath<br />

ground level.<br />

2 4<br />

m 3 5<br />

150<br />

Assiano Baggio Tonezza Vercell i I tal ia Anfossi Ovi<strong>di</strong>o Linate·<br />

9 17 18<br />

' 13 6<br />

I 3 5 6 7 18 4 . 16 10<br />

2 19 10 12<br />

bl nk PI · t ·c <strong>and</strong> Holocenic deposits (fluvioglacial<br />

Fig. 3- Hy~rogeologi~al seAction)·no .. thl. Inbliqaue 'lin~~s ~~~franchian deposits; black dotted lines<br />

Mindel Rtss <strong>and</strong> Wurm uct. , wt o , .<br />

'<br />

In<strong>di</strong>cate the I <strong>and</strong> IT weathered level.<br />

Km


664 V Francanz, · L . Scesi, F. Venza . z e, A · Cance 11. z,. p • Prevztalz, . . A · Farini, !. Assi s<br />

Salemi Assietta<br />

. ""''" ,,_ '""'""".' Luga,no Cenisio Pat-eo Italia<br />

.<br />

m<br />

150<br />

4 710<br />

11 5 13<br />

12 7 12<br />

2 1<br />

16 7 8<br />

12 18 7<br />

3 2 113 15<br />

14 1.7<br />

100<br />

50<br />

0<br />

1<br />

Km<br />

F1g. . 4- H Y drogeological sectiOn . no. 2 (for symbols, see Fig. 3).<br />

'<br />

Novara Chiusabella Oimabue<br />

4 7 10 20 2 20<br />

tso , I J:J<br />

100<br />

50<br />

1<br />

d eological section no. 3 (for sym­<br />

Fig. 5 - Hy rog bols, see Fig. 3).<br />

, . . o 25 m <strong>and</strong> 60 to<br />

The levels at 2~ th ent in smectite<br />

h ennc m<br />

<strong>and</strong><br />

65 m<br />

vermicuhte,<br />

s o': an.<br />

w<br />

hereas<br />

. )<br />

chlorite is<br />

h . h degradatiOn ·<br />

scarce ( Ig d the other levels<br />

are On more the ot·h~r ne i:a~hlorite (lower de­<br />

f d rada tion) · d<br />

gree o eg be correlate<br />

These results c~n . <strong>di</strong>tions;<br />

"th: a) <strong>di</strong>fferent chm~tlc con<br />

WI<br />

b) presence of pa 1 eos<br />

oils<br />

.<br />

Chemical · Analyses (A. Farini . <strong>and</strong> I..<br />

As si)<br />

investigation aims to<br />

The present h ical characteroutline<br />

both the c em<br />

,,<br />

IStiCS . . of the analyse d · sam Pies <strong>and</strong><br />

of alteratwn ..<br />

s were car-<br />

their cie.gree --~ ··. · ·1<br />

The following ana ~~grain <strong>di</strong>amried<br />

out on samples WI (see Table 1):<br />

1 than 2 mm .<br />

eters .. ess . b potentiometnc<br />

H ( determmed Y . d by<br />

p thod); C.E.C. (determmeK Na<br />

me - 8 2); Ca, Mg, '<br />

BaCh at pH.- 1~ CH3COONH4 <strong>and</strong><br />

(extracted With . absorption<br />

. d by atomic<br />

determme (AAS) by means of an<br />

spectroscopy . strument).<br />

UNICAM SP 1900 m f Fe indexes of<br />

T he <strong>di</strong>fferent forms o , deterdegree<br />

of alteratiOn, . · were<br />

mined as follows: I Fe obtained by<br />

F = tota<br />

- er . hydrofluonc . a cid attack on d<br />

sulphunc- 5 m mesh an<br />

les sieved at 0. m<br />

samp 50 oc overnight;<br />

calcined at 4 . oluble Fe de-<br />

- Feo = <strong>di</strong>thiomte s ethod of<br />

d b the D.B.C. m<br />

MEHRA<br />

termine<br />

& JACKS<br />

Y ON (l 9<br />

60): free Fe<br />

oxides;<br />

F<br />

ble Fe deter-<br />

- oxalate so 1 u ,<br />

:- eo - SCHWERTMANN s<br />

mmed by tive» Fe oxides.<br />

method (196 4 ): «ac determined<br />

F e I . n all extracts . was .<br />

by AAS.


Techniques of Analysis for Lithostratigraphic Correlations ...<br />

- . '<br />

665<br />

..., "'<br />

Vl<br />

,.,<br />

0<br />

::c "'<br />

..., "'<br />

:::<br />

..., "'<br />

'[<br />

0<br />

.


f''"!<br />

666 V. Francani, L. Scesi, F. Veniale, A. Cancelli, F. Previtali, A. Farini, I. Assi<br />

Geopedology (F. Previtali)<br />

The results of the first set of analyses<br />

(in particular, the chemical, granulometric<br />

<strong>and</strong> mineralogical tests),<br />

together with the first series of macromorphological<br />

observations carried<br />

out on the samples, permit some<br />

deductions which are of interest from<br />

the geological <strong>and</strong> pedostratigraphic<br />

points of view (Table 1).<br />

<strong>First</strong> of all, a noteworthy homogeneity<br />

in aci<strong>di</strong>ty values <strong>and</strong> cation<br />

exchange capacities was found at<br />

all depths <strong>and</strong>- in all wells .. -Ihe~~pK-~<br />

values were constant around neutral<br />

or very slightly acid rea<strong>di</strong>ngs (minimum<br />

pH = 6.50).<br />

C.E.C. values, though varying over<br />

quite a wide range (from 10.5 to 20.5<br />

meq/100 g of soil), show clay minerals<br />

of low activity to be relatively<br />

abundant. The exchange complex<br />

was found to be dominated by the<br />

Ca 2 + ion, with an unexp-ected quantitative<br />

equilibrium between Na+<br />

TABLE 1<br />

Chemical analyses <strong>and</strong> textures<br />

Bore-hole/Depth pH C.E.C. Ca Mg<br />

--------------'- ---Em~--------(H 2 0~- -(meq/1 00g)-(in 1 N NR4"acetate)<br />

K Na Texture<br />

(meq/100g) (U.S.D.A.)<br />

NOVARA 4<br />

23.5- 24.5 7.10 12.9 10.0 2.3 0.3 0.4 Loamy<br />

33.0- 42.0 7.00 12.9 10.0 2.4 0.2 0.4 Loamy<br />

62.5- 63.5 6.70 20.5 16.5 2.5 0.2 0.4 Clayey loam<br />

76.5- 82.0 6.80 12.5 9.0 2.3 0.3 0.3 Silty loam<br />

NOVARA 7<br />

20.0~ 26.0 6.90 10.9 8.5 1.5 0.2 0.3 S<strong>and</strong>y loam<br />

62.0- 65.0 6.50 16.7 11.0 "'1.9 0.2 0.4 Silty clay loam<br />

77.0- 80.0 7.20 11.7 9.5 2.3 0.3 0.5 Silty loam<br />

NOVARA 10<br />

22.0- 24.0 7.10 11.0 10.0 2.0 0.3 0.2 Silty loam<br />

29.0- 39.5 6.90 18.0 11.5 2.0 0.4 0.4 Silty clay loam<br />

61.0- 67.0 6.70 14.9 9.5 1.8 0.2 0.3 Siltyloam<br />

74".0- 75.5 6.90 13.5 10.0 2.3 0.2 0.3 Silty loam<br />

97.5-100.0 6.90 14.5 12.0 2.0 0.5 0.4 Silty loam<br />

CHIUSABELLA 20<br />

16.5- 18.5 7.10 17.4 14.0 2.7 0.2 0.4 Silty loam<br />

22.0- 25.5 6.80 15.5 11.0 2.9 0.2 0.4 Silty loam<br />

31.5-' 35.5 6.90 14.7 11.0 3.1 0.3 0.4 Silty loam<br />

59.0- 61.5 6.90 13.8 9.5 2.1 0.3 0.4 Loamy '<br />

96.0- 97.0 7.20 10.5 9.5 2.0 0.4 .A).4 Silty loam<br />

CIMABUE 20<br />

33.5- 43.5 7.30 11.9 10.0 2,4 0.2 0.4 S<strong>and</strong>y clay loam<br />

46.0- 53.0 7.10 10.9 9.5 1.7 0.1 0.3 Silty<br />

60.0- 61.0 7.10 15.1 12.5 2.0 0.3 0.4 Silty loam<br />

MARTINI 3<br />

45.0- 46.0 6.90 12.3 10.0 '2.0 0.3 0.3 Clayey loam<br />

46.0- 50.5 6.90 11.1 10.0 2.0 0.3 0.4 Clayey loam<br />

64.0- 67.0 6.80 16.8 11.5 2.2 0.2 0.5 Silty loam


Techniques of Analysis for Lithostratigraphic Correlations ... 667<br />

<strong>and</strong> K+ ions. This leads to the supposition<br />

that the ground waters may<br />

have exercised a considerable influ­<br />

. ence over the primary chemical characteristics<br />

of such continental Quaternary<br />

deposits.<br />

The research carried out on the various<br />

forms of Fe (free oxides, amorphous<br />

<strong>and</strong> crystalline, complex form,<br />

<strong>and</strong> quantitative ratios between<br />

these) show no imme<strong>di</strong>ate correlation<br />

between degree of alteration <strong>and</strong><br />

sample depth, but further processing<br />

ofthe data acquired may allow more<br />

far-reaching evaluations, in particular<br />

as regards relationships between<br />

clay minerals <strong>and</strong> iron oxides (Table<br />

2).<br />

With regard to the results of miner:al~gical<br />

analyses, an important find­<br />

. ing wa,s that two levels (at 20 to 25 m<br />

i <strong>and</strong> 60 to 65 m) are particularly rich in<br />

smectite-vermiculite, whilst chlorite<br />

is rare. This confirms the colorimetric<br />

observations made on the<br />

samples, showing a redness rating<br />

Bore-hole/Depth (m)<br />

TABLE 2<br />

Chemical analyses of iron forms<br />

Fer Fen Feo<br />

(%of soil)<br />

Fen/Fer<br />

FeJFen<br />

NOVARA 4<br />

23.5- 24.5 2.0 0.66 0.05 0.33 0.08<br />

33.0- 42.0 7.2 2.37 0.07 0.33 0.03<br />

62.5- 63.5 6.6 2.12 0.36 0.32 0.17<br />

76.5- 82.0 4.8 1.10 0.15 0.23 0.14<br />

"<br />

NQVARA 7<br />

20.0- 26.0 5.6 1.22 0.11 0.22 0.09<br />

62.0- 65.0 2.4 1.12 0.08 0.47 0.07<br />

77.0- 80.0 4.6 1.02 0.13 0.22 0.13<br />

NOVARA 10<br />

22.0- 24.0 2.2 0.86 0.02 0.39 0.02<br />

29.0- 39.5 3.4 1.91 0.15 0.56 0.08<br />

6LO- ,67.0 2.2 0.80 0.13 0.36 0.16<br />

74.0- 75.5 3.0 0.87 0.10 0.29 0.11<br />

97.5-100.0 3.2 0.70 0.15 0.22 0.21<br />

CHIUSA.BELLA 20<br />

16.5- 18.5 3.0 1.30 0.23 0.43 0.18<br />

22.0- 25.5 4.8 3:70 0.28 0.77 0.08<br />

.31.5- 35.5 . 3.6• 2.20 0.10 0.61 0.05<br />

59.0- 61.5 3.0 1.40 0.23 0.47 0.16<br />

96.0- 97.0 4.2 0.30 0.03 0.07 0.10<br />

CIMABUE 20<br />

33.5- 43.5 2.2 0.90'. 0.07 0.41 0.08<br />

46.0- 53.0 3.4 0.60 0.07 0.18 0.12.<br />

60.0- 61.0 4.8 1.01 0.12 0.21 0.12<br />

MARTINI 3<br />

45.0- 46.0 3.4 0.50 0.08 0.15 0.16<br />

46.0- 50.5 2.6 0.15 0.06 0.06 0.40<br />

64.0- 67.0 "4.2 0.14 0.02 . 0.03 0.14


jff" I<br />

668 V. Francani, L. Scesi, F. Veniale, A. Cancelli, F. Previtali, A. Farini, I. Assi<br />

which is in fact higher at such depths ..<br />

Also of significance is the strong correlation<br />

between illite content <strong>and</strong><br />

the silty-type grain size of certain<br />

specimens, considered as a first<br />

approximation to be loess, perhaps<br />

even laid down. in a lacustrine environment.<br />

Further investigations will aim to<br />

evidentiate <strong>and</strong> clarify the relationships<br />

existing between reddened<br />

levels <strong>and</strong> soils covering the terraced<br />

fleistocene surfaces of the plainl<strong>and</strong><br />

of I,.orp.bardy.<br />

Geotechnical properties (A. Cancelli)<br />

For geotechnical laboratory tests,<br />

a set of 24 remoulded, representative<br />

samples was selected, <strong>and</strong> split up<br />

into four groups, accor<strong>di</strong>ng.to~thefol--~<br />

lowing criteria:<br />

- soils showing to have been subject<br />

to a past weathering process (red,<br />

br9wn or yellow coloured) were <strong>di</strong>stinguished<br />

from the unweathered,<br />

gray ones;<br />

- «recent» soils (less than 50 m<br />

deep) were <strong>di</strong>stingl!ished from<br />

«ancient>> soils (depth= 50 to 100 m).<br />

From identification tests, the following<br />

conclusions can be drawn:<br />

a) all tested samples can be classified<br />

as, more or less, silty <strong>and</strong> clay<br />

loams (see triangular classification<br />

chart-"-'- Fig. 7);<br />

b) in regard to weathe~ed levels<br />

(paleosoils?), the deep samples show<br />

Weathered .. 100 0<br />

e z 50 m<br />

.,<br />

{:<br />

iY<br />

I<br />

clay<br />

, .<br />

s<strong>and</strong>y <strong>and</strong><br />

claY loam<br />

.o<br />

•<br />

clay<br />

0<br />

loam<br />

..<br />

•<br />

loam<br />

• ...<br />

silty<br />

loam<br />

"'<br />

-+-% SAND<br />

Fig. 7- Grain size composition, accor<strong>di</strong>ng to the triangular classification chart issued by the U.S.<br />

· Soil Survey Staff (1951).


Techniques of Analysis forLithostratigraphic Correlations ... . 669<br />

finer grain composition, <strong>and</strong> higher<br />

plasticity, than the shallow ones (see<br />

plasticity chart- Fig. 8-right);<br />

c) also concerning weathered<br />

... levels, the activity of deep samples is<br />

generally higher than in shallow<br />

samples (see SKEMPTON's activity<br />

chart (1953) -Fig. 8-left);<br />

d) possibly, such a <strong>di</strong>fferent behaviour<br />

can be ascribed to the presence<br />

of a more active clay fraction,<br />

as a consequence of a higher degree of<br />

weathering (cfr. pedological <strong>and</strong><br />

mineralogical analyses).<br />

C~mclusions<br />

The aim of the study was to point<br />

out a multi<strong>di</strong>sciplinary methodology<br />

allowing detailed correlations in<br />

alluvial deposits. The analyses of<br />

samples concerned the following<br />

aspects: geological, mineralogical,<br />

chemical, pedological <strong>and</strong> geotechnical.<br />

The research was mostly devoted<br />

to the identification of weathered<br />

levels interbedded into the alluvial<br />

sequence.<br />

An initial stage of reddening permits<br />

a good correlation among samples<br />

found respectively at 20 to 25 m<br />

<strong>and</strong> 60 to 65 m of depth. Therefore,<br />

such samples can be assigned to <strong>di</strong>s-'<br />

tinct.Jevels, only locally interrupted.<br />

This hypothesis needs for further de- .l<br />

tailed stu<strong>di</strong>es on larger number of<br />

samples, in order !O be confirmed.<br />

Weathered<br />

• z < 50 m<br />

" z > 50 m<br />

Active<br />

"<br />

Ip (%)<br />

4 0<br />

3 0<br />

Unweathered<br />

o z < 50 m<br />

"' z > 50 m<br />

CH<br />

2 0<br />

CL<br />

0<br />

Inactive<br />

60 50 40 30 20 30 40 50 60 . 7.0 80<br />

Fig. 8 - Right: Casagr<strong>and</strong>e's plasticity chart;. left: Skempton's activity chart (WL = liquid limit;<br />

lp = plasticity index; Cp = fraction finer than 0.002 mm).<br />

•<br />

ML<br />

OL


670 V. Francani, L. Scesi, F. Veniale, A. Cancelli, F. Previtali, A. Farini, I. Assi<br />

REFERENCES<br />

ALLASON B., CANCELLI A., FRANCANI V., PREVITALI F., REPOSSI G., 1984. Nota preliminare sui significato<br />

geologico dei livelli coesivi nel sottosuolo <strong>di</strong> Milano. Costruzioni XXXIII, 338, Milano.<br />

FRANCANI V., PREVITALI F., 1983. Caratteristiche tecniche e pedologiche dei suoli dei terrazzi ferrettizzati<br />

della Lombar<strong>di</strong>a: il terrazzo <strong>di</strong> Morazzone (V A). Costruzioni XXXII, 330, Milano.<br />

MEHRA"O.P., JACKSON M.L., 1960. Iron oxide removal from soils <strong>and</strong> clays by a <strong>di</strong>thionite-citrate system<br />

buffered with bicarbonate. Clays Clay Miner. 7, 317-327.<br />

Pozzi R., FRANCANI V., 1981. Con<strong>di</strong>zioni <strong>di</strong> alimentazione delle riserve idriche del territorio milanese. La<br />

Rivista della Strada L, 303, ed. La Fiaccola, Milano.<br />

ScHWERTMANN U., 1964. The <strong>di</strong>fferentation of iron oxide in soils by a photochemical extraction with .<br />

acid ammonium oxalate. z. Pfalenzenernlihr., Dung, Bodenkd. 105,' 194-202.<br />

SKEMPTON A.W., 1953. The colloidal «activity» of clay. Pp. 57-61, in: Proc. 3rd Int. Conf. Soil Mech.<br />

Found. Eng., I, Zurich.


!I'<br />

Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 671·680 (1985)<br />

Paleoi1.tological, Mineralogical <strong>and</strong> Geotechnical<br />

Characterization of Nardo Clays<br />

L. ALBANESE 1 , C. CHERUBINF, M. DI PIERR0 3 , C.I. GIASF, F.M.<br />

GUADAGN0 4 , A. PEDE 2 , F.P. RAMUNNF<br />

1 Via Urbano VI 24, 70124 Bari, Italia<br />

2 Istituto <strong>di</strong> Geologia Applicata e Geotecnica, Facolta <strong>di</strong> Ingegneria, Universita <strong>di</strong> Bari, Via Re David 200, 70125<br />

Bari, ltalia<br />

3 Dipartimento Geomineralogico del!'Universita <strong>di</strong> Bari, Campus, Via G. Salvemini, 70124 Bari, Italia .<br />

• Dipartimento <strong>di</strong> Geofisica e Vulcanologia, Universita <strong>di</strong> Napoli, Largo S. Marcellino 10, 80138 Napoli, Italia<br />

ABSTRACT - As a part of the general background of engineering problems<br />

·related to the utilization of clay formations, this study deals with the characterization<br />

of the clay mass in the Nardo basin (Province of Lecce, southern<br />

Italy) by means of paleontological, geological, mineralogical <strong>and</strong> geotechnical<br />

analyses. Nardo clays, essentially of the Calabrian age, consist of clay silts<br />

with s<strong>and</strong>s <strong>and</strong> fall within the range of inorganic, me<strong>di</strong>um-to-high plasticity,<br />

on the Casagr<strong>and</strong>e chart. The compressibility curves e-logp seem to in<strong>di</strong>cate<br />

a preconsolidation pressure of about 5 kg/cm 2 .<br />

Mineralogically, they consist of clay minerals, carbonates, quartz <strong>and</strong> feldspars;<br />

among the clay minerals, illite prevails over smectite while kaolinite<br />

<strong>and</strong> chlorite are less abundant; among the carbonates, calcite prevails over<br />

dolomite while quartz is more abundant than feldspars.<br />

·,<br />

Introduction<br />

Geological setting<br />

L.an attempt to provide a technical<br />

. -<strong>and</strong> scientific contribution, this work<br />

reports the results of a detailed<br />

geotechnical analysis on Nardo clays.!<br />

(Province of Lecce, southern Italy)<br />

(Fig. 1) which was developed starting<br />

from mineralogical <strong>and</strong> biostratigraphic<br />

investigations <strong>and</strong> provides ·<br />

data concerning the physical <strong>and</strong><br />

mechanical properties of the clay<br />

mass. These data should be used as a<br />

basis for a correct approach to .any<br />

kind of engineering work in the territory.<br />

The clay deposits at Nardo can be<br />

ascribed to the marine se<strong>di</strong>mentary<br />

cycles which developed in the «Fossa<br />

Bradanica» <strong>and</strong> in the Apulian forel<strong>and</strong><br />

between the Upper Pliocene <strong>and</strong><br />

Pleistocene. In ad<strong>di</strong>tion to outcrops<br />

along the western border of Apulia,<br />

other' much more extended <strong>and</strong> thicker<br />

outcrops are to be found in the<br />

area correspon<strong>di</strong>ng to the «Fossa<br />

Bradanica».<br />

In the Salentine Peninsula, the<br />

clays may be lying <strong>di</strong>rectly over the<br />

Mesozoic limestone (Ugento), or they<br />

may be separated from the Mesozoic


'"'"'<br />

672 L. Albanese, C. Cherubini, M. Di Pierro,, C.!. Giasi, F.M. Guadagno. A. Pede, F.P. Ramunni<br />

Foggia<br />

•<br />

Potenza<br />

•<br />

carenites. Despite their shallow<br />

thickness, which is alsoa):'~A!!lLQf~<br />

calcarenite cementation, ground water<br />

in the aquifers may rise as high as<br />

the foundation of buil<strong>di</strong>ngs at Nardo<br />

due to the fluctuation of the<br />

piezometric level (RICCHETTI &<br />

SCANDONE, 1979).<br />

Fig. 1 - Geographic location of the area stu<strong>di</strong>ed.<br />

limestones by underlying calcarenites<br />

(Cutrofiano) <strong>and</strong> make up a<br />

rather thick homogeneous sequence<br />

___________ between the _c~lcarenite~ (Nardo) or<br />

else be arranged in levels, 0.50 to 2 m<br />

thick, between the calcarenites (Maglie<br />

<strong>and</strong> S. Andrea) (ZEZZA, 1976).<br />

Their presence can be explained by<br />

a more or less powerful subsidence of<br />

depressions of tectonic ongm,<br />

stretching NW to SE, as a result of<br />

events occurring in the areas of the<br />

Apennine Chain <strong>and</strong> the «Fossa Brad,anica».<br />

At Nardo, the clay complex is a<br />

thick alternation of clay-silty levels of<br />

a grey-blue colour <strong>and</strong> of silt-s<strong>and</strong>y<br />

levels varying .in colour from grey to<br />

yellow. The top portion contains yellowish<br />

s<strong>and</strong> levels with transitional<br />

se<strong>di</strong>mentary structures.<br />

The levels are approximately subhorizontal.<br />

Their age is Pleistocenic<br />

due to the presence of Hyalinea balthica<br />

at the base. Given the stratigraphy<br />

described above, Nardo clays<br />

provide an impervious bottom for<br />

shallow aquifers in the overlying calfauna<br />

Paleo-environmental considerations<br />

based on the foraininifera micro-<br />

Samples, the same taken for<br />

geotechnical tests, were submitted to<br />

150 mesh screening <strong>and</strong> the retained<br />

__ p()rt~()n w_as~nalyzed from a micropaleontological<br />

point of view. The<br />

washing residues, ranging between<br />

4% <strong>and</strong> 8%, were found to consist<br />

essentially of organic matter. In ad<strong>di</strong>tion<br />

to the foraminifera, small specimens<br />

<strong>and</strong> fragments of gastropods,<br />

ostracods <strong>and</strong> echinoids were also<br />

found.<br />

The existing microfauna, generally<br />

well preserved, was analyzed quanti-<br />

- tatively, <strong>and</strong> the most frequent species<br />

<strong>and</strong> those of special paleoecologi­<br />

.cal <strong>and</strong> stratigraphic significance<br />

were recognized.<br />

The samples analyzed revealed<br />

microfauna having quite similar<br />

characteristics. Benthonic foraminifera<br />

appear to be predominant as<br />

they represent approximately. 80% of<br />

the total in all of the samples. The<br />

following species are the most frequent:<br />

Cassidulina laevigata carinata<br />

Silvestri; Cibicides pseudoungerianus<br />

(Cushman); Uvigerina me<strong>di</strong>terranea


Paleontological, Mineralogical <strong>and</strong> Geotechnical... 673<br />

Hofker; Uvzgerina peregrlna Cushman;<br />

Melonis barleanum (d'Orbigny);<br />

· Bulimina spp.; Bolivina spp.; Valvulineriay<br />

bra<strong>di</strong>ana (Fornasini); Globocassidulina<br />

oblonga (Reuss); Pullenia<br />

bulloides (d'Orbigny); Pullenia quinqueloba<br />

Reuss.<br />

This prevailing association appears<br />

to be contaminated by coastal species<br />

such as: Textularia calva Lalicker;<br />

Textularia aciculata d'Orbigny;<br />

Elphi<strong>di</strong>w:n crispum (Linnaeus); Elphi<strong>di</strong>um<br />

macellum (F. & M.); Hyalinea<br />

balthica (Schroeter); Buccilla frigida<br />

(Cushman).<br />

Among the placton species, the following<br />

are by far the most frequently<br />

found: Globigerina qui?'zqueloba Natl<strong>and</strong>;<br />

Globigerina bulloides d'Orbigny;<br />

Globigerina pachyderma (Ehremberg),<br />

while rare specimens of Globo~otalia<br />

· truncatulinoides excelsa (SPROVIE}.U<br />

et al., 1980) were found, though not in<br />

all samples.<br />

The resulting association, the<br />

heavy presence of Uvigerina spp., Bilimiba<br />

spp., Bolivina spp. <strong>and</strong> Cibicides<br />

pseudoungerianus <strong>and</strong> the occurrence<br />

ofPullenia spp., Hyalinea balthica <strong>and</strong><br />

the Melonis barleanum are in<strong>di</strong>cative<br />

of a se<strong>di</strong>mentation environment<br />

around 200 meters deep (nerhic environment).<br />

Due to the presence of Hyalinea<br />

balthica in the sampled base, the<br />

whole formation can· be ascribed to<br />

the Pleistocene (GIGNOUX, 1913;<br />

MARTINIS, 1967).<br />

Moreover, due to the presence of<br />

Globorotalia trucatulinoides excelsa<br />

<strong>and</strong> of the various species of Globigerina,<br />

the formation can ·be<br />

thought to belong to the cold Pleistocene,<br />

starting from the Sicilian<br />

(LAZZARI, 1956).<br />

Grain-size characteristics<br />

The grain-size composition was determined<br />

by wet sieving for the<br />

coarser particles (> 32 Jlm) <strong>and</strong> by<br />

se<strong>di</strong>mentation methods for the finer<br />

fractions (


674 L. Albanese, C. Cherubini, M. Di Pierro, C.!. Giasi, F.M. Guadagno. A. Pede, F.P. Ramunni<br />

Clay %<br />

80 20<br />

% S<strong>and</strong> 20 40 60 80<br />

Fig. 2- Grain-size <strong>di</strong>stribution of the samples in SHEPARD's <strong>di</strong>agram (1954).<br />

clay fraction (


The AI <strong>and</strong> Fe hydroxides consist of<br />

ochre coloured aggregates, almost<br />

amorphous to X-rays, represented by<br />

small red<strong>di</strong>sh, more or less rounded,<br />

masses.<br />

Following the definition of BRAD­<br />

LEY & GRIM (1961), the illiteis a 2M<br />

polytype with a chemism which reveals<br />

low H 2 0 <strong>and</strong> almost solely AI in<br />

the octahedral sheet (BROWN &<br />

BRINDLEY, 1980; DI PIERRO,.<br />

1981); the AI smectite is <strong>di</strong>octahedral<br />

with Ca <strong>and</strong> Mg as interlayer cations<br />

(BROWN & BRINDLEY, 1980), <strong>and</strong><br />

with a high degree of crystallinity (v/<br />

p quite close to 1) (BISCAYE, 1965).<br />

The Fe-chlorite <strong>and</strong> kaolinite have a<br />

low degree of crystallinity (JOHNS et<br />

al., 1954; HINCKLEY, 1963).<br />

Concerning the relative abundance<br />

(Table 2), the clay minerals (:X ::;:: 53%)<br />

prevail over carbonates (:X = 30%)<br />

<strong>and</strong> over quartz plus feldspars (:X =<br />

17%).<br />

Among the clay minerals, illite <strong>and</strong><br />

smectite occur in greater quantities<br />

with illite (:X = 25%) slightly excee<strong>di</strong>ng<br />

smectite (:X = 19%). There are<br />

Paleontological, Mineralogical <strong>and</strong> Geotechnical ... 675<br />

much smaller amounts of chlorite<br />

<strong>and</strong> there is little, if any, kaolinite.<br />

Among the carbonates, calcite prevails<br />

largely over dolomite <strong>and</strong> Mgcalcite.<br />

Finally, the amount of quartz<br />

is twice that of the feldspars. The<br />

clayey materials examined can be<br />

classified as marls (MALESANI &<br />

MANETTI, 1970) (Fig. 3).<br />

Geotechnical properties<br />

Stratigraphically, the levels sampled<br />

in this study are located below<br />

the contatct between the clays <strong>and</strong><br />

the overlying cover, locally consisting<br />

of calcarenites, silt <strong>and</strong> s<strong>and</strong> of a<br />

yellowish colour <strong>and</strong> elsewhere by<br />

«terra rossa>> down to a depth of 7 m.<br />

The samples were first analyzed to<br />

determine their physical characteristics,<br />

accor<strong>di</strong>ng to the A.S.T .M. recommendations<br />

(1979). The water content<br />

(W) ranges between 20.2% <strong>and</strong> 34.2%<br />

(mean value equal to 27.7%); the dry<br />

unit weight (yd) is between 1.42 g/cm 3<br />

, <strong>and</strong> 1.71 g/cm 3 with a mean value of<br />

TABLE 2<br />

Mineralogical composition (%)<br />

Sample<br />

m2.2 m 4.4 m4.9 m 5.2 m5.6 m6.2 m 7.0 ·x s<br />

Smectite 25 15 28 19 15 13 18 19.0 5.0<br />

Illite 22 24 22 27 26 26 27 25.0 2.0<br />

Kaolinite 2 3 2 5 3 3 3 3.0 1.0<br />

Chlorite 6 5 6 10 5 5 7 6.0 2.0<br />

Quartz 13 16 12 10 13 14 14 13.0 2.0<br />

Feldspars 3 5 3 4 4 5 4 4.0 11.0<br />

Calcite 25 26 21 19 27 26 22 24.0 3.0<br />

Dolomite 4 6 6 6 7 8 5 6.0 1.0<br />

x: mean value; s: st<strong>and</strong>ard deviation


676 L. Albanese, C. Cherubini, M. Di Pierro; C.I. Giasi, F.M. GuadaglJ!l.: A.. Pede, F.P. ,Ril_nu-_mni<br />

carbonates<br />

Fig. 3 - Distribution of the samples in MALESANI & MANETTI'~ <strong>di</strong>agram (1970). 1: calcarenites;<br />

2: carbonatic s<strong>and</strong>stones; 3: s<strong>and</strong>stones; 4: carbonatic siltstones; 5: siltstones;. 6: marls; 7: shales.<br />

Q + F: quartz + feldspars.<br />

4<br />

8<br />

..<br />

.


Paleontological, Mineralogical <strong>and</strong> Geotechnical ... 677<br />

1.53 g/cm 3 ; the specific gravity of soil<br />

particles is between 2.65 <strong>and</strong> 2.76<br />

<strong>and</strong> the mean value is 2.72 ..<br />

The liquid limit (WL) is between<br />

41.6% <strong>and</strong> 55.7% with a mean value<br />

of 49.6%; the plastic limit (Wp)<br />

ranges between 19.6% <strong>and</strong> 31.5%<br />

(mean value 25.9%) (Fig. 4).<br />

Furthermore, activity values, accor<strong>di</strong>ng<br />

to SKEMPTON (1953), range<br />

between 0.61 <strong>and</strong> 0.85. All these data<br />

on physical properties are rather uni-<br />

form <strong>and</strong> correlate well with the data<br />

obtained from the literature (COTEC­<br />

CHIA, 1971; ZEZZA, 1976).<br />

Compressibility <strong>and</strong> swelling properties<br />

Clay samples were subjected to<br />

oedometric stresses. This kind of test<br />

can be used to simulate the loa<strong>di</strong>ng<br />

<strong>and</strong> unloa<strong>di</strong>ng cycles which the clay<br />

se<strong>di</strong>ments may have undergone<br />

1.00<br />

e<br />

0.90<br />

0.80<br />

o. 70<br />

0.60<br />

0.50<br />

0.40<br />

0.1<br />

1- -<br />

1- --<br />

-<br />

-<br />

-t-..<br />

-~-t-..<br />

t-t-<br />

----- 1-·<br />

-<br />

1--t- ,...3<br />

0.5<br />

1'---."'<br />

7,<br />

~ I"-.<br />

1'-. 1\<br />

1'-2<br />

6, .........<br />

5<br />

"""<br />

"'<br />

r-,.1\<br />

I'<br />

l::s: I\<br />

r"... -<br />

~ ,\<br />

........ )'... I:'<br />

.....<br />

\\<br />

1\<br />

' "<br />

1\<br />

Fig. 5 - Compressibility curves.<br />

\\<br />

f\. '\<br />

1\ '\ ~<br />

\\ ~<br />

\<br />

10<br />

'<br />

\ .\<br />

\ \ \<br />

\ \J\<br />

1\ 1\'l\<br />

\ '!~<br />

1\<br />

1\<br />

\<br />

p (kg/cmq) 50


· 678, L. Albanese, C. Cherubini, M. Di Pierro, C.l: Giasi, F.M. Guadagno. A. Pede, F.P. Ramunni<br />

throughout their history, starting im- sx 10 3<br />

-<br />

me<strong>di</strong>ately after their initial deposi~<br />

tion (CHERUBINI et al., 1980).<br />

The stress-strain behaviour of clays<br />

against time also were investigated.<br />

The investigation covered the primary<br />

effects during the compression<br />

unloa<strong>di</strong>ng phases <strong>and</strong> secondary<br />

effects (viscous strain) during the<br />

compression phase with the related<br />

aging phenomena <strong>and</strong> the secondary<br />

effects during the unloa<strong>di</strong>ng phase.<br />

Figure 5 shows the compressibility<br />

curves e - logp for pressure ranges<br />

between 0.1 <strong>and</strong> 50 kg/cm 2 • The compressibility<br />

curves were stu<strong>di</strong>ed by<br />

means of Casagr<strong>and</strong>e's method in an·<br />

____________ attempt __ to establish the heaviest<br />

pressure to which the clay mass had<br />

been subjected in the past (preconsolidation<br />

pressure); this value was<br />

found to be between 3.8 kg/cm 2 <strong>and</strong><br />

7.0 kg/cm 2 • This possibly means that<br />

the maximum consolidation pressure<br />

was partly due to the cover material<br />

probably removed <strong>and</strong>, for the most<br />

cas<br />

·OI+-----~~----~--~--~p~(k~g/~cm~q)<br />

0.1 0.4 0.8 12 50<br />

Fig. 7- Cas versus logp for samples 3,5 <strong>and</strong> 7.<br />

part, to the surface drying of the clay<br />

mass.<br />

Decompression curves are not<br />

shown for lack of space. The field<br />

of the hydrodynamic consolidation<br />

0.016<br />

0.012<br />

•<br />

• •<br />

12x10" 4<br />

10<br />

~<br />

$<br />

~<br />

><br />

u<br />

0.008<br />

••<br />

..<br />

!<br />

, I<br />

~~~<br />

/. -~<br />

'0.004<br />

•<br />

• •<br />

•• ..<br />

o+-~--~~----~----~_LP~(k~g/~cm~q)<br />

0.1 0.2 0.4.c. o.s__ ,.. 12o .. · -so:<br />

. Fig. 6.- Cv versus logp for samples 3,5 <strong>and</strong> 7.<br />

Fig. 8 - Cae versus Cc for all samples <strong>and</strong> three<br />

pressure levels.


Paleont.ological, Mineralogical <strong>and</strong> Geotechnical ... ' 679<br />

0.12l<br />

ea ss<br />

10<br />

0 "f<br />

0.081<br />

0.061<br />

.<br />

0.04<br />

0.02<br />

.:<br />

p (kg/cmq)<br />

12 50<br />

Fig. 9 - Caes versus logp for samples 2,3,5,6<br />

<strong>and</strong> 7.<br />

p (kg/cmq)<br />

0+--------.--------~--~~~<br />

0.1 0~ H<br />

Fig. 10- CaesiCs versus logp for samples 2,3,5,6<br />

<strong>and</strong> 7.<br />

coefficients (Cv) was determined<br />

accor<strong>di</strong>ng to Casagr<strong>and</strong>e's method.<br />

Changes in Cv with logp may provide<br />

further support for the identification<br />

of maximum consolidation pressure.<br />

The specimens examined show " a<br />

gradual increase of Cv up to 3 kg/cm 2<br />

<strong>and</strong> subsequently a decrease. Precon~<br />

solidation pressure very likely occurs<br />

between these two values. Figure 6<br />

reports Cv variations with logp in<br />

three tests.<br />

The viscous behaviour of the Nardo<br />

clays brought about secondary phenomena<br />

due to increased loa<strong>di</strong>ng (Cae,<br />

_ Cae coefficients) a.'nd also secondary<br />

phenomena due to decreased loa<strong>di</strong>ng<br />

(Caes, Caes coefficients). Rea<strong>di</strong>ngs to<br />

obtain the secondary compression<br />

coefficients were taken, at each load- '<br />

ing step, for a period of 7 days <strong>and</strong> for<br />

longer periods when the swelling<br />

coefficient was surveyed. Figure 7 reproduces<br />

the broken lines Cae - logp<br />

for three samples. The trend rises<br />

considerably at about 50 kg/cm 2 • The<br />

chart in Fig. 8 shows the relationship<br />

between Cae <strong>and</strong> Cc. The correspon<strong>di</strong>ng<br />

experimental points are contained<br />

inside a rather clearly defined<br />

b<strong>and</strong> with CaeiCc ratios that are sufficiently<br />

steady <strong>and</strong> in the order of 0.05<br />

± 0.02, in agreement with the data<br />

reported in the literature.<br />

For the unloa<strong>di</strong>ng phase, the curves<br />

Caes - logp are reported in Fig. 9;<br />

these broken lines in<strong>di</strong>cate that, as<br />

the loa<strong>di</strong>ng pressure drops, the<br />

values of Caes increase. Similarly,<br />

there is an increase in time Tp which<br />

marks the end of the primary swelling.<br />

In fact, with unloa<strong>di</strong>ng, T/s vary<br />

from 40 to 120 minutes for a pressure<br />

of 6 kg/cm 2 , from 119 to 446 minutes<br />

for 0.8 kg/cm 2 <strong>and</strong> from 655 to 2100<br />

minutes for 0.1 kg/cm 2 • Figure 10<br />

sums up the viscous behaviour of the<br />

samples during unloa<strong>di</strong>ng; the ratio<br />

CaesfCs with logp shows a marked<br />

increase with decreasing effective<br />

pressure.


l<br />

680 L. Albanese, C. Cherubini, M. Di Pierro, C.!. Giasi, F.M. Guadagno. A. Pede, F.P. Ramunni<br />

REFERENCES<br />

A.S.T.M., 1979. Annual Book of A.S.T.M. st<strong>and</strong>ards. Part. 19, 560 pp.<br />

BISCAYE P.E., 1965. Mineralogy <strong>and</strong> se<strong>di</strong>mentation of recent deep-sea clay in the Atlantic Ocean <strong>and</strong><br />

adjacent seas <strong>and</strong> oceans. Geo!. Soc. Am. Bull. 76, 803-832.<br />

BRADLEY W.F., GRIM R.E., 1961. Mica Clay Minerals. Pp. 208-241, in: The X-ray Identification <strong>and</strong><br />

Crystal Structures of Clay Minerals (G. Brown, e<strong>di</strong>tor), Mineralogical Society, London.<br />

BROWN G., BRINDLEY G.W., 1980. X-ray Diffraction Procedures for Clay Mineral Identification. Pp.<br />

305-359, in: Crystal Structures of Clay Minerals <strong>and</strong> their X-ray Identification (G.W. Brindley<br />

<strong>and</strong> G. Brown, e<strong>di</strong>tors) Mineralogical Society, London.<br />

CHERUBINI C., RAMUNNI F.P., WALSH N., 1980. Ef{etti nel tempo della variazione delle sollecitazioni<br />

applicate all'edometro su campioni in<strong>di</strong>sturbati <strong>di</strong> argille subappennine. Geo!. Appl. Idrogeol. 15,<br />

376-392.<br />

CoTECCHIA V., 1971. Su taluni problemi geotecnici in relazione alia natura dei terreni della regione<br />

pugliese. Riv. Ita!. <strong>di</strong> Geotecnica I, 2, 1-32, Napoli. .<br />

DI PIERRO M., 1981. Caratteri composizionali delle argille pleistoceniche della zona <strong>di</strong> M{glionico (MT).<br />

Rend. Soc. It. Min. Petr. 37, 229-240.<br />

GIGNOUX M., 1913. Les formations pliocenes etquaternaires de l'Italie du Sud et de la Sicile. Ann. Univ.<br />

Lyon, n.s., Se., Med., fasc. 36, 283-286.<br />

GRIFFIN G.M., 1971. Interpretation of X-ray Diffraction Data. Pp. 541-569, in: Procedures in<br />

Se<strong>di</strong>mentary Petrology (R.E. Carver, e<strong>di</strong>tor), J. Wiley & Sons, New York. ·<br />

HINCKLEY D.N., 1963. Variability in «crystallinity» values among the kaolin deposits of the Coastal<br />

Plain of Georgia <strong>and</strong> South Carolina. Clays Clay Miner. 11, 229-235.<br />

JoHNS W.D., GRIM R.E., BRADLEY W.F., 1954. Quantitative estimation of clay minerals by <strong>di</strong>ffraction<br />

methods. J. Se<strong>di</strong>ment. Petrol. 24, 242-251.<br />

--~---- ~--~- LAZZARI. A.,-1956. Ccmtribut{iilla conoscenza del Pleistocene della provincia <strong>di</strong> Lecce -1} La microfauna<br />

delle·argille sabbiose <strong>di</strong>Nardo. Mem. Ist. Sup. Se. Lett. S. Chiara 8, 345-362, 1 tav., Napoli.<br />

MALESANI P .G., MANETTI P ., 1970. Proposta <strong>di</strong> classificazione dei se<strong>di</strong>menti clastici. Mem. Soc. Geol.<br />

It. 9' 55-63.<br />

MARTINIS B., 1967. Sull'eta delle.argille <strong>di</strong> Gallipoli (Lecce). Rend. Accad. Naz. Lincei 42, serie VIII.<br />

MILNER H.B., 1962. Se<strong>di</strong>mentary Petrography. J. Alien & Unwin, London.<br />

RAISH H.D., 1964. Quantitative mineralogical analyses of carbonate rocks. Texas J. Science 16, 172-<br />

180. '<br />

RrccHETTI G., ScANDONE B., 1979. Inquadramento geologico regionale della Fossa Bradanica. Geo!.<br />

·•I<br />

I<br />

Appl. Idrogeol. 14, parte Ill, 276-281.<br />

RrviERE A., 1977. Methodes granolometriques; Techniques et interpretation. Masson et ci•, Paris.<br />

SHEPARD F.P., 1954. Nomenclature based on s<strong>and</strong>~silt-clay ratios. J. Se<strong>di</strong>ment. Petrol. 24, 151-158.<br />

SCHULTZ L.G ., 1964. Quantitative interpretation of mineralogical composition from X-ray <strong>and</strong> chemical<br />

data for the Pierre Shale. Prof. Pap. U.S. geol. Surv. 391-C.<br />

SKEMPTON A.W., 1953. The colloidal «activity• of clay. Pp. 57-61, in: Proc. 3rd Int. Conf. Soil Mech.<br />

Found. Eng., I, Zurich:<br />

SPROVIERI R., RuGGERI G., UNTI M., 1980. Globorotalia Truncatulinoides excelsa n. subsp. foraminifero<br />

planctonico guida peril Pleistocene inferiore. Boil. Soc. Geol. It. 99, 3-11.<br />

ZEZZA F., 1976. V alutazione geologico-tecnica degli Ammassi rocciosi carsificati con particolare riferimento<br />

alle aree carsiche pugliesi. Mem. Soc. Geol. It. 14, 9-34.


Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 681-692 (1985)<br />

Effects of Particle Geometry on Treatment<br />

<strong>and</strong> Processing of Clays<br />

R.A. KUHNEL<br />

Department of Mining Engineering, Delft University of Technology, 120 Mijnbouwstraat, the Netherl<strong>and</strong>s<br />

ABSTRACT - A variety of shapes have been recognized on clay minerals as<br />

crystals, crystal fragments <strong>and</strong> as aggregates. Any non-spherical particle<br />

behaves <strong>di</strong>fferently in comparison with the behaviour of a sphere. Shape<br />

factors are numerical expressions for particle geometry. These are often derived<br />

from their relationship to sphere. Effects of shape factors are important<br />

for flow behaviour, moreover, they also imply numerous technological processes.<br />

Non-spherical particles tend to a natural segregation <strong>and</strong>/or preferred<br />

orientation. Because of physical anisotropy of all crystals, any aggregate<br />

with a degree of preferred orientation shows some degree of imisotropy in a<br />

variety of physical <strong>and</strong> chemical properties. ·<br />

This paper gives a survey of <strong>di</strong>fferent particle geometries, shape factors <strong>and</strong><br />

examples of technological implications connected with preferred orientation<br />

<strong>and</strong> anisotropy of aggregates. Also a survey of techniques for the examination<br />

of particle geometry <strong>and</strong> for. the quantification of preferred orientation of<br />

aggregates is <strong>di</strong>scussed.<br />

Particle (pore) analysis<br />

Since the introduction of electron<br />

microscopy in clay research, various<br />

shapes have been recognized for clay<br />

minerals. To the pioneers in this field<br />

belong H. BEUTELSPACHER &<br />

H.W. van der MAREL (1968). The<br />

shape of clay minerals has become<br />

<strong>di</strong>agnostic for the identification of<br />

clay minerals, for instance fibrous<br />

sepiolite <strong>and</strong> palygorskite, bladed<br />

rectorite · <strong>and</strong> tubular halloysite,<br />

while others (micaceous clay minerals,<br />

kan<strong>di</strong>tes, chlorites, etc.). are<br />

generally tabular. An isometric (spherical)<br />

shape is not frequent for clay<br />

minerals, although it does occur for<br />

some common aggregates <strong>and</strong> nonphyllosilicates.<br />

Examples of some<br />

characteristic shapes of clay minerals<br />

are shown in Figs 1 <strong>and</strong> 2. Aggregates<br />

of isometric particles are easier for<br />

all kinds of technologies because .of<br />

the isotropic character of the products.<br />

Nevertheless, the non-spherical<br />

particle geometry <strong>and</strong> preferred<br />

orientation in some instances can<br />

improve properties of the aggregates<br />

e.g. in refractories, laminated or fibrous<br />

composites.<br />

Particle (pore) analysis has recently<br />

developed into a means of comprehen-


"!<br />

682 R.A. Kiihnel<br />

Fig. 1- Examples of <strong>di</strong>fferent shapes of clay minerals. Photomicrographs TFDL Wageningen. a)<br />

SEM photomicrograph. Spherical bo<strong>di</strong>es of opal, Greece. b) TEM photomicrograph. Globular<br />

halloysite, Italy. c) TEM photomicrograph. Tubular halloysite, Spain. d) TEM photomicrograph.<br />

Fibrous nickeliferous sepiolite, Indonesia.<br />

0.2JJm<br />

Fig. 2- Examples of <strong>di</strong>fferent shapes of clay minerals. Photomicrographs TFDL Wageningen. a)<br />

TEM photomicrograph. Flat pseudohexagonal crystals of kaolinite, Brazil. b) SEM photomicrograph.<br />

Bladed serpentinite <strong>and</strong> fibrous goethite, Philippines.


Effects of Particle Geometry on Treatment ... 683<br />

sive particle characterization. In 1984<br />

appeared the first volume of a new<br />

international perio<strong>di</strong>cal entitled<br />

«Particle Characterization» de<strong>di</strong>cated<br />

to that important technological<br />

problem. Particle (pore) analysis examines<br />

particles from the four following<br />

viewpoints:<br />

1) Particle (pore) size <strong>di</strong>stribution:<br />

Population of particles is specified in<br />

terms of central tendencies (mode,<br />

mean <strong>and</strong> me<strong>di</strong>an), <strong>di</strong>spersion (st<strong>and</strong>ard<br />

deviation, sorting), asymmetry<br />

(skewness) <strong>and</strong> kurtosis (peakedness);<br />

2) Particle (pore) geometry: By<br />

means of.<strong>di</strong>fferent shape factors morphological<br />

features of crystals, fragments<br />

<strong>and</strong> crystalline aggregates are<br />

numerically expressed;<br />

3) Surface quantity <strong>and</strong> quality:<br />

Specific surface area gives the 'extent<br />

of particle surfaces per weight, wiiile<br />

surface quality quantifies <strong>di</strong>fferent<br />

kinds of surfaces such as crystal<br />

planes, cleavages, fractures etc. inclu<strong>di</strong>ng<br />

the surface morphology;<br />

4) Inner fabrics: From this point of<br />

view are specified aggregates which<br />

are either of a single-phase or multiphase<br />

composition. Moreover, the<br />

geometry of mutual spatial arrangement<br />

<strong>and</strong>/or intergrowth is of importance.<br />

In points 1) <strong>and</strong> 2) also pores <strong>and</strong><br />

voids are mentioned. The microfabric<br />

image will not be complete without<br />

specification of pore size <strong>di</strong>stribution<br />

<strong>and</strong> pore geometry. Both parameters<br />

control the behaviour of hetero-<br />

. geneous systems such as rocks, sus­<br />

,pensions, <strong>and</strong> aerosols, ··as regards<br />

permeability, conductivity <strong>and</strong> other<br />

important properties.<br />

Shapes <strong>and</strong> shape factors of clay<br />

minerals<br />

Any three-<strong>di</strong>mensional body can<br />

be characterized by a number of<br />

<strong>di</strong>mensions. Spheres <strong>and</strong> cubes for<br />

instance can be characterized by<br />

one <strong>di</strong>mension only. Therefore, spheres<br />

<strong>and</strong> cubes <strong>and</strong> related shapes are<br />

called «isometric». A prism, a rod, a<br />

hair all show an isometric character<br />

as regards cross section but not as regards<br />

length. We can call such particles<br />

«two-<strong>di</strong>mensional>>. A similar<br />

situation exists for tablets <strong>and</strong> <strong>di</strong>scs.<br />

Blades <strong>and</strong> bricks must be specified<br />

by three <strong>di</strong>mensions. Ideal geometric<br />

forms are easier to quantify. But<br />

irregular angular or rounded particles,<br />

often with a pitted <strong>and</strong> ragged<br />

surface, present a more complex<br />

problem. However, if a particle can<br />

be enclosed between three pairs of<br />

parallel planes (a parallelopiped with<br />

minimum volume), the <strong>di</strong>mensions of<br />

such bo<strong>di</strong>es characterize the enclosed<br />

particle properly.<br />

Besides combinations of <strong>di</strong>mension-ratios,<br />

also other measures<br />

are applied for shape factors.<br />

For example, perimeter <strong>and</strong> surface,<br />

<strong>and</strong> area <strong>and</strong> volume of particular<br />

sections or particles have important<br />

roles. Surveys of shape factors<br />

<strong>and</strong> their sensitivities are published<br />

in se<strong>di</strong>mentological <strong>and</strong>/or stereological<br />

references (e.g. BARRETT,<br />

1980; MORTON & McCARTHY,<br />

1975).


684 R.A. Kuhnel<br />

Simple shape classification can be<br />

derived from ratios of L, I <strong>and</strong> S­<br />

<strong>di</strong>mensions (measures) as shown in<br />

Table 1.<br />

Among the most popular factors in<br />

petrology <strong>and</strong> se<strong>di</strong>mentology are the<br />

following:<br />

Elongatior;t factor: t = I/L, also<br />

used as life<br />

Flatness factor: fr = 2S/(L+ I), also<br />

used as 1/ff<br />

Sphericity: 'P = VpNL or Sp/SL<br />

where V st<strong>and</strong>s for the volume of the<br />

particle (p) <strong>and</strong> the volume of the circumscribed<br />

sphere (L), <strong>and</strong> S for particular<br />

surfaces respectively. In the<br />

____ ________ case qf a sphere, all <strong>di</strong>men_sions are .<br />

equal <strong>and</strong> all shape factors are equal<br />

to one. Any deviation of the particle<br />

geometry from that of a sphere lowers<br />

·the value ofthe shape factors. Despite<br />

that we speak about high shape<br />

factors.<br />

Concept of anisotropy of aggregates<br />

The concept of anisotr-opy is based-. -.<br />

upon the following statements:<br />

- All crystals of any size are anisotropic<br />

in their properties (chem~cal<br />

<strong>and</strong> physical properties are vectors).<br />

Only completely . r<strong>and</strong>omly<br />

oriented particles form an isotropic<br />

aggregate.<br />

- Due to any degree of preferred<br />

orientation, an aggregate becomes<br />

anisotropic.<br />

Any non-spherical particle tends to<br />

reach equilibrium with the environment.<br />

Starting from nucleation <strong>and</strong><br />

crystallization through <strong>di</strong>splacements<br />

up to mechanical rearrangement<br />

<strong>and</strong> recrystallization under<br />

high pressures <strong>and</strong> temperatures, the<br />

position of particles expresses the<br />

equilibrium between particle <strong>and</strong> all<br />

co-existing driving forces. When con<strong>di</strong>tions<br />

are changed, the position of<br />

particles follows the path to a new<br />

TABLE 1<br />

A simple classification of particle shapes (mo<strong>di</strong>fied accor<strong>di</strong>n_g_ to ZINGG, 1935)<br />

SHAPE<br />

CONDITIONS<br />

ISOMETRIC<br />

(MONO- DIMENSIONAL)<br />

L;r;s .!>~:~>3:<br />

L 3 I 3<br />

ELONGATED<br />

(TWO- DIMENSIONAL)<br />

_ I 2 5 2<br />

L>I=S --<br />

L 3 1 3<br />

EXAMPLES OF:<br />

GEOMETRIC FORMS<br />

f-(,..._-_-_-_-_-_-..::;0/II s<br />

FLAT / ?I<br />

(TWO-DIMENSIONAL) ~I<br />

L;l>S~>~ :~I>S-


Effects of Particle Geometry on Treatment ... 685<br />

steady equilibrium. Therefore, parti­<br />


-··:r.·;-,c::<br />

-- --------------~- -·- --------~. ------~ -=---=------------------------ ------------- _J;.· -------- ---<br />

---=~<br />

-------------­<br />

·-·-·-------··<br />

! .<br />

a-.<br />

00<br />

a-.<br />

TABLE 2 .<br />

Methods for examination of particle geometry <strong>and</strong> preferr~d orientation of particles in aggregates<br />

Method<br />

Driving forces (measures)<br />

Advantages/<strong>di</strong>sadvap.tages<br />

Optical<br />

microscopy<br />

(image analysis)<br />

<strong>di</strong>rect measurement of<br />

particles<br />

suitable for particles <strong>and</strong> grains larger than 5 micrometers;<br />

suitable for particles, grains <strong>and</strong> voids;<br />

quantitative data on oriented preparations only;<br />

necessity of stereological recalculations on images<br />

Electron microscopy<br />

image analysis<br />

SEM + TEM<br />

X-ray <strong>di</strong>ffraction<br />

<strong>di</strong>rect measurement of<br />

particles <strong>and</strong> voids<br />

line intensities on oriented<br />

preparations<br />

polar <strong>di</strong>agrams<br />

suitable for submicroscopic particles <strong>and</strong> inner voids;<br />

qualitative <strong>and</strong> semiquantitative data on SEM;<br />

quantitative data on TEM;<br />

necessity of stereological recalculations on images<br />

suitable for rocks <strong>and</strong> other aggregates;<br />

oriented preparation required;<br />

necessity of internal st<strong>and</strong>ards (e.g. MoS 2 )<br />

~<br />

~<br />

?


Effects of Particle Geometry on Treatment ... 687<br />

amined, <strong>and</strong> spatial variability of<br />

properties is measured as a function<br />

of preferred orientation. Summarized<br />

in Table 2 are techniques available<br />

for determination of shape <strong>and</strong> of<br />

preferred orientation of particles in<br />

suspensions <strong>and</strong> aggregates with<br />

their capacities.<br />

Microfabrics of clayey se<strong>di</strong>ments<br />

During se<strong>di</strong>mentation from suspension,<br />

a large fraction of flaky clay<br />

particles establish their equilibrated<br />

position subparallel with the bottom.<br />

Due to the mutual meshanical <strong>and</strong><br />

electrostatic interaction a complete<br />

parallel P?Sitioning is never reached.<br />

Clay particles are surrounded by<br />

hydration (solvation) layers which<br />

compensate the charges <strong>and</strong> surface<br />

energy. During the whole postse<strong>di</strong>mentary<br />

development (both <strong>di</strong>agenetic<br />

<strong>and</strong> metamorphic), the microfabric<br />

undergoes drastic changes.<br />

Due to compaction, particles come in<br />

mutual contact, so that porosity, pore<br />

size <strong>di</strong>stribution <strong>and</strong> pore geometry<br />

change completely. The rearrangement<br />

of particles with higher shape<br />

factors requires higher activation<br />

energy <strong>and</strong> the degree of <strong>di</strong>splacement<br />

does not always lead to an improvement<br />

of preferred orientation.<br />

Without any doubt, microfabrics<br />

control mechanical properties of,<br />

se<strong>di</strong>mentary rocks. Therefore, se<strong>di</strong>mentologists,<br />

engineering geologists<br />

<strong>and</strong> civil engineers. follow this complex<br />

problem thoroughly by means of<br />

the most advanced techniques.<br />

Mathematical models of compaction<br />

have been designed <strong>and</strong> particular<br />

stages of microfabric development<br />

have been recorded on scanning electron<br />

microscope photomicrographs.<br />

An excellent survey of these was<br />

given by F. VENIALE during this<br />

<strong>Congress</strong>.<br />

Microfabrics also reflect a kind of<br />

se<strong>di</strong>mentation. It would be possible<br />

to recognize submarine mudflows,<br />

turbi<strong>di</strong>ty currents of <strong>di</strong>fferent density<br />

<strong>and</strong> spee_d as well as l<strong>and</strong>slides <strong>and</strong><br />

any partial <strong>di</strong>splacements of soils on<br />

unstable slopes. However, the primary<br />

prerequirements are un<strong>di</strong>sturbed<br />

oriented samples <strong>and</strong> oriented<br />

sections. In ad<strong>di</strong>tion to that it is of<br />

importance to know the <strong>di</strong>stribution<br />

of shape factors on particular granulometrical<br />

<strong>and</strong> mineralogical fractions.<br />

Technological implications<br />

The shape of the particles <strong>and</strong> preferred<br />

orientation strongly affect<br />

<strong>di</strong>fferent processes during the treatment.<br />

Both, advantages <strong>and</strong> <strong>di</strong>sadvantages<br />

of these phenomena are<br />

known, however, prevailing <strong>di</strong>sadvantages<br />

often imply technologies.<br />

Adhesion of flaky particles to the<br />

parts of excavation <strong>and</strong> transporting<br />

machines is a well-known implication<br />

in winning, transporting <strong>and</strong><br />

storage of ceramic raw materials,<br />

especially in the partly wetted state.<br />

Sticking of clays results from preferred<br />

orientation of non-spherical<br />

particles with a large surface area,


688 R.A. Kuhnel<br />

<strong>and</strong> of course of their charges. Par.ti~<br />

des reach the most stable position<br />

parallel to the surface of tools or containers.<br />

It is impossible to change the<br />

nature of such materials. Therefore,<br />

the solution of that problem lies<br />

rather in mo<strong>di</strong>fication of adjacent<br />

surfaces.<br />

Similar problems are more pronounced<br />

in classification (screening)<br />

processes where the more common<br />

presence of moisture often causes<br />

closing of meshes.<br />

The comminution (grin<strong>di</strong>ng <strong>and</strong><br />

milling) by means of <strong>di</strong>fferent instrumentation<br />

should result in the generation<br />

of larger surfaces. However,<br />

preferred orientation of flakes to the<br />

··------surface·of-baHs·, pebble·s; rods-or ham-·<br />

mers causes the most elastic crystal<br />

planes to be exposed to the impacts<br />

<strong>and</strong> more elastic deformation than<br />

breakage takes place. Subsequently,<br />

energy for comminution is used with<br />

little effect.<br />

During se<strong>di</strong>mentation, all nonspherical<br />

particles do not obey<br />

Stokes' law <strong>and</strong> their settling velocities<br />

are <strong>di</strong>rectly controlled by shape<br />

factors. During elutriation, in air<br />

or in liquids, particles with the same<br />

weight behave <strong>di</strong>fferently accor<strong>di</strong>ng ·<br />

to their shape factors. The shape of<br />

particles strongly effects the flow behaviour<br />

of powders, pastes, slurries<br />

<strong>and</strong> suspensions. Due to the <strong>di</strong>fferent<br />

settling velocities <strong>and</strong> charge <strong>di</strong>stribution,<br />

particles segregate continuously<br />

during the movement <strong>and</strong><br />

establish aggregates with a rather<br />

high degree of preferred orientation<br />

<strong>and</strong> gra<strong>di</strong>ng. All kinds of forming processes<br />

such as mol<strong>di</strong>ng, slip casting,<br />

pressing <strong>and</strong> extrusion are~


(<br />

p<br />

Effects of Particle Geometry on Treatment ... 689<br />

Fig. 3- Negative photomicrograph, axial section through a sewage pipe. Photomicrographs TFDL<br />

Wageningen. Parabolic fissures in the central part result from <strong>di</strong>fferences in flow speed during the<br />

extrusion. Paste flows faster in central part while close to the mouth piece retardation occurs due<br />

to higher adhesion of flaky particles in preferred orientation.<br />

Fig. 4- SEM photomicrograph (TFDL Wageningen). Fabrics of green body (sewage pipe). Flaky<br />

particles show high degree of preferred orientation (lineation).


690 R.A. Kuhnel<br />

Fig. 5 -<br />

SEM photomicrograph (TFDL Wageningen). Fabrics of fired body (sewage pipe). Subparallel<br />

<strong>di</strong>stribution of fissures (lamination) caused by anisotropic shrinkage.<br />

products in so far as they lower the<br />

permeability of ceramic bo<strong>di</strong>es;<br />

further water penetration might result<br />

in sheeting decay.<br />

Another troubling effect of shape<br />

can be recognized on filtering. Particles<br />

in suspension are uniformly<br />

oriented towards the pressure gra<strong>di</strong>ent<br />

<strong>and</strong> cake on a filter becomes<br />

dense with the lowest permability<br />

against the driving force.<br />

Numerous other examples can be<br />

given in order to demonstrate the<br />

consequences of particle geometry.<br />

Technology attempts to mo<strong>di</strong>fy the<br />

anisotropic clayey material by<br />

numerous treatments. For instance,<br />

destruction of preferred orientation<br />

by spray drying is one of the successful<br />

techniques. Droplets of clay suspension<br />

are dried <strong>and</strong> the inner structure<br />

of resulting granules is highly<br />

r<strong>and</strong>om. The tendency to preferred<br />

orientation is depressed <strong>and</strong> shrinkage<br />

on drying <strong>and</strong> firing can be more<br />

easily controlled. Admixing of<br />

isometric <strong>and</strong> irregular pa~ticles (e.g.<br />

saw dust) with suspensions to be filtered<br />

provides higher permeability of<br />

thicker cakes on filters. The life of the<br />

filter is extended <strong>and</strong> also the capacity<br />

is increased.<br />

The shap~ of the particle <strong>and</strong> preferred<br />

orientation can also have


Effects of Particle Geometry on Treatment ... 691<br />

Fig. 6 -<br />

SEM photomicrograph (TFDL _Wageningen). Detail of lamination (parallel fissures) in<br />

fired sewage pipe.<br />

-·-"<br />

favourable effects. For instance, the<br />

quality of paper depends on microstructure<br />

<strong>and</strong> preferred orientation of<br />

kaolinite crystallites within. the paper<br />

coating. Shiny submetallic lustre<br />

of plastic coatings depends on the degree<br />

of preferred orientation of flakes<br />

of micas or other fillers. In the case of<br />

aggregates consisting of highly anisotropic<br />

crystallites it is possible to<br />

exploit the optimum (maximum)<br />

properties by control of orientations. ·<br />

In such cases technology seeks to prepare<br />

powders of required size <strong>and</strong><br />

shape <strong>and</strong> aggregates with required<br />

orientation. Applications of such<br />

materials could be found among refractories<br />

<strong>and</strong> insulating materials,<br />

reinforced composites, electroceramics,<br />

magneto-ceramics, abrasives<br />

etc. Mechanical properties of<br />

ceramic bo<strong>di</strong>es are improved by<br />

mutually penetrated <strong>and</strong> intercalated<br />

non-spherical particles. These<br />

are trends in the development of new<br />

composites, laminates <strong>and</strong> fibre reinforced<br />

materials.<br />

Conclusions<br />

Shapes of particles control their<br />

behaviour during any treatment.<br />

Non-spherical particles tend to riatu-


,, I<br />

I<br />

li<br />

692 R.A. Kii.hnel<br />

.I<br />

ral segregation <strong>and</strong> preferred orientation<br />

<strong>and</strong> cause anisotropy of aggregates<br />

<strong>and</strong>/or products. Shape <strong>and</strong><br />

orientation have both, negative <strong>and</strong><br />

positive effects on products. It is desirable<br />

to recognize <strong>di</strong>fferent shapes<br />

in granulometric <strong>and</strong> also in mineralogical<br />

fractions of the raw materials.<br />

Furthermore, it is desirable to quantify<br />

shapes <strong>and</strong> their <strong>di</strong>stribution by<br />

means of sensitive shape factors <strong>and</strong><br />

to quantify the degree of preferred<br />

orientation. When the behaviour of<br />

particular clayey particles is understood,<br />

it is easy to optimize the technology,<br />

by depressing the negative<br />

effect <strong>and</strong> favouring the positive<br />

ones. For examination it is possible to<br />

mo<strong>di</strong>fy techniques already applied in<br />

se<strong>di</strong>mentology <strong>and</strong> stereology. These<br />

offer a variety of approaches for in<strong>di</strong>vidual<br />

particles, as well as for bulk<br />

materials. A development of new<br />

techniques is expected. Controlled<br />

oriented aggregation is a prerequirement<br />

for all powder technologies.<br />

REFERENCES<br />

BARRETT P.J., 1980. The shape of rock particles, a critical review. Se<strong>di</strong>mentology 24, 291-303.<br />

BEKKER P.C.F., KDHNEL R.A., 1983. Investigation of lamination phenomena on vitrified sewage pipes.<br />

Science of Ceramics 12, 107-115.<br />

BEUTELSPACHER H., VAN DER MAREL H.W., 1968. Atlas of Electron Microscopy of Clay Minerals <strong>and</strong><br />

their Admixtures. Elsevier, Amsterdam.<br />

McCRONE, W.C., BROWN J.A., STEWART I.M., 1980. The Particle Atlas. Vol. VI, Ann. Arbor. Science<br />

Pub!., Michigan, USA.<br />

GARD J .A.( e<strong>di</strong>tor), 1971. The Electron-Optical Investigation of Clays. Mineralogical Society, London.<br />

MORTON R.R.A., McCARTHY C., 1975. The Omnicon TM pattern analysis system. Microscope 23, 239-<br />

260.<br />

Suoo T., SHIMODA S., YOTSUMO Y., AITA S., 1981. Electron Micrographs of Clay Minerals. Develop- .<br />

ments in Se<strong>di</strong>mentology 31, Elsevier, Amsterdam.<br />

VENIALE F., 1985. The Role of Microfabric in Clay Soil Stability. These Procee<strong>di</strong>ngs.<br />

ZINGG TH. W., 1935. Beitrag zur Schotteranalyse. Schweiz. Min. u. Petr. Mitt. Bd. 15, 35-140.<br />

':'l ,,,<br />

11<br />

11<br />

I' .I


(<br />

,.<br />

Miner. Petrogr. Acta<br />

Vol. 29-A, pp. 693-702 (1985)<br />

On Some Characteristics of Compacted Cohesive Soils<br />

· G. DENTE, L. ESPOSITO<br />

Dipartimento <strong>di</strong> Difesa del Suolo, Universita degli Stu<strong>di</strong> della Calabria, 87036 Arcavacata <strong>di</strong> Rende, Italia<br />

ABSTRACT- The permeability <strong>and</strong> swelling pressure values of two compacted<br />

cohesive soils from Avellino <strong>and</strong> Catanzaro Provinces (southern Italy)<br />

were determined in order to examine their engineering behaviour related to<br />

core earth dam construction.<br />

These properties are strongly influenced by the mol<strong>di</strong>ng water content. In<br />

particular, the swelling pressure is the result of the action of both mechanical<br />

<strong>and</strong> osmotic components. The osmotic component depends mainly on<br />

clay mineralogical composition <strong>and</strong> the adsorbed cations.<br />

The variations of soil microfabric with mol<strong>di</strong>ng water content were observed<br />

using scanning electron microscopy <strong>and</strong> are in agreement with the behaviour<br />

of both permeability <strong>and</strong> swelling pressure.<br />

Introduction<br />

When soil is used as a construction<br />

material it is treated by means<br />

of special techniques which improve<br />

both its shear strength <strong>and</strong> compressibility.<br />

Compaction is one of the tech-<br />

. -nique most commonly used.<br />

Some authors have suggested that,<br />

due to a constant compactive effort,<br />

the structure of soil can be changed<br />

oy varying the water content (LAM­<br />

BE, 1958; SEED & CHAN, 1959).<br />

When materials are drier than the ·<br />

optimum, the structure is r<strong>and</strong>om or<br />

· flocculated, whereas when they are<br />

wetter than the optimum the structure<br />

is oriented or <strong>di</strong>spersed. Recent<br />

stu<strong>di</strong>es have established tha:t the clay<br />

particles are assembled into structural<br />

units called domains, clusters <strong>and</strong><br />

peds. These structural units are arranged<br />

in frameworks described as<br />

r<strong>and</strong>om (opened structure), flocculated<br />

(closed structure) or <strong>di</strong>spersed<br />

(oriented structure). Whenever the<br />

framework of a soil is r<strong>and</strong>om the volumetric<br />

behaviour is isotropic, whilst<br />

when it has a totally 'oriented structure<br />

the bulk behaviour is anisotropic.<br />

In describing the structural units<br />

BARDEN & SIDES (1970) have followed<br />

the . in<strong>di</strong>cations of LAMBE<br />

(1958): when the water content is low<br />

,the structural units are hard <strong>and</strong> not<br />

<strong>di</strong>storted by the compactive effort,<br />

with the result that the density is low<br />

<strong>and</strong> many macropores are to be<br />

found between the structural units<br />

(opened structure). An increase in the


694 G. Dente, L.Bsposito<br />

water cop.tent causes the structural<br />

units to become progressively softer<br />

so that they are <strong>di</strong>storted by compaction,<br />

the macropores <strong>di</strong>sappear <strong>and</strong><br />

the density increases (closer <strong>and</strong> partly-oriented<br />

structure). When the water<br />

conte~t is high the density decreases<br />

since the water cannot replace the<br />

air entrapped in the isolated pores<br />

(oriented structure) with the result<br />

that some solid partiCles <strong>di</strong>sappear.<br />

This paper reports the results of<br />

laboratory tests which measured the<br />

permeability <strong>and</strong> swelling pressure<br />

of some samples of compacted cohesive<br />

soils.<br />

-- --<br />

Material <strong>and</strong> methods<br />

The soils, designated A <strong>and</strong> B, belong<br />

to the top of a fluvial deposit<br />

close to the Conza dam (Avellino Province)<br />

<strong>and</strong> the middle part of the<br />

(ypical S. Anna stratigraphic sequence<br />

(Catanzaro Province). Sampling was<br />

done in order to obtain material to<br />

be utilized for construction of the dam<br />

cores. '-~.<br />

The experimental methods include<br />

. the following steps:<br />

(i) Compaction, utilizing the A.A.S.H.<br />

0. st<strong>and</strong>ard technique (AMERICAN<br />

SOCIETY FOR TESTING MATE­<br />

RIALS, 1956).<br />

(ii) Measurement 0f swelling pressure<br />

(sp), utilizing a Geonor rigonfimeter.<br />

(iii) Measurement of permeability<br />

coefficient (K), utiliziiJ,g __ Il: _ _Q~QnQI"~<br />

permeater(I).<br />

(iv) Control of soil B . microfabric<br />

after compaction by means of scanning<br />

electron microscopy (SEM).<br />

In the case of swelling pressure,<br />

two <strong>di</strong>fferent techniques were used:<br />

- the so-called «St<strong>and</strong>ard test>>, regar<strong>di</strong>ng<br />

immersion in water to<br />

obtain sample 'saturation;<br />

.-the so-called «as compacted test>>,<br />

relative to saturation after a first stage<br />

in which the water content of the sample<br />

is kept constant with the same<br />

value obtained after its compaction.<br />

For soil B, the permeability tests<br />

consider flow in a vertical <strong>di</strong>rection,<br />

k~, i.e. parallel to the <strong>di</strong>rection of the<br />

compactive effort, <strong>and</strong> in a horizontal<br />

<strong>di</strong>rection, kh, i.e. normal to the<br />

<strong>di</strong>rection of compactive effort.<br />

Results <strong>and</strong> <strong>di</strong>scussion<br />

The plastic properties, minerq.logical<br />

composition <strong>and</strong> cationic concentration<br />

of the less than 2 )liD fraction<br />

for the soils stu<strong>di</strong>ed are reported in<br />

Table 1 .<br />

The values of the dry density Yd vs ..<br />

mol<strong>di</strong>ng water content for soils A <strong>and</strong><br />

B are reported in Fig. 1.<br />

The variation occurring in the<br />

structural arrangement of· soil B<br />

when the water content increases is<br />

(1) The equation K = Yw ;• e 3 where ll = viscosity of permeant; c. = shape factor; Yw<br />

ll R l+e . .<br />

= unit weight of water; e = void ratio; s = degree of saturation; R = ratio between wet<br />

surface <strong>and</strong> volume of the solid particles, derived by Darcy's Law, is not utilized because of<br />

the considerable <strong>di</strong>screpancies with the experimental results. ·


On Some Characteristics of Compacted ... 695<br />

TABLE 1<br />

Plastic properties, mineralogical composition <strong>and</strong> cationic concentration of the < 2 Jtm<br />

fraction of the soils stu<strong>di</strong>ed<br />

WL Wp lp la Smectite<br />

Illite<br />

Kaolinite Na+ Ca 2 + Mgz+<br />

+ Chlorite<br />

(meq/100 g)<br />

Soil A 59.3 21.4 37.9 1.5 79<br />

Soil B* 45.5 22.0 23.5 0.9 10<br />

12 9 6.52 2.32 0.53<br />

60 30 4.32 1.30 2.13<br />

* Chlorite is absent in Soil B<br />

shown in Figs 2, 3 <strong>and</strong> 4, in agreement<br />

with the hypotheses of BARD EN<br />

& SIDES (1970).<br />

The sp values obtained by means<br />

of the ;,st<strong>and</strong>ard test» are reported in<br />

Figs 5 <strong>and</strong> 6, where the maximum<br />

value is reached for a water content<br />

less than the optimum relative to closed<br />

<strong>and</strong> partly-oriented structures.<br />

BOLT (1956) has explained the·swelling<br />

of clay soil only in terms of''the<br />

osmotic pressure. But since BOLT's<br />

theory is only valid for totally oriented<br />

structures it is unable to explain<br />

these experimental results. It is there-<br />

fore clear that the swelling pressure<br />

is partly due to the soil-water<br />

potential (mechanical component)<br />

<strong>and</strong> partly to osmotic pressure. This<br />

hypothesis (A YLMORE & QUIRK,<br />

1960) enable the experimental results<br />

to be satisfactorily interpreted.<br />

For «as compacted» samples (Figs<br />

7 <strong>and</strong> 8) the behaviours of materials<br />

A <strong>and</strong> B <strong>di</strong>ffer. In the case of soil A,<br />

the swelling pressure in the first<br />

stage is only exerted by those samples<br />

whose degree of saturation approaches<br />

unity. Under this con<strong>di</strong>tion the<br />

soil-water potential approaches zero,<br />

2.0<br />

1.9<br />

1.8<br />

...<br />

I<br />

1.7<br />

w optimum<br />

Fig. 1 --Compaction curves: (a) soil A, (b) soil B.,


696 G. Dente, L. Esposito<br />

Fig. 2- Soil B microphotograph (w = 13%).<br />

Fig. 3 - Soil B microphotograph (w = 14.7%).


On Some Characteristics of Compacted ...<br />

697<br />

Fig. 4- Soil B microphotograph (w = 18.5%).<br />

sp<br />

(kg/cm2)<br />

0<br />

I<br />

0<br />

/<br />

0<br />

·~<br />

0~ 0<br />

~0<br />

---<br />

w%<br />

w optimum<br />

Fig. 5 - Swelling pressure versus water content for soil A.<br />

(


698 G. Dente, L. Esposito<br />

sp<br />

( kg/cm2)<br />

0<br />

0<br />

/<br />

w%<br />

0+-----r----,-----,-----,----,-----,---T'<br />

8 10 11 12 13 14 15<br />

w optimum<br />

Fig. 6- Variation of the swelling pressure with water content for soil B.<br />

thus the measure of swelling pressure<br />

·--·-·r--is entirely due to osmotic pressure<br />

(DENTE & ESPOSITO, 1984). In the<br />

case of soil B, swelling pressures are<br />

only exerted by those samples whose<br />

water content approaches 80% of the<br />

optimum, i.e. when the water content<br />

is low. Under this con<strong>di</strong>tion • the<br />

osmotic pressure approaches zero<br />

<strong>and</strong> the swelling pressure measured<br />

sp<br />

(kg/cm2)<br />

0<br />

• as compacted<br />

o with water<br />

4<br />

/<br />

I<br />

i<br />

/<br />

/<br />

0<br />

I<br />

I 9<br />

.... ·-I.<br />

w optimum<br />

Fig. 7 - Swelling pressure of samples «as compacted>> for soil A.


0<br />

8<br />

w optimum<br />

/<br />

On Some Characteristics of Compacted ... 699<br />

"' as COilJpa"cted<br />

Fig. 8 - Swelling pressure of samples «as compacted>> for soil B.<br />

is entirely due to the soil-water potential.<br />

In the second stage both soil<br />

. samples achieved the same pressure<br />

values as those called «st<strong>and</strong>ard>>.<br />

The <strong>di</strong>fferent behaviour is primarily<br />

\<br />

kv<br />

(cm/sec)<br />

~\<br />

~<br />

r-·<br />

_1<br />

'<br />

due to the <strong>di</strong>fferent clay minerals<br />

present, although in both soils the<br />

cations adsorbed are essentially the<br />

same (BOWLES, 1979).<br />

Figures 8 <strong>and</strong> 9 show that the per-<br />

'<br />

~<br />

'<br />

gr- ·-<br />

I<br />

~-...... . t--<br />

~'.~t=:::e=<br />

0 w%<br />

7 9 11l 13 15<br />

w optimum<br />

Fig. 9 - Variation of permeability co€Jficient kv with water content for soil A.


700 G. Dente, L. Esposito<br />

-6<br />

1 ·1 0<br />

J<br />

k<br />

(cm/sec)<br />

- --<br />

~"'-:"'<br />

~-~<br />

-~}


On Some Characteristics of Compacted ... 701<br />

part of the macropores <strong>di</strong>sappears<br />

(Fig. 4). Obviously, the variation in<br />

pore size <strong>and</strong> the <strong>di</strong>sappearance of<br />

macropores determine the decrease<br />

of K values (OLSEN, 1962; YONG &<br />

WARKENTIN, 1975).<br />

For soil B, the permeability coefficients<br />

determined in vertical (kv) <strong>and</strong><br />

horizontal (kh) <strong>di</strong>rections, assume<br />

the same values for low water content<br />

confirming the isotropic behaviour<br />

of the microfabric. At high water<br />

contents, the kv <strong>and</strong> kh values are<br />

<strong>di</strong>fferent because of the anisotropy<br />

assumed by the structure. In particular,<br />

the degree of anisotropy, defined<br />

by kvfkh, is low (Fig. 10). In all probability,<br />

the small increase inK values<br />

from w values greater than the optimum<br />

ones can be due to an increase<br />

. in the size of the micropores. ,.<br />

Conclusions<br />

Based on the results obtained, it<br />

can be concluded that the permeability<br />

of compacted cohesive soils depends<br />

mainly on the structure assumed<br />

by the materials after compaction<br />

<strong>and</strong>, consequently, is to be considered<br />

essentially a function of the<br />

water content. This dependence, hypothesized<br />

for various materials by some<br />

researchers since 1960, has been illustrated<br />

by scanning electron microscopy.<br />

The experimental results obtained<br />

in<strong>di</strong>cate that the swelling pressure<br />

depends on both mechanical <strong>and</strong><br />

osmotic components, as stated by<br />

AYLMORE & QUIRK (1960). This<br />

fact is particularly evident on the basis<br />

of the tests relative to «as compacted»<br />

soils. In particular, tl)e osmotic<br />

component, influenced by mineralogical<br />

<strong>and</strong> chemical-physical properties,<br />

is negligible for soil B because of<br />

its low smectite content.<br />

Acknowledgments<br />

The writers wish to express their<br />

thanks to Prof. C. Buondonno for mineralogical<br />

<strong>and</strong> chemical-physical<br />

determinations, Prof. P. 0:::-sini for<br />

permission to use the electron microscope<br />

<strong>and</strong> Prof. A. Pozzuoli for critical<br />

rea<strong>di</strong>ng of the manuscript.<br />

REFERENCES<br />

AMERICAN SOCIETY FOR TESTING MATERIALS, 1956. Soil Testing.<br />

AYLMORE L.A.G., QuiRK J.P., 1960. The structuraistatus of clay system. Clays Clay Miner. 9, 104-130.<br />

BARDEN L., SIDES G.R., 1970. Engineering behaviour <strong>and</strong> structure of compacted clay. ASCE 96, n.<br />

SM4, 1171-1200.<br />

BoLT G .H., 1956. Physical-chemical analysis of the compressibility of pure clay. Geotechnique 6, 86-<br />

98.<br />

BowLES J.E., 1979. Physical <strong>and</strong> Geotechnical Properties of Soils. McGraw-Hill, New York.<br />

DENTE G., EsPOSITO L., 1984. Permeabilita e pressioni <strong>di</strong> rigonfiamento dei terreni coesivi costipati.<br />

Rivista <strong>Italian</strong>a <strong>di</strong> Geotecnica 18, 159-171.<br />

LAMBE T.W., 1958. The engineering behaviour of compacted clay. ASCE 84, n. SM2, 681-717.


"~'I!<br />

''li ::I,<br />

''<br />

MITCHELL J.K., HooPER D.R., CAMPANELLA G.R., 1965. Pennecibility of compacted clay. ASCE 91, n.<br />

SM4, 41-65.<br />

OLSEN H.W., 1962. Hydraulic flow through saturated clays. Clays Clay Miner.n, 13Fr6r:-·~--· ---­<br />

SEED H.B., CHAN C.K., 1959. Structures <strong>and</strong> strength characteristics of compacted clays. ASCE 85, n.<br />

SMS, 87-109.<br />

YoNG R.N., WARKENTIN B.P., 1975. Soil Properties <strong>and</strong> Behaviour. Elsevier, Amsterdam.<br />

'<br />

702 G. Dente, L. Esposito


I<br />

..-J7<br />

Abstracts<br />

703<br />

Physical <strong>and</strong> Mechanical Properties<br />

of Silica-Kaolin Mixtures<br />

R. GENEVOIS, P.R. TECCA<br />

Istituto.<strong>di</strong> Geologia e Paleontologia, Universita <strong>di</strong> Roma, Piazzale A. Moro 5, 00185 Roma, Italia<br />

This paper presents the results of a research on the influence of non-clay<br />

particles on the behaviour of cohesive soils. For this purpose, the physical<br />

<strong>and</strong> mechanical properties of kaolin mixtures with increasing percentages of<br />

amorphous silica were analysed. A purified kaolin provided by the german<br />

Industry BSH was utilised: five mixtures were prepared with increasing<br />

percentages of fumed silica up to 40% of total dry weight; laboratory tests<br />

were performed both on the mixtures <strong>and</strong> pure kaolin. Plasticity characteristics<br />

were determined preliminarily from the values of the Atterberg limits<br />

(liquid limit, WL%; plastic limit, Wp%). The fundamental mechanical behaviour<br />

of the mixtures was examined on samples initially prepared as a slurry,<br />

with a water content 'slfglitly over tw!ce the related liquid limit, ai::i(f thenconsolidated<br />

one-<strong>di</strong>mensionally in a mould under an axial stress of 10 t/m 2<br />

for a period of 60 days. The specimens, both for CIU triaxial <strong>and</strong> oedometer<br />

tests, were trimmed from the sample obtained, 150 mm long <strong>and</strong> 100 mm in<br />

<strong>di</strong>ameter. Oedometer <strong>and</strong> CD <strong>di</strong>rect shear tests also were performed<br />

<strong>di</strong>rectly on the initial slurries. The changes of fundamental properties<br />

with the silica content are plotted in Figs 1, 2, 3 <strong>and</strong> 4, from which it is<br />

possible to draw the following conclusions: a) the linear relationships<br />

between Atterberg limits <strong>and</strong> silica content imply a contemporaneous in-<br />

' crease of the net interparticle attractive forces. The SEM investigations<br />

showed that the smallest silica particles were adsorbed on the largest kaolin<br />

particles, thus mo<strong>di</strong>fying their properties: the presence of silica grains lead<br />

consequently to a coating of large particles <strong>and</strong> to an interparticle bon<strong>di</strong>ng,<br />

b) che increase in cohesion <strong>and</strong> friction angle may be due to the same effect<br />

0.4<br />

0.2<br />

0<br />

C'<br />

c<br />

.,...,.<br />

---·-c<br />

,..--·<br />

~~-·-·-· --•~r<br />

c: consolidated - r: remolded<br />

~-.......<br />

c~ . •.............__<br />

·---<br />

0.04<br />

~"-·<br />

..... ... c<br />

0.02<br />

·---·--•-•-r<br />

Silica (%)<br />

Silica (%)<br />

0 5 10<br />

20<br />

Fig. 1<br />

30 ..<br />

40<br />

5 10 20<br />

Fig. 2<br />

30<br />

40


704 Abstracts<br />

1.8<br />

1.2<br />

0.6<br />

c<br />

(Kg/cm2)<br />

.. /•,c'<br />

. ./<br />

/ .... c<br />

1./<br />

.,./<br />

y·<br />

c :total stress parameter<br />

c': effective stress parameter<br />

~.,-rp-~~~~~~~- -·-<br />

30 ./.(effective)<br />

20<br />

10<br />

v·/<br />

~·/<br />

_rp<br />

• • (total)<br />

---<br />

0 5 10<br />

Silica (%) Silica (%)<br />

20 30 40 0 5 10 20 30 40<br />

Fig. 3 Fig. 4<br />

of interparticle bon<strong>di</strong>ng. The stress~strain plots show that, at higher silica<br />

-- con-ten-ts, -mixtures- behave -as stairr=softening material, c) more complex is<br />

the interpretation of the oedometertests: experimental data (compression<br />

<strong>and</strong> swelling indexes, constrained moduli <strong>and</strong> permeability coefficients) are<br />

quite <strong>di</strong>fferent if samples have been formerly consolidated or not. The influence<br />

of silica particles adsorption <strong>and</strong> creep phenomena as rate processes<br />

has been pointed out in the formation of double layers, responsible for long<br />

range repulsive forces between particles.<br />

I<br />

Mitchell K.J., 1976. Fundamentals of Soil Behavior. J. Wiley & Sons, New York. .<br />

Moore C.A., Mitchell K.J., 1974. Electromagnetic forces <strong>and</strong> soil strength. Geotechnique 24 (4), 627-'<br />

640. .<br />

Sokolovich V.E., 1980. Electrostatic forces in soils. J. Soil Mech. Found. Eng., ASCE, 17 (2).


v.<br />

Abstracts<br />

705<br />

Geological-Technical Characterization of the Clay Bash~<br />

in Rutigliano, Province of Bari, Southern Italy<br />

C. CHERUBINP, G. NUOV0 2 , F.P. RAMUNNP, N. WALSH 3<br />

1 Istituto <strong>di</strong> Geologia Applicata e Geotecnica, Facolta <strong>di</strong> Ingegneria, Universita <strong>di</strong> Bari, Via Re David 200, 70125<br />

Bari, Italia<br />

2<br />

Dipartimento Geomineralogico dell'Universita <strong>di</strong> Bari, Campus, Via G. Salvemini, 70124 Bari, Italia<br />

3 Dipartimento <strong>di</strong> Geologia e Geofisica dell'Universita <strong>di</strong> Bari, Via G. Fortunato, 70125 Bari, Italia<br />

Pleistocene transgressive clastic se<strong>di</strong>ments outcrop in the built up area of<br />

Rutigliano over a calcareous basement of the Cretaceous age.<br />

The basal portion of the Pleistocene se<strong>di</strong>ments consists of whitish calcarenites<br />

gradually changing into pale yellow s<strong>and</strong>s in the upper layers.<br />

Detrital se<strong>di</strong>ments change stratigraphically into clays. The latter consists of<br />

silt clays of a blue-greenish colour with thin horizons of greyish silt. The<br />

clays are heavily fissured <strong>and</strong> broken into polyhedrons of varying size. Along<br />

the crack surfaces, black striations can be observed consisting of manganese<br />

oxides.<br />

On top of the clays there are transgressive depositions of s<strong>and</strong>s <strong>and</strong> s<strong>and</strong>y<br />

silts, bright yellowish to light brown in colour, me<strong>di</strong>um to fine textured.<br />

In terms of grain-size <strong>di</strong>stribution, practically all the curves describing the<br />

specimens considered in our study show a leptokurtic <strong>and</strong> unimodal <strong>di</strong>stribution.<br />

Generally, the s<strong>and</strong>s are rather fine-textured <strong>and</strong> subrounded. Mineralogically,<br />

these s<strong>and</strong>s do not appear to belong to a variety of species; on the<br />

contrary, they seem tp be of rather poor quality. Quartz-feldspar is the<br />

prevailing fraction in all the samples <strong>and</strong> colourless to white <strong>and</strong> lactescent.<br />

Heavy minerals are either absent as is the case in most samples or are only<br />

present in traces (magnetite). Conversely, many specimens include iron<br />

oxides or hydroxides of detrital origin.<br />

Of the phyllosilicates, biotite is present, though in much smaller amounts<br />

than the other minerals <strong>and</strong> belongs to the coarser grain-size classes.<br />

The carbonates a~e represented by microfossils <strong>and</strong> clasts with either group<br />

prevailing locally.<br />

In terms of quantity, contents are between 2% <strong>and</strong> 30%.<br />

For mineralogy of the clay levels, the reader is referred to the work of<br />

Dell'Anna et al. (1974). Natural bulk density of the clays is about 2.00-2.10<br />

t/m 3 • Average water content is 17%.<br />

Accor<strong>di</strong>ng to the established liquid limits, these clays belong to the class of<br />

. The compression indexes show<br />

values ranging from 0.010 to 0.0036 as pressure is increased from very low<br />

values to 50 kg/cm 2 •<br />

' ...<br />

Dell'Anna, Di Pierro M., Nuovo G., Ciaranfi N., Ricchetti G., 1974. Puglie. Pp. 195-234, in: Giacimenti<br />

<strong>di</strong> Argille Ceramiche in Italia (C. Palmonari <strong>and</strong> F. Veniale, e<strong>di</strong>tors), Gruppo <strong>Italian</strong>o AIPEA,<br />

Cooperativa Libraria E<strong>di</strong>trice, Bologna.<br />

I<br />

I<br />

·''


1<br />

706 Abstracts<br />

Dispersive Soils in Earth Dam Geology<br />

A. PICCIO<br />

Dipartimento <strong>di</strong> Scienze della Terra, Sezione geologico-paleontologica, Universita <strong>di</strong> Pavia, Strada Nuova 65,<br />

27100 Pavia, Italia<br />

Dispersive soils are referred to, in engineering geology, as fine grained soils<br />

that rapidly erode by a process of <strong>di</strong>spersion (or deflocculation) so that the<br />

in<strong>di</strong>vidual clay particles go into suspension in slow-moving, practically still<br />

water, whereas the erosion process for or<strong>di</strong>nary clays is quite <strong>di</strong>fferent,<br />

requiring considerable velocity in the ero<strong>di</strong>ng water (Sherard et al., 1976). In<br />

the 1960's, <strong>di</strong>spersive soils, already recognized by soil scientists in the 1930's,<br />

were found to be troublesome materials for earth dam embankments. Further<br />

stu<strong>di</strong>es on case histories <strong>and</strong> on <strong>di</strong>spersive clays have tried to recognise<br />

these soils by simple tests <strong>and</strong> to prevent their dangerous effects on the<br />

stability of earth embankments but at present there is not an unique opinion<br />

on the matter (see e.g. ASTM, S.T.P. 623, 1977).<br />

Five tests are proposed by the U .S. Soil Conservation Service (Sherard et al.,<br />

1976), none of them correspon<strong>di</strong>ng to the usual geotechnical tests, while<br />

other Authors (Resendlz, 1977) claim that it is possible to estimate the risk of<br />

<strong>di</strong>spersivity also by usual identification tests such as activity.<br />

On the possibility to build safe earth dams with <strong>di</strong>spersive soils, some<br />

._ -- ....... Auth0J::s-say-that-,-sinc:e the-mec:hanism of.<strong>di</strong>speJ:sion is not yet well known,<br />

these soils should be avoided as embankment materials. On the contrary,<br />

accor<strong>di</strong>ng to other Authors, specially designed filters <strong>and</strong> careful attention to<br />

prevent hydraulic fracture would permit the utilization of such soils.<br />

Widespread <strong>di</strong>ffusion of these soils has been recognized throughout the<br />

world, but no study for <strong>Italian</strong> soils is known to the writer. As a first look on<br />

the problem, 14 soils were tested with the «soluble salts in pore water»<br />

chemical test, (Fig. l) <strong>and</strong> the test (Fig. 2).<br />

The samples are very <strong>di</strong>fferent in geological origin (sample 1 lacustrine; 6<br />

<strong>and</strong> 12 aeolian-lacustrine; 2 <strong>and</strong> 8 alluvial; 3-14-11 eluvial; 5 <strong>and</strong> 10 marine;<br />

7-13-14 colluvial; 9 volcanic), geotechnical properties <strong>and</strong> location (sample 5<br />

from Piedmont; 3-4-10-11 from northern Apennines; 1-2-6-8-12 from central<br />

Italy; 7 <strong>and</strong> 9 from southern Italy; 13 <strong>and</strong> 14 from Sicily).<br />

The results of the tests show that there are <strong>Italian</strong> soils which could be<br />

<strong>di</strong>spersive: due to the widespread <strong>di</strong>ffusion, especially in the Apennines· <strong>and</strong><br />

100<br />

:>


X<br />

Cl)·<br />

Abstracts 707<br />

75<br />

not susceptible<br />

to piping<br />

-o 50 9<br />

,<br />

+-'<br />

·~<br />

u<br />

:;::;<br />

tll<br />

"' 25 0::<br />

ero<strong>di</strong>ble<br />

0<br />

0 25 0 75<br />

Content of clay (


708 Abstracts<br />

the phyllosilicate component is principally characterised by an association<br />

of illite (ill.), montmorillonite (mont.), <strong>and</strong> chlorite (chl.) with lesser quantities<br />

ofkaolinite (K), quartz (Q) <strong>and</strong> calcite (C) (Table l).This can explain-the<br />

<strong>di</strong>fferent mechanism of erosion in «biancane>> compared to «calanchi» <strong>and</strong><br />

their in<strong>di</strong>vidual morphologies.<br />

Table I<br />

Semiquantitative XRD analysis of clay fraction. Mean values<br />

biancane<br />

calanchi<br />

ill.<br />

33<br />

25<br />

mont.<br />

18<br />

18<br />

chl.<br />

13<br />

11<br />

K<br />

9<br />

7<br />

Q<br />

16<br />

12<br />

c<br />

11<br />

27<br />

Even textural characteristics are <strong>di</strong>fferent between «biancane» clay <strong>and</strong><br />

«calanchi» clay. In fact the percentages of the various sizes vary from the<br />

first to the second, as can be seen from Table 2. Therefore, it emerges from<br />

Shepard's <strong>di</strong>agram that «biancane» clay fits into the range of clayey-silts<br />

<strong>and</strong> «calanchi» clay into the that of clayey-silty-s<strong>and</strong>s. _<br />

In determining the Atterberg limits <strong>and</strong> the plasticity range, the results<br />

obtained (wich can be seen on the Casagr<strong>and</strong>e plasticity <strong>di</strong>agram) give<br />

evidence that


Abstracts<br />

Long-Term Isolation of Ra<strong>di</strong>oactive Wastes in Deep<br />

Clay Formations: Fractures <strong>and</strong> Faults as Possible<br />

Pathways for Groundwater Percolation<br />

709<br />

M. D'ALESSANDR0 1 , F. GERA 2<br />

1 Divisione Ra<strong>di</strong>ochimica, Ed. 46, C.C.R. Euratom, 21027 Ispra, Italia<br />

2 Istituto Sperimentale Modelli e Strutture S.p.A., Via dei Crociferi 44, 00197 Roma, Italia<br />

Some ra<strong>di</strong>oactive wastes contain very long-lived ra<strong>di</strong>onuclides <strong>and</strong> need to<br />

be isolated from the biosphere for many thous<strong>and</strong>s of years. Long-term<br />

isolation can be provided by a combination of natural <strong>and</strong> man made barriers.<br />

Geological formations of <strong>di</strong>fferent types have been proposed as suitable<br />

natural barriers for ra<strong>di</strong>oactive waste isolation.<br />

Argillaceous formations can have very favourable characteristics, such as:<br />

- low permeability;<br />

- high plasticity;<br />

- high sorption capacity.<br />

Mathematical models of ra<strong>di</strong>oactive waste <strong>di</strong>sposal in deep clays in<strong>di</strong>cate<br />

that waste will be successfully isolated provided that the favourable properties<br />

are not mo<strong>di</strong>fied by geologic processes or human activity.<br />

In some cases argillaceous materials appear to be or to have been characterized<br />

by a certain fracture permeability. In many clay quarries, fissures<br />

surrounded by oxidation zones one or two cm thick have been observed. In<br />

some cases the oxidation zones are more than 100 m below the original<br />

ground surface. The oxidation zones are brownish in colour <strong>and</strong> appear to be<br />

due to oxides ~nd hydroxides of Fe 3 +; they prove that oxi<strong>di</strong>zing water has<br />

percolated along the fissures.<br />

An understan<strong>di</strong>ng of the mechanism <strong>and</strong> rate of formation of oxidation zones<br />

in clays would allow us to interpret field observations <strong>and</strong> to decide if the<br />

oxidation zones must be considered proof of long-term water circulation at<br />

depths or if they can be near surface features formed after excavation <strong>and</strong><br />

stress relief of the clays.<br />

On Residual Failure Mechanisms<br />

V. COTECCHIA, A. FEDERICO<br />

Istituto <strong>di</strong> Geologia Applicata e Geotecnica, Facolta <strong>di</strong> Ingegneria, Universita <strong>di</strong> Bari, Via Re David 200, 70125<br />

Bari, Italia.<br />

It is well known that the values of the angle of residual friction 0'R present a<br />

sharp variation for Ip values of around 25-30%. Lupini et al. (1981) have<br />

explained this phenomenon in the light of the various residual failure mechanisms<br />

that can occur. The same Authors have also hypothesized, on the basis<br />

of observational considerations, that if a soil exhibiting residual behaviour of<br />

the turbulent type is sheared against a smooth, hard surface- which locally<br />

'!<br />

/ '


l<br />

710 Abstracts<br />

reduces the interference of the grains of s<strong>and</strong> <strong>and</strong> silt - a partial sli<strong>di</strong>ng at<br />

the contact may take place, with local isorientation of the platy clay particles<br />

<strong>and</strong> lower residual strenght.<br />

The aim of the present research was the experimental verification of this<br />

latter aspect which, while appearing to be of marginal importance, is nevertheless<br />

of conceptual interest <strong>and</strong> of possible applicational relevance.<br />

The materials used were mixtures of quartzose-feldspathic s<strong>and</strong> <strong>and</strong> kaolinite<br />

in various ratios of dry volume. The results obtained are reported in Fig. 1.<br />

An examination of the results <strong>and</strong> of textural observations, although limited<br />

to just one type of s<strong>and</strong>-clay mixture, confirmed the hypothesis put forward<br />

by Lupini et al. (1981). If such confirmation can be extrapolated, as would<br />

seem likely, to other clayey materials, two considerations should be made:<br />

1) the residual technique using a smoothed plate, introduced by Kanji<br />

(1974), offers as is known, the advantage of requiring only a small <strong>di</strong>splacement<br />

for the residual strength. Theresults obtained by the Autor (1974, Le.)<br />

show decreases in residual strength of soil-rock contact of up to 50% (depen<strong>di</strong>ng<br />

on the roughness of the contact) in relation to the analogous resistance of<br />

the soil alone (<strong>di</strong>rect shear). Moreover, for clays of me<strong>di</strong>um-high plasticity<br />

the smooth plate (Kanji & Wolle, 1977) compares well in its results with<br />

the ring shear apparatus; however, as lp <strong>di</strong>minishes, the <strong>di</strong>fferences- for<br />

materials of the same plasticity- become considerable, which is the consequence<br />

of the <strong>di</strong>fferent type of residual failure mechanism. It would therefore<br />

appear to be incorrect, for natural situations of real slipping of soil-to-soil (of<br />

low plasticity) to resort to the residual technique using the smooth plate;<br />

2) on the contrary, the 0'R values of low plasticity soils determined on<br />

smooth or variously rough plates may be of significance in situations which<br />

____ .. _________________________________ realLy__present_slipping problems_along soil-rock contacts.<br />

a' = 136 k Pa<br />

35 • 1<br />

n<br />

... 2<br />

T 3<br />

28<br />

24 full orientation<br />

~-----+--?<br />

20<br />

0.3<br />

8<br />

0.1<br />

4<br />

I<br />

Ip=29 Ip=26 Ip=21<br />

0<br />

0<br />

40 S<strong>and</strong><br />

80 100<br />

100 80<br />

40<br />

0 (%)<br />

Kaolinite


(<br />

T!;,<br />

I<br />

I'<br />

Abstracts 711<br />

Kanji M.A., 1974. Unco~ventionallaboratory tests for the determination of the shear strenght of<br />

soil-rock contacts. Proc. 3rd Congr. Int. Soc. Rock Mech., Denver (Cola.), 2, 241-247.<br />

Kanji M.A., Wolle C.M., 1977. Residual strenght-New Testing<strong>and</strong> microstructure. Proc. 9th Int.<br />

Conf SMFE, Tokyo, I, 153-154.<br />

Lupini J.F., Skinner A.E., Vaughan P.R., 1981. The drained residual strenght of cohesive soils.<br />

Geotechnique, 31, n. 2, 181-213.<br />

.,<br />

I


AUTHOR INDEX<br />

ABDEL GADIR S. 350<br />

AGUILAR A. 483<br />

AJMONE MARSAN F. 473,511<br />

ALBANESE L. 671<br />

ALBERTI A. 425,426<br />

ANTONIOLI F. 339<br />

APARICIO A. 352<br />

ARAGON F. 340<br />

ARDUINO E. 473, 511<br />

ASSI I. 661<br />

AYERBE M. 513<br />

BALENZANO F. 647<br />

BANDS C. 513<br />

BARAHONA E. 483, 489, 521, 577<br />

BARBERIS E. 473,511<br />

BARRIOS J. 427<br />

BERRIER J. 499<br />

BERTOLANI M. 348<br />

BINI C. 499<br />

BRELL J .M. 267<br />

BRIGATTI M.F. 425, 426<br />

BOERO V. 473, 511<br />

BURRIESCI N. 428<br />

CABALLERO E. 187<br />

CANCELLI A. 609, 661<br />

CAPEL J. 563<br />

CARAMES M. 267<br />

CASAL B. 183<br />

CAUCIA F. 347, 600<br />

CHERUBINI C. 621, 67'1, 705<br />

COCITO S. 600<br />

COMAS MINONDO M.C. 245<br />

CORMA A. 181, 182<br />

COTECCHIA V. 709<br />

D'ALESSANDRO M. 709<br />

DAMBLON F. 350<br />

DE SOUSA FIGUEIREDO GOMES_ C. 381<br />

DELL'ANNA L. 85, 629, 647<br />

DELMAS A.B. 499<br />

DENTE G. 693<br />

DI PIERRO M. 205,217,629,647,671<br />

DIOS CANCELA G. 145<br />

DOVAL M. 267, 340, 352<br />

ESPOSITO L. 693<br />

FABBRI B. 535<br />

FAILLA A. 609<br />

FARINI A. 661<br />

FEDERICO A. 709<br />

FELICE G. 437<br />

FENOLL HACH-ALI P. 231, 245,.341, 343<br />

FERNANDEZ MARTINEZ J. 341<br />

FERNANDEZ NIETO C. 259<br />

FIORI C. 535<br />

'- FORNES V. 181<br />

FRANCANI V. 661<br />

FRANCHINI M. 511<br />

FRANCI M. 171<br />

FUSI P. 137, 171<br />

GALAN E. 259, 352<br />

GALLIGNANI P. 277<br />

GAL V AN GARCIA J. 604<br />

GAL VAN MARTINEZ B. 604<br />

GARCIA-GONZALEZ M.T. 514<br />

GARCIA-RAMOS G. 599, 601<br />

GARCIA-SANCHEZ A. 345<br />

GENEVOIS R. 703<br />

GERA F. 709<br />

GE$SA C. 428<br />

GIACHETTI M. 515<br />

GIASl C.I. 671<br />

GIOVANNINI G. 515<br />

GONZALEZ DIEZ I. 259<br />

GONZALEZ-GARCIA F. 599, 601<br />

GONZALEZ GARCIA S. 145<br />

GONZALEZ LOPEZ M. 259<br />

GONZALEZ PENA J .M. 604


714 Author index<br />

GONZALEZ VILCHES M.C. 601<br />

GRILLINI G.C. 437, 461<br />

GUADAGNO F.M. 671<br />

GUERRICCHIO A. 621, 629<br />

GUILLEN ALFARO J.A. 145<br />

HELLER-KALLAI L. 3<br />

HERMOSIN M.C. 155<br />

HERNANDEZ-HERNANDEZ P. 603<br />

HIDALGO A. 431<br />

HUERTAS F. 187, 303, 483, 489, 521, 563,<br />

577<br />

MESA J.M. 599<br />

MIFSUD A. 181, 182<br />

MILLAN A. 455<br />

MONTCHARMONT M. 350<br />

MORANDI N. 437,461, 609<br />

"MORELLI G.L. 431<br />

MORES! M. 205, 217<br />

MORILLO E. 155<br />

NANNETTI M.C. 461<br />

NAY ARRETE J. 349<br />

NUOVO G. 351, 705<br />

IGLESIAS J .E. 363<br />

JAIME S. 483<br />

JUSTO ERBEZ A. 591<br />

KONTA J. 121<br />

KUHNEL R.A. 681<br />

LA IGLESIA A. 429<br />

LANDUZZI V. 277<br />

LEGUEY S. 287, 344<br />

LENZI G. 339<br />

LINARES J. 17, 187, 303,483, 489, 521, 563,<br />

577<br />

LOPEZ-AGUAYO F. 303<br />

LOPEZ GALINDO A. 245<br />

LOPEZ GARRIDO A.C. 341<br />

LOPEZ-PLAZA S. 603<br />

LOSCHI GHITTONI A.G. 348<br />

LUCCHESI S. 515<br />

OLIVERA P. 179<br />

OLIVERI F. 277<br />

ORTEGA HUERTAS M. 231, 245, 341, 343<br />

PALMIERI F. 391<br />

PALMONARI C. 547<br />

PALOMO DELGADO I. 231, 341<br />

PEDE A. 671<br />

PEREZ J. 182<br />

PEREZ PARIENTE J. 181<br />

PEREZ RODRIGUEZ,J.L. 155, 591<br />

PESCATORE T. 350<br />

PETRERA M. 428<br />

PICCIO A. 706<br />

PICCONE G. 511<br />

POPPI L. 426<br />

POZO M. 287, 344<br />

POZZUOLI A. V, XV, XIX, 521, 577<br />

PREVITALI F. 661<br />

QUIRK J.P. 137<br />

MAQUEDA C. 591<br />

MARTELLONI C. 137<br />

MARTIN PATINO M.T. 345, 455<br />

MARTIN-POZAS J.M. 349<br />

MARTIN-VIVALDI J.M. 349<br />

MASCOLO G. 163<br />

MASSA S. 600<br />

MEDINA J .A. 287<br />

MELIDORO G. 629<br />

MELIS P. 428<br />

MENDELOVICI E. 357<br />

RAMUNNI F.P. 671, 705<br />

RAUSELL-COLOM J.A. 399, 409<br />

RECIO M.P. 514<br />

REYES E. 187, 489<br />

RISTORI G.G. 137, 171<br />

RIZZO V. 647<br />

RODAS M. 340<br />

RODRIGUEZ A. 179<br />

RODRIGUEZ FERNANDEZ J. 341, 343<br />

RODRIGUEZ GALLEGO M. 55<br />

RODRICUEZ GORDILLO J. 343


J<br />

Autor int/.ex<br />

715<br />

RODRIGUEZ PASCUAL C. 604<br />

ROUX M.V. 455<br />

RUIZ A. 483<br />

RUIZ-ABRIO M.T. 599<br />

R UIZ AMIL A .. 340<br />

RUIZ-HITZKY E. 183<br />

TENAGLIA A. 547, 602<br />

THOREZ J. 313, 350<br />

TOMADIN L. 277<br />

TORRENT J. 427<br />

TURRION C. 455<br />

SAAVEDRA J. 345,455<br />

SAGARZAZU A. 357<br />

SANCHEZ-CAMAZANO M. 180, 516<br />

SANCHEZ-MARTIN M.J. 180, 516<br />

SANCHEZ-SOTO P.J. 599<br />

SANTOS M. 431<br />

SANZ E. 182<br />

SCESI L. 661<br />

SDAO G. 707<br />

SEBASTIAN PARDO E. 303<br />

SENATOR£ M.R. 350<br />

SERNA C.J. 363<br />

SERRATOSA J.M. 71, 399, 409<br />

SETT! M. 600<br />

SIMONE A. 707<br />

SOGGETTI F. 347<br />

SOLINAS V. 428<br />

SPARVOLI E. 137<br />

STREEL M. 350<br />

VENIAL£ F. 101, 347, 600, 661<br />

VENTURI V. 602<br />

VIANELLI G. 437<br />

VICENTE M.A. 197,516,603<br />

VICENTE-HERNANDEZ J. 197, 603<br />

VILLALBA R. 357<br />

VIOLANTE A. 371, 391<br />

VIOLANTE P. 391<br />

VITTORINI S. 707<br />

VURRO F. 205<br />

WALSH N. 705<br />

YANEZ J. 489<br />

YUSTA A. 489<br />

TCHOUBAR C. 35<br />

TECCA P.R. 703<br />

ZANINI E. 473<br />

ZEZZA U. 347


Abruzzo Region. 278<br />

Abruzzo-Campania.<br />

carbonate platform. 95<br />

Activation energy. 184<br />

Activity index.<br />

(see geotechnical properties ... )<br />

Actual clay structures.<br />

methods of determination. 37, 39<br />

localization of octahedral vacancies. 47<br />

kinds of stacking faults. rotational faults,<br />

translational faults, faults by<br />

fluctuation of the layers around an<br />

average position. 42, 43,44<br />

Adriatic sea. 278,285<br />

Adsorption.<br />

of chloropropham by montmorillonite,<br />

kaolinite, illite <strong>and</strong> soils. 147, 150,<br />

st<strong>and</strong>ard free energy, st<strong>and</strong>ard<br />

enthalphy st<strong>and</strong>ard entrophy. 153<br />

of chlorthiamid by homoionic<br />

montmorillonite. 173, 175<br />

of <strong>di</strong>chlobenil by homoionic<br />

montmorillonite. 176<br />

of para-nitrophenol on homoioni~<br />

montmorillonite <strong>and</strong> beidellite. 139<br />

Akaganeite.<br />

by reaction of goethite <strong>and</strong> lepidocrocite<br />

with glycerol. 360<br />

Alkylamines.<br />

inter layer complex of lanthanidt7<br />

vermiculite. 179<br />

Alkylammonium ions.<br />

decomposition in butanol me<strong>di</strong>um. 160,<br />

162<br />

Allophane. 103,208<br />

Alluvial fans. 271,344<br />

Almeria. 17, 187, 259<br />

Alpujarride Complex. 342, 483<br />

Alteration.<br />

of volcanic rocks. 18, 187,205,311,347,<br />

348,490<br />

Alteration clay integron. 318<br />

Aluminium extractable form.<br />

in<strong>di</strong>cator of <strong>di</strong>fferent ages of fluvial<br />

terraces soils. 480<br />

Aluminum hydroxides <strong>and</strong> oxyhydroxides.<br />

influence of organic lig<strong>and</strong>s on<br />

crystallization of. 372<br />

Alunite.18, 187<br />

SUBJECT INDEX<br />

AII).blygonite.<br />

associated with lithium-muscovites in<br />

granitic pegmatites from centralwestern<br />

Spain:. 345<br />

Amide.<br />

from hydrolysis of chlor<strong>di</strong>meform in<br />

aqueous me<strong>di</strong>um. 162<br />

Amine.<br />

interlamellar sorption of mixed-layer<br />

minerals. 341<br />

Amphiboles. 102,207,652 ,<br />

Analcime. 211,425<br />

Analysis of variance. 425,426<br />

Anchimetamorphic con<strong>di</strong>tions, process. 265<br />

Andosoil. 208<br />

Anhydrite. 269<br />

Anion exchange selectivity. 166<br />

Anorthite.<br />

high-temperature phase. 565, 566<br />

Anoxis con<strong>di</strong>tions. ·<br />

in the se<strong>di</strong>mentary environment of<br />

pelagic Cretaceous black-greenish<br />

mudstones. 256<br />

Antacid. 164<br />

Antognola Formation. 609<br />

Apulia Region. 351,621,671<br />

Apennines.<br />

central. 115, 116,280<br />

northern. 105,113,114,609<br />

southern.99,206,217<br />

Argille varicolori.<br />

as red bed clays in the production of<br />

ceramic floor <strong>and</strong> wall tile. 602<br />

from Avellino Province, characteristics<br />

<strong>and</strong> <strong>di</strong>agenetic processes. 221,224,226,<br />

228<br />

from northern Apennines, in the<br />

production of stoneware tiles. 536<br />

influence of <strong>di</strong>fferent clay mineralogy on<br />

the soil fabric. 106<br />

relationship with lateritic soils. 228<br />

source areas of the Ofanto river se<strong>di</strong>ments<br />

<strong>and</strong> smectites. 99,283<br />

Argillogenesis. 313<br />

Aromatic amines.<br />

interlayer complexes of lanthanide<br />

vermiculite. 179<br />

Arsenopyrite.<br />

in granitic pegmatites from central-


718 Subject index<br />

western Spain. 345<br />

As compacted test.<br />

(see geotechnical properties ... )<br />

Atomic Absorption Spectroscopy. 209,357,<br />

491,665,676 '<br />

Atterberg limits.<br />

(see geoiechnical properties ... )<br />

Avellino Province. 217, 694<br />

Avila Province. 455, 603<br />

Azuer river. 564<br />

b axis measurement.<br />

in illites, micas <strong>and</strong> smectites. 261,304<br />

B horizon of clay soils.<br />

st<strong>and</strong>ard soils sticks, gypsum application<br />

for <strong>di</strong>fferent periods of time, calcium<br />

<strong>di</strong>ffusion. study with scanning electron<br />

microscopy .exchangeable calcium<br />

<strong>di</strong>stribution in sticks, poral system<br />

~----geometi"y,-Fe0l.=ganiza-tien of-elay --~-- -<br />

particles. 502,503 1<br />

504,505,506<br />

B horizons of me<strong>di</strong> terranean red soils.<br />

micromorphological features of clay<br />

translocations. 513<br />

Badajoz. 599,600<br />

Bagni-Fondachelli Units. 659<br />

Balance of matter.<br />

matter <strong>and</strong> mineral losses during the<br />

formation of altered products <strong>and</strong> soil<br />

from peridotites. 496,497,498<br />

matter losses during the formation of<br />

bentonite deposits in southeastern<br />

Spain. 28,29<br />

Bayerite.<br />

from interaction between lithium<br />

hydroxide <strong>di</strong>aluminate <strong>and</strong><br />

homocationic solutions. 166<br />

infrared spectra. 396<br />

relation with organic lig<strong>and</strong>s. 372<br />

synthesis. 392<br />

Bari Province. 705<br />

Barite. 249,291<br />

Barth geochemical balance.<br />

(see balance of matter)<br />

Beidellite.<br />

adsorption of para-nitrophenol. 139<br />

crystal chemistry. 426 ·<br />

ferric, from Mondaino, Italy, 138<br />

homoionic, specific surface area. 141<br />

stage number for the calculation of the<br />

hydrolysis index. 333 ~-~--------~-~-~- -~<br />

weathering index. 329<br />

Beidellite-montmorillonite series. 223<br />

Bentonites.<br />

anion <strong>and</strong> cation exchange capacity. 190,<br />

192<br />

colour of. 19<br />

deposits. chemistry, genesis. 189, 196, 311<br />

<strong>di</strong>sordered tridymite. 23<br />

geothermometer (Na-K-Ca). 195<br />

hydrothermal alteration. 187<br />

hydrothermal solutions. chemistry. 192,<br />

origin. 23, 189, thermal characteristics.<br />

24, transport. Z4, types. 193<br />

phyllosilicates. 2:1 phase <strong>di</strong>agram. 31<br />

process of formation. devftrification of<br />

glass. 28, enthalphy of hydrolysis<br />

reaction. 26, free energy of hydrolysis<br />

reaction. 27, hydratation of glass. 28,<br />

matter-<strong>and</strong>volumeJosses. 29, phase<br />

rule. 25, 27, reaction rates. 29,<br />

temperature. 24<br />

rock wall alteration.187, 188<br />

soluble salts. 193<br />

temperatureofformation.195, 196<br />

Bentonite (Wyoming). 138, 172<br />

H-bentonite.<br />

Mossbauer study. 428<br />

Benzoic acid.<br />

from aci~ic hydrolysis of thiobenzamide.<br />

176<br />

Benzoni trile.<br />

from thiobenzamide in alkaline me<strong>di</strong>um.<br />

176<br />

Betic Cor<strong>di</strong>llera. 232,245,265, 304,489<br />

Biancane.<br />

in Pliocene <strong>and</strong> Pleistocene of Calabrian<br />

clay areas. 707<br />

~ikitaite.<br />

associated with lithium-muscovites in<br />

granitic pegmatites from centralwestern<br />

Spain. 345<br />

Biotite.<br />

(see dehydroxylation process <strong>and</strong> high<br />

resolution transmission electron<br />

microscopy)<br />

stage number for the calculation of the<br />

hydrolysis index. 333<br />

weathering index. 329


Subject index 719<br />

Biscaye index.<br />

(see montmorillonite)<br />

Bishop's method.<br />

(see geotechnical properties ... )<br />

Black Flysch or Crete Nere Formation. 629<br />

Blue-grey clays. 622,643<br />

Block Formation. 343<br />

Bo<strong>di</strong>es for stoneware tiles.<br />

theoretical formulation. 541<br />

Boehmite (<strong>di</strong>sordered).<br />

relation with organic lig<strong>and</strong>s. 372<br />

weathering index. 329<br />

Bologna Province. 552<br />

Boron.<br />

determination with optical spectrometry.<br />

464<br />

extractable, in soils used to grow<br />

subtropical crops. 487<br />

from rocks <strong>and</strong> soils, balance of matter.<br />

498<br />

Bradano Foretrough (Bradanic Trough,<br />

° FossaBradanica). 206,352,623,671<br />

Brahmaputra river, 126<br />

Bronze age pottery.<br />

from ia Mancha. 563<br />

domestic use, firing temperatures.'S64,<br />

565,566<br />

effect of burial. 569<br />

free energy of ceramic reactions. 566, 56 7<br />

Brown soils.<br />

from Cantabria. 514<br />

gypsum effect on. 504<br />

Bulk density.<br />

of dry test pieces. 524<br />

relationship with heterometry indexes.<br />

531<br />

Butanol solution<br />

(see alkylammonium ions). 159<br />

Butylamine.<br />

(see amine)<br />

Cabo de Gata volcanic region. 18, 187<br />

Calabria Region. 351,647,707<br />

Calabrian coastal chain. 647<br />

Calanchi.<br />

in Pliocene <strong>and</strong> Pleistocene of Calabrian<br />

clay areas. 707<br />

Calcite.<br />

compensation depth. 254<br />

high-temperature phase. 565, 566<br />

in ceramic bo<strong>di</strong>es, autoclave treatment.<br />

571,572<br />

weathering index. 329<br />

Calcretization.<br />

influence on genesis of fibrous minerals.<br />

288<br />

Campania-Lucania.<br />

carbonate platform. 95<br />

Camp ani a Region. 85, 640<br />

Caotico In<strong>di</strong>fferenziato. 439,463<br />

Carbon.<br />

in the dust that cover the statues<br />

adorning the Porticos of the Seville<br />

Cathedral. 595<br />

Carbon-14 dating.<br />

of the Motilla del Azuer archaeological<br />

excavations. 564<br />

Caroni river, 126<br />

Casagr<strong>and</strong>e plasticity chart.<br />

(see geotechnical properties ... )<br />

Cassiterite.<br />

in granitic pegmatites from centralwestern<br />

Spain. 345<br />

Castagna Units. 659<br />

Catalytic activity.<br />

ofsepiolite<strong>and</strong>palygorskite.181, 182<br />

Catanzaro Province. 694<br />

Cation exchange capacity.<br />

associated with fine material quantities<br />

<strong>and</strong> extractable forms of AI <strong>and</strong> Fe as<br />

in<strong>di</strong>cator of <strong>di</strong>fferent ages of fluvial<br />

terrace soils. 480<br />

Ceramic bo<strong>di</strong>es.<br />

autoclave treatment. 569<br />

Ceramic clays.<br />

from central Spain. 604<br />

from ·southwestern Spain. 599<br />

from <strong>Italian</strong> Oligocene Formations. 602<br />

Ceramic pieces.<br />

archeological bed of Cerro Macareno,<br />

Seville. 601,602<br />

eneolithic settlements of la Peiia del<br />

Aguila, Avila. 603, 604<br />

late Roman <strong>and</strong> Middle Age times. 600,<br />

601<br />

Ceramic sculptures.<br />

alteration of. 595<br />

contamination. 597<br />

Ceramic sludges.


720 Subject index<br />

<strong>di</strong>sposal <strong>and</strong> reuse for heavy clay<br />

products, industrial scale tests. 551,<br />

557<br />

Chabazite. 425<br />

Chalcopyri te.<br />

in granitic pegmatites from centralwestern<br />

Spain. 345<br />

Chelating organic lig<strong>and</strong>s. 376<br />

Chemical test.<br />

(see geotechnical properties ... )<br />

Chlor<strong>di</strong>meform.<br />

aqueous <strong>and</strong> butanol solutions of. 157,<br />

159<br />

Chlorite.<br />

classification. 634, 652<br />

crystalchemistry, 634<br />

polytypism. 634, 652<br />

relationship with linear shrinkage. 529<br />

stage number for the calculation of the<br />

hydrolysis index. 333<br />

weathering index. 329<br />

· -----··a;!0~op~~pha~~-- -- · --- · --<br />

(see adsorption)<br />

Chlorthiamid.<br />

decomposition to <strong>di</strong>chlobenil. 176<br />

Chloritization.<br />

secondary. 328<br />

Chromium.<br />

influence on crystallization of iron oxides.<br />

427<br />

from rocks <strong>and</strong> soils, balance of matter.<br />

498<br />

Ciudad Real Province. 564<br />

Clay <strong>and</strong> non-clay minerals.<br />

assemblages in various se<strong>di</strong>ments, rocks,<br />

soils <strong>and</strong> rivers suspensions. 20, 88,<br />

105,124,199,207,208,211,224,225,<br />

235-239,249,249-251,261,266,274,<br />

279,280,282,290,293,305,335,339,<br />

340,342-345,348-350,353,441,444,<br />

455,465,485,493,501,511-514;516,<br />

536,548,599,600,605,611,624,632,<br />

653,665,675,695,705,708<br />

Clay mineral species.<br />

stage numbers. 333<br />

Clay-vermiculite. 440, 464<br />

Cluster analysis. 468<br />

Cobalt.<br />

from rocks <strong>and</strong> soil, balance of matter.<br />

498<br />

Complesso Sicilide. 218<br />

Copper. -·---~extractable,<br />

in soils used to grow<br />

subtropical cropsC 487<br />

Cor<strong>di</strong>llera Central. 516<br />

Cordoba. 599,600<br />

Costa Rica.<br />

caracteristics of clays from the Central<br />

Valley. 348<br />

Cretaceous Iberian paleomargin. 245<br />

Crete Nere Formation or Black Flysch. 629<br />

Cristobalite.<br />

high-temperature phase. 601<br />

high-temperature phase from ka~linites<br />

with intercalated mineralizers. 385,<br />

386;387,388<br />

weathering index. 329<br />

Crypt<strong>and</strong>s.<br />

intercalation between the layers of<br />

smectites <strong>and</strong> vermiculites. 183<br />

Cuenca Province. 429<br />

Defects.<br />

(see layer silicates).<br />

Dehydroxylation process.<br />

in biotites, phlogopites <strong>and</strong> homoionic<br />

vermiculites, infrared study. 402,403,<br />

404,405<br />

influence of interlayer saturating cations<br />

<strong>and</strong> octahedral composition on. 406,<br />

407<br />

selectivity of the thermal process<br />

accor<strong>di</strong>ng to octahedral composition.<br />

408<br />

Desiccation phases.<br />

ih the Neogene basin of Madrid. 296, 297,<br />

298<br />

Determination of crystallographic axes in<br />

microcrystals. 365, 366, 367<br />

Diagenesis.<br />

<strong>di</strong>ckite, from kaolinite. 228<br />

fibrous minerals, from carbonated waters<br />

reacting with silcretes. 299<br />

late, in Paleozoic shales <strong>and</strong> lutites, 353<br />

Diamines.<br />

interlayer complexes with lanthanide<br />

vermiculite. 179<br />

Dichlobenil.<br />

from decompositiOJ?- of chlorthiamid. 176<br />

~<br />

I


0<br />

-----------------------------------------------------~<br />

0<br />

of<br />

0"<br />

Subject index 721<br />

Dichlorvos<br />

interaction with vermiculite. 180<br />

Dickite.<br />

chemical composition, 634<br />

<strong>di</strong>agenetic, in argille varicolori. 111 , 223,<br />

228<br />

hydrothermal, in Crete Nere Formation.<br />

644<br />

in microtextures of a scaly clay <strong>and</strong> Crete<br />

Nere Formation. 110, 639<br />

lattice constants. 635<br />

Differential Scanning Calorimetry.<br />

quantitative determination of gibbsite<br />

<strong>and</strong> halloysite. 459<br />

Differential Thermal Analysis.<br />

of altered ceramic sculptures. 596<br />

of aluminium precipitation products in<br />

presence of organic lig<strong>and</strong>s. 374<br />

ofE<strong>di</strong>lfornaciai clay. 554<br />

Dimethylsulfoxide.<br />

in oriented specimens for X-ray<br />

<strong>di</strong>ffraction. 234, 250, 260<br />

interaction with lanthanide vermiculites.<br />

179<br />

intercalating agent in the kaolinite<br />

structure. 383<br />

'-<br />

Diopside.<br />

equation for firing temperature<br />

pre<strong>di</strong>ction. 590<br />

high-temperature phase. 565,601<br />

in ceramic bo<strong>di</strong>es, autoclave treatment.<br />

571,572<br />

reflecting power factor. 590<br />

Discriminant analysis.<br />

correlations between genesis <strong>and</strong><br />

chemical composition in zeolites. 425<br />

<strong>di</strong>fferences of crystal chemistry in Al-rich<br />

smectite types. 426<br />

Dispersive soils.<br />

in earth dam geology. 706<br />

Distribution coefficients.<br />

Cs <strong>and</strong> Sr sorption properties by clayey<br />

formations. 339<br />

Dolomitic s<strong>and</strong>stones. 170<br />

Drying properties.<br />

of ceramic clays. 524<br />

DudarFormation. 343<br />

Duero basin. 344<br />

Electron micrograph.<br />

of AI precipitation products. 373<br />

of brown leached soil <strong>and</strong> red fersialli tic<br />

soil from Jura Region. 502,504,506<br />

<strong>di</strong>fferent shapes of clay minerals. 682<br />

of gibbsite. 459<br />

of nordstran<strong>di</strong>te. 394<br />

ofpalygorskite. 200,295,308<br />

of sepiolite. 292, 295<br />

of smectite. 292, 308<br />

Emilia-Romagna Region. 437,461<br />

Eneolithic ceramic. 218<br />

English clays.<br />

illitic-kaolinitic materials for stoneware<br />

tiles. 539<br />

Epimetamorphism-anchimetamorphism<br />

con<strong>di</strong>tions.<br />

in Paleozoic shales <strong>and</strong> lutites. 353<br />

Epsomite. 269<br />

Erionite. 425<br />

Eucryptite.<br />

associated with lithium-muscovites in<br />

granitic pegmatites from centralwestern<br />

Spain. 345<br />

Evaporitic Miocene se<strong>di</strong>ments.<br />

ofTajo basin. 275<br />

Fabric.<br />

influence on slope stability-failure. 105<br />

scanning electron microscopy on:<br />

laminations of sewage pipes. 689, 690,<br />

691, microstructure offired samples.<br />

556, structural arrangement of soil<br />

with <strong>di</strong>fferent water content. 696, 697,<br />

texture, morphology <strong>and</strong> location of<br />

minerals in se<strong>di</strong>mentary <strong>and</strong> volcanic<br />

rocks. 106, 107,108,109,110,111, 112,<br />

113,114,115,116,200,292,295,308,<br />

638,639,682<br />

Factor analysis.<br />

R-mode.189,477,494,479<br />

Fardes Formation. 251, 303<br />

Feldspars.<br />

equations for firing temperature<br />

pre<strong>di</strong>ction. 590<br />

evolution with firing temperature. 589<br />

in ceramic bo<strong>di</strong>es, autoclave treatment.<br />

571,572<br />

Ferrallitic weathering characteristics. 212,<br />

215<br />

I<br />

i<br />

:I<br />

·'<br />

!


722 Subject index<br />

i<br />

il<br />

' I' .. _'.<br />

,, i<br />

.<br />

!!<br />

Firing properties of ceramic clays.<br />

crushing strenght. 586<br />

durability index. 582<br />

equation for firing temperature<br />

pre<strong>di</strong>ction. 590<br />

high-temperature phases. 588,589, 590<br />

shrinkage, relationship with clay<br />

mineralogy, calcite effect on. 585<br />

water absorption. 584<br />

weight loss. 578<br />

Fluvial pelit-ic supplies.<br />

clay mineral facies. 282, 283<br />

horizontal zoning. 282<br />

inherited imprinting. 282, 286<br />

Fluvio-lacustrine environment.<br />

influence of silicification <strong>and</strong><br />

calcretization of the genesis of fibrous<br />

clay minerals. 288<br />

Flysch.<br />

Albidona. 631<br />

Castelvetere. 92<br />

-------------------·Gate·strrne.-6-30 ____ --------------<br />

Gorgoglione. 92, 95,207<br />

Nocara. 218<br />

Numi<strong>di</strong>co. 207<br />

Rosso. 207<br />

Fossa Bradanica.<br />

(see Bradano F oretrough)<br />

French clays.<br />

illitic-kaolinitic materials for stoneware<br />

tiles.539<br />

Freundlich's model. 89<br />

adsorption isotherms of chloropropham<br />

by clay minerals, peat <strong>and</strong> soils. 147,<br />

150<br />

adsorption isotherms of pesticides by<br />

homoionic vermiculite. 180<br />

Frido Formation. 631<br />

Frohlic relation. 367<br />

Ganges river. 126<br />

Garnet.. 199, 207, 652<br />

Gehlenite.<br />

gestruction. 566<br />

equation for firing temperature<br />

pre<strong>di</strong>ction. 590<br />

high-temperature phase. 565, 566,601<br />

in ceramic bo<strong>di</strong>es, autoclave treatment.<br />

571,572<br />

reflecting power factor. 590<br />

Genesis.<br />

relationships ~ith chemistry in :z.te2li!e,


Subject index 723<br />

unconfined compressive test. 625,637<br />

Geothermometer.<br />

(see bentonites ... )<br />

German clays.<br />

illitic-kaolinitic materials for stoneware<br />

tiles. 539<br />

Gessoso-Solfifera Formation. 439<br />

Gibbsite.<br />

formed in presence of organic lig<strong>and</strong>s. 372<br />

in weathering sequences. 347<br />

infrared <strong>di</strong>fferences with bayerite <strong>and</strong><br />

nordstran<strong>di</strong>te. 396<br />

quantitative determination by<br />

Differential Scanning Calorimetry. 459<br />

stage number for the calculation of the<br />

hydrolysis index. 333<br />

weathering index. 329<br />

Glauberite. 269<br />

Glycerol.<br />

(see goethite, lepidocrocite <strong>and</strong> magnetite)<br />

Gneiss.<br />

chamotte in antique ceramics. 601<br />

Goethite.<br />

effect of chromium on crystallization of.<br />

427 ,,<br />

transformation in the thermal reaction<br />

between lepidocrocite <strong>and</strong> glycerol.<br />

360<br />

weathering index. 329<br />

Gord6n-Matallana coal basin. 352<br />

Granada Province. 145, 303, 521, 577<br />

Granite.<br />

chamotte in antique ceramics. 601<br />

Greene-Kelly treatment (Li-test).<br />

(see montmorillonite)<br />

Grin<strong>di</strong>ng.<br />

effects on crystallinity, st<strong>and</strong>ard free<br />

energy of kaolinite. 429<br />

Guadalquivir river basin. 513.<br />

Gypsum.<br />

effect of applications on clay materials.<br />

improvement of soils affected by strong<br />

limitations. 507,508<br />

in evaporite Miocene se<strong>di</strong>ments of the<br />

Tajo basin. 269<br />

in the dust that cover the statues<br />

adorning the Porticos of the Seville<br />

Cathedral. 595<br />

weathering index. 329<br />

H-type isotherms. 183<br />

Halite. 269<br />

Halloysite.<br />

quantitative determination by<br />

Differential Scanning Calorimetry. 459<br />

Hancock-Sharp method.<br />

kinetic study of the interaction of<br />

macrocyclic compounds with layer<br />

silicates. 184<br />

Hematite.<br />

shape effects <strong>and</strong> estimation of the<br />

particle shape responsible for'. 364,365<br />

surface area. 359<br />

thermal reaction with glycerol. 359<br />

weathering index. 329<br />

Hemipelagites.<br />

in northern <strong>and</strong> southern Middle<br />

Subbetic realms, <strong>di</strong>fferences with<br />

turbi<strong>di</strong>tic pelites. 254<br />

mineralogical composition. 251<br />

Hepty lamine.<br />

(see amine)<br />

Herbicide.<br />

retention of chloropropham by clay<br />

minerals, peat <strong>and</strong> soils. 145<br />

Heulan<strong>di</strong>te. 272, 425<br />

High resolution transmission electron<br />

microscopy.<br />

of a brucite-like sheet. 67<br />

of a damage by electron beam irra<strong>di</strong>ation<br />

in 1M biotite. 68<br />

of a <strong>di</strong>slocation in goethite. 60<br />

of a low angle boundary betwe.en<br />

wonesite <strong>and</strong> chlorite. 65<br />

of a low angle grain boundaries in<br />

chlorite. 64<br />

of a muscovite-biotite transformation. 66<br />

of a talc-chlorite-lizar<strong>di</strong>te intergrowth. 65<br />

of an amphibole-talc intergrowth. 66<br />

of clinochlore. 62<br />

ofmargarite. 62<br />

of microprecipitates in pla~es ofbiotite.<br />

67<br />

Hinckley index.<br />

(see kaolinite)<br />

Huelva. 599<br />

Hydrazine hydrate.<br />

intercalating agent, intercalating degree.<br />

383<br />

Hydrogen bon<strong>di</strong>ng.<br />

I I<br />

'<br />

! I<br />

·'


724 Subject index<br />

in Al(OH) 3 polymorphs. 393<br />

Hydrohematite. 363 '<br />

Hydrolysis.<br />

in the process of bentonite formation. 26,<br />

27,28,195<br />

of archaeological ceramic pieces<br />

submitted to autoclave treatment. 569<br />

of chlor<strong>di</strong>meform in aqueous me<strong>di</strong>um.<br />

162<br />

ofnaturallepidocrocite alkoxide. 361<br />

of thiobenzamide in acid <strong>and</strong> alkaline<br />

me<strong>di</strong>a.176<br />

Hydrolysis index.<br />

definition. 330<br />

calculation <strong>and</strong> relationship with<br />

paleoclimatic reconstruction. 332<br />

Hydrolytic reactions.<br />

of aluminium, influence of organic<br />

lig<strong>and</strong>s. 379<br />

Hygroscopicity.<br />

relationship with crushing strenght. 587<br />

··· --· ----·-·--·-· - - -su:ilaoility-ofra w materialsfor the<br />

manufacture of structural ceramics.<br />

532<br />

Hydrotalcite.<br />

anion selectivity sequence. 167<br />

Hydrothermal solution.<br />

composition from analysis of ions<br />

extracted from bentonites. 189<br />

Illite.<br />

chemical composition. 265, 675<br />

crystal size. 261<br />

crystallinity. 223,261,285, 634,652<br />

<strong>di</strong>octahedraL 223,265,270,624,634,652,<br />

675<br />

evolution in soils. 452, 517, 659<br />

Kubler crystallinity index. 261, 353<br />

paragonitization degree. 223, 634,652<br />

polytypism. 223,624, 634,652, 675<br />

relationship with linear shrinkage. 529<br />

stage number for the calculation of the<br />

hydrolysis index. 333<br />

transformation pathways. 328<br />

trioctahedral. 265,270<br />

Weaver crystallinity index. 353<br />

Illitic-chloritic <strong>and</strong> Illitic-kaolinitic clays.<br />

for stoneware tiles. 535, 536<br />

Imogolite.<br />

in soils from Vulture. 208<br />

on the surface of weath~r~c;l felgsRars.)47~---·<br />

Indus river. 126<br />

Infrared spectroscopy.<br />

analysis of particle shape. 363,364<br />

of Al precipitation products formed in<br />

presence oftannic acid. 375<br />

of chlorthiamid-Al-montmorillonite<br />

complex. 173<br />

of chlorthiamid-Ca-montmorillonite<br />

complex. 175<br />

ofglycerolato derivatives from<br />

lepidocrocite <strong>and</strong> hematite. 361<br />

of micas heated at various temperatures. ·<br />

405<br />

of OH-ben<strong>di</strong>ng region of aluminum<br />

hydroxide polymorphs. 396<br />

of OH-stretching region of aluminum<br />

hydroxide polymorphs. 395<br />

ofhematite. 368<br />

of vermiculite-decylammonium complex<br />

- treated with water <strong>and</strong> organic<br />

substance. 158,161<br />

ofvermiculites saturated with<br />

monovalent <strong>and</strong> <strong>di</strong>valent cations, after<br />

being heated at various temperatures.<br />

402,403,404<br />

optical constants ofhematite. 368<br />

theory of absorption <strong>and</strong> scattering by<br />

small particles. 364<br />

Interlayer.<br />

of homoionic smectites, penetration of<br />

paranitrophenol <strong>and</strong> chlorthiamid.<br />

143,172<br />

of vermiculite-decylammonium complex.<br />

157, 159<br />

basal spacings of anion-exchanged forms<br />

oflithiumhydroxide<strong>di</strong>aluminate.167.<br />

complexes oflanthanide vermiculites<br />

with organic substances. 179<br />

homoionic vermiculites treated with,<br />

pesticides. 180<br />

of vermiculites <strong>and</strong> smectites with<br />

macrocyclic compounds. 183<br />

saturating cations, influence on<br />

dehydroxylation of micas <strong>and</strong><br />

vermiculites. 407,408<br />

cations in homoionic vermiculites,<br />

structural implications. 414<br />

Interstratified minerals.<br />

(see mixed-layer minerals)


-------------------------------------------------- ~.<br />

Subject index 725<br />

Iron.<br />

<strong>di</strong>splacement from octahedral layer ofHbentonite.<br />

428<br />

extractable, in soils used to grow<br />

subtropical crops, equilibrium with<br />

siderite. 488 ·<br />

extractable form, in<strong>di</strong>cator of <strong>di</strong>fferent<br />

ages of fluvial terraces soils. 480<br />

from rocks <strong>and</strong> spils, balance of matter.<br />

496<br />

micronutrient in soils. 483<br />

Iron oxides.<br />

crystallization at low temperature. 427<br />

ferrihydrite. 211<br />

goethite. 211<br />

in soils from Vulture. 208.<br />

thermal reactions with glycerol. 359,360<br />

Irpinian Units.<br />

Castelvetere flysch, Gorgogliore flysch,<br />

Serra Palazzo Formation. 92<br />

Isosteric (adsorption) heats.<br />

chloepropham adsorption by clay<br />

minerals <strong>and</strong> soils. 151<br />

pesticides adsorptio~ by homoionic<br />

vermiculites. 181<br />

Isotope stu<strong>di</strong>es.<br />

""'<br />

of hydrogen <strong>and</strong> oxygen in bentonites. 20,<br />

188<br />

Jackson sequence.<br />

clay mineral reactions in soils. 319<br />

Jarosite. 18<br />

J].lra Region. 500<br />

Jurassic se<strong>di</strong>ments.<br />

origin <strong>and</strong> paleogeography. 241, 242, 243<br />

K coefficient of permeability. 700<br />

K-feldspar. '<br />

high-temperature phase. 565, 566<br />

in ceramic bo<strong>di</strong>es, autoclave treatmnet.<br />

571,572<br />

K-Ar dating.<br />

of Vulture volcanic products. 207<br />

Ks values.<br />

for <strong>di</strong>fferent drying sensitivities. 531<br />

Kaolinite.<br />

adsorption of chloropropham. 147<br />

effect of mineralizers on the temperature,<br />

rate <strong>and</strong> products of thermal reactions.<br />

385,386,387,388<br />

effect on decarboxylation <strong>and</strong> cracking of<br />

stearic acid. 10<br />

Hinckley crystallinity index. 220, 385,<br />

386,387,388,429,634,650,675<br />

in argille varicolori, <strong>di</strong>agenetic<br />

trasformation to <strong>di</strong>ckite. 228<br />

relationship with linear shrinkage. 529<br />

stage number for the calculation of the<br />

hydrolysis index. 333<br />

Kerogen.<br />

in carbonate rocks <strong>and</strong> shales, natural<br />

thermalevents.5,6<br />

mineral reactions. 8, 9<br />

parent material. clay catalysis. open,<br />

closed <strong>and</strong> semiclosed systems.<br />

transporting me<strong>di</strong>um. 3, 4, 5<br />

pyrolysis in closed <strong>and</strong> open systems. 7, 8<br />

Kilchoanite. 596<br />

Kubler index.<br />

(see illite)<br />

Kyanite. 199<br />

L, R<strong>and</strong> Rk molecular ratios.<br />

relationships between geochemical<br />

characteristics of underground waters<br />

<strong>and</strong> neogenesis of the weathering<br />

minerals. 209,214<br />

La Peza Formation. 343<br />

Lacustrine precipitation.<br />

genetic environment in the Neogene basin<br />

of Madrid. 300<br />

Laga Formation. 280,281,282<br />

Lagonegro basin. 95<br />

Lambert equal area projection.<br />

structural analysis of the fisseres in bluegrey<br />

clays. 624<br />

Lamination.<br />

in ceramic bo<strong>di</strong>es. 688, 689, 690,691<br />

Langmuir type isotherms. 139<br />

L<strong>and</strong>slide phenomena.<br />

importance of microfabric in researches<br />

of. 103<br />

in Crete Nere Formation. 640<br />

in the Baiso <strong>and</strong> Lucera areas. 610,626<br />

Lanthanide vermiculite. 179<br />

Laponite.<br />

effect on decarbo.xylation <strong>and</strong> cracking of<br />

stearic acid. 10<br />

I<br />

·'I I


726 Subject index<br />

Layer silicates.<br />

line defects. plane defects. regular mixedlayhs,<br />

formation by point defect<br />

induction, r<strong>and</strong>om mixed-layers. 59,<br />

60,61,62,63,64<br />

point defects. thermodynamic approach,<br />

thermoluminescence, cation ordering<br />

in micas. 56, 57, 58,59<br />

volume defects. grain boudaries,<br />

intergrowths, lamellar precipitates,<br />

exsolutions.64,65,66,67,68,69<br />

Raman spectra. 431<br />

Lead.<br />

in the dust that cover the statues<br />

adorning the Porticos of the Seville<br />

Cathedral. 595<br />

Lecce Province. 671<br />

Le6n Province. 352<br />

Lepidocrocite.<br />

transformation to iron alkoxide by<br />

reaction with glycerol. 360<br />

--------------,:----weat-hering-index:-32 9 -----· -<br />

Li-test. 426,761<br />

(see montmorillonite)<br />

Liguride complex .. 630<br />

Lithium hydroxide <strong>di</strong>aluminate. 164<br />

Lithium-muscovites.<br />

in granitic pegmatite from centralwestern<br />

Soain, mechanism of<br />

formation. 345, 346<br />

Lombardy Region. 661<br />

Lucania Apennines. 206<br />

Lucania Region. 640<br />

Lizar<strong>di</strong>te.<br />

effect on decarboxylation <strong>and</strong> cracking of<br />

stearic acid. 10<br />

LST relation in anysotropic microcrystals,<br />

Luxonformula. 367<br />

Macigno Formation. 439<br />

Mackenzie river. 126<br />

Magnetite.<br />

unchanged by reaction with glycerol. 360<br />

weathering index. 329<br />

Malaga Province. 483,489<br />

Malaguide Complex. 483<br />

Manganese.<br />

degradation of ceramic sculptures. 597<br />

from rocks <strong>and</strong> soils, balance of matter.<br />

498<br />

Margarite.<br />

27<br />

Al <strong>and</strong> 29 Si isotropic chemic~L~hift§.,_l_t)<br />

29 Si MAS-NMR spectrum. 74<br />

Marnoso-Arenacea Formation. 439<br />

MAS-NMR spectra of phyllosilicates. 72<br />

Meixnerite. 165<br />

Micas.<br />

dehydroxylation process. 400<br />

Micronutrients.<br />

boron, copper <strong>and</strong> iron in soils. 484<br />

Mineralizers.<br />

(see kaolinite)<br />

Mixed-layer minerals.<br />

Allegra formula. 431<br />

Fourier transform analysis. 169, 340<br />

in se<strong>di</strong>ments. 211,223,234,251,270, 2RO,<br />

339,340,344,350,353,440,464,512,<br />

514,632,650<br />

Molisano basin. 95<br />

Montmorillonite.<br />

adsorption of chloropropham. 147<br />

adsorption of chlorthiamid <strong>and</strong><br />

<strong>di</strong>chlobenil. 173, 175, 176<br />

adsorption of macrocyclic compounds.<br />

184<br />

adsorption of para-nitrophenol. 139<br />

crystallinity, Biscaye index. 223,261,265,<br />

284<br />

<strong>di</strong>splacement of Fe from octahedral layer,<br />

Mi:issbauer study. 428<br />

effect on decarboxylation <strong>and</strong> cracking of<br />

stearic acid. 10<br />

formed by hydrolysis during burial of<br />

high-temperature ceramic sherds. 574<br />

Greene-Kelly treatment (Li-test). 220,<br />

261,426,761<br />

homoionic, specific surface area. 141<br />

reduction of structural iron on heating<br />

with stearic acid, Mi:issbaner study. 13<br />

relationship with linear shrinkage. 529<br />

stability field. 310<br />

'<br />

stage number for the calculation of the<br />

hydrolysis index. 333<br />

weathering index. 329<br />

Montmorillonite-nontronite series. 304<br />

Mordenite.<br />

in modern geothermal areas. 31<br />

in Miocene se<strong>di</strong>ments of the Tajo basin ..<br />

272<br />

in<strong>di</strong>cator of the lower temperature limit


Subject index 727<br />

of an altering hydrothermal solution.<br />

20<br />

Mullite.<br />

high-temperature phases from kaolinites<br />

with intercalated mineralizers. 385,<br />

386,387,388<br />

Multiple linear regression analysis. 486,496,<br />

529,590<br />

Multivariate analysis of variance.<br />

correlation between genesis <strong>and</strong> chemical<br />

composition in zeolites. 425<br />

<strong>di</strong>fferences of crystal chemistry in Al-rich<br />

smectite types. 426<br />

Muscovite.<br />

27<br />

AI MAS-NMR spectrum. 73<br />

29<br />

Si MAS-NMR spectrum. 74<br />

27<br />

AI <strong>and</strong> 29 Si isotropic chemical shifts. 76<br />

stage number for the calculation of the<br />

hydrolysis index. 333<br />

weathering index. 329<br />

Nardo basin. 671<br />

Natrojarosite. 218,252<br />

Neogene basin of Madrid. 287<br />

Neogene ~e<strong>di</strong>mentation. "<br />

in the Granada basin. 343<br />

Nevado-Filabride Complex. 265, 342,344<br />

Nickel.<br />

from rocks <strong>and</strong> soils, balance of matter.<br />

498<br />

Niger river. 126<br />

Nile river. 126<br />

N:itrogen.<br />

in the dust that cover the statues<br />

adorning the Porticos of the Seville<br />

Cathedral. 595<br />

p-Nitrophenol<br />

(see adsorption)<br />

Noce river valley. 629<br />

Nontronite.<br />

effect on decarboxylation <strong>and</strong> cracking of<br />

stearic acid. 10<br />

'<br />

reduction of structural iron on heating<br />

with stearic acid, Mossbaner study. 13<br />

stage number for the calculation of the<br />

hydrolysis index. 333<br />

weathering index. 329<br />

Nordstran<strong>di</strong>te.<br />

electron micrograph, infrared spectra <strong>and</strong><br />

X-ray <strong>di</strong>ffraction. 393,394,395,396<br />

structural relationship with bayerite <strong>and</strong><br />

gibbsite. 396,397<br />

synthesis. 392<br />

Nosova drying sensitivity index.<br />

for evaluating the suitability of raw<br />

materials for the manufacture of<br />

structural ceramics. 532<br />

Octahedral composition.<br />

influence on dehydroxylation of micas<br />

<strong>and</strong> homoionic vermiculi tes. 406, 407<br />

Octylamine.<br />

(see amine)<br />

Oedometer test.<br />

(see geotechnical properties ... )<br />

Ofanto river valley.<br />

grain-size <strong>and</strong> compositional<br />

characteristics of clastic materials. 88<br />

granulometric, chemical <strong>and</strong><br />

mineralogical pelitic sequence of<br />

se<strong>di</strong>mentation. 96<br />

relationships with Pliocene se<strong>di</strong>ments of<br />

southern Apennines. 99<br />

source areas <strong>di</strong>stribution <strong>and</strong> deposition<br />

of the minerals. 99<br />

Orange river. 126<br />

Organic matter.<br />

(see kerogen <strong>and</strong> pyrolysis)<br />

in the dust that cover the statues<br />

adorning the Porticos of the Seville<br />

Cathedral. 595<br />

influence on the nature <strong>and</strong> chemical<br />

con<strong>di</strong>tions of the environment during<br />

se<strong>di</strong>mentation. 251<br />

relationships with micronutrients in soils<br />

from Veg~ de Velez. 486,487<br />

relationship with paleoclimatic<br />

transition in the Tajo basin. 273<br />

with an elevated degree of evolution in<br />

soils deriving from subaerial exposure<br />

of green clays in the Neogene basin of<br />

Madrid. 297<br />

Orinoco river. 126<br />

Oxidation-reduction reactions.<br />

(see pyrolysis)<br />

Padma river. 126<br />

·'


728 Subject index<br />

Palygorskite.<br />

effect on decarboxylation <strong>and</strong> cracking of<br />

stearic acid. 10<br />

genesis in Villamayor s<strong>and</strong>s tones,<br />

stability con<strong>di</strong>tions. 201,202<br />

in central facies at the Duero basin. 344<br />

in evaporitic Miocene se<strong>di</strong>ments of the<br />

Tajo basin. 271<br />

in Miocene-Pliocene materials at Vera<br />

basin. 261<br />

in pelagic Cretaceous mudstones,<br />

precipitation. 256<br />

in the bentonite of the Fardes Formation,<br />

stability field. 304,310<br />

in the Tertia.ry se<strong>di</strong>ments of the Alameda.<br />

349<br />

polygenesis in a fluvio-lacustrine<br />

environment in the Neogene basin of<br />

Madrid. 296<br />

textural mo<strong>di</strong>fication by acid treatment,<br />

catalyst. 183<br />

--~- ----~ -----·Panormi·d-e


Subject index 729<br />

systems. oxidation-reduction reactions.<br />

9, 10, 11, 12,13<br />

Pyrophyllite.<br />

27<br />

AI MAS-NMR spectrum. 73<br />

27<br />

AI <strong>and</strong> 29 Si isotropic chemical shifts. 76<br />

29 Si MAS-NMR spectrum. 73<br />

effect on decarboxylation <strong>and</strong> cracking of<br />

stearic acid. 10<br />

in uppermost Miocene of the Granada<br />

basin. 342<br />

retention of organic matter by thermal<br />

reaction in a Semi closed environment.<br />

11<br />

stage number for the calculation of the<br />

hydrolysis index. 333<br />

Quantitative analysis of clay <strong>and</strong> non-clay<br />

minerals. (see X-ray <strong>di</strong>ffraction)<br />

Quantitative determination of gibbsite <strong>and</strong><br />

halloysite by Differential Scanning<br />

Calorimetry. 459<br />

Quartz.<br />

equatiOf! for firing temperature<br />

pre<strong>di</strong>ction. 590<br />

in ceramic bo<strong>di</strong>es, autoclave treatme~t.<br />

571,572<br />

reflecting power factor. 590<br />

relationship with crushing strenght. 587<br />

weathering index. 329<br />

Quentar Formation. 343<br />

Ra<strong>di</strong>oactive wastes.<br />

l.ong-term isolation in deep clay<br />

formation. 709<br />

Red bed clays. 602<br />

Red gres. 535<br />

Residual failure mechanisms.<br />

(see geotechnical properties ... )<br />

Ronda Complex. 489<br />

Rutigliano basin. 705<br />

Salamanca Province. 455<br />

Sangro river. 283<br />

Saponite.<br />

effect on decarboxylation <strong>and</strong> cracking of<br />

stearic acid. 10<br />

in altered rocks from Los Reales, Malaga.<br />

495<br />

Saraceno Formation. 630<br />

Scanning electron microscopy<br />

(see fabric)<br />

Sepiolite.<br />

acid catalyst. 182<br />

effect on decarboxylation <strong>and</strong> cracking of<br />

stearic acid. 10<br />

in central facies at the Duero basin. 344<br />

in evaporitic Miocene se<strong>di</strong>ments of the<br />

Tajo basin. 271,272<br />

in Miocene-Pliocene materials at the Vera<br />

basin. 261<br />

polygenesis in a fluvio-lacustrine<br />

environment in the Neogene basin of<br />

Madrid.296<br />

surface aci<strong>di</strong>ty. 181<br />

textural mo<strong>di</strong>fication by acid treatment.<br />

182<br />

Seville Province. 599<br />

Shape <strong>and</strong> shape factors.<br />

of clay minerals. elongation, flatness,<br />

sphericity. 684<br />

Shear test.<br />

(see geotechnical properties ... )<br />

Shrinkage.<br />

drying, in raw materials for the<br />

manufacture of structural ceramics.<br />

relationships with density <strong>and</strong><br />

tempering water, <strong>and</strong> clay minerals<br />

contents.513,527,529<br />

equation for calculation of. 527<br />

Siderite. 251<br />

Silicification.<br />

influence on genesis offibrous minerals.<br />

288<br />

Skempton colloidal chart.<br />

(see geotechnical properties .. .)<br />

Smectite.<br />

<strong>di</strong>octahedral <strong>and</strong> trioctahedral in<br />

evaporitic Miocene se<strong>di</strong>ments from the<br />

Tajo basin. 273,275<br />

ofbeidellite-montmorillonite series. 223<br />

of montmorillonite-nontronite series. 304<br />

synthesis. 21<br />

trioctahedral, in altered rocks from Los<br />

Reales, Malaga. 495<br />

with variable chemical composition <strong>and</strong><br />

tetrahedral charge in bentonites from<br />

Cabo de Gata. 20<br />

Soils.<br />

I<br />

,01


730 Subject index<br />

compacted cohesive. engineering<br />

behaviour related to core earth dam<br />

construction. 693<br />

from Cantabria. developed in areas with<br />

high rainfall <strong>and</strong> undulating<br />

topography. 514<br />

from Cor<strong>di</strong>llera Central. influence of<br />

organic matter <strong>and</strong> humi<strong>di</strong>ty on the<br />

evolution of. 516<br />

from Emilia-Romagna Region.<br />

mineralogical <strong>and</strong> geochemical<br />

characteristics, genetic implications.<br />

451,470,471<br />

from Guadalquivir river basim. study of<br />

micromorphological features of clay<br />

translocations. 513<br />

from Jura Region. (see gypsum)<br />

from peridotite in Los Reales, Malaga.<br />

mineralogy <strong>and</strong> geochemistry,<br />

relationships with mineralogy <strong>and</strong><br />

geochemistry of parent <strong>and</strong> altered<br />

·-- -----roCks. matter balance-s. reflecting<br />

power factors for am phi bole, <strong>di</strong>opside,<br />

enstatite, olivine <strong>and</strong> serpentine. 490,<br />

491,492,493,494,495,496,497,498<br />

from Piedmont. clay minerals<br />

<strong>di</strong>stribution in <strong>di</strong>fferent environments<br />

ofthe Region. 511<br />

from Po valley. (see cation exchange<br />

capacity)<br />

from Vega de Velez, Malaga. mineralogy<br />

<strong>and</strong> geochemistry. micro nutrients.<br />

correlation of extractable boron,<br />

copper <strong>and</strong> iron with organic matter,<br />

carbonates <strong>and</strong> clay content. 485,486,<br />

487<br />

from Vulture v.olcanic complex.<br />

mineralogical characteristics. 208<br />

Specific surface area.<br />

(see beidellite <strong>and</strong> montmorillonite)<br />

Sphalerite.<br />

in granitic pegmatites from centralwestern<br />

Spain. 345<br />

Spine!.<br />

high-temperature phase from kaolinite<br />

with intercalated mineralizers.385,<br />

386,387,388<br />

St. Lawrence river. 126<br />

Stability fields <strong>di</strong>agram.<br />

relationships among albite, gibbsite,<br />

kaolinite <strong>and</strong> Na-montmorillonite at<br />

25°C <strong>and</strong> 1 Atm., as a function oL[Na:


Subject index 731<br />

stage number for the calculation of the<br />

hydrolysis index. 333<br />

Tetrahedral.<br />

cation ordering, in layer silicates. 77<br />

Thenar<strong>di</strong>te. 269<br />

Thermodynamic.<br />

grin<strong>di</strong>ng effects on crystallinity of<br />

kaolinite. 429,430<br />

of the adsorption of chloropropham by ·<br />

clay minerals <strong>and</strong> soils. 148, 152<br />

of adsorption of macrocyclic compounds<br />

by montmorillonite. 184<br />

of interaction of organophosphorus<br />

pesticides with vermiculite. 181<br />

textural mo<strong>di</strong>fication of sepi2lite <strong>and</strong><br />

palygorskite by acid treatment. 183<br />

Thermogra vimetric analysis.<br />

of altered ceramic sculptures. 596<br />

Topaz.<br />

in granitic pegmatites from centralwestern<br />

Spain. 345<br />

Tourmaline.<br />

associated with lithium-muscovites in<br />

granitic pegmatites from centralwestern<br />

Spain. 345<br />

in Villamayor s<strong>and</strong>stone. 199 '-<br />

Trace elements.<br />

<strong>di</strong>stribution <strong>and</strong> behaviour in the Gulf of<br />

Taranto. 351,352<br />

genesis of the Fardes Formation<br />

bentonites. 309<br />

in lithium-muscovites. 345<br />

in soils from Emilia-Romagna region,<br />

. relationships with mineralogy. 469,<br />

470<br />

in soils from Los Reales, Malaga, balance<br />

of matter. 493,498<br />

Triaxial test.<br />

(see geotechnical properties ...)<br />

Tridymite.<br />

<strong>di</strong>sordered. 23<br />

low temperature phase in bentonite. 20<br />

weathering index. 329<br />

Tronto river. 282<br />

Tufiti <strong>di</strong> Tusa. 218<br />

Turbitic pelites.<br />

in northern <strong>and</strong> southern Middle<br />

Subbetic realms, <strong>di</strong>fferences with<br />

hemipelagites. 254<br />

mineralogical composition. 251<br />

Unconfined compressive tests.<br />

(see geotechnical properties .. .)<br />

UVlight.<br />

detection of chlorthiamid <strong>and</strong><br />

<strong>di</strong>chlobenil. 172<br />

Van der W aals forces.<br />

retention of chloropropham in<br />

intercrystalline pores of<br />

montmorillonite <strong>and</strong> kaolinite,<br />

interactions between cations <strong>and</strong><br />

chloropropham in peat. 150<br />

Vana<strong>di</strong>um.<br />

from rocks <strong>and</strong> soils, balance of matter.<br />

498<br />

Van't Hoff equation.<br />

for adsorption isosteric heats calculation.<br />

181<br />

Vera basin.<br />

lithology. 260, location. 260, mineralogy.<br />

261, Miocene-Pliocene boundary. 259,<br />

266, se<strong>di</strong>mentary environment. 265,<br />

266, stratigraphical <strong>and</strong><br />

paleontological investigations. 259<br />

Vermiculite.<br />

27<br />

Al <strong>and</strong> 29 Si isotropic chemical shifts. 76<br />

2 9Si MAS-NMR spectrum. 74<br />

decylammonium complex 155<br />

electron density profiles for dehydrated<br />

V-Na, V-K <strong>and</strong> V-Cs. 412<br />

electron density profiles for monolayer<br />

hydrates V-Va <strong>and</strong> V-Li. 413<br />

homoionic, infrared spectra in the v 0 H<br />

region.413,414,415,416<br />

perturbation of OH groups by interlayer<br />

cations. effect oflarge <strong>and</strong> small<br />

cations on layer stacking modes. 418,<br />

421<br />

stage number for the calculation of the<br />

hydrolysis index. 333<br />

weathering index. 329<br />

Volume shrinkage. 524<br />

'Vomano river. 281 o 282<br />

Vulture volcanites.<br />

weathering products of. 210,211<br />

Waikato river. 126<br />

Water molecules.


732 Subject index<br />

I<br />

localization in Na-beidellite.<br />

homogeneous one-water-layer state,<br />

homogeneous two-water-layer state.<br />

50, 51,52<br />

Weathering index.<br />

of clay-size minerals in soils <strong>and</strong><br />

se<strong>di</strong>mentary deposits. 329<br />

Weathering sequences:<br />

of aci<strong>di</strong>c volcanic rocks, granites <strong>and</strong><br />

gneisses. 347<br />

Weaverindex.353<br />

Western Me<strong>di</strong>terranean basin. 260<br />

Wol!astonite.<br />

equation for firing temperature<br />

pre<strong>di</strong>ction. 590<br />

high-temperature phase. 565,566<br />

in ceramic bo<strong>di</strong>es, autoclave treatment.<br />

571,572<br />

reflecting power factor. 590<br />

X-ray <strong>di</strong>ffraction.<br />

modelling methods of X-ray <strong>di</strong>ffraction<br />

spectra. principle of the method,<br />

mathematical approach. 35;-3o~37-;-3s:~-~-~-·<br />

39<br />

quantitative analysis of clay <strong>and</strong> non-clay<br />

minerals. 224,234,248,260,261,269,<br />

270,271,279,280,289,304,342,343,<br />

440,463,485,491,514,516,552,568,<br />

571,572,588,589,590,605,611,624,<br />

631,636,650,653,663,674,695,708<br />

X-ray fluorescenc;. 209,220,650<br />

Zeolites.18, 31,272,291,339:425<br />

Zeta potential.<br />

in<strong>di</strong>cator of the electric state of the<br />

__ double layer. 515<br />

Zinc.<br />

from rocks <strong>and</strong> soils, balance of matter.<br />

498<br />

:,I I<br />

11<br />

lil!<br />

:I,<br />

lli<br />

i<br />

I<br />

I<br />

1!<br />

H<br />

I


Finito <strong>di</strong> stampare<br />

ne/ mese <strong>di</strong> <strong>di</strong>cembre 1986<br />

dalla Tipegrafia Compositori - Bologna<br />

,I

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!